rtw.c revision 1.116 1 /* $NetBSD: rtw.c,v 1.116 2010/04/05 07:19:36 joerg Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005, 2006, 2007 David Young. All rights
4 * reserved.
5 *
6 * Programmed for NetBSD by David Young.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
20 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
21 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
28 * OF SUCH DAMAGE.
29 */
30 /*
31 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.116 2010/04/05 07:19:36 joerg Exp $");
36
37
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/callout.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/time.h>
46 #include <sys/types.h>
47 #include <sys/device.h>
48
49 #include <machine/endian.h>
50 #include <sys/bus.h>
51 #include <sys/intr.h> /* splnet */
52
53 #include <uvm/uvm_extern.h>
54
55 #include <net/if.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58
59 #include <net80211/ieee80211_netbsd.h>
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_radiotap.h>
62
63 #include <net/bpf.h>
64
65 #include <dev/ic/rtwreg.h>
66 #include <dev/ic/rtwvar.h>
67 #include <dev/ic/rtwphyio.h>
68 #include <dev/ic/rtwphy.h>
69
70 #include <dev/ic/smc93cx6var.h>
71
72 static int rtw_rfprog_fallback = 0;
73 static int rtw_host_rfio = 0;
74
75 #ifdef RTW_DEBUG
76 int rtw_debug = 0;
77 static int rtw_rxbufs_limit = RTW_RXQLEN;
78 #endif /* RTW_DEBUG */
79
80 #define NEXT_ATTACH_STATE(sc, state) do { \
81 DPRINTF(sc, RTW_DEBUG_ATTACH, \
82 ("%s: attach state %s\n", __func__, #state)); \
83 sc->sc_attach_state = state; \
84 } while (0)
85
86 int rtw_dwelltime = 200; /* milliseconds */
87 static struct ieee80211_cipher rtw_cipher_wep;
88
89 static void rtw_disable_interrupts(struct rtw_regs *);
90 static void rtw_enable_interrupts(struct rtw_softc *);
91
92 static int rtw_init(struct ifnet *);
93
94 static void rtw_start(struct ifnet *);
95 static void rtw_reset_oactive(struct rtw_softc *);
96 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
97 struct ieee80211_node *);
98 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
99
100 static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
101 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
102 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
103 const u_int8_t[IEEE80211_ADDR_LEN]);
104 static void rtw_key_update_end(struct ieee80211com *);
105 static void rtw_key_update_begin(struct ieee80211com *);
106 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
107 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
108
109 static void rtw_led_attach(struct rtw_led_state *, void *);
110 static void rtw_led_detach(struct rtw_led_state *);
111 static void rtw_led_init(struct rtw_regs *);
112 static void rtw_led_slowblink(void *);
113 static void rtw_led_fastblink(void *);
114 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
115
116 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
117 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
118 #ifdef RTW_DEBUG
119 static void rtw_dump_rings(struct rtw_softc *sc);
120 static void rtw_print_txdesc(struct rtw_softc *, const char *,
121 struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
122 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
123 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
124 #endif /* RTW_DEBUG */
125 #ifdef RTW_DIAG
126 static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
127 #endif /* RTW_DIAG */
128
129 /*
130 * Setup sysctl(3) MIB, hw.rtw.*
131 *
132 * TBD condition CTLFLAG_PERMANENT on being a module or not
133 */
134 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
135 {
136 int rc;
137 const struct sysctlnode *cnode, *rnode;
138
139 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
140 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
141 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
142 goto err;
143
144 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
145 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
146 "Realtek RTL818x 802.11 controls",
147 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
148 goto err;
149
150 #ifdef RTW_DEBUG
151 /* control debugging printfs */
152 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
153 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
154 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
155 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
156 CTL_CREATE, CTL_EOL)) != 0)
157 goto err;
158
159 /* Limit rx buffers, for simulating resource exhaustion. */
160 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
161 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
162 "rxbufs_limit",
163 SYSCTL_DESCR("Set rx buffers limit"),
164 rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
165 CTL_CREATE, CTL_EOL)) != 0)
166 goto err;
167
168 #endif /* RTW_DEBUG */
169 /* set fallback RF programming method */
170 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
171 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
172 "rfprog_fallback",
173 SYSCTL_DESCR("Set fallback RF programming method"),
174 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
175 CTL_CREATE, CTL_EOL)) != 0)
176 goto err;
177
178 /* force host to control RF I/O bus */
179 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
180 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
181 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
182 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
183 CTL_CREATE, CTL_EOL)) != 0)
184 goto err;
185
186 return;
187 err:
188 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
189 }
190
191 static int
192 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
193 {
194 int error, t;
195 struct sysctlnode node;
196
197 node = *rnode;
198 t = *(int*)rnode->sysctl_data;
199 node.sysctl_data = &t;
200 error = sysctl_lookup(SYSCTLFN_CALL(&node));
201 if (error || newp == NULL)
202 return (error);
203
204 if (t < lower || t > upper)
205 return (EINVAL);
206
207 *(int*)rnode->sysctl_data = t;
208
209 return (0);
210 }
211
212 static int
213 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
214 {
215 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
216 __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
217 }
218
219 static int
220 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
221 {
222 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
223 }
224
225 #ifdef RTW_DEBUG
226 static int
227 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
228 {
229 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
230 0, RTW_DEBUG_MAX);
231 }
232
233 static int
234 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
235 {
236 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
237 0, RTW_RXQLEN);
238 }
239
240 static void
241 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
242 {
243 #define PRINTREG32(sc, reg) \
244 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
245 ("%s: reg[ " #reg " / %03x ] = %08x\n", \
246 dvname, reg, RTW_READ(regs, reg)))
247
248 #define PRINTREG16(sc, reg) \
249 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
250 ("%s: reg[ " #reg " / %03x ] = %04x\n", \
251 dvname, reg, RTW_READ16(regs, reg)))
252
253 #define PRINTREG8(sc, reg) \
254 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
255 ("%s: reg[ " #reg " / %03x ] = %02x\n", \
256 dvname, reg, RTW_READ8(regs, reg)))
257
258 RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
259
260 PRINTREG32(regs, RTW_IDR0);
261 PRINTREG32(regs, RTW_IDR1);
262 PRINTREG32(regs, RTW_MAR0);
263 PRINTREG32(regs, RTW_MAR1);
264 PRINTREG32(regs, RTW_TSFTRL);
265 PRINTREG32(regs, RTW_TSFTRH);
266 PRINTREG32(regs, RTW_TLPDA);
267 PRINTREG32(regs, RTW_TNPDA);
268 PRINTREG32(regs, RTW_THPDA);
269 PRINTREG32(regs, RTW_TCR);
270 PRINTREG32(regs, RTW_RCR);
271 PRINTREG32(regs, RTW_TINT);
272 PRINTREG32(regs, RTW_TBDA);
273 PRINTREG32(regs, RTW_ANAPARM);
274 PRINTREG32(regs, RTW_BB);
275 PRINTREG32(regs, RTW_PHYCFG);
276 PRINTREG32(regs, RTW_WAKEUP0L);
277 PRINTREG32(regs, RTW_WAKEUP0H);
278 PRINTREG32(regs, RTW_WAKEUP1L);
279 PRINTREG32(regs, RTW_WAKEUP1H);
280 PRINTREG32(regs, RTW_WAKEUP2LL);
281 PRINTREG32(regs, RTW_WAKEUP2LH);
282 PRINTREG32(regs, RTW_WAKEUP2HL);
283 PRINTREG32(regs, RTW_WAKEUP2HH);
284 PRINTREG32(regs, RTW_WAKEUP3LL);
285 PRINTREG32(regs, RTW_WAKEUP3LH);
286 PRINTREG32(regs, RTW_WAKEUP3HL);
287 PRINTREG32(regs, RTW_WAKEUP3HH);
288 PRINTREG32(regs, RTW_WAKEUP4LL);
289 PRINTREG32(regs, RTW_WAKEUP4LH);
290 PRINTREG32(regs, RTW_WAKEUP4HL);
291 PRINTREG32(regs, RTW_WAKEUP4HH);
292 PRINTREG32(regs, RTW_DK0);
293 PRINTREG32(regs, RTW_DK1);
294 PRINTREG32(regs, RTW_DK2);
295 PRINTREG32(regs, RTW_DK3);
296 PRINTREG32(regs, RTW_RETRYCTR);
297 PRINTREG32(regs, RTW_RDSAR);
298 PRINTREG32(regs, RTW_FER);
299 PRINTREG32(regs, RTW_FEMR);
300 PRINTREG32(regs, RTW_FPSR);
301 PRINTREG32(regs, RTW_FFER);
302
303 /* 16-bit registers */
304 PRINTREG16(regs, RTW_BRSR);
305 PRINTREG16(regs, RTW_IMR);
306 PRINTREG16(regs, RTW_ISR);
307 PRINTREG16(regs, RTW_BCNITV);
308 PRINTREG16(regs, RTW_ATIMWND);
309 PRINTREG16(regs, RTW_BINTRITV);
310 PRINTREG16(regs, RTW_ATIMTRITV);
311 PRINTREG16(regs, RTW_CRC16ERR);
312 PRINTREG16(regs, RTW_CRC0);
313 PRINTREG16(regs, RTW_CRC1);
314 PRINTREG16(regs, RTW_CRC2);
315 PRINTREG16(regs, RTW_CRC3);
316 PRINTREG16(regs, RTW_CRC4);
317 PRINTREG16(regs, RTW_CWR);
318
319 /* 8-bit registers */
320 PRINTREG8(regs, RTW_CR);
321 PRINTREG8(regs, RTW_9346CR);
322 PRINTREG8(regs, RTW_CONFIG0);
323 PRINTREG8(regs, RTW_CONFIG1);
324 PRINTREG8(regs, RTW_CONFIG2);
325 PRINTREG8(regs, RTW_MSR);
326 PRINTREG8(regs, RTW_CONFIG3);
327 PRINTREG8(regs, RTW_CONFIG4);
328 PRINTREG8(regs, RTW_TESTR);
329 PRINTREG8(regs, RTW_PSR);
330 PRINTREG8(regs, RTW_SCR);
331 PRINTREG8(regs, RTW_PHYDELAY);
332 PRINTREG8(regs, RTW_CRCOUNT);
333 PRINTREG8(regs, RTW_PHYADDR);
334 PRINTREG8(regs, RTW_PHYDATAW);
335 PRINTREG8(regs, RTW_PHYDATAR);
336 PRINTREG8(regs, RTW_CONFIG5);
337 PRINTREG8(regs, RTW_TPPOLL);
338
339 PRINTREG16(regs, RTW_BSSID16);
340 PRINTREG32(regs, RTW_BSSID32);
341 #undef PRINTREG32
342 #undef PRINTREG16
343 #undef PRINTREG8
344 }
345 #endif /* RTW_DEBUG */
346
347 void
348 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
349 {
350 struct rtw_regs *regs = &sc->sc_regs;
351
352 uint32_t tcr;
353 tcr = RTW_READ(regs, RTW_TCR);
354 tcr &= ~RTW_TCR_LBK_MASK;
355 if (enable)
356 tcr |= RTW_TCR_LBK_CONT;
357 else
358 tcr |= RTW_TCR_LBK_NORMAL;
359 RTW_WRITE(regs, RTW_TCR, tcr);
360 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
361 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
362 rtw_txdac_enable(sc, !enable);
363 rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
364 rtw_set_access(regs, RTW_ACCESS_NONE);
365 }
366
367 #ifdef RTW_DEBUG
368 static const char *
369 rtw_access_string(enum rtw_access access)
370 {
371 switch (access) {
372 case RTW_ACCESS_NONE:
373 return "none";
374 case RTW_ACCESS_CONFIG:
375 return "config";
376 case RTW_ACCESS_ANAPARM:
377 return "anaparm";
378 default:
379 return "unknown";
380 }
381 }
382 #endif /* RTW_DEBUG */
383
384 static void
385 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
386 {
387 KASSERT(/* naccess >= RTW_ACCESS_NONE && */
388 naccess <= RTW_ACCESS_ANAPARM);
389 KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
390 regs->r_access <= RTW_ACCESS_ANAPARM);
391
392 if (naccess == regs->r_access)
393 return;
394
395 switch (naccess) {
396 case RTW_ACCESS_NONE:
397 switch (regs->r_access) {
398 case RTW_ACCESS_ANAPARM:
399 rtw_anaparm_enable(regs, 0);
400 /*FALLTHROUGH*/
401 case RTW_ACCESS_CONFIG:
402 rtw_config0123_enable(regs, 0);
403 /*FALLTHROUGH*/
404 case RTW_ACCESS_NONE:
405 break;
406 }
407 break;
408 case RTW_ACCESS_CONFIG:
409 switch (regs->r_access) {
410 case RTW_ACCESS_NONE:
411 rtw_config0123_enable(regs, 1);
412 /*FALLTHROUGH*/
413 case RTW_ACCESS_CONFIG:
414 break;
415 case RTW_ACCESS_ANAPARM:
416 rtw_anaparm_enable(regs, 0);
417 break;
418 }
419 break;
420 case RTW_ACCESS_ANAPARM:
421 switch (regs->r_access) {
422 case RTW_ACCESS_NONE:
423 rtw_config0123_enable(regs, 1);
424 /*FALLTHROUGH*/
425 case RTW_ACCESS_CONFIG:
426 rtw_anaparm_enable(regs, 1);
427 /*FALLTHROUGH*/
428 case RTW_ACCESS_ANAPARM:
429 break;
430 }
431 break;
432 }
433 }
434
435 void
436 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
437 {
438 rtw_set_access1(regs, access);
439 RTW_DPRINTF(RTW_DEBUG_ACCESS,
440 ("%s: access %s -> %s\n", __func__,
441 rtw_access_string(regs->r_access),
442 rtw_access_string(access)));
443 regs->r_access = access;
444 }
445
446 /*
447 * Enable registers, switch register banks.
448 */
449 void
450 rtw_config0123_enable(struct rtw_regs *regs, int enable)
451 {
452 uint8_t ecr;
453 ecr = RTW_READ8(regs, RTW_9346CR);
454 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
455 if (enable)
456 ecr |= RTW_9346CR_EEM_CONFIG;
457 else {
458 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
459 ecr |= RTW_9346CR_EEM_NORMAL;
460 }
461 RTW_WRITE8(regs, RTW_9346CR, ecr);
462 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
463 }
464
465 /* requires rtw_config0123_enable(, 1) */
466 void
467 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
468 {
469 uint8_t cfg3;
470
471 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
472 cfg3 |= RTW_CONFIG3_CLKRUNEN;
473 if (enable)
474 cfg3 |= RTW_CONFIG3_PARMEN;
475 else
476 cfg3 &= ~RTW_CONFIG3_PARMEN;
477 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
478 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
479 }
480
481 /* requires rtw_anaparm_enable(, 1) */
482 void
483 rtw_txdac_enable(struct rtw_softc *sc, int enable)
484 {
485 uint32_t anaparm;
486 struct rtw_regs *regs = &sc->sc_regs;
487
488 anaparm = RTW_READ(regs, RTW_ANAPARM);
489 if (enable)
490 anaparm &= ~RTW_ANAPARM_TXDACOFF;
491 else
492 anaparm |= RTW_ANAPARM_TXDACOFF;
493 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
494 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
495 }
496
497 static inline int
498 rtw_chip_reset1(struct rtw_regs *regs, device_t dev)
499 {
500 uint8_t cr;
501 int i;
502
503 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
504
505 RTW_WBR(regs, RTW_CR, RTW_CR);
506
507 for (i = 0; i < 1000; i++) {
508 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
509 RTW_DPRINTF(RTW_DEBUG_RESET,
510 ("%s: reset in %dus\n", device_xname(dev), i));
511 return 0;
512 }
513 RTW_RBR(regs, RTW_CR, RTW_CR);
514 DELAY(10); /* 10us */
515 }
516
517 aprint_error_dev(dev, "reset failed\n");
518 return ETIMEDOUT;
519 }
520
521 static inline int
522 rtw_chip_reset(struct rtw_regs *regs, device_t dev)
523 {
524 uint32_t tcr;
525
526 /* from Linux driver */
527 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
528 __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
529
530 RTW_WRITE(regs, RTW_TCR, tcr);
531
532 RTW_WBW(regs, RTW_CR, RTW_TCR);
533
534 return rtw_chip_reset1(regs, dev);
535 }
536
537 static int
538 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
539 {
540 struct ieee80211_key keycopy;
541
542 RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
543
544 keycopy = *k;
545 keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
546
547 return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
548 }
549
550 static int
551 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
552 {
553 struct rtw_softc *sc = ic->ic_ifp->if_softc;
554
555 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__,
556 k->wk_keyix));
557
558 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
559
560 if (k->wk_keylen != 0 &&
561 k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP)
562 sc->sc_flags &= ~RTW_F_DK_VALID;
563
564 return 1;
565 }
566
567 static int
568 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
569 const u_int8_t mac[IEEE80211_ADDR_LEN])
570 {
571 struct rtw_softc *sc = ic->ic_ifp->if_softc;
572
573 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
574
575 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
576
577 sc->sc_flags &= ~RTW_F_DK_VALID;
578
579 return 1;
580 }
581
582 static void
583 rtw_key_update_begin(struct ieee80211com *ic)
584 {
585 #ifdef RTW_DEBUG
586 struct ifnet *ifp = ic->ic_ifp;
587 struct rtw_softc *sc = ifp->if_softc;
588 #endif
589
590 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
591 }
592
593 static void
594 rtw_tx_kick(struct rtw_regs *regs, uint8_t ringsel)
595 {
596 uint8_t tppoll;
597
598 tppoll = RTW_READ8(regs, RTW_TPPOLL);
599 tppoll &= ~RTW_TPPOLL_SALL;
600 tppoll |= ringsel & RTW_TPPOLL_ALL;
601 RTW_WRITE8(regs, RTW_TPPOLL, tppoll);
602 RTW_SYNC(regs, RTW_TPPOLL, RTW_TPPOLL);
603 }
604
605 static void
606 rtw_key_update_end(struct ieee80211com *ic)
607 {
608 struct ifnet *ifp = ic->ic_ifp;
609 struct rtw_softc *sc = ifp->if_softc;
610
611 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
612
613 if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
614 !device_is_active(sc->sc_dev))
615 return;
616
617 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
618 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
619 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
620 (ifp->if_flags & IFF_RUNNING) != 0);
621 }
622
623 static bool
624 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
625 {
626 if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
627 return false;
628
629 return ((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
630 ((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
631 }
632
633 static void
634 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
635 {
636 uint8_t psr, scr;
637 int i, keylen = 0;
638 struct rtw_regs *regs;
639 union rtw_keys *rk;
640
641 regs = &sc->sc_regs;
642 rk = &sc->sc_keys;
643
644 (void)memset(rk, 0, sizeof(rk));
645
646 /* Temporarily use software crypto for all keys. */
647 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
648 if (wk[i].wk_cipher == &rtw_cipher_wep)
649 wk[i].wk_cipher = &ieee80211_cipher_wep;
650 }
651
652 rtw_set_access(regs, RTW_ACCESS_CONFIG);
653
654 psr = RTW_READ8(regs, RTW_PSR);
655 scr = RTW_READ8(regs, RTW_SCR);
656 scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
657
658 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
659 goto out;
660
661 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
662 if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
663 continue;
664 if (i == txkey) {
665 keylen = wk[i].wk_keylen;
666 break;
667 }
668 keylen = MAX(keylen, wk[i].wk_keylen);
669 }
670
671 if (keylen == 5)
672 scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
673 else if (keylen == 13)
674 scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
675
676 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
677 if (wk[i].wk_keylen != keylen ||
678 wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
679 continue;
680 /* h/w will decrypt, s/w still strips headers */
681 wk[i].wk_cipher = &rtw_cipher_wep;
682 (void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
683 }
684
685 out:
686 RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
687
688 bus_space_write_region_stream_4(regs->r_bt, regs->r_bh,
689 RTW_DK0, rk->rk_words, __arraycount(rk->rk_words));
690
691 bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
692 BUS_SPACE_BARRIER_SYNC);
693
694 RTW_DPRINTF(RTW_DEBUG_KEY,
695 ("%s.%d: scr %02" PRIx8 ", keylen %d\n", __func__, __LINE__, scr,
696 keylen));
697
698 RTW_WBW(regs, RTW_DK0, RTW_PSR);
699 RTW_WRITE8(regs, RTW_PSR, psr);
700 RTW_WBW(regs, RTW_PSR, RTW_SCR);
701 RTW_WRITE8(regs, RTW_SCR, scr);
702 RTW_SYNC(regs, RTW_SCR, RTW_SCR);
703 rtw_set_access(regs, RTW_ACCESS_NONE);
704 sc->sc_flags |= RTW_F_DK_VALID;
705 }
706
707 static inline int
708 rtw_recall_eeprom(struct rtw_regs *regs, device_t dev)
709 {
710 int i;
711 uint8_t ecr;
712
713 ecr = RTW_READ8(regs, RTW_9346CR);
714 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
715 RTW_WRITE8(regs, RTW_9346CR, ecr);
716
717 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
718
719 /* wait 25ms for completion */
720 for (i = 0; i < 250; i++) {
721 ecr = RTW_READ8(regs, RTW_9346CR);
722 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
723 RTW_DPRINTF(RTW_DEBUG_RESET,
724 ("%s: recall EEPROM in %dus\n", device_xname(dev),
725 i * 100));
726 return 0;
727 }
728 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
729 DELAY(100);
730 }
731 aprint_error_dev(dev, "recall EEPROM failed\n");
732 return ETIMEDOUT;
733 }
734
735 static inline int
736 rtw_reset(struct rtw_softc *sc)
737 {
738 int rc;
739 uint8_t config1;
740
741 sc->sc_flags &= ~RTW_F_DK_VALID;
742
743 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev)) != 0)
744 return rc;
745
746 rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev);
747
748 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
749 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
750 /* TBD turn off maximum power saving? */
751
752 return 0;
753 }
754
755 static inline int
756 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
757 u_int ndescs)
758 {
759 int i, rc = 0;
760 for (i = 0; i < ndescs; i++) {
761 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
762 0, 0, &descs[i].ts_dmamap);
763 if (rc != 0)
764 break;
765 }
766 return rc;
767 }
768
769 static inline int
770 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
771 u_int ndescs)
772 {
773 int i, rc = 0;
774 for (i = 0; i < ndescs; i++) {
775 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
776 &descs[i].rs_dmamap);
777 if (rc != 0)
778 break;
779 }
780 return rc;
781 }
782
783 static inline void
784 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
785 u_int ndescs)
786 {
787 int i;
788 for (i = 0; i < ndescs; i++) {
789 if (descs[i].rs_dmamap != NULL)
790 bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
791 }
792 }
793
794 static inline void
795 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
796 u_int ndescs)
797 {
798 int i;
799 for (i = 0; i < ndescs; i++) {
800 if (descs[i].ts_dmamap != NULL)
801 bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
802 }
803 }
804
805 static inline void
806 rtw_srom_free(struct rtw_srom *sr)
807 {
808 sr->sr_size = 0;
809 if (sr->sr_content == NULL)
810 return;
811 free(sr->sr_content, M_DEVBUF);
812 sr->sr_content = NULL;
813 }
814
815 static void
816 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
817 uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
818 {
819 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
820 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
821 *rcr |= RTW_RCR_ENCS1;
822 *rfchipid = RTW_RFCHIPID_PHILIPS;
823 }
824
825 static int
826 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
827 enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
828 device_t dev)
829 {
830 int i;
831 const char *rfname, *paname;
832 char scratch[sizeof("unknown 0xXX")];
833 uint16_t srom_version;
834 uint8_t mac[IEEE80211_ADDR_LEN];
835
836 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
837 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
838
839 srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
840
841 if (srom_version <= 0x0101) {
842 aprint_error_dev(dev,
843 "SROM version %d.%d is not understood, "
844 "limping along with defaults\n",
845 srom_version >> 8, srom_version & 0xff);
846 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
847 return 0;
848 } else {
849 aprint_verbose_dev(dev, "SROM version %d.%d\n",
850 srom_version >> 8, srom_version & 0xff);
851 }
852
853 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
854 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
855
856 RTW_DPRINTF(RTW_DEBUG_ATTACH,
857 ("%s: EEPROM MAC %s\n", device_xname(dev), ether_sprintf(mac)));
858
859 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
860
861 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
862 *flags |= RTW_F_ANTDIV;
863
864 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
865 * to be reversed.
866 */
867 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
868 *flags |= RTW_F_DIGPHY;
869 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
870 *flags |= RTW_F_DFLANTB;
871
872 *rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
873 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
874
875 if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
876 *flags |= RTW_C_RXWEP_104;
877
878 *flags |= RTW_C_RXWEP_40; /* XXX */
879
880 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
881 switch (*rfchipid) {
882 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
883 rfname = "GCT GRF5101";
884 paname = "Winspring WS9901";
885 break;
886 case RTW_RFCHIPID_MAXIM:
887 rfname = "Maxim MAX2820"; /* guess */
888 paname = "Maxim MAX2422"; /* guess */
889 break;
890 case RTW_RFCHIPID_INTERSIL:
891 rfname = "Intersil HFA3873"; /* guess */
892 paname = "Intersil <unknown>";
893 break;
894 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
895 rfname = "Philips SA2400A";
896 paname = "Philips SA2411";
897 break;
898 case RTW_RFCHIPID_RFMD:
899 /* this is the same front-end as an atw(4)! */
900 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
901 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
902 "SYN: Silicon Labs Si4126"; /* inferred from
903 * reference driver
904 */
905 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
906 break;
907 case RTW_RFCHIPID_RESERVED:
908 rfname = paname = "reserved";
909 break;
910 default:
911 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
912 rfname = paname = scratch;
913 }
914 aprint_normal_dev(dev, "RF: %s, PA: %s\n", rfname, paname);
915
916 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
917 case RTW_CONFIG0_GL_USA:
918 case _RTW_CONFIG0_GL_USA:
919 *locale = RTW_LOCALE_USA;
920 break;
921 case RTW_CONFIG0_GL_EUROPE:
922 *locale = RTW_LOCALE_EUROPE;
923 break;
924 case RTW_CONFIG0_GL_JAPAN:
925 *locale = RTW_LOCALE_JAPAN;
926 break;
927 default:
928 *locale = RTW_LOCALE_UNKNOWN;
929 break;
930 }
931 return 0;
932 }
933
934 /* Returns -1 on failure. */
935 static int
936 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
937 device_t dev)
938 {
939 int rc;
940 struct seeprom_descriptor sd;
941 uint8_t ecr;
942
943 (void)memset(&sd, 0, sizeof(sd));
944
945 ecr = RTW_READ8(regs, RTW_9346CR);
946
947 if ((flags & RTW_F_9356SROM) != 0) {
948 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n",
949 device_xname(dev)));
950 sr->sr_size = 256;
951 sd.sd_chip = C56_66;
952 } else {
953 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n",
954 device_xname(dev)));
955 sr->sr_size = 128;
956 sd.sd_chip = C46;
957 }
958
959 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
960 RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
961 ecr |= RTW_9346CR_EEM_PROGRAM;
962
963 RTW_WRITE8(regs, RTW_9346CR, ecr);
964
965 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
966
967 if (sr->sr_content == NULL) {
968 aprint_error_dev(dev, "unable to allocate SROM buffer\n");
969 return ENOMEM;
970 }
971
972 (void)memset(sr->sr_content, 0, sr->sr_size);
973
974 /* RTL8180 has a single 8-bit register for controlling the
975 * 93cx6 SROM. There is no "ready" bit. The RTL8180
976 * input/output sense is the reverse of read_seeprom's.
977 */
978 sd.sd_tag = regs->r_bt;
979 sd.sd_bsh = regs->r_bh;
980 sd.sd_regsize = 1;
981 sd.sd_control_offset = RTW_9346CR;
982 sd.sd_status_offset = RTW_9346CR;
983 sd.sd_dataout_offset = RTW_9346CR;
984 sd.sd_CK = RTW_9346CR_EESK;
985 sd.sd_CS = RTW_9346CR_EECS;
986 sd.sd_DI = RTW_9346CR_EEDO;
987 sd.sd_DO = RTW_9346CR_EEDI;
988 /* make read_seeprom enter EEPROM read/write mode */
989 sd.sd_MS = ecr;
990 sd.sd_RDY = 0;
991
992 /* TBD bus barriers */
993 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
994 aprint_error_dev(dev, "could not read SROM\n");
995 free(sr->sr_content, M_DEVBUF);
996 sr->sr_content = NULL;
997 return -1; /* XXX */
998 }
999
1000 /* end EEPROM read/write mode */
1001 RTW_WRITE8(regs, RTW_9346CR,
1002 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
1003 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
1004
1005 if ((rc = rtw_recall_eeprom(regs, dev)) != 0)
1006 return rc;
1007
1008 #ifdef RTW_DEBUG
1009 {
1010 int i;
1011 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1012 ("\n%s: serial ROM:\n\t", device_xname(dev)));
1013 for (i = 0; i < sr->sr_size/2; i++) {
1014 if (((i % 8) == 0) && (i != 0))
1015 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
1016 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1017 (" %04x", sr->sr_content[i]));
1018 }
1019 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
1020 }
1021 #endif /* RTW_DEBUG */
1022 return 0;
1023 }
1024
1025 static void
1026 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1027 device_t dev)
1028 {
1029 uint8_t cfg4;
1030 const char *method;
1031
1032 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1033
1034 switch (rfchipid) {
1035 default:
1036 cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1037 method = "fallback";
1038 break;
1039 case RTW_RFCHIPID_INTERSIL:
1040 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1041 method = "Intersil";
1042 break;
1043 case RTW_RFCHIPID_PHILIPS:
1044 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1045 method = "Philips";
1046 break;
1047 case RTW_RFCHIPID_GCT: /* XXX a guess */
1048 case RTW_RFCHIPID_RFMD:
1049 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1050 method = "RFMD";
1051 break;
1052 }
1053
1054 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1055
1056 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1057
1058 RTW_DPRINTF(RTW_DEBUG_INIT,
1059 ("%s: %s RF programming method, %#02x\n", device_xname(dev), method,
1060 RTW_READ8(regs, RTW_CONFIG4)));
1061 }
1062
1063 static inline void
1064 rtw_init_channels(enum rtw_locale locale,
1065 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1], device_t dev)
1066 {
1067 int i;
1068 const char *name = NULL;
1069 #define ADD_CHANNEL(_chans, _chan) do { \
1070 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
1071 (*_chans)[_chan].ic_freq = \
1072 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1073 } while (0)
1074
1075 switch (locale) {
1076 case RTW_LOCALE_USA: /* 1-11 */
1077 name = "USA";
1078 for (i = 1; i <= 11; i++)
1079 ADD_CHANNEL(chans, i);
1080 break;
1081 case RTW_LOCALE_JAPAN: /* 1-14 */
1082 name = "Japan";
1083 ADD_CHANNEL(chans, 14);
1084 for (i = 1; i <= 14; i++)
1085 ADD_CHANNEL(chans, i);
1086 break;
1087 case RTW_LOCALE_EUROPE: /* 1-13 */
1088 name = "Europe";
1089 for (i = 1; i <= 13; i++)
1090 ADD_CHANNEL(chans, i);
1091 break;
1092 default: /* 10-11 allowed by most countries */
1093 name = "<unknown>";
1094 for (i = 10; i <= 11; i++)
1095 ADD_CHANNEL(chans, i);
1096 break;
1097 }
1098 aprint_normal_dev(dev, "Geographic Location %s\n", name);
1099 #undef ADD_CHANNEL
1100 }
1101
1102
1103 static inline void
1104 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1105 {
1106 uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1107
1108 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1109 case RTW_CONFIG0_GL_USA:
1110 case _RTW_CONFIG0_GL_USA:
1111 *locale = RTW_LOCALE_USA;
1112 break;
1113 case RTW_CONFIG0_GL_JAPAN:
1114 *locale = RTW_LOCALE_JAPAN;
1115 break;
1116 case RTW_CONFIG0_GL_EUROPE:
1117 *locale = RTW_LOCALE_EUROPE;
1118 break;
1119 default:
1120 *locale = RTW_LOCALE_UNKNOWN;
1121 break;
1122 }
1123 }
1124
1125 static inline int
1126 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1127 device_t dev)
1128 {
1129 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1130 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1131 };
1132 uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1133 idr1 = RTW_READ(regs, RTW_IDR1);
1134
1135 (*addr)[0] = __SHIFTOUT(idr0, __BITS(0, 7));
1136 (*addr)[1] = __SHIFTOUT(idr0, __BITS(8, 15));
1137 (*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
1138 (*addr)[3] = __SHIFTOUT(idr0, __BITS(24 ,31));
1139
1140 (*addr)[4] = __SHIFTOUT(idr1, __BITS(0, 7));
1141 (*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
1142
1143 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1144 aprint_error_dev(dev,
1145 "could not get mac address, attach failed\n");
1146 return ENXIO;
1147 }
1148
1149 aprint_normal_dev(dev, "802.11 address %s\n", ether_sprintf(*addr));
1150
1151 return 0;
1152 }
1153
1154 static uint8_t
1155 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1156 struct ieee80211_channel *chan)
1157 {
1158 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1159 KASSERT(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14);
1160 return RTW_SR_GET(sr, idx);
1161 }
1162
1163 static void
1164 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1165 {
1166 int pri;
1167 /* nfree: the number of free descriptors in each ring.
1168 * The beacon ring is a special case: I do not let the
1169 * driver use all of the descriptors on the beacon ring.
1170 * The reasons are two-fold:
1171 *
1172 * (1) A BEACON descriptor's OWN bit is (apparently) not
1173 * updated, so the driver cannot easily know if the descriptor
1174 * belongs to it, or if it is racing the NIC. If the NIC
1175 * does not OWN every descriptor, then the driver can safely
1176 * update the descriptors when RTW_TBDA points at tdb_next.
1177 *
1178 * (2) I hope that the NIC will process more than one BEACON
1179 * descriptor in a single beacon interval, since that will
1180 * enable multiple-BSS support. Since the NIC does not
1181 * clear the OWN bit, there is no natural place for it to
1182 * stop processing BEACON desciptors. Maybe it will *not*
1183 * stop processing them! I do not want to chance the NIC
1184 * looping around and around a saturated beacon ring, so
1185 * I will leave one descriptor unOWNed at all times.
1186 */
1187 u_int nfree[RTW_NTXPRI] =
1188 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1189 RTW_NTXDESCBCN - 1};
1190
1191 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1192 tdb[pri].tdb_nfree = nfree[pri];
1193 tdb[pri].tdb_next = 0;
1194 }
1195 }
1196
1197 static int
1198 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1199 {
1200 int i;
1201 struct rtw_txsoft *ts;
1202
1203 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1204 SIMPLEQ_INIT(&tsb->tsb_freeq);
1205 for (i = 0; i < tsb->tsb_ndesc; i++) {
1206 ts = &tsb->tsb_desc[i];
1207 ts->ts_mbuf = NULL;
1208 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1209 }
1210 tsb->tsb_tx_timer = 0;
1211 return 0;
1212 }
1213
1214 static void
1215 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1216 {
1217 int pri;
1218 for (pri = 0; pri < RTW_NTXPRI; pri++)
1219 rtw_txsoft_blk_init(&tsb[pri]);
1220 }
1221
1222 static inline void
1223 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1224 {
1225 KASSERT(nsync <= rdb->rdb_ndesc);
1226 /* sync to end of ring */
1227 if (desc0 + nsync > rdb->rdb_ndesc) {
1228 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1229 offsetof(struct rtw_descs, hd_rx[desc0]),
1230 sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1231 nsync -= (rdb->rdb_ndesc - desc0);
1232 desc0 = 0;
1233 }
1234
1235 KASSERT(desc0 < rdb->rdb_ndesc);
1236 KASSERT(nsync <= rdb->rdb_ndesc);
1237 KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1238
1239 /* sync what remains */
1240 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1241 offsetof(struct rtw_descs, hd_rx[desc0]),
1242 sizeof(struct rtw_rxdesc) * nsync, ops);
1243 }
1244
1245 static void
1246 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1247 {
1248 /* sync to end of ring */
1249 if (desc0 + nsync > tdb->tdb_ndesc) {
1250 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1251 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1252 sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1253 ops);
1254 nsync -= (tdb->tdb_ndesc - desc0);
1255 desc0 = 0;
1256 }
1257
1258 /* sync what remains */
1259 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1260 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1261 sizeof(struct rtw_txdesc) * nsync, ops);
1262 }
1263
1264 static void
1265 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1266 {
1267 int pri;
1268 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1269 rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1270 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1271 }
1272 }
1273
1274 static void
1275 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1276 {
1277 int i;
1278 struct rtw_rxsoft *rs;
1279
1280 for (i = 0; i < RTW_RXQLEN; i++) {
1281 rs = &desc[i];
1282 if (rs->rs_mbuf == NULL)
1283 continue;
1284 bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1285 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1286 bus_dmamap_unload(dmat, rs->rs_dmamap);
1287 m_freem(rs->rs_mbuf);
1288 rs->rs_mbuf = NULL;
1289 }
1290 }
1291
1292 static inline int
1293 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1294 {
1295 int rc;
1296 struct mbuf *m;
1297
1298 MGETHDR(m, M_DONTWAIT, MT_DATA);
1299 if (m == NULL)
1300 return ENOBUFS;
1301
1302 MCLGET(m, M_DONTWAIT);
1303 if ((m->m_flags & M_EXT) == 0) {
1304 m_freem(m);
1305 return ENOBUFS;
1306 }
1307
1308 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1309
1310 if (rs->rs_mbuf != NULL)
1311 bus_dmamap_unload(dmat, rs->rs_dmamap);
1312
1313 rs->rs_mbuf = NULL;
1314
1315 rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1316 if (rc != 0) {
1317 m_freem(m);
1318 return -1;
1319 }
1320
1321 rs->rs_mbuf = m;
1322
1323 return 0;
1324 }
1325
1326 static int
1327 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1328 int *ndesc, device_t dev)
1329 {
1330 int i, rc = 0;
1331 struct rtw_rxsoft *rs;
1332
1333 for (i = 0; i < RTW_RXQLEN; i++) {
1334 rs = &desc[i];
1335 /* we're in rtw_init, so there should be no mbufs allocated */
1336 KASSERT(rs->rs_mbuf == NULL);
1337 #ifdef RTW_DEBUG
1338 if (i == rtw_rxbufs_limit) {
1339 aprint_error_dev(dev, "TEST hit %d-buffer limit\n", i);
1340 rc = ENOBUFS;
1341 break;
1342 }
1343 #endif /* RTW_DEBUG */
1344 if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1345 aprint_error_dev(dev,
1346 "rtw_rxsoft_alloc failed, %d buffers, rc %d\n",
1347 i, rc);
1348 break;
1349 }
1350 }
1351 *ndesc = i;
1352 return rc;
1353 }
1354
1355 static inline void
1356 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1357 int idx, int kick)
1358 {
1359 int is_last = (idx == rdb->rdb_ndesc - 1);
1360 uint32_t ctl, octl, obuf;
1361 struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1362
1363 /* sync the mbuf before the descriptor */
1364 bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1365 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1366
1367 obuf = rd->rd_buf;
1368 rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1369
1370 ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1371 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1372
1373 if (is_last)
1374 ctl |= RTW_RXCTL_EOR;
1375
1376 octl = rd->rd_ctl;
1377 rd->rd_ctl = htole32(ctl);
1378
1379 RTW_DPRINTF(
1380 kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1381 : RTW_DEBUG_RECV_DESC,
1382 ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1383 le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1384 le32toh(rd->rd_ctl)));
1385
1386 /* sync the descriptor */
1387 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1388 RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1389 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1390 }
1391
1392 static void
1393 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1394 {
1395 int i;
1396 struct rtw_rxdesc *rd;
1397 struct rtw_rxsoft *rs;
1398
1399 for (i = 0; i < rdb->rdb_ndesc; i++) {
1400 rd = &rdb->rdb_desc[i];
1401 rs = &ctl[i];
1402 rtw_rxdesc_init(rdb, rs, i, kick);
1403 }
1404 }
1405
1406 static void
1407 rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
1408 {
1409 struct rtw_regs *regs = &sc->sc_regs;
1410 uint8_t cr;
1411
1412 RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1413 enable ? "enable" : "disable", flags));
1414
1415 cr = RTW_READ8(regs, RTW_CR);
1416
1417 /* XXX reference source does not enable MULRW */
1418 /* enable PCI Read/Write Multiple */
1419 cr |= RTW_CR_MULRW;
1420
1421 /* The receive engine will always start at RDSAR. */
1422 if (enable && (flags & ~cr & RTW_CR_RE)) {
1423 struct rtw_rxdesc_blk *rdb;
1424 rdb = &sc->sc_rxdesc_blk;
1425 rdb->rdb_next = 0;
1426 }
1427
1428 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1429 if (enable)
1430 cr |= flags;
1431 else
1432 cr &= ~flags;
1433 RTW_WRITE8(regs, RTW_CR, cr);
1434 RTW_SYNC(regs, RTW_CR, RTW_CR);
1435
1436 #ifdef RTW_DIAG
1437 if (cr & RTW_CR_TE)
1438 rtw_txring_fixup(sc, __func__, __LINE__);
1439 #endif
1440 if (cr & RTW_CR_TE) {
1441 rtw_tx_kick(&sc->sc_regs,
1442 RTW_TPPOLL_HPQ | RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ);
1443 }
1444 }
1445
1446 static void
1447 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1448 {
1449 #define IS_BEACON(__fc0) \
1450 ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1451 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1452
1453 static const int ratetbl[4] = {2, 4, 11, 22}; /* convert rates:
1454 * hardware -> net80211
1455 */
1456 u_int next, nproc = 0;
1457 int hwrate, len, rate, rssi, sq;
1458 uint32_t hrssi, hstat, htsfth, htsftl;
1459 struct rtw_rxdesc *rd;
1460 struct rtw_rxsoft *rs;
1461 struct rtw_rxdesc_blk *rdb;
1462 struct mbuf *m;
1463 struct ifnet *ifp = &sc->sc_if;
1464
1465 struct ieee80211_node *ni;
1466 struct ieee80211_frame_min *wh;
1467
1468 rdb = &sc->sc_rxdesc_blk;
1469
1470 for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
1471 KASSERT(next < rdb->rdb_ndesc);
1472
1473 rtw_rxdescs_sync(rdb, next, 1,
1474 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1475 rd = &rdb->rdb_desc[next];
1476 rs = &sc->sc_rxsoft[next];
1477
1478 hstat = le32toh(rd->rd_stat);
1479 hrssi = le32toh(rd->rd_rssi);
1480 htsfth = le32toh(rd->rd_tsfth);
1481 htsftl = le32toh(rd->rd_tsftl);
1482
1483 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1484 ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1485 __func__, next, hstat, hrssi, htsfth, htsftl));
1486
1487 ++nproc;
1488
1489 /* still belongs to NIC */
1490 if ((hstat & RTW_RXSTAT_OWN) != 0) {
1491 rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
1492 break;
1493 }
1494
1495 /* ieee80211_input() might reset the receive engine
1496 * (e.g. by indirectly calling rtw_tune()), so save
1497 * the next pointer here and retrieve it again on
1498 * the next round.
1499 */
1500 rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
1501
1502 #ifdef RTW_DEBUG
1503 #define PRINTSTAT(flag) do { \
1504 if ((hstat & flag) != 0) { \
1505 printf("%s" #flag, delim); \
1506 delim = ","; \
1507 } \
1508 } while (0)
1509 if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1510 const char *delim = "<";
1511 printf("%s: ", device_xname(sc->sc_dev));
1512 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1513 printf("status %08x", hstat);
1514 PRINTSTAT(RTW_RXSTAT_SPLCP);
1515 PRINTSTAT(RTW_RXSTAT_MAR);
1516 PRINTSTAT(RTW_RXSTAT_PAR);
1517 PRINTSTAT(RTW_RXSTAT_BAR);
1518 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1519 PRINTSTAT(RTW_RXSTAT_CRC32);
1520 PRINTSTAT(RTW_RXSTAT_ICV);
1521 printf(">, ");
1522 }
1523 }
1524 #endif /* RTW_DEBUG */
1525
1526 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1527 aprint_error_dev(sc->sc_dev,
1528 "DMA error/FIFO overflow %08" PRIx32 ", "
1529 "rx descriptor %d\n", hstat, next);
1530 ifp->if_ierrors++;
1531 goto next;
1532 }
1533
1534 len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1535 if (len < IEEE80211_MIN_LEN) {
1536 sc->sc_ic.ic_stats.is_rx_tooshort++;
1537 goto next;
1538 }
1539 if (len > rs->rs_mbuf->m_len) {
1540 aprint_error_dev(sc->sc_dev,
1541 "rx frame too long, %d > %d, %08" PRIx32
1542 ", desc %d\n",
1543 len, rs->rs_mbuf->m_len, hstat, next);
1544 ifp->if_ierrors++;
1545 goto next;
1546 }
1547
1548 hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1549 if (hwrate >= __arraycount(ratetbl)) {
1550 aprint_error_dev(sc->sc_dev,
1551 "unknown rate #%" __PRIuBITS "\n",
1552 __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1553 ifp->if_ierrors++;
1554 goto next;
1555 }
1556 rate = ratetbl[hwrate];
1557
1558 #ifdef RTW_DEBUG
1559 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1560 ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1561 (rate * 5) % 10, htsfth, htsftl));
1562 #endif /* RTW_DEBUG */
1563
1564 /* if bad flags, skip descriptor */
1565 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1566 aprint_error_dev(sc->sc_dev, "too many rx segments, "
1567 "next=%d, %08" PRIx32 "\n", next, hstat);
1568 goto next;
1569 }
1570
1571 bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1572 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1573
1574 m = rs->rs_mbuf;
1575
1576 /* if temporarily out of memory, re-use mbuf */
1577 switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1578 case 0:
1579 break;
1580 case ENOBUFS:
1581 aprint_error_dev(sc->sc_dev,
1582 "rtw_rxsoft_alloc(, %d) failed, dropping packet\n",
1583 next);
1584 goto next;
1585 default:
1586 /* XXX shorten rx ring, instead? */
1587 aprint_error_dev(sc->sc_dev,
1588 "could not load DMA map\n");
1589 }
1590
1591 sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1592
1593 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1594 rssi = UINT8_MAX - sq;
1595 else {
1596 rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1597 /* TBD find out each front-end's LNA gain in the
1598 * front-end's units
1599 */
1600 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1601 rssi |= 0x80;
1602 }
1603
1604 /* Note well: now we cannot recycle the rs_mbuf unless
1605 * we restore its original length.
1606 */
1607 m->m_pkthdr.rcvif = ifp;
1608 m->m_pkthdr.len = m->m_len = len;
1609
1610 wh = mtod(m, struct ieee80211_frame_min *);
1611
1612 if (!IS_BEACON(wh->i_fc[0]))
1613 sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1614
1615 sc->sc_tsfth = htsfth;
1616
1617 #ifdef RTW_DEBUG
1618 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1619 (IFF_DEBUG|IFF_LINK2)) {
1620 ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1621 rate, rssi);
1622 }
1623 #endif /* RTW_DEBUG */
1624
1625 if (sc->sc_radiobpf != NULL) {
1626 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1627
1628 rr->rr_tsft =
1629 htole64(((uint64_t)htsfth << 32) | htsftl);
1630
1631 rr->rr_flags = IEEE80211_RADIOTAP_F_FCS;
1632
1633 if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1634 rr->rr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1635 if ((hstat & RTW_RXSTAT_CRC32) != 0)
1636 rr->rr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
1637
1638 rr->rr_rate = rate;
1639
1640 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1641 rr->rr_u.u_philips.p_antsignal = rssi;
1642 else {
1643 rr->rr_u.u_other.o_antsignal = rssi;
1644 rr->rr_u.u_other.o_barker_lock =
1645 htole16(UINT8_MAX - sq);
1646 }
1647
1648 bpf_mtap2(sc->sc_radiobpf,
1649 rr, sizeof(sc->sc_rxtapu), m);
1650 }
1651
1652 if ((hstat & RTW_RXSTAT_RES) != 0) {
1653 m_freem(m);
1654 goto next;
1655 }
1656
1657 /* CRC is included with the packet; trim it off. */
1658 m_adj(m, -IEEE80211_CRC_LEN);
1659
1660 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1661 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1662 ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1663 ieee80211_free_node(ni);
1664 next:
1665 rtw_rxdesc_init(rdb, rs, next, 0);
1666 }
1667 #undef IS_BEACON
1668 }
1669
1670 static void
1671 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1672 struct rtw_txsoft *ts)
1673 {
1674 struct mbuf *m;
1675 struct ieee80211_node *ni;
1676
1677 m = ts->ts_mbuf;
1678 ni = ts->ts_ni;
1679 KASSERT(m != NULL);
1680 KASSERT(ni != NULL);
1681 ts->ts_mbuf = NULL;
1682 ts->ts_ni = NULL;
1683
1684 bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1685 BUS_DMASYNC_POSTWRITE);
1686 bus_dmamap_unload(dmat, ts->ts_dmamap);
1687 m_freem(m);
1688 ieee80211_free_node(ni);
1689 }
1690
1691 static void
1692 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1693 struct rtw_txsoft_blk *tsb)
1694 {
1695 struct rtw_txsoft *ts;
1696
1697 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1698 rtw_txsoft_release(dmat, ic, ts);
1699 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1700 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1701 }
1702 tsb->tsb_tx_timer = 0;
1703 }
1704
1705 static inline void
1706 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1707 struct rtw_txsoft *ts, int ndesc)
1708 {
1709 uint32_t hstat;
1710 int data_retry, rts_retry;
1711 struct rtw_txdesc *tdn;
1712 const char *condstring;
1713 struct ifnet *ifp = &sc->sc_if;
1714
1715 rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1716
1717 tdb->tdb_nfree += ndesc;
1718
1719 tdn = &tdb->tdb_desc[ts->ts_last];
1720
1721 hstat = le32toh(tdn->td_stat);
1722 rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1723 data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1724
1725 ifp->if_collisions += rts_retry + data_retry;
1726
1727 if ((hstat & RTW_TXSTAT_TOK) != 0)
1728 condstring = "ok";
1729 else {
1730 ifp->if_oerrors++;
1731 condstring = "error";
1732 }
1733
1734 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1735 ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1736 device_xname(sc->sc_dev), ts, ts->ts_first, ts->ts_last,
1737 condstring, rts_retry, data_retry));
1738 }
1739
1740 static void
1741 rtw_reset_oactive(struct rtw_softc *sc)
1742 {
1743 short oflags;
1744 int pri;
1745 struct rtw_txsoft_blk *tsb;
1746 struct rtw_txdesc_blk *tdb;
1747 oflags = sc->sc_if.if_flags;
1748 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1749 tsb = &sc->sc_txsoft_blk[pri];
1750 tdb = &sc->sc_txdesc_blk[pri];
1751 if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1752 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1753 }
1754 if (oflags != sc->sc_if.if_flags) {
1755 DPRINTF(sc, RTW_DEBUG_OACTIVE,
1756 ("%s: reset OACTIVE\n", __func__));
1757 }
1758 }
1759
1760 /* Collect transmitted packets. */
1761 static bool
1762 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1763 struct rtw_txdesc_blk *tdb, int force)
1764 {
1765 bool collected = false;
1766 int ndesc;
1767 struct rtw_txsoft *ts;
1768
1769 #ifdef RTW_DEBUG
1770 rtw_dump_rings(sc);
1771 #endif
1772
1773 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1774 /* If we're clearing a failed transmission, only clear
1775 up to the last packet the hardware has processed. */
1776 if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
1777 break;
1778
1779 ndesc = 1 + ts->ts_last - ts->ts_first;
1780 if (ts->ts_last < ts->ts_first)
1781 ndesc += tdb->tdb_ndesc;
1782
1783 KASSERT(ndesc > 0);
1784
1785 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1786 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1787
1788 if (force) {
1789 int next;
1790 #ifdef RTW_DIAG
1791 printf("%s: clearing packet, stats", __func__);
1792 #endif
1793 for (next = ts->ts_first; ;
1794 next = RTW_NEXT_IDX(tdb, next)) {
1795 #ifdef RTW_DIAG
1796 printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
1797 #endif
1798 tdb->tdb_desc[next].td_stat &=
1799 ~htole32(RTW_TXSTAT_OWN);
1800 if (next == ts->ts_last)
1801 break;
1802 }
1803 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1804 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1805 #ifdef RTW_DIAG
1806 next = RTW_NEXT_IDX(tdb, next);
1807 printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
1808 le32toh(tdb->tdb_desc[next].td_stat),
1809 rtw_txring_next(&sc->sc_regs, tdb));
1810 #endif
1811 } else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1812 htole32(RTW_TXSTAT_OWN)) != 0) {
1813 rtw_txdescs_sync(tdb, ts->ts_last, 1,
1814 BUS_DMASYNC_PREREAD);
1815 break;
1816 }
1817
1818 collected = true;
1819
1820 rtw_collect_txpkt(sc, tdb, ts, ndesc);
1821 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1822 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1823 }
1824
1825 /* no more pending transmissions, cancel watchdog */
1826 if (ts == NULL)
1827 tsb->tsb_tx_timer = 0;
1828 rtw_reset_oactive(sc);
1829
1830 return collected;
1831 }
1832
1833 static void
1834 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1835 {
1836 int pri;
1837 struct rtw_txsoft_blk *tsb;
1838 struct rtw_txdesc_blk *tdb;
1839 struct ifnet *ifp = &sc->sc_if;
1840
1841 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1842 tsb = &sc->sc_txsoft_blk[pri];
1843 tdb = &sc->sc_txdesc_blk[pri];
1844 rtw_collect_txring(sc, tsb, tdb, 0);
1845 }
1846
1847 if ((isr & RTW_INTR_TX) != 0)
1848 rtw_start(ifp);
1849
1850 return;
1851 }
1852
1853 static void
1854 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1855 {
1856 u_int next;
1857 uint32_t tsfth, tsftl;
1858 struct ieee80211com *ic;
1859 struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1860 struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1861 struct mbuf *m;
1862
1863 tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1864 tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1865
1866 if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) {
1867 next = rtw_txring_next(&sc->sc_regs, tdb);
1868 RTW_DPRINTF(RTW_DEBUG_BEACON,
1869 ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1870 ", next %u expected %u, %" PRIu64 "\n", __func__,
1871 (next == tdb->tdb_next) ? "" : "un", isr, next,
1872 tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1873 if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
1874 rtw_collect_txring(sc, tsb, tdb, 1);
1875 }
1876 /* Start beacon transmission. */
1877
1878 if ((isr & RTW_INTR_BCNINT) != 0 &&
1879 sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1880 SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1881 RTW_DPRINTF(RTW_DEBUG_BEACON,
1882 ("%s: beacon prep. time, isr = %#04" PRIx16
1883 ", %16" PRIu64 "\n", __func__, isr,
1884 (uint64_t)tsfth << 32 | tsftl));
1885 ic = &sc->sc_ic;
1886 m = rtw_beacon_alloc(sc, ic->ic_bss);
1887
1888 if (m == NULL) {
1889 aprint_error_dev(sc->sc_dev,
1890 "could not allocate beacon\n");
1891 return;
1892 }
1893 m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss);
1894 IF_ENQUEUE(&sc->sc_beaconq, m);
1895 rtw_start(&sc->sc_if);
1896 }
1897 }
1898
1899 static void
1900 rtw_intr_atim(struct rtw_softc *sc)
1901 {
1902 /* TBD */
1903 return;
1904 }
1905
1906 #ifdef RTW_DEBUG
1907 static void
1908 rtw_dump_rings(struct rtw_softc *sc)
1909 {
1910 struct rtw_txdesc_blk *tdb;
1911 struct rtw_rxdesc *rd;
1912 struct rtw_rxdesc_blk *rdb;
1913 int desc, pri;
1914
1915 if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1916 return;
1917
1918 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1919 tdb = &sc->sc_txdesc_blk[pri];
1920 printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1921 tdb->tdb_ndesc, tdb->tdb_nfree);
1922 for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1923 rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1924 }
1925
1926 rdb = &sc->sc_rxdesc_blk;
1927
1928 for (desc = 0; desc < RTW_RXQLEN; desc++) {
1929 rd = &rdb->rdb_desc[desc];
1930 printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1931 "rsvd1/tsfth %08x\n", __func__,
1932 (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1933 le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1934 le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1935 }
1936 }
1937 #endif /* RTW_DEBUG */
1938
1939 static void
1940 rtw_hwring_setup(struct rtw_softc *sc)
1941 {
1942 int pri;
1943 struct rtw_regs *regs = &sc->sc_regs;
1944 struct rtw_txdesc_blk *tdb;
1945
1946 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1947 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1948 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1949 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1950 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1951 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1952 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1953 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1954
1955 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1956 tdb = &sc->sc_txdesc_blk[pri];
1957 RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1958 RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1959 ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1960 (uintptr_t)tdb->tdb_base));
1961 }
1962
1963 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1964
1965 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1966 ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1967 (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1968
1969 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1970
1971 }
1972
1973 static int
1974 rtw_swring_setup(struct rtw_softc *sc)
1975 {
1976 int rc;
1977 struct rtw_rxdesc_blk *rdb;
1978
1979 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1980
1981 rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
1982
1983 rdb = &sc->sc_rxdesc_blk;
1984 if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
1985 sc->sc_dev)) != 0 && rdb->rdb_ndesc == 0) {
1986 aprint_error_dev(sc->sc_dev, "could not allocate rx buffers\n");
1987 return rc;
1988 }
1989
1990 rdb = &sc->sc_rxdesc_blk;
1991 rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
1992 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1993 rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
1994 rdb->rdb_next = 0;
1995
1996 rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
1997 return 0;
1998 }
1999
2000 static void
2001 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
2002 {
2003 int i;
2004
2005 (void)memset(tdb->tdb_desc, 0,
2006 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
2007 for (i = 0; i < tdb->tdb_ndesc; i++)
2008 tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
2009 }
2010
2011 static u_int
2012 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
2013 {
2014 return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
2015 sizeof(struct rtw_txdesc);
2016 }
2017
2018 #ifdef RTW_DIAG
2019 static void
2020 rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
2021 {
2022 int pri;
2023 u_int next;
2024 struct rtw_txdesc_blk *tdb;
2025 struct rtw_regs *regs = &sc->sc_regs;
2026
2027 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2028 int i;
2029 tdb = &sc->sc_txdesc_blk[pri];
2030 next = rtw_txring_next(regs, tdb);
2031 if (tdb->tdb_next == next)
2032 continue;
2033 for (i = 0; next != tdb->tdb_next;
2034 next = RTW_NEXT_IDX(tdb, next), i++) {
2035 if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
2036 break;
2037 }
2038 printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
2039 ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
2040 if (tdb->tdb_next == next)
2041 continue;
2042 tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
2043 }
2044 }
2045 #endif
2046
2047 static void
2048 rtw_txdescs_reset(struct rtw_softc *sc)
2049 {
2050 int pri;
2051 struct rtw_txsoft_blk *tsb;
2052 struct rtw_txdesc_blk *tdb;
2053
2054 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2055 tsb = &sc->sc_txsoft_blk[pri];
2056 tdb = &sc->sc_txdesc_blk[pri];
2057 rtw_collect_txring(sc, tsb, tdb, 1);
2058 #ifdef RTW_DIAG
2059 if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
2060 printf("%s: packets left in ring %d\n", __func__, pri);
2061 #endif
2062 }
2063 }
2064
2065 static void
2066 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2067 {
2068 aprint_error_dev(sc->sc_dev, "tx fifo underflow\n");
2069
2070 RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
2071 "\n", device_xname(sc->sc_dev), isr));
2072
2073 #ifdef RTW_DEBUG
2074 rtw_dump_rings(sc);
2075 #endif /* RTW_DEBUG */
2076
2077 /* Collect tx'd packets. XXX let's hope this stops the transmit
2078 * timeouts.
2079 */
2080 rtw_txdescs_reset(sc);
2081
2082 #ifdef RTW_DEBUG
2083 rtw_dump_rings(sc);
2084 #endif /* RTW_DEBUG */
2085 }
2086
2087 static inline void
2088 rtw_suspend_ticks(struct rtw_softc *sc)
2089 {
2090 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2091 ("%s: suspending ticks\n", device_xname(sc->sc_dev)));
2092 sc->sc_do_tick = 0;
2093 }
2094
2095 static inline void
2096 rtw_resume_ticks(struct rtw_softc *sc)
2097 {
2098 uint32_t tsftrl0, tsftrl1, next_tint;
2099
2100 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2101
2102 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2103 next_tint = tsftrl1 + 1000000;
2104 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tint);
2105
2106 sc->sc_do_tick = 1;
2107
2108 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2109 ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2110 device_xname(sc->sc_dev), tsftrl1 - tsftrl0, tsftrl1, next_tint));
2111 }
2112
2113 static void
2114 rtw_intr_timeout(struct rtw_softc *sc)
2115 {
2116 RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", device_xname(sc->sc_dev)));
2117 if (sc->sc_do_tick)
2118 rtw_resume_ticks(sc);
2119 return;
2120 }
2121
2122 int
2123 rtw_intr(void *arg)
2124 {
2125 int i;
2126 struct rtw_softc *sc = arg;
2127 struct rtw_regs *regs = &sc->sc_regs;
2128 uint16_t isr;
2129 struct ifnet *ifp = &sc->sc_if;
2130
2131 /*
2132 * If the interface isn't running, the interrupt couldn't
2133 * possibly have come from us.
2134 */
2135 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2136 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
2137 RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n",
2138 device_xname(sc->sc_dev)));
2139 return (0);
2140 }
2141
2142 for (i = 0; i < 10; i++) {
2143 isr = RTW_READ16(regs, RTW_ISR);
2144
2145 RTW_WRITE16(regs, RTW_ISR, isr);
2146 RTW_WBR(regs, RTW_ISR, RTW_ISR);
2147
2148 if (sc->sc_intr_ack != NULL)
2149 (*sc->sc_intr_ack)(regs);
2150
2151 if (isr == 0)
2152 break;
2153
2154 #ifdef RTW_DEBUG
2155 #define PRINTINTR(flag) do { \
2156 if ((isr & flag) != 0) { \
2157 printf("%s" #flag, delim); \
2158 delim = ","; \
2159 } \
2160 } while (0)
2161
2162 if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2163 const char *delim = "<";
2164
2165 printf("%s: reg[ISR] = %x", device_xname(sc->sc_dev),
2166 isr);
2167
2168 PRINTINTR(RTW_INTR_TXFOVW);
2169 PRINTINTR(RTW_INTR_TIMEOUT);
2170 PRINTINTR(RTW_INTR_BCNINT);
2171 PRINTINTR(RTW_INTR_ATIMINT);
2172 PRINTINTR(RTW_INTR_TBDER);
2173 PRINTINTR(RTW_INTR_TBDOK);
2174 PRINTINTR(RTW_INTR_THPDER);
2175 PRINTINTR(RTW_INTR_THPDOK);
2176 PRINTINTR(RTW_INTR_TNPDER);
2177 PRINTINTR(RTW_INTR_TNPDOK);
2178 PRINTINTR(RTW_INTR_RXFOVW);
2179 PRINTINTR(RTW_INTR_RDU);
2180 PRINTINTR(RTW_INTR_TLPDER);
2181 PRINTINTR(RTW_INTR_TLPDOK);
2182 PRINTINTR(RTW_INTR_RER);
2183 PRINTINTR(RTW_INTR_ROK);
2184
2185 printf(">\n");
2186 }
2187 #undef PRINTINTR
2188 #endif /* RTW_DEBUG */
2189
2190 if ((isr & RTW_INTR_RX) != 0)
2191 rtw_intr_rx(sc, isr);
2192 if ((isr & RTW_INTR_TX) != 0)
2193 rtw_intr_tx(sc, isr);
2194 if ((isr & RTW_INTR_BEACON) != 0)
2195 rtw_intr_beacon(sc, isr);
2196 if ((isr & RTW_INTR_ATIMINT) != 0)
2197 rtw_intr_atim(sc);
2198 if ((isr & RTW_INTR_IOERROR) != 0)
2199 rtw_intr_ioerror(sc, isr);
2200 if ((isr & RTW_INTR_TIMEOUT) != 0)
2201 rtw_intr_timeout(sc);
2202 }
2203
2204 return 1;
2205 }
2206
2207 /* Must be called at splnet. */
2208 static void
2209 rtw_stop(struct ifnet *ifp, int disable)
2210 {
2211 int pri;
2212 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2213 struct ieee80211com *ic = &sc->sc_ic;
2214 struct rtw_regs *regs = &sc->sc_regs;
2215
2216 rtw_suspend_ticks(sc);
2217
2218 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2219
2220 if (device_has_power(sc->sc_dev)) {
2221 /* Disable interrupts. */
2222 RTW_WRITE16(regs, RTW_IMR, 0);
2223
2224 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2225
2226 /* Stop the transmit and receive processes. First stop DMA,
2227 * then disable receiver and transmitter.
2228 */
2229 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2230
2231 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2232
2233 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2234 }
2235
2236 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2237 rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2238 &sc->sc_txsoft_blk[pri]);
2239 }
2240
2241 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2242
2243 /* Mark the interface as not running. Cancel the watchdog timer. */
2244 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2245 ifp->if_timer = 0;
2246
2247 if (disable)
2248 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2249
2250 return;
2251 }
2252
2253 const char *
2254 rtw_pwrstate_string(enum rtw_pwrstate power)
2255 {
2256 switch (power) {
2257 case RTW_ON:
2258 return "on";
2259 case RTW_SLEEP:
2260 return "sleep";
2261 case RTW_OFF:
2262 return "off";
2263 default:
2264 return "unknown";
2265 }
2266 }
2267
2268 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2269 * reference driver, plus a magic Maxim "ON" value that comes from
2270 * the Realtek document "Windows PG for Rtl8180."
2271 */
2272 static void
2273 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2274 int before_rf, int digphy)
2275 {
2276 uint32_t anaparm;
2277
2278 anaparm = RTW_READ(regs, RTW_ANAPARM);
2279 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2280
2281 switch (power) {
2282 case RTW_OFF:
2283 if (before_rf)
2284 return;
2285 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2286 anaparm |= RTW_ANAPARM_TXDACOFF;
2287 break;
2288 case RTW_SLEEP:
2289 if (!before_rf)
2290 return;
2291 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2292 anaparm |= RTW_ANAPARM_TXDACOFF;
2293 break;
2294 case RTW_ON:
2295 if (!before_rf)
2296 return;
2297 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2298 break;
2299 }
2300 RTW_DPRINTF(RTW_DEBUG_PWR,
2301 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2302 __func__, rtw_pwrstate_string(power),
2303 (before_rf) ? "before" : "after", anaparm));
2304
2305 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2306 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2307 }
2308
2309 /* XXX I am using the RFMD settings gleaned from the reference
2310 * driver. They agree
2311 */
2312 static void
2313 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2314 int before_rf, int digphy)
2315 {
2316 uint32_t anaparm;
2317
2318 anaparm = RTW_READ(regs, RTW_ANAPARM);
2319 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2320
2321 switch (power) {
2322 case RTW_OFF:
2323 if (before_rf)
2324 return;
2325 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2326 anaparm |= RTW_ANAPARM_TXDACOFF;
2327 break;
2328 case RTW_SLEEP:
2329 if (!before_rf)
2330 return;
2331 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2332 anaparm |= RTW_ANAPARM_TXDACOFF;
2333 break;
2334 case RTW_ON:
2335 if (!before_rf)
2336 return;
2337 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2338 break;
2339 }
2340 RTW_DPRINTF(RTW_DEBUG_PWR,
2341 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2342 __func__, rtw_pwrstate_string(power),
2343 (before_rf) ? "before" : "after", anaparm));
2344
2345 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2346 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2347 }
2348
2349 static void
2350 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2351 int before_rf, int digphy)
2352 {
2353 uint32_t anaparm;
2354
2355 anaparm = RTW_READ(regs, RTW_ANAPARM);
2356 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2357
2358 switch (power) {
2359 case RTW_OFF:
2360 if (before_rf)
2361 return;
2362 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2363 anaparm |= RTW_ANAPARM_TXDACOFF;
2364 break;
2365 case RTW_SLEEP:
2366 if (!before_rf)
2367 return;
2368 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2369 anaparm |= RTW_ANAPARM_TXDACOFF;
2370 break;
2371 case RTW_ON:
2372 if (!before_rf)
2373 return;
2374 if (digphy) {
2375 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2376 /* XXX guess */
2377 anaparm |= RTW_ANAPARM_TXDACOFF;
2378 } else
2379 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2380 break;
2381 }
2382 RTW_DPRINTF(RTW_DEBUG_PWR,
2383 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2384 __func__, rtw_pwrstate_string(power),
2385 (before_rf) ? "before" : "after", anaparm));
2386
2387 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2388 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2389 }
2390
2391 static void
2392 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2393 int digphy)
2394 {
2395 struct rtw_regs *regs = &sc->sc_regs;
2396
2397 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2398
2399 (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2400
2401 rtw_set_access(regs, RTW_ACCESS_NONE);
2402
2403 return;
2404 }
2405
2406 static int
2407 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2408 {
2409 int rc;
2410
2411 RTW_DPRINTF(RTW_DEBUG_PWR,
2412 ("%s: %s->%s\n", __func__,
2413 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2414
2415 if (sc->sc_pwrstate == power)
2416 return 0;
2417
2418 rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2419 rc = rtw_rf_pwrstate(sc->sc_rf, power);
2420 rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2421
2422 switch (power) {
2423 case RTW_ON:
2424 /* TBD set LEDs */
2425 break;
2426 case RTW_SLEEP:
2427 /* TBD */
2428 break;
2429 case RTW_OFF:
2430 /* TBD */
2431 break;
2432 }
2433 if (rc == 0)
2434 sc->sc_pwrstate = power;
2435 else
2436 sc->sc_pwrstate = RTW_OFF;
2437 return rc;
2438 }
2439
2440 static int
2441 rtw_tune(struct rtw_softc *sc)
2442 {
2443 struct ieee80211com *ic = &sc->sc_ic;
2444 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
2445 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
2446 u_int chan;
2447 int rc;
2448 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2449 dflantb = sc->sc_flags & RTW_F_DFLANTB;
2450
2451 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2452 KASSERT(chan != IEEE80211_CHAN_ANY);
2453
2454 rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2455 rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2456
2457 rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2458 rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2459
2460 if (chan == sc->sc_cur_chan) {
2461 RTW_DPRINTF(RTW_DEBUG_TUNE,
2462 ("%s: already tuned chan #%d\n", __func__, chan));
2463 return 0;
2464 }
2465
2466 rtw_suspend_ticks(sc);
2467
2468 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2469
2470 /* TBD wait for Tx to complete */
2471
2472 KASSERT(device_has_power(sc->sc_dev));
2473
2474 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2475 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2476 ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2477 /* XXX condition on powersaving */
2478 aprint_error_dev(sc->sc_dev, "phy init failed\n");
2479 }
2480
2481 sc->sc_cur_chan = chan;
2482
2483 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2484
2485 rtw_resume_ticks(sc);
2486
2487 return rc;
2488 }
2489
2490 bool
2491 rtw_suspend(device_t self, const pmf_qual_t *qual)
2492 {
2493 int rc;
2494 struct rtw_softc *sc = device_private(self);
2495
2496 sc->sc_flags &= ~RTW_F_DK_VALID;
2497
2498 if (!device_has_power(self))
2499 return false;
2500
2501 /* turn off PHY */
2502 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2503 aprint_error_dev(self, "failed to turn off PHY (%d)\n", rc);
2504 return false;
2505 }
2506
2507 rtw_disable_interrupts(&sc->sc_regs);
2508
2509 return true;
2510 }
2511
2512 bool
2513 rtw_resume(device_t self, const pmf_qual_t *qual)
2514 {
2515 struct rtw_softc *sc = device_private(self);
2516
2517 /* Power may have been removed, resetting WEP keys.
2518 */
2519 sc->sc_flags &= ~RTW_F_DK_VALID;
2520 rtw_enable_interrupts(sc);
2521
2522 return true;
2523 }
2524
2525 static void
2526 rtw_transmit_config(struct rtw_regs *regs)
2527 {
2528 uint32_t tcr;
2529
2530 tcr = RTW_READ(regs, RTW_TCR);
2531
2532 tcr |= RTW_TCR_CWMIN;
2533 tcr &= ~RTW_TCR_MXDMA_MASK;
2534 tcr |= RTW_TCR_MXDMA_256;
2535 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
2536 tcr &= ~RTW_TCR_LBK_MASK;
2537 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
2538
2539 /* set short/long retry limits */
2540 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2541 tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
2542
2543 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
2544
2545 RTW_WRITE(regs, RTW_TCR, tcr);
2546 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2547 }
2548
2549 static void
2550 rtw_disable_interrupts(struct rtw_regs *regs)
2551 {
2552 RTW_WRITE16(regs, RTW_IMR, 0);
2553 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2554 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2555 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2556 }
2557
2558 static void
2559 rtw_enable_interrupts(struct rtw_softc *sc)
2560 {
2561 struct rtw_regs *regs = &sc->sc_regs;
2562
2563 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2564 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2565
2566 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2567 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2568 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2569 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2570
2571 /* XXX necessary? */
2572 if (sc->sc_intr_ack != NULL)
2573 (*sc->sc_intr_ack)(regs);
2574 }
2575
2576 static void
2577 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2578 {
2579 uint8_t msr;
2580
2581 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2582 rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2583
2584 msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2585
2586 switch (opmode) {
2587 case IEEE80211_M_AHDEMO:
2588 case IEEE80211_M_IBSS:
2589 msr |= RTW_MSR_NETYPE_ADHOC_OK;
2590 break;
2591 case IEEE80211_M_HOSTAP:
2592 msr |= RTW_MSR_NETYPE_AP_OK;
2593 break;
2594 case IEEE80211_M_MONITOR:
2595 /* XXX */
2596 msr |= RTW_MSR_NETYPE_NOLINK;
2597 break;
2598 case IEEE80211_M_STA:
2599 msr |= RTW_MSR_NETYPE_INFRA_OK;
2600 break;
2601 }
2602 RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2603
2604 rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2605 }
2606
2607 #define rtw_calchash(addr) \
2608 (ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2609
2610 static void
2611 rtw_pktfilt_load(struct rtw_softc *sc)
2612 {
2613 struct rtw_regs *regs = &sc->sc_regs;
2614 struct ieee80211com *ic = &sc->sc_ic;
2615 struct ethercom *ec = &sc->sc_ec;
2616 struct ifnet *ifp = &sc->sc_if;
2617 int hash;
2618 uint32_t hashes[2] = { 0, 0 };
2619 struct ether_multi *enm;
2620 struct ether_multistep step;
2621
2622 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2623
2624 sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2625 sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2626
2627 sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2628 /* MAC auto-reset PHY (huh?) */
2629 sc->sc_rcr |= RTW_RCR_ENMARP;
2630 /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
2631 sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2632
2633 switch (ic->ic_opmode) {
2634 case IEEE80211_M_MONITOR:
2635 sc->sc_rcr |= RTW_RCR_MONITOR;
2636 break;
2637 case IEEE80211_M_AHDEMO:
2638 case IEEE80211_M_IBSS:
2639 /* receive broadcasts in our BSS */
2640 sc->sc_rcr |= RTW_RCR_ADD3;
2641 break;
2642 default:
2643 break;
2644 }
2645
2646 ifp->if_flags &= ~IFF_ALLMULTI;
2647
2648 /*
2649 * Program the 64-bit multicast hash filter.
2650 */
2651 ETHER_FIRST_MULTI(step, ec, enm);
2652 while (enm != NULL) {
2653 /* XXX */
2654 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2655 ETHER_ADDR_LEN) != 0) {
2656 ifp->if_flags |= IFF_ALLMULTI;
2657 break;
2658 }
2659
2660 hash = rtw_calchash(enm->enm_addrlo);
2661 hashes[hash >> 5] |= (1 << (hash & 0x1f));
2662 ETHER_NEXT_MULTI(step, enm);
2663 }
2664
2665 /* XXX accept all broadcast if scanning */
2666 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2667 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2668
2669 if (ifp->if_flags & IFF_PROMISC) {
2670 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2671 sc->sc_rcr |= RTW_RCR_ACRC32; /* accept frames failing CRC */
2672 sc->sc_rcr |= RTW_RCR_AICV; /* accept frames failing ICV */
2673 ifp->if_flags |= IFF_ALLMULTI;
2674 }
2675
2676 if (ifp->if_flags & IFF_ALLMULTI)
2677 hashes[0] = hashes[1] = 0xffffffff;
2678
2679 if ((hashes[0] | hashes[1]) != 0)
2680 sc->sc_rcr |= RTW_RCR_AM; /* accept multicast */
2681
2682 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2683 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2684 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2685 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2686
2687 DPRINTF(sc, RTW_DEBUG_PKTFILT,
2688 ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2689 device_xname(sc->sc_dev), RTW_READ(regs, RTW_MAR0),
2690 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2691 }
2692
2693 static struct mbuf *
2694 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2695 {
2696 struct ieee80211com *ic = &sc->sc_ic;
2697 struct mbuf *m;
2698 struct ieee80211_beacon_offsets boff;
2699
2700 if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2701 RTW_DPRINTF(RTW_DEBUG_BEACON,
2702 ("%s: m %p len %u\n", __func__, m, m->m_len));
2703 }
2704 return m;
2705 }
2706
2707 /* Must be called at splnet. */
2708 static int
2709 rtw_init(struct ifnet *ifp)
2710 {
2711 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2712 struct ieee80211com *ic = &sc->sc_ic;
2713 struct rtw_regs *regs = &sc->sc_regs;
2714 int rc;
2715
2716 if (device_is_active(sc->sc_dev)) {
2717 /* Cancel pending I/O and reset. */
2718 rtw_stop(ifp, 0);
2719 } else if (!pmf_device_resume(sc->sc_dev, &sc->sc_qual) ||
2720 !device_is_active(sc->sc_dev))
2721 return 0;
2722
2723 DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2724 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2725 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2726
2727 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2728 goto out;
2729
2730 if ((rc = rtw_swring_setup(sc)) != 0)
2731 goto out;
2732
2733 rtw_transmit_config(regs);
2734
2735 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2736
2737 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2738 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2739
2740 /* long PLCP header, 1Mb/2Mb basic rate */
2741 RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2742 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2743
2744 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2745 rtw_set_access(regs, RTW_ACCESS_NONE);
2746
2747 /* XXX from reference sources */
2748 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2749 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2750
2751 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev);
2752
2753 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2754 /* from Linux driver */
2755 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2756
2757 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2758
2759 rtw_enable_interrupts(sc);
2760
2761 rtw_pktfilt_load(sc);
2762
2763 rtw_hwring_setup(sc);
2764
2765 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2766
2767 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2768
2769 ifp->if_flags |= IFF_RUNNING;
2770 ic->ic_state = IEEE80211_S_INIT;
2771
2772 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2773 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2774
2775 rtw_resume_ticks(sc);
2776
2777 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2778
2779 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2780 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2781 else
2782 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2783
2784 out:
2785 aprint_error_dev(sc->sc_dev, "interface not running\n");
2786 return rc;
2787 }
2788
2789 static inline void
2790 rtw_led_init(struct rtw_regs *regs)
2791 {
2792 uint8_t cfg0, cfg1;
2793
2794 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2795
2796 cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2797 cfg0 |= RTW_CONFIG0_LEDGPOEN;
2798 RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2799
2800 cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2801 RTW_DPRINTF(RTW_DEBUG_LED,
2802 ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2803
2804 cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2805 cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2806 RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2807
2808 rtw_set_access(regs, RTW_ACCESS_NONE);
2809 }
2810
2811 /*
2812 * IEEE80211_S_INIT: LED1 off
2813 *
2814 * IEEE80211_S_AUTH,
2815 * IEEE80211_S_ASSOC,
2816 * IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2817 *
2818 * IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx
2819 */
2820 static void
2821 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2822 {
2823 struct rtw_led_state *ls;
2824
2825 ls = &sc->sc_led_state;
2826
2827 switch (nstate) {
2828 case IEEE80211_S_INIT:
2829 rtw_led_init(&sc->sc_regs);
2830 aprint_debug_dev(sc->sc_dev, "stopping blink\n");
2831 callout_stop(&ls->ls_slow_ch);
2832 callout_stop(&ls->ls_fast_ch);
2833 ls->ls_slowblink = 0;
2834 ls->ls_actblink = 0;
2835 ls->ls_default = 0;
2836 break;
2837 case IEEE80211_S_SCAN:
2838 aprint_debug_dev(sc->sc_dev, "scheduling blink\n");
2839 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2840 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2841 /*FALLTHROUGH*/
2842 case IEEE80211_S_AUTH:
2843 case IEEE80211_S_ASSOC:
2844 ls->ls_default = RTW_LED1;
2845 ls->ls_actblink = RTW_LED1;
2846 ls->ls_slowblink = RTW_LED1;
2847 break;
2848 case IEEE80211_S_RUN:
2849 ls->ls_slowblink = 0;
2850 break;
2851 }
2852 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2853 }
2854
2855 static void
2856 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2857 {
2858 uint8_t led_condition;
2859 bus_size_t ofs;
2860 uint8_t mask, newval, val;
2861
2862 led_condition = ls->ls_default;
2863
2864 if (ls->ls_state & RTW_LED_S_SLOW)
2865 led_condition ^= ls->ls_slowblink;
2866 if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX))
2867 led_condition ^= ls->ls_actblink;
2868
2869 RTW_DPRINTF(RTW_DEBUG_LED,
2870 ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2871
2872 switch (hwverid) {
2873 default:
2874 case 'F':
2875 ofs = RTW_PSR;
2876 newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2877 if (led_condition & RTW_LED0)
2878 newval &= ~RTW_PSR_LEDGPO0;
2879 if (led_condition & RTW_LED1)
2880 newval &= ~RTW_PSR_LEDGPO1;
2881 break;
2882 case 'D':
2883 ofs = RTW_9346CR;
2884 mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2885 newval = RTW_9346CR_EEM_PROGRAM;
2886 if (led_condition & RTW_LED0)
2887 newval |= RTW_9346CR_EEDI;
2888 if (led_condition & RTW_LED1)
2889 newval |= RTW_9346CR_EECS;
2890 break;
2891 }
2892 val = RTW_READ8(regs, ofs);
2893 RTW_DPRINTF(RTW_DEBUG_LED,
2894 ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2895 (uintptr_t)ofs));
2896 val &= ~mask;
2897 val |= newval;
2898 RTW_WRITE8(regs, ofs, val);
2899 RTW_DPRINTF(RTW_DEBUG_LED,
2900 ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2901 (uintptr_t)ofs));
2902 RTW_SYNC(regs, ofs, ofs);
2903 }
2904
2905 static void
2906 rtw_led_fastblink(void *arg)
2907 {
2908 int ostate, s;
2909 struct rtw_softc *sc = (struct rtw_softc *)arg;
2910 struct rtw_led_state *ls = &sc->sc_led_state;
2911
2912 s = splnet();
2913 ostate = ls->ls_state;
2914 ls->ls_state ^= ls->ls_event;
2915
2916 if ((ls->ls_event & RTW_LED_S_TX) == 0)
2917 ls->ls_state &= ~RTW_LED_S_TX;
2918
2919 if ((ls->ls_event & RTW_LED_S_RX) == 0)
2920 ls->ls_state &= ~RTW_LED_S_RX;
2921
2922 ls->ls_event = 0;
2923
2924 if (ostate != ls->ls_state)
2925 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2926 splx(s);
2927
2928 aprint_debug_dev(sc->sc_dev, "scheduling fast blink\n");
2929 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2930 }
2931
2932 static void
2933 rtw_led_slowblink(void *arg)
2934 {
2935 int s;
2936 struct rtw_softc *sc = (struct rtw_softc *)arg;
2937 struct rtw_led_state *ls = &sc->sc_led_state;
2938
2939 s = splnet();
2940 ls->ls_state ^= RTW_LED_S_SLOW;
2941 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2942 splx(s);
2943 aprint_debug_dev(sc->sc_dev, "scheduling slow blink\n");
2944 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2945 }
2946
2947 static void
2948 rtw_led_detach(struct rtw_led_state *ls)
2949 {
2950 callout_destroy(&ls->ls_fast_ch);
2951 callout_destroy(&ls->ls_slow_ch);
2952 }
2953
2954 static void
2955 rtw_led_attach(struct rtw_led_state *ls, void *arg)
2956 {
2957 callout_init(&ls->ls_fast_ch, 0);
2958 callout_init(&ls->ls_slow_ch, 0);
2959 callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
2960 callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
2961 }
2962
2963 static int
2964 rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2965 {
2966 int rc = 0, s;
2967 struct rtw_softc *sc = ifp->if_softc;
2968
2969 s = splnet();
2970 if (cmd == SIOCSIFFLAGS) {
2971 if ((rc = ifioctl_common(ifp, cmd, data)) != 0)
2972 ;
2973 else switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2974 case IFF_UP:
2975 rc = rtw_init(ifp);
2976 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2977 break;
2978 case IFF_UP|IFF_RUNNING:
2979 if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2980 rtw_pktfilt_load(sc);
2981 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2982 break;
2983 case IFF_RUNNING:
2984 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2985 rtw_stop(ifp, 1);
2986 break;
2987 default:
2988 break;
2989 }
2990 } else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
2991 ; /* nothing to do */
2992 else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
2993 /* reload packet filter if running */
2994 if (ifp->if_flags & IFF_RUNNING)
2995 rtw_pktfilt_load(sc);
2996 rc = 0;
2997 } else if ((ifp->if_flags & IFF_UP) != 0)
2998 rc = rtw_init(ifp);
2999 else
3000 rc = 0;
3001 splx(s);
3002 return rc;
3003 }
3004
3005 /* Select a transmit ring with at least one h/w and s/w descriptor free.
3006 * Return 0 on success, -1 on failure.
3007 */
3008 static inline int
3009 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
3010 struct rtw_txdesc_blk **tdbp, int pri)
3011 {
3012 struct rtw_txsoft_blk *tsb;
3013 struct rtw_txdesc_blk *tdb;
3014
3015 KASSERT(pri >= 0 && pri < RTW_NTXPRI);
3016
3017 tsb = &sc->sc_txsoft_blk[pri];
3018 tdb = &sc->sc_txdesc_blk[pri];
3019
3020 if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
3021 if (tsb->tsb_tx_timer == 0)
3022 tsb->tsb_tx_timer = 5;
3023 *tsbp = NULL;
3024 *tdbp = NULL;
3025 return -1;
3026 }
3027 *tsbp = tsb;
3028 *tdbp = tdb;
3029 return 0;
3030 }
3031
3032 static inline struct mbuf *
3033 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
3034 struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
3035 struct ieee80211_node **nip, short *if_flagsp)
3036 {
3037 struct mbuf *m;
3038
3039 if (IF_IS_EMPTY(ifq))
3040 return NULL;
3041 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3042 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3043 __func__, pri));
3044 *if_flagsp |= IFF_OACTIVE;
3045 sc->sc_if.if_timer = 1;
3046 return NULL;
3047 }
3048 IF_DEQUEUE(ifq, m);
3049 *nip = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3050 m->m_pkthdr.rcvif = NULL;
3051 KASSERT(*nip != NULL);
3052 return m;
3053 }
3054
3055 /* Point *mp at the next 802.11 frame to transmit. Point *tsbp
3056 * at the driver's selection of transmit control block for the packet.
3057 */
3058 static inline int
3059 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
3060 struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
3061 struct ieee80211_node **nip)
3062 {
3063 int pri;
3064 struct ether_header *eh;
3065 struct mbuf *m0;
3066 struct rtw_softc *sc;
3067 short *if_flagsp;
3068
3069 *mp = NULL;
3070
3071 sc = (struct rtw_softc *)ifp->if_softc;
3072
3073 DPRINTF(sc, RTW_DEBUG_XMIT,
3074 ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3075
3076 if_flagsp = &ifp->if_flags;
3077
3078 if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3079 (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3080 tdbp, nip, if_flagsp)) != NULL) {
3081 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3082 __func__));
3083 return 0;
3084 }
3085
3086 if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3087 tdbp, nip, if_flagsp)) != NULL) {
3088 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3089 __func__));
3090 return 0;
3091 }
3092
3093 if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3094 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3095 return 0;
3096 }
3097
3098 IFQ_POLL(&ifp->if_snd, m0);
3099 if (m0 == NULL) {
3100 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3101 __func__));
3102 return 0;
3103 }
3104
3105 pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3106
3107 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3108 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3109 __func__, pri));
3110 *if_flagsp |= IFF_OACTIVE;
3111 sc->sc_if.if_timer = 1;
3112 return 0;
3113 }
3114
3115 IFQ_DEQUEUE(&ifp->if_snd, m0);
3116 if (m0 == NULL) {
3117 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3118 __func__));
3119 return 0;
3120 }
3121 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3122 ifp->if_opackets++;
3123 bpf_mtap(ifp, m0);
3124 eh = mtod(m0, struct ether_header *);
3125 *nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3126 if (*nip == NULL) {
3127 /* NB: ieee80211_find_txnode does stat+msg */
3128 m_freem(m0);
3129 return -1;
3130 }
3131 if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3132 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3133 ifp->if_oerrors++;
3134 return -1;
3135 }
3136 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3137 *mp = m0;
3138 return 0;
3139 }
3140
3141 static int
3142 rtw_seg_too_short(bus_dmamap_t dmamap)
3143 {
3144 int i;
3145 for (i = 0; i < dmamap->dm_nsegs; i++) {
3146 if (dmamap->dm_segs[i].ds_len < 4)
3147 return 1;
3148 }
3149 return 0;
3150 }
3151
3152 /* TBD factor with atw_start */
3153 static struct mbuf *
3154 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3155 u_int ndescfree, device_t dev)
3156 {
3157 int first, rc;
3158 struct mbuf *m, *m0;
3159
3160 m0 = chain;
3161
3162 /*
3163 * Load the DMA map. Copy and try (once) again if the packet
3164 * didn't fit in the alloted number of segments.
3165 */
3166 for (first = 1;
3167 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3168 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
3169 dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3170 first = 0) {
3171 if (rc == 0) {
3172 #ifdef RTW_DIAGxxx
3173 if (rtw_seg_too_short(dmam)) {
3174 printf("%s: short segment, mbuf lengths:", __func__);
3175 for (m = m0; m; m = m->m_next)
3176 printf(" %d", m->m_len);
3177 printf("\n");
3178 }
3179 #endif
3180 bus_dmamap_unload(dmat, dmam);
3181 }
3182 MGETHDR(m, M_DONTWAIT, MT_DATA);
3183 if (m == NULL) {
3184 aprint_error_dev(dev, "unable to allocate Tx mbuf\n");
3185 break;
3186 }
3187 if (m0->m_pkthdr.len > MHLEN) {
3188 MCLGET(m, M_DONTWAIT);
3189 if ((m->m_flags & M_EXT) == 0) {
3190 aprint_error_dev(dev,
3191 "cannot allocate Tx cluster\n");
3192 m_freem(m);
3193 break;
3194 }
3195 }
3196 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3197 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3198 m_freem(m0);
3199 m0 = m;
3200 m = NULL;
3201 }
3202 if (rc != 0) {
3203 aprint_error_dev(dev, "cannot load Tx buffer, rc = %d\n", rc);
3204 m_freem(m0);
3205 return NULL;
3206 } else if (rtw_seg_too_short(dmam)) {
3207 aprint_error_dev(dev,
3208 "cannot load Tx buffer, segment too short\n");
3209 bus_dmamap_unload(dmat, dmam);
3210 m_freem(m0);
3211 return NULL;
3212 } else if (dmam->dm_nsegs > ndescfree) {
3213 aprint_error_dev(dev, "too many tx segments\n");
3214 bus_dmamap_unload(dmat, dmam);
3215 m_freem(m0);
3216 return NULL;
3217 }
3218 return m0;
3219 }
3220
3221 #ifdef RTW_DEBUG
3222 static void
3223 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3224 struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3225 {
3226 struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3227 DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3228 "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3229 device_xname(sc->sc_dev), ts, action, desc,
3230 le32toh(td->td_buf), le32toh(td->td_next),
3231 le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3232 le32toh(td->td_len)));
3233 }
3234 #endif /* RTW_DEBUG */
3235
3236 static void
3237 rtw_start(struct ifnet *ifp)
3238 {
3239 int desc, i, lastdesc, npkt, rate;
3240 uint32_t proto_ctl0, ctl0, ctl1;
3241 bus_dmamap_t dmamap;
3242 struct ieee80211com *ic;
3243 struct ieee80211_duration *d0;
3244 struct ieee80211_frame_min *wh;
3245 struct ieee80211_node *ni = NULL; /* XXX: GCC */
3246 struct mbuf *m0;
3247 struct rtw_softc *sc;
3248 struct rtw_txsoft_blk *tsb = NULL; /* XXX: GCC */
3249 struct rtw_txdesc_blk *tdb = NULL; /* XXX: GCC */
3250 struct rtw_txsoft *ts;
3251 struct rtw_txdesc *td;
3252 struct ieee80211_key *k;
3253
3254 sc = (struct rtw_softc *)ifp->if_softc;
3255 ic = &sc->sc_ic;
3256
3257 DPRINTF(sc, RTW_DEBUG_XMIT,
3258 ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3259
3260 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3261 goto out;
3262
3263 /* XXX do real rate control */
3264 proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3265
3266 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3267 proto_ctl0 |= RTW_TXCTL0_SPLCP;
3268
3269 for (;;) {
3270 if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3271 continue;
3272 if (m0 == NULL)
3273 break;
3274
3275 wh = mtod(m0, struct ieee80211_frame_min *);
3276
3277 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3278 (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3279 m_freem(m0);
3280 break;
3281 } else
3282 k = NULL;
3283
3284 ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3285
3286 dmamap = ts->ts_dmamap;
3287
3288 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3289 tdb->tdb_nfree, sc->sc_dev);
3290
3291 if (m0 == NULL || dmamap->dm_nsegs == 0) {
3292 DPRINTF(sc, RTW_DEBUG_XMIT,
3293 ("%s: fail dmamap load\n", __func__));
3294 goto post_dequeue_err;
3295 }
3296
3297 /* Note well: rtw_dmamap_load_txbuf may have created
3298 * a new chain, so we must find the header once
3299 * more.
3300 */
3301 wh = mtod(m0, struct ieee80211_frame_min *);
3302
3303 /* XXX do real rate control */
3304 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3305 IEEE80211_FC0_TYPE_MGT)
3306 rate = 2;
3307 else
3308 rate = MAX(2, ieee80211_get_rate(ni));
3309
3310 #ifdef RTW_DEBUG
3311 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3312 (IFF_DEBUG|IFF_LINK2)) {
3313 ieee80211_dump_pkt(mtod(m0, uint8_t *),
3314 (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3315 : sizeof(wh),
3316 rate, 0);
3317 }
3318 #endif /* RTW_DEBUG */
3319 ctl0 = proto_ctl0 |
3320 __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3321
3322 switch (rate) {
3323 default:
3324 case 2:
3325 ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3326 break;
3327 case 4:
3328 ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3329 break;
3330 case 11:
3331 ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3332 break;
3333 case 22:
3334 ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3335 break;
3336 }
3337 /* XXX >= ? Compare after fragmentation? */
3338 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3339 ctl0 |= RTW_TXCTL0_RTSEN;
3340
3341 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3342 * seem to care, since we don't activate h/w Tx
3343 * encryption.
3344 */
3345 if (k != NULL &&
3346 k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP) {
3347 ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3348 RTW_TXCTL0_KEYID_MASK;
3349 }
3350
3351 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3352 IEEE80211_FC0_TYPE_MGT) {
3353 ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3354 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3355 IEEE80211_FC0_SUBTYPE_BEACON)
3356 ctl0 |= RTW_TXCTL0_BEACON;
3357 }
3358
3359 if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3360 ic->ic_flags, ic->ic_fragthreshold,
3361 rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3362 (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3363 (IFF_DEBUG|IFF_LINK2)) == -1) {
3364 DPRINTF(sc, RTW_DEBUG_XMIT,
3365 ("%s: fail compute duration\n", __func__));
3366 goto post_load_err;
3367 }
3368
3369 d0 = &ts->ts_d0;
3370
3371 *(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3372
3373 ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3374 __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3375
3376 if (d0->d_residue)
3377 ctl1 |= RTW_TXCTL1_LENGEXT;
3378
3379 /* TBD fragmentation */
3380
3381 ts->ts_first = tdb->tdb_next;
3382
3383 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3384 BUS_DMASYNC_PREWRITE);
3385
3386 KASSERT(ts->ts_first < tdb->tdb_ndesc);
3387
3388 bpf_mtap3(ic->ic_rawbpf, m0);
3389
3390 if (sc->sc_radiobpf != NULL) {
3391 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3392
3393 rt->rt_rate = rate;
3394
3395 bpf_mtap2(sc->sc_radiobpf, rt, sizeof(sc->sc_txtapu),
3396 m0);
3397 }
3398
3399 for (i = 0, lastdesc = desc = ts->ts_first;
3400 i < dmamap->dm_nsegs;
3401 i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3402 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3403 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3404 ("%s: seg too long\n", __func__));
3405 goto post_load_err;
3406 }
3407 td = &tdb->tdb_desc[desc];
3408 td->td_ctl0 = htole32(ctl0);
3409 td->td_ctl1 = htole32(ctl1);
3410 td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3411 td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3412 td->td_next = htole32(RTW_NEXT_DESC(tdb, desc));
3413 if (i != 0)
3414 td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3415 lastdesc = desc;
3416 #ifdef RTW_DEBUG
3417 rtw_print_txdesc(sc, "load", ts, tdb, desc);
3418 #endif /* RTW_DEBUG */
3419 }
3420
3421 KASSERT(desc < tdb->tdb_ndesc);
3422
3423 ts->ts_ni = ni;
3424 KASSERT(ni != NULL);
3425 ts->ts_mbuf = m0;
3426 ts->ts_last = lastdesc;
3427 tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3428 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3429 htole32(RTW_TXCTL0_FS);
3430
3431 #ifdef RTW_DEBUG
3432 rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3433 rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3434 #endif /* RTW_DEBUG */
3435
3436 tdb->tdb_nfree -= dmamap->dm_nsegs;
3437 tdb->tdb_next = desc;
3438
3439 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3440 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3441
3442 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3443 htole32(RTW_TXCTL0_OWN);
3444
3445 #ifdef RTW_DEBUG
3446 rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3447 #endif /* RTW_DEBUG */
3448
3449 rtw_txdescs_sync(tdb, ts->ts_first, 1,
3450 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3451
3452 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3453 SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3454
3455 if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3456 sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3457 tsb->tsb_tx_timer = 5;
3458 ifp->if_timer = 1;
3459 rtw_tx_kick(&sc->sc_regs, tsb->tsb_poll);
3460 }
3461 out:
3462 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3463 return;
3464 post_load_err:
3465 bus_dmamap_unload(sc->sc_dmat, dmamap);
3466 m_freem(m0);
3467 post_dequeue_err:
3468 ieee80211_free_node(ni);
3469 return;
3470 }
3471
3472 static void
3473 rtw_idle(struct rtw_regs *regs)
3474 {
3475 int active;
3476 uint8_t tppoll;
3477
3478 /* request stop DMA; wait for packets to stop transmitting. */
3479
3480 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3481 RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3482
3483 for (active = 0; active < 300 &&
3484 (tppoll = RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0;
3485 active++)
3486 DELAY(10);
3487 printf("%s: transmit DMA idle in %dus, tppoll %02" PRIx8 "\n", __func__,
3488 active * 10, tppoll);
3489 }
3490
3491 static void
3492 rtw_watchdog(struct ifnet *ifp)
3493 {
3494 int pri, tx_timeouts = 0;
3495 struct rtw_softc *sc;
3496 struct rtw_txsoft_blk *tsb;
3497
3498 sc = ifp->if_softc;
3499
3500 ifp->if_timer = 0;
3501
3502 if (!device_is_active(sc->sc_dev))
3503 return;
3504
3505 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3506 tsb = &sc->sc_txsoft_blk[pri];
3507
3508 if (tsb->tsb_tx_timer == 0)
3509 continue;
3510 else if (--tsb->tsb_tx_timer == 0) {
3511 if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3512 continue;
3513 else if (rtw_collect_txring(sc, tsb,
3514 &sc->sc_txdesc_blk[pri], 0))
3515 continue;
3516 printf("%s: transmit timeout, priority %d\n",
3517 ifp->if_xname, pri);
3518 ifp->if_oerrors++;
3519 if (pri != RTW_TXPRIBCN)
3520 tx_timeouts++;
3521 } else
3522 ifp->if_timer = 1;
3523 }
3524
3525 if (tx_timeouts > 0) {
3526 /* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3527 * reset s/w tx-ring pointers, and start transmission.
3528 *
3529 * TBD Stop/restart just the broken rings?
3530 */
3531 rtw_idle(&sc->sc_regs);
3532 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
3533 rtw_txdescs_reset(sc);
3534 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3535 rtw_start(ifp);
3536 }
3537 ieee80211_watchdog(&sc->sc_ic);
3538 return;
3539 }
3540
3541 static void
3542 rtw_next_scan(void *arg)
3543 {
3544 struct ieee80211com *ic = arg;
3545 int s;
3546
3547 /* don't call rtw_start w/o network interrupts blocked */
3548 s = splnet();
3549 if (ic->ic_state == IEEE80211_S_SCAN)
3550 ieee80211_next_scan(ic);
3551 splx(s);
3552 }
3553
3554 static void
3555 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3556 {
3557 uint16_t bcnitv, bintritv, intval;
3558 int i;
3559 struct rtw_regs *regs = &sc->sc_regs;
3560
3561 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3562 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3563
3564 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3565
3566 rtw_set_access(regs, RTW_ACCESS_CONFIG);
3567
3568 intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3569
3570 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3571 bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3572 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3573 /* interrupt host 1ms before the TBTT */
3574 bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3575 bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3576 RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3577 /* magic from Linux */
3578 RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3579 RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3580 rtw_set_access(regs, RTW_ACCESS_NONE);
3581
3582 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3583 }
3584
3585 /* Synchronize the hardware state with the software state. */
3586 static int
3587 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3588 {
3589 struct ifnet *ifp = ic->ic_ifp;
3590 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3591 enum ieee80211_state ostate;
3592 int error;
3593
3594 ostate = ic->ic_state;
3595
3596 aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3597 rtw_led_newstate(sc, nstate);
3598
3599 aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3600 if (nstate == IEEE80211_S_INIT) {
3601 callout_stop(&sc->sc_scan_ch);
3602 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3603 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3604 }
3605
3606 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3607 rtw_pwrstate(sc, RTW_ON);
3608
3609 if ((error = rtw_tune(sc)) != 0)
3610 return error;
3611
3612 switch (nstate) {
3613 case IEEE80211_S_INIT:
3614 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3615 break;
3616 case IEEE80211_S_SCAN:
3617 if (ostate != IEEE80211_S_SCAN) {
3618 (void)memset(ic->ic_bss->ni_bssid, 0,
3619 IEEE80211_ADDR_LEN);
3620 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3621 }
3622
3623 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3624 rtw_next_scan, ic);
3625
3626 break;
3627 case IEEE80211_S_RUN:
3628 switch (ic->ic_opmode) {
3629 case IEEE80211_M_HOSTAP:
3630 case IEEE80211_M_IBSS:
3631 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3632 /*FALLTHROUGH*/
3633 case IEEE80211_M_AHDEMO:
3634 case IEEE80211_M_STA:
3635 rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3636 ic->ic_bss->ni_intval);
3637 break;
3638 case IEEE80211_M_MONITOR:
3639 break;
3640 }
3641 rtw_set_nettype(sc, ic->ic_opmode);
3642 break;
3643 case IEEE80211_S_ASSOC:
3644 case IEEE80211_S_AUTH:
3645 break;
3646 }
3647
3648 if (nstate != IEEE80211_S_SCAN)
3649 callout_stop(&sc->sc_scan_ch);
3650
3651 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3652 }
3653
3654 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3655 static uint64_t
3656 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3657 {
3658 uint32_t tsftl, tsfth;
3659
3660 tsfth = RTW_READ(regs, RTW_TSFTRH);
3661 tsftl = RTW_READ(regs, RTW_TSFTRL);
3662 if (tsftl < rstamp) /* Compensate for rollover. */
3663 tsfth--;
3664 return ((uint64_t)tsfth << 32) | rstamp;
3665 }
3666
3667 static void
3668 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3669 struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3670 {
3671 struct ifnet *ifp = ic->ic_ifp;
3672 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3673
3674 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3675
3676 switch (subtype) {
3677 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3678 case IEEE80211_FC0_SUBTYPE_BEACON:
3679 if (ic->ic_opmode == IEEE80211_M_IBSS &&
3680 ic->ic_state == IEEE80211_S_RUN &&
3681 device_is_active(sc->sc_dev)) {
3682 uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3683 if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3684 (void)ieee80211_ibss_merge(ni);
3685 }
3686 break;
3687 default:
3688 break;
3689 }
3690 return;
3691 }
3692
3693 static struct ieee80211_node *
3694 rtw_node_alloc(struct ieee80211_node_table *nt)
3695 {
3696 struct ifnet *ifp = nt->nt_ic->ic_ifp;
3697 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3698 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3699
3700 DPRINTF(sc, RTW_DEBUG_NODE,
3701 ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
3702 return ni;
3703 }
3704
3705 static void
3706 rtw_node_free(struct ieee80211_node *ni)
3707 {
3708 struct ieee80211com *ic = ni->ni_ic;
3709 struct ifnet *ifp = ic->ic_ifp;
3710 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3711
3712 DPRINTF(sc, RTW_DEBUG_NODE,
3713 ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
3714 ether_sprintf(ni->ni_bssid)));
3715 (*sc->sc_mtbl.mt_node_free)(ni);
3716 }
3717
3718 static int
3719 rtw_media_change(struct ifnet *ifp)
3720 {
3721 int error;
3722
3723 error = ieee80211_media_change(ifp);
3724 if (error == ENETRESET) {
3725 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3726 (IFF_RUNNING|IFF_UP))
3727 rtw_init(ifp); /* XXX lose error */
3728 error = 0;
3729 }
3730 return error;
3731 }
3732
3733 static void
3734 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3735 {
3736 struct rtw_softc *sc = ifp->if_softc;
3737
3738 if (!device_is_active(sc->sc_dev)) {
3739 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3740 imr->ifm_status = 0;
3741 return;
3742 }
3743 ieee80211_media_status(ifp, imr);
3744 }
3745
3746 static inline void
3747 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3748 {
3749 (void)strlcpy(ifp->if_xname, dvname, IFNAMSIZ);
3750 ifp->if_softc = softc;
3751 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
3752 IFF_NOTRAILERS;
3753 ifp->if_ioctl = rtw_ioctl;
3754 ifp->if_start = rtw_start;
3755 ifp->if_watchdog = rtw_watchdog;
3756 ifp->if_init = rtw_init;
3757 ifp->if_stop = rtw_stop;
3758 }
3759
3760 static inline void
3761 rtw_set80211props(struct ieee80211com *ic)
3762 {
3763 int nrate;
3764 ic->ic_phytype = IEEE80211_T_DS;
3765 ic->ic_opmode = IEEE80211_M_STA;
3766 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3767 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
3768
3769 nrate = 0;
3770 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3771 IEEE80211_RATE_BASIC | 2;
3772 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3773 IEEE80211_RATE_BASIC | 4;
3774 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3775 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3776 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3777 }
3778
3779 static inline void
3780 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3781 {
3782 mtbl->mt_newstate = ic->ic_newstate;
3783 ic->ic_newstate = rtw_newstate;
3784
3785 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3786 ic->ic_recv_mgmt = rtw_recv_mgmt;
3787
3788 mtbl->mt_node_free = ic->ic_node_free;
3789 ic->ic_node_free = rtw_node_free;
3790
3791 mtbl->mt_node_alloc = ic->ic_node_alloc;
3792 ic->ic_node_alloc = rtw_node_alloc;
3793
3794 ic->ic_crypto.cs_key_delete = rtw_key_delete;
3795 ic->ic_crypto.cs_key_set = rtw_key_set;
3796 ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3797 ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3798 }
3799
3800 static inline void
3801 rtw_init_radiotap(struct rtw_softc *sc)
3802 {
3803 uint32_t present;
3804
3805 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3806 sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3807
3808 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
3809 present = htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT);
3810 else
3811 present = htole32(RTW_RX_RADIOTAP_PRESENT);
3812 sc->sc_rxtap.rr_ihdr.it_present = present;
3813
3814 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3815 sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3816 sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3817 }
3818
3819 static int
3820 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3821 {
3822 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3823 SIMPLEQ_INIT(&tsb->tsb_freeq);
3824 tsb->tsb_ndesc = qlen;
3825 tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3826 M_NOWAIT);
3827 if (tsb->tsb_desc == NULL)
3828 return ENOMEM;
3829 return 0;
3830 }
3831
3832 static void
3833 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3834 {
3835 int pri;
3836 struct rtw_txsoft_blk *tsb;
3837
3838 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3839 tsb = &sc->sc_txsoft_blk[pri];
3840 free(tsb->tsb_desc, M_DEVBUF);
3841 tsb->tsb_desc = NULL;
3842 }
3843 }
3844
3845 static int
3846 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3847 {
3848 int pri, rc = 0;
3849 int qlen[RTW_NTXPRI] =
3850 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3851 struct rtw_txsoft_blk *tsbs;
3852
3853 tsbs = sc->sc_txsoft_blk;
3854
3855 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3856 rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3857 if (rc != 0)
3858 break;
3859 }
3860 tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3861 tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3862 tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3863 tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3864 return rc;
3865 }
3866
3867 static void
3868 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3869 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3870 {
3871 tdb->tdb_ndesc = ndesc;
3872 tdb->tdb_desc = desc;
3873 tdb->tdb_physbase = physbase;
3874 tdb->tdb_ofs = ofs;
3875
3876 (void)memset(tdb->tdb_desc, 0,
3877 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3878
3879 rtw_txdesc_blk_init(tdb);
3880 tdb->tdb_next = 0;
3881 }
3882
3883 static void
3884 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3885 {
3886 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3887 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3888 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3889
3890 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3891 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3892 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3893
3894 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3895 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3896 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3897
3898 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3899 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3900 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3901 }
3902
3903 static struct rtw_rf *
3904 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3905 {
3906 rtw_rf_write_t rf_write;
3907 struct rtw_rf *rf;
3908
3909 switch (rfchipid) {
3910 default:
3911 rf_write = rtw_rf_hostwrite;
3912 break;
3913 case RTW_RFCHIPID_INTERSIL:
3914 case RTW_RFCHIPID_PHILIPS:
3915 case RTW_RFCHIPID_GCT: /* XXX a guess */
3916 case RTW_RFCHIPID_RFMD:
3917 rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3918 break;
3919 }
3920
3921 switch (rfchipid) {
3922 case RTW_RFCHIPID_GCT:
3923 rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3924 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3925 break;
3926 case RTW_RFCHIPID_MAXIM:
3927 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3928 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3929 break;
3930 case RTW_RFCHIPID_PHILIPS:
3931 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3932 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3933 break;
3934 case RTW_RFCHIPID_RFMD:
3935 /* XXX RFMD has no RF constructor */
3936 sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3937 /*FALLTHROUGH*/
3938 default:
3939 return NULL;
3940 }
3941 rf->rf_continuous_tx_cb =
3942 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3943 rf->rf_continuous_tx_arg = (void *)sc;
3944 return rf;
3945 }
3946
3947 /* Revision C and later use a different PHY delay setting than
3948 * revisions A and B.
3949 */
3950 static uint8_t
3951 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
3952 {
3953 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3954 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3955
3956 uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
3957
3958 RTW_WRITE(regs, RTW_RCR, REVAB);
3959 RTW_WBW(regs, RTW_RCR, RTW_RCR);
3960 RTW_WRITE(regs, RTW_RCR, REVC);
3961
3962 RTW_WBR(regs, RTW_RCR, RTW_RCR);
3963 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3964 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3965
3966 RTW_WRITE(regs, RTW_RCR, old_rcr); /* restore RCR */
3967 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3968
3969 return phydelay;
3970 #undef REVC
3971 }
3972
3973 void
3974 rtw_attach(struct rtw_softc *sc)
3975 {
3976 struct ifnet *ifp = &sc->sc_if;
3977 struct ieee80211com *ic = &sc->sc_ic;
3978 struct rtw_txsoft_blk *tsb;
3979 int pri, rc;
3980
3981 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
3982
3983 rtw_cipher_wep = ieee80211_cipher_wep;
3984 rtw_cipher_wep.ic_decap = rtw_wep_decap;
3985
3986 NEXT_ATTACH_STATE(sc, DETACHED);
3987
3988 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
3989 case RTW_TCR_HWVERID_F:
3990 sc->sc_hwverid = 'F';
3991 break;
3992 case RTW_TCR_HWVERID_D:
3993 sc->sc_hwverid = 'D';
3994 break;
3995 default:
3996 sc->sc_hwverid = '?';
3997 break;
3998 }
3999 aprint_verbose_dev(sc->sc_dev, "hardware version %c\n",
4000 sc->sc_hwverid);
4001
4002 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
4003 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
4004 0);
4005
4006 if (rc != 0) {
4007 aprint_error_dev(sc->sc_dev,
4008 "could not allocate hw descriptors, error %d\n", rc);
4009 goto err;
4010 }
4011
4012 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
4013
4014 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
4015 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
4016 (void **)&sc->sc_descs, BUS_DMA_COHERENT);
4017
4018 if (rc != 0) {
4019 aprint_error_dev(sc->sc_dev,
4020 "could not map hw descriptors, error %d\n", rc);
4021 goto err;
4022 }
4023 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
4024
4025 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
4026 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
4027
4028 if (rc != 0) {
4029 aprint_error_dev(sc->sc_dev,
4030 "could not create DMA map for hw descriptors, error %d\n",
4031 rc);
4032 goto err;
4033 }
4034 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
4035
4036 sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
4037 sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
4038
4039 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4040 sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
4041 sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
4042 }
4043
4044 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
4045 sizeof(struct rtw_descs), NULL, 0);
4046
4047 if (rc != 0) {
4048 aprint_error_dev(sc->sc_dev,
4049 "could not load DMA map for hw descriptors, error %d\n",
4050 rc);
4051 goto err;
4052 }
4053 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
4054
4055 if (rtw_txsoft_blk_setup_all(sc) != 0)
4056 goto err;
4057 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
4058
4059 rtw_txdesc_blk_setup_all(sc);
4060
4061 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4062
4063 sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4064
4065 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4066 tsb = &sc->sc_txsoft_blk[pri];
4067
4068 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4069 &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4070 aprint_error_dev(sc->sc_dev,
4071 "could not load DMA map for hw tx descriptors, "
4072 "error %d\n", rc);
4073 goto err;
4074 }
4075 }
4076
4077 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4078 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4079 RTW_RXQLEN)) != 0) {
4080 aprint_error_dev(sc->sc_dev,
4081 "could not load DMA map for hw rx descriptors, error %d\n",
4082 rc);
4083 goto err;
4084 }
4085 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4086
4087 /* Reset the chip to a known state. */
4088 if (rtw_reset(sc) != 0)
4089 goto err;
4090 NEXT_ATTACH_STATE(sc, FINISH_RESET);
4091
4092 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4093
4094 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4095 sc->sc_flags |= RTW_F_9356SROM;
4096
4097 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4098 sc->sc_dev) != 0)
4099 goto err;
4100
4101 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4102
4103 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4104 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4105 sc->sc_dev) != 0) {
4106 aprint_error_dev(sc->sc_dev,
4107 "attach failed, malformed serial ROM\n");
4108 goto err;
4109 }
4110
4111 aprint_verbose_dev(sc->sc_dev, "%s PHY\n",
4112 ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4113
4114 aprint_verbose_dev(sc->sc_dev, "carrier-sense threshold %u\n",
4115 sc->sc_csthr);
4116
4117 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4118
4119 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4120 sc->sc_flags & RTW_F_DIGPHY);
4121
4122 if (sc->sc_rf == NULL) {
4123 aprint_verbose_dev(sc->sc_dev,
4124 "attach failed, could not attach RF\n");
4125 goto err;
4126 }
4127
4128 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4129
4130 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4131
4132 RTW_DPRINTF(RTW_DEBUG_ATTACH,
4133 ("%s: PHY delay %d\n", device_xname(sc->sc_dev), sc->sc_phydelay));
4134
4135 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4136 rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4137
4138 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels, sc->sc_dev);
4139
4140 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4141 sc->sc_dev) != 0)
4142 goto err;
4143 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4144
4145 rtw_setifprops(ifp, device_xname(sc->sc_dev), (void*)sc);
4146
4147 IFQ_SET_READY(&ifp->if_snd);
4148
4149 sc->sc_ic.ic_ifp = ifp;
4150 rtw_set80211props(&sc->sc_ic);
4151
4152 rtw_led_attach(&sc->sc_led_state, (void *)sc);
4153
4154 /*
4155 * Call MI attach routines.
4156 */
4157 if_attach(ifp);
4158 ieee80211_ifattach(&sc->sc_ic);
4159
4160 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4161
4162 /* possibly we should fill in our own sc_send_prresp, since
4163 * the RTL8180 is probably sending probe responses in ad hoc
4164 * mode.
4165 */
4166
4167 /* complete initialization */
4168 ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4169 callout_init(&sc->sc_scan_ch, 0);
4170
4171 rtw_init_radiotap(sc);
4172
4173 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
4174 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4175
4176 NEXT_ATTACH_STATE(sc, FINISHED);
4177
4178 ieee80211_announce(ic);
4179 return;
4180 err:
4181 rtw_detach(sc);
4182 return;
4183 }
4184
4185 int
4186 rtw_detach(struct rtw_softc *sc)
4187 {
4188 struct ifnet *ifp = &sc->sc_if;
4189 int pri, s;
4190
4191 s = splnet();
4192
4193 switch (sc->sc_attach_state) {
4194 case FINISHED:
4195 rtw_stop(ifp, 1);
4196
4197 pmf_device_deregister(sc->sc_dev);
4198 callout_stop(&sc->sc_scan_ch);
4199 ieee80211_ifdetach(&sc->sc_ic);
4200 if_detach(ifp);
4201 rtw_led_detach(&sc->sc_led_state);
4202 /*FALLTHROUGH*/
4203 case FINISH_ID_STA:
4204 case FINISH_RF_ATTACH:
4205 rtw_rf_destroy(sc->sc_rf);
4206 sc->sc_rf = NULL;
4207 /*FALLTHROUGH*/
4208 case FINISH_PARSE_SROM:
4209 case FINISH_READ_SROM:
4210 rtw_srom_free(&sc->sc_srom);
4211 /*FALLTHROUGH*/
4212 case FINISH_RESET:
4213 case FINISH_RXMAPS_CREATE:
4214 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4215 RTW_RXQLEN);
4216 /*FALLTHROUGH*/
4217 case FINISH_TXMAPS_CREATE:
4218 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4219 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4220 sc->sc_txsoft_blk[pri].tsb_desc,
4221 sc->sc_txsoft_blk[pri].tsb_ndesc);
4222 }
4223 /*FALLTHROUGH*/
4224 case FINISH_TXDESCBLK_SETUP:
4225 case FINISH_TXCTLBLK_SETUP:
4226 rtw_txsoft_blk_cleanup_all(sc);
4227 /*FALLTHROUGH*/
4228 case FINISH_DESCMAP_LOAD:
4229 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4230 /*FALLTHROUGH*/
4231 case FINISH_DESCMAP_CREATE:
4232 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4233 /*FALLTHROUGH*/
4234 case FINISH_DESC_MAP:
4235 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
4236 sizeof(struct rtw_descs));
4237 /*FALLTHROUGH*/
4238 case FINISH_DESC_ALLOC:
4239 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4240 sc->sc_desc_nsegs);
4241 /*FALLTHROUGH*/
4242 case DETACHED:
4243 NEXT_ATTACH_STATE(sc, DETACHED);
4244 break;
4245 }
4246 splx(s);
4247 return 0;
4248 }
4249