rtw.c revision 1.109 1 /* $NetBSD: rtw.c,v 1.109 2009/09/16 16:34:50 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005, 2006, 2007 David Young. All rights
4 * reserved.
5 *
6 * Programmed for NetBSD by David Young.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of David Young may not be used to endorse or promote
17 * products derived from this software without specific prior
18 * written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
21 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
23 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
24 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
26 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31 * OF SUCH DAMAGE.
32 */
33 /*
34 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.109 2009/09/16 16:34:50 dyoung Exp $");
39
40 #include "bpfilter.h"
41
42 #include <sys/param.h>
43 #include <sys/sysctl.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/time.h>
50 #include <sys/types.h>
51 #include <sys/device.h>
52
53 #include <machine/endian.h>
54 #include <sys/bus.h>
55 #include <sys/intr.h> /* splnet */
56
57 #include <uvm/uvm_extern.h>
58
59 #include <net/if.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #include <net80211/ieee80211_netbsd.h>
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70
71 #include <dev/ic/rtwreg.h>
72 #include <dev/ic/rtwvar.h>
73 #include <dev/ic/rtwphyio.h>
74 #include <dev/ic/rtwphy.h>
75
76 #include <dev/ic/smc93cx6var.h>
77
78 static int rtw_rfprog_fallback = 0;
79 static int rtw_host_rfio = 0;
80
81 #ifdef RTW_DEBUG
82 int rtw_debug = 0;
83 static int rtw_rxbufs_limit = RTW_RXQLEN;
84 #endif /* RTW_DEBUG */
85
86 #define NEXT_ATTACH_STATE(sc, state) do { \
87 DPRINTF(sc, RTW_DEBUG_ATTACH, \
88 ("%s: attach state %s\n", __func__, #state)); \
89 sc->sc_attach_state = state; \
90 } while (0)
91
92 int rtw_dwelltime = 200; /* milliseconds */
93 static struct ieee80211_cipher rtw_cipher_wep;
94
95 static void rtw_disable_interrupts(struct rtw_regs *);
96 static void rtw_enable_interrupts(struct rtw_softc *);
97
98 static int rtw_init(struct ifnet *);
99
100 static void rtw_start(struct ifnet *);
101 static void rtw_reset_oactive(struct rtw_softc *);
102 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
103 struct ieee80211_node *);
104 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
105
106 static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
107 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
108 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
109 const u_int8_t[IEEE80211_ADDR_LEN]);
110 static void rtw_key_update_end(struct ieee80211com *);
111 static void rtw_key_update_begin(struct ieee80211com *);
112 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
113 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
114
115 static void rtw_led_attach(struct rtw_led_state *, void *);
116 static void rtw_led_detach(struct rtw_led_state *);
117 static void rtw_led_init(struct rtw_regs *);
118 static void rtw_led_slowblink(void *);
119 static void rtw_led_fastblink(void *);
120 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
121
122 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
123 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
124 #ifdef RTW_DEBUG
125 static void rtw_dump_rings(struct rtw_softc *sc);
126 static void rtw_print_txdesc(struct rtw_softc *, const char *,
127 struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
128 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
129 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
130 #endif /* RTW_DEBUG */
131 #ifdef RTW_DIAG
132 static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
133 #endif /* RTW_DIAG */
134
135 /*
136 * Setup sysctl(3) MIB, hw.rtw.*
137 *
138 * TBD condition CTLFLAG_PERMANENT on being a module or not
139 */
140 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
141 {
142 int rc;
143 const struct sysctlnode *cnode, *rnode;
144
145 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
146 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
147 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
148 goto err;
149
150 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
151 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
152 "Realtek RTL818x 802.11 controls",
153 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
154 goto err;
155
156 #ifdef RTW_DEBUG
157 /* control debugging printfs */
158 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
159 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
160 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
161 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
162 CTL_CREATE, CTL_EOL)) != 0)
163 goto err;
164
165 /* Limit rx buffers, for simulating resource exhaustion. */
166 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
167 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
168 "rxbufs_limit",
169 SYSCTL_DESCR("Set rx buffers limit"),
170 rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
171 CTL_CREATE, CTL_EOL)) != 0)
172 goto err;
173
174 #endif /* RTW_DEBUG */
175 /* set fallback RF programming method */
176 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
177 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
178 "rfprog_fallback",
179 SYSCTL_DESCR("Set fallback RF programming method"),
180 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
181 CTL_CREATE, CTL_EOL)) != 0)
182 goto err;
183
184 /* force host to control RF I/O bus */
185 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
186 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
187 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
188 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
189 CTL_CREATE, CTL_EOL)) != 0)
190 goto err;
191
192 return;
193 err:
194 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
195 }
196
197 static int
198 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
199 {
200 int error, t;
201 struct sysctlnode node;
202
203 node = *rnode;
204 t = *(int*)rnode->sysctl_data;
205 node.sysctl_data = &t;
206 error = sysctl_lookup(SYSCTLFN_CALL(&node));
207 if (error || newp == NULL)
208 return (error);
209
210 if (t < lower || t > upper)
211 return (EINVAL);
212
213 *(int*)rnode->sysctl_data = t;
214
215 return (0);
216 }
217
218 static int
219 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
220 {
221 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
222 __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
223 }
224
225 static int
226 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
227 {
228 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
229 }
230
231 #ifdef RTW_DEBUG
232 static int
233 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
234 {
235 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
236 0, RTW_DEBUG_MAX);
237 }
238
239 static int
240 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
241 {
242 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
243 0, RTW_RXQLEN);
244 }
245
246 static void
247 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
248 {
249 #define PRINTREG32(sc, reg) \
250 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
251 ("%s: reg[ " #reg " / %03x ] = %08x\n", \
252 dvname, reg, RTW_READ(regs, reg)))
253
254 #define PRINTREG16(sc, reg) \
255 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
256 ("%s: reg[ " #reg " / %03x ] = %04x\n", \
257 dvname, reg, RTW_READ16(regs, reg)))
258
259 #define PRINTREG8(sc, reg) \
260 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
261 ("%s: reg[ " #reg " / %03x ] = %02x\n", \
262 dvname, reg, RTW_READ8(regs, reg)))
263
264 RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
265
266 PRINTREG32(regs, RTW_IDR0);
267 PRINTREG32(regs, RTW_IDR1);
268 PRINTREG32(regs, RTW_MAR0);
269 PRINTREG32(regs, RTW_MAR1);
270 PRINTREG32(regs, RTW_TSFTRL);
271 PRINTREG32(regs, RTW_TSFTRH);
272 PRINTREG32(regs, RTW_TLPDA);
273 PRINTREG32(regs, RTW_TNPDA);
274 PRINTREG32(regs, RTW_THPDA);
275 PRINTREG32(regs, RTW_TCR);
276 PRINTREG32(regs, RTW_RCR);
277 PRINTREG32(regs, RTW_TINT);
278 PRINTREG32(regs, RTW_TBDA);
279 PRINTREG32(regs, RTW_ANAPARM);
280 PRINTREG32(regs, RTW_BB);
281 PRINTREG32(regs, RTW_PHYCFG);
282 PRINTREG32(regs, RTW_WAKEUP0L);
283 PRINTREG32(regs, RTW_WAKEUP0H);
284 PRINTREG32(regs, RTW_WAKEUP1L);
285 PRINTREG32(regs, RTW_WAKEUP1H);
286 PRINTREG32(regs, RTW_WAKEUP2LL);
287 PRINTREG32(regs, RTW_WAKEUP2LH);
288 PRINTREG32(regs, RTW_WAKEUP2HL);
289 PRINTREG32(regs, RTW_WAKEUP2HH);
290 PRINTREG32(regs, RTW_WAKEUP3LL);
291 PRINTREG32(regs, RTW_WAKEUP3LH);
292 PRINTREG32(regs, RTW_WAKEUP3HL);
293 PRINTREG32(regs, RTW_WAKEUP3HH);
294 PRINTREG32(regs, RTW_WAKEUP4LL);
295 PRINTREG32(regs, RTW_WAKEUP4LH);
296 PRINTREG32(regs, RTW_WAKEUP4HL);
297 PRINTREG32(regs, RTW_WAKEUP4HH);
298 PRINTREG32(regs, RTW_DK0);
299 PRINTREG32(regs, RTW_DK1);
300 PRINTREG32(regs, RTW_DK2);
301 PRINTREG32(regs, RTW_DK3);
302 PRINTREG32(regs, RTW_RETRYCTR);
303 PRINTREG32(regs, RTW_RDSAR);
304 PRINTREG32(regs, RTW_FER);
305 PRINTREG32(regs, RTW_FEMR);
306 PRINTREG32(regs, RTW_FPSR);
307 PRINTREG32(regs, RTW_FFER);
308
309 /* 16-bit registers */
310 PRINTREG16(regs, RTW_BRSR);
311 PRINTREG16(regs, RTW_IMR);
312 PRINTREG16(regs, RTW_ISR);
313 PRINTREG16(regs, RTW_BCNITV);
314 PRINTREG16(regs, RTW_ATIMWND);
315 PRINTREG16(regs, RTW_BINTRITV);
316 PRINTREG16(regs, RTW_ATIMTRITV);
317 PRINTREG16(regs, RTW_CRC16ERR);
318 PRINTREG16(regs, RTW_CRC0);
319 PRINTREG16(regs, RTW_CRC1);
320 PRINTREG16(regs, RTW_CRC2);
321 PRINTREG16(regs, RTW_CRC3);
322 PRINTREG16(regs, RTW_CRC4);
323 PRINTREG16(regs, RTW_CWR);
324
325 /* 8-bit registers */
326 PRINTREG8(regs, RTW_CR);
327 PRINTREG8(regs, RTW_9346CR);
328 PRINTREG8(regs, RTW_CONFIG0);
329 PRINTREG8(regs, RTW_CONFIG1);
330 PRINTREG8(regs, RTW_CONFIG2);
331 PRINTREG8(regs, RTW_MSR);
332 PRINTREG8(regs, RTW_CONFIG3);
333 PRINTREG8(regs, RTW_CONFIG4);
334 PRINTREG8(regs, RTW_TESTR);
335 PRINTREG8(regs, RTW_PSR);
336 PRINTREG8(regs, RTW_SCR);
337 PRINTREG8(regs, RTW_PHYDELAY);
338 PRINTREG8(regs, RTW_CRCOUNT);
339 PRINTREG8(regs, RTW_PHYADDR);
340 PRINTREG8(regs, RTW_PHYDATAW);
341 PRINTREG8(regs, RTW_PHYDATAR);
342 PRINTREG8(regs, RTW_CONFIG5);
343 PRINTREG8(regs, RTW_TPPOLL);
344
345 PRINTREG16(regs, RTW_BSSID16);
346 PRINTREG32(regs, RTW_BSSID32);
347 #undef PRINTREG32
348 #undef PRINTREG16
349 #undef PRINTREG8
350 }
351 #endif /* RTW_DEBUG */
352
353 void
354 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
355 {
356 struct rtw_regs *regs = &sc->sc_regs;
357
358 uint32_t tcr;
359 tcr = RTW_READ(regs, RTW_TCR);
360 tcr &= ~RTW_TCR_LBK_MASK;
361 if (enable)
362 tcr |= RTW_TCR_LBK_CONT;
363 else
364 tcr |= RTW_TCR_LBK_NORMAL;
365 RTW_WRITE(regs, RTW_TCR, tcr);
366 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
367 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
368 rtw_txdac_enable(sc, !enable);
369 rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
370 rtw_set_access(regs, RTW_ACCESS_NONE);
371 }
372
373 #ifdef RTW_DEBUG
374 static const char *
375 rtw_access_string(enum rtw_access access)
376 {
377 switch (access) {
378 case RTW_ACCESS_NONE:
379 return "none";
380 case RTW_ACCESS_CONFIG:
381 return "config";
382 case RTW_ACCESS_ANAPARM:
383 return "anaparm";
384 default:
385 return "unknown";
386 }
387 }
388 #endif /* RTW_DEBUG */
389
390 static void
391 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
392 {
393 KASSERT(/* naccess >= RTW_ACCESS_NONE && */
394 naccess <= RTW_ACCESS_ANAPARM);
395 KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
396 regs->r_access <= RTW_ACCESS_ANAPARM);
397
398 if (naccess == regs->r_access)
399 return;
400
401 switch (naccess) {
402 case RTW_ACCESS_NONE:
403 switch (regs->r_access) {
404 case RTW_ACCESS_ANAPARM:
405 rtw_anaparm_enable(regs, 0);
406 /*FALLTHROUGH*/
407 case RTW_ACCESS_CONFIG:
408 rtw_config0123_enable(regs, 0);
409 /*FALLTHROUGH*/
410 case RTW_ACCESS_NONE:
411 break;
412 }
413 break;
414 case RTW_ACCESS_CONFIG:
415 switch (regs->r_access) {
416 case RTW_ACCESS_NONE:
417 rtw_config0123_enable(regs, 1);
418 /*FALLTHROUGH*/
419 case RTW_ACCESS_CONFIG:
420 break;
421 case RTW_ACCESS_ANAPARM:
422 rtw_anaparm_enable(regs, 0);
423 break;
424 }
425 break;
426 case RTW_ACCESS_ANAPARM:
427 switch (regs->r_access) {
428 case RTW_ACCESS_NONE:
429 rtw_config0123_enable(regs, 1);
430 /*FALLTHROUGH*/
431 case RTW_ACCESS_CONFIG:
432 rtw_anaparm_enable(regs, 1);
433 /*FALLTHROUGH*/
434 case RTW_ACCESS_ANAPARM:
435 break;
436 }
437 break;
438 }
439 }
440
441 void
442 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
443 {
444 rtw_set_access1(regs, access);
445 RTW_DPRINTF(RTW_DEBUG_ACCESS,
446 ("%s: access %s -> %s\n", __func__,
447 rtw_access_string(regs->r_access),
448 rtw_access_string(access)));
449 regs->r_access = access;
450 }
451
452 /*
453 * Enable registers, switch register banks.
454 */
455 void
456 rtw_config0123_enable(struct rtw_regs *regs, int enable)
457 {
458 uint8_t ecr;
459 ecr = RTW_READ8(regs, RTW_9346CR);
460 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
461 if (enable)
462 ecr |= RTW_9346CR_EEM_CONFIG;
463 else {
464 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
465 ecr |= RTW_9346CR_EEM_NORMAL;
466 }
467 RTW_WRITE8(regs, RTW_9346CR, ecr);
468 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
469 }
470
471 /* requires rtw_config0123_enable(, 1) */
472 void
473 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
474 {
475 uint8_t cfg3;
476
477 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
478 cfg3 |= RTW_CONFIG3_CLKRUNEN;
479 if (enable)
480 cfg3 |= RTW_CONFIG3_PARMEN;
481 else
482 cfg3 &= ~RTW_CONFIG3_PARMEN;
483 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
484 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
485 }
486
487 /* requires rtw_anaparm_enable(, 1) */
488 void
489 rtw_txdac_enable(struct rtw_softc *sc, int enable)
490 {
491 uint32_t anaparm;
492 struct rtw_regs *regs = &sc->sc_regs;
493
494 anaparm = RTW_READ(regs, RTW_ANAPARM);
495 if (enable)
496 anaparm &= ~RTW_ANAPARM_TXDACOFF;
497 else
498 anaparm |= RTW_ANAPARM_TXDACOFF;
499 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
500 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
501 }
502
503 static inline int
504 rtw_chip_reset1(struct rtw_regs *regs, device_t dev)
505 {
506 uint8_t cr;
507 int i;
508
509 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
510
511 RTW_WBR(regs, RTW_CR, RTW_CR);
512
513 for (i = 0; i < 1000; i++) {
514 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
515 RTW_DPRINTF(RTW_DEBUG_RESET,
516 ("%s: reset in %dus\n", device_xname(dev), i));
517 return 0;
518 }
519 RTW_RBR(regs, RTW_CR, RTW_CR);
520 DELAY(10); /* 10us */
521 }
522
523 aprint_error_dev(dev, "reset failed\n");
524 return ETIMEDOUT;
525 }
526
527 static inline int
528 rtw_chip_reset(struct rtw_regs *regs, device_t dev)
529 {
530 uint32_t tcr;
531
532 /* from Linux driver */
533 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
534 __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
535
536 RTW_WRITE(regs, RTW_TCR, tcr);
537
538 RTW_WBW(regs, RTW_CR, RTW_TCR);
539
540 return rtw_chip_reset1(regs, dev);
541 }
542
543 static int
544 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
545 {
546 struct ieee80211_key keycopy;
547
548 RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
549
550 keycopy = *k;
551 keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
552
553 return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
554 }
555
556 static int
557 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
558 {
559 struct rtw_softc *sc = ic->ic_ifp->if_softc;
560
561 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__,
562 k->wk_keyix));
563
564 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
565
566 if (k->wk_keylen != 0 &&
567 k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP)
568 sc->sc_flags &= ~RTW_F_DK_VALID;
569
570 return 1;
571 }
572
573 static int
574 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
575 const u_int8_t mac[IEEE80211_ADDR_LEN])
576 {
577 struct rtw_softc *sc = ic->ic_ifp->if_softc;
578
579 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
580
581 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
582
583 sc->sc_flags &= ~RTW_F_DK_VALID;
584
585 return 1;
586 }
587
588 static void
589 rtw_key_update_begin(struct ieee80211com *ic)
590 {
591 #ifdef RTW_DEBUG
592 struct ifnet *ifp = ic->ic_ifp;
593 struct rtw_softc *sc = ifp->if_softc;
594 #endif
595
596 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
597 }
598
599 static void
600 rtw_tx_kick(struct rtw_regs *regs, uint8_t ringsel)
601 {
602 uint8_t tppoll;
603
604 tppoll = RTW_READ8(regs, RTW_TPPOLL);
605 tppoll &= ~RTW_TPPOLL_SALL;
606 tppoll |= ringsel & RTW_TPPOLL_ALL;
607 RTW_WRITE8(regs, RTW_TPPOLL, tppoll);
608 RTW_SYNC(regs, RTW_TPPOLL, RTW_TPPOLL);
609 }
610
611 static void
612 rtw_key_update_end(struct ieee80211com *ic)
613 {
614 struct ifnet *ifp = ic->ic_ifp;
615 struct rtw_softc *sc = ifp->if_softc;
616
617 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
618
619 if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
620 !device_is_active(sc->sc_dev))
621 return;
622
623 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
624 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
625 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
626 (ifp->if_flags & IFF_RUNNING) != 0);
627 }
628
629 static bool
630 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
631 {
632 if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
633 return false;
634
635 return ((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
636 ((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
637 }
638
639 static void
640 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
641 {
642 uint8_t psr, scr;
643 int i, keylen = 0;
644 struct rtw_regs *regs;
645 union rtw_keys *rk;
646
647 regs = &sc->sc_regs;
648 rk = &sc->sc_keys;
649
650 (void)memset(rk, 0, sizeof(rk));
651
652 /* Temporarily use software crypto for all keys. */
653 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
654 if (wk[i].wk_cipher == &rtw_cipher_wep)
655 wk[i].wk_cipher = &ieee80211_cipher_wep;
656 }
657
658 rtw_set_access(regs, RTW_ACCESS_CONFIG);
659
660 psr = RTW_READ8(regs, RTW_PSR);
661 scr = RTW_READ8(regs, RTW_SCR);
662 scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
663
664 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
665 goto out;
666
667 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
668 if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
669 continue;
670 if (i == txkey) {
671 keylen = wk[i].wk_keylen;
672 break;
673 }
674 keylen = MAX(keylen, wk[i].wk_keylen);
675 }
676
677 if (keylen == 5)
678 scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
679 else if (keylen == 13)
680 scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
681
682 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
683 if (wk[i].wk_keylen != keylen ||
684 wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
685 continue;
686 /* h/w will decrypt, s/w still strips headers */
687 wk[i].wk_cipher = &rtw_cipher_wep;
688 (void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
689 }
690
691 out:
692 RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
693
694 bus_space_write_region_stream_4(regs->r_bt, regs->r_bh,
695 RTW_DK0, rk->rk_words, __arraycount(rk->rk_words));
696
697 bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
698 BUS_SPACE_BARRIER_SYNC);
699
700 RTW_DPRINTF(RTW_DEBUG_KEY,
701 ("%s.%d: scr %02" PRIx8 ", keylen %d\n", __func__, __LINE__, scr,
702 keylen));
703
704 RTW_WBW(regs, RTW_DK0, RTW_PSR);
705 RTW_WRITE8(regs, RTW_PSR, psr);
706 RTW_WBW(regs, RTW_PSR, RTW_SCR);
707 RTW_WRITE8(regs, RTW_SCR, scr);
708 RTW_SYNC(regs, RTW_SCR, RTW_SCR);
709 rtw_set_access(regs, RTW_ACCESS_NONE);
710 sc->sc_flags |= RTW_F_DK_VALID;
711 }
712
713 static inline int
714 rtw_recall_eeprom(struct rtw_regs *regs, device_t dev)
715 {
716 int i;
717 uint8_t ecr;
718
719 ecr = RTW_READ8(regs, RTW_9346CR);
720 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
721 RTW_WRITE8(regs, RTW_9346CR, ecr);
722
723 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
724
725 /* wait 25ms for completion */
726 for (i = 0; i < 250; i++) {
727 ecr = RTW_READ8(regs, RTW_9346CR);
728 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
729 RTW_DPRINTF(RTW_DEBUG_RESET,
730 ("%s: recall EEPROM in %dus\n", device_xname(dev),
731 i * 100));
732 return 0;
733 }
734 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
735 DELAY(100);
736 }
737 aprint_error_dev(dev, "recall EEPROM failed\n");
738 return ETIMEDOUT;
739 }
740
741 static inline int
742 rtw_reset(struct rtw_softc *sc)
743 {
744 int rc;
745 uint8_t config1;
746
747 sc->sc_flags &= ~RTW_F_DK_VALID;
748
749 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev)) != 0)
750 return rc;
751
752 rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev);
753
754 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
755 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
756 /* TBD turn off maximum power saving? */
757
758 return 0;
759 }
760
761 static inline int
762 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
763 u_int ndescs)
764 {
765 int i, rc = 0;
766 for (i = 0; i < ndescs; i++) {
767 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
768 0, 0, &descs[i].ts_dmamap);
769 if (rc != 0)
770 break;
771 }
772 return rc;
773 }
774
775 static inline int
776 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
777 u_int ndescs)
778 {
779 int i, rc = 0;
780 for (i = 0; i < ndescs; i++) {
781 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
782 &descs[i].rs_dmamap);
783 if (rc != 0)
784 break;
785 }
786 return rc;
787 }
788
789 static inline void
790 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
791 u_int ndescs)
792 {
793 int i;
794 for (i = 0; i < ndescs; i++) {
795 if (descs[i].rs_dmamap != NULL)
796 bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
797 }
798 }
799
800 static inline void
801 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
802 u_int ndescs)
803 {
804 int i;
805 for (i = 0; i < ndescs; i++) {
806 if (descs[i].ts_dmamap != NULL)
807 bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
808 }
809 }
810
811 static inline void
812 rtw_srom_free(struct rtw_srom *sr)
813 {
814 sr->sr_size = 0;
815 if (sr->sr_content == NULL)
816 return;
817 free(sr->sr_content, M_DEVBUF);
818 sr->sr_content = NULL;
819 }
820
821 static void
822 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
823 uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
824 {
825 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
826 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
827 *rcr |= RTW_RCR_ENCS1;
828 *rfchipid = RTW_RFCHIPID_PHILIPS;
829 }
830
831 static int
832 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
833 enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
834 device_t dev)
835 {
836 int i;
837 const char *rfname, *paname;
838 char scratch[sizeof("unknown 0xXX")];
839 uint16_t srom_version;
840 uint8_t mac[IEEE80211_ADDR_LEN];
841
842 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
843 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
844
845 srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
846
847 if (srom_version <= 0x0101) {
848 aprint_error_dev(dev,
849 "SROM version %d.%d is not understood, "
850 "limping along with defaults\n",
851 srom_version >> 8, srom_version & 0xff);
852 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
853 return 0;
854 } else {
855 aprint_verbose_dev(dev, "SROM version %d.%d",
856 srom_version >> 8, srom_version & 0xff);
857 }
858
859 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
860 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
861
862 RTW_DPRINTF(RTW_DEBUG_ATTACH,
863 ("%s: EEPROM MAC %s\n", device_xname(dev), ether_sprintf(mac)));
864
865 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
866
867 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
868 *flags |= RTW_F_ANTDIV;
869
870 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
871 * to be reversed.
872 */
873 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
874 *flags |= RTW_F_DIGPHY;
875 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
876 *flags |= RTW_F_DFLANTB;
877
878 *rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
879 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
880
881 if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
882 *flags |= RTW_C_RXWEP_104;
883
884 *flags |= RTW_C_RXWEP_40; /* XXX */
885
886 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
887 switch (*rfchipid) {
888 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
889 rfname = "GCT GRF5101";
890 paname = "Winspring WS9901";
891 break;
892 case RTW_RFCHIPID_MAXIM:
893 rfname = "Maxim MAX2820"; /* guess */
894 paname = "Maxim MAX2422"; /* guess */
895 break;
896 case RTW_RFCHIPID_INTERSIL:
897 rfname = "Intersil HFA3873"; /* guess */
898 paname = "Intersil <unknown>";
899 break;
900 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
901 rfname = "Philips SA2400A";
902 paname = "Philips SA2411";
903 break;
904 case RTW_RFCHIPID_RFMD:
905 /* this is the same front-end as an atw(4)! */
906 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
907 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
908 "SYN: Silicon Labs Si4126"; /* inferred from
909 * reference driver
910 */
911 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
912 break;
913 case RTW_RFCHIPID_RESERVED:
914 rfname = paname = "reserved";
915 break;
916 default:
917 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
918 rfname = paname = scratch;
919 }
920 aprint_normal_dev(dev, "RF: %s, PA: %s\n", rfname, paname);
921
922 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
923 case RTW_CONFIG0_GL_USA:
924 case _RTW_CONFIG0_GL_USA:
925 *locale = RTW_LOCALE_USA;
926 break;
927 case RTW_CONFIG0_GL_EUROPE:
928 *locale = RTW_LOCALE_EUROPE;
929 break;
930 case RTW_CONFIG0_GL_JAPAN:
931 *locale = RTW_LOCALE_JAPAN;
932 break;
933 default:
934 *locale = RTW_LOCALE_UNKNOWN;
935 break;
936 }
937 return 0;
938 }
939
940 /* Returns -1 on failure. */
941 static int
942 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
943 device_t dev)
944 {
945 int rc;
946 struct seeprom_descriptor sd;
947 uint8_t ecr;
948
949 (void)memset(&sd, 0, sizeof(sd));
950
951 ecr = RTW_READ8(regs, RTW_9346CR);
952
953 if ((flags & RTW_F_9356SROM) != 0) {
954 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n",
955 device_xname(dev)));
956 sr->sr_size = 256;
957 sd.sd_chip = C56_66;
958 } else {
959 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n",
960 device_xname(dev)));
961 sr->sr_size = 128;
962 sd.sd_chip = C46;
963 }
964
965 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
966 RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
967 ecr |= RTW_9346CR_EEM_PROGRAM;
968
969 RTW_WRITE8(regs, RTW_9346CR, ecr);
970
971 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
972
973 if (sr->sr_content == NULL) {
974 aprint_error_dev(dev, "unable to allocate SROM buffer\n");
975 return ENOMEM;
976 }
977
978 (void)memset(sr->sr_content, 0, sr->sr_size);
979
980 /* RTL8180 has a single 8-bit register for controlling the
981 * 93cx6 SROM. There is no "ready" bit. The RTL8180
982 * input/output sense is the reverse of read_seeprom's.
983 */
984 sd.sd_tag = regs->r_bt;
985 sd.sd_bsh = regs->r_bh;
986 sd.sd_regsize = 1;
987 sd.sd_control_offset = RTW_9346CR;
988 sd.sd_status_offset = RTW_9346CR;
989 sd.sd_dataout_offset = RTW_9346CR;
990 sd.sd_CK = RTW_9346CR_EESK;
991 sd.sd_CS = RTW_9346CR_EECS;
992 sd.sd_DI = RTW_9346CR_EEDO;
993 sd.sd_DO = RTW_9346CR_EEDI;
994 /* make read_seeprom enter EEPROM read/write mode */
995 sd.sd_MS = ecr;
996 sd.sd_RDY = 0;
997
998 /* TBD bus barriers */
999 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
1000 aprint_error_dev(dev, "could not read SROM\n");
1001 free(sr->sr_content, M_DEVBUF);
1002 sr->sr_content = NULL;
1003 return -1; /* XXX */
1004 }
1005
1006 /* end EEPROM read/write mode */
1007 RTW_WRITE8(regs, RTW_9346CR,
1008 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
1009 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
1010
1011 if ((rc = rtw_recall_eeprom(regs, dev)) != 0)
1012 return rc;
1013
1014 #ifdef RTW_DEBUG
1015 {
1016 int i;
1017 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1018 ("\n%s: serial ROM:\n\t", device_xname(dev)));
1019 for (i = 0; i < sr->sr_size/2; i++) {
1020 if (((i % 8) == 0) && (i != 0))
1021 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
1022 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1023 (" %04x", sr->sr_content[i]));
1024 }
1025 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
1026 }
1027 #endif /* RTW_DEBUG */
1028 return 0;
1029 }
1030
1031 static void
1032 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1033 device_t dev)
1034 {
1035 uint8_t cfg4;
1036 const char *method;
1037
1038 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1039
1040 switch (rfchipid) {
1041 default:
1042 cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1043 method = "fallback";
1044 break;
1045 case RTW_RFCHIPID_INTERSIL:
1046 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1047 method = "Intersil";
1048 break;
1049 case RTW_RFCHIPID_PHILIPS:
1050 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1051 method = "Philips";
1052 break;
1053 case RTW_RFCHIPID_GCT: /* XXX a guess */
1054 case RTW_RFCHIPID_RFMD:
1055 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1056 method = "RFMD";
1057 break;
1058 }
1059
1060 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1061
1062 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1063
1064 RTW_DPRINTF(RTW_DEBUG_INIT,
1065 ("%s: %s RF programming method, %#02x\n", device_xname(dev), method,
1066 RTW_READ8(regs, RTW_CONFIG4)));
1067 }
1068
1069 static inline void
1070 rtw_init_channels(enum rtw_locale locale,
1071 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1], device_t dev)
1072 {
1073 int i;
1074 const char *name = NULL;
1075 #define ADD_CHANNEL(_chans, _chan) do { \
1076 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
1077 (*_chans)[_chan].ic_freq = \
1078 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1079 } while (0)
1080
1081 switch (locale) {
1082 case RTW_LOCALE_USA: /* 1-11 */
1083 name = "USA";
1084 for (i = 1; i <= 11; i++)
1085 ADD_CHANNEL(chans, i);
1086 break;
1087 case RTW_LOCALE_JAPAN: /* 1-14 */
1088 name = "Japan";
1089 ADD_CHANNEL(chans, 14);
1090 for (i = 1; i <= 14; i++)
1091 ADD_CHANNEL(chans, i);
1092 break;
1093 case RTW_LOCALE_EUROPE: /* 1-13 */
1094 name = "Europe";
1095 for (i = 1; i <= 13; i++)
1096 ADD_CHANNEL(chans, i);
1097 break;
1098 default: /* 10-11 allowed by most countries */
1099 name = "<unknown>";
1100 for (i = 10; i <= 11; i++)
1101 ADD_CHANNEL(chans, i);
1102 break;
1103 }
1104 aprint_normal_dev(dev, "Geographic Location %s\n", name);
1105 #undef ADD_CHANNEL
1106 }
1107
1108
1109 static inline void
1110 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1111 {
1112 uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1113
1114 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1115 case RTW_CONFIG0_GL_USA:
1116 case _RTW_CONFIG0_GL_USA:
1117 *locale = RTW_LOCALE_USA;
1118 break;
1119 case RTW_CONFIG0_GL_JAPAN:
1120 *locale = RTW_LOCALE_JAPAN;
1121 break;
1122 case RTW_CONFIG0_GL_EUROPE:
1123 *locale = RTW_LOCALE_EUROPE;
1124 break;
1125 default:
1126 *locale = RTW_LOCALE_UNKNOWN;
1127 break;
1128 }
1129 }
1130
1131 static inline int
1132 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1133 device_t dev)
1134 {
1135 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1136 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1137 };
1138 uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1139 idr1 = RTW_READ(regs, RTW_IDR1);
1140
1141 (*addr)[0] = __SHIFTOUT(idr0, __BITS(0, 7));
1142 (*addr)[1] = __SHIFTOUT(idr0, __BITS(8, 15));
1143 (*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
1144 (*addr)[3] = __SHIFTOUT(idr0, __BITS(24 ,31));
1145
1146 (*addr)[4] = __SHIFTOUT(idr1, __BITS(0, 7));
1147 (*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
1148
1149 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1150 aprint_error_dev(dev,
1151 "could not get mac address, attach failed\n");
1152 return ENXIO;
1153 }
1154
1155 aprint_normal_dev(dev, "802.11 address %s\n", ether_sprintf(*addr));
1156
1157 return 0;
1158 }
1159
1160 static uint8_t
1161 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1162 struct ieee80211_channel *chan)
1163 {
1164 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1165 KASSERT(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14);
1166 return RTW_SR_GET(sr, idx);
1167 }
1168
1169 static void
1170 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1171 {
1172 int pri;
1173 /* nfree: the number of free descriptors in each ring.
1174 * The beacon ring is a special case: I do not let the
1175 * driver use all of the descriptors on the beacon ring.
1176 * The reasons are two-fold:
1177 *
1178 * (1) A BEACON descriptor's OWN bit is (apparently) not
1179 * updated, so the driver cannot easily know if the descriptor
1180 * belongs to it, or if it is racing the NIC. If the NIC
1181 * does not OWN every descriptor, then the driver can safely
1182 * update the descriptors when RTW_TBDA points at tdb_next.
1183 *
1184 * (2) I hope that the NIC will process more than one BEACON
1185 * descriptor in a single beacon interval, since that will
1186 * enable multiple-BSS support. Since the NIC does not
1187 * clear the OWN bit, there is no natural place for it to
1188 * stop processing BEACON desciptors. Maybe it will *not*
1189 * stop processing them! I do not want to chance the NIC
1190 * looping around and around a saturated beacon ring, so
1191 * I will leave one descriptor unOWNed at all times.
1192 */
1193 u_int nfree[RTW_NTXPRI] =
1194 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1195 RTW_NTXDESCBCN - 1};
1196
1197 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1198 tdb[pri].tdb_nfree = nfree[pri];
1199 tdb[pri].tdb_next = 0;
1200 }
1201 }
1202
1203 static int
1204 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1205 {
1206 int i;
1207 struct rtw_txsoft *ts;
1208
1209 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1210 SIMPLEQ_INIT(&tsb->tsb_freeq);
1211 for (i = 0; i < tsb->tsb_ndesc; i++) {
1212 ts = &tsb->tsb_desc[i];
1213 ts->ts_mbuf = NULL;
1214 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1215 }
1216 tsb->tsb_tx_timer = 0;
1217 return 0;
1218 }
1219
1220 static void
1221 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1222 {
1223 int pri;
1224 for (pri = 0; pri < RTW_NTXPRI; pri++)
1225 rtw_txsoft_blk_init(&tsb[pri]);
1226 }
1227
1228 static inline void
1229 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1230 {
1231 KASSERT(nsync <= rdb->rdb_ndesc);
1232 /* sync to end of ring */
1233 if (desc0 + nsync > rdb->rdb_ndesc) {
1234 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1235 offsetof(struct rtw_descs, hd_rx[desc0]),
1236 sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1237 nsync -= (rdb->rdb_ndesc - desc0);
1238 desc0 = 0;
1239 }
1240
1241 KASSERT(desc0 < rdb->rdb_ndesc);
1242 KASSERT(nsync <= rdb->rdb_ndesc);
1243 KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1244
1245 /* sync what remains */
1246 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1247 offsetof(struct rtw_descs, hd_rx[desc0]),
1248 sizeof(struct rtw_rxdesc) * nsync, ops);
1249 }
1250
1251 static void
1252 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1253 {
1254 /* sync to end of ring */
1255 if (desc0 + nsync > tdb->tdb_ndesc) {
1256 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1257 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1258 sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1259 ops);
1260 nsync -= (tdb->tdb_ndesc - desc0);
1261 desc0 = 0;
1262 }
1263
1264 /* sync what remains */
1265 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1266 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1267 sizeof(struct rtw_txdesc) * nsync, ops);
1268 }
1269
1270 static void
1271 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1272 {
1273 int pri;
1274 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1275 rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1276 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1277 }
1278 }
1279
1280 static void
1281 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1282 {
1283 int i;
1284 struct rtw_rxsoft *rs;
1285
1286 for (i = 0; i < RTW_RXQLEN; i++) {
1287 rs = &desc[i];
1288 if (rs->rs_mbuf == NULL)
1289 continue;
1290 bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1291 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1292 bus_dmamap_unload(dmat, rs->rs_dmamap);
1293 m_freem(rs->rs_mbuf);
1294 rs->rs_mbuf = NULL;
1295 }
1296 }
1297
1298 static inline int
1299 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1300 {
1301 int rc;
1302 struct mbuf *m;
1303
1304 MGETHDR(m, M_DONTWAIT, MT_DATA);
1305 if (m == NULL)
1306 return ENOBUFS;
1307
1308 MCLGET(m, M_DONTWAIT);
1309 if ((m->m_flags & M_EXT) == 0) {
1310 m_freem(m);
1311 return ENOBUFS;
1312 }
1313
1314 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1315
1316 if (rs->rs_mbuf != NULL)
1317 bus_dmamap_unload(dmat, rs->rs_dmamap);
1318
1319 rs->rs_mbuf = NULL;
1320
1321 rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1322 if (rc != 0) {
1323 m_freem(m);
1324 return -1;
1325 }
1326
1327 rs->rs_mbuf = m;
1328
1329 return 0;
1330 }
1331
1332 static int
1333 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1334 int *ndesc, device_t dev)
1335 {
1336 int i, rc = 0;
1337 struct rtw_rxsoft *rs;
1338
1339 for (i = 0; i < RTW_RXQLEN; i++) {
1340 rs = &desc[i];
1341 /* we're in rtw_init, so there should be no mbufs allocated */
1342 KASSERT(rs->rs_mbuf == NULL);
1343 #ifdef RTW_DEBUG
1344 if (i == rtw_rxbufs_limit) {
1345 aprint_error_dev(dev, "TEST hit %d-buffer limit\n", i);
1346 rc = ENOBUFS;
1347 break;
1348 }
1349 #endif /* RTW_DEBUG */
1350 if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1351 aprint_error_dev(dev,
1352 "rtw_rxsoft_alloc failed, %d buffers, rc %d\n",
1353 i, rc);
1354 break;
1355 }
1356 }
1357 *ndesc = i;
1358 return rc;
1359 }
1360
1361 static inline void
1362 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1363 int idx, int kick)
1364 {
1365 int is_last = (idx == rdb->rdb_ndesc - 1);
1366 uint32_t ctl, octl, obuf;
1367 struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1368
1369 /* sync the mbuf before the descriptor */
1370 bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1371 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1372
1373 obuf = rd->rd_buf;
1374 rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1375
1376 ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1377 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1378
1379 if (is_last)
1380 ctl |= RTW_RXCTL_EOR;
1381
1382 octl = rd->rd_ctl;
1383 rd->rd_ctl = htole32(ctl);
1384
1385 RTW_DPRINTF(
1386 kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1387 : RTW_DEBUG_RECV_DESC,
1388 ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1389 le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1390 le32toh(rd->rd_ctl)));
1391
1392 /* sync the descriptor */
1393 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1394 RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1395 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1396 }
1397
1398 static void
1399 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1400 {
1401 int i;
1402 struct rtw_rxdesc *rd;
1403 struct rtw_rxsoft *rs;
1404
1405 for (i = 0; i < rdb->rdb_ndesc; i++) {
1406 rd = &rdb->rdb_desc[i];
1407 rs = &ctl[i];
1408 rtw_rxdesc_init(rdb, rs, i, kick);
1409 }
1410 }
1411
1412 static void
1413 rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
1414 {
1415 struct rtw_regs *regs = &sc->sc_regs;
1416 uint8_t cr;
1417
1418 RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1419 enable ? "enable" : "disable", flags));
1420
1421 cr = RTW_READ8(regs, RTW_CR);
1422
1423 /* XXX reference source does not enable MULRW */
1424 /* enable PCI Read/Write Multiple */
1425 cr |= RTW_CR_MULRW;
1426
1427 /* The receive engine will always start at RDSAR. */
1428 if (enable && (flags & ~cr & RTW_CR_RE)) {
1429 struct rtw_rxdesc_blk *rdb;
1430 rdb = &sc->sc_rxdesc_blk;
1431 rdb->rdb_next = 0;
1432 }
1433
1434 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1435 if (enable)
1436 cr |= flags;
1437 else
1438 cr &= ~flags;
1439 RTW_WRITE8(regs, RTW_CR, cr);
1440 RTW_SYNC(regs, RTW_CR, RTW_CR);
1441
1442 #ifdef RTW_DIAG
1443 if (cr & RTW_CR_TE)
1444 rtw_txring_fixup(sc, __func__, __LINE__);
1445 #endif
1446 if (cr & RTW_CR_TE) {
1447 rtw_tx_kick(&sc->sc_regs,
1448 RTW_TPPOLL_HPQ | RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ);
1449 }
1450 }
1451
1452 static void
1453 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1454 {
1455 #define IS_BEACON(__fc0) \
1456 ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1457 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1458
1459 static const int ratetbl[4] = {2, 4, 11, 22}; /* convert rates:
1460 * hardware -> net80211
1461 */
1462 u_int next, nproc = 0;
1463 int hwrate, len, rate, rssi, sq;
1464 uint32_t hrssi, hstat, htsfth, htsftl;
1465 struct rtw_rxdesc *rd;
1466 struct rtw_rxsoft *rs;
1467 struct rtw_rxdesc_blk *rdb;
1468 struct mbuf *m;
1469 struct ifnet *ifp = &sc->sc_if;
1470
1471 struct ieee80211_node *ni;
1472 struct ieee80211_frame_min *wh;
1473
1474 rdb = &sc->sc_rxdesc_blk;
1475
1476 for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
1477 KASSERT(next < rdb->rdb_ndesc);
1478
1479 rtw_rxdescs_sync(rdb, next, 1,
1480 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1481 rd = &rdb->rdb_desc[next];
1482 rs = &sc->sc_rxsoft[next];
1483
1484 hstat = le32toh(rd->rd_stat);
1485 hrssi = le32toh(rd->rd_rssi);
1486 htsfth = le32toh(rd->rd_tsfth);
1487 htsftl = le32toh(rd->rd_tsftl);
1488
1489 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1490 ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1491 __func__, next, hstat, hrssi, htsfth, htsftl));
1492
1493 ++nproc;
1494
1495 /* still belongs to NIC */
1496 if ((hstat & RTW_RXSTAT_OWN) != 0) {
1497 rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
1498 break;
1499 }
1500
1501 /* ieee80211_input() might reset the receive engine
1502 * (e.g. by indirectly calling rtw_tune()), so save
1503 * the next pointer here and retrieve it again on
1504 * the next round.
1505 */
1506 rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
1507
1508 #ifdef RTW_DEBUG
1509 #define PRINTSTAT(flag) do { \
1510 if ((hstat & flag) != 0) { \
1511 printf("%s" #flag, delim); \
1512 delim = ","; \
1513 } \
1514 } while (0)
1515 if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1516 const char *delim = "<";
1517 printf("%s: ", device_xname(sc->sc_dev));
1518 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1519 printf("status %08x", hstat);
1520 PRINTSTAT(RTW_RXSTAT_SPLCP);
1521 PRINTSTAT(RTW_RXSTAT_MAR);
1522 PRINTSTAT(RTW_RXSTAT_PAR);
1523 PRINTSTAT(RTW_RXSTAT_BAR);
1524 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1525 PRINTSTAT(RTW_RXSTAT_CRC32);
1526 PRINTSTAT(RTW_RXSTAT_ICV);
1527 printf(">, ");
1528 }
1529 }
1530 #endif /* RTW_DEBUG */
1531
1532 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1533 aprint_error_dev(sc->sc_dev,
1534 "DMA error/FIFO overflow %08" PRIx32 ", "
1535 "rx descriptor %d\n", hstat, next);
1536 ifp->if_ierrors++;
1537 goto next;
1538 }
1539
1540 len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1541 if (len < IEEE80211_MIN_LEN) {
1542 sc->sc_ic.ic_stats.is_rx_tooshort++;
1543 goto next;
1544 }
1545 if (len > rs->rs_mbuf->m_len) {
1546 aprint_error_dev(sc->sc_dev,
1547 "rx frame too long, %d > %d, %08" PRIx32
1548 ", desc %d\n",
1549 len, rs->rs_mbuf->m_len, hstat, next);
1550 ifp->if_ierrors++;
1551 goto next;
1552 }
1553
1554 hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1555 if (hwrate >= __arraycount(ratetbl)) {
1556 aprint_error_dev(sc->sc_dev,
1557 "unknown rate #%" __PRIuBITS "\n",
1558 __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1559 ifp->if_ierrors++;
1560 goto next;
1561 }
1562 rate = ratetbl[hwrate];
1563
1564 #ifdef RTW_DEBUG
1565 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1566 ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1567 (rate * 5) % 10, htsfth, htsftl));
1568 #endif /* RTW_DEBUG */
1569
1570 /* if bad flags, skip descriptor */
1571 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1572 aprint_error_dev(sc->sc_dev, "too many rx segments, "
1573 "next=%d, %08" PRIx32 "\n", next, hstat);
1574 goto next;
1575 }
1576
1577 bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1578 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1579
1580 m = rs->rs_mbuf;
1581
1582 /* if temporarily out of memory, re-use mbuf */
1583 switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1584 case 0:
1585 break;
1586 case ENOBUFS:
1587 aprint_error_dev(sc->sc_dev,
1588 "rtw_rxsoft_alloc(, %d) failed, dropping packet\n",
1589 next);
1590 goto next;
1591 default:
1592 /* XXX shorten rx ring, instead? */
1593 aprint_error_dev(sc->sc_dev,
1594 "could not load DMA map\n");
1595 }
1596
1597 sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1598
1599 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1600 rssi = UINT8_MAX - sq;
1601 else {
1602 rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1603 /* TBD find out each front-end's LNA gain in the
1604 * front-end's units
1605 */
1606 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1607 rssi |= 0x80;
1608 }
1609
1610 /* Note well: now we cannot recycle the rs_mbuf unless
1611 * we restore its original length.
1612 */
1613 m->m_pkthdr.rcvif = ifp;
1614 m->m_pkthdr.len = m->m_len = len;
1615
1616 wh = mtod(m, struct ieee80211_frame_min *);
1617
1618 if (!IS_BEACON(wh->i_fc[0]))
1619 sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1620
1621 sc->sc_tsfth = htsfth;
1622
1623 #ifdef RTW_DEBUG
1624 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1625 (IFF_DEBUG|IFF_LINK2)) {
1626 ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1627 rate, rssi);
1628 }
1629 #endif /* RTW_DEBUG */
1630
1631 #if NBPFILTER > 0
1632 if (sc->sc_radiobpf != NULL) {
1633 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1634
1635 rr->rr_tsft =
1636 htole64(((uint64_t)htsfth << 32) | htsftl);
1637
1638 rr->rr_flags = IEEE80211_RADIOTAP_F_FCS;
1639
1640 if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1641 rr->rr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1642 if ((hstat & RTW_RXSTAT_CRC32) != 0)
1643 rr->rr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
1644
1645 rr->rr_rate = rate;
1646
1647 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1648 rr->rr_u.u_philips.p_antsignal = rssi;
1649 else {
1650 rr->rr_u.u_other.o_antsignal = rssi;
1651 rr->rr_u.u_other.o_barker_lock =
1652 htole16(UINT8_MAX - sq);
1653 }
1654
1655 bpf_mtap2(sc->sc_radiobpf, rr,
1656 sizeof(sc->sc_rxtapu), m);
1657 }
1658 #endif /* NBPFILTER > 0 */
1659
1660 if ((hstat & RTW_RXSTAT_RES) != 0) {
1661 m_freem(m);
1662 goto next;
1663 }
1664
1665 /* CRC is included with the packet; trim it off. */
1666 m_adj(m, -IEEE80211_CRC_LEN);
1667
1668 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1669 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1670 ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1671 ieee80211_free_node(ni);
1672 next:
1673 rtw_rxdesc_init(rdb, rs, next, 0);
1674 }
1675 #undef IS_BEACON
1676 }
1677
1678 static void
1679 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1680 struct rtw_txsoft *ts)
1681 {
1682 struct mbuf *m;
1683 struct ieee80211_node *ni;
1684
1685 m = ts->ts_mbuf;
1686 ni = ts->ts_ni;
1687 KASSERT(m != NULL);
1688 KASSERT(ni != NULL);
1689 ts->ts_mbuf = NULL;
1690 ts->ts_ni = NULL;
1691
1692 bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1693 BUS_DMASYNC_POSTWRITE);
1694 bus_dmamap_unload(dmat, ts->ts_dmamap);
1695 m_freem(m);
1696 ieee80211_free_node(ni);
1697 }
1698
1699 static void
1700 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1701 struct rtw_txsoft_blk *tsb)
1702 {
1703 struct rtw_txsoft *ts;
1704
1705 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1706 rtw_txsoft_release(dmat, ic, ts);
1707 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1708 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1709 }
1710 tsb->tsb_tx_timer = 0;
1711 }
1712
1713 static inline void
1714 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1715 struct rtw_txsoft *ts, int ndesc)
1716 {
1717 uint32_t hstat;
1718 int data_retry, rts_retry;
1719 struct rtw_txdesc *tdn;
1720 const char *condstring;
1721 struct ifnet *ifp = &sc->sc_if;
1722
1723 rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1724
1725 tdb->tdb_nfree += ndesc;
1726
1727 tdn = &tdb->tdb_desc[ts->ts_last];
1728
1729 hstat = le32toh(tdn->td_stat);
1730 rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1731 data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1732
1733 ifp->if_collisions += rts_retry + data_retry;
1734
1735 if ((hstat & RTW_TXSTAT_TOK) != 0)
1736 condstring = "ok";
1737 else {
1738 ifp->if_oerrors++;
1739 condstring = "error";
1740 }
1741
1742 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1743 ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1744 device_xname(sc->sc_dev), ts, ts->ts_first, ts->ts_last,
1745 condstring, rts_retry, data_retry));
1746 }
1747
1748 static void
1749 rtw_reset_oactive(struct rtw_softc *sc)
1750 {
1751 short oflags;
1752 int pri;
1753 struct rtw_txsoft_blk *tsb;
1754 struct rtw_txdesc_blk *tdb;
1755 oflags = sc->sc_if.if_flags;
1756 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1757 tsb = &sc->sc_txsoft_blk[pri];
1758 tdb = &sc->sc_txdesc_blk[pri];
1759 if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1760 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1761 }
1762 if (oflags != sc->sc_if.if_flags) {
1763 DPRINTF(sc, RTW_DEBUG_OACTIVE,
1764 ("%s: reset OACTIVE\n", __func__));
1765 }
1766 }
1767
1768 /* Collect transmitted packets. */
1769 static bool
1770 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1771 struct rtw_txdesc_blk *tdb, int force)
1772 {
1773 bool collected = false;
1774 int ndesc;
1775 struct rtw_txsoft *ts;
1776
1777 #ifdef RTW_DEBUG
1778 rtw_dump_rings(sc);
1779 #endif
1780
1781 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1782 /* If we're clearing a failed transmission, only clear
1783 up to the last packet the hardware has processed. */
1784 if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
1785 break;
1786
1787 ndesc = 1 + ts->ts_last - ts->ts_first;
1788 if (ts->ts_last < ts->ts_first)
1789 ndesc += tdb->tdb_ndesc;
1790
1791 KASSERT(ndesc > 0);
1792
1793 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1794 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1795
1796 if (force) {
1797 int next;
1798 #ifdef RTW_DIAG
1799 printf("%s: clearing packet, stats", __func__);
1800 #endif
1801 for (next = ts->ts_first; ;
1802 next = RTW_NEXT_IDX(tdb, next)) {
1803 #ifdef RTW_DIAG
1804 printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
1805 #endif
1806 tdb->tdb_desc[next].td_stat &=
1807 ~htole32(RTW_TXSTAT_OWN);
1808 if (next == ts->ts_last)
1809 break;
1810 }
1811 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1812 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1813 #ifdef RTW_DIAG
1814 next = RTW_NEXT_IDX(tdb, next);
1815 printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
1816 le32toh(tdb->tdb_desc[next].td_stat),
1817 rtw_txring_next(&sc->sc_regs, tdb));
1818 #endif
1819 } else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1820 htole32(RTW_TXSTAT_OWN)) != 0) {
1821 rtw_txdescs_sync(tdb, ts->ts_last, 1,
1822 BUS_DMASYNC_PREREAD);
1823 break;
1824 }
1825
1826 collected = true;
1827
1828 rtw_collect_txpkt(sc, tdb, ts, ndesc);
1829 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1830 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1831 }
1832
1833 /* no more pending transmissions, cancel watchdog */
1834 if (ts == NULL)
1835 tsb->tsb_tx_timer = 0;
1836 rtw_reset_oactive(sc);
1837
1838 return collected;
1839 }
1840
1841 static void
1842 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1843 {
1844 int pri;
1845 struct rtw_txsoft_blk *tsb;
1846 struct rtw_txdesc_blk *tdb;
1847 struct ifnet *ifp = &sc->sc_if;
1848
1849 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1850 tsb = &sc->sc_txsoft_blk[pri];
1851 tdb = &sc->sc_txdesc_blk[pri];
1852 rtw_collect_txring(sc, tsb, tdb, 0);
1853 }
1854
1855 if ((isr & RTW_INTR_TX) != 0)
1856 rtw_start(ifp);
1857
1858 return;
1859 }
1860
1861 static void
1862 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1863 {
1864 u_int next;
1865 uint32_t tsfth, tsftl;
1866 struct ieee80211com *ic;
1867 struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1868 struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1869 struct mbuf *m;
1870
1871 tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1872 tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1873
1874 if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) {
1875 next = rtw_txring_next(&sc->sc_regs, tdb);
1876 RTW_DPRINTF(RTW_DEBUG_BEACON,
1877 ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1878 ", next %u expected %u, %" PRIu64 "\n", __func__,
1879 (next == tdb->tdb_next) ? "" : "un", isr, next,
1880 tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1881 if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
1882 rtw_collect_txring(sc, tsb, tdb, 1);
1883 }
1884 /* Start beacon transmission. */
1885
1886 if ((isr & RTW_INTR_BCNINT) != 0 &&
1887 sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1888 SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1889 RTW_DPRINTF(RTW_DEBUG_BEACON,
1890 ("%s: beacon prep. time, isr = %#04" PRIx16
1891 ", %16" PRIu64 "\n", __func__, isr,
1892 (uint64_t)tsfth << 32 | tsftl));
1893 ic = &sc->sc_ic;
1894 m = rtw_beacon_alloc(sc, ic->ic_bss);
1895
1896 if (m == NULL) {
1897 aprint_error_dev(sc->sc_dev,
1898 "could not allocate beacon\n");
1899 return;
1900 }
1901 m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss);
1902 IF_ENQUEUE(&sc->sc_beaconq, m);
1903 rtw_start(&sc->sc_if);
1904 }
1905 }
1906
1907 static void
1908 rtw_intr_atim(struct rtw_softc *sc)
1909 {
1910 /* TBD */
1911 return;
1912 }
1913
1914 #ifdef RTW_DEBUG
1915 static void
1916 rtw_dump_rings(struct rtw_softc *sc)
1917 {
1918 struct rtw_txdesc_blk *tdb;
1919 struct rtw_rxdesc *rd;
1920 struct rtw_rxdesc_blk *rdb;
1921 int desc, pri;
1922
1923 if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1924 return;
1925
1926 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1927 tdb = &sc->sc_txdesc_blk[pri];
1928 printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1929 tdb->tdb_ndesc, tdb->tdb_nfree);
1930 for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1931 rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1932 }
1933
1934 rdb = &sc->sc_rxdesc_blk;
1935
1936 for (desc = 0; desc < RTW_RXQLEN; desc++) {
1937 rd = &rdb->rdb_desc[desc];
1938 printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1939 "rsvd1/tsfth %08x\n", __func__,
1940 (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1941 le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1942 le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1943 }
1944 }
1945 #endif /* RTW_DEBUG */
1946
1947 static void
1948 rtw_hwring_setup(struct rtw_softc *sc)
1949 {
1950 int pri;
1951 struct rtw_regs *regs = &sc->sc_regs;
1952 struct rtw_txdesc_blk *tdb;
1953
1954 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1955 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1956 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1957 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1958 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1959 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1960 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1961 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1962
1963 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1964 tdb = &sc->sc_txdesc_blk[pri];
1965 RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1966 RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1967 ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1968 (uintptr_t)tdb->tdb_base));
1969 }
1970
1971 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1972
1973 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1974 ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1975 (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1976
1977 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1978
1979 }
1980
1981 static int
1982 rtw_swring_setup(struct rtw_softc *sc)
1983 {
1984 int rc;
1985 struct rtw_rxdesc_blk *rdb;
1986
1987 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1988
1989 rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
1990
1991 rdb = &sc->sc_rxdesc_blk;
1992 if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
1993 sc->sc_dev)) != 0 && rdb->rdb_ndesc == 0) {
1994 aprint_error_dev(sc->sc_dev, "could not allocate rx buffers\n");
1995 return rc;
1996 }
1997
1998 rdb = &sc->sc_rxdesc_blk;
1999 rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
2000 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2001 rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
2002 rdb->rdb_next = 0;
2003
2004 rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
2005 return 0;
2006 }
2007
2008 static void
2009 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
2010 {
2011 int i;
2012
2013 (void)memset(tdb->tdb_desc, 0,
2014 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
2015 for (i = 0; i < tdb->tdb_ndesc; i++)
2016 tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
2017 }
2018
2019 static u_int
2020 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
2021 {
2022 return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
2023 sizeof(struct rtw_txdesc);
2024 }
2025
2026 #ifdef RTW_DIAG
2027 static void
2028 rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
2029 {
2030 int pri;
2031 u_int next;
2032 struct rtw_txdesc_blk *tdb;
2033 struct rtw_regs *regs = &sc->sc_regs;
2034
2035 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2036 int i;
2037 tdb = &sc->sc_txdesc_blk[pri];
2038 next = rtw_txring_next(regs, tdb);
2039 if (tdb->tdb_next == next)
2040 continue;
2041 for (i = 0; next != tdb->tdb_next;
2042 next = RTW_NEXT_IDX(tdb, next), i++) {
2043 if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
2044 break;
2045 }
2046 printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
2047 ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
2048 if (tdb->tdb_next == next)
2049 continue;
2050 tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
2051 }
2052 }
2053 #endif
2054
2055 static void
2056 rtw_txdescs_reset(struct rtw_softc *sc)
2057 {
2058 int pri;
2059 struct rtw_txsoft_blk *tsb;
2060 struct rtw_txdesc_blk *tdb;
2061
2062 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2063 tsb = &sc->sc_txsoft_blk[pri];
2064 tdb = &sc->sc_txdesc_blk[pri];
2065 rtw_collect_txring(sc, tsb, tdb, 1);
2066 #ifdef RTW_DIAG
2067 if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
2068 printf("%s: packets left in ring %d\n", __func__, pri);
2069 #endif
2070 }
2071 }
2072
2073 static void
2074 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2075 {
2076 aprint_error_dev(sc->sc_dev, "tx fifo underflow\n");
2077
2078 RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
2079 "\n", device_xname(sc->sc_dev), isr));
2080
2081 #ifdef RTW_DEBUG
2082 rtw_dump_rings(sc);
2083 #endif /* RTW_DEBUG */
2084
2085 /* Collect tx'd packets. XXX let's hope this stops the transmit
2086 * timeouts.
2087 */
2088 rtw_txdescs_reset(sc);
2089
2090 #ifdef RTW_DEBUG
2091 rtw_dump_rings(sc);
2092 #endif /* RTW_DEBUG */
2093 }
2094
2095 static inline void
2096 rtw_suspend_ticks(struct rtw_softc *sc)
2097 {
2098 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2099 ("%s: suspending ticks\n", device_xname(sc->sc_dev)));
2100 sc->sc_do_tick = 0;
2101 }
2102
2103 static inline void
2104 rtw_resume_ticks(struct rtw_softc *sc)
2105 {
2106 uint32_t tsftrl0, tsftrl1, next_tick;
2107
2108 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2109
2110 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2111 next_tick = tsftrl1 + 1000000;
2112 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
2113
2114 sc->sc_do_tick = 1;
2115
2116 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2117 ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2118 device_xname(sc->sc_dev), tsftrl1 - tsftrl0, tsftrl1, next_tick));
2119 }
2120
2121 static void
2122 rtw_intr_timeout(struct rtw_softc *sc)
2123 {
2124 RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", device_xname(sc->sc_dev)));
2125 if (sc->sc_do_tick)
2126 rtw_resume_ticks(sc);
2127 return;
2128 }
2129
2130 int
2131 rtw_intr(void *arg)
2132 {
2133 int i;
2134 struct rtw_softc *sc = arg;
2135 struct rtw_regs *regs = &sc->sc_regs;
2136 uint16_t isr;
2137 struct ifnet *ifp = &sc->sc_if;
2138
2139 /*
2140 * If the interface isn't running, the interrupt couldn't
2141 * possibly have come from us.
2142 */
2143 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2144 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
2145 RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n",
2146 device_xname(sc->sc_dev)));
2147 return (0);
2148 }
2149
2150 for (i = 0; i < 10; i++) {
2151 isr = RTW_READ16(regs, RTW_ISR);
2152
2153 RTW_WRITE16(regs, RTW_ISR, isr);
2154 RTW_WBR(regs, RTW_ISR, RTW_ISR);
2155
2156 if (sc->sc_intr_ack != NULL)
2157 (*sc->sc_intr_ack)(regs);
2158
2159 if (isr == 0)
2160 break;
2161
2162 #ifdef RTW_DEBUG
2163 #define PRINTINTR(flag) do { \
2164 if ((isr & flag) != 0) { \
2165 printf("%s" #flag, delim); \
2166 delim = ","; \
2167 } \
2168 } while (0)
2169
2170 if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2171 const char *delim = "<";
2172
2173 printf("%s: reg[ISR] = %x", device_xname(sc->sc_dev),
2174 isr);
2175
2176 PRINTINTR(RTW_INTR_TXFOVW);
2177 PRINTINTR(RTW_INTR_TIMEOUT);
2178 PRINTINTR(RTW_INTR_BCNINT);
2179 PRINTINTR(RTW_INTR_ATIMINT);
2180 PRINTINTR(RTW_INTR_TBDER);
2181 PRINTINTR(RTW_INTR_TBDOK);
2182 PRINTINTR(RTW_INTR_THPDER);
2183 PRINTINTR(RTW_INTR_THPDOK);
2184 PRINTINTR(RTW_INTR_TNPDER);
2185 PRINTINTR(RTW_INTR_TNPDOK);
2186 PRINTINTR(RTW_INTR_RXFOVW);
2187 PRINTINTR(RTW_INTR_RDU);
2188 PRINTINTR(RTW_INTR_TLPDER);
2189 PRINTINTR(RTW_INTR_TLPDOK);
2190 PRINTINTR(RTW_INTR_RER);
2191 PRINTINTR(RTW_INTR_ROK);
2192
2193 printf(">\n");
2194 }
2195 #undef PRINTINTR
2196 #endif /* RTW_DEBUG */
2197
2198 if ((isr & RTW_INTR_RX) != 0)
2199 rtw_intr_rx(sc, isr);
2200 if ((isr & RTW_INTR_TX) != 0)
2201 rtw_intr_tx(sc, isr);
2202 if ((isr & RTW_INTR_BEACON) != 0)
2203 rtw_intr_beacon(sc, isr);
2204 if ((isr & RTW_INTR_ATIMINT) != 0)
2205 rtw_intr_atim(sc);
2206 if ((isr & RTW_INTR_IOERROR) != 0)
2207 rtw_intr_ioerror(sc, isr);
2208 if ((isr & RTW_INTR_TIMEOUT) != 0)
2209 rtw_intr_timeout(sc);
2210 }
2211
2212 return 1;
2213 }
2214
2215 /* Must be called at splnet. */
2216 static void
2217 rtw_stop(struct ifnet *ifp, int disable)
2218 {
2219 int pri;
2220 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2221 struct ieee80211com *ic = &sc->sc_ic;
2222 struct rtw_regs *regs = &sc->sc_regs;
2223
2224 rtw_suspend_ticks(sc);
2225
2226 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2227
2228 if (device_has_power(sc->sc_dev)) {
2229 /* Disable interrupts. */
2230 RTW_WRITE16(regs, RTW_IMR, 0);
2231
2232 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2233
2234 /* Stop the transmit and receive processes. First stop DMA,
2235 * then disable receiver and transmitter.
2236 */
2237 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2238
2239 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2240
2241 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2242 }
2243
2244 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2245 rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2246 &sc->sc_txsoft_blk[pri]);
2247 }
2248
2249 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2250
2251 /* Mark the interface as not running. Cancel the watchdog timer. */
2252 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2253 ifp->if_timer = 0;
2254
2255 if (disable)
2256 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2257
2258 return;
2259 }
2260
2261 const char *
2262 rtw_pwrstate_string(enum rtw_pwrstate power)
2263 {
2264 switch (power) {
2265 case RTW_ON:
2266 return "on";
2267 case RTW_SLEEP:
2268 return "sleep";
2269 case RTW_OFF:
2270 return "off";
2271 default:
2272 return "unknown";
2273 }
2274 }
2275
2276 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2277 * reference driver, plus a magic Maxim "ON" value that comes from
2278 * the Realtek document "Windows PG for Rtl8180."
2279 */
2280 static void
2281 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2282 int before_rf, int digphy)
2283 {
2284 uint32_t anaparm;
2285
2286 anaparm = RTW_READ(regs, RTW_ANAPARM);
2287 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2288
2289 switch (power) {
2290 case RTW_OFF:
2291 if (before_rf)
2292 return;
2293 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2294 anaparm |= RTW_ANAPARM_TXDACOFF;
2295 break;
2296 case RTW_SLEEP:
2297 if (!before_rf)
2298 return;
2299 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2300 anaparm |= RTW_ANAPARM_TXDACOFF;
2301 break;
2302 case RTW_ON:
2303 if (!before_rf)
2304 return;
2305 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2306 break;
2307 }
2308 RTW_DPRINTF(RTW_DEBUG_PWR,
2309 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2310 __func__, rtw_pwrstate_string(power),
2311 (before_rf) ? "before" : "after", anaparm));
2312
2313 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2314 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2315 }
2316
2317 /* XXX I am using the RFMD settings gleaned from the reference
2318 * driver. They agree
2319 */
2320 static void
2321 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2322 int before_rf, int digphy)
2323 {
2324 uint32_t anaparm;
2325
2326 anaparm = RTW_READ(regs, RTW_ANAPARM);
2327 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2328
2329 switch (power) {
2330 case RTW_OFF:
2331 if (before_rf)
2332 return;
2333 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2334 anaparm |= RTW_ANAPARM_TXDACOFF;
2335 break;
2336 case RTW_SLEEP:
2337 if (!before_rf)
2338 return;
2339 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2340 anaparm |= RTW_ANAPARM_TXDACOFF;
2341 break;
2342 case RTW_ON:
2343 if (!before_rf)
2344 return;
2345 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2346 break;
2347 }
2348 RTW_DPRINTF(RTW_DEBUG_PWR,
2349 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2350 __func__, rtw_pwrstate_string(power),
2351 (before_rf) ? "before" : "after", anaparm));
2352
2353 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2354 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2355 }
2356
2357 static void
2358 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2359 int before_rf, int digphy)
2360 {
2361 uint32_t anaparm;
2362
2363 anaparm = RTW_READ(regs, RTW_ANAPARM);
2364 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2365
2366 switch (power) {
2367 case RTW_OFF:
2368 if (before_rf)
2369 return;
2370 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2371 anaparm |= RTW_ANAPARM_TXDACOFF;
2372 break;
2373 case RTW_SLEEP:
2374 if (!before_rf)
2375 return;
2376 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2377 anaparm |= RTW_ANAPARM_TXDACOFF;
2378 break;
2379 case RTW_ON:
2380 if (!before_rf)
2381 return;
2382 if (digphy) {
2383 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2384 /* XXX guess */
2385 anaparm |= RTW_ANAPARM_TXDACOFF;
2386 } else
2387 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2388 break;
2389 }
2390 RTW_DPRINTF(RTW_DEBUG_PWR,
2391 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2392 __func__, rtw_pwrstate_string(power),
2393 (before_rf) ? "before" : "after", anaparm));
2394
2395 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2396 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2397 }
2398
2399 static void
2400 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2401 int digphy)
2402 {
2403 struct rtw_regs *regs = &sc->sc_regs;
2404
2405 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2406
2407 (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2408
2409 rtw_set_access(regs, RTW_ACCESS_NONE);
2410
2411 return;
2412 }
2413
2414 static int
2415 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2416 {
2417 int rc;
2418
2419 RTW_DPRINTF(RTW_DEBUG_PWR,
2420 ("%s: %s->%s\n", __func__,
2421 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2422
2423 if (sc->sc_pwrstate == power)
2424 return 0;
2425
2426 rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2427 rc = rtw_rf_pwrstate(sc->sc_rf, power);
2428 rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2429
2430 switch (power) {
2431 case RTW_ON:
2432 /* TBD set LEDs */
2433 break;
2434 case RTW_SLEEP:
2435 /* TBD */
2436 break;
2437 case RTW_OFF:
2438 /* TBD */
2439 break;
2440 }
2441 if (rc == 0)
2442 sc->sc_pwrstate = power;
2443 else
2444 sc->sc_pwrstate = RTW_OFF;
2445 return rc;
2446 }
2447
2448 static int
2449 rtw_tune(struct rtw_softc *sc)
2450 {
2451 struct ieee80211com *ic = &sc->sc_ic;
2452 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
2453 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
2454 u_int chan;
2455 int rc;
2456 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2457 dflantb = sc->sc_flags & RTW_F_DFLANTB;
2458
2459 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2460 KASSERT(chan != IEEE80211_CHAN_ANY);
2461
2462 rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2463 rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2464
2465 rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2466 rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2467
2468 if (chan == sc->sc_cur_chan) {
2469 RTW_DPRINTF(RTW_DEBUG_TUNE,
2470 ("%s: already tuned chan #%d\n", __func__, chan));
2471 return 0;
2472 }
2473
2474 rtw_suspend_ticks(sc);
2475
2476 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2477
2478 /* TBD wait for Tx to complete */
2479
2480 KASSERT(device_has_power(sc->sc_dev));
2481
2482 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2483 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2484 ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2485 /* XXX condition on powersaving */
2486 aprint_error_dev(sc->sc_dev, "phy init failed\n");
2487 }
2488
2489 sc->sc_cur_chan = chan;
2490
2491 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2492
2493 rtw_resume_ticks(sc);
2494
2495 return rc;
2496 }
2497
2498 bool
2499 rtw_suspend(device_t self PMF_FN_ARGS)
2500 {
2501 int rc;
2502 struct rtw_softc *sc = device_private(self);
2503
2504 sc->sc_flags &= ~RTW_F_DK_VALID;
2505
2506 if (!device_has_power(self))
2507 return false;
2508
2509 /* turn off PHY */
2510 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2511 aprint_error_dev(self, "failed to turn off PHY (%d)\n", rc);
2512 return false;
2513 }
2514
2515 rtw_disable_interrupts(&sc->sc_regs);
2516
2517 return true;
2518 }
2519
2520 bool
2521 rtw_resume(device_t self PMF_FN_ARGS)
2522 {
2523 struct rtw_softc *sc = device_private(self);
2524
2525 /* Power may have been removed, resetting WEP keys.
2526 */
2527 sc->sc_flags &= ~RTW_F_DK_VALID;
2528 rtw_enable_interrupts(sc);
2529
2530 return true;
2531 }
2532
2533 static void
2534 rtw_transmit_config(struct rtw_regs *regs)
2535 {
2536 uint32_t tcr;
2537
2538 tcr = RTW_READ(regs, RTW_TCR);
2539
2540 tcr |= RTW_TCR_CWMIN;
2541 tcr &= ~RTW_TCR_MXDMA_MASK;
2542 tcr |= RTW_TCR_MXDMA_256;
2543 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
2544 tcr &= ~RTW_TCR_LBK_MASK;
2545 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
2546
2547 /* set short/long retry limits */
2548 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2549 tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
2550
2551 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
2552
2553 RTW_WRITE(regs, RTW_TCR, tcr);
2554 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2555 }
2556
2557 static void
2558 rtw_disable_interrupts(struct rtw_regs *regs)
2559 {
2560 RTW_WRITE16(regs, RTW_IMR, 0);
2561 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2562 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2563 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2564 }
2565
2566 static void
2567 rtw_enable_interrupts(struct rtw_softc *sc)
2568 {
2569 struct rtw_regs *regs = &sc->sc_regs;
2570
2571 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2572 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2573
2574 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2575 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2576 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2577 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2578
2579 /* XXX necessary? */
2580 if (sc->sc_intr_ack != NULL)
2581 (*sc->sc_intr_ack)(regs);
2582 }
2583
2584 static void
2585 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2586 {
2587 uint8_t msr;
2588
2589 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2590 rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2591
2592 msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2593
2594 switch (opmode) {
2595 case IEEE80211_M_AHDEMO:
2596 case IEEE80211_M_IBSS:
2597 msr |= RTW_MSR_NETYPE_ADHOC_OK;
2598 break;
2599 case IEEE80211_M_HOSTAP:
2600 msr |= RTW_MSR_NETYPE_AP_OK;
2601 break;
2602 case IEEE80211_M_MONITOR:
2603 /* XXX */
2604 msr |= RTW_MSR_NETYPE_NOLINK;
2605 break;
2606 case IEEE80211_M_STA:
2607 msr |= RTW_MSR_NETYPE_INFRA_OK;
2608 break;
2609 }
2610 RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2611
2612 rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2613 }
2614
2615 #define rtw_calchash(addr) \
2616 (ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2617
2618 static void
2619 rtw_pktfilt_load(struct rtw_softc *sc)
2620 {
2621 struct rtw_regs *regs = &sc->sc_regs;
2622 struct ieee80211com *ic = &sc->sc_ic;
2623 struct ethercom *ec = &sc->sc_ec;
2624 struct ifnet *ifp = &sc->sc_if;
2625 int hash;
2626 uint32_t hashes[2] = { 0, 0 };
2627 struct ether_multi *enm;
2628 struct ether_multistep step;
2629
2630 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2631
2632 sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2633 sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2634
2635 sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2636 /* MAC auto-reset PHY (huh?) */
2637 sc->sc_rcr |= RTW_RCR_ENMARP;
2638 /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
2639 sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2640
2641 switch (ic->ic_opmode) {
2642 case IEEE80211_M_MONITOR:
2643 sc->sc_rcr |= RTW_RCR_MONITOR;
2644 break;
2645 case IEEE80211_M_AHDEMO:
2646 case IEEE80211_M_IBSS:
2647 /* receive broadcasts in our BSS */
2648 sc->sc_rcr |= RTW_RCR_ADD3;
2649 break;
2650 default:
2651 break;
2652 }
2653
2654 ifp->if_flags &= ~IFF_ALLMULTI;
2655
2656 /*
2657 * Program the 64-bit multicast hash filter.
2658 */
2659 ETHER_FIRST_MULTI(step, ec, enm);
2660 while (enm != NULL) {
2661 /* XXX */
2662 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2663 ETHER_ADDR_LEN) != 0) {
2664 ifp->if_flags |= IFF_ALLMULTI;
2665 break;
2666 }
2667
2668 hash = rtw_calchash(enm->enm_addrlo);
2669 hashes[hash >> 5] |= (1 << (hash & 0x1f));
2670 ETHER_NEXT_MULTI(step, enm);
2671 }
2672
2673 /* XXX accept all broadcast if scanning */
2674 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2675 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2676
2677 if (ifp->if_flags & IFF_PROMISC) {
2678 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2679 sc->sc_rcr |= RTW_RCR_ACRC32; /* accept frames failing CRC */
2680 sc->sc_rcr |= RTW_RCR_AICV; /* accept frames failing ICV */
2681 ifp->if_flags |= IFF_ALLMULTI;
2682 }
2683
2684 if (ifp->if_flags & IFF_ALLMULTI)
2685 hashes[0] = hashes[1] = 0xffffffff;
2686
2687 if ((hashes[0] | hashes[1]) != 0)
2688 sc->sc_rcr |= RTW_RCR_AM; /* accept multicast */
2689
2690 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2691 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2692 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2693 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2694
2695 DPRINTF(sc, RTW_DEBUG_PKTFILT,
2696 ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2697 device_xname(sc->sc_dev), RTW_READ(regs, RTW_MAR0),
2698 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2699 }
2700
2701 static struct mbuf *
2702 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2703 {
2704 struct ieee80211com *ic = &sc->sc_ic;
2705 struct mbuf *m;
2706 struct ieee80211_beacon_offsets boff;
2707
2708 if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2709 RTW_DPRINTF(RTW_DEBUG_BEACON,
2710 ("%s: m %p len %u\n", __func__, m, m->m_len));
2711 }
2712 return m;
2713 }
2714
2715 /* Must be called at splnet. */
2716 static int
2717 rtw_init(struct ifnet *ifp)
2718 {
2719 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2720 struct ieee80211com *ic = &sc->sc_ic;
2721 struct rtw_regs *regs = &sc->sc_regs;
2722 int rc;
2723
2724 if (device_is_active(sc->sc_dev)) {
2725 /* Cancel pending I/O and reset. */
2726 rtw_stop(ifp, 0);
2727 } else if (!pmf_device_resume(sc->sc_dev, &sc->sc_qual) ||
2728 !device_is_active(sc->sc_dev))
2729 return 0;
2730
2731 DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2732 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2733 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2734
2735 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2736 goto out;
2737
2738 if ((rc = rtw_swring_setup(sc)) != 0)
2739 goto out;
2740
2741 rtw_transmit_config(regs);
2742
2743 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2744
2745 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2746 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2747
2748 /* long PLCP header, 1Mb/2Mb basic rate */
2749 RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2750 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2751
2752 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2753 rtw_set_access(regs, RTW_ACCESS_NONE);
2754
2755 /* XXX from reference sources */
2756 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2757 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2758
2759 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev);
2760
2761 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2762 /* from Linux driver */
2763 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2764
2765 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2766
2767 rtw_enable_interrupts(sc);
2768
2769 rtw_pktfilt_load(sc);
2770
2771 rtw_hwring_setup(sc);
2772
2773 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2774
2775 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2776
2777 ifp->if_flags |= IFF_RUNNING;
2778 ic->ic_state = IEEE80211_S_INIT;
2779
2780 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2781 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2782
2783 rtw_resume_ticks(sc);
2784
2785 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2786
2787 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2788 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2789 else
2790 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2791
2792 out:
2793 aprint_error_dev(sc->sc_dev, "interface not running\n");
2794 return rc;
2795 }
2796
2797 static inline void
2798 rtw_led_init(struct rtw_regs *regs)
2799 {
2800 uint8_t cfg0, cfg1;
2801
2802 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2803
2804 cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2805 cfg0 |= RTW_CONFIG0_LEDGPOEN;
2806 RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2807
2808 cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2809 RTW_DPRINTF(RTW_DEBUG_LED,
2810 ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2811
2812 cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2813 cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2814 RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2815
2816 rtw_set_access(regs, RTW_ACCESS_NONE);
2817 }
2818
2819 /*
2820 * IEEE80211_S_INIT: LED1 off
2821 *
2822 * IEEE80211_S_AUTH,
2823 * IEEE80211_S_ASSOC,
2824 * IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2825 *
2826 * IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx
2827 */
2828 static void
2829 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2830 {
2831 struct rtw_led_state *ls;
2832
2833 ls = &sc->sc_led_state;
2834
2835 switch (nstate) {
2836 case IEEE80211_S_INIT:
2837 rtw_led_init(&sc->sc_regs);
2838 aprint_debug_dev(sc->sc_dev, "stopping blink\n");
2839 callout_stop(&ls->ls_slow_ch);
2840 callout_stop(&ls->ls_fast_ch);
2841 ls->ls_slowblink = 0;
2842 ls->ls_actblink = 0;
2843 ls->ls_default = 0;
2844 break;
2845 case IEEE80211_S_SCAN:
2846 aprint_debug_dev(sc->sc_dev, "scheduling blink\n");
2847 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2848 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2849 /*FALLTHROUGH*/
2850 case IEEE80211_S_AUTH:
2851 case IEEE80211_S_ASSOC:
2852 ls->ls_default = RTW_LED1;
2853 ls->ls_actblink = RTW_LED1;
2854 ls->ls_slowblink = RTW_LED1;
2855 break;
2856 case IEEE80211_S_RUN:
2857 ls->ls_slowblink = 0;
2858 break;
2859 }
2860 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2861 }
2862
2863 static void
2864 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2865 {
2866 uint8_t led_condition;
2867 bus_size_t ofs;
2868 uint8_t mask, newval, val;
2869
2870 led_condition = ls->ls_default;
2871
2872 if (ls->ls_state & RTW_LED_S_SLOW)
2873 led_condition ^= ls->ls_slowblink;
2874 if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX))
2875 led_condition ^= ls->ls_actblink;
2876
2877 RTW_DPRINTF(RTW_DEBUG_LED,
2878 ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2879
2880 switch (hwverid) {
2881 default:
2882 case 'F':
2883 ofs = RTW_PSR;
2884 newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2885 if (led_condition & RTW_LED0)
2886 newval &= ~RTW_PSR_LEDGPO0;
2887 if (led_condition & RTW_LED1)
2888 newval &= ~RTW_PSR_LEDGPO1;
2889 break;
2890 case 'D':
2891 ofs = RTW_9346CR;
2892 mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2893 newval = RTW_9346CR_EEM_PROGRAM;
2894 if (led_condition & RTW_LED0)
2895 newval |= RTW_9346CR_EEDI;
2896 if (led_condition & RTW_LED1)
2897 newval |= RTW_9346CR_EECS;
2898 break;
2899 }
2900 val = RTW_READ8(regs, ofs);
2901 RTW_DPRINTF(RTW_DEBUG_LED,
2902 ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2903 (uintptr_t)ofs));
2904 val &= ~mask;
2905 val |= newval;
2906 RTW_WRITE8(regs, ofs, val);
2907 RTW_DPRINTF(RTW_DEBUG_LED,
2908 ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2909 (uintptr_t)ofs));
2910 RTW_SYNC(regs, ofs, ofs);
2911 }
2912
2913 static void
2914 rtw_led_fastblink(void *arg)
2915 {
2916 int ostate, s;
2917 struct rtw_softc *sc = (struct rtw_softc *)arg;
2918 struct rtw_led_state *ls = &sc->sc_led_state;
2919
2920 s = splnet();
2921 ostate = ls->ls_state;
2922 ls->ls_state ^= ls->ls_event;
2923
2924 if ((ls->ls_event & RTW_LED_S_TX) == 0)
2925 ls->ls_state &= ~RTW_LED_S_TX;
2926
2927 if ((ls->ls_event & RTW_LED_S_RX) == 0)
2928 ls->ls_state &= ~RTW_LED_S_RX;
2929
2930 ls->ls_event = 0;
2931
2932 if (ostate != ls->ls_state)
2933 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2934 splx(s);
2935
2936 aprint_debug_dev(sc->sc_dev, "scheduling fast blink\n");
2937 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2938 }
2939
2940 static void
2941 rtw_led_slowblink(void *arg)
2942 {
2943 int s;
2944 struct rtw_softc *sc = (struct rtw_softc *)arg;
2945 struct rtw_led_state *ls = &sc->sc_led_state;
2946
2947 s = splnet();
2948 ls->ls_state ^= RTW_LED_S_SLOW;
2949 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2950 splx(s);
2951 aprint_debug_dev(sc->sc_dev, "scheduling slow blink\n");
2952 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2953 }
2954
2955 static void
2956 rtw_led_detach(struct rtw_led_state *ls)
2957 {
2958 callout_destroy(&ls->ls_fast_ch);
2959 callout_destroy(&ls->ls_slow_ch);
2960 }
2961
2962 static void
2963 rtw_led_attach(struct rtw_led_state *ls, void *arg)
2964 {
2965 callout_init(&ls->ls_fast_ch, 0);
2966 callout_init(&ls->ls_slow_ch, 0);
2967 callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
2968 callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
2969 }
2970
2971 static int
2972 rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2973 {
2974 int rc = 0, s;
2975 struct rtw_softc *sc = ifp->if_softc;
2976
2977 s = splnet();
2978 if (cmd == SIOCSIFFLAGS) {
2979 if ((rc = ifioctl_common(ifp, cmd, data)) != 0)
2980 ;
2981 else switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2982 case IFF_UP:
2983 rc = rtw_init(ifp);
2984 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2985 break;
2986 case IFF_UP|IFF_RUNNING:
2987 if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2988 rtw_pktfilt_load(sc);
2989 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2990 break;
2991 case IFF_RUNNING:
2992 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2993 rtw_stop(ifp, 1);
2994 break;
2995 default:
2996 break;
2997 }
2998 } else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
2999 ; /* nothing to do */
3000 else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
3001 /* reload packet filter if running */
3002 if (ifp->if_flags & IFF_RUNNING)
3003 rtw_pktfilt_load(sc);
3004 rc = 0;
3005 } else if ((ifp->if_flags & IFF_UP) != 0)
3006 rc = rtw_init(ifp);
3007 else
3008 rc = 0;
3009 splx(s);
3010 return rc;
3011 }
3012
3013 /* Select a transmit ring with at least one h/w and s/w descriptor free.
3014 * Return 0 on success, -1 on failure.
3015 */
3016 static inline int
3017 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
3018 struct rtw_txdesc_blk **tdbp, int pri)
3019 {
3020 struct rtw_txsoft_blk *tsb;
3021 struct rtw_txdesc_blk *tdb;
3022
3023 KASSERT(pri >= 0 && pri < RTW_NTXPRI);
3024
3025 tsb = &sc->sc_txsoft_blk[pri];
3026 tdb = &sc->sc_txdesc_blk[pri];
3027
3028 if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
3029 if (tsb->tsb_tx_timer == 0)
3030 tsb->tsb_tx_timer = 5;
3031 *tsbp = NULL;
3032 *tdbp = NULL;
3033 return -1;
3034 }
3035 *tsbp = tsb;
3036 *tdbp = tdb;
3037 return 0;
3038 }
3039
3040 static inline struct mbuf *
3041 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
3042 struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
3043 struct ieee80211_node **nip, short *if_flagsp)
3044 {
3045 struct mbuf *m;
3046
3047 if (IF_IS_EMPTY(ifq))
3048 return NULL;
3049 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3050 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3051 __func__, pri));
3052 *if_flagsp |= IFF_OACTIVE;
3053 sc->sc_if.if_timer = 1;
3054 return NULL;
3055 }
3056 IF_DEQUEUE(ifq, m);
3057 *nip = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3058 m->m_pkthdr.rcvif = NULL;
3059 KASSERT(*nip != NULL);
3060 return m;
3061 }
3062
3063 /* Point *mp at the next 802.11 frame to transmit. Point *tsbp
3064 * at the driver's selection of transmit control block for the packet.
3065 */
3066 static inline int
3067 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
3068 struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
3069 struct ieee80211_node **nip)
3070 {
3071 int pri;
3072 struct ether_header *eh;
3073 struct mbuf *m0;
3074 struct rtw_softc *sc;
3075 short *if_flagsp;
3076
3077 *mp = NULL;
3078
3079 sc = (struct rtw_softc *)ifp->if_softc;
3080
3081 DPRINTF(sc, RTW_DEBUG_XMIT,
3082 ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3083
3084 if_flagsp = &ifp->if_flags;
3085
3086 if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3087 (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3088 tdbp, nip, if_flagsp)) != NULL) {
3089 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3090 __func__));
3091 return 0;
3092 }
3093
3094 if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3095 tdbp, nip, if_flagsp)) != NULL) {
3096 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3097 __func__));
3098 return 0;
3099 }
3100
3101 if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3102 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3103 return 0;
3104 }
3105
3106 IFQ_POLL(&ifp->if_snd, m0);
3107 if (m0 == NULL) {
3108 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3109 __func__));
3110 return 0;
3111 }
3112
3113 pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3114
3115 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3116 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3117 __func__, pri));
3118 *if_flagsp |= IFF_OACTIVE;
3119 sc->sc_if.if_timer = 1;
3120 return 0;
3121 }
3122
3123 IFQ_DEQUEUE(&ifp->if_snd, m0);
3124 if (m0 == NULL) {
3125 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3126 __func__));
3127 return 0;
3128 }
3129 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3130 ifp->if_opackets++;
3131 #if NBPFILTER > 0
3132 if (ifp->if_bpf)
3133 bpf_mtap(ifp->if_bpf, m0);
3134 #endif
3135 eh = mtod(m0, struct ether_header *);
3136 *nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3137 if (*nip == NULL) {
3138 /* NB: ieee80211_find_txnode does stat+msg */
3139 m_freem(m0);
3140 return -1;
3141 }
3142 if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3143 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3144 ifp->if_oerrors++;
3145 return -1;
3146 }
3147 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3148 *mp = m0;
3149 return 0;
3150 }
3151
3152 static int
3153 rtw_seg_too_short(bus_dmamap_t dmamap)
3154 {
3155 int i;
3156 for (i = 0; i < dmamap->dm_nsegs; i++) {
3157 if (dmamap->dm_segs[i].ds_len < 4)
3158 return 1;
3159 }
3160 return 0;
3161 }
3162
3163 /* TBD factor with atw_start */
3164 static struct mbuf *
3165 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3166 u_int ndescfree, device_t dev)
3167 {
3168 int first, rc;
3169 struct mbuf *m, *m0;
3170
3171 m0 = chain;
3172
3173 /*
3174 * Load the DMA map. Copy and try (once) again if the packet
3175 * didn't fit in the alloted number of segments.
3176 */
3177 for (first = 1;
3178 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3179 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
3180 dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3181 first = 0) {
3182 if (rc == 0) {
3183 #ifdef RTW_DIAGxxx
3184 if (rtw_seg_too_short(dmam)) {
3185 printf("%s: short segment, mbuf lengths:", __func__);
3186 for (m = m0; m; m = m->m_next)
3187 printf(" %d", m->m_len);
3188 printf("\n");
3189 }
3190 #endif
3191 bus_dmamap_unload(dmat, dmam);
3192 }
3193 MGETHDR(m, M_DONTWAIT, MT_DATA);
3194 if (m == NULL) {
3195 aprint_error_dev(dev, "unable to allocate Tx mbuf\n");
3196 break;
3197 }
3198 if (m0->m_pkthdr.len > MHLEN) {
3199 MCLGET(m, M_DONTWAIT);
3200 if ((m->m_flags & M_EXT) == 0) {
3201 aprint_error_dev(dev,
3202 "cannot allocate Tx cluster\n");
3203 m_freem(m);
3204 break;
3205 }
3206 }
3207 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3208 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3209 m_freem(m0);
3210 m0 = m;
3211 m = NULL;
3212 }
3213 if (rc != 0) {
3214 aprint_error_dev(dev, "cannot load Tx buffer, rc = %d\n", rc);
3215 m_freem(m0);
3216 return NULL;
3217 } else if (rtw_seg_too_short(dmam)) {
3218 aprint_error_dev(dev,
3219 "cannot load Tx buffer, segment too short\n");
3220 bus_dmamap_unload(dmat, dmam);
3221 m_freem(m0);
3222 return NULL;
3223 } else if (dmam->dm_nsegs > ndescfree) {
3224 aprint_error_dev(dev, "too many tx segments\n");
3225 bus_dmamap_unload(dmat, dmam);
3226 m_freem(m0);
3227 return NULL;
3228 }
3229 return m0;
3230 }
3231
3232 #ifdef RTW_DEBUG
3233 static void
3234 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3235 struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3236 {
3237 struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3238 DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3239 "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3240 device_xname(sc->sc_dev), ts, action, desc,
3241 le32toh(td->td_buf), le32toh(td->td_next),
3242 le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3243 le32toh(td->td_len)));
3244 }
3245 #endif /* RTW_DEBUG */
3246
3247 static void
3248 rtw_start(struct ifnet *ifp)
3249 {
3250 int desc, i, lastdesc, npkt, rate;
3251 uint32_t proto_ctl0, ctl0, ctl1;
3252 bus_dmamap_t dmamap;
3253 struct ieee80211com *ic;
3254 struct ieee80211_duration *d0;
3255 struct ieee80211_frame_min *wh;
3256 struct ieee80211_node *ni = NULL; /* XXX: GCC */
3257 struct mbuf *m0;
3258 struct rtw_softc *sc;
3259 struct rtw_txsoft_blk *tsb = NULL; /* XXX: GCC */
3260 struct rtw_txdesc_blk *tdb = NULL; /* XXX: GCC */
3261 struct rtw_txsoft *ts;
3262 struct rtw_txdesc *td;
3263 struct ieee80211_key *k;
3264
3265 sc = (struct rtw_softc *)ifp->if_softc;
3266 ic = &sc->sc_ic;
3267
3268 DPRINTF(sc, RTW_DEBUG_XMIT,
3269 ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3270
3271 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3272 goto out;
3273
3274 /* XXX do real rate control */
3275 proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3276
3277 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3278 proto_ctl0 |= RTW_TXCTL0_SPLCP;
3279
3280 for (;;) {
3281 if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3282 continue;
3283 if (m0 == NULL)
3284 break;
3285
3286 wh = mtod(m0, struct ieee80211_frame_min *);
3287
3288 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3289 (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3290 m_freem(m0);
3291 break;
3292 } else
3293 k = NULL;
3294
3295 ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3296
3297 dmamap = ts->ts_dmamap;
3298
3299 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3300 tdb->tdb_nfree, sc->sc_dev);
3301
3302 if (m0 == NULL || dmamap->dm_nsegs == 0) {
3303 DPRINTF(sc, RTW_DEBUG_XMIT,
3304 ("%s: fail dmamap load\n", __func__));
3305 goto post_dequeue_err;
3306 }
3307
3308 /* Note well: rtw_dmamap_load_txbuf may have created
3309 * a new chain, so we must find the header once
3310 * more.
3311 */
3312 wh = mtod(m0, struct ieee80211_frame_min *);
3313
3314 /* XXX do real rate control */
3315 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3316 IEEE80211_FC0_TYPE_MGT)
3317 rate = 2;
3318 else
3319 rate = MAX(2, ieee80211_get_rate(ni));
3320
3321 #ifdef RTW_DEBUG
3322 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3323 (IFF_DEBUG|IFF_LINK2)) {
3324 ieee80211_dump_pkt(mtod(m0, uint8_t *),
3325 (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3326 : sizeof(wh),
3327 rate, 0);
3328 }
3329 #endif /* RTW_DEBUG */
3330 ctl0 = proto_ctl0 |
3331 __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3332
3333 switch (rate) {
3334 default:
3335 case 2:
3336 ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3337 break;
3338 case 4:
3339 ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3340 break;
3341 case 11:
3342 ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3343 break;
3344 case 22:
3345 ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3346 break;
3347 }
3348 /* XXX >= ? Compare after fragmentation? */
3349 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3350 ctl0 |= RTW_TXCTL0_RTSEN;
3351
3352 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3353 * seem to care, since we don't activate h/w Tx
3354 * encryption.
3355 */
3356 if (k != NULL &&
3357 k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP) {
3358 ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3359 RTW_TXCTL0_KEYID_MASK;
3360 }
3361
3362 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3363 IEEE80211_FC0_TYPE_MGT) {
3364 ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3365 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3366 IEEE80211_FC0_SUBTYPE_BEACON)
3367 ctl0 |= RTW_TXCTL0_BEACON;
3368 }
3369
3370 if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3371 ic->ic_flags, ic->ic_fragthreshold,
3372 rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3373 (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3374 (IFF_DEBUG|IFF_LINK2)) == -1) {
3375 DPRINTF(sc, RTW_DEBUG_XMIT,
3376 ("%s: fail compute duration\n", __func__));
3377 goto post_load_err;
3378 }
3379
3380 d0 = &ts->ts_d0;
3381
3382 *(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3383
3384 ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3385 __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3386
3387 if (d0->d_residue)
3388 ctl1 |= RTW_TXCTL1_LENGEXT;
3389
3390 /* TBD fragmentation */
3391
3392 ts->ts_first = tdb->tdb_next;
3393
3394 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3395 BUS_DMASYNC_PREWRITE);
3396
3397 KASSERT(ts->ts_first < tdb->tdb_ndesc);
3398
3399 #if NBPFILTER > 0
3400 if (ic->ic_rawbpf != NULL)
3401 bpf_mtap((void *)ic->ic_rawbpf, m0);
3402
3403 if (sc->sc_radiobpf != NULL) {
3404 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3405
3406 rt->rt_rate = rate;
3407
3408 bpf_mtap2(sc->sc_radiobpf, (void *)rt,
3409 sizeof(sc->sc_txtapu), m0);
3410 }
3411 #endif /* NBPFILTER > 0 */
3412
3413 for (i = 0, lastdesc = desc = ts->ts_first;
3414 i < dmamap->dm_nsegs;
3415 i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3416 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3417 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3418 ("%s: seg too long\n", __func__));
3419 goto post_load_err;
3420 }
3421 td = &tdb->tdb_desc[desc];
3422 td->td_ctl0 = htole32(ctl0);
3423 td->td_ctl1 = htole32(ctl1);
3424 td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3425 td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3426 td->td_next = htole32(RTW_NEXT_DESC(tdb, desc));
3427 if (i != 0)
3428 td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3429 lastdesc = desc;
3430 #ifdef RTW_DEBUG
3431 rtw_print_txdesc(sc, "load", ts, tdb, desc);
3432 #endif /* RTW_DEBUG */
3433 }
3434
3435 KASSERT(desc < tdb->tdb_ndesc);
3436
3437 ts->ts_ni = ni;
3438 KASSERT(ni != NULL);
3439 ts->ts_mbuf = m0;
3440 ts->ts_last = lastdesc;
3441 tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3442 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3443 htole32(RTW_TXCTL0_FS);
3444
3445 #ifdef RTW_DEBUG
3446 rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3447 rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3448 #endif /* RTW_DEBUG */
3449
3450 tdb->tdb_nfree -= dmamap->dm_nsegs;
3451 tdb->tdb_next = desc;
3452
3453 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3454 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3455
3456 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3457 htole32(RTW_TXCTL0_OWN);
3458
3459 #ifdef RTW_DEBUG
3460 rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3461 #endif /* RTW_DEBUG */
3462
3463 rtw_txdescs_sync(tdb, ts->ts_first, 1,
3464 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3465
3466 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3467 SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3468
3469 if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3470 sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3471 tsb->tsb_tx_timer = 5;
3472 ifp->if_timer = 1;
3473 rtw_tx_kick(&sc->sc_regs, tsb->tsb_poll);
3474 }
3475 out:
3476 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3477 return;
3478 post_load_err:
3479 bus_dmamap_unload(sc->sc_dmat, dmamap);
3480 m_freem(m0);
3481 post_dequeue_err:
3482 ieee80211_free_node(ni);
3483 return;
3484 }
3485
3486 static void
3487 rtw_idle(struct rtw_regs *regs)
3488 {
3489 int active;
3490 uint8_t tppoll;
3491
3492 /* request stop DMA; wait for packets to stop transmitting. */
3493
3494 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3495 RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3496
3497 for (active = 0; active < 300 &&
3498 (tppoll = RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0;
3499 active++)
3500 DELAY(10);
3501 printf("%s: transmit DMA idle in %dus, tppoll %02" PRIx8 "\n", __func__,
3502 active * 10, tppoll);
3503 }
3504
3505 static void
3506 rtw_watchdog(struct ifnet *ifp)
3507 {
3508 int pri, tx_timeouts = 0;
3509 struct rtw_softc *sc;
3510 struct rtw_txsoft_blk *tsb;
3511
3512 sc = ifp->if_softc;
3513
3514 ifp->if_timer = 0;
3515
3516 if (!device_is_active(sc->sc_dev))
3517 return;
3518
3519 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3520 tsb = &sc->sc_txsoft_blk[pri];
3521
3522 if (tsb->tsb_tx_timer == 0)
3523 continue;
3524 else if (--tsb->tsb_tx_timer == 0) {
3525 if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3526 continue;
3527 else if (rtw_collect_txring(sc, tsb,
3528 &sc->sc_txdesc_blk[pri], 0))
3529 continue;
3530 printf("%s: transmit timeout, priority %d\n",
3531 ifp->if_xname, pri);
3532 ifp->if_oerrors++;
3533 if (pri != RTW_TXPRIBCN)
3534 tx_timeouts++;
3535 } else
3536 ifp->if_timer = 1;
3537 }
3538
3539 if (tx_timeouts > 0) {
3540 /* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3541 * reset s/w tx-ring pointers, and start transmission.
3542 *
3543 * TBD Stop/restart just the broken rings?
3544 */
3545 rtw_idle(&sc->sc_regs);
3546 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
3547 rtw_txdescs_reset(sc);
3548 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3549 rtw_start(ifp);
3550 }
3551 ieee80211_watchdog(&sc->sc_ic);
3552 return;
3553 }
3554
3555 static void
3556 rtw_next_scan(void *arg)
3557 {
3558 struct ieee80211com *ic = arg;
3559 int s;
3560
3561 /* don't call rtw_start w/o network interrupts blocked */
3562 s = splnet();
3563 if (ic->ic_state == IEEE80211_S_SCAN)
3564 ieee80211_next_scan(ic);
3565 splx(s);
3566 }
3567
3568 static void
3569 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3570 {
3571 uint16_t bcnitv, bintritv, intval;
3572 int i;
3573 struct rtw_regs *regs = &sc->sc_regs;
3574
3575 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3576 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3577
3578 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3579
3580 rtw_set_access(regs, RTW_ACCESS_CONFIG);
3581
3582 intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3583
3584 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3585 bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3586 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3587 /* interrupt host 1ms before the TBTT */
3588 bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3589 bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3590 RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3591 /* magic from Linux */
3592 RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3593 RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3594 rtw_set_access(regs, RTW_ACCESS_NONE);
3595
3596 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3597 }
3598
3599 /* Synchronize the hardware state with the software state. */
3600 static int
3601 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3602 {
3603 struct ifnet *ifp = ic->ic_ifp;
3604 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3605 enum ieee80211_state ostate;
3606 int error;
3607
3608 ostate = ic->ic_state;
3609
3610 aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3611 rtw_led_newstate(sc, nstate);
3612
3613 aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3614 if (nstate == IEEE80211_S_INIT) {
3615 callout_stop(&sc->sc_scan_ch);
3616 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3617 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3618 }
3619
3620 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3621 rtw_pwrstate(sc, RTW_ON);
3622
3623 if ((error = rtw_tune(sc)) != 0)
3624 return error;
3625
3626 switch (nstate) {
3627 case IEEE80211_S_INIT:
3628 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3629 break;
3630 case IEEE80211_S_SCAN:
3631 if (ostate != IEEE80211_S_SCAN) {
3632 (void)memset(ic->ic_bss->ni_bssid, 0,
3633 IEEE80211_ADDR_LEN);
3634 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3635 }
3636
3637 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3638 rtw_next_scan, ic);
3639
3640 break;
3641 case IEEE80211_S_RUN:
3642 switch (ic->ic_opmode) {
3643 case IEEE80211_M_HOSTAP:
3644 case IEEE80211_M_IBSS:
3645 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3646 /*FALLTHROUGH*/
3647 case IEEE80211_M_AHDEMO:
3648 case IEEE80211_M_STA:
3649 rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3650 ic->ic_bss->ni_intval);
3651 break;
3652 case IEEE80211_M_MONITOR:
3653 break;
3654 }
3655 rtw_set_nettype(sc, ic->ic_opmode);
3656 break;
3657 case IEEE80211_S_ASSOC:
3658 case IEEE80211_S_AUTH:
3659 break;
3660 }
3661
3662 if (nstate != IEEE80211_S_SCAN)
3663 callout_stop(&sc->sc_scan_ch);
3664
3665 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3666 }
3667
3668 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3669 static uint64_t
3670 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3671 {
3672 uint32_t tsftl, tsfth;
3673
3674 tsfth = RTW_READ(regs, RTW_TSFTRH);
3675 tsftl = RTW_READ(regs, RTW_TSFTRL);
3676 if (tsftl < rstamp) /* Compensate for rollover. */
3677 tsfth--;
3678 return ((uint64_t)tsfth << 32) | rstamp;
3679 }
3680
3681 static void
3682 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3683 struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3684 {
3685 struct ifnet *ifp = ic->ic_ifp;
3686 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3687
3688 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3689
3690 switch (subtype) {
3691 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3692 case IEEE80211_FC0_SUBTYPE_BEACON:
3693 if (ic->ic_opmode == IEEE80211_M_IBSS &&
3694 ic->ic_state == IEEE80211_S_RUN &&
3695 device_is_active(sc->sc_dev)) {
3696 uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3697 if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3698 (void)ieee80211_ibss_merge(ni);
3699 }
3700 break;
3701 default:
3702 break;
3703 }
3704 return;
3705 }
3706
3707 static struct ieee80211_node *
3708 rtw_node_alloc(struct ieee80211_node_table *nt)
3709 {
3710 struct ifnet *ifp = nt->nt_ic->ic_ifp;
3711 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3712 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3713
3714 DPRINTF(sc, RTW_DEBUG_NODE,
3715 ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
3716 return ni;
3717 }
3718
3719 static void
3720 rtw_node_free(struct ieee80211_node *ni)
3721 {
3722 struct ieee80211com *ic = ni->ni_ic;
3723 struct ifnet *ifp = ic->ic_ifp;
3724 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3725
3726 DPRINTF(sc, RTW_DEBUG_NODE,
3727 ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
3728 ether_sprintf(ni->ni_bssid)));
3729 (*sc->sc_mtbl.mt_node_free)(ni);
3730 }
3731
3732 static int
3733 rtw_media_change(struct ifnet *ifp)
3734 {
3735 int error;
3736
3737 error = ieee80211_media_change(ifp);
3738 if (error == ENETRESET) {
3739 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3740 (IFF_RUNNING|IFF_UP))
3741 rtw_init(ifp); /* XXX lose error */
3742 error = 0;
3743 }
3744 return error;
3745 }
3746
3747 static void
3748 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3749 {
3750 struct rtw_softc *sc = ifp->if_softc;
3751
3752 if (!device_is_active(sc->sc_dev)) {
3753 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3754 imr->ifm_status = 0;
3755 return;
3756 }
3757 ieee80211_media_status(ifp, imr);
3758 }
3759
3760 static inline void
3761 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3762 {
3763 (void)strlcpy(ifp->if_xname, dvname, IFNAMSIZ);
3764 ifp->if_softc = softc;
3765 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
3766 IFF_NOTRAILERS;
3767 ifp->if_ioctl = rtw_ioctl;
3768 ifp->if_start = rtw_start;
3769 ifp->if_watchdog = rtw_watchdog;
3770 ifp->if_init = rtw_init;
3771 ifp->if_stop = rtw_stop;
3772 }
3773
3774 static inline void
3775 rtw_set80211props(struct ieee80211com *ic)
3776 {
3777 int nrate;
3778 ic->ic_phytype = IEEE80211_T_DS;
3779 ic->ic_opmode = IEEE80211_M_STA;
3780 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3781 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
3782
3783 nrate = 0;
3784 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3785 IEEE80211_RATE_BASIC | 2;
3786 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3787 IEEE80211_RATE_BASIC | 4;
3788 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3789 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3790 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3791 }
3792
3793 static inline void
3794 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3795 {
3796 mtbl->mt_newstate = ic->ic_newstate;
3797 ic->ic_newstate = rtw_newstate;
3798
3799 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3800 ic->ic_recv_mgmt = rtw_recv_mgmt;
3801
3802 mtbl->mt_node_free = ic->ic_node_free;
3803 ic->ic_node_free = rtw_node_free;
3804
3805 mtbl->mt_node_alloc = ic->ic_node_alloc;
3806 ic->ic_node_alloc = rtw_node_alloc;
3807
3808 ic->ic_crypto.cs_key_delete = rtw_key_delete;
3809 ic->ic_crypto.cs_key_set = rtw_key_set;
3810 ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3811 ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3812 }
3813
3814 static inline void
3815 rtw_init_radiotap(struct rtw_softc *sc)
3816 {
3817 uint32_t present;
3818
3819 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3820 sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3821
3822 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
3823 present = htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT);
3824 else
3825 present = htole32(RTW_RX_RADIOTAP_PRESENT);
3826 sc->sc_rxtap.rr_ihdr.it_present = present;
3827
3828 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3829 sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3830 sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3831 }
3832
3833 static int
3834 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3835 {
3836 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3837 SIMPLEQ_INIT(&tsb->tsb_freeq);
3838 tsb->tsb_ndesc = qlen;
3839 tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3840 M_NOWAIT);
3841 if (tsb->tsb_desc == NULL)
3842 return ENOMEM;
3843 return 0;
3844 }
3845
3846 static void
3847 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3848 {
3849 int pri;
3850 struct rtw_txsoft_blk *tsb;
3851
3852 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3853 tsb = &sc->sc_txsoft_blk[pri];
3854 free(tsb->tsb_desc, M_DEVBUF);
3855 tsb->tsb_desc = NULL;
3856 }
3857 }
3858
3859 static int
3860 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3861 {
3862 int pri, rc = 0;
3863 int qlen[RTW_NTXPRI] =
3864 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3865 struct rtw_txsoft_blk *tsbs;
3866
3867 tsbs = sc->sc_txsoft_blk;
3868
3869 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3870 rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3871 if (rc != 0)
3872 break;
3873 }
3874 tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3875 tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3876 tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3877 tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3878 return rc;
3879 }
3880
3881 static void
3882 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3883 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3884 {
3885 tdb->tdb_ndesc = ndesc;
3886 tdb->tdb_desc = desc;
3887 tdb->tdb_physbase = physbase;
3888 tdb->tdb_ofs = ofs;
3889
3890 (void)memset(tdb->tdb_desc, 0,
3891 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3892
3893 rtw_txdesc_blk_init(tdb);
3894 tdb->tdb_next = 0;
3895 }
3896
3897 static void
3898 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3899 {
3900 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3901 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3902 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3903
3904 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3905 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3906 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3907
3908 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3909 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3910 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3911
3912 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3913 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3914 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3915 }
3916
3917 static struct rtw_rf *
3918 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3919 {
3920 rtw_rf_write_t rf_write;
3921 struct rtw_rf *rf;
3922
3923 switch (rfchipid) {
3924 default:
3925 rf_write = rtw_rf_hostwrite;
3926 break;
3927 case RTW_RFCHIPID_INTERSIL:
3928 case RTW_RFCHIPID_PHILIPS:
3929 case RTW_RFCHIPID_GCT: /* XXX a guess */
3930 case RTW_RFCHIPID_RFMD:
3931 rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3932 break;
3933 }
3934
3935 switch (rfchipid) {
3936 case RTW_RFCHIPID_GCT:
3937 rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3938 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3939 break;
3940 case RTW_RFCHIPID_MAXIM:
3941 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3942 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3943 break;
3944 case RTW_RFCHIPID_PHILIPS:
3945 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3946 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3947 break;
3948 case RTW_RFCHIPID_RFMD:
3949 /* XXX RFMD has no RF constructor */
3950 sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3951 /*FALLTHROUGH*/
3952 default:
3953 return NULL;
3954 }
3955 rf->rf_continuous_tx_cb =
3956 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3957 rf->rf_continuous_tx_arg = (void *)sc;
3958 return rf;
3959 }
3960
3961 /* Revision C and later use a different PHY delay setting than
3962 * revisions A and B.
3963 */
3964 static uint8_t
3965 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
3966 {
3967 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3968 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3969
3970 uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
3971
3972 RTW_WRITE(regs, RTW_RCR, REVAB);
3973 RTW_WBW(regs, RTW_RCR, RTW_RCR);
3974 RTW_WRITE(regs, RTW_RCR, REVC);
3975
3976 RTW_WBR(regs, RTW_RCR, RTW_RCR);
3977 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3978 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3979
3980 RTW_WRITE(regs, RTW_RCR, old_rcr); /* restore RCR */
3981 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3982
3983 return phydelay;
3984 #undef REVC
3985 }
3986
3987 void
3988 rtw_attach(struct rtw_softc *sc)
3989 {
3990 struct ifnet *ifp = &sc->sc_if;
3991 struct ieee80211com *ic = &sc->sc_ic;
3992 struct rtw_txsoft_blk *tsb;
3993 int pri, rc;
3994
3995 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
3996
3997 rtw_cipher_wep = ieee80211_cipher_wep;
3998 rtw_cipher_wep.ic_decap = rtw_wep_decap;
3999
4000 NEXT_ATTACH_STATE(sc, DETACHED);
4001
4002 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
4003 case RTW_TCR_HWVERID_F:
4004 sc->sc_hwverid = 'F';
4005 break;
4006 case RTW_TCR_HWVERID_D:
4007 sc->sc_hwverid = 'D';
4008 break;
4009 default:
4010 sc->sc_hwverid = '?';
4011 break;
4012 }
4013 aprint_verbose_dev(sc->sc_dev, "hardware version %c\n",
4014 sc->sc_hwverid);
4015
4016 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
4017 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
4018 0);
4019
4020 if (rc != 0) {
4021 aprint_error_dev(sc->sc_dev,
4022 "could not allocate hw descriptors, error %d\n", rc);
4023 goto err;
4024 }
4025
4026 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
4027
4028 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
4029 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
4030 (void **)&sc->sc_descs, BUS_DMA_COHERENT);
4031
4032 if (rc != 0) {
4033 aprint_error_dev(sc->sc_dev,
4034 "could not map hw descriptors, error %d\n", rc);
4035 goto err;
4036 }
4037 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
4038
4039 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
4040 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
4041
4042 if (rc != 0) {
4043 aprint_error_dev(sc->sc_dev,
4044 "could not create DMA map for hw descriptors, error %d\n",
4045 rc);
4046 goto err;
4047 }
4048 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
4049
4050 sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
4051 sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
4052
4053 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4054 sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
4055 sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
4056 }
4057
4058 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
4059 sizeof(struct rtw_descs), NULL, 0);
4060
4061 if (rc != 0) {
4062 aprint_error_dev(sc->sc_dev,
4063 "could not load DMA map for hw descriptors, error %d\n",
4064 rc);
4065 goto err;
4066 }
4067 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
4068
4069 if (rtw_txsoft_blk_setup_all(sc) != 0)
4070 goto err;
4071 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
4072
4073 rtw_txdesc_blk_setup_all(sc);
4074
4075 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4076
4077 sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4078
4079 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4080 tsb = &sc->sc_txsoft_blk[pri];
4081
4082 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4083 &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4084 aprint_error_dev(sc->sc_dev,
4085 "could not load DMA map for hw tx descriptors, "
4086 "error %d\n", rc);
4087 goto err;
4088 }
4089 }
4090
4091 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4092 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4093 RTW_RXQLEN)) != 0) {
4094 aprint_error_dev(sc->sc_dev,
4095 "could not load DMA map for hw rx descriptors, error %d\n",
4096 rc);
4097 goto err;
4098 }
4099 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4100
4101 /* Reset the chip to a known state. */
4102 if (rtw_reset(sc) != 0)
4103 goto err;
4104 NEXT_ATTACH_STATE(sc, FINISH_RESET);
4105
4106 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4107
4108 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4109 sc->sc_flags |= RTW_F_9356SROM;
4110
4111 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4112 sc->sc_dev) != 0)
4113 goto err;
4114
4115 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4116
4117 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4118 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4119 sc->sc_dev) != 0) {
4120 aprint_error_dev(sc->sc_dev,
4121 "attach failed, malformed serial ROM\n");
4122 goto err;
4123 }
4124
4125 aprint_verbose_dev(sc->sc_dev, "%s PHY\n",
4126 ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4127
4128 aprint_verbose_dev(sc->sc_dev, "carrier-sense threshold %u\n",
4129 sc->sc_csthr);
4130
4131 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4132
4133 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4134 sc->sc_flags & RTW_F_DIGPHY);
4135
4136 if (sc->sc_rf == NULL) {
4137 aprint_verbose_dev(sc->sc_dev,
4138 "attach failed, could not attach RF\n");
4139 goto err;
4140 }
4141
4142 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4143
4144 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4145
4146 RTW_DPRINTF(RTW_DEBUG_ATTACH,
4147 ("%s: PHY delay %d\n", device_xname(sc->sc_dev), sc->sc_phydelay));
4148
4149 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4150 rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4151
4152 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels, sc->sc_dev);
4153
4154 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4155 sc->sc_dev) != 0)
4156 goto err;
4157 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4158
4159 rtw_setifprops(ifp, device_xname(sc->sc_dev), (void*)sc);
4160
4161 IFQ_SET_READY(&ifp->if_snd);
4162
4163 sc->sc_ic.ic_ifp = ifp;
4164 rtw_set80211props(&sc->sc_ic);
4165
4166 rtw_led_attach(&sc->sc_led_state, (void *)sc);
4167
4168 /*
4169 * Call MI attach routines.
4170 */
4171 if_attach(ifp);
4172 ieee80211_ifattach(&sc->sc_ic);
4173
4174 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4175
4176 /* possibly we should fill in our own sc_send_prresp, since
4177 * the RTL8180 is probably sending probe responses in ad hoc
4178 * mode.
4179 */
4180
4181 /* complete initialization */
4182 ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4183 callout_init(&sc->sc_scan_ch, 0);
4184
4185 rtw_init_radiotap(sc);
4186
4187 #if NBPFILTER > 0
4188 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4189 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4190 #endif
4191
4192 NEXT_ATTACH_STATE(sc, FINISHED);
4193
4194 ieee80211_announce(ic);
4195 return;
4196 err:
4197 rtw_detach(sc);
4198 return;
4199 }
4200
4201 int
4202 rtw_detach(struct rtw_softc *sc)
4203 {
4204 struct ifnet *ifp = &sc->sc_if;
4205 int pri, s;
4206
4207 s = splnet();
4208
4209 switch (sc->sc_attach_state) {
4210 case FINISHED:
4211 rtw_stop(ifp, 1);
4212
4213 pmf_device_deregister(sc->sc_dev);
4214 callout_stop(&sc->sc_scan_ch);
4215 ieee80211_ifdetach(&sc->sc_ic);
4216 if_detach(ifp);
4217 rtw_led_detach(&sc->sc_led_state);
4218 /*FALLTHROUGH*/
4219 case FINISH_ID_STA:
4220 case FINISH_RF_ATTACH:
4221 rtw_rf_destroy(sc->sc_rf);
4222 sc->sc_rf = NULL;
4223 /*FALLTHROUGH*/
4224 case FINISH_PARSE_SROM:
4225 case FINISH_READ_SROM:
4226 rtw_srom_free(&sc->sc_srom);
4227 /*FALLTHROUGH*/
4228 case FINISH_RESET:
4229 case FINISH_RXMAPS_CREATE:
4230 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4231 RTW_RXQLEN);
4232 /*FALLTHROUGH*/
4233 case FINISH_TXMAPS_CREATE:
4234 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4235 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4236 sc->sc_txsoft_blk[pri].tsb_desc,
4237 sc->sc_txsoft_blk[pri].tsb_ndesc);
4238 }
4239 /*FALLTHROUGH*/
4240 case FINISH_TXDESCBLK_SETUP:
4241 case FINISH_TXCTLBLK_SETUP:
4242 rtw_txsoft_blk_cleanup_all(sc);
4243 /*FALLTHROUGH*/
4244 case FINISH_DESCMAP_LOAD:
4245 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4246 /*FALLTHROUGH*/
4247 case FINISH_DESCMAP_CREATE:
4248 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4249 /*FALLTHROUGH*/
4250 case FINISH_DESC_MAP:
4251 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
4252 sizeof(struct rtw_descs));
4253 /*FALLTHROUGH*/
4254 case FINISH_DESC_ALLOC:
4255 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4256 sc->sc_desc_nsegs);
4257 /*FALLTHROUGH*/
4258 case DETACHED:
4259 NEXT_ATTACH_STATE(sc, DETACHED);
4260 break;
4261 }
4262 splx(s);
4263 return 0;
4264 }
4265