rtw.c revision 1.100 1 /* $NetBSD: rtw.c,v 1.100 2008/03/12 15:47:49 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005, 2006, 2007 David Young. All rights
4 * reserved.
5 *
6 * Programmed for NetBSD by David Young.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of David Young may not be used to endorse or promote
17 * products derived from this software without specific prior
18 * written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
21 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
23 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
24 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
26 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31 * OF SUCH DAMAGE.
32 */
33 /*
34 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.100 2008/03/12 15:47:49 dyoung Exp $");
39
40 #include "bpfilter.h"
41
42 #include <sys/param.h>
43 #include <sys/sysctl.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/time.h>
50 #include <sys/types.h>
51 #include <sys/device.h>
52
53 #include <machine/endian.h>
54 #include <sys/bus.h>
55 #include <sys/intr.h> /* splnet */
56
57 #include <uvm/uvm_extern.h>
58
59 #include <net/if.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #include <net80211/ieee80211_netbsd.h>
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70
71 #include <dev/ic/rtwreg.h>
72 #include <dev/ic/rtwvar.h>
73 #include <dev/ic/rtwphyio.h>
74 #include <dev/ic/rtwphy.h>
75
76 #include <dev/ic/smc93cx6var.h>
77
78 static int rtw_rfprog_fallback = 0;
79 static int rtw_host_rfio = 0;
80
81 #ifdef RTW_DEBUG
82 int rtw_debug = 0;
83 static int rtw_rxbufs_limit = RTW_RXQLEN;
84 #endif /* RTW_DEBUG */
85
86 #define NEXT_ATTACH_STATE(sc, state) do { \
87 DPRINTF(sc, RTW_DEBUG_ATTACH, \
88 ("%s: attach state %s\n", __func__, #state)); \
89 sc->sc_attach_state = state; \
90 } while (0)
91
92 int rtw_dwelltime = 200; /* milliseconds */
93 static struct ieee80211_cipher rtw_cipher_wep;
94
95 static void rtw_start(struct ifnet *);
96 static void rtw_reset_oactive(struct rtw_softc *);
97 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
98 struct ieee80211_node *);
99 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
100
101 static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
102 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
103 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
104 const u_int8_t[IEEE80211_ADDR_LEN]);
105 static void rtw_key_update_end(struct ieee80211com *);
106 static void rtw_key_update_begin(struct ieee80211com *);
107 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
108 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
109
110 static void rtw_led_attach(struct rtw_led_state *, void *);
111 static void rtw_led_init(struct rtw_regs *);
112 static void rtw_led_slowblink(void *);
113 static void rtw_led_fastblink(void *);
114 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
115
116 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
117 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
118 #ifdef RTW_DEBUG
119 static void rtw_dump_rings(struct rtw_softc *sc);
120 static void rtw_print_txdesc(struct rtw_softc *, const char *,
121 struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
122 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
123 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
124 #endif /* RTW_DEBUG */
125 #ifdef RTW_DIAG
126 static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
127 #endif /* RTW_DIAG */
128
129 /*
130 * Setup sysctl(3) MIB, hw.rtw.*
131 *
132 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
133 */
134 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
135 {
136 int rc;
137 const struct sysctlnode *cnode, *rnode;
138
139 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
140 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
141 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
142 goto err;
143
144 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
145 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
146 "Realtek RTL818x 802.11 controls",
147 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
148 goto err;
149
150 #ifdef RTW_DEBUG
151 /* control debugging printfs */
152 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
153 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
154 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
155 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
156 CTL_CREATE, CTL_EOL)) != 0)
157 goto err;
158
159 /* Limit rx buffers, for simulating resource exhaustion. */
160 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
161 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
162 "rxbufs_limit",
163 SYSCTL_DESCR("Set rx buffers limit"),
164 rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
165 CTL_CREATE, CTL_EOL)) != 0)
166 goto err;
167
168 #endif /* RTW_DEBUG */
169 /* set fallback RF programming method */
170 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
171 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
172 "rfprog_fallback",
173 SYSCTL_DESCR("Set fallback RF programming method"),
174 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
175 CTL_CREATE, CTL_EOL)) != 0)
176 goto err;
177
178 /* force host to control RF I/O bus */
179 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
180 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
181 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
182 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
183 CTL_CREATE, CTL_EOL)) != 0)
184 goto err;
185
186 return;
187 err:
188 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
189 }
190
191 static int
192 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
193 {
194 int error, t;
195 struct sysctlnode node;
196
197 node = *rnode;
198 t = *(int*)rnode->sysctl_data;
199 node.sysctl_data = &t;
200 error = sysctl_lookup(SYSCTLFN_CALL(&node));
201 if (error || newp == NULL)
202 return (error);
203
204 if (t < lower || t > upper)
205 return (EINVAL);
206
207 *(int*)rnode->sysctl_data = t;
208
209 return (0);
210 }
211
212 static int
213 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
214 {
215 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
216 __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
217 }
218
219 static int
220 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
221 {
222 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
223 }
224
225 #ifdef RTW_DEBUG
226 static int
227 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
228 {
229 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
230 0, RTW_DEBUG_MAX);
231 }
232
233 static int
234 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
235 {
236 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
237 0, RTW_RXQLEN);
238 }
239
240 static void
241 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
242 {
243 #define PRINTREG32(sc, reg) \
244 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
245 ("%s: reg[ " #reg " / %03x ] = %08x\n", \
246 dvname, reg, RTW_READ(regs, reg)))
247
248 #define PRINTREG16(sc, reg) \
249 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
250 ("%s: reg[ " #reg " / %03x ] = %04x\n", \
251 dvname, reg, RTW_READ16(regs, reg)))
252
253 #define PRINTREG8(sc, reg) \
254 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
255 ("%s: reg[ " #reg " / %03x ] = %02x\n", \
256 dvname, reg, RTW_READ8(regs, reg)))
257
258 RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
259
260 PRINTREG32(regs, RTW_IDR0);
261 PRINTREG32(regs, RTW_IDR1);
262 PRINTREG32(regs, RTW_MAR0);
263 PRINTREG32(regs, RTW_MAR1);
264 PRINTREG32(regs, RTW_TSFTRL);
265 PRINTREG32(regs, RTW_TSFTRH);
266 PRINTREG32(regs, RTW_TLPDA);
267 PRINTREG32(regs, RTW_TNPDA);
268 PRINTREG32(regs, RTW_THPDA);
269 PRINTREG32(regs, RTW_TCR);
270 PRINTREG32(regs, RTW_RCR);
271 PRINTREG32(regs, RTW_TINT);
272 PRINTREG32(regs, RTW_TBDA);
273 PRINTREG32(regs, RTW_ANAPARM);
274 PRINTREG32(regs, RTW_BB);
275 PRINTREG32(regs, RTW_PHYCFG);
276 PRINTREG32(regs, RTW_WAKEUP0L);
277 PRINTREG32(regs, RTW_WAKEUP0H);
278 PRINTREG32(regs, RTW_WAKEUP1L);
279 PRINTREG32(regs, RTW_WAKEUP1H);
280 PRINTREG32(regs, RTW_WAKEUP2LL);
281 PRINTREG32(regs, RTW_WAKEUP2LH);
282 PRINTREG32(regs, RTW_WAKEUP2HL);
283 PRINTREG32(regs, RTW_WAKEUP2HH);
284 PRINTREG32(regs, RTW_WAKEUP3LL);
285 PRINTREG32(regs, RTW_WAKEUP3LH);
286 PRINTREG32(regs, RTW_WAKEUP3HL);
287 PRINTREG32(regs, RTW_WAKEUP3HH);
288 PRINTREG32(regs, RTW_WAKEUP4LL);
289 PRINTREG32(regs, RTW_WAKEUP4LH);
290 PRINTREG32(regs, RTW_WAKEUP4HL);
291 PRINTREG32(regs, RTW_WAKEUP4HH);
292 PRINTREG32(regs, RTW_DK0);
293 PRINTREG32(regs, RTW_DK1);
294 PRINTREG32(regs, RTW_DK2);
295 PRINTREG32(regs, RTW_DK3);
296 PRINTREG32(regs, RTW_RETRYCTR);
297 PRINTREG32(regs, RTW_RDSAR);
298 PRINTREG32(regs, RTW_FER);
299 PRINTREG32(regs, RTW_FEMR);
300 PRINTREG32(regs, RTW_FPSR);
301 PRINTREG32(regs, RTW_FFER);
302
303 /* 16-bit registers */
304 PRINTREG16(regs, RTW_BRSR);
305 PRINTREG16(regs, RTW_IMR);
306 PRINTREG16(regs, RTW_ISR);
307 PRINTREG16(regs, RTW_BCNITV);
308 PRINTREG16(regs, RTW_ATIMWND);
309 PRINTREG16(regs, RTW_BINTRITV);
310 PRINTREG16(regs, RTW_ATIMTRITV);
311 PRINTREG16(regs, RTW_CRC16ERR);
312 PRINTREG16(regs, RTW_CRC0);
313 PRINTREG16(regs, RTW_CRC1);
314 PRINTREG16(regs, RTW_CRC2);
315 PRINTREG16(regs, RTW_CRC3);
316 PRINTREG16(regs, RTW_CRC4);
317 PRINTREG16(regs, RTW_CWR);
318
319 /* 8-bit registers */
320 PRINTREG8(regs, RTW_CR);
321 PRINTREG8(regs, RTW_9346CR);
322 PRINTREG8(regs, RTW_CONFIG0);
323 PRINTREG8(regs, RTW_CONFIG1);
324 PRINTREG8(regs, RTW_CONFIG2);
325 PRINTREG8(regs, RTW_MSR);
326 PRINTREG8(regs, RTW_CONFIG3);
327 PRINTREG8(regs, RTW_CONFIG4);
328 PRINTREG8(regs, RTW_TESTR);
329 PRINTREG8(regs, RTW_PSR);
330 PRINTREG8(regs, RTW_SCR);
331 PRINTREG8(regs, RTW_PHYDELAY);
332 PRINTREG8(regs, RTW_CRCOUNT);
333 PRINTREG8(regs, RTW_PHYADDR);
334 PRINTREG8(regs, RTW_PHYDATAW);
335 PRINTREG8(regs, RTW_PHYDATAR);
336 PRINTREG8(regs, RTW_CONFIG5);
337 PRINTREG8(regs, RTW_TPPOLL);
338
339 PRINTREG16(regs, RTW_BSSID16);
340 PRINTREG32(regs, RTW_BSSID32);
341 #undef PRINTREG32
342 #undef PRINTREG16
343 #undef PRINTREG8
344 }
345 #endif /* RTW_DEBUG */
346
347 void
348 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
349 {
350 struct rtw_regs *regs = &sc->sc_regs;
351
352 uint32_t tcr;
353 tcr = RTW_READ(regs, RTW_TCR);
354 tcr &= ~RTW_TCR_LBK_MASK;
355 if (enable)
356 tcr |= RTW_TCR_LBK_CONT;
357 else
358 tcr |= RTW_TCR_LBK_NORMAL;
359 RTW_WRITE(regs, RTW_TCR, tcr);
360 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
361 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
362 rtw_txdac_enable(sc, !enable);
363 rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
364 rtw_set_access(regs, RTW_ACCESS_NONE);
365 }
366
367 #ifdef RTW_DEBUG
368 static const char *
369 rtw_access_string(enum rtw_access access)
370 {
371 switch (access) {
372 case RTW_ACCESS_NONE:
373 return "none";
374 case RTW_ACCESS_CONFIG:
375 return "config";
376 case RTW_ACCESS_ANAPARM:
377 return "anaparm";
378 default:
379 return "unknown";
380 }
381 }
382 #endif /* RTW_DEBUG */
383
384 static void
385 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
386 {
387 KASSERT(/* naccess >= RTW_ACCESS_NONE && */
388 naccess <= RTW_ACCESS_ANAPARM);
389 KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
390 regs->r_access <= RTW_ACCESS_ANAPARM);
391
392 if (naccess == regs->r_access)
393 return;
394
395 switch (naccess) {
396 case RTW_ACCESS_NONE:
397 switch (regs->r_access) {
398 case RTW_ACCESS_ANAPARM:
399 rtw_anaparm_enable(regs, 0);
400 /*FALLTHROUGH*/
401 case RTW_ACCESS_CONFIG:
402 rtw_config0123_enable(regs, 0);
403 /*FALLTHROUGH*/
404 case RTW_ACCESS_NONE:
405 break;
406 }
407 break;
408 case RTW_ACCESS_CONFIG:
409 switch (regs->r_access) {
410 case RTW_ACCESS_NONE:
411 rtw_config0123_enable(regs, 1);
412 /*FALLTHROUGH*/
413 case RTW_ACCESS_CONFIG:
414 break;
415 case RTW_ACCESS_ANAPARM:
416 rtw_anaparm_enable(regs, 0);
417 break;
418 }
419 break;
420 case RTW_ACCESS_ANAPARM:
421 switch (regs->r_access) {
422 case RTW_ACCESS_NONE:
423 rtw_config0123_enable(regs, 1);
424 /*FALLTHROUGH*/
425 case RTW_ACCESS_CONFIG:
426 rtw_anaparm_enable(regs, 1);
427 /*FALLTHROUGH*/
428 case RTW_ACCESS_ANAPARM:
429 break;
430 }
431 break;
432 }
433 }
434
435 void
436 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
437 {
438 rtw_set_access1(regs, access);
439 RTW_DPRINTF(RTW_DEBUG_ACCESS,
440 ("%s: access %s -> %s\n", __func__,
441 rtw_access_string(regs->r_access),
442 rtw_access_string(access)));
443 regs->r_access = access;
444 }
445
446 /*
447 * Enable registers, switch register banks.
448 */
449 void
450 rtw_config0123_enable(struct rtw_regs *regs, int enable)
451 {
452 uint8_t ecr;
453 ecr = RTW_READ8(regs, RTW_9346CR);
454 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
455 if (enable)
456 ecr |= RTW_9346CR_EEM_CONFIG;
457 else {
458 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
459 ecr |= RTW_9346CR_EEM_NORMAL;
460 }
461 RTW_WRITE8(regs, RTW_9346CR, ecr);
462 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
463 }
464
465 /* requires rtw_config0123_enable(, 1) */
466 void
467 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
468 {
469 uint8_t cfg3;
470
471 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
472 cfg3 |= RTW_CONFIG3_CLKRUNEN;
473 if (enable)
474 cfg3 |= RTW_CONFIG3_PARMEN;
475 else
476 cfg3 &= ~RTW_CONFIG3_PARMEN;
477 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
478 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
479 }
480
481 /* requires rtw_anaparm_enable(, 1) */
482 void
483 rtw_txdac_enable(struct rtw_softc *sc, int enable)
484 {
485 uint32_t anaparm;
486 struct rtw_regs *regs = &sc->sc_regs;
487
488 anaparm = RTW_READ(regs, RTW_ANAPARM);
489 if (enable)
490 anaparm &= ~RTW_ANAPARM_TXDACOFF;
491 else
492 anaparm |= RTW_ANAPARM_TXDACOFF;
493 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
494 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
495 }
496
497 static inline int
498 rtw_chip_reset1(struct rtw_regs *regs, device_t dev)
499 {
500 uint8_t cr;
501 int i;
502
503 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
504
505 RTW_WBR(regs, RTW_CR, RTW_CR);
506
507 for (i = 0; i < 1000; i++) {
508 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
509 RTW_DPRINTF(RTW_DEBUG_RESET,
510 ("%s: reset in %dus\n", device_xname(dev), i));
511 return 0;
512 }
513 RTW_RBR(regs, RTW_CR, RTW_CR);
514 DELAY(10); /* 10us */
515 }
516
517 aprint_error_dev(dev, "reset failed\n");
518 return ETIMEDOUT;
519 }
520
521 static inline int
522 rtw_chip_reset(struct rtw_regs *regs, device_t dev)
523 {
524 uint32_t tcr;
525
526 /* from Linux driver */
527 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
528 __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
529
530 RTW_WRITE(regs, RTW_TCR, tcr);
531
532 RTW_WBW(regs, RTW_CR, RTW_TCR);
533
534 return rtw_chip_reset1(regs, dev);
535 }
536
537 static int
538 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
539 {
540 struct ieee80211_key keycopy;
541
542 RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
543
544 keycopy = *k;
545 keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
546
547 return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
548 }
549
550 static int
551 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
552 {
553 struct rtw_softc *sc = ic->ic_ifp->if_softc;
554 u_int keyix = k->wk_keyix;
555
556 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__, keyix));
557
558 if (keyix >= IEEE80211_WEP_NKID)
559 return 0;
560 if (k->wk_keylen != 0)
561 sc->sc_flags &= ~RTW_F_DK_VALID;
562
563 return 1;
564 }
565
566 static int
567 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
568 const u_int8_t mac[IEEE80211_ADDR_LEN])
569 {
570 struct rtw_softc *sc = ic->ic_ifp->if_softc;
571
572 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
573
574 if (k->wk_keyix >= IEEE80211_WEP_NKID)
575 return 0;
576
577 sc->sc_flags &= ~RTW_F_DK_VALID;
578
579 return 1;
580 }
581
582 static void
583 rtw_key_update_begin(struct ieee80211com *ic)
584 {
585 #ifdef RTW_DEBUG
586 struct ifnet *ifp = ic->ic_ifp;
587 struct rtw_softc *sc = ifp->if_softc;
588 #endif
589
590 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
591 }
592
593 static void
594 rtw_key_update_end(struct ieee80211com *ic)
595 {
596 struct ifnet *ifp = ic->ic_ifp;
597 struct rtw_softc *sc = ifp->if_softc;
598
599 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
600
601 if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
602 (sc->sc_flags & RTW_F_ENABLED) == 0 ||
603 (sc->sc_flags & RTW_F_INVALID) != 0)
604 return;
605
606 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
607 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
608 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
609 (ifp->if_flags & IFF_RUNNING) != 0);
610 }
611
612 static inline int
613 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
614 {
615 if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
616 return 0;
617
618 return ((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
619 ((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
620 }
621
622 static void
623 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
624 {
625 uint8_t psr, scr;
626 int i, keylen;
627 struct rtw_regs *regs;
628 union rtw_keys *rk;
629
630 regs = &sc->sc_regs;
631 rk = &sc->sc_keys;
632
633 (void)memset(rk, 0, sizeof(rk));
634
635 /* Temporarily use software crypto for all keys. */
636 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
637 if (wk[i].wk_cipher == &rtw_cipher_wep)
638 wk[i].wk_cipher = &ieee80211_cipher_wep;
639 }
640
641 rtw_set_access(regs, RTW_ACCESS_CONFIG);
642
643 psr = RTW_READ8(regs, RTW_PSR);
644 scr = RTW_READ8(regs, RTW_SCR);
645 scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
646
647 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
648 goto out;
649
650 for (keylen = i = 0; i < IEEE80211_WEP_NKID; i++) {
651 if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
652 continue;
653 if (i == txkey) {
654 keylen = wk[i].wk_keylen;
655 break;
656 }
657 keylen = MAX(keylen, wk[i].wk_keylen);
658 }
659
660 if (keylen == 5)
661 scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
662 else if (keylen == 13)
663 scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
664
665 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
666 if (wk[i].wk_keylen != keylen ||
667 wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
668 continue;
669 /* h/w will decrypt, s/w still strips headers */
670 wk[i].wk_cipher = &rtw_cipher_wep;
671 (void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
672 }
673
674 out:
675 RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
676
677 bus_space_write_region_stream_4(regs->r_bt, regs->r_bh,
678 RTW_DK0, rk->rk_words, __arraycount(rk->rk_words));
679
680 bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
681 BUS_SPACE_BARRIER_SYNC);
682
683 RTW_WBW(regs, RTW_DK0, RTW_PSR);
684 RTW_WRITE8(regs, RTW_PSR, psr);
685 RTW_WBW(regs, RTW_PSR, RTW_SCR);
686 RTW_WRITE8(regs, RTW_SCR, scr);
687 RTW_SYNC(regs, RTW_SCR, RTW_SCR);
688 rtw_set_access(regs, RTW_ACCESS_NONE);
689 sc->sc_flags |= RTW_F_DK_VALID;
690 }
691
692 static inline int
693 rtw_recall_eeprom(struct rtw_regs *regs, device_t dev)
694 {
695 int i;
696 uint8_t ecr;
697
698 ecr = RTW_READ8(regs, RTW_9346CR);
699 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
700 RTW_WRITE8(regs, RTW_9346CR, ecr);
701
702 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
703
704 /* wait 25ms for completion */
705 for (i = 0; i < 250; i++) {
706 ecr = RTW_READ8(regs, RTW_9346CR);
707 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
708 RTW_DPRINTF(RTW_DEBUG_RESET,
709 ("%s: recall EEPROM in %dus\n", device_xname(dev),
710 i * 100));
711 return 0;
712 }
713 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
714 DELAY(100);
715 }
716 aprint_error_dev(dev, "recall EEPROM failed\n");
717 return ETIMEDOUT;
718 }
719
720 static inline int
721 rtw_reset(struct rtw_softc *sc)
722 {
723 int rc;
724 uint8_t config1;
725
726 sc->sc_flags &= ~RTW_F_DK_VALID;
727
728 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev)) != 0)
729 return rc;
730
731 rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev);
732
733 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
734 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
735 /* TBD turn off maximum power saving? */
736
737 return 0;
738 }
739
740 static inline int
741 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
742 u_int ndescs)
743 {
744 int i, rc = 0;
745 for (i = 0; i < ndescs; i++) {
746 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
747 0, 0, &descs[i].ts_dmamap);
748 if (rc != 0)
749 break;
750 }
751 return rc;
752 }
753
754 static inline int
755 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
756 u_int ndescs)
757 {
758 int i, rc = 0;
759 for (i = 0; i < ndescs; i++) {
760 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
761 &descs[i].rs_dmamap);
762 if (rc != 0)
763 break;
764 }
765 return rc;
766 }
767
768 static inline void
769 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
770 u_int ndescs)
771 {
772 int i;
773 for (i = 0; i < ndescs; i++) {
774 if (descs[i].rs_dmamap != NULL)
775 bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
776 }
777 }
778
779 static inline void
780 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
781 u_int ndescs)
782 {
783 int i;
784 for (i = 0; i < ndescs; i++) {
785 if (descs[i].ts_dmamap != NULL)
786 bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
787 }
788 }
789
790 static inline void
791 rtw_srom_free(struct rtw_srom *sr)
792 {
793 sr->sr_size = 0;
794 if (sr->sr_content == NULL)
795 return;
796 free(sr->sr_content, M_DEVBUF);
797 sr->sr_content = NULL;
798 }
799
800 static void
801 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
802 uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
803 {
804 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
805 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
806 *rcr |= RTW_RCR_ENCS1;
807 *rfchipid = RTW_RFCHIPID_PHILIPS;
808 }
809
810 static int
811 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
812 enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
813 device_t dev)
814 {
815 int i;
816 const char *rfname, *paname;
817 char scratch[sizeof("unknown 0xXX")];
818 uint16_t srom_version;
819 uint8_t mac[IEEE80211_ADDR_LEN];
820
821 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
822 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
823
824 srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
825
826 if (srom_version <= 0x0101) {
827 aprint_error_dev(dev,
828 "SROM version %d.%d is not understood, "
829 "limping along with defaults\n",
830 srom_version >> 8, srom_version & 0xff);
831 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
832 return 0;
833 } else {
834 aprint_verbose_dev(dev, "SROM version %d.%d",
835 srom_version >> 8, srom_version & 0xff);
836 }
837
838 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
839 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
840
841 RTW_DPRINTF(RTW_DEBUG_ATTACH,
842 ("%s: EEPROM MAC %s\n", device_xname(dev), ether_sprintf(mac)));
843
844 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
845
846 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
847 *flags |= RTW_F_ANTDIV;
848
849 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
850 * to be reversed.
851 */
852 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
853 *flags |= RTW_F_DIGPHY;
854 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
855 *flags |= RTW_F_DFLANTB;
856
857 *rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
858 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
859
860 if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
861 *flags |= RTW_C_RXWEP_104;
862
863 *flags |= RTW_C_RXWEP_40; /* XXX */
864
865 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
866 switch (*rfchipid) {
867 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
868 rfname = "GCT GRF5101";
869 paname = "Winspring WS9901";
870 break;
871 case RTW_RFCHIPID_MAXIM:
872 rfname = "Maxim MAX2820"; /* guess */
873 paname = "Maxim MAX2422"; /* guess */
874 break;
875 case RTW_RFCHIPID_INTERSIL:
876 rfname = "Intersil HFA3873"; /* guess */
877 paname = "Intersil <unknown>";
878 break;
879 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
880 rfname = "Philips SA2400A";
881 paname = "Philips SA2411";
882 break;
883 case RTW_RFCHIPID_RFMD:
884 /* this is the same front-end as an atw(4)! */
885 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
886 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
887 "SYN: Silicon Labs Si4126"; /* inferred from
888 * reference driver
889 */
890 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
891 break;
892 case RTW_RFCHIPID_RESERVED:
893 rfname = paname = "reserved";
894 break;
895 default:
896 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
897 rfname = paname = scratch;
898 }
899 aprint_normal_dev(dev, "RF: %s, PA: %s\n", rfname, paname);
900
901 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
902 case RTW_CONFIG0_GL_USA:
903 case _RTW_CONFIG0_GL_USA:
904 *locale = RTW_LOCALE_USA;
905 break;
906 case RTW_CONFIG0_GL_EUROPE:
907 *locale = RTW_LOCALE_EUROPE;
908 break;
909 case RTW_CONFIG0_GL_JAPAN:
910 *locale = RTW_LOCALE_JAPAN;
911 break;
912 default:
913 *locale = RTW_LOCALE_UNKNOWN;
914 break;
915 }
916 return 0;
917 }
918
919 /* Returns -1 on failure. */
920 static int
921 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
922 device_t dev)
923 {
924 int rc;
925 struct seeprom_descriptor sd;
926 uint8_t ecr;
927
928 (void)memset(&sd, 0, sizeof(sd));
929
930 ecr = RTW_READ8(regs, RTW_9346CR);
931
932 if ((flags & RTW_F_9356SROM) != 0) {
933 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n",
934 device_xname(dev)));
935 sr->sr_size = 256;
936 sd.sd_chip = C56_66;
937 } else {
938 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n",
939 device_xname(dev)));
940 sr->sr_size = 128;
941 sd.sd_chip = C46;
942 }
943
944 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
945 RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
946 ecr |= RTW_9346CR_EEM_PROGRAM;
947
948 RTW_WRITE8(regs, RTW_9346CR, ecr);
949
950 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
951
952 if (sr->sr_content == NULL) {
953 aprint_error_dev(dev, "unable to allocate SROM buffer\n");
954 return ENOMEM;
955 }
956
957 (void)memset(sr->sr_content, 0, sr->sr_size);
958
959 /* RTL8180 has a single 8-bit register for controlling the
960 * 93cx6 SROM. There is no "ready" bit. The RTL8180
961 * input/output sense is the reverse of read_seeprom's.
962 */
963 sd.sd_tag = regs->r_bt;
964 sd.sd_bsh = regs->r_bh;
965 sd.sd_regsize = 1;
966 sd.sd_control_offset = RTW_9346CR;
967 sd.sd_status_offset = RTW_9346CR;
968 sd.sd_dataout_offset = RTW_9346CR;
969 sd.sd_CK = RTW_9346CR_EESK;
970 sd.sd_CS = RTW_9346CR_EECS;
971 sd.sd_DI = RTW_9346CR_EEDO;
972 sd.sd_DO = RTW_9346CR_EEDI;
973 /* make read_seeprom enter EEPROM read/write mode */
974 sd.sd_MS = ecr;
975 sd.sd_RDY = 0;
976
977 /* TBD bus barriers */
978 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
979 aprint_error_dev(dev, "could not read SROM\n");
980 free(sr->sr_content, M_DEVBUF);
981 sr->sr_content = NULL;
982 return -1; /* XXX */
983 }
984
985 /* end EEPROM read/write mode */
986 RTW_WRITE8(regs, RTW_9346CR,
987 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
988 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
989
990 if ((rc = rtw_recall_eeprom(regs, dev)) != 0)
991 return rc;
992
993 #ifdef RTW_DEBUG
994 {
995 int i;
996 RTW_DPRINTF(RTW_DEBUG_ATTACH,
997 ("\n%s: serial ROM:\n\t", device_xname(dev)));
998 for (i = 0; i < sr->sr_size/2; i++) {
999 if (((i % 8) == 0) && (i != 0))
1000 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
1001 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1002 (" %04x", sr->sr_content[i]));
1003 }
1004 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
1005 }
1006 #endif /* RTW_DEBUG */
1007 return 0;
1008 }
1009
1010 static void
1011 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1012 device_t dev)
1013 {
1014 uint8_t cfg4;
1015 const char *method;
1016
1017 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1018
1019 switch (rfchipid) {
1020 default:
1021 cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1022 method = "fallback";
1023 break;
1024 case RTW_RFCHIPID_INTERSIL:
1025 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1026 method = "Intersil";
1027 break;
1028 case RTW_RFCHIPID_PHILIPS:
1029 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1030 method = "Philips";
1031 break;
1032 case RTW_RFCHIPID_GCT: /* XXX a guess */
1033 case RTW_RFCHIPID_RFMD:
1034 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1035 method = "RFMD";
1036 break;
1037 }
1038
1039 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1040
1041 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1042
1043 RTW_DPRINTF(RTW_DEBUG_INIT,
1044 ("%s: %s RF programming method, %#02x\n", device_xname(dev), method,
1045 RTW_READ8(regs, RTW_CONFIG4)));
1046 }
1047
1048 static inline void
1049 rtw_init_channels(enum rtw_locale locale,
1050 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1], device_t dev)
1051 {
1052 int i;
1053 const char *name = NULL;
1054 #define ADD_CHANNEL(_chans, _chan) do { \
1055 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
1056 (*_chans)[_chan].ic_freq = \
1057 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1058 } while (0)
1059
1060 switch (locale) {
1061 case RTW_LOCALE_USA: /* 1-11 */
1062 name = "USA";
1063 for (i = 1; i <= 11; i++)
1064 ADD_CHANNEL(chans, i);
1065 break;
1066 case RTW_LOCALE_JAPAN: /* 1-14 */
1067 name = "Japan";
1068 ADD_CHANNEL(chans, 14);
1069 for (i = 1; i <= 14; i++)
1070 ADD_CHANNEL(chans, i);
1071 break;
1072 case RTW_LOCALE_EUROPE: /* 1-13 */
1073 name = "Europe";
1074 for (i = 1; i <= 13; i++)
1075 ADD_CHANNEL(chans, i);
1076 break;
1077 default: /* 10-11 allowed by most countries */
1078 name = "<unknown>";
1079 for (i = 10; i <= 11; i++)
1080 ADD_CHANNEL(chans, i);
1081 break;
1082 }
1083 aprint_normal_dev(dev, "Geographic Location %s\n", name);
1084 #undef ADD_CHANNEL
1085 }
1086
1087
1088 static inline void
1089 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1090 {
1091 uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1092
1093 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1094 case RTW_CONFIG0_GL_USA:
1095 case _RTW_CONFIG0_GL_USA:
1096 *locale = RTW_LOCALE_USA;
1097 break;
1098 case RTW_CONFIG0_GL_JAPAN:
1099 *locale = RTW_LOCALE_JAPAN;
1100 break;
1101 case RTW_CONFIG0_GL_EUROPE:
1102 *locale = RTW_LOCALE_EUROPE;
1103 break;
1104 default:
1105 *locale = RTW_LOCALE_UNKNOWN;
1106 break;
1107 }
1108 }
1109
1110 static inline int
1111 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1112 device_t dev)
1113 {
1114 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1115 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1116 };
1117 uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1118 idr1 = RTW_READ(regs, RTW_IDR1);
1119
1120 (*addr)[0] = __SHIFTOUT(idr0, __BITS(0, 7));
1121 (*addr)[1] = __SHIFTOUT(idr0, __BITS(8, 15));
1122 (*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
1123 (*addr)[3] = __SHIFTOUT(idr0, __BITS(24 ,31));
1124
1125 (*addr)[4] = __SHIFTOUT(idr1, __BITS(0, 7));
1126 (*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
1127
1128 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1129 aprint_error_dev(dev,
1130 "could not get mac address, attach failed\n");
1131 return ENXIO;
1132 }
1133
1134 aprint_normal_dev(dev, "802.11 address %s\n", ether_sprintf(*addr));
1135
1136 return 0;
1137 }
1138
1139 static uint8_t
1140 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1141 struct ieee80211_channel *chan)
1142 {
1143 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1144 KASSERT(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14);
1145 return RTW_SR_GET(sr, idx);
1146 }
1147
1148 static void
1149 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1150 {
1151 int pri;
1152 /* nfree: the number of free descriptors in each ring.
1153 * The beacon ring is a special case: I do not let the
1154 * driver use all of the descriptors on the beacon ring.
1155 * The reasons are two-fold:
1156 *
1157 * (1) A BEACON descriptor's OWN bit is (apparently) not
1158 * updated, so the driver cannot easily know if the descriptor
1159 * belongs to it, or if it is racing the NIC. If the NIC
1160 * does not OWN every descriptor, then the driver can safely
1161 * update the descriptors when RTW_TBDA points at tdb_next.
1162 *
1163 * (2) I hope that the NIC will process more than one BEACON
1164 * descriptor in a single beacon interval, since that will
1165 * enable multiple-BSS support. Since the NIC does not
1166 * clear the OWN bit, there is no natural place for it to
1167 * stop processing BEACON desciptors. Maybe it will *not*
1168 * stop processing them! I do not want to chance the NIC
1169 * looping around and around a saturated beacon ring, so
1170 * I will leave one descriptor unOWNed at all times.
1171 */
1172 u_int nfree[RTW_NTXPRI] =
1173 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1174 RTW_NTXDESCBCN - 1};
1175
1176 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1177 tdb[pri].tdb_nfree = nfree[pri];
1178 tdb[pri].tdb_next = 0;
1179 }
1180 }
1181
1182 static int
1183 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1184 {
1185 int i;
1186 struct rtw_txsoft *ts;
1187
1188 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1189 SIMPLEQ_INIT(&tsb->tsb_freeq);
1190 for (i = 0; i < tsb->tsb_ndesc; i++) {
1191 ts = &tsb->tsb_desc[i];
1192 ts->ts_mbuf = NULL;
1193 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1194 }
1195 tsb->tsb_tx_timer = 0;
1196 return 0;
1197 }
1198
1199 static void
1200 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1201 {
1202 int pri;
1203 for (pri = 0; pri < RTW_NTXPRI; pri++)
1204 rtw_txsoft_blk_init(&tsb[pri]);
1205 }
1206
1207 static inline void
1208 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1209 {
1210 KASSERT(nsync <= rdb->rdb_ndesc);
1211 /* sync to end of ring */
1212 if (desc0 + nsync > rdb->rdb_ndesc) {
1213 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1214 offsetof(struct rtw_descs, hd_rx[desc0]),
1215 sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1216 nsync -= (rdb->rdb_ndesc - desc0);
1217 desc0 = 0;
1218 }
1219
1220 KASSERT(desc0 < rdb->rdb_ndesc);
1221 KASSERT(nsync <= rdb->rdb_ndesc);
1222 KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1223
1224 /* sync what remains */
1225 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1226 offsetof(struct rtw_descs, hd_rx[desc0]),
1227 sizeof(struct rtw_rxdesc) * nsync, ops);
1228 }
1229
1230 static void
1231 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1232 {
1233 /* sync to end of ring */
1234 if (desc0 + nsync > tdb->tdb_ndesc) {
1235 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1236 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1237 sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1238 ops);
1239 nsync -= (tdb->tdb_ndesc - desc0);
1240 desc0 = 0;
1241 }
1242
1243 /* sync what remains */
1244 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1245 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1246 sizeof(struct rtw_txdesc) * nsync, ops);
1247 }
1248
1249 static void
1250 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1251 {
1252 int pri;
1253 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1254 rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1255 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1256 }
1257 }
1258
1259 static void
1260 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1261 {
1262 int i;
1263 struct rtw_rxsoft *rs;
1264
1265 for (i = 0; i < RTW_RXQLEN; i++) {
1266 rs = &desc[i];
1267 if (rs->rs_mbuf == NULL)
1268 continue;
1269 bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1270 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1271 bus_dmamap_unload(dmat, rs->rs_dmamap);
1272 m_freem(rs->rs_mbuf);
1273 rs->rs_mbuf = NULL;
1274 }
1275 }
1276
1277 static inline int
1278 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1279 {
1280 int rc;
1281 struct mbuf *m;
1282
1283 MGETHDR(m, M_DONTWAIT, MT_DATA);
1284 if (m == NULL)
1285 return ENOBUFS;
1286
1287 MCLGET(m, M_DONTWAIT);
1288 if ((m->m_flags & M_EXT) == 0) {
1289 m_freem(m);
1290 return ENOBUFS;
1291 }
1292
1293 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1294
1295 if (rs->rs_mbuf != NULL)
1296 bus_dmamap_unload(dmat, rs->rs_dmamap);
1297
1298 rs->rs_mbuf = NULL;
1299
1300 rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1301 if (rc != 0) {
1302 m_freem(m);
1303 return -1;
1304 }
1305
1306 rs->rs_mbuf = m;
1307
1308 return 0;
1309 }
1310
1311 static int
1312 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1313 int *ndesc, device_t dev)
1314 {
1315 int i, rc = 0;
1316 struct rtw_rxsoft *rs;
1317
1318 for (i = 0; i < RTW_RXQLEN; i++) {
1319 rs = &desc[i];
1320 /* we're in rtw_init, so there should be no mbufs allocated */
1321 KASSERT(rs->rs_mbuf == NULL);
1322 #ifdef RTW_DEBUG
1323 if (i == rtw_rxbufs_limit) {
1324 aprint_error_dev(dev, "TEST hit %d-buffer limit\n", i);
1325 rc = ENOBUFS;
1326 break;
1327 }
1328 #endif /* RTW_DEBUG */
1329 if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1330 aprint_error_dev(dev,
1331 "rtw_rxsoft_alloc failed, %d buffers, rc %d\n",
1332 i, rc);
1333 break;
1334 }
1335 }
1336 *ndesc = i;
1337 return rc;
1338 }
1339
1340 static inline void
1341 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1342 int idx, int kick)
1343 {
1344 int is_last = (idx == rdb->rdb_ndesc - 1);
1345 uint32_t ctl, octl, obuf;
1346 struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1347
1348 /* sync the mbuf before the descriptor */
1349 bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1350 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1351
1352 obuf = rd->rd_buf;
1353 rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1354
1355 ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1356 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1357
1358 if (is_last)
1359 ctl |= RTW_RXCTL_EOR;
1360
1361 octl = rd->rd_ctl;
1362 rd->rd_ctl = htole32(ctl);
1363
1364 RTW_DPRINTF(
1365 kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1366 : RTW_DEBUG_RECV_DESC,
1367 ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1368 le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1369 le32toh(rd->rd_ctl)));
1370
1371 /* sync the descriptor */
1372 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1373 RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1374 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1375 }
1376
1377 static void
1378 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1379 {
1380 int i;
1381 struct rtw_rxdesc *rd;
1382 struct rtw_rxsoft *rs;
1383
1384 for (i = 0; i < rdb->rdb_ndesc; i++) {
1385 rd = &rdb->rdb_desc[i];
1386 rs = &ctl[i];
1387 rtw_rxdesc_init(rdb, rs, i, kick);
1388 }
1389 }
1390
1391 static void
1392 rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
1393 {
1394 struct rtw_regs *regs = &sc->sc_regs;
1395 uint8_t cr;
1396
1397 RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1398 enable ? "enable" : "disable", flags));
1399
1400 cr = RTW_READ8(regs, RTW_CR);
1401
1402 /* XXX reference source does not enable MULRW */
1403 /* enable PCI Read/Write Multiple */
1404 cr |= RTW_CR_MULRW;
1405
1406 /* The receive engine will always start at RDSAR. */
1407 if (enable && (flags & ~cr & RTW_CR_RE)) {
1408 struct rtw_rxdesc_blk *rdb;
1409 rdb = &sc->sc_rxdesc_blk;
1410 rdb->rdb_next = 0;
1411 }
1412
1413 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1414 if (enable)
1415 cr |= flags;
1416 else
1417 cr &= ~flags;
1418 RTW_WRITE8(regs, RTW_CR, cr);
1419 RTW_SYNC(regs, RTW_CR, RTW_CR);
1420
1421 #ifdef RTW_DIAG
1422 if (cr & RTW_CR_TE)
1423 rtw_txring_fixup(sc, __func__, __LINE__);
1424 #endif
1425 }
1426
1427 static void
1428 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1429 {
1430 #define IS_BEACON(__fc0) \
1431 ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1432 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1433
1434 static const int ratetbl[4] = {2, 4, 11, 22}; /* convert rates:
1435 * hardware -> net80211
1436 */
1437 u_int next, nproc = 0;
1438 int hwrate, len, rate, rssi, sq;
1439 uint32_t hrssi, hstat, htsfth, htsftl;
1440 struct rtw_rxdesc *rd;
1441 struct rtw_rxsoft *rs;
1442 struct rtw_rxdesc_blk *rdb;
1443 struct mbuf *m;
1444 struct ifnet *ifp = &sc->sc_if;
1445
1446 struct ieee80211_node *ni;
1447 struct ieee80211_frame_min *wh;
1448
1449 rdb = &sc->sc_rxdesc_blk;
1450
1451 for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
1452 KASSERT(next < rdb->rdb_ndesc);
1453
1454 rtw_rxdescs_sync(rdb, next, 1,
1455 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1456 rd = &rdb->rdb_desc[next];
1457 rs = &sc->sc_rxsoft[next];
1458
1459 hstat = le32toh(rd->rd_stat);
1460 hrssi = le32toh(rd->rd_rssi);
1461 htsfth = le32toh(rd->rd_tsfth);
1462 htsftl = le32toh(rd->rd_tsftl);
1463
1464 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1465 ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1466 __func__, next, hstat, hrssi, htsfth, htsftl));
1467
1468 ++nproc;
1469
1470 /* still belongs to NIC */
1471 if ((hstat & RTW_RXSTAT_OWN) != 0) {
1472 rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
1473 break;
1474 }
1475
1476 /* ieee80211_input() might reset the receive engine
1477 * (e.g. by indirectly calling rtw_tune()), so save
1478 * the next pointer here and retrieve it again on
1479 * the next round.
1480 */
1481 rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
1482
1483 #ifdef RTW_DEBUG
1484 #define PRINTSTAT(flag) do { \
1485 if ((hstat & flag) != 0) { \
1486 printf("%s" #flag, delim); \
1487 delim = ","; \
1488 } \
1489 } while (0)
1490 if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1491 const char *delim = "<";
1492 printf("%s: ", device_xname(sc->sc_dev));
1493 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1494 printf("status %08x", hstat);
1495 PRINTSTAT(RTW_RXSTAT_SPLCP);
1496 PRINTSTAT(RTW_RXSTAT_MAR);
1497 PRINTSTAT(RTW_RXSTAT_PAR);
1498 PRINTSTAT(RTW_RXSTAT_BAR);
1499 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1500 PRINTSTAT(RTW_RXSTAT_CRC32);
1501 PRINTSTAT(RTW_RXSTAT_ICV);
1502 printf(">, ");
1503 }
1504 }
1505 #endif /* RTW_DEBUG */
1506
1507 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1508 aprint_error_dev(sc->sc_dev,
1509 "DMA error/FIFO overflow %08" PRIx32 ", "
1510 "rx descriptor %d\n", hstat, next);
1511 ifp->if_ierrors++;
1512 goto next;
1513 }
1514
1515 len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1516 if (len < IEEE80211_MIN_LEN) {
1517 sc->sc_ic.ic_stats.is_rx_tooshort++;
1518 goto next;
1519 }
1520 if (len > rs->rs_mbuf->m_len) {
1521 aprint_error_dev(sc->sc_dev, "rx frame too long\n");
1522 ifp->if_ierrors++;
1523 goto next;
1524 }
1525
1526 hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1527 if (hwrate >= __arraycount(ratetbl)) {
1528 aprint_error_dev(sc->sc_dev,
1529 "unknown rate #%" __PRIuBITS "\n",
1530 __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1531 ifp->if_ierrors++;
1532 goto next;
1533 }
1534 rate = ratetbl[hwrate];
1535
1536 #ifdef RTW_DEBUG
1537 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1538 ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1539 (rate * 5) % 10, htsfth, htsftl));
1540 #endif /* RTW_DEBUG */
1541
1542 /* if bad flags, skip descriptor */
1543 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1544 aprint_error_dev(sc->sc_dev, "too many rx segments, "
1545 "next=%d, %08" PRIx32 "\n", next, hstat);
1546 goto next;
1547 }
1548
1549 bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1550 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1551
1552 m = rs->rs_mbuf;
1553
1554 /* if temporarily out of memory, re-use mbuf */
1555 switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1556 case 0:
1557 break;
1558 case ENOBUFS:
1559 aprint_error_dev(sc->sc_dev,
1560 "rtw_rxsoft_alloc(, %d) failed, dropping packet\n",
1561 next);
1562 goto next;
1563 default:
1564 /* XXX shorten rx ring, instead? */
1565 aprint_error_dev(sc->sc_dev,
1566 "could not load DMA map\n");
1567 }
1568
1569 sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1570
1571 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1572 rssi = UINT8_MAX - sq;
1573 else {
1574 rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1575 /* TBD find out each front-end's LNA gain in the
1576 * front-end's units
1577 */
1578 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1579 rssi |= 0x80;
1580 }
1581
1582 /* Note well: now we cannot recycle the rs_mbuf unless
1583 * we restore its original length.
1584 */
1585 m->m_pkthdr.rcvif = ifp;
1586 m->m_pkthdr.len = m->m_len = len;
1587
1588 wh = mtod(m, struct ieee80211_frame_min *);
1589
1590 if (!IS_BEACON(wh->i_fc[0]))
1591 sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1592
1593 sc->sc_tsfth = htsfth;
1594
1595 #ifdef RTW_DEBUG
1596 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1597 (IFF_DEBUG|IFF_LINK2)) {
1598 ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1599 rate, rssi);
1600 }
1601 #endif /* RTW_DEBUG */
1602
1603 #if NBPFILTER > 0
1604 if (sc->sc_radiobpf != NULL) {
1605 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1606
1607 rr->rr_tsft =
1608 htole64(((uint64_t)htsfth << 32) | htsftl);
1609
1610 rr->rr_flags = IEEE80211_RADIOTAP_F_FCS;
1611
1612 if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1613 rr->rr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1614 if ((hstat & RTW_RXSTAT_CRC32) != 0)
1615 rr->rr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
1616
1617 rr->rr_rate = rate;
1618
1619 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1620 rr->rr_u.u_philips.p_antsignal = rssi;
1621 else {
1622 rr->rr_u.u_other.o_antsignal = rssi;
1623 rr->rr_u.u_other.o_barker_lock =
1624 htole16(UINT8_MAX - sq);
1625 }
1626
1627 bpf_mtap2(sc->sc_radiobpf, rr,
1628 sizeof(sc->sc_rxtapu), m);
1629 }
1630 #endif /* NBPFILTER > 0 */
1631
1632 if ((hstat & RTW_RXSTAT_RES) != 0) {
1633 m_freem(m);
1634 goto next;
1635 }
1636
1637 /* CRC is included with the packet; trim it off. */
1638 m_adj(m, -IEEE80211_CRC_LEN);
1639
1640 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1641 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1642 ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1643 ieee80211_free_node(ni);
1644 next:
1645 rtw_rxdesc_init(rdb, rs, next, 0);
1646 }
1647 #undef IS_BEACON
1648 }
1649
1650 static void
1651 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1652 struct rtw_txsoft *ts)
1653 {
1654 struct mbuf *m;
1655 struct ieee80211_node *ni;
1656
1657 m = ts->ts_mbuf;
1658 ni = ts->ts_ni;
1659 KASSERT(m != NULL);
1660 KASSERT(ni != NULL);
1661 ts->ts_mbuf = NULL;
1662 ts->ts_ni = NULL;
1663
1664 bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1665 BUS_DMASYNC_POSTWRITE);
1666 bus_dmamap_unload(dmat, ts->ts_dmamap);
1667 m_freem(m);
1668 ieee80211_free_node(ni);
1669 }
1670
1671 static void
1672 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1673 struct rtw_txsoft_blk *tsb)
1674 {
1675 struct rtw_txsoft *ts;
1676
1677 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1678 rtw_txsoft_release(dmat, ic, ts);
1679 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1680 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1681 }
1682 tsb->tsb_tx_timer = 0;
1683 }
1684
1685 static inline void
1686 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1687 struct rtw_txsoft *ts, int ndesc)
1688 {
1689 uint32_t hstat;
1690 int data_retry, rts_retry;
1691 struct rtw_txdesc *tdn;
1692 const char *condstring;
1693 struct ifnet *ifp = &sc->sc_if;
1694
1695 rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1696
1697 tdb->tdb_nfree += ndesc;
1698
1699 tdn = &tdb->tdb_desc[ts->ts_last];
1700
1701 hstat = le32toh(tdn->td_stat);
1702 rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1703 data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1704
1705 ifp->if_collisions += rts_retry + data_retry;
1706
1707 if ((hstat & RTW_TXSTAT_TOK) != 0)
1708 condstring = "ok";
1709 else {
1710 ifp->if_oerrors++;
1711 condstring = "error";
1712 }
1713
1714 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1715 ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1716 device_xname(sc->sc_dev), ts, ts->ts_first, ts->ts_last,
1717 condstring, rts_retry, data_retry));
1718 }
1719
1720 static void
1721 rtw_reset_oactive(struct rtw_softc *sc)
1722 {
1723 short oflags;
1724 int pri;
1725 struct rtw_txsoft_blk *tsb;
1726 struct rtw_txdesc_blk *tdb;
1727 oflags = sc->sc_if.if_flags;
1728 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1729 tsb = &sc->sc_txsoft_blk[pri];
1730 tdb = &sc->sc_txdesc_blk[pri];
1731 if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1732 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1733 }
1734 if (oflags != sc->sc_if.if_flags) {
1735 DPRINTF(sc, RTW_DEBUG_OACTIVE,
1736 ("%s: reset OACTIVE\n", __func__));
1737 }
1738 }
1739
1740 /* Collect transmitted packets. */
1741 static void
1742 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1743 struct rtw_txdesc_blk *tdb, int force)
1744 {
1745 int ndesc;
1746 struct rtw_txsoft *ts;
1747
1748 #ifdef RTW_DEBUG
1749 rtw_dump_rings(sc);
1750 #endif
1751
1752 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1753 /* If we're clearing a failed transmission, only clear
1754 up to the last packet the hardware has processed. */
1755 if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
1756 break;
1757
1758 ndesc = 1 + ts->ts_last - ts->ts_first;
1759 if (ts->ts_last < ts->ts_first)
1760 ndesc += tdb->tdb_ndesc;
1761
1762 KASSERT(ndesc > 0);
1763
1764 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1765 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1766
1767 if (force) {
1768 int next;
1769 #ifdef RTW_DIAG
1770 printf("%s: clearing packet, stats", __func__);
1771 #endif
1772 for (next = ts->ts_first; ;
1773 next = RTW_NEXT_IDX(tdb, next)) {
1774 #ifdef RTW_DIAG
1775 printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
1776 #endif
1777 tdb->tdb_desc[next].td_stat &=
1778 ~htole32(RTW_TXSTAT_OWN);
1779 if (next == ts->ts_last)
1780 break;
1781 }
1782 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1783 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1784 #ifdef RTW_DIAG
1785 next = RTW_NEXT_IDX(tdb, next);
1786 printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
1787 le32toh(tdb->tdb_desc[next].td_stat),
1788 rtw_txring_next(&sc->sc_regs, tdb));
1789 #endif
1790 } else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1791 htole32(RTW_TXSTAT_OWN)) != 0) {
1792 rtw_txdescs_sync(tdb, ts->ts_last, 1,
1793 BUS_DMASYNC_PREREAD);
1794 break;
1795 }
1796
1797 rtw_collect_txpkt(sc, tdb, ts, ndesc);
1798 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1799 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1800 }
1801
1802 /* no more pending transmissions, cancel watchdog */
1803 if (ts == NULL)
1804 tsb->tsb_tx_timer = 0;
1805 rtw_reset_oactive(sc);
1806 }
1807
1808 static void
1809 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1810 {
1811 int pri;
1812 struct rtw_txsoft_blk *tsb;
1813 struct rtw_txdesc_blk *tdb;
1814 struct ifnet *ifp = &sc->sc_if;
1815
1816 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1817 tsb = &sc->sc_txsoft_blk[pri];
1818 tdb = &sc->sc_txdesc_blk[pri];
1819 rtw_collect_txring(sc, tsb, tdb, 0);
1820 }
1821
1822 if ((isr & RTW_INTR_TX) != 0)
1823 rtw_start(ifp);
1824
1825 return;
1826 }
1827
1828 static void
1829 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1830 {
1831 u_int next;
1832 uint32_t tsfth, tsftl;
1833 struct ieee80211com *ic;
1834 struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1835 struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1836 struct mbuf *m;
1837
1838 tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1839 tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1840
1841 if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) {
1842 next = rtw_txring_next(&sc->sc_regs, tdb);
1843 RTW_DPRINTF(RTW_DEBUG_BEACON,
1844 ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1845 ", next %u expected %u, %" PRIu64 "\n", __func__,
1846 (next == tdb->tdb_next) ? "" : "un", isr, next,
1847 tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1848 if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
1849 rtw_collect_txring(sc, tsb, tdb, 1);
1850 }
1851 /* Start beacon transmission. */
1852
1853 if ((isr & RTW_INTR_BCNINT) != 0 &&
1854 sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1855 SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1856 RTW_DPRINTF(RTW_DEBUG_BEACON,
1857 ("%s: beacon prep. time, isr = %#04" PRIx16
1858 ", %16" PRIu64 "\n", __func__, isr,
1859 (uint64_t)tsfth << 32 | tsftl));
1860 ic = &sc->sc_ic;
1861 m = rtw_beacon_alloc(sc, ic->ic_bss);
1862
1863 if (m == NULL) {
1864 aprint_error_dev(sc->sc_dev,
1865 "could not allocate beacon\n");
1866 return;
1867 }
1868 m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss);
1869 IF_ENQUEUE(&sc->sc_beaconq, m);
1870 rtw_start(&sc->sc_if);
1871 }
1872 }
1873
1874 static void
1875 rtw_intr_atim(struct rtw_softc *sc)
1876 {
1877 /* TBD */
1878 return;
1879 }
1880
1881 #ifdef RTW_DEBUG
1882 static void
1883 rtw_dump_rings(struct rtw_softc *sc)
1884 {
1885 struct rtw_txdesc_blk *tdb;
1886 struct rtw_rxdesc *rd;
1887 struct rtw_rxdesc_blk *rdb;
1888 int desc, pri;
1889
1890 if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1891 return;
1892
1893 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1894 tdb = &sc->sc_txdesc_blk[pri];
1895 printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1896 tdb->tdb_ndesc, tdb->tdb_nfree);
1897 for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1898 rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1899 }
1900
1901 rdb = &sc->sc_rxdesc_blk;
1902
1903 for (desc = 0; desc < RTW_RXQLEN; desc++) {
1904 rd = &rdb->rdb_desc[desc];
1905 printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1906 "rsvd1/tsfth %08x\n", __func__,
1907 (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1908 le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1909 le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1910 }
1911 }
1912 #endif /* RTW_DEBUG */
1913
1914 static void
1915 rtw_hwring_setup(struct rtw_softc *sc)
1916 {
1917 int pri;
1918 struct rtw_regs *regs = &sc->sc_regs;
1919 struct rtw_txdesc_blk *tdb;
1920
1921 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1922 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1923 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1924 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1925 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1926 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1927 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1928 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1929
1930 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1931 tdb = &sc->sc_txdesc_blk[pri];
1932 RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1933 RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1934 ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1935 (uintptr_t)tdb->tdb_base));
1936 }
1937
1938 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1939
1940 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1941 ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1942 (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1943
1944 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1945
1946 }
1947
1948 static int
1949 rtw_swring_setup(struct rtw_softc *sc)
1950 {
1951 int rc;
1952 struct rtw_rxdesc_blk *rdb;
1953
1954 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1955
1956 rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
1957
1958 rdb = &sc->sc_rxdesc_blk;
1959 if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
1960 sc->sc_dev)) != 0 && rdb->rdb_ndesc == 0) {
1961 aprint_error_dev(sc->sc_dev, "could not allocate rx buffers\n");
1962 return rc;
1963 }
1964
1965 rdb = &sc->sc_rxdesc_blk;
1966 rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
1967 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1968 rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
1969 rdb->rdb_next = 0;
1970
1971 rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
1972 return 0;
1973 }
1974
1975 static void
1976 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
1977 {
1978 int i;
1979
1980 (void)memset(tdb->tdb_desc, 0,
1981 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
1982 for (i = 0; i < tdb->tdb_ndesc; i++)
1983 tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
1984 }
1985
1986 static u_int
1987 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
1988 {
1989 return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
1990 sizeof(struct rtw_txdesc);
1991 }
1992
1993 #ifdef RTW_DIAG
1994 static void
1995 rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
1996 {
1997 int pri;
1998 u_int next;
1999 struct rtw_txdesc_blk *tdb;
2000 struct rtw_regs *regs = &sc->sc_regs;
2001
2002 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2003 int i;
2004 tdb = &sc->sc_txdesc_blk[pri];
2005 next = rtw_txring_next(regs, tdb);
2006 if (tdb->tdb_next == next)
2007 continue;
2008 for (i = 0; next != tdb->tdb_next;
2009 next = RTW_NEXT_IDX(tdb, next), i++) {
2010 if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
2011 break;
2012 }
2013 printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
2014 ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
2015 if (tdb->tdb_next == next)
2016 continue;
2017 tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
2018 }
2019 }
2020 #endif
2021
2022 static void
2023 rtw_txdescs_reset(struct rtw_softc *sc)
2024 {
2025 int pri;
2026 struct rtw_txsoft_blk *tsb;
2027 struct rtw_txdesc_blk *tdb;
2028
2029 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2030 tsb = &sc->sc_txsoft_blk[pri];
2031 tdb = &sc->sc_txdesc_blk[pri];
2032 rtw_collect_txring(sc, tsb, tdb, 1);
2033 #ifdef RTW_DIAG
2034 if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
2035 printf("%s: packets left in ring %d\n", __func__, pri);
2036 #endif
2037 }
2038 }
2039
2040 static void
2041 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2042 {
2043 aprint_error_dev(sc->sc_dev, "tx fifo underflow\n");
2044
2045 RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
2046 "\n", device_xname(sc->sc_dev), isr));
2047
2048 #ifdef RTW_DEBUG
2049 rtw_dump_rings(sc);
2050 #endif /* RTW_DEBUG */
2051
2052 /* Collect tx'd packets. XXX let's hope this stops the transmit
2053 * timeouts.
2054 */
2055 rtw_txdescs_reset(sc);
2056
2057 #ifdef RTW_DEBUG
2058 rtw_dump_rings(sc);
2059 #endif /* RTW_DEBUG */
2060 }
2061
2062 static inline void
2063 rtw_suspend_ticks(struct rtw_softc *sc)
2064 {
2065 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2066 ("%s: suspending ticks\n", device_xname(sc->sc_dev)));
2067 sc->sc_do_tick = 0;
2068 }
2069
2070 static inline void
2071 rtw_resume_ticks(struct rtw_softc *sc)
2072 {
2073 uint32_t tsftrl0, tsftrl1, next_tick;
2074
2075 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2076
2077 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2078 next_tick = tsftrl1 + 1000000;
2079 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
2080
2081 sc->sc_do_tick = 1;
2082
2083 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2084 ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2085 device_xname(sc->sc_dev), tsftrl1 - tsftrl0, tsftrl1, next_tick));
2086 }
2087
2088 static void
2089 rtw_intr_timeout(struct rtw_softc *sc)
2090 {
2091 RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", device_xname(sc->sc_dev)));
2092 if (sc->sc_do_tick)
2093 rtw_resume_ticks(sc);
2094 return;
2095 }
2096
2097 int
2098 rtw_intr(void *arg)
2099 {
2100 int i;
2101 struct rtw_softc *sc = arg;
2102 struct rtw_regs *regs = &sc->sc_regs;
2103 uint16_t isr;
2104 struct ifnet *ifp = &sc->sc_if;
2105
2106 /*
2107 * If the interface isn't running, the interrupt couldn't
2108 * possibly have come from us.
2109 */
2110 if ((sc->sc_flags & RTW_F_ENABLED) == 0 ||
2111 (ifp->if_flags & IFF_RUNNING) == 0 ||
2112 !device_is_active(sc->sc_dev)) {
2113 RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n",
2114 device_xname(sc->sc_dev)));
2115 return (0);
2116 }
2117
2118 for (i = 0; i < 10; i++) {
2119 isr = RTW_READ16(regs, RTW_ISR);
2120
2121 RTW_WRITE16(regs, RTW_ISR, isr);
2122 RTW_WBR(regs, RTW_ISR, RTW_ISR);
2123
2124 if (sc->sc_intr_ack != NULL)
2125 (*sc->sc_intr_ack)(regs);
2126
2127 if (isr == 0)
2128 break;
2129
2130 #ifdef RTW_DEBUG
2131 #define PRINTINTR(flag) do { \
2132 if ((isr & flag) != 0) { \
2133 printf("%s" #flag, delim); \
2134 delim = ","; \
2135 } \
2136 } while (0)
2137
2138 if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2139 const char *delim = "<";
2140
2141 printf("%s: reg[ISR] = %x", device_xname(sc->sc_dev),
2142 isr);
2143
2144 PRINTINTR(RTW_INTR_TXFOVW);
2145 PRINTINTR(RTW_INTR_TIMEOUT);
2146 PRINTINTR(RTW_INTR_BCNINT);
2147 PRINTINTR(RTW_INTR_ATIMINT);
2148 PRINTINTR(RTW_INTR_TBDER);
2149 PRINTINTR(RTW_INTR_TBDOK);
2150 PRINTINTR(RTW_INTR_THPDER);
2151 PRINTINTR(RTW_INTR_THPDOK);
2152 PRINTINTR(RTW_INTR_TNPDER);
2153 PRINTINTR(RTW_INTR_TNPDOK);
2154 PRINTINTR(RTW_INTR_RXFOVW);
2155 PRINTINTR(RTW_INTR_RDU);
2156 PRINTINTR(RTW_INTR_TLPDER);
2157 PRINTINTR(RTW_INTR_TLPDOK);
2158 PRINTINTR(RTW_INTR_RER);
2159 PRINTINTR(RTW_INTR_ROK);
2160
2161 printf(">\n");
2162 }
2163 #undef PRINTINTR
2164 #endif /* RTW_DEBUG */
2165
2166 if ((isr & RTW_INTR_RX) != 0)
2167 rtw_intr_rx(sc, isr);
2168 if ((isr & RTW_INTR_TX) != 0)
2169 rtw_intr_tx(sc, isr);
2170 if ((isr & RTW_INTR_BEACON) != 0)
2171 rtw_intr_beacon(sc, isr);
2172 if ((isr & RTW_INTR_ATIMINT) != 0)
2173 rtw_intr_atim(sc);
2174 if ((isr & RTW_INTR_IOERROR) != 0)
2175 rtw_intr_ioerror(sc, isr);
2176 if ((isr & RTW_INTR_TIMEOUT) != 0)
2177 rtw_intr_timeout(sc);
2178 }
2179
2180 return 1;
2181 }
2182
2183 /* Must be called at splnet. */
2184 static void
2185 rtw_stop(struct ifnet *ifp, int disable)
2186 {
2187 int pri;
2188 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2189 struct ieee80211com *ic = &sc->sc_ic;
2190 struct rtw_regs *regs = &sc->sc_regs;
2191
2192 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2193 return;
2194
2195 rtw_suspend_ticks(sc);
2196
2197 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2198
2199 if ((sc->sc_flags & RTW_F_INVALID) == 0) {
2200 /* Disable interrupts. */
2201 RTW_WRITE16(regs, RTW_IMR, 0);
2202
2203 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2204
2205 /* Stop the transmit and receive processes. First stop DMA,
2206 * then disable receiver and transmitter.
2207 */
2208 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2209
2210 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2211
2212 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2213 }
2214
2215 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2216 rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2217 &sc->sc_txsoft_blk[pri]);
2218 }
2219
2220 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2221
2222 if (disable)
2223 rtw_disable(sc);
2224
2225 /* Mark the interface as not running. Cancel the watchdog timer. */
2226 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2227 ifp->if_timer = 0;
2228
2229 return;
2230 }
2231
2232 const char *
2233 rtw_pwrstate_string(enum rtw_pwrstate power)
2234 {
2235 switch (power) {
2236 case RTW_ON:
2237 return "on";
2238 case RTW_SLEEP:
2239 return "sleep";
2240 case RTW_OFF:
2241 return "off";
2242 default:
2243 return "unknown";
2244 }
2245 }
2246
2247 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2248 * reference driver, plus a magic Maxim "ON" value that comes from
2249 * the Realtek document "Windows PG for Rtl8180."
2250 */
2251 static void
2252 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2253 int before_rf, int digphy)
2254 {
2255 uint32_t anaparm;
2256
2257 anaparm = RTW_READ(regs, RTW_ANAPARM);
2258 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2259
2260 switch (power) {
2261 case RTW_OFF:
2262 if (before_rf)
2263 return;
2264 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2265 anaparm |= RTW_ANAPARM_TXDACOFF;
2266 break;
2267 case RTW_SLEEP:
2268 if (!before_rf)
2269 return;
2270 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2271 anaparm |= RTW_ANAPARM_TXDACOFF;
2272 break;
2273 case RTW_ON:
2274 if (!before_rf)
2275 return;
2276 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2277 break;
2278 }
2279 RTW_DPRINTF(RTW_DEBUG_PWR,
2280 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2281 __func__, rtw_pwrstate_string(power),
2282 (before_rf) ? "before" : "after", anaparm));
2283
2284 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2285 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2286 }
2287
2288 /* XXX I am using the RFMD settings gleaned from the reference
2289 * driver. They agree
2290 */
2291 static void
2292 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2293 int before_rf, int digphy)
2294 {
2295 uint32_t anaparm;
2296
2297 anaparm = RTW_READ(regs, RTW_ANAPARM);
2298 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2299
2300 switch (power) {
2301 case RTW_OFF:
2302 if (before_rf)
2303 return;
2304 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2305 anaparm |= RTW_ANAPARM_TXDACOFF;
2306 break;
2307 case RTW_SLEEP:
2308 if (!before_rf)
2309 return;
2310 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2311 anaparm |= RTW_ANAPARM_TXDACOFF;
2312 break;
2313 case RTW_ON:
2314 if (!before_rf)
2315 return;
2316 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2317 break;
2318 }
2319 RTW_DPRINTF(RTW_DEBUG_PWR,
2320 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2321 __func__, rtw_pwrstate_string(power),
2322 (before_rf) ? "before" : "after", anaparm));
2323
2324 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2325 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2326 }
2327
2328 static void
2329 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2330 int before_rf, int digphy)
2331 {
2332 uint32_t anaparm;
2333
2334 anaparm = RTW_READ(regs, RTW_ANAPARM);
2335 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2336
2337 switch (power) {
2338 case RTW_OFF:
2339 if (before_rf)
2340 return;
2341 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2342 anaparm |= RTW_ANAPARM_TXDACOFF;
2343 break;
2344 case RTW_SLEEP:
2345 if (!before_rf)
2346 return;
2347 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2348 anaparm |= RTW_ANAPARM_TXDACOFF;
2349 break;
2350 case RTW_ON:
2351 if (!before_rf)
2352 return;
2353 if (digphy) {
2354 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2355 /* XXX guess */
2356 anaparm |= RTW_ANAPARM_TXDACOFF;
2357 } else
2358 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2359 break;
2360 }
2361 RTW_DPRINTF(RTW_DEBUG_PWR,
2362 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2363 __func__, rtw_pwrstate_string(power),
2364 (before_rf) ? "before" : "after", anaparm));
2365
2366 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2367 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2368 }
2369
2370 static void
2371 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2372 int digphy)
2373 {
2374 struct rtw_regs *regs = &sc->sc_regs;
2375
2376 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2377
2378 (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2379
2380 rtw_set_access(regs, RTW_ACCESS_NONE);
2381
2382 return;
2383 }
2384
2385 static int
2386 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2387 {
2388 int rc;
2389
2390 RTW_DPRINTF(RTW_DEBUG_PWR,
2391 ("%s: %s->%s\n", __func__,
2392 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2393
2394 if (sc->sc_pwrstate == power)
2395 return 0;
2396
2397 rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2398 rc = rtw_rf_pwrstate(sc->sc_rf, power);
2399 rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2400
2401 switch (power) {
2402 case RTW_ON:
2403 /* TBD set LEDs */
2404 break;
2405 case RTW_SLEEP:
2406 /* TBD */
2407 break;
2408 case RTW_OFF:
2409 /* TBD */
2410 break;
2411 }
2412 if (rc == 0)
2413 sc->sc_pwrstate = power;
2414 else
2415 sc->sc_pwrstate = RTW_OFF;
2416 return rc;
2417 }
2418
2419 static int
2420 rtw_tune(struct rtw_softc *sc)
2421 {
2422 struct ieee80211com *ic = &sc->sc_ic;
2423 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
2424 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
2425 u_int chan;
2426 int rc;
2427 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2428 dflantb = sc->sc_flags & RTW_F_DFLANTB;
2429
2430 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2431 KASSERT(chan != IEEE80211_CHAN_ANY);
2432
2433 rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2434 rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2435
2436 rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2437 rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2438
2439 if (chan == sc->sc_cur_chan) {
2440 RTW_DPRINTF(RTW_DEBUG_TUNE,
2441 ("%s: already tuned chan #%d\n", __func__, chan));
2442 return 0;
2443 }
2444
2445 rtw_suspend_ticks(sc);
2446
2447 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2448
2449 /* TBD wait for Tx to complete */
2450
2451 KASSERT((sc->sc_flags & RTW_F_ENABLED) != 0);
2452
2453 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2454 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2455 ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2456 /* XXX condition on powersaving */
2457 aprint_error_dev(sc->sc_dev, "phy init failed\n");
2458 }
2459
2460 sc->sc_cur_chan = chan;
2461
2462 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2463
2464 rtw_resume_ticks(sc);
2465
2466 return rc;
2467 }
2468
2469 void
2470 rtw_disable(struct rtw_softc *sc)
2471 {
2472 int rc;
2473
2474 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2475 return;
2476
2477 /* turn off PHY */
2478 if ((sc->sc_flags & RTW_F_INVALID) == 0 &&
2479 (rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2480 aprint_error_dev(sc->sc_dev,
2481 "failed to turn off PHY (%d)\n", rc);
2482 }
2483
2484 if (sc->sc_disable != NULL)
2485 (*sc->sc_disable)(sc);
2486
2487 sc->sc_flags &= ~RTW_F_ENABLED;
2488 }
2489
2490 int
2491 rtw_enable(struct rtw_softc *sc)
2492 {
2493 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2494 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2495 aprint_error_dev(sc->sc_dev,
2496 "device enable failed\n");
2497 return (EIO);
2498 }
2499 sc->sc_flags |= RTW_F_ENABLED;
2500 /* Power may have been removed, and WEP keys thus
2501 * reset.
2502 */
2503 sc->sc_flags &= ~RTW_F_DK_VALID;
2504 }
2505 return (0);
2506 }
2507
2508 static void
2509 rtw_transmit_config(struct rtw_regs *regs)
2510 {
2511 uint32_t tcr;
2512
2513 tcr = RTW_READ(regs, RTW_TCR);
2514
2515 tcr |= RTW_TCR_CWMIN;
2516 tcr &= ~RTW_TCR_MXDMA_MASK;
2517 tcr |= RTW_TCR_MXDMA_256;
2518 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
2519 tcr &= ~RTW_TCR_LBK_MASK;
2520 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
2521
2522 /* set short/long retry limits */
2523 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2524 tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
2525
2526 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
2527
2528 RTW_WRITE(regs, RTW_TCR, tcr);
2529 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2530 }
2531
2532 static inline void
2533 rtw_enable_interrupts(struct rtw_softc *sc)
2534 {
2535 struct rtw_regs *regs = &sc->sc_regs;
2536
2537 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2538 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2539
2540 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2541 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2542 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2543 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2544
2545 /* XXX necessary? */
2546 if (sc->sc_intr_ack != NULL)
2547 (*sc->sc_intr_ack)(regs);
2548 }
2549
2550 static void
2551 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2552 {
2553 uint8_t msr;
2554
2555 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2556 rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2557
2558 msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2559
2560 switch (opmode) {
2561 case IEEE80211_M_AHDEMO:
2562 case IEEE80211_M_IBSS:
2563 msr |= RTW_MSR_NETYPE_ADHOC_OK;
2564 break;
2565 case IEEE80211_M_HOSTAP:
2566 msr |= RTW_MSR_NETYPE_AP_OK;
2567 break;
2568 case IEEE80211_M_MONITOR:
2569 /* XXX */
2570 msr |= RTW_MSR_NETYPE_NOLINK;
2571 break;
2572 case IEEE80211_M_STA:
2573 msr |= RTW_MSR_NETYPE_INFRA_OK;
2574 break;
2575 }
2576 RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2577
2578 rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2579 }
2580
2581 #define rtw_calchash(addr) \
2582 (ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2583
2584 static void
2585 rtw_pktfilt_load(struct rtw_softc *sc)
2586 {
2587 struct rtw_regs *regs = &sc->sc_regs;
2588 struct ieee80211com *ic = &sc->sc_ic;
2589 struct ethercom *ec = &sc->sc_ec;
2590 struct ifnet *ifp = &sc->sc_if;
2591 int hash;
2592 uint32_t hashes[2] = { 0, 0 };
2593 struct ether_multi *enm;
2594 struct ether_multistep step;
2595
2596 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2597
2598 sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2599 sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2600
2601 sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2602 /* MAC auto-reset PHY (huh?) */
2603 sc->sc_rcr |= RTW_RCR_ENMARP;
2604 /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
2605 sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2606
2607 switch (ic->ic_opmode) {
2608 case IEEE80211_M_MONITOR:
2609 sc->sc_rcr |= RTW_RCR_MONITOR;
2610 break;
2611 case IEEE80211_M_AHDEMO:
2612 case IEEE80211_M_IBSS:
2613 /* receive broadcasts in our BSS */
2614 sc->sc_rcr |= RTW_RCR_ADD3;
2615 break;
2616 default:
2617 break;
2618 }
2619
2620 ifp->if_flags &= ~IFF_ALLMULTI;
2621
2622 /*
2623 * Program the 64-bit multicast hash filter.
2624 */
2625 ETHER_FIRST_MULTI(step, ec, enm);
2626 while (enm != NULL) {
2627 /* XXX */
2628 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2629 ETHER_ADDR_LEN) != 0) {
2630 ifp->if_flags |= IFF_ALLMULTI;
2631 break;
2632 }
2633
2634 hash = rtw_calchash(enm->enm_addrlo);
2635 hashes[hash >> 5] |= (1 << (hash & 0x1f));
2636 ETHER_NEXT_MULTI(step, enm);
2637 }
2638
2639 /* XXX accept all broadcast if scanning */
2640 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2641 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2642
2643 if (ifp->if_flags & IFF_PROMISC) {
2644 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2645 sc->sc_rcr |= RTW_RCR_ACRC32; /* accept frames failing CRC */
2646 sc->sc_rcr |= RTW_RCR_AICV; /* accept frames failing ICV */
2647 ifp->if_flags |= IFF_ALLMULTI;
2648 }
2649
2650 if (ifp->if_flags & IFF_ALLMULTI)
2651 hashes[0] = hashes[1] = 0xffffffff;
2652
2653 if ((hashes[0] | hashes[1]) != 0)
2654 sc->sc_rcr |= RTW_RCR_AM; /* accept multicast */
2655
2656 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2657 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2658 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2659 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2660
2661 DPRINTF(sc, RTW_DEBUG_PKTFILT,
2662 ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2663 device_xname(sc->sc_dev), RTW_READ(regs, RTW_MAR0),
2664 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2665 }
2666
2667 static struct mbuf *
2668 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2669 {
2670 struct ieee80211com *ic = &sc->sc_ic;
2671 struct mbuf *m;
2672 struct ieee80211_beacon_offsets boff;
2673
2674 if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2675 RTW_DPRINTF(RTW_DEBUG_BEACON,
2676 ("%s: m %p len %u\n", __func__, m, m->m_len));
2677 }
2678 return m;
2679 }
2680
2681 /* Must be called at splnet. */
2682 static int
2683 rtw_init(struct ifnet *ifp)
2684 {
2685 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2686 struct ieee80211com *ic = &sc->sc_ic;
2687 struct rtw_regs *regs = &sc->sc_regs;
2688 int rc = 0;
2689
2690 if ((rc = rtw_enable(sc)) != 0)
2691 goto out;
2692
2693 /* Cancel pending I/O and reset. */
2694 rtw_stop(ifp, 0);
2695
2696 DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2697 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2698 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2699
2700 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2701 goto out;
2702
2703 if ((rc = rtw_swring_setup(sc)) != 0)
2704 goto out;
2705
2706 rtw_transmit_config(regs);
2707
2708 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2709
2710 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2711 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2712
2713 /* long PLCP header, 1Mb/2Mb basic rate */
2714 RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2715 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2716
2717 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2718 rtw_set_access(regs, RTW_ACCESS_NONE);
2719
2720 /* XXX from reference sources */
2721 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2722 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2723
2724 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev);
2725
2726 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2727 /* from Linux driver */
2728 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2729
2730 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2731
2732 rtw_enable_interrupts(sc);
2733
2734 rtw_pktfilt_load(sc);
2735
2736 rtw_hwring_setup(sc);
2737
2738 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2739
2740 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2741
2742 ifp->if_flags |= IFF_RUNNING;
2743 ic->ic_state = IEEE80211_S_INIT;
2744
2745 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2746 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2747
2748 rtw_resume_ticks(sc);
2749
2750 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2751
2752 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2753 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2754 else
2755 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2756
2757 out:
2758 aprint_error_dev(sc->sc_dev, "interface not running\n");
2759 return rc;
2760 }
2761
2762 static inline void
2763 rtw_led_init(struct rtw_regs *regs)
2764 {
2765 uint8_t cfg0, cfg1;
2766
2767 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2768
2769 cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2770 cfg0 |= RTW_CONFIG0_LEDGPOEN;
2771 RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2772
2773 cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2774 RTW_DPRINTF(RTW_DEBUG_LED,
2775 ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2776
2777 cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2778 cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2779 RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2780
2781 rtw_set_access(regs, RTW_ACCESS_NONE);
2782 }
2783
2784 /*
2785 * IEEE80211_S_INIT: LED1 off
2786 *
2787 * IEEE80211_S_AUTH,
2788 * IEEE80211_S_ASSOC,
2789 * IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2790 *
2791 * IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx
2792 */
2793 static void
2794 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2795 {
2796 struct rtw_led_state *ls;
2797
2798 ls = &sc->sc_led_state;
2799
2800 switch (nstate) {
2801 case IEEE80211_S_INIT:
2802 rtw_led_init(&sc->sc_regs);
2803 callout_stop(&ls->ls_slow_ch);
2804 callout_stop(&ls->ls_fast_ch);
2805 ls->ls_slowblink = 0;
2806 ls->ls_actblink = 0;
2807 ls->ls_default = 0;
2808 break;
2809 case IEEE80211_S_SCAN:
2810 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2811 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2812 /*FALLTHROUGH*/
2813 case IEEE80211_S_AUTH:
2814 case IEEE80211_S_ASSOC:
2815 ls->ls_default = RTW_LED1;
2816 ls->ls_actblink = RTW_LED1;
2817 ls->ls_slowblink = RTW_LED1;
2818 break;
2819 case IEEE80211_S_RUN:
2820 ls->ls_slowblink = 0;
2821 break;
2822 }
2823 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2824 }
2825
2826 static void
2827 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2828 {
2829 uint8_t led_condition;
2830 bus_size_t ofs;
2831 uint8_t mask, newval, val;
2832
2833 led_condition = ls->ls_default;
2834
2835 if (ls->ls_state & RTW_LED_S_SLOW)
2836 led_condition ^= ls->ls_slowblink;
2837 if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX))
2838 led_condition ^= ls->ls_actblink;
2839
2840 RTW_DPRINTF(RTW_DEBUG_LED,
2841 ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2842
2843 switch (hwverid) {
2844 default:
2845 case 'F':
2846 ofs = RTW_PSR;
2847 newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2848 if (led_condition & RTW_LED0)
2849 newval &= ~RTW_PSR_LEDGPO0;
2850 if (led_condition & RTW_LED1)
2851 newval &= ~RTW_PSR_LEDGPO1;
2852 break;
2853 case 'D':
2854 ofs = RTW_9346CR;
2855 mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2856 newval = RTW_9346CR_EEM_PROGRAM;
2857 if (led_condition & RTW_LED0)
2858 newval |= RTW_9346CR_EEDI;
2859 if (led_condition & RTW_LED1)
2860 newval |= RTW_9346CR_EECS;
2861 break;
2862 }
2863 val = RTW_READ8(regs, ofs);
2864 RTW_DPRINTF(RTW_DEBUG_LED,
2865 ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2866 (uintptr_t)ofs));
2867 val &= ~mask;
2868 val |= newval;
2869 RTW_WRITE8(regs, ofs, val);
2870 RTW_DPRINTF(RTW_DEBUG_LED,
2871 ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2872 (uintptr_t)ofs));
2873 RTW_SYNC(regs, ofs, ofs);
2874 }
2875
2876 static void
2877 rtw_led_fastblink(void *arg)
2878 {
2879 int ostate, s;
2880 struct rtw_softc *sc = (struct rtw_softc *)arg;
2881 struct rtw_led_state *ls = &sc->sc_led_state;
2882
2883 s = splnet();
2884 ostate = ls->ls_state;
2885 ls->ls_state ^= ls->ls_event;
2886
2887 if ((ls->ls_event & RTW_LED_S_TX) == 0)
2888 ls->ls_state &= ~RTW_LED_S_TX;
2889
2890 if ((ls->ls_event & RTW_LED_S_RX) == 0)
2891 ls->ls_state &= ~RTW_LED_S_RX;
2892
2893 ls->ls_event = 0;
2894
2895 if (ostate != ls->ls_state)
2896 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2897 splx(s);
2898
2899 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2900 }
2901
2902 static void
2903 rtw_led_slowblink(void *arg)
2904 {
2905 int s;
2906 struct rtw_softc *sc = (struct rtw_softc *)arg;
2907 struct rtw_led_state *ls = &sc->sc_led_state;
2908
2909 s = splnet();
2910 ls->ls_state ^= RTW_LED_S_SLOW;
2911 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2912 splx(s);
2913 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2914 }
2915
2916 static inline void
2917 rtw_led_attach(struct rtw_led_state *ls, void *arg)
2918 {
2919 callout_init(&ls->ls_fast_ch, 0);
2920 callout_init(&ls->ls_slow_ch, 0);
2921 callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
2922 callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
2923 }
2924
2925 static int
2926 rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2927 {
2928 int rc = 0, s;
2929 struct rtw_softc *sc = ifp->if_softc;
2930
2931 s = splnet();
2932 if (cmd == SIOCSIFFLAGS) {
2933 if ((ifp->if_flags & IFF_UP) != 0) {
2934 if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2935 rtw_pktfilt_load(sc);
2936 else
2937 rc = rtw_init(ifp);
2938 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2939 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2940 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2941 rtw_stop(ifp, 1);
2942 }
2943 } else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
2944 ; /* nothing to do */
2945 else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
2946 /* reload packet filter if running */
2947 if (ifp->if_flags & IFF_RUNNING)
2948 rtw_pktfilt_load(sc);
2949 rc = 0;
2950 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2951 /* reinitialize h/w if activated */
2952 rc = rtw_init(ifp);
2953 else
2954 rc = 0;
2955 splx(s);
2956 return rc;
2957 }
2958
2959 /* Select a transmit ring with at least one h/w and s/w descriptor free.
2960 * Return 0 on success, -1 on failure.
2961 */
2962 static inline int
2963 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
2964 struct rtw_txdesc_blk **tdbp, int pri)
2965 {
2966 struct rtw_txsoft_blk *tsb;
2967 struct rtw_txdesc_blk *tdb;
2968
2969 KASSERT(pri >= 0 && pri < RTW_NTXPRI);
2970
2971 tsb = &sc->sc_txsoft_blk[pri];
2972 tdb = &sc->sc_txdesc_blk[pri];
2973
2974 if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
2975 if (tsb->tsb_tx_timer == 0)
2976 tsb->tsb_tx_timer = 5;
2977 *tsbp = NULL;
2978 *tdbp = NULL;
2979 return -1;
2980 }
2981 *tsbp = tsb;
2982 *tdbp = tdb;
2983 return 0;
2984 }
2985
2986 static inline struct mbuf *
2987 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
2988 struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
2989 struct ieee80211_node **nip, short *if_flagsp)
2990 {
2991 struct mbuf *m;
2992
2993 if (IF_IS_EMPTY(ifq))
2994 return NULL;
2995 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
2996 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
2997 __func__, pri));
2998 *if_flagsp |= IFF_OACTIVE;
2999 sc->sc_if.if_timer = 1;
3000 return NULL;
3001 }
3002 IF_DEQUEUE(ifq, m);
3003 *nip = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3004 m->m_pkthdr.rcvif = NULL;
3005 KASSERT(*nip != NULL);
3006 return m;
3007 }
3008
3009 /* Point *mp at the next 802.11 frame to transmit. Point *tsbp
3010 * at the driver's selection of transmit control block for the packet.
3011 */
3012 static inline int
3013 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
3014 struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
3015 struct ieee80211_node **nip)
3016 {
3017 int pri;
3018 struct ether_header *eh;
3019 struct mbuf *m0;
3020 struct rtw_softc *sc;
3021 short *if_flagsp;
3022
3023 *mp = NULL;
3024
3025 sc = (struct rtw_softc *)ifp->if_softc;
3026
3027 DPRINTF(sc, RTW_DEBUG_XMIT,
3028 ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3029
3030 if_flagsp = &ifp->if_flags;
3031
3032 if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3033 (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3034 tdbp, nip, if_flagsp)) != NULL) {
3035 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3036 __func__));
3037 return 0;
3038 }
3039
3040 if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3041 tdbp, nip, if_flagsp)) != NULL) {
3042 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3043 __func__));
3044 return 0;
3045 }
3046
3047 if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3048 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3049 return 0;
3050 }
3051
3052 IFQ_POLL(&ifp->if_snd, m0);
3053 if (m0 == NULL) {
3054 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3055 __func__));
3056 return 0;
3057 }
3058
3059 pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3060
3061 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3062 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3063 __func__, pri));
3064 *if_flagsp |= IFF_OACTIVE;
3065 sc->sc_if.if_timer = 1;
3066 return 0;
3067 }
3068
3069 IFQ_DEQUEUE(&ifp->if_snd, m0);
3070 if (m0 == NULL) {
3071 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3072 __func__));
3073 return 0;
3074 }
3075 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3076 ifp->if_opackets++;
3077 #if NBPFILTER > 0
3078 if (ifp->if_bpf)
3079 bpf_mtap(ifp->if_bpf, m0);
3080 #endif
3081 eh = mtod(m0, struct ether_header *);
3082 *nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3083 if (*nip == NULL) {
3084 /* NB: ieee80211_find_txnode does stat+msg */
3085 m_freem(m0);
3086 return -1;
3087 }
3088 if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3089 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3090 ifp->if_oerrors++;
3091 return -1;
3092 }
3093 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3094 *mp = m0;
3095 return 0;
3096 }
3097
3098 static int
3099 rtw_seg_too_short(bus_dmamap_t dmamap)
3100 {
3101 int i;
3102 for (i = 0; i < dmamap->dm_nsegs; i++) {
3103 if (dmamap->dm_segs[i].ds_len < 4)
3104 return 1;
3105 }
3106 return 0;
3107 }
3108
3109 /* TBD factor with atw_start */
3110 static struct mbuf *
3111 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3112 u_int ndescfree, device_t dev)
3113 {
3114 int first, rc;
3115 struct mbuf *m, *m0;
3116
3117 m0 = chain;
3118
3119 /*
3120 * Load the DMA map. Copy and try (once) again if the packet
3121 * didn't fit in the alloted number of segments.
3122 */
3123 for (first = 1;
3124 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3125 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
3126 dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3127 first = 0) {
3128 if (rc == 0) {
3129 #ifdef RTW_DIAGxxx
3130 if (rtw_seg_too_short(dmam)) {
3131 printf("%s: short segment, mbuf lengths:", __func__);
3132 for (m = m0; m; m = m->m_next)
3133 printf(" %d", m->m_len);
3134 printf("\n");
3135 }
3136 #endif
3137 bus_dmamap_unload(dmat, dmam);
3138 }
3139 MGETHDR(m, M_DONTWAIT, MT_DATA);
3140 if (m == NULL) {
3141 aprint_error_dev(dev, "unable to allocate Tx mbuf\n");
3142 break;
3143 }
3144 if (m0->m_pkthdr.len > MHLEN) {
3145 MCLGET(m, M_DONTWAIT);
3146 if ((m->m_flags & M_EXT) == 0) {
3147 aprint_error_dev(dev,
3148 "cannot allocate Tx cluster\n");
3149 m_freem(m);
3150 break;
3151 }
3152 }
3153 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3154 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3155 m_freem(m0);
3156 m0 = m;
3157 m = NULL;
3158 }
3159 if (rc != 0) {
3160 aprint_error_dev(dev, "cannot load Tx buffer, rc = %d\n", rc);
3161 m_freem(m0);
3162 return NULL;
3163 } else if (rtw_seg_too_short(dmam)) {
3164 aprint_error_dev(dev,
3165 "cannot load Tx buffer, segment too short\n");
3166 bus_dmamap_unload(dmat, dmam);
3167 m_freem(m0);
3168 return NULL;
3169 } else if (dmam->dm_nsegs > ndescfree) {
3170 aprint_error_dev(dev, "too many tx segments\n");
3171 bus_dmamap_unload(dmat, dmam);
3172 m_freem(m0);
3173 return NULL;
3174 }
3175 return m0;
3176 }
3177
3178 #ifdef RTW_DEBUG
3179 static void
3180 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3181 struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3182 {
3183 struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3184 DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3185 "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3186 device_xname(sc->sc_dev), ts, action, desc,
3187 le32toh(td->td_buf), le32toh(td->td_next),
3188 le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3189 le32toh(td->td_len)));
3190 }
3191 #endif /* RTW_DEBUG */
3192
3193 static void
3194 rtw_start(struct ifnet *ifp)
3195 {
3196 uint8_t tppoll;
3197 int desc, i, lastdesc, npkt, rate;
3198 uint32_t proto_ctl0, ctl0, ctl1;
3199 bus_dmamap_t dmamap;
3200 struct ieee80211com *ic;
3201 struct ieee80211_duration *d0;
3202 struct ieee80211_frame_min *wh;
3203 struct ieee80211_node *ni = NULL; /* XXX: GCC */
3204 struct mbuf *m0;
3205 struct rtw_softc *sc;
3206 struct rtw_txsoft_blk *tsb = NULL; /* XXX: GCC */
3207 struct rtw_txdesc_blk *tdb = NULL; /* XXX: GCC */
3208 struct rtw_txsoft *ts;
3209 struct rtw_txdesc *td;
3210 struct ieee80211_key *k;
3211
3212 sc = (struct rtw_softc *)ifp->if_softc;
3213 ic = &sc->sc_ic;
3214
3215 DPRINTF(sc, RTW_DEBUG_XMIT,
3216 ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3217
3218 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3219 goto out;
3220
3221 /* XXX do real rate control */
3222 proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3223
3224 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3225 proto_ctl0 |= RTW_TXCTL0_SPLCP;
3226
3227 for (;;) {
3228 if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3229 continue;
3230 if (m0 == NULL)
3231 break;
3232
3233 wh = mtod(m0, struct ieee80211_frame_min *);
3234
3235 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3236 (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3237 m_freem(m0);
3238 break;
3239 } else
3240 k = NULL;
3241
3242 ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3243
3244 dmamap = ts->ts_dmamap;
3245
3246 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3247 tdb->tdb_nfree, sc->sc_dev);
3248
3249 if (m0 == NULL || dmamap->dm_nsegs == 0) {
3250 DPRINTF(sc, RTW_DEBUG_XMIT,
3251 ("%s: fail dmamap load\n", __func__));
3252 goto post_dequeue_err;
3253 }
3254
3255 /* Note well: rtw_dmamap_load_txbuf may have created
3256 * a new chain, so we must find the header once
3257 * more.
3258 */
3259 wh = mtod(m0, struct ieee80211_frame_min *);
3260
3261 /* XXX do real rate control */
3262 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3263 IEEE80211_FC0_TYPE_MGT)
3264 rate = 2;
3265 else
3266 rate = MAX(2, ieee80211_get_rate(ni));
3267
3268 #ifdef RTW_DEBUG
3269 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3270 (IFF_DEBUG|IFF_LINK2)) {
3271 ieee80211_dump_pkt(mtod(m0, uint8_t *),
3272 (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3273 : sizeof(wh),
3274 rate, 0);
3275 }
3276 #endif /* RTW_DEBUG */
3277 ctl0 = proto_ctl0 |
3278 __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3279
3280 switch (rate) {
3281 default:
3282 case 2:
3283 ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3284 break;
3285 case 4:
3286 ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3287 break;
3288 case 11:
3289 ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3290 break;
3291 case 22:
3292 ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3293 break;
3294 }
3295 /* XXX >= ? Compare after fragmentation? */
3296 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3297 ctl0 |= RTW_TXCTL0_RTSEN;
3298
3299 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3300 * seem to care, since we don't activate h/w Tx
3301 * encryption.
3302 */
3303 if (k != NULL) {
3304 ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3305 RTW_TXCTL0_KEYID_MASK;
3306 }
3307
3308 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3309 IEEE80211_FC0_TYPE_MGT) {
3310 ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3311 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3312 IEEE80211_FC0_SUBTYPE_BEACON)
3313 ctl0 |= RTW_TXCTL0_BEACON;
3314 }
3315
3316 if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3317 ic->ic_flags, ic->ic_fragthreshold,
3318 rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3319 (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3320 (IFF_DEBUG|IFF_LINK2)) == -1) {
3321 DPRINTF(sc, RTW_DEBUG_XMIT,
3322 ("%s: fail compute duration\n", __func__));
3323 goto post_load_err;
3324 }
3325
3326 d0 = &ts->ts_d0;
3327
3328 *(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3329
3330 ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3331 __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3332
3333 if (d0->d_residue)
3334 ctl1 |= RTW_TXCTL1_LENGEXT;
3335
3336 /* TBD fragmentation */
3337
3338 ts->ts_first = tdb->tdb_next;
3339
3340 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3341 BUS_DMASYNC_PREWRITE);
3342
3343 KASSERT(ts->ts_first < tdb->tdb_ndesc);
3344
3345 #if NBPFILTER > 0
3346 if (ic->ic_rawbpf != NULL)
3347 bpf_mtap((void *)ic->ic_rawbpf, m0);
3348
3349 if (sc->sc_radiobpf != NULL) {
3350 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3351
3352 rt->rt_rate = rate;
3353
3354 bpf_mtap2(sc->sc_radiobpf, (void *)rt,
3355 sizeof(sc->sc_txtapu), m0);
3356 }
3357 #endif /* NBPFILTER > 0 */
3358
3359 for (i = 0, lastdesc = desc = ts->ts_first;
3360 i < dmamap->dm_nsegs;
3361 i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3362 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3363 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3364 ("%s: seg too long\n", __func__));
3365 goto post_load_err;
3366 }
3367 td = &tdb->tdb_desc[desc];
3368 td->td_ctl0 = htole32(ctl0);
3369 td->td_ctl1 = htole32(ctl1);
3370 td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3371 td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3372 td->td_next = htole32(RTW_NEXT_DESC(tdb, desc));
3373 if (i != 0)
3374 td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3375 lastdesc = desc;
3376 #ifdef RTW_DEBUG
3377 rtw_print_txdesc(sc, "load", ts, tdb, desc);
3378 #endif /* RTW_DEBUG */
3379 }
3380
3381 KASSERT(desc < tdb->tdb_ndesc);
3382
3383 ts->ts_ni = ni;
3384 KASSERT(ni != NULL);
3385 ts->ts_mbuf = m0;
3386 ts->ts_last = lastdesc;
3387 tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3388 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3389 htole32(RTW_TXCTL0_FS);
3390
3391 #ifdef RTW_DEBUG
3392 rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3393 rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3394 #endif /* RTW_DEBUG */
3395
3396 tdb->tdb_nfree -= dmamap->dm_nsegs;
3397 tdb->tdb_next = desc;
3398
3399 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3400 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3401
3402 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3403 htole32(RTW_TXCTL0_OWN);
3404
3405 #ifdef RTW_DEBUG
3406 rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3407 #endif /* RTW_DEBUG */
3408
3409 rtw_txdescs_sync(tdb, ts->ts_first, 1,
3410 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3411
3412 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3413 SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3414
3415 if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3416 sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3417 tsb->tsb_tx_timer = 5;
3418 ifp->if_timer = 1;
3419 tppoll = RTW_READ8(&sc->sc_regs, RTW_TPPOLL);
3420 tppoll &= ~RTW_TPPOLL_SALL;
3421 tppoll |= tsb->tsb_poll & RTW_TPPOLL_ALL;
3422 RTW_WRITE8(&sc->sc_regs, RTW_TPPOLL, tppoll);
3423 RTW_SYNC(&sc->sc_regs, RTW_TPPOLL, RTW_TPPOLL);
3424 }
3425 out:
3426 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3427 return;
3428 post_load_err:
3429 bus_dmamap_unload(sc->sc_dmat, dmamap);
3430 m_freem(m0);
3431 post_dequeue_err:
3432 ieee80211_free_node(ni);
3433 return;
3434 }
3435
3436 static void
3437 rtw_idle(struct rtw_regs *regs)
3438 {
3439 int active;
3440 uint8_t tppoll;
3441
3442 /* request stop DMA; wait for packets to stop transmitting. */
3443
3444 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3445 RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3446
3447 for (active = 0; active < 300 &&
3448 (tppoll = RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0;
3449 active++)
3450 DELAY(10);
3451 printf("%s: transmit DMA idle in %dus, tppoll %02" PRIx8 "\n", __func__,
3452 active * 10, tppoll);
3453 }
3454
3455 static void
3456 rtw_watchdog(struct ifnet *ifp)
3457 {
3458 int pri, tx_timeouts = 0;
3459 struct rtw_softc *sc;
3460 struct rtw_txsoft_blk *tsb;
3461
3462 sc = ifp->if_softc;
3463
3464 ifp->if_timer = 0;
3465
3466 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
3467 return;
3468
3469 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3470 tsb = &sc->sc_txsoft_blk[pri];
3471
3472 if (tsb->tsb_tx_timer == 0)
3473 continue;
3474 else if (--tsb->tsb_tx_timer == 0) {
3475 if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3476 continue;
3477 printf("%s: transmit timeout, priority %d\n",
3478 ifp->if_xname, pri);
3479 ifp->if_oerrors++;
3480 if (pri != RTW_TXPRIBCN)
3481 tx_timeouts++;
3482 } else
3483 ifp->if_timer = 1;
3484 }
3485
3486 if (tx_timeouts > 0) {
3487 /* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3488 * reset s/w tx-ring pointers, and start transmission.
3489 *
3490 * TBD Stop/restart just the broken rings?
3491 */
3492 rtw_idle(&sc->sc_regs);
3493 rtw_io_enable(sc, RTW_CR_TE, 0);
3494 rtw_txdescs_reset(sc);
3495 rtw_io_enable(sc, RTW_CR_TE, 1);
3496 rtw_start(ifp);
3497 }
3498 ieee80211_watchdog(&sc->sc_ic);
3499 return;
3500 }
3501
3502 static void
3503 rtw_next_scan(void *arg)
3504 {
3505 struct ieee80211com *ic = arg;
3506 int s;
3507
3508 /* don't call rtw_start w/o network interrupts blocked */
3509 s = splnet();
3510 if (ic->ic_state == IEEE80211_S_SCAN)
3511 ieee80211_next_scan(ic);
3512 splx(s);
3513 }
3514
3515 static void
3516 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3517 {
3518 uint16_t bcnitv, bintritv, intval;
3519 int i;
3520 struct rtw_regs *regs = &sc->sc_regs;
3521
3522 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3523 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3524
3525 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3526
3527 rtw_set_access(regs, RTW_ACCESS_CONFIG);
3528
3529 intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3530
3531 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3532 bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3533 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3534 /* interrupt host 1ms before the TBTT */
3535 bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3536 bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3537 RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3538 /* magic from Linux */
3539 RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3540 RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3541 rtw_set_access(regs, RTW_ACCESS_NONE);
3542
3543 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3544 }
3545
3546 /* Synchronize the hardware state with the software state. */
3547 static int
3548 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3549 {
3550 struct ifnet *ifp = ic->ic_ifp;
3551 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3552 enum ieee80211_state ostate;
3553 int error;
3554
3555 ostate = ic->ic_state;
3556
3557 rtw_led_newstate(sc, nstate);
3558
3559 if (nstate == IEEE80211_S_INIT) {
3560 callout_stop(&sc->sc_scan_ch);
3561 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3562 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3563 }
3564
3565 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3566 rtw_pwrstate(sc, RTW_ON);
3567
3568 if ((error = rtw_tune(sc)) != 0)
3569 return error;
3570
3571 switch (nstate) {
3572 case IEEE80211_S_INIT:
3573 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3574 break;
3575 case IEEE80211_S_SCAN:
3576 if (ostate != IEEE80211_S_SCAN) {
3577 (void)memset(ic->ic_bss->ni_bssid, 0,
3578 IEEE80211_ADDR_LEN);
3579 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3580 }
3581
3582 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3583 rtw_next_scan, ic);
3584
3585 break;
3586 case IEEE80211_S_RUN:
3587 switch (ic->ic_opmode) {
3588 case IEEE80211_M_HOSTAP:
3589 case IEEE80211_M_IBSS:
3590 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3591 /*FALLTHROUGH*/
3592 case IEEE80211_M_AHDEMO:
3593 case IEEE80211_M_STA:
3594 rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3595 ic->ic_bss->ni_intval);
3596 break;
3597 case IEEE80211_M_MONITOR:
3598 break;
3599 }
3600 rtw_set_nettype(sc, ic->ic_opmode);
3601 break;
3602 case IEEE80211_S_ASSOC:
3603 case IEEE80211_S_AUTH:
3604 break;
3605 }
3606
3607 if (nstate != IEEE80211_S_SCAN)
3608 callout_stop(&sc->sc_scan_ch);
3609
3610 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3611 }
3612
3613 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3614 static uint64_t
3615 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3616 {
3617 uint32_t tsftl, tsfth;
3618
3619 tsfth = RTW_READ(regs, RTW_TSFTRH);
3620 tsftl = RTW_READ(regs, RTW_TSFTRL);
3621 if (tsftl < rstamp) /* Compensate for rollover. */
3622 tsfth--;
3623 return ((uint64_t)tsfth << 32) | rstamp;
3624 }
3625
3626 static void
3627 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3628 struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3629 {
3630 struct ifnet *ifp = ic->ic_ifp;
3631 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3632
3633 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3634
3635 switch (subtype) {
3636 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3637 case IEEE80211_FC0_SUBTYPE_BEACON:
3638 if (ic->ic_opmode == IEEE80211_M_IBSS &&
3639 ic->ic_state == IEEE80211_S_RUN) {
3640 uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3641 if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3642 (void)ieee80211_ibss_merge(ni);
3643 }
3644 break;
3645 default:
3646 break;
3647 }
3648 return;
3649 }
3650
3651 static struct ieee80211_node *
3652 rtw_node_alloc(struct ieee80211_node_table *nt)
3653 {
3654 struct ifnet *ifp = nt->nt_ic->ic_ifp;
3655 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3656 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3657
3658 DPRINTF(sc, RTW_DEBUG_NODE,
3659 ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
3660 return ni;
3661 }
3662
3663 static void
3664 rtw_node_free(struct ieee80211_node *ni)
3665 {
3666 struct ieee80211com *ic = ni->ni_ic;
3667 struct ifnet *ifp = ic->ic_ifp;
3668 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3669
3670 DPRINTF(sc, RTW_DEBUG_NODE,
3671 ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
3672 ether_sprintf(ni->ni_bssid)));
3673 (*sc->sc_mtbl.mt_node_free)(ni);
3674 }
3675
3676 static int
3677 rtw_media_change(struct ifnet *ifp)
3678 {
3679 int error;
3680
3681 error = ieee80211_media_change(ifp);
3682 if (error == ENETRESET) {
3683 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3684 (IFF_RUNNING|IFF_UP))
3685 rtw_init(ifp); /* XXX lose error */
3686 error = 0;
3687 }
3688 return error;
3689 }
3690
3691 static void
3692 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3693 {
3694 struct rtw_softc *sc = ifp->if_softc;
3695
3696 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
3697 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3698 imr->ifm_status = 0;
3699 return;
3700 }
3701 ieee80211_media_status(ifp, imr);
3702 }
3703
3704 static inline void
3705 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3706 {
3707 (void)strlcpy(ifp->if_xname, dvname, IFNAMSIZ);
3708 ifp->if_softc = softc;
3709 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
3710 IFF_NOTRAILERS;
3711 ifp->if_ioctl = rtw_ioctl;
3712 ifp->if_start = rtw_start;
3713 ifp->if_watchdog = rtw_watchdog;
3714 ifp->if_init = rtw_init;
3715 ifp->if_stop = rtw_stop;
3716 }
3717
3718 static inline void
3719 rtw_set80211props(struct ieee80211com *ic)
3720 {
3721 int nrate;
3722 ic->ic_phytype = IEEE80211_T_DS;
3723 ic->ic_opmode = IEEE80211_M_STA;
3724 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3725 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
3726
3727 nrate = 0;
3728 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3729 IEEE80211_RATE_BASIC | 2;
3730 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3731 IEEE80211_RATE_BASIC | 4;
3732 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3733 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3734 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3735 }
3736
3737 static inline void
3738 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3739 {
3740 mtbl->mt_newstate = ic->ic_newstate;
3741 ic->ic_newstate = rtw_newstate;
3742
3743 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3744 ic->ic_recv_mgmt = rtw_recv_mgmt;
3745
3746 mtbl->mt_node_free = ic->ic_node_free;
3747 ic->ic_node_free = rtw_node_free;
3748
3749 mtbl->mt_node_alloc = ic->ic_node_alloc;
3750 ic->ic_node_alloc = rtw_node_alloc;
3751
3752 ic->ic_crypto.cs_key_delete = rtw_key_delete;
3753 ic->ic_crypto.cs_key_set = rtw_key_set;
3754 ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3755 ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3756 }
3757
3758 static inline void
3759 rtw_init_radiotap(struct rtw_softc *sc)
3760 {
3761 uint32_t present;
3762
3763 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3764 sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3765
3766 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
3767 present = htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT);
3768 else
3769 present = htole32(RTW_RX_RADIOTAP_PRESENT);
3770 sc->sc_rxtap.rr_ihdr.it_present = present;
3771
3772 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3773 sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3774 sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3775 }
3776
3777 static int
3778 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3779 {
3780 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3781 SIMPLEQ_INIT(&tsb->tsb_freeq);
3782 tsb->tsb_ndesc = qlen;
3783 tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3784 M_NOWAIT);
3785 if (tsb->tsb_desc == NULL)
3786 return ENOMEM;
3787 return 0;
3788 }
3789
3790 static void
3791 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3792 {
3793 int pri;
3794 struct rtw_txsoft_blk *tsb;
3795
3796 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3797 tsb = &sc->sc_txsoft_blk[pri];
3798 free(tsb->tsb_desc, M_DEVBUF);
3799 tsb->tsb_desc = NULL;
3800 }
3801 }
3802
3803 static int
3804 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3805 {
3806 int pri, rc = 0;
3807 int qlen[RTW_NTXPRI] =
3808 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3809 struct rtw_txsoft_blk *tsbs;
3810
3811 tsbs = sc->sc_txsoft_blk;
3812
3813 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3814 rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3815 if (rc != 0)
3816 break;
3817 }
3818 tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3819 tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3820 tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3821 tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3822 return rc;
3823 }
3824
3825 static void
3826 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3827 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3828 {
3829 tdb->tdb_ndesc = ndesc;
3830 tdb->tdb_desc = desc;
3831 tdb->tdb_physbase = physbase;
3832 tdb->tdb_ofs = ofs;
3833
3834 (void)memset(tdb->tdb_desc, 0,
3835 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3836
3837 rtw_txdesc_blk_init(tdb);
3838 tdb->tdb_next = 0;
3839 }
3840
3841 static void
3842 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3843 {
3844 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3845 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3846 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3847
3848 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3849 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3850 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3851
3852 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3853 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3854 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3855
3856 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3857 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3858 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3859 }
3860
3861 static struct rtw_rf *
3862 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3863 {
3864 rtw_rf_write_t rf_write;
3865 struct rtw_rf *rf;
3866
3867 switch (rfchipid) {
3868 default:
3869 rf_write = rtw_rf_hostwrite;
3870 break;
3871 case RTW_RFCHIPID_INTERSIL:
3872 case RTW_RFCHIPID_PHILIPS:
3873 case RTW_RFCHIPID_GCT: /* XXX a guess */
3874 case RTW_RFCHIPID_RFMD:
3875 rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3876 break;
3877 }
3878
3879 switch (rfchipid) {
3880 case RTW_RFCHIPID_GCT:
3881 rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3882 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3883 break;
3884 case RTW_RFCHIPID_MAXIM:
3885 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3886 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3887 break;
3888 case RTW_RFCHIPID_PHILIPS:
3889 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3890 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3891 break;
3892 case RTW_RFCHIPID_RFMD:
3893 /* XXX RFMD has no RF constructor */
3894 sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3895 /*FALLTHROUGH*/
3896 default:
3897 return NULL;
3898 }
3899 rf->rf_continuous_tx_cb =
3900 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3901 rf->rf_continuous_tx_arg = (void *)sc;
3902 return rf;
3903 }
3904
3905 /* Revision C and later use a different PHY delay setting than
3906 * revisions A and B.
3907 */
3908 static uint8_t
3909 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
3910 {
3911 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3912 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3913
3914 uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
3915
3916 RTW_WRITE(regs, RTW_RCR, REVAB);
3917 RTW_WBW(regs, RTW_RCR, RTW_RCR);
3918 RTW_WRITE(regs, RTW_RCR, REVC);
3919
3920 RTW_WBR(regs, RTW_RCR, RTW_RCR);
3921 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3922 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3923
3924 RTW_WRITE(regs, RTW_RCR, old_rcr); /* restore RCR */
3925 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3926
3927 return phydelay;
3928 #undef REVC
3929 }
3930
3931 void
3932 rtw_attach(struct rtw_softc *sc)
3933 {
3934 struct ifnet *ifp = &sc->sc_if;
3935 struct ieee80211com *ic = &sc->sc_ic;
3936 struct rtw_txsoft_blk *tsb;
3937 int pri, rc;
3938
3939 rtw_cipher_wep = ieee80211_cipher_wep;
3940 rtw_cipher_wep.ic_decap = rtw_wep_decap;
3941
3942 NEXT_ATTACH_STATE(sc, DETACHED);
3943
3944 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
3945 case RTW_TCR_HWVERID_F:
3946 sc->sc_hwverid = 'F';
3947 break;
3948 case RTW_TCR_HWVERID_D:
3949 sc->sc_hwverid = 'D';
3950 break;
3951 default:
3952 sc->sc_hwverid = '?';
3953 break;
3954 }
3955 aprint_verbose_dev(sc->sc_dev, "hardware version %c\n",
3956 sc->sc_hwverid);
3957
3958 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
3959 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
3960 0);
3961
3962 if (rc != 0) {
3963 aprint_error_dev(sc->sc_dev,
3964 "could not allocate hw descriptors, error %d\n", rc);
3965 goto err;
3966 }
3967
3968 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
3969
3970 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
3971 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
3972 (void **)&sc->sc_descs, BUS_DMA_COHERENT);
3973
3974 if (rc != 0) {
3975 aprint_error_dev(sc->sc_dev,
3976 "could not map hw descriptors, error %d\n", rc);
3977 goto err;
3978 }
3979 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
3980
3981 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
3982 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
3983
3984 if (rc != 0) {
3985 aprint_error_dev(sc->sc_dev,
3986 "could not create DMA map for hw descriptors, error %d\n",
3987 rc);
3988 goto err;
3989 }
3990 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
3991
3992 sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
3993 sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
3994
3995 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3996 sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
3997 sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
3998 }
3999
4000 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
4001 sizeof(struct rtw_descs), NULL, 0);
4002
4003 if (rc != 0) {
4004 aprint_error_dev(sc->sc_dev,
4005 "could not load DMA map for hw descriptors, error %d\n",
4006 rc);
4007 goto err;
4008 }
4009 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
4010
4011 if (rtw_txsoft_blk_setup_all(sc) != 0)
4012 goto err;
4013 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
4014
4015 rtw_txdesc_blk_setup_all(sc);
4016
4017 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4018
4019 sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4020
4021 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4022 tsb = &sc->sc_txsoft_blk[pri];
4023
4024 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4025 &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4026 aprint_error_dev(sc->sc_dev,
4027 "could not load DMA map for hw tx descriptors, "
4028 "error %d\n", rc);
4029 goto err;
4030 }
4031 }
4032
4033 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4034 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4035 RTW_RXQLEN)) != 0) {
4036 aprint_error_dev(sc->sc_dev,
4037 "could not load DMA map for hw rx descriptors, error %d\n",
4038 rc);
4039 goto err;
4040 }
4041 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4042
4043 /* Reset the chip to a known state. */
4044 if (rtw_reset(sc) != 0)
4045 goto err;
4046 NEXT_ATTACH_STATE(sc, FINISH_RESET);
4047
4048 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4049
4050 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4051 sc->sc_flags |= RTW_F_9356SROM;
4052
4053 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4054 sc->sc_dev) != 0)
4055 goto err;
4056
4057 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4058
4059 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4060 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4061 sc->sc_dev) != 0) {
4062 aprint_error_dev(sc->sc_dev,
4063 "attach failed, malformed serial ROM\n");
4064 goto err;
4065 }
4066
4067 aprint_verbose_dev(sc->sc_dev, "%s PHY\n",
4068 ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4069
4070 aprint_verbose_dev(sc->sc_dev, "carrier-sense threshold %u\n",
4071 sc->sc_csthr);
4072
4073 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4074
4075 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4076 sc->sc_flags & RTW_F_DIGPHY);
4077
4078 if (sc->sc_rf == NULL) {
4079 aprint_verbose_dev(sc->sc_dev,
4080 "attach failed, could not attach RF\n");
4081 goto err;
4082 }
4083
4084 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4085
4086 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4087
4088 RTW_DPRINTF(RTW_DEBUG_ATTACH,
4089 ("%s: PHY delay %d\n", device_xname(sc->sc_dev), sc->sc_phydelay));
4090
4091 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4092 rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4093
4094 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels, sc->sc_dev);
4095
4096 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4097 sc->sc_dev) != 0)
4098 goto err;
4099 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4100
4101 rtw_setifprops(ifp, device_xname(sc->sc_dev), (void*)sc);
4102
4103 IFQ_SET_READY(&ifp->if_snd);
4104
4105 sc->sc_ic.ic_ifp = ifp;
4106 rtw_set80211props(&sc->sc_ic);
4107
4108 rtw_led_attach(&sc->sc_led_state, (void *)sc);
4109
4110 /*
4111 * Call MI attach routines.
4112 */
4113 if_attach(ifp);
4114 ieee80211_ifattach(&sc->sc_ic);
4115
4116 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4117
4118 /* possibly we should fill in our own sc_send_prresp, since
4119 * the RTL8180 is probably sending probe responses in ad hoc
4120 * mode.
4121 */
4122
4123 /* complete initialization */
4124 ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4125 callout_init(&sc->sc_scan_ch, 0);
4126
4127 rtw_init_radiotap(sc);
4128
4129 #if NBPFILTER > 0
4130 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4131 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4132 #endif
4133
4134 if (!pmf_device_register(sc->sc_dev, NULL, NULL)) {
4135 aprint_error_dev(sc->sc_dev,
4136 "couldn't establish power handler\n");
4137 } else
4138 pmf_class_network_register(sc->sc_dev, &sc->sc_if);
4139
4140 NEXT_ATTACH_STATE(sc, FINISHED);
4141
4142 ieee80211_announce(ic);
4143 return;
4144 err:
4145 rtw_detach(sc);
4146 return;
4147 }
4148
4149 int
4150 rtw_detach(struct rtw_softc *sc)
4151 {
4152 struct ifnet *ifp = &sc->sc_if;
4153 int pri, s;
4154
4155 s = splnet();
4156 sc->sc_flags |= RTW_F_INVALID;
4157
4158 switch (sc->sc_attach_state) {
4159 case FINISHED:
4160 rtw_stop(ifp, 1);
4161
4162 pmf_device_deregister(sc->sc_dev);
4163 callout_stop(&sc->sc_scan_ch);
4164 ieee80211_ifdetach(&sc->sc_ic);
4165 if_detach(ifp);
4166 /*FALLTHROUGH*/
4167 case FINISH_ID_STA:
4168 case FINISH_RF_ATTACH:
4169 rtw_rf_destroy(sc->sc_rf);
4170 sc->sc_rf = NULL;
4171 /*FALLTHROUGH*/
4172 case FINISH_PARSE_SROM:
4173 case FINISH_READ_SROM:
4174 rtw_srom_free(&sc->sc_srom);
4175 /*FALLTHROUGH*/
4176 case FINISH_RESET:
4177 case FINISH_RXMAPS_CREATE:
4178 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4179 RTW_RXQLEN);
4180 /*FALLTHROUGH*/
4181 case FINISH_TXMAPS_CREATE:
4182 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4183 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4184 sc->sc_txsoft_blk[pri].tsb_desc,
4185 sc->sc_txsoft_blk[pri].tsb_ndesc);
4186 }
4187 /*FALLTHROUGH*/
4188 case FINISH_TXDESCBLK_SETUP:
4189 case FINISH_TXCTLBLK_SETUP:
4190 rtw_txsoft_blk_cleanup_all(sc);
4191 /*FALLTHROUGH*/
4192 case FINISH_DESCMAP_LOAD:
4193 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4194 /*FALLTHROUGH*/
4195 case FINISH_DESCMAP_CREATE:
4196 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4197 /*FALLTHROUGH*/
4198 case FINISH_DESC_MAP:
4199 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
4200 sizeof(struct rtw_descs));
4201 /*FALLTHROUGH*/
4202 case FINISH_DESC_ALLOC:
4203 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4204 sc->sc_desc_nsegs);
4205 /*FALLTHROUGH*/
4206 case DETACHED:
4207 NEXT_ATTACH_STATE(sc, DETACHED);
4208 break;
4209 }
4210 splx(s);
4211 return 0;
4212 }
4213
4214 int
4215 rtw_activate(device_t self, enum devact act)
4216 {
4217 struct rtw_softc *sc = device_private(self);
4218 int rc = 0, s;
4219
4220 s = splnet();
4221 switch (act) {
4222 case DVACT_ACTIVATE:
4223 rc = EOPNOTSUPP;
4224 break;
4225
4226 case DVACT_DEACTIVATE:
4227 if_deactivate(&sc->sc_if);
4228 break;
4229 }
4230 splx(s);
4231 return rc;
4232 }
4233