rtw.c revision 1.103 1 /* $NetBSD: rtw.c,v 1.103 2008/03/14 23:59:01 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005, 2006, 2007 David Young. All rights
4 * reserved.
5 *
6 * Programmed for NetBSD by David Young.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of David Young may not be used to endorse or promote
17 * products derived from this software without specific prior
18 * written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
21 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
23 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
24 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
26 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31 * OF SUCH DAMAGE.
32 */
33 /*
34 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.103 2008/03/14 23:59:01 dyoung Exp $");
39
40 #include "bpfilter.h"
41
42 #include <sys/param.h>
43 #include <sys/sysctl.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/time.h>
50 #include <sys/types.h>
51 #include <sys/device.h>
52
53 #include <machine/endian.h>
54 #include <sys/bus.h>
55 #include <sys/intr.h> /* splnet */
56
57 #include <uvm/uvm_extern.h>
58
59 #include <net/if.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #include <net80211/ieee80211_netbsd.h>
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70
71 #include <dev/ic/rtwreg.h>
72 #include <dev/ic/rtwvar.h>
73 #include <dev/ic/rtwphyio.h>
74 #include <dev/ic/rtwphy.h>
75
76 #include <dev/ic/smc93cx6var.h>
77
78 static int rtw_rfprog_fallback = 0;
79 static int rtw_host_rfio = 0;
80
81 #ifdef RTW_DEBUG
82 int rtw_debug = 0;
83 static int rtw_rxbufs_limit = RTW_RXQLEN;
84 #endif /* RTW_DEBUG */
85
86 #define NEXT_ATTACH_STATE(sc, state) do { \
87 DPRINTF(sc, RTW_DEBUG_ATTACH, \
88 ("%s: attach state %s\n", __func__, #state)); \
89 sc->sc_attach_state = state; \
90 } while (0)
91
92 int rtw_dwelltime = 200; /* milliseconds */
93 static struct ieee80211_cipher rtw_cipher_wep;
94
95 static void rtw_disable_interrupts(struct rtw_regs *);
96 static void rtw_enable_interrupts(struct rtw_softc *);
97
98 static int rtw_init(struct ifnet *);
99
100 static void rtw_start(struct ifnet *);
101 static void rtw_reset_oactive(struct rtw_softc *);
102 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
103 struct ieee80211_node *);
104 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
105
106 static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
107 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
108 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
109 const u_int8_t[IEEE80211_ADDR_LEN]);
110 static void rtw_key_update_end(struct ieee80211com *);
111 static void rtw_key_update_begin(struct ieee80211com *);
112 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
113 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
114
115 static void rtw_led_attach(struct rtw_led_state *, void *);
116 static void rtw_led_detach(struct rtw_led_state *);
117 static void rtw_led_init(struct rtw_regs *);
118 static void rtw_led_slowblink(void *);
119 static void rtw_led_fastblink(void *);
120 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
121
122 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
123 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
124 #ifdef RTW_DEBUG
125 static void rtw_dump_rings(struct rtw_softc *sc);
126 static void rtw_print_txdesc(struct rtw_softc *, const char *,
127 struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
128 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
129 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
130 #endif /* RTW_DEBUG */
131 #ifdef RTW_DIAG
132 static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
133 #endif /* RTW_DIAG */
134
135 /*
136 * Setup sysctl(3) MIB, hw.rtw.*
137 *
138 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
139 */
140 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
141 {
142 int rc;
143 const struct sysctlnode *cnode, *rnode;
144
145 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
146 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
147 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
148 goto err;
149
150 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
151 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
152 "Realtek RTL818x 802.11 controls",
153 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
154 goto err;
155
156 #ifdef RTW_DEBUG
157 /* control debugging printfs */
158 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
159 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
160 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
161 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
162 CTL_CREATE, CTL_EOL)) != 0)
163 goto err;
164
165 /* Limit rx buffers, for simulating resource exhaustion. */
166 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
167 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
168 "rxbufs_limit",
169 SYSCTL_DESCR("Set rx buffers limit"),
170 rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
171 CTL_CREATE, CTL_EOL)) != 0)
172 goto err;
173
174 #endif /* RTW_DEBUG */
175 /* set fallback RF programming method */
176 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
177 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
178 "rfprog_fallback",
179 SYSCTL_DESCR("Set fallback RF programming method"),
180 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
181 CTL_CREATE, CTL_EOL)) != 0)
182 goto err;
183
184 /* force host to control RF I/O bus */
185 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
186 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
187 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
188 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
189 CTL_CREATE, CTL_EOL)) != 0)
190 goto err;
191
192 return;
193 err:
194 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
195 }
196
197 static int
198 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
199 {
200 int error, t;
201 struct sysctlnode node;
202
203 node = *rnode;
204 t = *(int*)rnode->sysctl_data;
205 node.sysctl_data = &t;
206 error = sysctl_lookup(SYSCTLFN_CALL(&node));
207 if (error || newp == NULL)
208 return (error);
209
210 if (t < lower || t > upper)
211 return (EINVAL);
212
213 *(int*)rnode->sysctl_data = t;
214
215 return (0);
216 }
217
218 static int
219 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
220 {
221 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
222 __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
223 }
224
225 static int
226 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
227 {
228 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
229 }
230
231 #ifdef RTW_DEBUG
232 static int
233 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
234 {
235 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
236 0, RTW_DEBUG_MAX);
237 }
238
239 static int
240 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
241 {
242 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
243 0, RTW_RXQLEN);
244 }
245
246 static void
247 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
248 {
249 #define PRINTREG32(sc, reg) \
250 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
251 ("%s: reg[ " #reg " / %03x ] = %08x\n", \
252 dvname, reg, RTW_READ(regs, reg)))
253
254 #define PRINTREG16(sc, reg) \
255 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
256 ("%s: reg[ " #reg " / %03x ] = %04x\n", \
257 dvname, reg, RTW_READ16(regs, reg)))
258
259 #define PRINTREG8(sc, reg) \
260 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
261 ("%s: reg[ " #reg " / %03x ] = %02x\n", \
262 dvname, reg, RTW_READ8(regs, reg)))
263
264 RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
265
266 PRINTREG32(regs, RTW_IDR0);
267 PRINTREG32(regs, RTW_IDR1);
268 PRINTREG32(regs, RTW_MAR0);
269 PRINTREG32(regs, RTW_MAR1);
270 PRINTREG32(regs, RTW_TSFTRL);
271 PRINTREG32(regs, RTW_TSFTRH);
272 PRINTREG32(regs, RTW_TLPDA);
273 PRINTREG32(regs, RTW_TNPDA);
274 PRINTREG32(regs, RTW_THPDA);
275 PRINTREG32(regs, RTW_TCR);
276 PRINTREG32(regs, RTW_RCR);
277 PRINTREG32(regs, RTW_TINT);
278 PRINTREG32(regs, RTW_TBDA);
279 PRINTREG32(regs, RTW_ANAPARM);
280 PRINTREG32(regs, RTW_BB);
281 PRINTREG32(regs, RTW_PHYCFG);
282 PRINTREG32(regs, RTW_WAKEUP0L);
283 PRINTREG32(regs, RTW_WAKEUP0H);
284 PRINTREG32(regs, RTW_WAKEUP1L);
285 PRINTREG32(regs, RTW_WAKEUP1H);
286 PRINTREG32(regs, RTW_WAKEUP2LL);
287 PRINTREG32(regs, RTW_WAKEUP2LH);
288 PRINTREG32(regs, RTW_WAKEUP2HL);
289 PRINTREG32(regs, RTW_WAKEUP2HH);
290 PRINTREG32(regs, RTW_WAKEUP3LL);
291 PRINTREG32(regs, RTW_WAKEUP3LH);
292 PRINTREG32(regs, RTW_WAKEUP3HL);
293 PRINTREG32(regs, RTW_WAKEUP3HH);
294 PRINTREG32(regs, RTW_WAKEUP4LL);
295 PRINTREG32(regs, RTW_WAKEUP4LH);
296 PRINTREG32(regs, RTW_WAKEUP4HL);
297 PRINTREG32(regs, RTW_WAKEUP4HH);
298 PRINTREG32(regs, RTW_DK0);
299 PRINTREG32(regs, RTW_DK1);
300 PRINTREG32(regs, RTW_DK2);
301 PRINTREG32(regs, RTW_DK3);
302 PRINTREG32(regs, RTW_RETRYCTR);
303 PRINTREG32(regs, RTW_RDSAR);
304 PRINTREG32(regs, RTW_FER);
305 PRINTREG32(regs, RTW_FEMR);
306 PRINTREG32(regs, RTW_FPSR);
307 PRINTREG32(regs, RTW_FFER);
308
309 /* 16-bit registers */
310 PRINTREG16(regs, RTW_BRSR);
311 PRINTREG16(regs, RTW_IMR);
312 PRINTREG16(regs, RTW_ISR);
313 PRINTREG16(regs, RTW_BCNITV);
314 PRINTREG16(regs, RTW_ATIMWND);
315 PRINTREG16(regs, RTW_BINTRITV);
316 PRINTREG16(regs, RTW_ATIMTRITV);
317 PRINTREG16(regs, RTW_CRC16ERR);
318 PRINTREG16(regs, RTW_CRC0);
319 PRINTREG16(regs, RTW_CRC1);
320 PRINTREG16(regs, RTW_CRC2);
321 PRINTREG16(regs, RTW_CRC3);
322 PRINTREG16(regs, RTW_CRC4);
323 PRINTREG16(regs, RTW_CWR);
324
325 /* 8-bit registers */
326 PRINTREG8(regs, RTW_CR);
327 PRINTREG8(regs, RTW_9346CR);
328 PRINTREG8(regs, RTW_CONFIG0);
329 PRINTREG8(regs, RTW_CONFIG1);
330 PRINTREG8(regs, RTW_CONFIG2);
331 PRINTREG8(regs, RTW_MSR);
332 PRINTREG8(regs, RTW_CONFIG3);
333 PRINTREG8(regs, RTW_CONFIG4);
334 PRINTREG8(regs, RTW_TESTR);
335 PRINTREG8(regs, RTW_PSR);
336 PRINTREG8(regs, RTW_SCR);
337 PRINTREG8(regs, RTW_PHYDELAY);
338 PRINTREG8(regs, RTW_CRCOUNT);
339 PRINTREG8(regs, RTW_PHYADDR);
340 PRINTREG8(regs, RTW_PHYDATAW);
341 PRINTREG8(regs, RTW_PHYDATAR);
342 PRINTREG8(regs, RTW_CONFIG5);
343 PRINTREG8(regs, RTW_TPPOLL);
344
345 PRINTREG16(regs, RTW_BSSID16);
346 PRINTREG32(regs, RTW_BSSID32);
347 #undef PRINTREG32
348 #undef PRINTREG16
349 #undef PRINTREG8
350 }
351 #endif /* RTW_DEBUG */
352
353 void
354 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
355 {
356 struct rtw_regs *regs = &sc->sc_regs;
357
358 uint32_t tcr;
359 tcr = RTW_READ(regs, RTW_TCR);
360 tcr &= ~RTW_TCR_LBK_MASK;
361 if (enable)
362 tcr |= RTW_TCR_LBK_CONT;
363 else
364 tcr |= RTW_TCR_LBK_NORMAL;
365 RTW_WRITE(regs, RTW_TCR, tcr);
366 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
367 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
368 rtw_txdac_enable(sc, !enable);
369 rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
370 rtw_set_access(regs, RTW_ACCESS_NONE);
371 }
372
373 #ifdef RTW_DEBUG
374 static const char *
375 rtw_access_string(enum rtw_access access)
376 {
377 switch (access) {
378 case RTW_ACCESS_NONE:
379 return "none";
380 case RTW_ACCESS_CONFIG:
381 return "config";
382 case RTW_ACCESS_ANAPARM:
383 return "anaparm";
384 default:
385 return "unknown";
386 }
387 }
388 #endif /* RTW_DEBUG */
389
390 static void
391 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
392 {
393 KASSERT(/* naccess >= RTW_ACCESS_NONE && */
394 naccess <= RTW_ACCESS_ANAPARM);
395 KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
396 regs->r_access <= RTW_ACCESS_ANAPARM);
397
398 if (naccess == regs->r_access)
399 return;
400
401 switch (naccess) {
402 case RTW_ACCESS_NONE:
403 switch (regs->r_access) {
404 case RTW_ACCESS_ANAPARM:
405 rtw_anaparm_enable(regs, 0);
406 /*FALLTHROUGH*/
407 case RTW_ACCESS_CONFIG:
408 rtw_config0123_enable(regs, 0);
409 /*FALLTHROUGH*/
410 case RTW_ACCESS_NONE:
411 break;
412 }
413 break;
414 case RTW_ACCESS_CONFIG:
415 switch (regs->r_access) {
416 case RTW_ACCESS_NONE:
417 rtw_config0123_enable(regs, 1);
418 /*FALLTHROUGH*/
419 case RTW_ACCESS_CONFIG:
420 break;
421 case RTW_ACCESS_ANAPARM:
422 rtw_anaparm_enable(regs, 0);
423 break;
424 }
425 break;
426 case RTW_ACCESS_ANAPARM:
427 switch (regs->r_access) {
428 case RTW_ACCESS_NONE:
429 rtw_config0123_enable(regs, 1);
430 /*FALLTHROUGH*/
431 case RTW_ACCESS_CONFIG:
432 rtw_anaparm_enable(regs, 1);
433 /*FALLTHROUGH*/
434 case RTW_ACCESS_ANAPARM:
435 break;
436 }
437 break;
438 }
439 }
440
441 void
442 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
443 {
444 rtw_set_access1(regs, access);
445 RTW_DPRINTF(RTW_DEBUG_ACCESS,
446 ("%s: access %s -> %s\n", __func__,
447 rtw_access_string(regs->r_access),
448 rtw_access_string(access)));
449 regs->r_access = access;
450 }
451
452 /*
453 * Enable registers, switch register banks.
454 */
455 void
456 rtw_config0123_enable(struct rtw_regs *regs, int enable)
457 {
458 uint8_t ecr;
459 ecr = RTW_READ8(regs, RTW_9346CR);
460 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
461 if (enable)
462 ecr |= RTW_9346CR_EEM_CONFIG;
463 else {
464 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
465 ecr |= RTW_9346CR_EEM_NORMAL;
466 }
467 RTW_WRITE8(regs, RTW_9346CR, ecr);
468 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
469 }
470
471 /* requires rtw_config0123_enable(, 1) */
472 void
473 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
474 {
475 uint8_t cfg3;
476
477 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
478 cfg3 |= RTW_CONFIG3_CLKRUNEN;
479 if (enable)
480 cfg3 |= RTW_CONFIG3_PARMEN;
481 else
482 cfg3 &= ~RTW_CONFIG3_PARMEN;
483 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
484 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
485 }
486
487 /* requires rtw_anaparm_enable(, 1) */
488 void
489 rtw_txdac_enable(struct rtw_softc *sc, int enable)
490 {
491 uint32_t anaparm;
492 struct rtw_regs *regs = &sc->sc_regs;
493
494 anaparm = RTW_READ(regs, RTW_ANAPARM);
495 if (enable)
496 anaparm &= ~RTW_ANAPARM_TXDACOFF;
497 else
498 anaparm |= RTW_ANAPARM_TXDACOFF;
499 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
500 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
501 }
502
503 static inline int
504 rtw_chip_reset1(struct rtw_regs *regs, device_t dev)
505 {
506 uint8_t cr;
507 int i;
508
509 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
510
511 RTW_WBR(regs, RTW_CR, RTW_CR);
512
513 for (i = 0; i < 1000; i++) {
514 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
515 RTW_DPRINTF(RTW_DEBUG_RESET,
516 ("%s: reset in %dus\n", device_xname(dev), i));
517 return 0;
518 }
519 RTW_RBR(regs, RTW_CR, RTW_CR);
520 DELAY(10); /* 10us */
521 }
522
523 aprint_error_dev(dev, "reset failed\n");
524 return ETIMEDOUT;
525 }
526
527 static inline int
528 rtw_chip_reset(struct rtw_regs *regs, device_t dev)
529 {
530 uint32_t tcr;
531
532 /* from Linux driver */
533 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
534 __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
535
536 RTW_WRITE(regs, RTW_TCR, tcr);
537
538 RTW_WBW(regs, RTW_CR, RTW_TCR);
539
540 return rtw_chip_reset1(regs, dev);
541 }
542
543 static int
544 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
545 {
546 struct ieee80211_key keycopy;
547
548 RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
549
550 keycopy = *k;
551 keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
552
553 return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
554 }
555
556 static int
557 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
558 {
559 struct rtw_softc *sc = ic->ic_ifp->if_softc;
560
561 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__,
562 k->wk_keyix));
563
564 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
565
566 if (k->wk_keylen != 0 &&
567 k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP)
568 sc->sc_flags &= ~RTW_F_DK_VALID;
569
570 return 1;
571 }
572
573 static int
574 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
575 const u_int8_t mac[IEEE80211_ADDR_LEN])
576 {
577 struct rtw_softc *sc = ic->ic_ifp->if_softc;
578
579 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
580
581 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
582
583 sc->sc_flags &= ~RTW_F_DK_VALID;
584
585 return 1;
586 }
587
588 static void
589 rtw_key_update_begin(struct ieee80211com *ic)
590 {
591 #ifdef RTW_DEBUG
592 struct ifnet *ifp = ic->ic_ifp;
593 struct rtw_softc *sc = ifp->if_softc;
594 #endif
595
596 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
597 }
598
599 static void
600 rtw_tx_kick(struct rtw_regs *regs, uint8_t ringsel)
601 {
602 uint8_t tppoll;
603
604 tppoll = RTW_READ8(regs, RTW_TPPOLL);
605 tppoll &= ~RTW_TPPOLL_SALL;
606 tppoll |= ringsel & RTW_TPPOLL_ALL;
607 RTW_WRITE8(regs, RTW_TPPOLL, tppoll);
608 RTW_SYNC(regs, RTW_TPPOLL, RTW_TPPOLL);
609 }
610
611 static void
612 rtw_key_update_end(struct ieee80211com *ic)
613 {
614 struct ifnet *ifp = ic->ic_ifp;
615 struct rtw_softc *sc = ifp->if_softc;
616
617 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
618
619 if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
620 !device_is_active(sc->sc_dev))
621 return;
622
623 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
624 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
625 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
626 (ifp->if_flags & IFF_RUNNING) != 0);
627 }
628
629 static inline int
630 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
631 {
632 if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
633 return 0;
634
635 return ((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
636 ((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
637 }
638
639 static void
640 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
641 {
642 uint8_t psr, scr;
643 int i, keylen;
644 struct rtw_regs *regs;
645 union rtw_keys *rk;
646
647 regs = &sc->sc_regs;
648 rk = &sc->sc_keys;
649
650 (void)memset(rk, 0, sizeof(rk));
651
652 /* Temporarily use software crypto for all keys. */
653 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
654 if (wk[i].wk_cipher == &rtw_cipher_wep)
655 wk[i].wk_cipher = &ieee80211_cipher_wep;
656 }
657
658 rtw_set_access(regs, RTW_ACCESS_CONFIG);
659
660 psr = RTW_READ8(regs, RTW_PSR);
661 scr = RTW_READ8(regs, RTW_SCR);
662 scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
663
664 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
665 goto out;
666
667 for (keylen = i = 0; i < IEEE80211_WEP_NKID; i++) {
668 if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
669 continue;
670 if (i == txkey) {
671 keylen = wk[i].wk_keylen;
672 break;
673 }
674 keylen = MAX(keylen, wk[i].wk_keylen);
675 }
676
677 if (keylen == 5)
678 scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
679 else if (keylen == 13)
680 scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
681
682 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
683 if (wk[i].wk_keylen != keylen ||
684 wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
685 continue;
686 /* h/w will decrypt, s/w still strips headers */
687 wk[i].wk_cipher = &rtw_cipher_wep;
688 (void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
689 }
690
691 out:
692 RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
693
694 bus_space_write_region_stream_4(regs->r_bt, regs->r_bh,
695 RTW_DK0, rk->rk_words, __arraycount(rk->rk_words));
696
697 bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
698 BUS_SPACE_BARRIER_SYNC);
699
700 RTW_WBW(regs, RTW_DK0, RTW_PSR);
701 RTW_WRITE8(regs, RTW_PSR, psr);
702 RTW_WBW(regs, RTW_PSR, RTW_SCR);
703 RTW_WRITE8(regs, RTW_SCR, scr);
704 RTW_SYNC(regs, RTW_SCR, RTW_SCR);
705 rtw_set_access(regs, RTW_ACCESS_NONE);
706 sc->sc_flags |= RTW_F_DK_VALID;
707 }
708
709 static inline int
710 rtw_recall_eeprom(struct rtw_regs *regs, device_t dev)
711 {
712 int i;
713 uint8_t ecr;
714
715 ecr = RTW_READ8(regs, RTW_9346CR);
716 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
717 RTW_WRITE8(regs, RTW_9346CR, ecr);
718
719 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
720
721 /* wait 25ms for completion */
722 for (i = 0; i < 250; i++) {
723 ecr = RTW_READ8(regs, RTW_9346CR);
724 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
725 RTW_DPRINTF(RTW_DEBUG_RESET,
726 ("%s: recall EEPROM in %dus\n", device_xname(dev),
727 i * 100));
728 return 0;
729 }
730 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
731 DELAY(100);
732 }
733 aprint_error_dev(dev, "recall EEPROM failed\n");
734 return ETIMEDOUT;
735 }
736
737 static inline int
738 rtw_reset(struct rtw_softc *sc)
739 {
740 int rc;
741 uint8_t config1;
742
743 sc->sc_flags &= ~RTW_F_DK_VALID;
744
745 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev)) != 0)
746 return rc;
747
748 rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev);
749
750 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
751 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
752 /* TBD turn off maximum power saving? */
753
754 return 0;
755 }
756
757 static inline int
758 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
759 u_int ndescs)
760 {
761 int i, rc = 0;
762 for (i = 0; i < ndescs; i++) {
763 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
764 0, 0, &descs[i].ts_dmamap);
765 if (rc != 0)
766 break;
767 }
768 return rc;
769 }
770
771 static inline int
772 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
773 u_int ndescs)
774 {
775 int i, rc = 0;
776 for (i = 0; i < ndescs; i++) {
777 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
778 &descs[i].rs_dmamap);
779 if (rc != 0)
780 break;
781 }
782 return rc;
783 }
784
785 static inline void
786 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
787 u_int ndescs)
788 {
789 int i;
790 for (i = 0; i < ndescs; i++) {
791 if (descs[i].rs_dmamap != NULL)
792 bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
793 }
794 }
795
796 static inline void
797 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
798 u_int ndescs)
799 {
800 int i;
801 for (i = 0; i < ndescs; i++) {
802 if (descs[i].ts_dmamap != NULL)
803 bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
804 }
805 }
806
807 static inline void
808 rtw_srom_free(struct rtw_srom *sr)
809 {
810 sr->sr_size = 0;
811 if (sr->sr_content == NULL)
812 return;
813 free(sr->sr_content, M_DEVBUF);
814 sr->sr_content = NULL;
815 }
816
817 static void
818 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
819 uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
820 {
821 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
822 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
823 *rcr |= RTW_RCR_ENCS1;
824 *rfchipid = RTW_RFCHIPID_PHILIPS;
825 }
826
827 static int
828 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
829 enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
830 device_t dev)
831 {
832 int i;
833 const char *rfname, *paname;
834 char scratch[sizeof("unknown 0xXX")];
835 uint16_t srom_version;
836 uint8_t mac[IEEE80211_ADDR_LEN];
837
838 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
839 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
840
841 srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
842
843 if (srom_version <= 0x0101) {
844 aprint_error_dev(dev,
845 "SROM version %d.%d is not understood, "
846 "limping along with defaults\n",
847 srom_version >> 8, srom_version & 0xff);
848 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
849 return 0;
850 } else {
851 aprint_verbose_dev(dev, "SROM version %d.%d",
852 srom_version >> 8, srom_version & 0xff);
853 }
854
855 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
856 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
857
858 RTW_DPRINTF(RTW_DEBUG_ATTACH,
859 ("%s: EEPROM MAC %s\n", device_xname(dev), ether_sprintf(mac)));
860
861 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
862
863 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
864 *flags |= RTW_F_ANTDIV;
865
866 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
867 * to be reversed.
868 */
869 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
870 *flags |= RTW_F_DIGPHY;
871 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
872 *flags |= RTW_F_DFLANTB;
873
874 *rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
875 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
876
877 if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
878 *flags |= RTW_C_RXWEP_104;
879
880 *flags |= RTW_C_RXWEP_40; /* XXX */
881
882 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
883 switch (*rfchipid) {
884 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
885 rfname = "GCT GRF5101";
886 paname = "Winspring WS9901";
887 break;
888 case RTW_RFCHIPID_MAXIM:
889 rfname = "Maxim MAX2820"; /* guess */
890 paname = "Maxim MAX2422"; /* guess */
891 break;
892 case RTW_RFCHIPID_INTERSIL:
893 rfname = "Intersil HFA3873"; /* guess */
894 paname = "Intersil <unknown>";
895 break;
896 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
897 rfname = "Philips SA2400A";
898 paname = "Philips SA2411";
899 break;
900 case RTW_RFCHIPID_RFMD:
901 /* this is the same front-end as an atw(4)! */
902 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
903 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
904 "SYN: Silicon Labs Si4126"; /* inferred from
905 * reference driver
906 */
907 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
908 break;
909 case RTW_RFCHIPID_RESERVED:
910 rfname = paname = "reserved";
911 break;
912 default:
913 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
914 rfname = paname = scratch;
915 }
916 aprint_normal_dev(dev, "RF: %s, PA: %s\n", rfname, paname);
917
918 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
919 case RTW_CONFIG0_GL_USA:
920 case _RTW_CONFIG0_GL_USA:
921 *locale = RTW_LOCALE_USA;
922 break;
923 case RTW_CONFIG0_GL_EUROPE:
924 *locale = RTW_LOCALE_EUROPE;
925 break;
926 case RTW_CONFIG0_GL_JAPAN:
927 *locale = RTW_LOCALE_JAPAN;
928 break;
929 default:
930 *locale = RTW_LOCALE_UNKNOWN;
931 break;
932 }
933 return 0;
934 }
935
936 /* Returns -1 on failure. */
937 static int
938 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
939 device_t dev)
940 {
941 int rc;
942 struct seeprom_descriptor sd;
943 uint8_t ecr;
944
945 (void)memset(&sd, 0, sizeof(sd));
946
947 ecr = RTW_READ8(regs, RTW_9346CR);
948
949 if ((flags & RTW_F_9356SROM) != 0) {
950 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n",
951 device_xname(dev)));
952 sr->sr_size = 256;
953 sd.sd_chip = C56_66;
954 } else {
955 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n",
956 device_xname(dev)));
957 sr->sr_size = 128;
958 sd.sd_chip = C46;
959 }
960
961 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
962 RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
963 ecr |= RTW_9346CR_EEM_PROGRAM;
964
965 RTW_WRITE8(regs, RTW_9346CR, ecr);
966
967 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
968
969 if (sr->sr_content == NULL) {
970 aprint_error_dev(dev, "unable to allocate SROM buffer\n");
971 return ENOMEM;
972 }
973
974 (void)memset(sr->sr_content, 0, sr->sr_size);
975
976 /* RTL8180 has a single 8-bit register for controlling the
977 * 93cx6 SROM. There is no "ready" bit. The RTL8180
978 * input/output sense is the reverse of read_seeprom's.
979 */
980 sd.sd_tag = regs->r_bt;
981 sd.sd_bsh = regs->r_bh;
982 sd.sd_regsize = 1;
983 sd.sd_control_offset = RTW_9346CR;
984 sd.sd_status_offset = RTW_9346CR;
985 sd.sd_dataout_offset = RTW_9346CR;
986 sd.sd_CK = RTW_9346CR_EESK;
987 sd.sd_CS = RTW_9346CR_EECS;
988 sd.sd_DI = RTW_9346CR_EEDO;
989 sd.sd_DO = RTW_9346CR_EEDI;
990 /* make read_seeprom enter EEPROM read/write mode */
991 sd.sd_MS = ecr;
992 sd.sd_RDY = 0;
993
994 /* TBD bus barriers */
995 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
996 aprint_error_dev(dev, "could not read SROM\n");
997 free(sr->sr_content, M_DEVBUF);
998 sr->sr_content = NULL;
999 return -1; /* XXX */
1000 }
1001
1002 /* end EEPROM read/write mode */
1003 RTW_WRITE8(regs, RTW_9346CR,
1004 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
1005 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
1006
1007 if ((rc = rtw_recall_eeprom(regs, dev)) != 0)
1008 return rc;
1009
1010 #ifdef RTW_DEBUG
1011 {
1012 int i;
1013 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1014 ("\n%s: serial ROM:\n\t", device_xname(dev)));
1015 for (i = 0; i < sr->sr_size/2; i++) {
1016 if (((i % 8) == 0) && (i != 0))
1017 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
1018 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1019 (" %04x", sr->sr_content[i]));
1020 }
1021 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
1022 }
1023 #endif /* RTW_DEBUG */
1024 return 0;
1025 }
1026
1027 static void
1028 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1029 device_t dev)
1030 {
1031 uint8_t cfg4;
1032 const char *method;
1033
1034 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1035
1036 switch (rfchipid) {
1037 default:
1038 cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1039 method = "fallback";
1040 break;
1041 case RTW_RFCHIPID_INTERSIL:
1042 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1043 method = "Intersil";
1044 break;
1045 case RTW_RFCHIPID_PHILIPS:
1046 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1047 method = "Philips";
1048 break;
1049 case RTW_RFCHIPID_GCT: /* XXX a guess */
1050 case RTW_RFCHIPID_RFMD:
1051 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1052 method = "RFMD";
1053 break;
1054 }
1055
1056 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1057
1058 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1059
1060 RTW_DPRINTF(RTW_DEBUG_INIT,
1061 ("%s: %s RF programming method, %#02x\n", device_xname(dev), method,
1062 RTW_READ8(regs, RTW_CONFIG4)));
1063 }
1064
1065 static inline void
1066 rtw_init_channels(enum rtw_locale locale,
1067 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1], device_t dev)
1068 {
1069 int i;
1070 const char *name = NULL;
1071 #define ADD_CHANNEL(_chans, _chan) do { \
1072 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
1073 (*_chans)[_chan].ic_freq = \
1074 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1075 } while (0)
1076
1077 switch (locale) {
1078 case RTW_LOCALE_USA: /* 1-11 */
1079 name = "USA";
1080 for (i = 1; i <= 11; i++)
1081 ADD_CHANNEL(chans, i);
1082 break;
1083 case RTW_LOCALE_JAPAN: /* 1-14 */
1084 name = "Japan";
1085 ADD_CHANNEL(chans, 14);
1086 for (i = 1; i <= 14; i++)
1087 ADD_CHANNEL(chans, i);
1088 break;
1089 case RTW_LOCALE_EUROPE: /* 1-13 */
1090 name = "Europe";
1091 for (i = 1; i <= 13; i++)
1092 ADD_CHANNEL(chans, i);
1093 break;
1094 default: /* 10-11 allowed by most countries */
1095 name = "<unknown>";
1096 for (i = 10; i <= 11; i++)
1097 ADD_CHANNEL(chans, i);
1098 break;
1099 }
1100 aprint_normal_dev(dev, "Geographic Location %s\n", name);
1101 #undef ADD_CHANNEL
1102 }
1103
1104
1105 static inline void
1106 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1107 {
1108 uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1109
1110 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1111 case RTW_CONFIG0_GL_USA:
1112 case _RTW_CONFIG0_GL_USA:
1113 *locale = RTW_LOCALE_USA;
1114 break;
1115 case RTW_CONFIG0_GL_JAPAN:
1116 *locale = RTW_LOCALE_JAPAN;
1117 break;
1118 case RTW_CONFIG0_GL_EUROPE:
1119 *locale = RTW_LOCALE_EUROPE;
1120 break;
1121 default:
1122 *locale = RTW_LOCALE_UNKNOWN;
1123 break;
1124 }
1125 }
1126
1127 static inline int
1128 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1129 device_t dev)
1130 {
1131 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1132 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1133 };
1134 uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1135 idr1 = RTW_READ(regs, RTW_IDR1);
1136
1137 (*addr)[0] = __SHIFTOUT(idr0, __BITS(0, 7));
1138 (*addr)[1] = __SHIFTOUT(idr0, __BITS(8, 15));
1139 (*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
1140 (*addr)[3] = __SHIFTOUT(idr0, __BITS(24 ,31));
1141
1142 (*addr)[4] = __SHIFTOUT(idr1, __BITS(0, 7));
1143 (*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
1144
1145 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1146 aprint_error_dev(dev,
1147 "could not get mac address, attach failed\n");
1148 return ENXIO;
1149 }
1150
1151 aprint_normal_dev(dev, "802.11 address %s\n", ether_sprintf(*addr));
1152
1153 return 0;
1154 }
1155
1156 static uint8_t
1157 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1158 struct ieee80211_channel *chan)
1159 {
1160 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1161 KASSERT(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14);
1162 return RTW_SR_GET(sr, idx);
1163 }
1164
1165 static void
1166 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1167 {
1168 int pri;
1169 /* nfree: the number of free descriptors in each ring.
1170 * The beacon ring is a special case: I do not let the
1171 * driver use all of the descriptors on the beacon ring.
1172 * The reasons are two-fold:
1173 *
1174 * (1) A BEACON descriptor's OWN bit is (apparently) not
1175 * updated, so the driver cannot easily know if the descriptor
1176 * belongs to it, or if it is racing the NIC. If the NIC
1177 * does not OWN every descriptor, then the driver can safely
1178 * update the descriptors when RTW_TBDA points at tdb_next.
1179 *
1180 * (2) I hope that the NIC will process more than one BEACON
1181 * descriptor in a single beacon interval, since that will
1182 * enable multiple-BSS support. Since the NIC does not
1183 * clear the OWN bit, there is no natural place for it to
1184 * stop processing BEACON desciptors. Maybe it will *not*
1185 * stop processing them! I do not want to chance the NIC
1186 * looping around and around a saturated beacon ring, so
1187 * I will leave one descriptor unOWNed at all times.
1188 */
1189 u_int nfree[RTW_NTXPRI] =
1190 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1191 RTW_NTXDESCBCN - 1};
1192
1193 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1194 tdb[pri].tdb_nfree = nfree[pri];
1195 tdb[pri].tdb_next = 0;
1196 }
1197 }
1198
1199 static int
1200 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1201 {
1202 int i;
1203 struct rtw_txsoft *ts;
1204
1205 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1206 SIMPLEQ_INIT(&tsb->tsb_freeq);
1207 for (i = 0; i < tsb->tsb_ndesc; i++) {
1208 ts = &tsb->tsb_desc[i];
1209 ts->ts_mbuf = NULL;
1210 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1211 }
1212 tsb->tsb_tx_timer = 0;
1213 return 0;
1214 }
1215
1216 static void
1217 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1218 {
1219 int pri;
1220 for (pri = 0; pri < RTW_NTXPRI; pri++)
1221 rtw_txsoft_blk_init(&tsb[pri]);
1222 }
1223
1224 static inline void
1225 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1226 {
1227 KASSERT(nsync <= rdb->rdb_ndesc);
1228 /* sync to end of ring */
1229 if (desc0 + nsync > rdb->rdb_ndesc) {
1230 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1231 offsetof(struct rtw_descs, hd_rx[desc0]),
1232 sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1233 nsync -= (rdb->rdb_ndesc - desc0);
1234 desc0 = 0;
1235 }
1236
1237 KASSERT(desc0 < rdb->rdb_ndesc);
1238 KASSERT(nsync <= rdb->rdb_ndesc);
1239 KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1240
1241 /* sync what remains */
1242 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1243 offsetof(struct rtw_descs, hd_rx[desc0]),
1244 sizeof(struct rtw_rxdesc) * nsync, ops);
1245 }
1246
1247 static void
1248 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1249 {
1250 /* sync to end of ring */
1251 if (desc0 + nsync > tdb->tdb_ndesc) {
1252 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1253 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1254 sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1255 ops);
1256 nsync -= (tdb->tdb_ndesc - desc0);
1257 desc0 = 0;
1258 }
1259
1260 /* sync what remains */
1261 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1262 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1263 sizeof(struct rtw_txdesc) * nsync, ops);
1264 }
1265
1266 static void
1267 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1268 {
1269 int pri;
1270 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1271 rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1272 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1273 }
1274 }
1275
1276 static void
1277 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1278 {
1279 int i;
1280 struct rtw_rxsoft *rs;
1281
1282 for (i = 0; i < RTW_RXQLEN; i++) {
1283 rs = &desc[i];
1284 if (rs->rs_mbuf == NULL)
1285 continue;
1286 bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1287 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1288 bus_dmamap_unload(dmat, rs->rs_dmamap);
1289 m_freem(rs->rs_mbuf);
1290 rs->rs_mbuf = NULL;
1291 }
1292 }
1293
1294 static inline int
1295 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1296 {
1297 int rc;
1298 struct mbuf *m;
1299
1300 MGETHDR(m, M_DONTWAIT, MT_DATA);
1301 if (m == NULL)
1302 return ENOBUFS;
1303
1304 MCLGET(m, M_DONTWAIT);
1305 if ((m->m_flags & M_EXT) == 0) {
1306 m_freem(m);
1307 return ENOBUFS;
1308 }
1309
1310 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1311
1312 if (rs->rs_mbuf != NULL)
1313 bus_dmamap_unload(dmat, rs->rs_dmamap);
1314
1315 rs->rs_mbuf = NULL;
1316
1317 rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1318 if (rc != 0) {
1319 m_freem(m);
1320 return -1;
1321 }
1322
1323 rs->rs_mbuf = m;
1324
1325 return 0;
1326 }
1327
1328 static int
1329 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1330 int *ndesc, device_t dev)
1331 {
1332 int i, rc = 0;
1333 struct rtw_rxsoft *rs;
1334
1335 for (i = 0; i < RTW_RXQLEN; i++) {
1336 rs = &desc[i];
1337 /* we're in rtw_init, so there should be no mbufs allocated */
1338 KASSERT(rs->rs_mbuf == NULL);
1339 #ifdef RTW_DEBUG
1340 if (i == rtw_rxbufs_limit) {
1341 aprint_error_dev(dev, "TEST hit %d-buffer limit\n", i);
1342 rc = ENOBUFS;
1343 break;
1344 }
1345 #endif /* RTW_DEBUG */
1346 if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1347 aprint_error_dev(dev,
1348 "rtw_rxsoft_alloc failed, %d buffers, rc %d\n",
1349 i, rc);
1350 break;
1351 }
1352 }
1353 *ndesc = i;
1354 return rc;
1355 }
1356
1357 static inline void
1358 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1359 int idx, int kick)
1360 {
1361 int is_last = (idx == rdb->rdb_ndesc - 1);
1362 uint32_t ctl, octl, obuf;
1363 struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1364
1365 /* sync the mbuf before the descriptor */
1366 bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1367 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1368
1369 obuf = rd->rd_buf;
1370 rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1371
1372 ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1373 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1374
1375 if (is_last)
1376 ctl |= RTW_RXCTL_EOR;
1377
1378 octl = rd->rd_ctl;
1379 rd->rd_ctl = htole32(ctl);
1380
1381 RTW_DPRINTF(
1382 kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1383 : RTW_DEBUG_RECV_DESC,
1384 ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1385 le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1386 le32toh(rd->rd_ctl)));
1387
1388 /* sync the descriptor */
1389 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1390 RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1391 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1392 }
1393
1394 static void
1395 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1396 {
1397 int i;
1398 struct rtw_rxdesc *rd;
1399 struct rtw_rxsoft *rs;
1400
1401 for (i = 0; i < rdb->rdb_ndesc; i++) {
1402 rd = &rdb->rdb_desc[i];
1403 rs = &ctl[i];
1404 rtw_rxdesc_init(rdb, rs, i, kick);
1405 }
1406 }
1407
1408 static void
1409 rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
1410 {
1411 struct rtw_regs *regs = &sc->sc_regs;
1412 uint8_t cr;
1413
1414 RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1415 enable ? "enable" : "disable", flags));
1416
1417 cr = RTW_READ8(regs, RTW_CR);
1418
1419 /* XXX reference source does not enable MULRW */
1420 /* enable PCI Read/Write Multiple */
1421 cr |= RTW_CR_MULRW;
1422
1423 /* The receive engine will always start at RDSAR. */
1424 if (enable && (flags & ~cr & RTW_CR_RE)) {
1425 struct rtw_rxdesc_blk *rdb;
1426 rdb = &sc->sc_rxdesc_blk;
1427 rdb->rdb_next = 0;
1428 }
1429
1430 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1431 if (enable)
1432 cr |= flags;
1433 else
1434 cr &= ~flags;
1435 RTW_WRITE8(regs, RTW_CR, cr);
1436 RTW_SYNC(regs, RTW_CR, RTW_CR);
1437
1438 #ifdef RTW_DIAG
1439 if (cr & RTW_CR_TE)
1440 rtw_txring_fixup(sc, __func__, __LINE__);
1441 #endif
1442 if (cr & RTW_CR_TE) {
1443 rtw_tx_kick(&sc->sc_regs,
1444 RTW_TPPOLL_HPQ | RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ);
1445 }
1446 }
1447
1448 static void
1449 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1450 {
1451 #define IS_BEACON(__fc0) \
1452 ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1453 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1454
1455 static const int ratetbl[4] = {2, 4, 11, 22}; /* convert rates:
1456 * hardware -> net80211
1457 */
1458 u_int next, nproc = 0;
1459 int hwrate, len, rate, rssi, sq;
1460 uint32_t hrssi, hstat, htsfth, htsftl;
1461 struct rtw_rxdesc *rd;
1462 struct rtw_rxsoft *rs;
1463 struct rtw_rxdesc_blk *rdb;
1464 struct mbuf *m;
1465 struct ifnet *ifp = &sc->sc_if;
1466
1467 struct ieee80211_node *ni;
1468 struct ieee80211_frame_min *wh;
1469
1470 rdb = &sc->sc_rxdesc_blk;
1471
1472 for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
1473 KASSERT(next < rdb->rdb_ndesc);
1474
1475 rtw_rxdescs_sync(rdb, next, 1,
1476 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1477 rd = &rdb->rdb_desc[next];
1478 rs = &sc->sc_rxsoft[next];
1479
1480 hstat = le32toh(rd->rd_stat);
1481 hrssi = le32toh(rd->rd_rssi);
1482 htsfth = le32toh(rd->rd_tsfth);
1483 htsftl = le32toh(rd->rd_tsftl);
1484
1485 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1486 ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1487 __func__, next, hstat, hrssi, htsfth, htsftl));
1488
1489 ++nproc;
1490
1491 /* still belongs to NIC */
1492 if ((hstat & RTW_RXSTAT_OWN) != 0) {
1493 rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
1494 break;
1495 }
1496
1497 /* ieee80211_input() might reset the receive engine
1498 * (e.g. by indirectly calling rtw_tune()), so save
1499 * the next pointer here and retrieve it again on
1500 * the next round.
1501 */
1502 rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
1503
1504 #ifdef RTW_DEBUG
1505 #define PRINTSTAT(flag) do { \
1506 if ((hstat & flag) != 0) { \
1507 printf("%s" #flag, delim); \
1508 delim = ","; \
1509 } \
1510 } while (0)
1511 if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1512 const char *delim = "<";
1513 printf("%s: ", device_xname(sc->sc_dev));
1514 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1515 printf("status %08x", hstat);
1516 PRINTSTAT(RTW_RXSTAT_SPLCP);
1517 PRINTSTAT(RTW_RXSTAT_MAR);
1518 PRINTSTAT(RTW_RXSTAT_PAR);
1519 PRINTSTAT(RTW_RXSTAT_BAR);
1520 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1521 PRINTSTAT(RTW_RXSTAT_CRC32);
1522 PRINTSTAT(RTW_RXSTAT_ICV);
1523 printf(">, ");
1524 }
1525 }
1526 #endif /* RTW_DEBUG */
1527
1528 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1529 aprint_error_dev(sc->sc_dev,
1530 "DMA error/FIFO overflow %08" PRIx32 ", "
1531 "rx descriptor %d\n", hstat, next);
1532 ifp->if_ierrors++;
1533 goto next;
1534 }
1535
1536 len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1537 if (len < IEEE80211_MIN_LEN) {
1538 sc->sc_ic.ic_stats.is_rx_tooshort++;
1539 goto next;
1540 }
1541 if (len > rs->rs_mbuf->m_len) {
1542 aprint_error_dev(sc->sc_dev,
1543 "rx frame too long, %d > %d, %08" PRIx32
1544 ", desc %d\n",
1545 len, rs->rs_mbuf->m_len, hstat, next);
1546 ifp->if_ierrors++;
1547 goto next;
1548 }
1549
1550 hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1551 if (hwrate >= __arraycount(ratetbl)) {
1552 aprint_error_dev(sc->sc_dev,
1553 "unknown rate #%" __PRIuBITS "\n",
1554 __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1555 ifp->if_ierrors++;
1556 goto next;
1557 }
1558 rate = ratetbl[hwrate];
1559
1560 #ifdef RTW_DEBUG
1561 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1562 ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1563 (rate * 5) % 10, htsfth, htsftl));
1564 #endif /* RTW_DEBUG */
1565
1566 /* if bad flags, skip descriptor */
1567 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1568 aprint_error_dev(sc->sc_dev, "too many rx segments, "
1569 "next=%d, %08" PRIx32 "\n", next, hstat);
1570 goto next;
1571 }
1572
1573 bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1574 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1575
1576 m = rs->rs_mbuf;
1577
1578 /* if temporarily out of memory, re-use mbuf */
1579 switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1580 case 0:
1581 break;
1582 case ENOBUFS:
1583 aprint_error_dev(sc->sc_dev,
1584 "rtw_rxsoft_alloc(, %d) failed, dropping packet\n",
1585 next);
1586 goto next;
1587 default:
1588 /* XXX shorten rx ring, instead? */
1589 aprint_error_dev(sc->sc_dev,
1590 "could not load DMA map\n");
1591 }
1592
1593 sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1594
1595 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1596 rssi = UINT8_MAX - sq;
1597 else {
1598 rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1599 /* TBD find out each front-end's LNA gain in the
1600 * front-end's units
1601 */
1602 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1603 rssi |= 0x80;
1604 }
1605
1606 /* Note well: now we cannot recycle the rs_mbuf unless
1607 * we restore its original length.
1608 */
1609 m->m_pkthdr.rcvif = ifp;
1610 m->m_pkthdr.len = m->m_len = len;
1611
1612 wh = mtod(m, struct ieee80211_frame_min *);
1613
1614 if (!IS_BEACON(wh->i_fc[0]))
1615 sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1616
1617 sc->sc_tsfth = htsfth;
1618
1619 #ifdef RTW_DEBUG
1620 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1621 (IFF_DEBUG|IFF_LINK2)) {
1622 ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1623 rate, rssi);
1624 }
1625 #endif /* RTW_DEBUG */
1626
1627 #if NBPFILTER > 0
1628 if (sc->sc_radiobpf != NULL) {
1629 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1630
1631 rr->rr_tsft =
1632 htole64(((uint64_t)htsfth << 32) | htsftl);
1633
1634 rr->rr_flags = IEEE80211_RADIOTAP_F_FCS;
1635
1636 if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1637 rr->rr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1638 if ((hstat & RTW_RXSTAT_CRC32) != 0)
1639 rr->rr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
1640
1641 rr->rr_rate = rate;
1642
1643 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1644 rr->rr_u.u_philips.p_antsignal = rssi;
1645 else {
1646 rr->rr_u.u_other.o_antsignal = rssi;
1647 rr->rr_u.u_other.o_barker_lock =
1648 htole16(UINT8_MAX - sq);
1649 }
1650
1651 bpf_mtap2(sc->sc_radiobpf, rr,
1652 sizeof(sc->sc_rxtapu), m);
1653 }
1654 #endif /* NBPFILTER > 0 */
1655
1656 if ((hstat & RTW_RXSTAT_RES) != 0) {
1657 m_freem(m);
1658 goto next;
1659 }
1660
1661 /* CRC is included with the packet; trim it off. */
1662 m_adj(m, -IEEE80211_CRC_LEN);
1663
1664 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1665 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1666 ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1667 ieee80211_free_node(ni);
1668 next:
1669 rtw_rxdesc_init(rdb, rs, next, 0);
1670 }
1671 #undef IS_BEACON
1672 }
1673
1674 static void
1675 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1676 struct rtw_txsoft *ts)
1677 {
1678 struct mbuf *m;
1679 struct ieee80211_node *ni;
1680
1681 m = ts->ts_mbuf;
1682 ni = ts->ts_ni;
1683 KASSERT(m != NULL);
1684 KASSERT(ni != NULL);
1685 ts->ts_mbuf = NULL;
1686 ts->ts_ni = NULL;
1687
1688 bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1689 BUS_DMASYNC_POSTWRITE);
1690 bus_dmamap_unload(dmat, ts->ts_dmamap);
1691 m_freem(m);
1692 ieee80211_free_node(ni);
1693 }
1694
1695 static void
1696 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1697 struct rtw_txsoft_blk *tsb)
1698 {
1699 struct rtw_txsoft *ts;
1700
1701 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1702 rtw_txsoft_release(dmat, ic, ts);
1703 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1704 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1705 }
1706 tsb->tsb_tx_timer = 0;
1707 }
1708
1709 static inline void
1710 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1711 struct rtw_txsoft *ts, int ndesc)
1712 {
1713 uint32_t hstat;
1714 int data_retry, rts_retry;
1715 struct rtw_txdesc *tdn;
1716 const char *condstring;
1717 struct ifnet *ifp = &sc->sc_if;
1718
1719 rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1720
1721 tdb->tdb_nfree += ndesc;
1722
1723 tdn = &tdb->tdb_desc[ts->ts_last];
1724
1725 hstat = le32toh(tdn->td_stat);
1726 rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1727 data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1728
1729 ifp->if_collisions += rts_retry + data_retry;
1730
1731 if ((hstat & RTW_TXSTAT_TOK) != 0)
1732 condstring = "ok";
1733 else {
1734 ifp->if_oerrors++;
1735 condstring = "error";
1736 }
1737
1738 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1739 ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1740 device_xname(sc->sc_dev), ts, ts->ts_first, ts->ts_last,
1741 condstring, rts_retry, data_retry));
1742 }
1743
1744 static void
1745 rtw_reset_oactive(struct rtw_softc *sc)
1746 {
1747 short oflags;
1748 int pri;
1749 struct rtw_txsoft_blk *tsb;
1750 struct rtw_txdesc_blk *tdb;
1751 oflags = sc->sc_if.if_flags;
1752 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1753 tsb = &sc->sc_txsoft_blk[pri];
1754 tdb = &sc->sc_txdesc_blk[pri];
1755 if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1756 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1757 }
1758 if (oflags != sc->sc_if.if_flags) {
1759 DPRINTF(sc, RTW_DEBUG_OACTIVE,
1760 ("%s: reset OACTIVE\n", __func__));
1761 }
1762 }
1763
1764 /* Collect transmitted packets. */
1765 static void
1766 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1767 struct rtw_txdesc_blk *tdb, int force)
1768 {
1769 int ndesc;
1770 struct rtw_txsoft *ts;
1771
1772 #ifdef RTW_DEBUG
1773 rtw_dump_rings(sc);
1774 #endif
1775
1776 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1777 /* If we're clearing a failed transmission, only clear
1778 up to the last packet the hardware has processed. */
1779 if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
1780 break;
1781
1782 ndesc = 1 + ts->ts_last - ts->ts_first;
1783 if (ts->ts_last < ts->ts_first)
1784 ndesc += tdb->tdb_ndesc;
1785
1786 KASSERT(ndesc > 0);
1787
1788 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1789 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1790
1791 if (force) {
1792 int next;
1793 #ifdef RTW_DIAG
1794 printf("%s: clearing packet, stats", __func__);
1795 #endif
1796 for (next = ts->ts_first; ;
1797 next = RTW_NEXT_IDX(tdb, next)) {
1798 #ifdef RTW_DIAG
1799 printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
1800 #endif
1801 tdb->tdb_desc[next].td_stat &=
1802 ~htole32(RTW_TXSTAT_OWN);
1803 if (next == ts->ts_last)
1804 break;
1805 }
1806 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1807 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1808 #ifdef RTW_DIAG
1809 next = RTW_NEXT_IDX(tdb, next);
1810 printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
1811 le32toh(tdb->tdb_desc[next].td_stat),
1812 rtw_txring_next(&sc->sc_regs, tdb));
1813 #endif
1814 } else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1815 htole32(RTW_TXSTAT_OWN)) != 0) {
1816 rtw_txdescs_sync(tdb, ts->ts_last, 1,
1817 BUS_DMASYNC_PREREAD);
1818 break;
1819 }
1820
1821 rtw_collect_txpkt(sc, tdb, ts, ndesc);
1822 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1823 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1824 }
1825
1826 /* no more pending transmissions, cancel watchdog */
1827 if (ts == NULL)
1828 tsb->tsb_tx_timer = 0;
1829 rtw_reset_oactive(sc);
1830 }
1831
1832 static void
1833 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1834 {
1835 int pri;
1836 struct rtw_txsoft_blk *tsb;
1837 struct rtw_txdesc_blk *tdb;
1838 struct ifnet *ifp = &sc->sc_if;
1839
1840 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1841 tsb = &sc->sc_txsoft_blk[pri];
1842 tdb = &sc->sc_txdesc_blk[pri];
1843 rtw_collect_txring(sc, tsb, tdb, 0);
1844 }
1845
1846 if ((isr & RTW_INTR_TX) != 0)
1847 rtw_start(ifp);
1848
1849 return;
1850 }
1851
1852 static void
1853 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1854 {
1855 u_int next;
1856 uint32_t tsfth, tsftl;
1857 struct ieee80211com *ic;
1858 struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1859 struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1860 struct mbuf *m;
1861
1862 tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1863 tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1864
1865 if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) {
1866 next = rtw_txring_next(&sc->sc_regs, tdb);
1867 RTW_DPRINTF(RTW_DEBUG_BEACON,
1868 ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1869 ", next %u expected %u, %" PRIu64 "\n", __func__,
1870 (next == tdb->tdb_next) ? "" : "un", isr, next,
1871 tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1872 if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
1873 rtw_collect_txring(sc, tsb, tdb, 1);
1874 }
1875 /* Start beacon transmission. */
1876
1877 if ((isr & RTW_INTR_BCNINT) != 0 &&
1878 sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1879 SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1880 RTW_DPRINTF(RTW_DEBUG_BEACON,
1881 ("%s: beacon prep. time, isr = %#04" PRIx16
1882 ", %16" PRIu64 "\n", __func__, isr,
1883 (uint64_t)tsfth << 32 | tsftl));
1884 ic = &sc->sc_ic;
1885 m = rtw_beacon_alloc(sc, ic->ic_bss);
1886
1887 if (m == NULL) {
1888 aprint_error_dev(sc->sc_dev,
1889 "could not allocate beacon\n");
1890 return;
1891 }
1892 m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss);
1893 IF_ENQUEUE(&sc->sc_beaconq, m);
1894 rtw_start(&sc->sc_if);
1895 }
1896 }
1897
1898 static void
1899 rtw_intr_atim(struct rtw_softc *sc)
1900 {
1901 /* TBD */
1902 return;
1903 }
1904
1905 #ifdef RTW_DEBUG
1906 static void
1907 rtw_dump_rings(struct rtw_softc *sc)
1908 {
1909 struct rtw_txdesc_blk *tdb;
1910 struct rtw_rxdesc *rd;
1911 struct rtw_rxdesc_blk *rdb;
1912 int desc, pri;
1913
1914 if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1915 return;
1916
1917 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1918 tdb = &sc->sc_txdesc_blk[pri];
1919 printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1920 tdb->tdb_ndesc, tdb->tdb_nfree);
1921 for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1922 rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1923 }
1924
1925 rdb = &sc->sc_rxdesc_blk;
1926
1927 for (desc = 0; desc < RTW_RXQLEN; desc++) {
1928 rd = &rdb->rdb_desc[desc];
1929 printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1930 "rsvd1/tsfth %08x\n", __func__,
1931 (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1932 le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1933 le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1934 }
1935 }
1936 #endif /* RTW_DEBUG */
1937
1938 static void
1939 rtw_hwring_setup(struct rtw_softc *sc)
1940 {
1941 int pri;
1942 struct rtw_regs *regs = &sc->sc_regs;
1943 struct rtw_txdesc_blk *tdb;
1944
1945 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1946 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1947 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1948 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1949 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1950 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1951 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1952 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1953
1954 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1955 tdb = &sc->sc_txdesc_blk[pri];
1956 RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1957 RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1958 ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1959 (uintptr_t)tdb->tdb_base));
1960 }
1961
1962 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1963
1964 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1965 ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1966 (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1967
1968 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1969
1970 }
1971
1972 static int
1973 rtw_swring_setup(struct rtw_softc *sc)
1974 {
1975 int rc;
1976 struct rtw_rxdesc_blk *rdb;
1977
1978 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1979
1980 rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
1981
1982 rdb = &sc->sc_rxdesc_blk;
1983 if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
1984 sc->sc_dev)) != 0 && rdb->rdb_ndesc == 0) {
1985 aprint_error_dev(sc->sc_dev, "could not allocate rx buffers\n");
1986 return rc;
1987 }
1988
1989 rdb = &sc->sc_rxdesc_blk;
1990 rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
1991 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1992 rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
1993 rdb->rdb_next = 0;
1994
1995 rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
1996 return 0;
1997 }
1998
1999 static void
2000 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
2001 {
2002 int i;
2003
2004 (void)memset(tdb->tdb_desc, 0,
2005 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
2006 for (i = 0; i < tdb->tdb_ndesc; i++)
2007 tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
2008 }
2009
2010 static u_int
2011 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
2012 {
2013 return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
2014 sizeof(struct rtw_txdesc);
2015 }
2016
2017 #ifdef RTW_DIAG
2018 static void
2019 rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
2020 {
2021 int pri;
2022 u_int next;
2023 struct rtw_txdesc_blk *tdb;
2024 struct rtw_regs *regs = &sc->sc_regs;
2025
2026 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2027 int i;
2028 tdb = &sc->sc_txdesc_blk[pri];
2029 next = rtw_txring_next(regs, tdb);
2030 if (tdb->tdb_next == next)
2031 continue;
2032 for (i = 0; next != tdb->tdb_next;
2033 next = RTW_NEXT_IDX(tdb, next), i++) {
2034 if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
2035 break;
2036 }
2037 printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
2038 ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
2039 if (tdb->tdb_next == next)
2040 continue;
2041 tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
2042 }
2043 }
2044 #endif
2045
2046 static void
2047 rtw_txdescs_reset(struct rtw_softc *sc)
2048 {
2049 int pri;
2050 struct rtw_txsoft_blk *tsb;
2051 struct rtw_txdesc_blk *tdb;
2052
2053 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2054 tsb = &sc->sc_txsoft_blk[pri];
2055 tdb = &sc->sc_txdesc_blk[pri];
2056 rtw_collect_txring(sc, tsb, tdb, 1);
2057 #ifdef RTW_DIAG
2058 if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
2059 printf("%s: packets left in ring %d\n", __func__, pri);
2060 #endif
2061 }
2062 }
2063
2064 static void
2065 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2066 {
2067 aprint_error_dev(sc->sc_dev, "tx fifo underflow\n");
2068
2069 RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
2070 "\n", device_xname(sc->sc_dev), isr));
2071
2072 #ifdef RTW_DEBUG
2073 rtw_dump_rings(sc);
2074 #endif /* RTW_DEBUG */
2075
2076 /* Collect tx'd packets. XXX let's hope this stops the transmit
2077 * timeouts.
2078 */
2079 rtw_txdescs_reset(sc);
2080
2081 #ifdef RTW_DEBUG
2082 rtw_dump_rings(sc);
2083 #endif /* RTW_DEBUG */
2084 }
2085
2086 static inline void
2087 rtw_suspend_ticks(struct rtw_softc *sc)
2088 {
2089 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2090 ("%s: suspending ticks\n", device_xname(sc->sc_dev)));
2091 sc->sc_do_tick = 0;
2092 }
2093
2094 static inline void
2095 rtw_resume_ticks(struct rtw_softc *sc)
2096 {
2097 uint32_t tsftrl0, tsftrl1, next_tick;
2098
2099 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2100
2101 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2102 next_tick = tsftrl1 + 1000000;
2103 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
2104
2105 sc->sc_do_tick = 1;
2106
2107 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2108 ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2109 device_xname(sc->sc_dev), tsftrl1 - tsftrl0, tsftrl1, next_tick));
2110 }
2111
2112 static void
2113 rtw_intr_timeout(struct rtw_softc *sc)
2114 {
2115 RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", device_xname(sc->sc_dev)));
2116 if (sc->sc_do_tick)
2117 rtw_resume_ticks(sc);
2118 return;
2119 }
2120
2121 int
2122 rtw_intr(void *arg)
2123 {
2124 int i;
2125 struct rtw_softc *sc = arg;
2126 struct rtw_regs *regs = &sc->sc_regs;
2127 uint16_t isr;
2128 struct ifnet *ifp = &sc->sc_if;
2129
2130 /*
2131 * If the interface isn't running, the interrupt couldn't
2132 * possibly have come from us.
2133 */
2134 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2135 !device_is_active(sc->sc_dev)) {
2136 RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n",
2137 device_xname(sc->sc_dev)));
2138 return (0);
2139 }
2140
2141 for (i = 0; i < 10; i++) {
2142 isr = RTW_READ16(regs, RTW_ISR);
2143
2144 RTW_WRITE16(regs, RTW_ISR, isr);
2145 RTW_WBR(regs, RTW_ISR, RTW_ISR);
2146
2147 if (sc->sc_intr_ack != NULL)
2148 (*sc->sc_intr_ack)(regs);
2149
2150 if (isr == 0)
2151 break;
2152
2153 #ifdef RTW_DEBUG
2154 #define PRINTINTR(flag) do { \
2155 if ((isr & flag) != 0) { \
2156 printf("%s" #flag, delim); \
2157 delim = ","; \
2158 } \
2159 } while (0)
2160
2161 if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2162 const char *delim = "<";
2163
2164 printf("%s: reg[ISR] = %x", device_xname(sc->sc_dev),
2165 isr);
2166
2167 PRINTINTR(RTW_INTR_TXFOVW);
2168 PRINTINTR(RTW_INTR_TIMEOUT);
2169 PRINTINTR(RTW_INTR_BCNINT);
2170 PRINTINTR(RTW_INTR_ATIMINT);
2171 PRINTINTR(RTW_INTR_TBDER);
2172 PRINTINTR(RTW_INTR_TBDOK);
2173 PRINTINTR(RTW_INTR_THPDER);
2174 PRINTINTR(RTW_INTR_THPDOK);
2175 PRINTINTR(RTW_INTR_TNPDER);
2176 PRINTINTR(RTW_INTR_TNPDOK);
2177 PRINTINTR(RTW_INTR_RXFOVW);
2178 PRINTINTR(RTW_INTR_RDU);
2179 PRINTINTR(RTW_INTR_TLPDER);
2180 PRINTINTR(RTW_INTR_TLPDOK);
2181 PRINTINTR(RTW_INTR_RER);
2182 PRINTINTR(RTW_INTR_ROK);
2183
2184 printf(">\n");
2185 }
2186 #undef PRINTINTR
2187 #endif /* RTW_DEBUG */
2188
2189 if ((isr & RTW_INTR_RX) != 0)
2190 rtw_intr_rx(sc, isr);
2191 if ((isr & RTW_INTR_TX) != 0)
2192 rtw_intr_tx(sc, isr);
2193 if ((isr & RTW_INTR_BEACON) != 0)
2194 rtw_intr_beacon(sc, isr);
2195 if ((isr & RTW_INTR_ATIMINT) != 0)
2196 rtw_intr_atim(sc);
2197 if ((isr & RTW_INTR_IOERROR) != 0)
2198 rtw_intr_ioerror(sc, isr);
2199 if ((isr & RTW_INTR_TIMEOUT) != 0)
2200 rtw_intr_timeout(sc);
2201 }
2202
2203 return 1;
2204 }
2205
2206 /* Must be called at splnet. */
2207 static void
2208 rtw_stop(struct ifnet *ifp, int disable)
2209 {
2210 int pri;
2211 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2212 struct ieee80211com *ic = &sc->sc_ic;
2213 struct rtw_regs *regs = &sc->sc_regs;
2214
2215 rtw_suspend_ticks(sc);
2216
2217 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2218
2219 if (device_has_power(sc->sc_dev)) {
2220 /* Disable interrupts. */
2221 RTW_WRITE16(regs, RTW_IMR, 0);
2222
2223 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2224
2225 /* Stop the transmit and receive processes. First stop DMA,
2226 * then disable receiver and transmitter.
2227 */
2228 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2229
2230 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2231
2232 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2233 }
2234
2235 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2236 rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2237 &sc->sc_txsoft_blk[pri]);
2238 }
2239
2240 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2241
2242 /* Mark the interface as not running. Cancel the watchdog timer. */
2243 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2244 ifp->if_timer = 0;
2245
2246 if (disable)
2247 pmf_device_suspend_self(sc->sc_dev);
2248
2249 return;
2250 }
2251
2252 const char *
2253 rtw_pwrstate_string(enum rtw_pwrstate power)
2254 {
2255 switch (power) {
2256 case RTW_ON:
2257 return "on";
2258 case RTW_SLEEP:
2259 return "sleep";
2260 case RTW_OFF:
2261 return "off";
2262 default:
2263 return "unknown";
2264 }
2265 }
2266
2267 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2268 * reference driver, plus a magic Maxim "ON" value that comes from
2269 * the Realtek document "Windows PG for Rtl8180."
2270 */
2271 static void
2272 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2273 int before_rf, int digphy)
2274 {
2275 uint32_t anaparm;
2276
2277 anaparm = RTW_READ(regs, RTW_ANAPARM);
2278 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2279
2280 switch (power) {
2281 case RTW_OFF:
2282 if (before_rf)
2283 return;
2284 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2285 anaparm |= RTW_ANAPARM_TXDACOFF;
2286 break;
2287 case RTW_SLEEP:
2288 if (!before_rf)
2289 return;
2290 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2291 anaparm |= RTW_ANAPARM_TXDACOFF;
2292 break;
2293 case RTW_ON:
2294 if (!before_rf)
2295 return;
2296 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2297 break;
2298 }
2299 RTW_DPRINTF(RTW_DEBUG_PWR,
2300 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2301 __func__, rtw_pwrstate_string(power),
2302 (before_rf) ? "before" : "after", anaparm));
2303
2304 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2305 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2306 }
2307
2308 /* XXX I am using the RFMD settings gleaned from the reference
2309 * driver. They agree
2310 */
2311 static void
2312 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2313 int before_rf, int digphy)
2314 {
2315 uint32_t anaparm;
2316
2317 anaparm = RTW_READ(regs, RTW_ANAPARM);
2318 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2319
2320 switch (power) {
2321 case RTW_OFF:
2322 if (before_rf)
2323 return;
2324 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2325 anaparm |= RTW_ANAPARM_TXDACOFF;
2326 break;
2327 case RTW_SLEEP:
2328 if (!before_rf)
2329 return;
2330 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2331 anaparm |= RTW_ANAPARM_TXDACOFF;
2332 break;
2333 case RTW_ON:
2334 if (!before_rf)
2335 return;
2336 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2337 break;
2338 }
2339 RTW_DPRINTF(RTW_DEBUG_PWR,
2340 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2341 __func__, rtw_pwrstate_string(power),
2342 (before_rf) ? "before" : "after", anaparm));
2343
2344 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2345 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2346 }
2347
2348 static void
2349 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2350 int before_rf, int digphy)
2351 {
2352 uint32_t anaparm;
2353
2354 anaparm = RTW_READ(regs, RTW_ANAPARM);
2355 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2356
2357 switch (power) {
2358 case RTW_OFF:
2359 if (before_rf)
2360 return;
2361 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2362 anaparm |= RTW_ANAPARM_TXDACOFF;
2363 break;
2364 case RTW_SLEEP:
2365 if (!before_rf)
2366 return;
2367 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2368 anaparm |= RTW_ANAPARM_TXDACOFF;
2369 break;
2370 case RTW_ON:
2371 if (!before_rf)
2372 return;
2373 if (digphy) {
2374 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2375 /* XXX guess */
2376 anaparm |= RTW_ANAPARM_TXDACOFF;
2377 } else
2378 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2379 break;
2380 }
2381 RTW_DPRINTF(RTW_DEBUG_PWR,
2382 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2383 __func__, rtw_pwrstate_string(power),
2384 (before_rf) ? "before" : "after", anaparm));
2385
2386 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2387 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2388 }
2389
2390 static void
2391 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2392 int digphy)
2393 {
2394 struct rtw_regs *regs = &sc->sc_regs;
2395
2396 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2397
2398 (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2399
2400 rtw_set_access(regs, RTW_ACCESS_NONE);
2401
2402 return;
2403 }
2404
2405 static int
2406 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2407 {
2408 int rc;
2409
2410 RTW_DPRINTF(RTW_DEBUG_PWR,
2411 ("%s: %s->%s\n", __func__,
2412 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2413
2414 if (sc->sc_pwrstate == power)
2415 return 0;
2416
2417 rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2418 rc = rtw_rf_pwrstate(sc->sc_rf, power);
2419 rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2420
2421 switch (power) {
2422 case RTW_ON:
2423 /* TBD set LEDs */
2424 break;
2425 case RTW_SLEEP:
2426 /* TBD */
2427 break;
2428 case RTW_OFF:
2429 /* TBD */
2430 break;
2431 }
2432 if (rc == 0)
2433 sc->sc_pwrstate = power;
2434 else
2435 sc->sc_pwrstate = RTW_OFF;
2436 return rc;
2437 }
2438
2439 static int
2440 rtw_tune(struct rtw_softc *sc)
2441 {
2442 struct ieee80211com *ic = &sc->sc_ic;
2443 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
2444 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
2445 u_int chan;
2446 int rc;
2447 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2448 dflantb = sc->sc_flags & RTW_F_DFLANTB;
2449
2450 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2451 KASSERT(chan != IEEE80211_CHAN_ANY);
2452
2453 rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2454 rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2455
2456 rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2457 rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2458
2459 if (chan == sc->sc_cur_chan) {
2460 RTW_DPRINTF(RTW_DEBUG_TUNE,
2461 ("%s: already tuned chan #%d\n", __func__, chan));
2462 return 0;
2463 }
2464
2465 rtw_suspend_ticks(sc);
2466
2467 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2468
2469 /* TBD wait for Tx to complete */
2470
2471 KASSERT(device_has_power(sc->sc_dev));
2472
2473 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2474 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2475 ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2476 /* XXX condition on powersaving */
2477 aprint_error_dev(sc->sc_dev, "phy init failed\n");
2478 }
2479
2480 sc->sc_cur_chan = chan;
2481
2482 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2483
2484 rtw_resume_ticks(sc);
2485
2486 return rc;
2487 }
2488
2489 bool
2490 rtw_suspend(device_t self PMF_FN_ARGS)
2491 {
2492 int rc;
2493 struct rtw_softc *sc = device_private(self);
2494
2495 sc->sc_flags &= ~RTW_F_DK_VALID;
2496
2497 if (!device_has_power(self))
2498 return false;
2499
2500 /* turn off PHY */
2501 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2502 aprint_error_dev(self, "failed to turn off PHY (%d)\n", rc);
2503 return false;
2504 }
2505
2506 rtw_disable_interrupts(&sc->sc_regs);
2507
2508 return true;
2509 }
2510
2511 bool
2512 rtw_resume(device_t self PMF_FN_ARGS)
2513 {
2514 struct rtw_softc *sc = device_private(self);
2515
2516 /* Power may have been removed, resetting WEP keys.
2517 */
2518 sc->sc_flags &= ~RTW_F_DK_VALID;
2519 rtw_enable_interrupts(sc);
2520
2521 return true;
2522 }
2523
2524 static void
2525 rtw_transmit_config(struct rtw_regs *regs)
2526 {
2527 uint32_t tcr;
2528
2529 tcr = RTW_READ(regs, RTW_TCR);
2530
2531 tcr |= RTW_TCR_CWMIN;
2532 tcr &= ~RTW_TCR_MXDMA_MASK;
2533 tcr |= RTW_TCR_MXDMA_256;
2534 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
2535 tcr &= ~RTW_TCR_LBK_MASK;
2536 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
2537
2538 /* set short/long retry limits */
2539 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2540 tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
2541
2542 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
2543
2544 RTW_WRITE(regs, RTW_TCR, tcr);
2545 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2546 }
2547
2548 static void
2549 rtw_disable_interrupts(struct rtw_regs *regs)
2550 {
2551 RTW_WRITE16(regs, RTW_IMR, 0);
2552 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2553 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2554 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2555 }
2556
2557 static void
2558 rtw_enable_interrupts(struct rtw_softc *sc)
2559 {
2560 struct rtw_regs *regs = &sc->sc_regs;
2561
2562 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2563 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2564
2565 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2566 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2567 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2568 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2569
2570 /* XXX necessary? */
2571 if (sc->sc_intr_ack != NULL)
2572 (*sc->sc_intr_ack)(regs);
2573 }
2574
2575 static void
2576 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2577 {
2578 uint8_t msr;
2579
2580 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2581 rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2582
2583 msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2584
2585 switch (opmode) {
2586 case IEEE80211_M_AHDEMO:
2587 case IEEE80211_M_IBSS:
2588 msr |= RTW_MSR_NETYPE_ADHOC_OK;
2589 break;
2590 case IEEE80211_M_HOSTAP:
2591 msr |= RTW_MSR_NETYPE_AP_OK;
2592 break;
2593 case IEEE80211_M_MONITOR:
2594 /* XXX */
2595 msr |= RTW_MSR_NETYPE_NOLINK;
2596 break;
2597 case IEEE80211_M_STA:
2598 msr |= RTW_MSR_NETYPE_INFRA_OK;
2599 break;
2600 }
2601 RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2602
2603 rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2604 }
2605
2606 #define rtw_calchash(addr) \
2607 (ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2608
2609 static void
2610 rtw_pktfilt_load(struct rtw_softc *sc)
2611 {
2612 struct rtw_regs *regs = &sc->sc_regs;
2613 struct ieee80211com *ic = &sc->sc_ic;
2614 struct ethercom *ec = &sc->sc_ec;
2615 struct ifnet *ifp = &sc->sc_if;
2616 int hash;
2617 uint32_t hashes[2] = { 0, 0 };
2618 struct ether_multi *enm;
2619 struct ether_multistep step;
2620
2621 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2622
2623 sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2624 sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2625
2626 sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2627 /* MAC auto-reset PHY (huh?) */
2628 sc->sc_rcr |= RTW_RCR_ENMARP;
2629 /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
2630 sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2631
2632 switch (ic->ic_opmode) {
2633 case IEEE80211_M_MONITOR:
2634 sc->sc_rcr |= RTW_RCR_MONITOR;
2635 break;
2636 case IEEE80211_M_AHDEMO:
2637 case IEEE80211_M_IBSS:
2638 /* receive broadcasts in our BSS */
2639 sc->sc_rcr |= RTW_RCR_ADD3;
2640 break;
2641 default:
2642 break;
2643 }
2644
2645 ifp->if_flags &= ~IFF_ALLMULTI;
2646
2647 /*
2648 * Program the 64-bit multicast hash filter.
2649 */
2650 ETHER_FIRST_MULTI(step, ec, enm);
2651 while (enm != NULL) {
2652 /* XXX */
2653 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2654 ETHER_ADDR_LEN) != 0) {
2655 ifp->if_flags |= IFF_ALLMULTI;
2656 break;
2657 }
2658
2659 hash = rtw_calchash(enm->enm_addrlo);
2660 hashes[hash >> 5] |= (1 << (hash & 0x1f));
2661 ETHER_NEXT_MULTI(step, enm);
2662 }
2663
2664 /* XXX accept all broadcast if scanning */
2665 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2666 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2667
2668 if (ifp->if_flags & IFF_PROMISC) {
2669 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2670 sc->sc_rcr |= RTW_RCR_ACRC32; /* accept frames failing CRC */
2671 sc->sc_rcr |= RTW_RCR_AICV; /* accept frames failing ICV */
2672 ifp->if_flags |= IFF_ALLMULTI;
2673 }
2674
2675 if (ifp->if_flags & IFF_ALLMULTI)
2676 hashes[0] = hashes[1] = 0xffffffff;
2677
2678 if ((hashes[0] | hashes[1]) != 0)
2679 sc->sc_rcr |= RTW_RCR_AM; /* accept multicast */
2680
2681 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2682 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2683 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2684 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2685
2686 DPRINTF(sc, RTW_DEBUG_PKTFILT,
2687 ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2688 device_xname(sc->sc_dev), RTW_READ(regs, RTW_MAR0),
2689 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2690 }
2691
2692 static struct mbuf *
2693 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2694 {
2695 struct ieee80211com *ic = &sc->sc_ic;
2696 struct mbuf *m;
2697 struct ieee80211_beacon_offsets boff;
2698
2699 if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2700 RTW_DPRINTF(RTW_DEBUG_BEACON,
2701 ("%s: m %p len %u\n", __func__, m, m->m_len));
2702 }
2703 return m;
2704 }
2705
2706 /* Must be called at splnet. */
2707 static int
2708 rtw_init(struct ifnet *ifp)
2709 {
2710 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2711 struct ieee80211com *ic = &sc->sc_ic;
2712 struct rtw_regs *regs = &sc->sc_regs;
2713 int rc;
2714
2715 if (device_is_active(sc->sc_dev)) {
2716 /* Cancel pending I/O and reset. */
2717 rtw_stop(ifp, 0);
2718 } else if (!pmf_device_resume_self(sc->sc_dev))
2719 return 0; /* XXX error? */
2720
2721 DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2722 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2723 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2724
2725 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2726 goto out;
2727
2728 if ((rc = rtw_swring_setup(sc)) != 0)
2729 goto out;
2730
2731 rtw_transmit_config(regs);
2732
2733 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2734
2735 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2736 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2737
2738 /* long PLCP header, 1Mb/2Mb basic rate */
2739 RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2740 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2741
2742 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2743 rtw_set_access(regs, RTW_ACCESS_NONE);
2744
2745 /* XXX from reference sources */
2746 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2747 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2748
2749 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev);
2750
2751 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2752 /* from Linux driver */
2753 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2754
2755 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2756
2757 rtw_enable_interrupts(sc);
2758
2759 rtw_pktfilt_load(sc);
2760
2761 rtw_hwring_setup(sc);
2762
2763 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2764
2765 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2766
2767 ifp->if_flags |= IFF_RUNNING;
2768 ic->ic_state = IEEE80211_S_INIT;
2769
2770 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2771 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2772
2773 rtw_resume_ticks(sc);
2774
2775 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2776
2777 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2778 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2779 else
2780 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2781
2782 out:
2783 aprint_error_dev(sc->sc_dev, "interface not running\n");
2784 return rc;
2785 }
2786
2787 static inline void
2788 rtw_led_init(struct rtw_regs *regs)
2789 {
2790 uint8_t cfg0, cfg1;
2791
2792 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2793
2794 cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2795 cfg0 |= RTW_CONFIG0_LEDGPOEN;
2796 RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2797
2798 cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2799 RTW_DPRINTF(RTW_DEBUG_LED,
2800 ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2801
2802 cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2803 cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2804 RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2805
2806 rtw_set_access(regs, RTW_ACCESS_NONE);
2807 }
2808
2809 /*
2810 * IEEE80211_S_INIT: LED1 off
2811 *
2812 * IEEE80211_S_AUTH,
2813 * IEEE80211_S_ASSOC,
2814 * IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2815 *
2816 * IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx
2817 */
2818 static void
2819 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2820 {
2821 struct rtw_led_state *ls;
2822
2823 ls = &sc->sc_led_state;
2824
2825 switch (nstate) {
2826 case IEEE80211_S_INIT:
2827 rtw_led_init(&sc->sc_regs);
2828 aprint_debug_dev(sc->sc_dev, "stopping blink\n");
2829 callout_stop(&ls->ls_slow_ch);
2830 callout_stop(&ls->ls_fast_ch);
2831 ls->ls_slowblink = 0;
2832 ls->ls_actblink = 0;
2833 ls->ls_default = 0;
2834 break;
2835 case IEEE80211_S_SCAN:
2836 aprint_debug_dev(sc->sc_dev, "scheduling blink\n");
2837 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2838 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2839 /*FALLTHROUGH*/
2840 case IEEE80211_S_AUTH:
2841 case IEEE80211_S_ASSOC:
2842 ls->ls_default = RTW_LED1;
2843 ls->ls_actblink = RTW_LED1;
2844 ls->ls_slowblink = RTW_LED1;
2845 break;
2846 case IEEE80211_S_RUN:
2847 ls->ls_slowblink = 0;
2848 break;
2849 }
2850 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2851 }
2852
2853 static void
2854 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2855 {
2856 uint8_t led_condition;
2857 bus_size_t ofs;
2858 uint8_t mask, newval, val;
2859
2860 led_condition = ls->ls_default;
2861
2862 if (ls->ls_state & RTW_LED_S_SLOW)
2863 led_condition ^= ls->ls_slowblink;
2864 if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX))
2865 led_condition ^= ls->ls_actblink;
2866
2867 RTW_DPRINTF(RTW_DEBUG_LED,
2868 ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2869
2870 switch (hwverid) {
2871 default:
2872 case 'F':
2873 ofs = RTW_PSR;
2874 newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2875 if (led_condition & RTW_LED0)
2876 newval &= ~RTW_PSR_LEDGPO0;
2877 if (led_condition & RTW_LED1)
2878 newval &= ~RTW_PSR_LEDGPO1;
2879 break;
2880 case 'D':
2881 ofs = RTW_9346CR;
2882 mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2883 newval = RTW_9346CR_EEM_PROGRAM;
2884 if (led_condition & RTW_LED0)
2885 newval |= RTW_9346CR_EEDI;
2886 if (led_condition & RTW_LED1)
2887 newval |= RTW_9346CR_EECS;
2888 break;
2889 }
2890 val = RTW_READ8(regs, ofs);
2891 RTW_DPRINTF(RTW_DEBUG_LED,
2892 ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2893 (uintptr_t)ofs));
2894 val &= ~mask;
2895 val |= newval;
2896 RTW_WRITE8(regs, ofs, val);
2897 RTW_DPRINTF(RTW_DEBUG_LED,
2898 ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2899 (uintptr_t)ofs));
2900 RTW_SYNC(regs, ofs, ofs);
2901 }
2902
2903 static void
2904 rtw_led_fastblink(void *arg)
2905 {
2906 int ostate, s;
2907 struct rtw_softc *sc = (struct rtw_softc *)arg;
2908 struct rtw_led_state *ls = &sc->sc_led_state;
2909
2910 s = splnet();
2911 ostate = ls->ls_state;
2912 ls->ls_state ^= ls->ls_event;
2913
2914 if ((ls->ls_event & RTW_LED_S_TX) == 0)
2915 ls->ls_state &= ~RTW_LED_S_TX;
2916
2917 if ((ls->ls_event & RTW_LED_S_RX) == 0)
2918 ls->ls_state &= ~RTW_LED_S_RX;
2919
2920 ls->ls_event = 0;
2921
2922 if (ostate != ls->ls_state)
2923 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2924 splx(s);
2925
2926 aprint_debug_dev(sc->sc_dev, "scheduling fast blink\n");
2927 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2928 }
2929
2930 static void
2931 rtw_led_slowblink(void *arg)
2932 {
2933 int s;
2934 struct rtw_softc *sc = (struct rtw_softc *)arg;
2935 struct rtw_led_state *ls = &sc->sc_led_state;
2936
2937 s = splnet();
2938 ls->ls_state ^= RTW_LED_S_SLOW;
2939 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2940 splx(s);
2941 aprint_debug_dev(sc->sc_dev, "scheduling slow blink\n");
2942 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2943 }
2944
2945 static void
2946 rtw_led_detach(struct rtw_led_state *ls)
2947 {
2948 callout_destroy(&ls->ls_fast_ch);
2949 callout_destroy(&ls->ls_slow_ch);
2950 }
2951
2952 static void
2953 rtw_led_attach(struct rtw_led_state *ls, void *arg)
2954 {
2955 callout_init(&ls->ls_fast_ch, 0);
2956 callout_init(&ls->ls_slow_ch, 0);
2957 callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
2958 callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
2959 }
2960
2961 static int
2962 rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2963 {
2964 int rc = 0, s;
2965 struct rtw_softc *sc = ifp->if_softc;
2966
2967 s = splnet();
2968 if (cmd == SIOCSIFFLAGS) {
2969 if ((ifp->if_flags & IFF_UP) != 0) {
2970 if (device_is_active(sc->sc_dev))
2971 rtw_pktfilt_load(sc);
2972 else
2973 rc = rtw_init(ifp);
2974 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2975 } else if (device_is_active(sc->sc_dev)) {
2976 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2977 rtw_stop(ifp, 1);
2978 }
2979 } else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
2980 ; /* nothing to do */
2981 else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
2982 /* reload packet filter if running */
2983 if (ifp->if_flags & IFF_RUNNING)
2984 rtw_pktfilt_load(sc);
2985 rc = 0;
2986 } else if ((ifp->if_flags & IFF_UP) != 0)
2987 rc = rtw_init(ifp);
2988 else
2989 rc = 0;
2990 splx(s);
2991 return rc;
2992 }
2993
2994 /* Select a transmit ring with at least one h/w and s/w descriptor free.
2995 * Return 0 on success, -1 on failure.
2996 */
2997 static inline int
2998 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
2999 struct rtw_txdesc_blk **tdbp, int pri)
3000 {
3001 struct rtw_txsoft_blk *tsb;
3002 struct rtw_txdesc_blk *tdb;
3003
3004 KASSERT(pri >= 0 && pri < RTW_NTXPRI);
3005
3006 tsb = &sc->sc_txsoft_blk[pri];
3007 tdb = &sc->sc_txdesc_blk[pri];
3008
3009 if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
3010 if (tsb->tsb_tx_timer == 0)
3011 tsb->tsb_tx_timer = 5;
3012 *tsbp = NULL;
3013 *tdbp = NULL;
3014 return -1;
3015 }
3016 *tsbp = tsb;
3017 *tdbp = tdb;
3018 return 0;
3019 }
3020
3021 static inline struct mbuf *
3022 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
3023 struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
3024 struct ieee80211_node **nip, short *if_flagsp)
3025 {
3026 struct mbuf *m;
3027
3028 if (IF_IS_EMPTY(ifq))
3029 return NULL;
3030 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3031 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3032 __func__, pri));
3033 *if_flagsp |= IFF_OACTIVE;
3034 sc->sc_if.if_timer = 1;
3035 return NULL;
3036 }
3037 IF_DEQUEUE(ifq, m);
3038 *nip = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3039 m->m_pkthdr.rcvif = NULL;
3040 KASSERT(*nip != NULL);
3041 return m;
3042 }
3043
3044 /* Point *mp at the next 802.11 frame to transmit. Point *tsbp
3045 * at the driver's selection of transmit control block for the packet.
3046 */
3047 static inline int
3048 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
3049 struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
3050 struct ieee80211_node **nip)
3051 {
3052 int pri;
3053 struct ether_header *eh;
3054 struct mbuf *m0;
3055 struct rtw_softc *sc;
3056 short *if_flagsp;
3057
3058 *mp = NULL;
3059
3060 sc = (struct rtw_softc *)ifp->if_softc;
3061
3062 DPRINTF(sc, RTW_DEBUG_XMIT,
3063 ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3064
3065 if_flagsp = &ifp->if_flags;
3066
3067 if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3068 (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3069 tdbp, nip, if_flagsp)) != NULL) {
3070 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3071 __func__));
3072 return 0;
3073 }
3074
3075 if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3076 tdbp, nip, if_flagsp)) != NULL) {
3077 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3078 __func__));
3079 return 0;
3080 }
3081
3082 if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3083 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3084 return 0;
3085 }
3086
3087 IFQ_POLL(&ifp->if_snd, m0);
3088 if (m0 == NULL) {
3089 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3090 __func__));
3091 return 0;
3092 }
3093
3094 pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3095
3096 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3097 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3098 __func__, pri));
3099 *if_flagsp |= IFF_OACTIVE;
3100 sc->sc_if.if_timer = 1;
3101 return 0;
3102 }
3103
3104 IFQ_DEQUEUE(&ifp->if_snd, m0);
3105 if (m0 == NULL) {
3106 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3107 __func__));
3108 return 0;
3109 }
3110 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3111 ifp->if_opackets++;
3112 #if NBPFILTER > 0
3113 if (ifp->if_bpf)
3114 bpf_mtap(ifp->if_bpf, m0);
3115 #endif
3116 eh = mtod(m0, struct ether_header *);
3117 *nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3118 if (*nip == NULL) {
3119 /* NB: ieee80211_find_txnode does stat+msg */
3120 m_freem(m0);
3121 return -1;
3122 }
3123 if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3124 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3125 ifp->if_oerrors++;
3126 return -1;
3127 }
3128 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3129 *mp = m0;
3130 return 0;
3131 }
3132
3133 static int
3134 rtw_seg_too_short(bus_dmamap_t dmamap)
3135 {
3136 int i;
3137 for (i = 0; i < dmamap->dm_nsegs; i++) {
3138 if (dmamap->dm_segs[i].ds_len < 4)
3139 return 1;
3140 }
3141 return 0;
3142 }
3143
3144 /* TBD factor with atw_start */
3145 static struct mbuf *
3146 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3147 u_int ndescfree, device_t dev)
3148 {
3149 int first, rc;
3150 struct mbuf *m, *m0;
3151
3152 m0 = chain;
3153
3154 /*
3155 * Load the DMA map. Copy and try (once) again if the packet
3156 * didn't fit in the alloted number of segments.
3157 */
3158 for (first = 1;
3159 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3160 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
3161 dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3162 first = 0) {
3163 if (rc == 0) {
3164 #ifdef RTW_DIAGxxx
3165 if (rtw_seg_too_short(dmam)) {
3166 printf("%s: short segment, mbuf lengths:", __func__);
3167 for (m = m0; m; m = m->m_next)
3168 printf(" %d", m->m_len);
3169 printf("\n");
3170 }
3171 #endif
3172 bus_dmamap_unload(dmat, dmam);
3173 }
3174 MGETHDR(m, M_DONTWAIT, MT_DATA);
3175 if (m == NULL) {
3176 aprint_error_dev(dev, "unable to allocate Tx mbuf\n");
3177 break;
3178 }
3179 if (m0->m_pkthdr.len > MHLEN) {
3180 MCLGET(m, M_DONTWAIT);
3181 if ((m->m_flags & M_EXT) == 0) {
3182 aprint_error_dev(dev,
3183 "cannot allocate Tx cluster\n");
3184 m_freem(m);
3185 break;
3186 }
3187 }
3188 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3189 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3190 m_freem(m0);
3191 m0 = m;
3192 m = NULL;
3193 }
3194 if (rc != 0) {
3195 aprint_error_dev(dev, "cannot load Tx buffer, rc = %d\n", rc);
3196 m_freem(m0);
3197 return NULL;
3198 } else if (rtw_seg_too_short(dmam)) {
3199 aprint_error_dev(dev,
3200 "cannot load Tx buffer, segment too short\n");
3201 bus_dmamap_unload(dmat, dmam);
3202 m_freem(m0);
3203 return NULL;
3204 } else if (dmam->dm_nsegs > ndescfree) {
3205 aprint_error_dev(dev, "too many tx segments\n");
3206 bus_dmamap_unload(dmat, dmam);
3207 m_freem(m0);
3208 return NULL;
3209 }
3210 return m0;
3211 }
3212
3213 #ifdef RTW_DEBUG
3214 static void
3215 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3216 struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3217 {
3218 struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3219 DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3220 "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3221 device_xname(sc->sc_dev), ts, action, desc,
3222 le32toh(td->td_buf), le32toh(td->td_next),
3223 le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3224 le32toh(td->td_len)));
3225 }
3226 #endif /* RTW_DEBUG */
3227
3228 static void
3229 rtw_start(struct ifnet *ifp)
3230 {
3231 int desc, i, lastdesc, npkt, rate;
3232 uint32_t proto_ctl0, ctl0, ctl1;
3233 bus_dmamap_t dmamap;
3234 struct ieee80211com *ic;
3235 struct ieee80211_duration *d0;
3236 struct ieee80211_frame_min *wh;
3237 struct ieee80211_node *ni = NULL; /* XXX: GCC */
3238 struct mbuf *m0;
3239 struct rtw_softc *sc;
3240 struct rtw_txsoft_blk *tsb = NULL; /* XXX: GCC */
3241 struct rtw_txdesc_blk *tdb = NULL; /* XXX: GCC */
3242 struct rtw_txsoft *ts;
3243 struct rtw_txdesc *td;
3244 struct ieee80211_key *k;
3245
3246 sc = (struct rtw_softc *)ifp->if_softc;
3247 ic = &sc->sc_ic;
3248
3249 DPRINTF(sc, RTW_DEBUG_XMIT,
3250 ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3251
3252 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3253 goto out;
3254
3255 /* XXX do real rate control */
3256 proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3257
3258 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3259 proto_ctl0 |= RTW_TXCTL0_SPLCP;
3260
3261 for (;;) {
3262 if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3263 continue;
3264 if (m0 == NULL)
3265 break;
3266
3267 wh = mtod(m0, struct ieee80211_frame_min *);
3268
3269 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3270 (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3271 m_freem(m0);
3272 break;
3273 } else
3274 k = NULL;
3275
3276 ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3277
3278 dmamap = ts->ts_dmamap;
3279
3280 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3281 tdb->tdb_nfree, sc->sc_dev);
3282
3283 if (m0 == NULL || dmamap->dm_nsegs == 0) {
3284 DPRINTF(sc, RTW_DEBUG_XMIT,
3285 ("%s: fail dmamap load\n", __func__));
3286 goto post_dequeue_err;
3287 }
3288
3289 /* Note well: rtw_dmamap_load_txbuf may have created
3290 * a new chain, so we must find the header once
3291 * more.
3292 */
3293 wh = mtod(m0, struct ieee80211_frame_min *);
3294
3295 /* XXX do real rate control */
3296 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3297 IEEE80211_FC0_TYPE_MGT)
3298 rate = 2;
3299 else
3300 rate = MAX(2, ieee80211_get_rate(ni));
3301
3302 #ifdef RTW_DEBUG
3303 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3304 (IFF_DEBUG|IFF_LINK2)) {
3305 ieee80211_dump_pkt(mtod(m0, uint8_t *),
3306 (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3307 : sizeof(wh),
3308 rate, 0);
3309 }
3310 #endif /* RTW_DEBUG */
3311 ctl0 = proto_ctl0 |
3312 __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3313
3314 switch (rate) {
3315 default:
3316 case 2:
3317 ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3318 break;
3319 case 4:
3320 ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3321 break;
3322 case 11:
3323 ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3324 break;
3325 case 22:
3326 ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3327 break;
3328 }
3329 /* XXX >= ? Compare after fragmentation? */
3330 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3331 ctl0 |= RTW_TXCTL0_RTSEN;
3332
3333 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3334 * seem to care, since we don't activate h/w Tx
3335 * encryption.
3336 */
3337 if (k != NULL) {
3338 ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3339 RTW_TXCTL0_KEYID_MASK;
3340 }
3341
3342 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3343 IEEE80211_FC0_TYPE_MGT) {
3344 ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3345 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3346 IEEE80211_FC0_SUBTYPE_BEACON)
3347 ctl0 |= RTW_TXCTL0_BEACON;
3348 }
3349
3350 if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3351 ic->ic_flags, ic->ic_fragthreshold,
3352 rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3353 (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3354 (IFF_DEBUG|IFF_LINK2)) == -1) {
3355 DPRINTF(sc, RTW_DEBUG_XMIT,
3356 ("%s: fail compute duration\n", __func__));
3357 goto post_load_err;
3358 }
3359
3360 d0 = &ts->ts_d0;
3361
3362 *(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3363
3364 ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3365 __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3366
3367 if (d0->d_residue)
3368 ctl1 |= RTW_TXCTL1_LENGEXT;
3369
3370 /* TBD fragmentation */
3371
3372 ts->ts_first = tdb->tdb_next;
3373
3374 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3375 BUS_DMASYNC_PREWRITE);
3376
3377 KASSERT(ts->ts_first < tdb->tdb_ndesc);
3378
3379 #if NBPFILTER > 0
3380 if (ic->ic_rawbpf != NULL)
3381 bpf_mtap((void *)ic->ic_rawbpf, m0);
3382
3383 if (sc->sc_radiobpf != NULL) {
3384 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3385
3386 rt->rt_rate = rate;
3387
3388 bpf_mtap2(sc->sc_radiobpf, (void *)rt,
3389 sizeof(sc->sc_txtapu), m0);
3390 }
3391 #endif /* NBPFILTER > 0 */
3392
3393 for (i = 0, lastdesc = desc = ts->ts_first;
3394 i < dmamap->dm_nsegs;
3395 i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3396 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3397 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3398 ("%s: seg too long\n", __func__));
3399 goto post_load_err;
3400 }
3401 td = &tdb->tdb_desc[desc];
3402 td->td_ctl0 = htole32(ctl0);
3403 td->td_ctl1 = htole32(ctl1);
3404 td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3405 td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3406 td->td_next = htole32(RTW_NEXT_DESC(tdb, desc));
3407 if (i != 0)
3408 td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3409 lastdesc = desc;
3410 #ifdef RTW_DEBUG
3411 rtw_print_txdesc(sc, "load", ts, tdb, desc);
3412 #endif /* RTW_DEBUG */
3413 }
3414
3415 KASSERT(desc < tdb->tdb_ndesc);
3416
3417 ts->ts_ni = ni;
3418 KASSERT(ni != NULL);
3419 ts->ts_mbuf = m0;
3420 ts->ts_last = lastdesc;
3421 tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3422 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3423 htole32(RTW_TXCTL0_FS);
3424
3425 #ifdef RTW_DEBUG
3426 rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3427 rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3428 #endif /* RTW_DEBUG */
3429
3430 tdb->tdb_nfree -= dmamap->dm_nsegs;
3431 tdb->tdb_next = desc;
3432
3433 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3434 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3435
3436 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3437 htole32(RTW_TXCTL0_OWN);
3438
3439 #ifdef RTW_DEBUG
3440 rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3441 #endif /* RTW_DEBUG */
3442
3443 rtw_txdescs_sync(tdb, ts->ts_first, 1,
3444 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3445
3446 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3447 SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3448
3449 if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3450 sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3451 tsb->tsb_tx_timer = 5;
3452 ifp->if_timer = 1;
3453 rtw_tx_kick(&sc->sc_regs, tsb->tsb_poll);
3454 }
3455 out:
3456 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3457 return;
3458 post_load_err:
3459 bus_dmamap_unload(sc->sc_dmat, dmamap);
3460 m_freem(m0);
3461 post_dequeue_err:
3462 ieee80211_free_node(ni);
3463 return;
3464 }
3465
3466 static void
3467 rtw_idle(struct rtw_regs *regs)
3468 {
3469 int active;
3470 uint8_t tppoll;
3471
3472 /* request stop DMA; wait for packets to stop transmitting. */
3473
3474 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3475 RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3476
3477 for (active = 0; active < 300 &&
3478 (tppoll = RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0;
3479 active++)
3480 DELAY(10);
3481 printf("%s: transmit DMA idle in %dus, tppoll %02" PRIx8 "\n", __func__,
3482 active * 10, tppoll);
3483 }
3484
3485 static void
3486 rtw_watchdog(struct ifnet *ifp)
3487 {
3488 int pri, tx_timeouts = 0;
3489 struct rtw_softc *sc;
3490 struct rtw_txsoft_blk *tsb;
3491
3492 sc = ifp->if_softc;
3493
3494 ifp->if_timer = 0;
3495
3496 if (!device_is_active(sc->sc_dev))
3497 return;
3498
3499 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3500 tsb = &sc->sc_txsoft_blk[pri];
3501
3502 if (tsb->tsb_tx_timer == 0)
3503 continue;
3504 else if (--tsb->tsb_tx_timer == 0) {
3505 if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3506 continue;
3507 printf("%s: transmit timeout, priority %d\n",
3508 ifp->if_xname, pri);
3509 ifp->if_oerrors++;
3510 if (pri != RTW_TXPRIBCN)
3511 tx_timeouts++;
3512 } else
3513 ifp->if_timer = 1;
3514 }
3515
3516 if (tx_timeouts > 0) {
3517 /* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3518 * reset s/w tx-ring pointers, and start transmission.
3519 *
3520 * TBD Stop/restart just the broken rings?
3521 */
3522 rtw_idle(&sc->sc_regs);
3523 rtw_io_enable(sc, RTW_CR_TE, 0);
3524 rtw_txdescs_reset(sc);
3525 rtw_io_enable(sc, RTW_CR_TE, 1);
3526 rtw_start(ifp);
3527 }
3528 ieee80211_watchdog(&sc->sc_ic);
3529 return;
3530 }
3531
3532 static void
3533 rtw_next_scan(void *arg)
3534 {
3535 struct ieee80211com *ic = arg;
3536 int s;
3537
3538 /* don't call rtw_start w/o network interrupts blocked */
3539 s = splnet();
3540 if (ic->ic_state == IEEE80211_S_SCAN)
3541 ieee80211_next_scan(ic);
3542 splx(s);
3543 }
3544
3545 static void
3546 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3547 {
3548 uint16_t bcnitv, bintritv, intval;
3549 int i;
3550 struct rtw_regs *regs = &sc->sc_regs;
3551
3552 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3553 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3554
3555 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3556
3557 rtw_set_access(regs, RTW_ACCESS_CONFIG);
3558
3559 intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3560
3561 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3562 bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3563 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3564 /* interrupt host 1ms before the TBTT */
3565 bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3566 bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3567 RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3568 /* magic from Linux */
3569 RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3570 RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3571 rtw_set_access(regs, RTW_ACCESS_NONE);
3572
3573 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3574 }
3575
3576 /* Synchronize the hardware state with the software state. */
3577 static int
3578 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3579 {
3580 struct ifnet *ifp = ic->ic_ifp;
3581 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3582 enum ieee80211_state ostate;
3583 int error;
3584
3585 ostate = ic->ic_state;
3586
3587 aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3588 rtw_led_newstate(sc, nstate);
3589
3590 aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3591 if (nstate == IEEE80211_S_INIT) {
3592 callout_stop(&sc->sc_scan_ch);
3593 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3594 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3595 }
3596
3597 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3598 rtw_pwrstate(sc, RTW_ON);
3599
3600 if ((error = rtw_tune(sc)) != 0)
3601 return error;
3602
3603 switch (nstate) {
3604 case IEEE80211_S_INIT:
3605 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3606 break;
3607 case IEEE80211_S_SCAN:
3608 if (ostate != IEEE80211_S_SCAN) {
3609 (void)memset(ic->ic_bss->ni_bssid, 0,
3610 IEEE80211_ADDR_LEN);
3611 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3612 }
3613
3614 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3615 rtw_next_scan, ic);
3616
3617 break;
3618 case IEEE80211_S_RUN:
3619 switch (ic->ic_opmode) {
3620 case IEEE80211_M_HOSTAP:
3621 case IEEE80211_M_IBSS:
3622 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3623 /*FALLTHROUGH*/
3624 case IEEE80211_M_AHDEMO:
3625 case IEEE80211_M_STA:
3626 rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3627 ic->ic_bss->ni_intval);
3628 break;
3629 case IEEE80211_M_MONITOR:
3630 break;
3631 }
3632 rtw_set_nettype(sc, ic->ic_opmode);
3633 break;
3634 case IEEE80211_S_ASSOC:
3635 case IEEE80211_S_AUTH:
3636 break;
3637 }
3638
3639 if (nstate != IEEE80211_S_SCAN)
3640 callout_stop(&sc->sc_scan_ch);
3641
3642 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3643 }
3644
3645 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3646 static uint64_t
3647 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3648 {
3649 uint32_t tsftl, tsfth;
3650
3651 tsfth = RTW_READ(regs, RTW_TSFTRH);
3652 tsftl = RTW_READ(regs, RTW_TSFTRL);
3653 if (tsftl < rstamp) /* Compensate for rollover. */
3654 tsfth--;
3655 return ((uint64_t)tsfth << 32) | rstamp;
3656 }
3657
3658 static void
3659 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3660 struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3661 {
3662 struct ifnet *ifp = ic->ic_ifp;
3663 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3664
3665 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3666
3667 switch (subtype) {
3668 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3669 case IEEE80211_FC0_SUBTYPE_BEACON:
3670 if (ic->ic_opmode == IEEE80211_M_IBSS &&
3671 ic->ic_state == IEEE80211_S_RUN &&
3672 device_is_active(sc->sc_dev)) {
3673 uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3674 if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3675 (void)ieee80211_ibss_merge(ni);
3676 }
3677 break;
3678 default:
3679 break;
3680 }
3681 return;
3682 }
3683
3684 static struct ieee80211_node *
3685 rtw_node_alloc(struct ieee80211_node_table *nt)
3686 {
3687 struct ifnet *ifp = nt->nt_ic->ic_ifp;
3688 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3689 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3690
3691 DPRINTF(sc, RTW_DEBUG_NODE,
3692 ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
3693 return ni;
3694 }
3695
3696 static void
3697 rtw_node_free(struct ieee80211_node *ni)
3698 {
3699 struct ieee80211com *ic = ni->ni_ic;
3700 struct ifnet *ifp = ic->ic_ifp;
3701 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3702
3703 DPRINTF(sc, RTW_DEBUG_NODE,
3704 ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
3705 ether_sprintf(ni->ni_bssid)));
3706 (*sc->sc_mtbl.mt_node_free)(ni);
3707 }
3708
3709 static int
3710 rtw_media_change(struct ifnet *ifp)
3711 {
3712 int error;
3713
3714 error = ieee80211_media_change(ifp);
3715 if (error == ENETRESET) {
3716 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3717 (IFF_RUNNING|IFF_UP))
3718 rtw_init(ifp); /* XXX lose error */
3719 error = 0;
3720 }
3721 return error;
3722 }
3723
3724 static void
3725 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3726 {
3727 struct rtw_softc *sc = ifp->if_softc;
3728
3729 if (!device_is_active(sc->sc_dev)) {
3730 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3731 imr->ifm_status = 0;
3732 return;
3733 }
3734 ieee80211_media_status(ifp, imr);
3735 }
3736
3737 static inline void
3738 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3739 {
3740 (void)strlcpy(ifp->if_xname, dvname, IFNAMSIZ);
3741 ifp->if_softc = softc;
3742 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
3743 IFF_NOTRAILERS;
3744 ifp->if_ioctl = rtw_ioctl;
3745 ifp->if_start = rtw_start;
3746 ifp->if_watchdog = rtw_watchdog;
3747 ifp->if_init = rtw_init;
3748 ifp->if_stop = rtw_stop;
3749 }
3750
3751 static inline void
3752 rtw_set80211props(struct ieee80211com *ic)
3753 {
3754 int nrate;
3755 ic->ic_phytype = IEEE80211_T_DS;
3756 ic->ic_opmode = IEEE80211_M_STA;
3757 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3758 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
3759
3760 nrate = 0;
3761 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3762 IEEE80211_RATE_BASIC | 2;
3763 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3764 IEEE80211_RATE_BASIC | 4;
3765 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3766 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3767 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3768 }
3769
3770 static inline void
3771 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3772 {
3773 mtbl->mt_newstate = ic->ic_newstate;
3774 ic->ic_newstate = rtw_newstate;
3775
3776 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3777 ic->ic_recv_mgmt = rtw_recv_mgmt;
3778
3779 mtbl->mt_node_free = ic->ic_node_free;
3780 ic->ic_node_free = rtw_node_free;
3781
3782 mtbl->mt_node_alloc = ic->ic_node_alloc;
3783 ic->ic_node_alloc = rtw_node_alloc;
3784
3785 ic->ic_crypto.cs_key_delete = rtw_key_delete;
3786 ic->ic_crypto.cs_key_set = rtw_key_set;
3787 ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3788 ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3789 }
3790
3791 static inline void
3792 rtw_init_radiotap(struct rtw_softc *sc)
3793 {
3794 uint32_t present;
3795
3796 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3797 sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3798
3799 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
3800 present = htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT);
3801 else
3802 present = htole32(RTW_RX_RADIOTAP_PRESENT);
3803 sc->sc_rxtap.rr_ihdr.it_present = present;
3804
3805 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3806 sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3807 sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3808 }
3809
3810 static int
3811 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3812 {
3813 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3814 SIMPLEQ_INIT(&tsb->tsb_freeq);
3815 tsb->tsb_ndesc = qlen;
3816 tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3817 M_NOWAIT);
3818 if (tsb->tsb_desc == NULL)
3819 return ENOMEM;
3820 return 0;
3821 }
3822
3823 static void
3824 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3825 {
3826 int pri;
3827 struct rtw_txsoft_blk *tsb;
3828
3829 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3830 tsb = &sc->sc_txsoft_blk[pri];
3831 free(tsb->tsb_desc, M_DEVBUF);
3832 tsb->tsb_desc = NULL;
3833 }
3834 }
3835
3836 static int
3837 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3838 {
3839 int pri, rc = 0;
3840 int qlen[RTW_NTXPRI] =
3841 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3842 struct rtw_txsoft_blk *tsbs;
3843
3844 tsbs = sc->sc_txsoft_blk;
3845
3846 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3847 rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3848 if (rc != 0)
3849 break;
3850 }
3851 tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3852 tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3853 tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3854 tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3855 return rc;
3856 }
3857
3858 static void
3859 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3860 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3861 {
3862 tdb->tdb_ndesc = ndesc;
3863 tdb->tdb_desc = desc;
3864 tdb->tdb_physbase = physbase;
3865 tdb->tdb_ofs = ofs;
3866
3867 (void)memset(tdb->tdb_desc, 0,
3868 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3869
3870 rtw_txdesc_blk_init(tdb);
3871 tdb->tdb_next = 0;
3872 }
3873
3874 static void
3875 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3876 {
3877 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3878 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3879 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3880
3881 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3882 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3883 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3884
3885 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3886 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3887 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3888
3889 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3890 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3891 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3892 }
3893
3894 static struct rtw_rf *
3895 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3896 {
3897 rtw_rf_write_t rf_write;
3898 struct rtw_rf *rf;
3899
3900 switch (rfchipid) {
3901 default:
3902 rf_write = rtw_rf_hostwrite;
3903 break;
3904 case RTW_RFCHIPID_INTERSIL:
3905 case RTW_RFCHIPID_PHILIPS:
3906 case RTW_RFCHIPID_GCT: /* XXX a guess */
3907 case RTW_RFCHIPID_RFMD:
3908 rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3909 break;
3910 }
3911
3912 switch (rfchipid) {
3913 case RTW_RFCHIPID_GCT:
3914 rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3915 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3916 break;
3917 case RTW_RFCHIPID_MAXIM:
3918 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3919 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3920 break;
3921 case RTW_RFCHIPID_PHILIPS:
3922 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3923 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3924 break;
3925 case RTW_RFCHIPID_RFMD:
3926 /* XXX RFMD has no RF constructor */
3927 sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3928 /*FALLTHROUGH*/
3929 default:
3930 return NULL;
3931 }
3932 rf->rf_continuous_tx_cb =
3933 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3934 rf->rf_continuous_tx_arg = (void *)sc;
3935 return rf;
3936 }
3937
3938 /* Revision C and later use a different PHY delay setting than
3939 * revisions A and B.
3940 */
3941 static uint8_t
3942 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
3943 {
3944 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3945 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3946
3947 uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
3948
3949 RTW_WRITE(regs, RTW_RCR, REVAB);
3950 RTW_WBW(regs, RTW_RCR, RTW_RCR);
3951 RTW_WRITE(regs, RTW_RCR, REVC);
3952
3953 RTW_WBR(regs, RTW_RCR, RTW_RCR);
3954 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3955 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3956
3957 RTW_WRITE(regs, RTW_RCR, old_rcr); /* restore RCR */
3958 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3959
3960 return phydelay;
3961 #undef REVC
3962 }
3963
3964 void
3965 rtw_attach(struct rtw_softc *sc)
3966 {
3967 struct ifnet *ifp = &sc->sc_if;
3968 struct ieee80211com *ic = &sc->sc_ic;
3969 struct rtw_txsoft_blk *tsb;
3970 int pri, rc;
3971
3972 rtw_cipher_wep = ieee80211_cipher_wep;
3973 rtw_cipher_wep.ic_decap = rtw_wep_decap;
3974
3975 NEXT_ATTACH_STATE(sc, DETACHED);
3976
3977 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
3978 case RTW_TCR_HWVERID_F:
3979 sc->sc_hwverid = 'F';
3980 break;
3981 case RTW_TCR_HWVERID_D:
3982 sc->sc_hwverid = 'D';
3983 break;
3984 default:
3985 sc->sc_hwverid = '?';
3986 break;
3987 }
3988 aprint_verbose_dev(sc->sc_dev, "hardware version %c\n",
3989 sc->sc_hwverid);
3990
3991 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
3992 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
3993 0);
3994
3995 if (rc != 0) {
3996 aprint_error_dev(sc->sc_dev,
3997 "could not allocate hw descriptors, error %d\n", rc);
3998 goto err;
3999 }
4000
4001 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
4002
4003 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
4004 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
4005 (void **)&sc->sc_descs, BUS_DMA_COHERENT);
4006
4007 if (rc != 0) {
4008 aprint_error_dev(sc->sc_dev,
4009 "could not map hw descriptors, error %d\n", rc);
4010 goto err;
4011 }
4012 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
4013
4014 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
4015 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
4016
4017 if (rc != 0) {
4018 aprint_error_dev(sc->sc_dev,
4019 "could not create DMA map for hw descriptors, error %d\n",
4020 rc);
4021 goto err;
4022 }
4023 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
4024
4025 sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
4026 sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
4027
4028 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4029 sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
4030 sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
4031 }
4032
4033 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
4034 sizeof(struct rtw_descs), NULL, 0);
4035
4036 if (rc != 0) {
4037 aprint_error_dev(sc->sc_dev,
4038 "could not load DMA map for hw descriptors, error %d\n",
4039 rc);
4040 goto err;
4041 }
4042 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
4043
4044 if (rtw_txsoft_blk_setup_all(sc) != 0)
4045 goto err;
4046 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
4047
4048 rtw_txdesc_blk_setup_all(sc);
4049
4050 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4051
4052 sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4053
4054 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4055 tsb = &sc->sc_txsoft_blk[pri];
4056
4057 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4058 &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4059 aprint_error_dev(sc->sc_dev,
4060 "could not load DMA map for hw tx descriptors, "
4061 "error %d\n", rc);
4062 goto err;
4063 }
4064 }
4065
4066 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4067 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4068 RTW_RXQLEN)) != 0) {
4069 aprint_error_dev(sc->sc_dev,
4070 "could not load DMA map for hw rx descriptors, error %d\n",
4071 rc);
4072 goto err;
4073 }
4074 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4075
4076 /* Reset the chip to a known state. */
4077 if (rtw_reset(sc) != 0)
4078 goto err;
4079 NEXT_ATTACH_STATE(sc, FINISH_RESET);
4080
4081 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4082
4083 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4084 sc->sc_flags |= RTW_F_9356SROM;
4085
4086 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4087 sc->sc_dev) != 0)
4088 goto err;
4089
4090 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4091
4092 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4093 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4094 sc->sc_dev) != 0) {
4095 aprint_error_dev(sc->sc_dev,
4096 "attach failed, malformed serial ROM\n");
4097 goto err;
4098 }
4099
4100 aprint_verbose_dev(sc->sc_dev, "%s PHY\n",
4101 ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4102
4103 aprint_verbose_dev(sc->sc_dev, "carrier-sense threshold %u\n",
4104 sc->sc_csthr);
4105
4106 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4107
4108 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4109 sc->sc_flags & RTW_F_DIGPHY);
4110
4111 if (sc->sc_rf == NULL) {
4112 aprint_verbose_dev(sc->sc_dev,
4113 "attach failed, could not attach RF\n");
4114 goto err;
4115 }
4116
4117 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4118
4119 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4120
4121 RTW_DPRINTF(RTW_DEBUG_ATTACH,
4122 ("%s: PHY delay %d\n", device_xname(sc->sc_dev), sc->sc_phydelay));
4123
4124 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4125 rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4126
4127 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels, sc->sc_dev);
4128
4129 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4130 sc->sc_dev) != 0)
4131 goto err;
4132 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4133
4134 rtw_setifprops(ifp, device_xname(sc->sc_dev), (void*)sc);
4135
4136 IFQ_SET_READY(&ifp->if_snd);
4137
4138 sc->sc_ic.ic_ifp = ifp;
4139 rtw_set80211props(&sc->sc_ic);
4140
4141 rtw_led_attach(&sc->sc_led_state, (void *)sc);
4142
4143 /*
4144 * Call MI attach routines.
4145 */
4146 if_attach(ifp);
4147 ieee80211_ifattach(&sc->sc_ic);
4148
4149 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4150
4151 /* possibly we should fill in our own sc_send_prresp, since
4152 * the RTL8180 is probably sending probe responses in ad hoc
4153 * mode.
4154 */
4155
4156 /* complete initialization */
4157 ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4158 callout_init(&sc->sc_scan_ch, 0);
4159
4160 rtw_init_radiotap(sc);
4161
4162 #if NBPFILTER > 0
4163 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4164 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4165 #endif
4166
4167 NEXT_ATTACH_STATE(sc, FINISHED);
4168
4169 ieee80211_announce(ic);
4170 return;
4171 err:
4172 rtw_detach(sc);
4173 return;
4174 }
4175
4176 int
4177 rtw_detach(struct rtw_softc *sc)
4178 {
4179 struct ifnet *ifp = &sc->sc_if;
4180 int pri, s;
4181
4182 s = splnet();
4183
4184 switch (sc->sc_attach_state) {
4185 case FINISHED:
4186 rtw_stop(ifp, 1);
4187
4188 pmf_device_deregister(sc->sc_dev);
4189 callout_stop(&sc->sc_scan_ch);
4190 ieee80211_ifdetach(&sc->sc_ic);
4191 if_detach(ifp);
4192 rtw_led_detach(&sc->sc_led_state);
4193 /*FALLTHROUGH*/
4194 case FINISH_ID_STA:
4195 case FINISH_RF_ATTACH:
4196 rtw_rf_destroy(sc->sc_rf);
4197 sc->sc_rf = NULL;
4198 /*FALLTHROUGH*/
4199 case FINISH_PARSE_SROM:
4200 case FINISH_READ_SROM:
4201 rtw_srom_free(&sc->sc_srom);
4202 /*FALLTHROUGH*/
4203 case FINISH_RESET:
4204 case FINISH_RXMAPS_CREATE:
4205 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4206 RTW_RXQLEN);
4207 /*FALLTHROUGH*/
4208 case FINISH_TXMAPS_CREATE:
4209 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4210 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4211 sc->sc_txsoft_blk[pri].tsb_desc,
4212 sc->sc_txsoft_blk[pri].tsb_ndesc);
4213 }
4214 /*FALLTHROUGH*/
4215 case FINISH_TXDESCBLK_SETUP:
4216 case FINISH_TXCTLBLK_SETUP:
4217 rtw_txsoft_blk_cleanup_all(sc);
4218 /*FALLTHROUGH*/
4219 case FINISH_DESCMAP_LOAD:
4220 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4221 /*FALLTHROUGH*/
4222 case FINISH_DESCMAP_CREATE:
4223 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4224 /*FALLTHROUGH*/
4225 case FINISH_DESC_MAP:
4226 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
4227 sizeof(struct rtw_descs));
4228 /*FALLTHROUGH*/
4229 case FINISH_DESC_ALLOC:
4230 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4231 sc->sc_desc_nsegs);
4232 /*FALLTHROUGH*/
4233 case DETACHED:
4234 NEXT_ATTACH_STATE(sc, DETACHED);
4235 break;
4236 }
4237 splx(s);
4238 return 0;
4239 }
4240