rtw.c revision 1.117 1 /* $NetBSD: rtw.c,v 1.117 2010/11/13 13:52:02 uebayasi Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005, 2006, 2007 David Young. All rights
4 * reserved.
5 *
6 * Programmed for NetBSD by David Young.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
20 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
21 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
28 * OF SUCH DAMAGE.
29 */
30 /*
31 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.117 2010/11/13 13:52:02 uebayasi Exp $");
36
37
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/callout.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/time.h>
46 #include <sys/types.h>
47 #include <sys/device.h>
48
49 #include <machine/endian.h>
50 #include <sys/bus.h>
51 #include <sys/intr.h> /* splnet */
52
53 #include <net/if.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56
57 #include <net80211/ieee80211_netbsd.h>
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_radiotap.h>
60
61 #include <net/bpf.h>
62
63 #include <dev/ic/rtwreg.h>
64 #include <dev/ic/rtwvar.h>
65 #include <dev/ic/rtwphyio.h>
66 #include <dev/ic/rtwphy.h>
67
68 #include <dev/ic/smc93cx6var.h>
69
70 static int rtw_rfprog_fallback = 0;
71 static int rtw_host_rfio = 0;
72
73 #ifdef RTW_DEBUG
74 int rtw_debug = 0;
75 static int rtw_rxbufs_limit = RTW_RXQLEN;
76 #endif /* RTW_DEBUG */
77
78 #define NEXT_ATTACH_STATE(sc, state) do { \
79 DPRINTF(sc, RTW_DEBUG_ATTACH, \
80 ("%s: attach state %s\n", __func__, #state)); \
81 sc->sc_attach_state = state; \
82 } while (0)
83
84 int rtw_dwelltime = 200; /* milliseconds */
85 static struct ieee80211_cipher rtw_cipher_wep;
86
87 static void rtw_disable_interrupts(struct rtw_regs *);
88 static void rtw_enable_interrupts(struct rtw_softc *);
89
90 static int rtw_init(struct ifnet *);
91
92 static void rtw_start(struct ifnet *);
93 static void rtw_reset_oactive(struct rtw_softc *);
94 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
95 struct ieee80211_node *);
96 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
97
98 static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
99 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
100 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
101 const u_int8_t[IEEE80211_ADDR_LEN]);
102 static void rtw_key_update_end(struct ieee80211com *);
103 static void rtw_key_update_begin(struct ieee80211com *);
104 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
105 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
106
107 static void rtw_led_attach(struct rtw_led_state *, void *);
108 static void rtw_led_detach(struct rtw_led_state *);
109 static void rtw_led_init(struct rtw_regs *);
110 static void rtw_led_slowblink(void *);
111 static void rtw_led_fastblink(void *);
112 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
113
114 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
115 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
116 #ifdef RTW_DEBUG
117 static void rtw_dump_rings(struct rtw_softc *sc);
118 static void rtw_print_txdesc(struct rtw_softc *, const char *,
119 struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
120 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
121 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
122 #endif /* RTW_DEBUG */
123 #ifdef RTW_DIAG
124 static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
125 #endif /* RTW_DIAG */
126
127 /*
128 * Setup sysctl(3) MIB, hw.rtw.*
129 *
130 * TBD condition CTLFLAG_PERMANENT on being a module or not
131 */
132 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
133 {
134 int rc;
135 const struct sysctlnode *cnode, *rnode;
136
137 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
138 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
139 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
140 goto err;
141
142 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
143 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
144 "Realtek RTL818x 802.11 controls",
145 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
146 goto err;
147
148 #ifdef RTW_DEBUG
149 /* control debugging printfs */
150 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
151 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
152 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
153 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
154 CTL_CREATE, CTL_EOL)) != 0)
155 goto err;
156
157 /* Limit rx buffers, for simulating resource exhaustion. */
158 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
159 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
160 "rxbufs_limit",
161 SYSCTL_DESCR("Set rx buffers limit"),
162 rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
163 CTL_CREATE, CTL_EOL)) != 0)
164 goto err;
165
166 #endif /* RTW_DEBUG */
167 /* set fallback RF programming method */
168 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
169 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
170 "rfprog_fallback",
171 SYSCTL_DESCR("Set fallback RF programming method"),
172 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
173 CTL_CREATE, CTL_EOL)) != 0)
174 goto err;
175
176 /* force host to control RF I/O bus */
177 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
178 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
179 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
180 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
181 CTL_CREATE, CTL_EOL)) != 0)
182 goto err;
183
184 return;
185 err:
186 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
187 }
188
189 static int
190 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
191 {
192 int error, t;
193 struct sysctlnode node;
194
195 node = *rnode;
196 t = *(int*)rnode->sysctl_data;
197 node.sysctl_data = &t;
198 error = sysctl_lookup(SYSCTLFN_CALL(&node));
199 if (error || newp == NULL)
200 return (error);
201
202 if (t < lower || t > upper)
203 return (EINVAL);
204
205 *(int*)rnode->sysctl_data = t;
206
207 return (0);
208 }
209
210 static int
211 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
212 {
213 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
214 __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
215 }
216
217 static int
218 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
219 {
220 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
221 }
222
223 #ifdef RTW_DEBUG
224 static int
225 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
226 {
227 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
228 0, RTW_DEBUG_MAX);
229 }
230
231 static int
232 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
233 {
234 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
235 0, RTW_RXQLEN);
236 }
237
238 static void
239 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
240 {
241 #define PRINTREG32(sc, reg) \
242 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
243 ("%s: reg[ " #reg " / %03x ] = %08x\n", \
244 dvname, reg, RTW_READ(regs, reg)))
245
246 #define PRINTREG16(sc, reg) \
247 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
248 ("%s: reg[ " #reg " / %03x ] = %04x\n", \
249 dvname, reg, RTW_READ16(regs, reg)))
250
251 #define PRINTREG8(sc, reg) \
252 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
253 ("%s: reg[ " #reg " / %03x ] = %02x\n", \
254 dvname, reg, RTW_READ8(regs, reg)))
255
256 RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
257
258 PRINTREG32(regs, RTW_IDR0);
259 PRINTREG32(regs, RTW_IDR1);
260 PRINTREG32(regs, RTW_MAR0);
261 PRINTREG32(regs, RTW_MAR1);
262 PRINTREG32(regs, RTW_TSFTRL);
263 PRINTREG32(regs, RTW_TSFTRH);
264 PRINTREG32(regs, RTW_TLPDA);
265 PRINTREG32(regs, RTW_TNPDA);
266 PRINTREG32(regs, RTW_THPDA);
267 PRINTREG32(regs, RTW_TCR);
268 PRINTREG32(regs, RTW_RCR);
269 PRINTREG32(regs, RTW_TINT);
270 PRINTREG32(regs, RTW_TBDA);
271 PRINTREG32(regs, RTW_ANAPARM);
272 PRINTREG32(regs, RTW_BB);
273 PRINTREG32(regs, RTW_PHYCFG);
274 PRINTREG32(regs, RTW_WAKEUP0L);
275 PRINTREG32(regs, RTW_WAKEUP0H);
276 PRINTREG32(regs, RTW_WAKEUP1L);
277 PRINTREG32(regs, RTW_WAKEUP1H);
278 PRINTREG32(regs, RTW_WAKEUP2LL);
279 PRINTREG32(regs, RTW_WAKEUP2LH);
280 PRINTREG32(regs, RTW_WAKEUP2HL);
281 PRINTREG32(regs, RTW_WAKEUP2HH);
282 PRINTREG32(regs, RTW_WAKEUP3LL);
283 PRINTREG32(regs, RTW_WAKEUP3LH);
284 PRINTREG32(regs, RTW_WAKEUP3HL);
285 PRINTREG32(regs, RTW_WAKEUP3HH);
286 PRINTREG32(regs, RTW_WAKEUP4LL);
287 PRINTREG32(regs, RTW_WAKEUP4LH);
288 PRINTREG32(regs, RTW_WAKEUP4HL);
289 PRINTREG32(regs, RTW_WAKEUP4HH);
290 PRINTREG32(regs, RTW_DK0);
291 PRINTREG32(regs, RTW_DK1);
292 PRINTREG32(regs, RTW_DK2);
293 PRINTREG32(regs, RTW_DK3);
294 PRINTREG32(regs, RTW_RETRYCTR);
295 PRINTREG32(regs, RTW_RDSAR);
296 PRINTREG32(regs, RTW_FER);
297 PRINTREG32(regs, RTW_FEMR);
298 PRINTREG32(regs, RTW_FPSR);
299 PRINTREG32(regs, RTW_FFER);
300
301 /* 16-bit registers */
302 PRINTREG16(regs, RTW_BRSR);
303 PRINTREG16(regs, RTW_IMR);
304 PRINTREG16(regs, RTW_ISR);
305 PRINTREG16(regs, RTW_BCNITV);
306 PRINTREG16(regs, RTW_ATIMWND);
307 PRINTREG16(regs, RTW_BINTRITV);
308 PRINTREG16(regs, RTW_ATIMTRITV);
309 PRINTREG16(regs, RTW_CRC16ERR);
310 PRINTREG16(regs, RTW_CRC0);
311 PRINTREG16(regs, RTW_CRC1);
312 PRINTREG16(regs, RTW_CRC2);
313 PRINTREG16(regs, RTW_CRC3);
314 PRINTREG16(regs, RTW_CRC4);
315 PRINTREG16(regs, RTW_CWR);
316
317 /* 8-bit registers */
318 PRINTREG8(regs, RTW_CR);
319 PRINTREG8(regs, RTW_9346CR);
320 PRINTREG8(regs, RTW_CONFIG0);
321 PRINTREG8(regs, RTW_CONFIG1);
322 PRINTREG8(regs, RTW_CONFIG2);
323 PRINTREG8(regs, RTW_MSR);
324 PRINTREG8(regs, RTW_CONFIG3);
325 PRINTREG8(regs, RTW_CONFIG4);
326 PRINTREG8(regs, RTW_TESTR);
327 PRINTREG8(regs, RTW_PSR);
328 PRINTREG8(regs, RTW_SCR);
329 PRINTREG8(regs, RTW_PHYDELAY);
330 PRINTREG8(regs, RTW_CRCOUNT);
331 PRINTREG8(regs, RTW_PHYADDR);
332 PRINTREG8(regs, RTW_PHYDATAW);
333 PRINTREG8(regs, RTW_PHYDATAR);
334 PRINTREG8(regs, RTW_CONFIG5);
335 PRINTREG8(regs, RTW_TPPOLL);
336
337 PRINTREG16(regs, RTW_BSSID16);
338 PRINTREG32(regs, RTW_BSSID32);
339 #undef PRINTREG32
340 #undef PRINTREG16
341 #undef PRINTREG8
342 }
343 #endif /* RTW_DEBUG */
344
345 void
346 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
347 {
348 struct rtw_regs *regs = &sc->sc_regs;
349
350 uint32_t tcr;
351 tcr = RTW_READ(regs, RTW_TCR);
352 tcr &= ~RTW_TCR_LBK_MASK;
353 if (enable)
354 tcr |= RTW_TCR_LBK_CONT;
355 else
356 tcr |= RTW_TCR_LBK_NORMAL;
357 RTW_WRITE(regs, RTW_TCR, tcr);
358 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
359 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
360 rtw_txdac_enable(sc, !enable);
361 rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
362 rtw_set_access(regs, RTW_ACCESS_NONE);
363 }
364
365 #ifdef RTW_DEBUG
366 static const char *
367 rtw_access_string(enum rtw_access access)
368 {
369 switch (access) {
370 case RTW_ACCESS_NONE:
371 return "none";
372 case RTW_ACCESS_CONFIG:
373 return "config";
374 case RTW_ACCESS_ANAPARM:
375 return "anaparm";
376 default:
377 return "unknown";
378 }
379 }
380 #endif /* RTW_DEBUG */
381
382 static void
383 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
384 {
385 KASSERT(/* naccess >= RTW_ACCESS_NONE && */
386 naccess <= RTW_ACCESS_ANAPARM);
387 KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
388 regs->r_access <= RTW_ACCESS_ANAPARM);
389
390 if (naccess == regs->r_access)
391 return;
392
393 switch (naccess) {
394 case RTW_ACCESS_NONE:
395 switch (regs->r_access) {
396 case RTW_ACCESS_ANAPARM:
397 rtw_anaparm_enable(regs, 0);
398 /*FALLTHROUGH*/
399 case RTW_ACCESS_CONFIG:
400 rtw_config0123_enable(regs, 0);
401 /*FALLTHROUGH*/
402 case RTW_ACCESS_NONE:
403 break;
404 }
405 break;
406 case RTW_ACCESS_CONFIG:
407 switch (regs->r_access) {
408 case RTW_ACCESS_NONE:
409 rtw_config0123_enable(regs, 1);
410 /*FALLTHROUGH*/
411 case RTW_ACCESS_CONFIG:
412 break;
413 case RTW_ACCESS_ANAPARM:
414 rtw_anaparm_enable(regs, 0);
415 break;
416 }
417 break;
418 case RTW_ACCESS_ANAPARM:
419 switch (regs->r_access) {
420 case RTW_ACCESS_NONE:
421 rtw_config0123_enable(regs, 1);
422 /*FALLTHROUGH*/
423 case RTW_ACCESS_CONFIG:
424 rtw_anaparm_enable(regs, 1);
425 /*FALLTHROUGH*/
426 case RTW_ACCESS_ANAPARM:
427 break;
428 }
429 break;
430 }
431 }
432
433 void
434 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
435 {
436 rtw_set_access1(regs, access);
437 RTW_DPRINTF(RTW_DEBUG_ACCESS,
438 ("%s: access %s -> %s\n", __func__,
439 rtw_access_string(regs->r_access),
440 rtw_access_string(access)));
441 regs->r_access = access;
442 }
443
444 /*
445 * Enable registers, switch register banks.
446 */
447 void
448 rtw_config0123_enable(struct rtw_regs *regs, int enable)
449 {
450 uint8_t ecr;
451 ecr = RTW_READ8(regs, RTW_9346CR);
452 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
453 if (enable)
454 ecr |= RTW_9346CR_EEM_CONFIG;
455 else {
456 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
457 ecr |= RTW_9346CR_EEM_NORMAL;
458 }
459 RTW_WRITE8(regs, RTW_9346CR, ecr);
460 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
461 }
462
463 /* requires rtw_config0123_enable(, 1) */
464 void
465 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
466 {
467 uint8_t cfg3;
468
469 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
470 cfg3 |= RTW_CONFIG3_CLKRUNEN;
471 if (enable)
472 cfg3 |= RTW_CONFIG3_PARMEN;
473 else
474 cfg3 &= ~RTW_CONFIG3_PARMEN;
475 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
476 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
477 }
478
479 /* requires rtw_anaparm_enable(, 1) */
480 void
481 rtw_txdac_enable(struct rtw_softc *sc, int enable)
482 {
483 uint32_t anaparm;
484 struct rtw_regs *regs = &sc->sc_regs;
485
486 anaparm = RTW_READ(regs, RTW_ANAPARM);
487 if (enable)
488 anaparm &= ~RTW_ANAPARM_TXDACOFF;
489 else
490 anaparm |= RTW_ANAPARM_TXDACOFF;
491 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
492 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
493 }
494
495 static inline int
496 rtw_chip_reset1(struct rtw_regs *regs, device_t dev)
497 {
498 uint8_t cr;
499 int i;
500
501 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
502
503 RTW_WBR(regs, RTW_CR, RTW_CR);
504
505 for (i = 0; i < 1000; i++) {
506 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
507 RTW_DPRINTF(RTW_DEBUG_RESET,
508 ("%s: reset in %dus\n", device_xname(dev), i));
509 return 0;
510 }
511 RTW_RBR(regs, RTW_CR, RTW_CR);
512 DELAY(10); /* 10us */
513 }
514
515 aprint_error_dev(dev, "reset failed\n");
516 return ETIMEDOUT;
517 }
518
519 static inline int
520 rtw_chip_reset(struct rtw_regs *regs, device_t dev)
521 {
522 uint32_t tcr;
523
524 /* from Linux driver */
525 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
526 __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
527
528 RTW_WRITE(regs, RTW_TCR, tcr);
529
530 RTW_WBW(regs, RTW_CR, RTW_TCR);
531
532 return rtw_chip_reset1(regs, dev);
533 }
534
535 static int
536 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
537 {
538 struct ieee80211_key keycopy;
539
540 RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
541
542 keycopy = *k;
543 keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
544
545 return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
546 }
547
548 static int
549 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
550 {
551 struct rtw_softc *sc = ic->ic_ifp->if_softc;
552
553 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__,
554 k->wk_keyix));
555
556 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
557
558 if (k->wk_keylen != 0 &&
559 k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP)
560 sc->sc_flags &= ~RTW_F_DK_VALID;
561
562 return 1;
563 }
564
565 static int
566 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
567 const u_int8_t mac[IEEE80211_ADDR_LEN])
568 {
569 struct rtw_softc *sc = ic->ic_ifp->if_softc;
570
571 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
572
573 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
574
575 sc->sc_flags &= ~RTW_F_DK_VALID;
576
577 return 1;
578 }
579
580 static void
581 rtw_key_update_begin(struct ieee80211com *ic)
582 {
583 #ifdef RTW_DEBUG
584 struct ifnet *ifp = ic->ic_ifp;
585 struct rtw_softc *sc = ifp->if_softc;
586 #endif
587
588 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
589 }
590
591 static void
592 rtw_tx_kick(struct rtw_regs *regs, uint8_t ringsel)
593 {
594 uint8_t tppoll;
595
596 tppoll = RTW_READ8(regs, RTW_TPPOLL);
597 tppoll &= ~RTW_TPPOLL_SALL;
598 tppoll |= ringsel & RTW_TPPOLL_ALL;
599 RTW_WRITE8(regs, RTW_TPPOLL, tppoll);
600 RTW_SYNC(regs, RTW_TPPOLL, RTW_TPPOLL);
601 }
602
603 static void
604 rtw_key_update_end(struct ieee80211com *ic)
605 {
606 struct ifnet *ifp = ic->ic_ifp;
607 struct rtw_softc *sc = ifp->if_softc;
608
609 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
610
611 if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
612 !device_is_active(sc->sc_dev))
613 return;
614
615 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
616 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
617 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
618 (ifp->if_flags & IFF_RUNNING) != 0);
619 }
620
621 static bool
622 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
623 {
624 if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
625 return false;
626
627 return ((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
628 ((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
629 }
630
631 static void
632 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
633 {
634 uint8_t psr, scr;
635 int i, keylen = 0;
636 struct rtw_regs *regs;
637 union rtw_keys *rk;
638
639 regs = &sc->sc_regs;
640 rk = &sc->sc_keys;
641
642 (void)memset(rk, 0, sizeof(rk));
643
644 /* Temporarily use software crypto for all keys. */
645 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
646 if (wk[i].wk_cipher == &rtw_cipher_wep)
647 wk[i].wk_cipher = &ieee80211_cipher_wep;
648 }
649
650 rtw_set_access(regs, RTW_ACCESS_CONFIG);
651
652 psr = RTW_READ8(regs, RTW_PSR);
653 scr = RTW_READ8(regs, RTW_SCR);
654 scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
655
656 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
657 goto out;
658
659 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
660 if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
661 continue;
662 if (i == txkey) {
663 keylen = wk[i].wk_keylen;
664 break;
665 }
666 keylen = MAX(keylen, wk[i].wk_keylen);
667 }
668
669 if (keylen == 5)
670 scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
671 else if (keylen == 13)
672 scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
673
674 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
675 if (wk[i].wk_keylen != keylen ||
676 wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
677 continue;
678 /* h/w will decrypt, s/w still strips headers */
679 wk[i].wk_cipher = &rtw_cipher_wep;
680 (void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
681 }
682
683 out:
684 RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
685
686 bus_space_write_region_stream_4(regs->r_bt, regs->r_bh,
687 RTW_DK0, rk->rk_words, __arraycount(rk->rk_words));
688
689 bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
690 BUS_SPACE_BARRIER_SYNC);
691
692 RTW_DPRINTF(RTW_DEBUG_KEY,
693 ("%s.%d: scr %02" PRIx8 ", keylen %d\n", __func__, __LINE__, scr,
694 keylen));
695
696 RTW_WBW(regs, RTW_DK0, RTW_PSR);
697 RTW_WRITE8(regs, RTW_PSR, psr);
698 RTW_WBW(regs, RTW_PSR, RTW_SCR);
699 RTW_WRITE8(regs, RTW_SCR, scr);
700 RTW_SYNC(regs, RTW_SCR, RTW_SCR);
701 rtw_set_access(regs, RTW_ACCESS_NONE);
702 sc->sc_flags |= RTW_F_DK_VALID;
703 }
704
705 static inline int
706 rtw_recall_eeprom(struct rtw_regs *regs, device_t dev)
707 {
708 int i;
709 uint8_t ecr;
710
711 ecr = RTW_READ8(regs, RTW_9346CR);
712 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
713 RTW_WRITE8(regs, RTW_9346CR, ecr);
714
715 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
716
717 /* wait 25ms for completion */
718 for (i = 0; i < 250; i++) {
719 ecr = RTW_READ8(regs, RTW_9346CR);
720 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
721 RTW_DPRINTF(RTW_DEBUG_RESET,
722 ("%s: recall EEPROM in %dus\n", device_xname(dev),
723 i * 100));
724 return 0;
725 }
726 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
727 DELAY(100);
728 }
729 aprint_error_dev(dev, "recall EEPROM failed\n");
730 return ETIMEDOUT;
731 }
732
733 static inline int
734 rtw_reset(struct rtw_softc *sc)
735 {
736 int rc;
737 uint8_t config1;
738
739 sc->sc_flags &= ~RTW_F_DK_VALID;
740
741 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev)) != 0)
742 return rc;
743
744 rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev);
745
746 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
747 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
748 /* TBD turn off maximum power saving? */
749
750 return 0;
751 }
752
753 static inline int
754 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
755 u_int ndescs)
756 {
757 int i, rc = 0;
758 for (i = 0; i < ndescs; i++) {
759 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
760 0, 0, &descs[i].ts_dmamap);
761 if (rc != 0)
762 break;
763 }
764 return rc;
765 }
766
767 static inline int
768 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
769 u_int ndescs)
770 {
771 int i, rc = 0;
772 for (i = 0; i < ndescs; i++) {
773 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
774 &descs[i].rs_dmamap);
775 if (rc != 0)
776 break;
777 }
778 return rc;
779 }
780
781 static inline void
782 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
783 u_int ndescs)
784 {
785 int i;
786 for (i = 0; i < ndescs; i++) {
787 if (descs[i].rs_dmamap != NULL)
788 bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
789 }
790 }
791
792 static inline void
793 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
794 u_int ndescs)
795 {
796 int i;
797 for (i = 0; i < ndescs; i++) {
798 if (descs[i].ts_dmamap != NULL)
799 bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
800 }
801 }
802
803 static inline void
804 rtw_srom_free(struct rtw_srom *sr)
805 {
806 sr->sr_size = 0;
807 if (sr->sr_content == NULL)
808 return;
809 free(sr->sr_content, M_DEVBUF);
810 sr->sr_content = NULL;
811 }
812
813 static void
814 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
815 uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
816 {
817 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
818 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
819 *rcr |= RTW_RCR_ENCS1;
820 *rfchipid = RTW_RFCHIPID_PHILIPS;
821 }
822
823 static int
824 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
825 enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
826 device_t dev)
827 {
828 int i;
829 const char *rfname, *paname;
830 char scratch[sizeof("unknown 0xXX")];
831 uint16_t srom_version;
832 uint8_t mac[IEEE80211_ADDR_LEN];
833
834 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
835 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
836
837 srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
838
839 if (srom_version <= 0x0101) {
840 aprint_error_dev(dev,
841 "SROM version %d.%d is not understood, "
842 "limping along with defaults\n",
843 srom_version >> 8, srom_version & 0xff);
844 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
845 return 0;
846 } else {
847 aprint_verbose_dev(dev, "SROM version %d.%d\n",
848 srom_version >> 8, srom_version & 0xff);
849 }
850
851 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
852 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
853
854 RTW_DPRINTF(RTW_DEBUG_ATTACH,
855 ("%s: EEPROM MAC %s\n", device_xname(dev), ether_sprintf(mac)));
856
857 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
858
859 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
860 *flags |= RTW_F_ANTDIV;
861
862 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
863 * to be reversed.
864 */
865 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
866 *flags |= RTW_F_DIGPHY;
867 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
868 *flags |= RTW_F_DFLANTB;
869
870 *rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
871 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
872
873 if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
874 *flags |= RTW_C_RXWEP_104;
875
876 *flags |= RTW_C_RXWEP_40; /* XXX */
877
878 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
879 switch (*rfchipid) {
880 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
881 rfname = "GCT GRF5101";
882 paname = "Winspring WS9901";
883 break;
884 case RTW_RFCHIPID_MAXIM:
885 rfname = "Maxim MAX2820"; /* guess */
886 paname = "Maxim MAX2422"; /* guess */
887 break;
888 case RTW_RFCHIPID_INTERSIL:
889 rfname = "Intersil HFA3873"; /* guess */
890 paname = "Intersil <unknown>";
891 break;
892 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
893 rfname = "Philips SA2400A";
894 paname = "Philips SA2411";
895 break;
896 case RTW_RFCHIPID_RFMD:
897 /* this is the same front-end as an atw(4)! */
898 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
899 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
900 "SYN: Silicon Labs Si4126"; /* inferred from
901 * reference driver
902 */
903 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
904 break;
905 case RTW_RFCHIPID_RESERVED:
906 rfname = paname = "reserved";
907 break;
908 default:
909 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
910 rfname = paname = scratch;
911 }
912 aprint_normal_dev(dev, "RF: %s, PA: %s\n", rfname, paname);
913
914 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
915 case RTW_CONFIG0_GL_USA:
916 case _RTW_CONFIG0_GL_USA:
917 *locale = RTW_LOCALE_USA;
918 break;
919 case RTW_CONFIG0_GL_EUROPE:
920 *locale = RTW_LOCALE_EUROPE;
921 break;
922 case RTW_CONFIG0_GL_JAPAN:
923 *locale = RTW_LOCALE_JAPAN;
924 break;
925 default:
926 *locale = RTW_LOCALE_UNKNOWN;
927 break;
928 }
929 return 0;
930 }
931
932 /* Returns -1 on failure. */
933 static int
934 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
935 device_t dev)
936 {
937 int rc;
938 struct seeprom_descriptor sd;
939 uint8_t ecr;
940
941 (void)memset(&sd, 0, sizeof(sd));
942
943 ecr = RTW_READ8(regs, RTW_9346CR);
944
945 if ((flags & RTW_F_9356SROM) != 0) {
946 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n",
947 device_xname(dev)));
948 sr->sr_size = 256;
949 sd.sd_chip = C56_66;
950 } else {
951 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n",
952 device_xname(dev)));
953 sr->sr_size = 128;
954 sd.sd_chip = C46;
955 }
956
957 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
958 RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
959 ecr |= RTW_9346CR_EEM_PROGRAM;
960
961 RTW_WRITE8(regs, RTW_9346CR, ecr);
962
963 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
964
965 if (sr->sr_content == NULL) {
966 aprint_error_dev(dev, "unable to allocate SROM buffer\n");
967 return ENOMEM;
968 }
969
970 (void)memset(sr->sr_content, 0, sr->sr_size);
971
972 /* RTL8180 has a single 8-bit register for controlling the
973 * 93cx6 SROM. There is no "ready" bit. The RTL8180
974 * input/output sense is the reverse of read_seeprom's.
975 */
976 sd.sd_tag = regs->r_bt;
977 sd.sd_bsh = regs->r_bh;
978 sd.sd_regsize = 1;
979 sd.sd_control_offset = RTW_9346CR;
980 sd.sd_status_offset = RTW_9346CR;
981 sd.sd_dataout_offset = RTW_9346CR;
982 sd.sd_CK = RTW_9346CR_EESK;
983 sd.sd_CS = RTW_9346CR_EECS;
984 sd.sd_DI = RTW_9346CR_EEDO;
985 sd.sd_DO = RTW_9346CR_EEDI;
986 /* make read_seeprom enter EEPROM read/write mode */
987 sd.sd_MS = ecr;
988 sd.sd_RDY = 0;
989
990 /* TBD bus barriers */
991 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
992 aprint_error_dev(dev, "could not read SROM\n");
993 free(sr->sr_content, M_DEVBUF);
994 sr->sr_content = NULL;
995 return -1; /* XXX */
996 }
997
998 /* end EEPROM read/write mode */
999 RTW_WRITE8(regs, RTW_9346CR,
1000 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
1001 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
1002
1003 if ((rc = rtw_recall_eeprom(regs, dev)) != 0)
1004 return rc;
1005
1006 #ifdef RTW_DEBUG
1007 {
1008 int i;
1009 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1010 ("\n%s: serial ROM:\n\t", device_xname(dev)));
1011 for (i = 0; i < sr->sr_size/2; i++) {
1012 if (((i % 8) == 0) && (i != 0))
1013 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
1014 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1015 (" %04x", sr->sr_content[i]));
1016 }
1017 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
1018 }
1019 #endif /* RTW_DEBUG */
1020 return 0;
1021 }
1022
1023 static void
1024 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1025 device_t dev)
1026 {
1027 uint8_t cfg4;
1028 const char *method;
1029
1030 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1031
1032 switch (rfchipid) {
1033 default:
1034 cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1035 method = "fallback";
1036 break;
1037 case RTW_RFCHIPID_INTERSIL:
1038 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1039 method = "Intersil";
1040 break;
1041 case RTW_RFCHIPID_PHILIPS:
1042 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1043 method = "Philips";
1044 break;
1045 case RTW_RFCHIPID_GCT: /* XXX a guess */
1046 case RTW_RFCHIPID_RFMD:
1047 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1048 method = "RFMD";
1049 break;
1050 }
1051
1052 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1053
1054 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1055
1056 RTW_DPRINTF(RTW_DEBUG_INIT,
1057 ("%s: %s RF programming method, %#02x\n", device_xname(dev), method,
1058 RTW_READ8(regs, RTW_CONFIG4)));
1059 }
1060
1061 static inline void
1062 rtw_init_channels(enum rtw_locale locale,
1063 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1], device_t dev)
1064 {
1065 int i;
1066 const char *name = NULL;
1067 #define ADD_CHANNEL(_chans, _chan) do { \
1068 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
1069 (*_chans)[_chan].ic_freq = \
1070 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1071 } while (0)
1072
1073 switch (locale) {
1074 case RTW_LOCALE_USA: /* 1-11 */
1075 name = "USA";
1076 for (i = 1; i <= 11; i++)
1077 ADD_CHANNEL(chans, i);
1078 break;
1079 case RTW_LOCALE_JAPAN: /* 1-14 */
1080 name = "Japan";
1081 ADD_CHANNEL(chans, 14);
1082 for (i = 1; i <= 14; i++)
1083 ADD_CHANNEL(chans, i);
1084 break;
1085 case RTW_LOCALE_EUROPE: /* 1-13 */
1086 name = "Europe";
1087 for (i = 1; i <= 13; i++)
1088 ADD_CHANNEL(chans, i);
1089 break;
1090 default: /* 10-11 allowed by most countries */
1091 name = "<unknown>";
1092 for (i = 10; i <= 11; i++)
1093 ADD_CHANNEL(chans, i);
1094 break;
1095 }
1096 aprint_normal_dev(dev, "Geographic Location %s\n", name);
1097 #undef ADD_CHANNEL
1098 }
1099
1100
1101 static inline void
1102 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1103 {
1104 uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1105
1106 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1107 case RTW_CONFIG0_GL_USA:
1108 case _RTW_CONFIG0_GL_USA:
1109 *locale = RTW_LOCALE_USA;
1110 break;
1111 case RTW_CONFIG0_GL_JAPAN:
1112 *locale = RTW_LOCALE_JAPAN;
1113 break;
1114 case RTW_CONFIG0_GL_EUROPE:
1115 *locale = RTW_LOCALE_EUROPE;
1116 break;
1117 default:
1118 *locale = RTW_LOCALE_UNKNOWN;
1119 break;
1120 }
1121 }
1122
1123 static inline int
1124 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1125 device_t dev)
1126 {
1127 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1128 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1129 };
1130 uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1131 idr1 = RTW_READ(regs, RTW_IDR1);
1132
1133 (*addr)[0] = __SHIFTOUT(idr0, __BITS(0, 7));
1134 (*addr)[1] = __SHIFTOUT(idr0, __BITS(8, 15));
1135 (*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
1136 (*addr)[3] = __SHIFTOUT(idr0, __BITS(24 ,31));
1137
1138 (*addr)[4] = __SHIFTOUT(idr1, __BITS(0, 7));
1139 (*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
1140
1141 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1142 aprint_error_dev(dev,
1143 "could not get mac address, attach failed\n");
1144 return ENXIO;
1145 }
1146
1147 aprint_normal_dev(dev, "802.11 address %s\n", ether_sprintf(*addr));
1148
1149 return 0;
1150 }
1151
1152 static uint8_t
1153 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1154 struct ieee80211_channel *chan)
1155 {
1156 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1157 KASSERT(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14);
1158 return RTW_SR_GET(sr, idx);
1159 }
1160
1161 static void
1162 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1163 {
1164 int pri;
1165 /* nfree: the number of free descriptors in each ring.
1166 * The beacon ring is a special case: I do not let the
1167 * driver use all of the descriptors on the beacon ring.
1168 * The reasons are two-fold:
1169 *
1170 * (1) A BEACON descriptor's OWN bit is (apparently) not
1171 * updated, so the driver cannot easily know if the descriptor
1172 * belongs to it, or if it is racing the NIC. If the NIC
1173 * does not OWN every descriptor, then the driver can safely
1174 * update the descriptors when RTW_TBDA points at tdb_next.
1175 *
1176 * (2) I hope that the NIC will process more than one BEACON
1177 * descriptor in a single beacon interval, since that will
1178 * enable multiple-BSS support. Since the NIC does not
1179 * clear the OWN bit, there is no natural place for it to
1180 * stop processing BEACON desciptors. Maybe it will *not*
1181 * stop processing them! I do not want to chance the NIC
1182 * looping around and around a saturated beacon ring, so
1183 * I will leave one descriptor unOWNed at all times.
1184 */
1185 u_int nfree[RTW_NTXPRI] =
1186 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1187 RTW_NTXDESCBCN - 1};
1188
1189 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1190 tdb[pri].tdb_nfree = nfree[pri];
1191 tdb[pri].tdb_next = 0;
1192 }
1193 }
1194
1195 static int
1196 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1197 {
1198 int i;
1199 struct rtw_txsoft *ts;
1200
1201 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1202 SIMPLEQ_INIT(&tsb->tsb_freeq);
1203 for (i = 0; i < tsb->tsb_ndesc; i++) {
1204 ts = &tsb->tsb_desc[i];
1205 ts->ts_mbuf = NULL;
1206 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1207 }
1208 tsb->tsb_tx_timer = 0;
1209 return 0;
1210 }
1211
1212 static void
1213 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1214 {
1215 int pri;
1216 for (pri = 0; pri < RTW_NTXPRI; pri++)
1217 rtw_txsoft_blk_init(&tsb[pri]);
1218 }
1219
1220 static inline void
1221 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1222 {
1223 KASSERT(nsync <= rdb->rdb_ndesc);
1224 /* sync to end of ring */
1225 if (desc0 + nsync > rdb->rdb_ndesc) {
1226 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1227 offsetof(struct rtw_descs, hd_rx[desc0]),
1228 sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1229 nsync -= (rdb->rdb_ndesc - desc0);
1230 desc0 = 0;
1231 }
1232
1233 KASSERT(desc0 < rdb->rdb_ndesc);
1234 KASSERT(nsync <= rdb->rdb_ndesc);
1235 KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1236
1237 /* sync what remains */
1238 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1239 offsetof(struct rtw_descs, hd_rx[desc0]),
1240 sizeof(struct rtw_rxdesc) * nsync, ops);
1241 }
1242
1243 static void
1244 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1245 {
1246 /* sync to end of ring */
1247 if (desc0 + nsync > tdb->tdb_ndesc) {
1248 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1249 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1250 sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1251 ops);
1252 nsync -= (tdb->tdb_ndesc - desc0);
1253 desc0 = 0;
1254 }
1255
1256 /* sync what remains */
1257 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1258 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1259 sizeof(struct rtw_txdesc) * nsync, ops);
1260 }
1261
1262 static void
1263 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1264 {
1265 int pri;
1266 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1267 rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1268 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1269 }
1270 }
1271
1272 static void
1273 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1274 {
1275 int i;
1276 struct rtw_rxsoft *rs;
1277
1278 for (i = 0; i < RTW_RXQLEN; i++) {
1279 rs = &desc[i];
1280 if (rs->rs_mbuf == NULL)
1281 continue;
1282 bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1283 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1284 bus_dmamap_unload(dmat, rs->rs_dmamap);
1285 m_freem(rs->rs_mbuf);
1286 rs->rs_mbuf = NULL;
1287 }
1288 }
1289
1290 static inline int
1291 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1292 {
1293 int rc;
1294 struct mbuf *m;
1295
1296 MGETHDR(m, M_DONTWAIT, MT_DATA);
1297 if (m == NULL)
1298 return ENOBUFS;
1299
1300 MCLGET(m, M_DONTWAIT);
1301 if ((m->m_flags & M_EXT) == 0) {
1302 m_freem(m);
1303 return ENOBUFS;
1304 }
1305
1306 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1307
1308 if (rs->rs_mbuf != NULL)
1309 bus_dmamap_unload(dmat, rs->rs_dmamap);
1310
1311 rs->rs_mbuf = NULL;
1312
1313 rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1314 if (rc != 0) {
1315 m_freem(m);
1316 return -1;
1317 }
1318
1319 rs->rs_mbuf = m;
1320
1321 return 0;
1322 }
1323
1324 static int
1325 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1326 int *ndesc, device_t dev)
1327 {
1328 int i, rc = 0;
1329 struct rtw_rxsoft *rs;
1330
1331 for (i = 0; i < RTW_RXQLEN; i++) {
1332 rs = &desc[i];
1333 /* we're in rtw_init, so there should be no mbufs allocated */
1334 KASSERT(rs->rs_mbuf == NULL);
1335 #ifdef RTW_DEBUG
1336 if (i == rtw_rxbufs_limit) {
1337 aprint_error_dev(dev, "TEST hit %d-buffer limit\n", i);
1338 rc = ENOBUFS;
1339 break;
1340 }
1341 #endif /* RTW_DEBUG */
1342 if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1343 aprint_error_dev(dev,
1344 "rtw_rxsoft_alloc failed, %d buffers, rc %d\n",
1345 i, rc);
1346 break;
1347 }
1348 }
1349 *ndesc = i;
1350 return rc;
1351 }
1352
1353 static inline void
1354 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1355 int idx, int kick)
1356 {
1357 int is_last = (idx == rdb->rdb_ndesc - 1);
1358 uint32_t ctl, octl, obuf;
1359 struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1360
1361 /* sync the mbuf before the descriptor */
1362 bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1363 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1364
1365 obuf = rd->rd_buf;
1366 rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1367
1368 ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1369 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1370
1371 if (is_last)
1372 ctl |= RTW_RXCTL_EOR;
1373
1374 octl = rd->rd_ctl;
1375 rd->rd_ctl = htole32(ctl);
1376
1377 RTW_DPRINTF(
1378 kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1379 : RTW_DEBUG_RECV_DESC,
1380 ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1381 le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1382 le32toh(rd->rd_ctl)));
1383
1384 /* sync the descriptor */
1385 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1386 RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1387 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1388 }
1389
1390 static void
1391 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1392 {
1393 int i;
1394 struct rtw_rxdesc *rd;
1395 struct rtw_rxsoft *rs;
1396
1397 for (i = 0; i < rdb->rdb_ndesc; i++) {
1398 rd = &rdb->rdb_desc[i];
1399 rs = &ctl[i];
1400 rtw_rxdesc_init(rdb, rs, i, kick);
1401 }
1402 }
1403
1404 static void
1405 rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
1406 {
1407 struct rtw_regs *regs = &sc->sc_regs;
1408 uint8_t cr;
1409
1410 RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1411 enable ? "enable" : "disable", flags));
1412
1413 cr = RTW_READ8(regs, RTW_CR);
1414
1415 /* XXX reference source does not enable MULRW */
1416 /* enable PCI Read/Write Multiple */
1417 cr |= RTW_CR_MULRW;
1418
1419 /* The receive engine will always start at RDSAR. */
1420 if (enable && (flags & ~cr & RTW_CR_RE)) {
1421 struct rtw_rxdesc_blk *rdb;
1422 rdb = &sc->sc_rxdesc_blk;
1423 rdb->rdb_next = 0;
1424 }
1425
1426 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1427 if (enable)
1428 cr |= flags;
1429 else
1430 cr &= ~flags;
1431 RTW_WRITE8(regs, RTW_CR, cr);
1432 RTW_SYNC(regs, RTW_CR, RTW_CR);
1433
1434 #ifdef RTW_DIAG
1435 if (cr & RTW_CR_TE)
1436 rtw_txring_fixup(sc, __func__, __LINE__);
1437 #endif
1438 if (cr & RTW_CR_TE) {
1439 rtw_tx_kick(&sc->sc_regs,
1440 RTW_TPPOLL_HPQ | RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ);
1441 }
1442 }
1443
1444 static void
1445 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1446 {
1447 #define IS_BEACON(__fc0) \
1448 ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1449 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1450
1451 static const int ratetbl[4] = {2, 4, 11, 22}; /* convert rates:
1452 * hardware -> net80211
1453 */
1454 u_int next, nproc = 0;
1455 int hwrate, len, rate, rssi, sq;
1456 uint32_t hrssi, hstat, htsfth, htsftl;
1457 struct rtw_rxdesc *rd;
1458 struct rtw_rxsoft *rs;
1459 struct rtw_rxdesc_blk *rdb;
1460 struct mbuf *m;
1461 struct ifnet *ifp = &sc->sc_if;
1462
1463 struct ieee80211_node *ni;
1464 struct ieee80211_frame_min *wh;
1465
1466 rdb = &sc->sc_rxdesc_blk;
1467
1468 for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
1469 KASSERT(next < rdb->rdb_ndesc);
1470
1471 rtw_rxdescs_sync(rdb, next, 1,
1472 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1473 rd = &rdb->rdb_desc[next];
1474 rs = &sc->sc_rxsoft[next];
1475
1476 hstat = le32toh(rd->rd_stat);
1477 hrssi = le32toh(rd->rd_rssi);
1478 htsfth = le32toh(rd->rd_tsfth);
1479 htsftl = le32toh(rd->rd_tsftl);
1480
1481 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1482 ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1483 __func__, next, hstat, hrssi, htsfth, htsftl));
1484
1485 ++nproc;
1486
1487 /* still belongs to NIC */
1488 if ((hstat & RTW_RXSTAT_OWN) != 0) {
1489 rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
1490 break;
1491 }
1492
1493 /* ieee80211_input() might reset the receive engine
1494 * (e.g. by indirectly calling rtw_tune()), so save
1495 * the next pointer here and retrieve it again on
1496 * the next round.
1497 */
1498 rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
1499
1500 #ifdef RTW_DEBUG
1501 #define PRINTSTAT(flag) do { \
1502 if ((hstat & flag) != 0) { \
1503 printf("%s" #flag, delim); \
1504 delim = ","; \
1505 } \
1506 } while (0)
1507 if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1508 const char *delim = "<";
1509 printf("%s: ", device_xname(sc->sc_dev));
1510 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1511 printf("status %08x", hstat);
1512 PRINTSTAT(RTW_RXSTAT_SPLCP);
1513 PRINTSTAT(RTW_RXSTAT_MAR);
1514 PRINTSTAT(RTW_RXSTAT_PAR);
1515 PRINTSTAT(RTW_RXSTAT_BAR);
1516 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1517 PRINTSTAT(RTW_RXSTAT_CRC32);
1518 PRINTSTAT(RTW_RXSTAT_ICV);
1519 printf(">, ");
1520 }
1521 }
1522 #endif /* RTW_DEBUG */
1523
1524 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1525 aprint_error_dev(sc->sc_dev,
1526 "DMA error/FIFO overflow %08" PRIx32 ", "
1527 "rx descriptor %d\n", hstat, next);
1528 ifp->if_ierrors++;
1529 goto next;
1530 }
1531
1532 len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1533 if (len < IEEE80211_MIN_LEN) {
1534 sc->sc_ic.ic_stats.is_rx_tooshort++;
1535 goto next;
1536 }
1537 if (len > rs->rs_mbuf->m_len) {
1538 aprint_error_dev(sc->sc_dev,
1539 "rx frame too long, %d > %d, %08" PRIx32
1540 ", desc %d\n",
1541 len, rs->rs_mbuf->m_len, hstat, next);
1542 ifp->if_ierrors++;
1543 goto next;
1544 }
1545
1546 hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1547 if (hwrate >= __arraycount(ratetbl)) {
1548 aprint_error_dev(sc->sc_dev,
1549 "unknown rate #%" __PRIuBITS "\n",
1550 __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1551 ifp->if_ierrors++;
1552 goto next;
1553 }
1554 rate = ratetbl[hwrate];
1555
1556 #ifdef RTW_DEBUG
1557 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1558 ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1559 (rate * 5) % 10, htsfth, htsftl));
1560 #endif /* RTW_DEBUG */
1561
1562 /* if bad flags, skip descriptor */
1563 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1564 aprint_error_dev(sc->sc_dev, "too many rx segments, "
1565 "next=%d, %08" PRIx32 "\n", next, hstat);
1566 goto next;
1567 }
1568
1569 bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1570 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1571
1572 m = rs->rs_mbuf;
1573
1574 /* if temporarily out of memory, re-use mbuf */
1575 switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1576 case 0:
1577 break;
1578 case ENOBUFS:
1579 aprint_error_dev(sc->sc_dev,
1580 "rtw_rxsoft_alloc(, %d) failed, dropping packet\n",
1581 next);
1582 goto next;
1583 default:
1584 /* XXX shorten rx ring, instead? */
1585 aprint_error_dev(sc->sc_dev,
1586 "could not load DMA map\n");
1587 }
1588
1589 sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1590
1591 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1592 rssi = UINT8_MAX - sq;
1593 else {
1594 rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1595 /* TBD find out each front-end's LNA gain in the
1596 * front-end's units
1597 */
1598 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1599 rssi |= 0x80;
1600 }
1601
1602 /* Note well: now we cannot recycle the rs_mbuf unless
1603 * we restore its original length.
1604 */
1605 m->m_pkthdr.rcvif = ifp;
1606 m->m_pkthdr.len = m->m_len = len;
1607
1608 wh = mtod(m, struct ieee80211_frame_min *);
1609
1610 if (!IS_BEACON(wh->i_fc[0]))
1611 sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1612
1613 sc->sc_tsfth = htsfth;
1614
1615 #ifdef RTW_DEBUG
1616 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1617 (IFF_DEBUG|IFF_LINK2)) {
1618 ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1619 rate, rssi);
1620 }
1621 #endif /* RTW_DEBUG */
1622
1623 if (sc->sc_radiobpf != NULL) {
1624 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1625
1626 rr->rr_tsft =
1627 htole64(((uint64_t)htsfth << 32) | htsftl);
1628
1629 rr->rr_flags = IEEE80211_RADIOTAP_F_FCS;
1630
1631 if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1632 rr->rr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1633 if ((hstat & RTW_RXSTAT_CRC32) != 0)
1634 rr->rr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
1635
1636 rr->rr_rate = rate;
1637
1638 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1639 rr->rr_u.u_philips.p_antsignal = rssi;
1640 else {
1641 rr->rr_u.u_other.o_antsignal = rssi;
1642 rr->rr_u.u_other.o_barker_lock =
1643 htole16(UINT8_MAX - sq);
1644 }
1645
1646 bpf_mtap2(sc->sc_radiobpf,
1647 rr, sizeof(sc->sc_rxtapu), m);
1648 }
1649
1650 if ((hstat & RTW_RXSTAT_RES) != 0) {
1651 m_freem(m);
1652 goto next;
1653 }
1654
1655 /* CRC is included with the packet; trim it off. */
1656 m_adj(m, -IEEE80211_CRC_LEN);
1657
1658 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1659 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1660 ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1661 ieee80211_free_node(ni);
1662 next:
1663 rtw_rxdesc_init(rdb, rs, next, 0);
1664 }
1665 #undef IS_BEACON
1666 }
1667
1668 static void
1669 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1670 struct rtw_txsoft *ts)
1671 {
1672 struct mbuf *m;
1673 struct ieee80211_node *ni;
1674
1675 m = ts->ts_mbuf;
1676 ni = ts->ts_ni;
1677 KASSERT(m != NULL);
1678 KASSERT(ni != NULL);
1679 ts->ts_mbuf = NULL;
1680 ts->ts_ni = NULL;
1681
1682 bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1683 BUS_DMASYNC_POSTWRITE);
1684 bus_dmamap_unload(dmat, ts->ts_dmamap);
1685 m_freem(m);
1686 ieee80211_free_node(ni);
1687 }
1688
1689 static void
1690 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1691 struct rtw_txsoft_blk *tsb)
1692 {
1693 struct rtw_txsoft *ts;
1694
1695 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1696 rtw_txsoft_release(dmat, ic, ts);
1697 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1698 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1699 }
1700 tsb->tsb_tx_timer = 0;
1701 }
1702
1703 static inline void
1704 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1705 struct rtw_txsoft *ts, int ndesc)
1706 {
1707 uint32_t hstat;
1708 int data_retry, rts_retry;
1709 struct rtw_txdesc *tdn;
1710 const char *condstring;
1711 struct ifnet *ifp = &sc->sc_if;
1712
1713 rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1714
1715 tdb->tdb_nfree += ndesc;
1716
1717 tdn = &tdb->tdb_desc[ts->ts_last];
1718
1719 hstat = le32toh(tdn->td_stat);
1720 rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1721 data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1722
1723 ifp->if_collisions += rts_retry + data_retry;
1724
1725 if ((hstat & RTW_TXSTAT_TOK) != 0)
1726 condstring = "ok";
1727 else {
1728 ifp->if_oerrors++;
1729 condstring = "error";
1730 }
1731
1732 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1733 ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1734 device_xname(sc->sc_dev), ts, ts->ts_first, ts->ts_last,
1735 condstring, rts_retry, data_retry));
1736 }
1737
1738 static void
1739 rtw_reset_oactive(struct rtw_softc *sc)
1740 {
1741 short oflags;
1742 int pri;
1743 struct rtw_txsoft_blk *tsb;
1744 struct rtw_txdesc_blk *tdb;
1745 oflags = sc->sc_if.if_flags;
1746 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1747 tsb = &sc->sc_txsoft_blk[pri];
1748 tdb = &sc->sc_txdesc_blk[pri];
1749 if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1750 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1751 }
1752 if (oflags != sc->sc_if.if_flags) {
1753 DPRINTF(sc, RTW_DEBUG_OACTIVE,
1754 ("%s: reset OACTIVE\n", __func__));
1755 }
1756 }
1757
1758 /* Collect transmitted packets. */
1759 static bool
1760 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1761 struct rtw_txdesc_blk *tdb, int force)
1762 {
1763 bool collected = false;
1764 int ndesc;
1765 struct rtw_txsoft *ts;
1766
1767 #ifdef RTW_DEBUG
1768 rtw_dump_rings(sc);
1769 #endif
1770
1771 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1772 /* If we're clearing a failed transmission, only clear
1773 up to the last packet the hardware has processed. */
1774 if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
1775 break;
1776
1777 ndesc = 1 + ts->ts_last - ts->ts_first;
1778 if (ts->ts_last < ts->ts_first)
1779 ndesc += tdb->tdb_ndesc;
1780
1781 KASSERT(ndesc > 0);
1782
1783 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1784 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1785
1786 if (force) {
1787 int next;
1788 #ifdef RTW_DIAG
1789 printf("%s: clearing packet, stats", __func__);
1790 #endif
1791 for (next = ts->ts_first; ;
1792 next = RTW_NEXT_IDX(tdb, next)) {
1793 #ifdef RTW_DIAG
1794 printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
1795 #endif
1796 tdb->tdb_desc[next].td_stat &=
1797 ~htole32(RTW_TXSTAT_OWN);
1798 if (next == ts->ts_last)
1799 break;
1800 }
1801 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1802 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1803 #ifdef RTW_DIAG
1804 next = RTW_NEXT_IDX(tdb, next);
1805 printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
1806 le32toh(tdb->tdb_desc[next].td_stat),
1807 rtw_txring_next(&sc->sc_regs, tdb));
1808 #endif
1809 } else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1810 htole32(RTW_TXSTAT_OWN)) != 0) {
1811 rtw_txdescs_sync(tdb, ts->ts_last, 1,
1812 BUS_DMASYNC_PREREAD);
1813 break;
1814 }
1815
1816 collected = true;
1817
1818 rtw_collect_txpkt(sc, tdb, ts, ndesc);
1819 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1820 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1821 }
1822
1823 /* no more pending transmissions, cancel watchdog */
1824 if (ts == NULL)
1825 tsb->tsb_tx_timer = 0;
1826 rtw_reset_oactive(sc);
1827
1828 return collected;
1829 }
1830
1831 static void
1832 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1833 {
1834 int pri;
1835 struct rtw_txsoft_blk *tsb;
1836 struct rtw_txdesc_blk *tdb;
1837 struct ifnet *ifp = &sc->sc_if;
1838
1839 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1840 tsb = &sc->sc_txsoft_blk[pri];
1841 tdb = &sc->sc_txdesc_blk[pri];
1842 rtw_collect_txring(sc, tsb, tdb, 0);
1843 }
1844
1845 if ((isr & RTW_INTR_TX) != 0)
1846 rtw_start(ifp);
1847
1848 return;
1849 }
1850
1851 static void
1852 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1853 {
1854 u_int next;
1855 uint32_t tsfth, tsftl;
1856 struct ieee80211com *ic;
1857 struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1858 struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1859 struct mbuf *m;
1860
1861 tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1862 tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1863
1864 if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) {
1865 next = rtw_txring_next(&sc->sc_regs, tdb);
1866 RTW_DPRINTF(RTW_DEBUG_BEACON,
1867 ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1868 ", next %u expected %u, %" PRIu64 "\n", __func__,
1869 (next == tdb->tdb_next) ? "" : "un", isr, next,
1870 tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1871 if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
1872 rtw_collect_txring(sc, tsb, tdb, 1);
1873 }
1874 /* Start beacon transmission. */
1875
1876 if ((isr & RTW_INTR_BCNINT) != 0 &&
1877 sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1878 SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1879 RTW_DPRINTF(RTW_DEBUG_BEACON,
1880 ("%s: beacon prep. time, isr = %#04" PRIx16
1881 ", %16" PRIu64 "\n", __func__, isr,
1882 (uint64_t)tsfth << 32 | tsftl));
1883 ic = &sc->sc_ic;
1884 m = rtw_beacon_alloc(sc, ic->ic_bss);
1885
1886 if (m == NULL) {
1887 aprint_error_dev(sc->sc_dev,
1888 "could not allocate beacon\n");
1889 return;
1890 }
1891 m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss);
1892 IF_ENQUEUE(&sc->sc_beaconq, m);
1893 rtw_start(&sc->sc_if);
1894 }
1895 }
1896
1897 static void
1898 rtw_intr_atim(struct rtw_softc *sc)
1899 {
1900 /* TBD */
1901 return;
1902 }
1903
1904 #ifdef RTW_DEBUG
1905 static void
1906 rtw_dump_rings(struct rtw_softc *sc)
1907 {
1908 struct rtw_txdesc_blk *tdb;
1909 struct rtw_rxdesc *rd;
1910 struct rtw_rxdesc_blk *rdb;
1911 int desc, pri;
1912
1913 if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1914 return;
1915
1916 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1917 tdb = &sc->sc_txdesc_blk[pri];
1918 printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1919 tdb->tdb_ndesc, tdb->tdb_nfree);
1920 for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1921 rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1922 }
1923
1924 rdb = &sc->sc_rxdesc_blk;
1925
1926 for (desc = 0; desc < RTW_RXQLEN; desc++) {
1927 rd = &rdb->rdb_desc[desc];
1928 printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1929 "rsvd1/tsfth %08x\n", __func__,
1930 (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1931 le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1932 le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1933 }
1934 }
1935 #endif /* RTW_DEBUG */
1936
1937 static void
1938 rtw_hwring_setup(struct rtw_softc *sc)
1939 {
1940 int pri;
1941 struct rtw_regs *regs = &sc->sc_regs;
1942 struct rtw_txdesc_blk *tdb;
1943
1944 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1945 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1946 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1947 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1948 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1949 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1950 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1951 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1952
1953 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1954 tdb = &sc->sc_txdesc_blk[pri];
1955 RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1956 RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1957 ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1958 (uintptr_t)tdb->tdb_base));
1959 }
1960
1961 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1962
1963 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1964 ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1965 (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1966
1967 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1968
1969 }
1970
1971 static int
1972 rtw_swring_setup(struct rtw_softc *sc)
1973 {
1974 int rc;
1975 struct rtw_rxdesc_blk *rdb;
1976
1977 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1978
1979 rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
1980
1981 rdb = &sc->sc_rxdesc_blk;
1982 if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
1983 sc->sc_dev)) != 0 && rdb->rdb_ndesc == 0) {
1984 aprint_error_dev(sc->sc_dev, "could not allocate rx buffers\n");
1985 return rc;
1986 }
1987
1988 rdb = &sc->sc_rxdesc_blk;
1989 rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
1990 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1991 rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
1992 rdb->rdb_next = 0;
1993
1994 rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
1995 return 0;
1996 }
1997
1998 static void
1999 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
2000 {
2001 int i;
2002
2003 (void)memset(tdb->tdb_desc, 0,
2004 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
2005 for (i = 0; i < tdb->tdb_ndesc; i++)
2006 tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
2007 }
2008
2009 static u_int
2010 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
2011 {
2012 return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
2013 sizeof(struct rtw_txdesc);
2014 }
2015
2016 #ifdef RTW_DIAG
2017 static void
2018 rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
2019 {
2020 int pri;
2021 u_int next;
2022 struct rtw_txdesc_blk *tdb;
2023 struct rtw_regs *regs = &sc->sc_regs;
2024
2025 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2026 int i;
2027 tdb = &sc->sc_txdesc_blk[pri];
2028 next = rtw_txring_next(regs, tdb);
2029 if (tdb->tdb_next == next)
2030 continue;
2031 for (i = 0; next != tdb->tdb_next;
2032 next = RTW_NEXT_IDX(tdb, next), i++) {
2033 if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
2034 break;
2035 }
2036 printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
2037 ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
2038 if (tdb->tdb_next == next)
2039 continue;
2040 tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
2041 }
2042 }
2043 #endif
2044
2045 static void
2046 rtw_txdescs_reset(struct rtw_softc *sc)
2047 {
2048 int pri;
2049 struct rtw_txsoft_blk *tsb;
2050 struct rtw_txdesc_blk *tdb;
2051
2052 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2053 tsb = &sc->sc_txsoft_blk[pri];
2054 tdb = &sc->sc_txdesc_blk[pri];
2055 rtw_collect_txring(sc, tsb, tdb, 1);
2056 #ifdef RTW_DIAG
2057 if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
2058 printf("%s: packets left in ring %d\n", __func__, pri);
2059 #endif
2060 }
2061 }
2062
2063 static void
2064 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2065 {
2066 aprint_error_dev(sc->sc_dev, "tx fifo underflow\n");
2067
2068 RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
2069 "\n", device_xname(sc->sc_dev), isr));
2070
2071 #ifdef RTW_DEBUG
2072 rtw_dump_rings(sc);
2073 #endif /* RTW_DEBUG */
2074
2075 /* Collect tx'd packets. XXX let's hope this stops the transmit
2076 * timeouts.
2077 */
2078 rtw_txdescs_reset(sc);
2079
2080 #ifdef RTW_DEBUG
2081 rtw_dump_rings(sc);
2082 #endif /* RTW_DEBUG */
2083 }
2084
2085 static inline void
2086 rtw_suspend_ticks(struct rtw_softc *sc)
2087 {
2088 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2089 ("%s: suspending ticks\n", device_xname(sc->sc_dev)));
2090 sc->sc_do_tick = 0;
2091 }
2092
2093 static inline void
2094 rtw_resume_ticks(struct rtw_softc *sc)
2095 {
2096 uint32_t tsftrl0, tsftrl1, next_tint;
2097
2098 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2099
2100 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2101 next_tint = tsftrl1 + 1000000;
2102 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tint);
2103
2104 sc->sc_do_tick = 1;
2105
2106 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2107 ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2108 device_xname(sc->sc_dev), tsftrl1 - tsftrl0, tsftrl1, next_tint));
2109 }
2110
2111 static void
2112 rtw_intr_timeout(struct rtw_softc *sc)
2113 {
2114 RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", device_xname(sc->sc_dev)));
2115 if (sc->sc_do_tick)
2116 rtw_resume_ticks(sc);
2117 return;
2118 }
2119
2120 int
2121 rtw_intr(void *arg)
2122 {
2123 int i;
2124 struct rtw_softc *sc = arg;
2125 struct rtw_regs *regs = &sc->sc_regs;
2126 uint16_t isr;
2127 struct ifnet *ifp = &sc->sc_if;
2128
2129 /*
2130 * If the interface isn't running, the interrupt couldn't
2131 * possibly have come from us.
2132 */
2133 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2134 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
2135 RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n",
2136 device_xname(sc->sc_dev)));
2137 return (0);
2138 }
2139
2140 for (i = 0; i < 10; i++) {
2141 isr = RTW_READ16(regs, RTW_ISR);
2142
2143 RTW_WRITE16(regs, RTW_ISR, isr);
2144 RTW_WBR(regs, RTW_ISR, RTW_ISR);
2145
2146 if (sc->sc_intr_ack != NULL)
2147 (*sc->sc_intr_ack)(regs);
2148
2149 if (isr == 0)
2150 break;
2151
2152 #ifdef RTW_DEBUG
2153 #define PRINTINTR(flag) do { \
2154 if ((isr & flag) != 0) { \
2155 printf("%s" #flag, delim); \
2156 delim = ","; \
2157 } \
2158 } while (0)
2159
2160 if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2161 const char *delim = "<";
2162
2163 printf("%s: reg[ISR] = %x", device_xname(sc->sc_dev),
2164 isr);
2165
2166 PRINTINTR(RTW_INTR_TXFOVW);
2167 PRINTINTR(RTW_INTR_TIMEOUT);
2168 PRINTINTR(RTW_INTR_BCNINT);
2169 PRINTINTR(RTW_INTR_ATIMINT);
2170 PRINTINTR(RTW_INTR_TBDER);
2171 PRINTINTR(RTW_INTR_TBDOK);
2172 PRINTINTR(RTW_INTR_THPDER);
2173 PRINTINTR(RTW_INTR_THPDOK);
2174 PRINTINTR(RTW_INTR_TNPDER);
2175 PRINTINTR(RTW_INTR_TNPDOK);
2176 PRINTINTR(RTW_INTR_RXFOVW);
2177 PRINTINTR(RTW_INTR_RDU);
2178 PRINTINTR(RTW_INTR_TLPDER);
2179 PRINTINTR(RTW_INTR_TLPDOK);
2180 PRINTINTR(RTW_INTR_RER);
2181 PRINTINTR(RTW_INTR_ROK);
2182
2183 printf(">\n");
2184 }
2185 #undef PRINTINTR
2186 #endif /* RTW_DEBUG */
2187
2188 if ((isr & RTW_INTR_RX) != 0)
2189 rtw_intr_rx(sc, isr);
2190 if ((isr & RTW_INTR_TX) != 0)
2191 rtw_intr_tx(sc, isr);
2192 if ((isr & RTW_INTR_BEACON) != 0)
2193 rtw_intr_beacon(sc, isr);
2194 if ((isr & RTW_INTR_ATIMINT) != 0)
2195 rtw_intr_atim(sc);
2196 if ((isr & RTW_INTR_IOERROR) != 0)
2197 rtw_intr_ioerror(sc, isr);
2198 if ((isr & RTW_INTR_TIMEOUT) != 0)
2199 rtw_intr_timeout(sc);
2200 }
2201
2202 return 1;
2203 }
2204
2205 /* Must be called at splnet. */
2206 static void
2207 rtw_stop(struct ifnet *ifp, int disable)
2208 {
2209 int pri;
2210 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2211 struct ieee80211com *ic = &sc->sc_ic;
2212 struct rtw_regs *regs = &sc->sc_regs;
2213
2214 rtw_suspend_ticks(sc);
2215
2216 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2217
2218 if (device_has_power(sc->sc_dev)) {
2219 /* Disable interrupts. */
2220 RTW_WRITE16(regs, RTW_IMR, 0);
2221
2222 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2223
2224 /* Stop the transmit and receive processes. First stop DMA,
2225 * then disable receiver and transmitter.
2226 */
2227 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2228
2229 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2230
2231 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2232 }
2233
2234 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2235 rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2236 &sc->sc_txsoft_blk[pri]);
2237 }
2238
2239 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2240
2241 /* Mark the interface as not running. Cancel the watchdog timer. */
2242 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2243 ifp->if_timer = 0;
2244
2245 if (disable)
2246 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2247
2248 return;
2249 }
2250
2251 const char *
2252 rtw_pwrstate_string(enum rtw_pwrstate power)
2253 {
2254 switch (power) {
2255 case RTW_ON:
2256 return "on";
2257 case RTW_SLEEP:
2258 return "sleep";
2259 case RTW_OFF:
2260 return "off";
2261 default:
2262 return "unknown";
2263 }
2264 }
2265
2266 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2267 * reference driver, plus a magic Maxim "ON" value that comes from
2268 * the Realtek document "Windows PG for Rtl8180."
2269 */
2270 static void
2271 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2272 int before_rf, int digphy)
2273 {
2274 uint32_t anaparm;
2275
2276 anaparm = RTW_READ(regs, RTW_ANAPARM);
2277 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2278
2279 switch (power) {
2280 case RTW_OFF:
2281 if (before_rf)
2282 return;
2283 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2284 anaparm |= RTW_ANAPARM_TXDACOFF;
2285 break;
2286 case RTW_SLEEP:
2287 if (!before_rf)
2288 return;
2289 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2290 anaparm |= RTW_ANAPARM_TXDACOFF;
2291 break;
2292 case RTW_ON:
2293 if (!before_rf)
2294 return;
2295 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2296 break;
2297 }
2298 RTW_DPRINTF(RTW_DEBUG_PWR,
2299 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2300 __func__, rtw_pwrstate_string(power),
2301 (before_rf) ? "before" : "after", anaparm));
2302
2303 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2304 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2305 }
2306
2307 /* XXX I am using the RFMD settings gleaned from the reference
2308 * driver. They agree
2309 */
2310 static void
2311 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2312 int before_rf, int digphy)
2313 {
2314 uint32_t anaparm;
2315
2316 anaparm = RTW_READ(regs, RTW_ANAPARM);
2317 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2318
2319 switch (power) {
2320 case RTW_OFF:
2321 if (before_rf)
2322 return;
2323 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2324 anaparm |= RTW_ANAPARM_TXDACOFF;
2325 break;
2326 case RTW_SLEEP:
2327 if (!before_rf)
2328 return;
2329 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2330 anaparm |= RTW_ANAPARM_TXDACOFF;
2331 break;
2332 case RTW_ON:
2333 if (!before_rf)
2334 return;
2335 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2336 break;
2337 }
2338 RTW_DPRINTF(RTW_DEBUG_PWR,
2339 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2340 __func__, rtw_pwrstate_string(power),
2341 (before_rf) ? "before" : "after", anaparm));
2342
2343 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2344 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2345 }
2346
2347 static void
2348 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2349 int before_rf, int digphy)
2350 {
2351 uint32_t anaparm;
2352
2353 anaparm = RTW_READ(regs, RTW_ANAPARM);
2354 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2355
2356 switch (power) {
2357 case RTW_OFF:
2358 if (before_rf)
2359 return;
2360 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2361 anaparm |= RTW_ANAPARM_TXDACOFF;
2362 break;
2363 case RTW_SLEEP:
2364 if (!before_rf)
2365 return;
2366 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2367 anaparm |= RTW_ANAPARM_TXDACOFF;
2368 break;
2369 case RTW_ON:
2370 if (!before_rf)
2371 return;
2372 if (digphy) {
2373 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2374 /* XXX guess */
2375 anaparm |= RTW_ANAPARM_TXDACOFF;
2376 } else
2377 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2378 break;
2379 }
2380 RTW_DPRINTF(RTW_DEBUG_PWR,
2381 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2382 __func__, rtw_pwrstate_string(power),
2383 (before_rf) ? "before" : "after", anaparm));
2384
2385 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2386 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2387 }
2388
2389 static void
2390 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2391 int digphy)
2392 {
2393 struct rtw_regs *regs = &sc->sc_regs;
2394
2395 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2396
2397 (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2398
2399 rtw_set_access(regs, RTW_ACCESS_NONE);
2400
2401 return;
2402 }
2403
2404 static int
2405 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2406 {
2407 int rc;
2408
2409 RTW_DPRINTF(RTW_DEBUG_PWR,
2410 ("%s: %s->%s\n", __func__,
2411 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2412
2413 if (sc->sc_pwrstate == power)
2414 return 0;
2415
2416 rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2417 rc = rtw_rf_pwrstate(sc->sc_rf, power);
2418 rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2419
2420 switch (power) {
2421 case RTW_ON:
2422 /* TBD set LEDs */
2423 break;
2424 case RTW_SLEEP:
2425 /* TBD */
2426 break;
2427 case RTW_OFF:
2428 /* TBD */
2429 break;
2430 }
2431 if (rc == 0)
2432 sc->sc_pwrstate = power;
2433 else
2434 sc->sc_pwrstate = RTW_OFF;
2435 return rc;
2436 }
2437
2438 static int
2439 rtw_tune(struct rtw_softc *sc)
2440 {
2441 struct ieee80211com *ic = &sc->sc_ic;
2442 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
2443 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
2444 u_int chan;
2445 int rc;
2446 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2447 dflantb = sc->sc_flags & RTW_F_DFLANTB;
2448
2449 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2450 KASSERT(chan != IEEE80211_CHAN_ANY);
2451
2452 rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2453 rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2454
2455 rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2456 rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2457
2458 if (chan == sc->sc_cur_chan) {
2459 RTW_DPRINTF(RTW_DEBUG_TUNE,
2460 ("%s: already tuned chan #%d\n", __func__, chan));
2461 return 0;
2462 }
2463
2464 rtw_suspend_ticks(sc);
2465
2466 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2467
2468 /* TBD wait for Tx to complete */
2469
2470 KASSERT(device_has_power(sc->sc_dev));
2471
2472 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2473 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2474 ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2475 /* XXX condition on powersaving */
2476 aprint_error_dev(sc->sc_dev, "phy init failed\n");
2477 }
2478
2479 sc->sc_cur_chan = chan;
2480
2481 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2482
2483 rtw_resume_ticks(sc);
2484
2485 return rc;
2486 }
2487
2488 bool
2489 rtw_suspend(device_t self, const pmf_qual_t *qual)
2490 {
2491 int rc;
2492 struct rtw_softc *sc = device_private(self);
2493
2494 sc->sc_flags &= ~RTW_F_DK_VALID;
2495
2496 if (!device_has_power(self))
2497 return false;
2498
2499 /* turn off PHY */
2500 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2501 aprint_error_dev(self, "failed to turn off PHY (%d)\n", rc);
2502 return false;
2503 }
2504
2505 rtw_disable_interrupts(&sc->sc_regs);
2506
2507 return true;
2508 }
2509
2510 bool
2511 rtw_resume(device_t self, const pmf_qual_t *qual)
2512 {
2513 struct rtw_softc *sc = device_private(self);
2514
2515 /* Power may have been removed, resetting WEP keys.
2516 */
2517 sc->sc_flags &= ~RTW_F_DK_VALID;
2518 rtw_enable_interrupts(sc);
2519
2520 return true;
2521 }
2522
2523 static void
2524 rtw_transmit_config(struct rtw_regs *regs)
2525 {
2526 uint32_t tcr;
2527
2528 tcr = RTW_READ(regs, RTW_TCR);
2529
2530 tcr |= RTW_TCR_CWMIN;
2531 tcr &= ~RTW_TCR_MXDMA_MASK;
2532 tcr |= RTW_TCR_MXDMA_256;
2533 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
2534 tcr &= ~RTW_TCR_LBK_MASK;
2535 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
2536
2537 /* set short/long retry limits */
2538 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2539 tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
2540
2541 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
2542
2543 RTW_WRITE(regs, RTW_TCR, tcr);
2544 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2545 }
2546
2547 static void
2548 rtw_disable_interrupts(struct rtw_regs *regs)
2549 {
2550 RTW_WRITE16(regs, RTW_IMR, 0);
2551 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2552 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2553 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2554 }
2555
2556 static void
2557 rtw_enable_interrupts(struct rtw_softc *sc)
2558 {
2559 struct rtw_regs *regs = &sc->sc_regs;
2560
2561 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2562 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2563
2564 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2565 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2566 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2567 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2568
2569 /* XXX necessary? */
2570 if (sc->sc_intr_ack != NULL)
2571 (*sc->sc_intr_ack)(regs);
2572 }
2573
2574 static void
2575 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2576 {
2577 uint8_t msr;
2578
2579 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2580 rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2581
2582 msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2583
2584 switch (opmode) {
2585 case IEEE80211_M_AHDEMO:
2586 case IEEE80211_M_IBSS:
2587 msr |= RTW_MSR_NETYPE_ADHOC_OK;
2588 break;
2589 case IEEE80211_M_HOSTAP:
2590 msr |= RTW_MSR_NETYPE_AP_OK;
2591 break;
2592 case IEEE80211_M_MONITOR:
2593 /* XXX */
2594 msr |= RTW_MSR_NETYPE_NOLINK;
2595 break;
2596 case IEEE80211_M_STA:
2597 msr |= RTW_MSR_NETYPE_INFRA_OK;
2598 break;
2599 }
2600 RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2601
2602 rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2603 }
2604
2605 #define rtw_calchash(addr) \
2606 (ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2607
2608 static void
2609 rtw_pktfilt_load(struct rtw_softc *sc)
2610 {
2611 struct rtw_regs *regs = &sc->sc_regs;
2612 struct ieee80211com *ic = &sc->sc_ic;
2613 struct ethercom *ec = &sc->sc_ec;
2614 struct ifnet *ifp = &sc->sc_if;
2615 int hash;
2616 uint32_t hashes[2] = { 0, 0 };
2617 struct ether_multi *enm;
2618 struct ether_multistep step;
2619
2620 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2621
2622 sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2623 sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2624
2625 sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2626 /* MAC auto-reset PHY (huh?) */
2627 sc->sc_rcr |= RTW_RCR_ENMARP;
2628 /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
2629 sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2630
2631 switch (ic->ic_opmode) {
2632 case IEEE80211_M_MONITOR:
2633 sc->sc_rcr |= RTW_RCR_MONITOR;
2634 break;
2635 case IEEE80211_M_AHDEMO:
2636 case IEEE80211_M_IBSS:
2637 /* receive broadcasts in our BSS */
2638 sc->sc_rcr |= RTW_RCR_ADD3;
2639 break;
2640 default:
2641 break;
2642 }
2643
2644 ifp->if_flags &= ~IFF_ALLMULTI;
2645
2646 /*
2647 * Program the 64-bit multicast hash filter.
2648 */
2649 ETHER_FIRST_MULTI(step, ec, enm);
2650 while (enm != NULL) {
2651 /* XXX */
2652 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2653 ETHER_ADDR_LEN) != 0) {
2654 ifp->if_flags |= IFF_ALLMULTI;
2655 break;
2656 }
2657
2658 hash = rtw_calchash(enm->enm_addrlo);
2659 hashes[hash >> 5] |= (1 << (hash & 0x1f));
2660 ETHER_NEXT_MULTI(step, enm);
2661 }
2662
2663 /* XXX accept all broadcast if scanning */
2664 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2665 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2666
2667 if (ifp->if_flags & IFF_PROMISC) {
2668 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2669 sc->sc_rcr |= RTW_RCR_ACRC32; /* accept frames failing CRC */
2670 sc->sc_rcr |= RTW_RCR_AICV; /* accept frames failing ICV */
2671 ifp->if_flags |= IFF_ALLMULTI;
2672 }
2673
2674 if (ifp->if_flags & IFF_ALLMULTI)
2675 hashes[0] = hashes[1] = 0xffffffff;
2676
2677 if ((hashes[0] | hashes[1]) != 0)
2678 sc->sc_rcr |= RTW_RCR_AM; /* accept multicast */
2679
2680 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2681 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2682 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2683 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2684
2685 DPRINTF(sc, RTW_DEBUG_PKTFILT,
2686 ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2687 device_xname(sc->sc_dev), RTW_READ(regs, RTW_MAR0),
2688 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2689 }
2690
2691 static struct mbuf *
2692 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2693 {
2694 struct ieee80211com *ic = &sc->sc_ic;
2695 struct mbuf *m;
2696 struct ieee80211_beacon_offsets boff;
2697
2698 if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2699 RTW_DPRINTF(RTW_DEBUG_BEACON,
2700 ("%s: m %p len %u\n", __func__, m, m->m_len));
2701 }
2702 return m;
2703 }
2704
2705 /* Must be called at splnet. */
2706 static int
2707 rtw_init(struct ifnet *ifp)
2708 {
2709 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2710 struct ieee80211com *ic = &sc->sc_ic;
2711 struct rtw_regs *regs = &sc->sc_regs;
2712 int rc;
2713
2714 if (device_is_active(sc->sc_dev)) {
2715 /* Cancel pending I/O and reset. */
2716 rtw_stop(ifp, 0);
2717 } else if (!pmf_device_resume(sc->sc_dev, &sc->sc_qual) ||
2718 !device_is_active(sc->sc_dev))
2719 return 0;
2720
2721 DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2722 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2723 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2724
2725 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2726 goto out;
2727
2728 if ((rc = rtw_swring_setup(sc)) != 0)
2729 goto out;
2730
2731 rtw_transmit_config(regs);
2732
2733 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2734
2735 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2736 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2737
2738 /* long PLCP header, 1Mb/2Mb basic rate */
2739 RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2740 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2741
2742 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2743 rtw_set_access(regs, RTW_ACCESS_NONE);
2744
2745 /* XXX from reference sources */
2746 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2747 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2748
2749 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev);
2750
2751 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2752 /* from Linux driver */
2753 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2754
2755 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2756
2757 rtw_enable_interrupts(sc);
2758
2759 rtw_pktfilt_load(sc);
2760
2761 rtw_hwring_setup(sc);
2762
2763 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2764
2765 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2766
2767 ifp->if_flags |= IFF_RUNNING;
2768 ic->ic_state = IEEE80211_S_INIT;
2769
2770 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2771 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2772
2773 rtw_resume_ticks(sc);
2774
2775 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2776
2777 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2778 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2779 else
2780 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2781
2782 out:
2783 aprint_error_dev(sc->sc_dev, "interface not running\n");
2784 return rc;
2785 }
2786
2787 static inline void
2788 rtw_led_init(struct rtw_regs *regs)
2789 {
2790 uint8_t cfg0, cfg1;
2791
2792 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2793
2794 cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2795 cfg0 |= RTW_CONFIG0_LEDGPOEN;
2796 RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2797
2798 cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2799 RTW_DPRINTF(RTW_DEBUG_LED,
2800 ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2801
2802 cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2803 cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2804 RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2805
2806 rtw_set_access(regs, RTW_ACCESS_NONE);
2807 }
2808
2809 /*
2810 * IEEE80211_S_INIT: LED1 off
2811 *
2812 * IEEE80211_S_AUTH,
2813 * IEEE80211_S_ASSOC,
2814 * IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2815 *
2816 * IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx
2817 */
2818 static void
2819 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2820 {
2821 struct rtw_led_state *ls;
2822
2823 ls = &sc->sc_led_state;
2824
2825 switch (nstate) {
2826 case IEEE80211_S_INIT:
2827 rtw_led_init(&sc->sc_regs);
2828 aprint_debug_dev(sc->sc_dev, "stopping blink\n");
2829 callout_stop(&ls->ls_slow_ch);
2830 callout_stop(&ls->ls_fast_ch);
2831 ls->ls_slowblink = 0;
2832 ls->ls_actblink = 0;
2833 ls->ls_default = 0;
2834 break;
2835 case IEEE80211_S_SCAN:
2836 aprint_debug_dev(sc->sc_dev, "scheduling blink\n");
2837 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2838 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2839 /*FALLTHROUGH*/
2840 case IEEE80211_S_AUTH:
2841 case IEEE80211_S_ASSOC:
2842 ls->ls_default = RTW_LED1;
2843 ls->ls_actblink = RTW_LED1;
2844 ls->ls_slowblink = RTW_LED1;
2845 break;
2846 case IEEE80211_S_RUN:
2847 ls->ls_slowblink = 0;
2848 break;
2849 }
2850 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2851 }
2852
2853 static void
2854 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2855 {
2856 uint8_t led_condition;
2857 bus_size_t ofs;
2858 uint8_t mask, newval, val;
2859
2860 led_condition = ls->ls_default;
2861
2862 if (ls->ls_state & RTW_LED_S_SLOW)
2863 led_condition ^= ls->ls_slowblink;
2864 if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX))
2865 led_condition ^= ls->ls_actblink;
2866
2867 RTW_DPRINTF(RTW_DEBUG_LED,
2868 ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2869
2870 switch (hwverid) {
2871 default:
2872 case 'F':
2873 ofs = RTW_PSR;
2874 newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2875 if (led_condition & RTW_LED0)
2876 newval &= ~RTW_PSR_LEDGPO0;
2877 if (led_condition & RTW_LED1)
2878 newval &= ~RTW_PSR_LEDGPO1;
2879 break;
2880 case 'D':
2881 ofs = RTW_9346CR;
2882 mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2883 newval = RTW_9346CR_EEM_PROGRAM;
2884 if (led_condition & RTW_LED0)
2885 newval |= RTW_9346CR_EEDI;
2886 if (led_condition & RTW_LED1)
2887 newval |= RTW_9346CR_EECS;
2888 break;
2889 }
2890 val = RTW_READ8(regs, ofs);
2891 RTW_DPRINTF(RTW_DEBUG_LED,
2892 ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2893 (uintptr_t)ofs));
2894 val &= ~mask;
2895 val |= newval;
2896 RTW_WRITE8(regs, ofs, val);
2897 RTW_DPRINTF(RTW_DEBUG_LED,
2898 ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2899 (uintptr_t)ofs));
2900 RTW_SYNC(regs, ofs, ofs);
2901 }
2902
2903 static void
2904 rtw_led_fastblink(void *arg)
2905 {
2906 int ostate, s;
2907 struct rtw_softc *sc = (struct rtw_softc *)arg;
2908 struct rtw_led_state *ls = &sc->sc_led_state;
2909
2910 s = splnet();
2911 ostate = ls->ls_state;
2912 ls->ls_state ^= ls->ls_event;
2913
2914 if ((ls->ls_event & RTW_LED_S_TX) == 0)
2915 ls->ls_state &= ~RTW_LED_S_TX;
2916
2917 if ((ls->ls_event & RTW_LED_S_RX) == 0)
2918 ls->ls_state &= ~RTW_LED_S_RX;
2919
2920 ls->ls_event = 0;
2921
2922 if (ostate != ls->ls_state)
2923 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2924 splx(s);
2925
2926 aprint_debug_dev(sc->sc_dev, "scheduling fast blink\n");
2927 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2928 }
2929
2930 static void
2931 rtw_led_slowblink(void *arg)
2932 {
2933 int s;
2934 struct rtw_softc *sc = (struct rtw_softc *)arg;
2935 struct rtw_led_state *ls = &sc->sc_led_state;
2936
2937 s = splnet();
2938 ls->ls_state ^= RTW_LED_S_SLOW;
2939 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2940 splx(s);
2941 aprint_debug_dev(sc->sc_dev, "scheduling slow blink\n");
2942 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2943 }
2944
2945 static void
2946 rtw_led_detach(struct rtw_led_state *ls)
2947 {
2948 callout_destroy(&ls->ls_fast_ch);
2949 callout_destroy(&ls->ls_slow_ch);
2950 }
2951
2952 static void
2953 rtw_led_attach(struct rtw_led_state *ls, void *arg)
2954 {
2955 callout_init(&ls->ls_fast_ch, 0);
2956 callout_init(&ls->ls_slow_ch, 0);
2957 callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
2958 callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
2959 }
2960
2961 static int
2962 rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2963 {
2964 int rc = 0, s;
2965 struct rtw_softc *sc = ifp->if_softc;
2966
2967 s = splnet();
2968 if (cmd == SIOCSIFFLAGS) {
2969 if ((rc = ifioctl_common(ifp, cmd, data)) != 0)
2970 ;
2971 else switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2972 case IFF_UP:
2973 rc = rtw_init(ifp);
2974 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2975 break;
2976 case IFF_UP|IFF_RUNNING:
2977 if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2978 rtw_pktfilt_load(sc);
2979 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2980 break;
2981 case IFF_RUNNING:
2982 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2983 rtw_stop(ifp, 1);
2984 break;
2985 default:
2986 break;
2987 }
2988 } else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
2989 ; /* nothing to do */
2990 else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
2991 /* reload packet filter if running */
2992 if (ifp->if_flags & IFF_RUNNING)
2993 rtw_pktfilt_load(sc);
2994 rc = 0;
2995 } else if ((ifp->if_flags & IFF_UP) != 0)
2996 rc = rtw_init(ifp);
2997 else
2998 rc = 0;
2999 splx(s);
3000 return rc;
3001 }
3002
3003 /* Select a transmit ring with at least one h/w and s/w descriptor free.
3004 * Return 0 on success, -1 on failure.
3005 */
3006 static inline int
3007 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
3008 struct rtw_txdesc_blk **tdbp, int pri)
3009 {
3010 struct rtw_txsoft_blk *tsb;
3011 struct rtw_txdesc_blk *tdb;
3012
3013 KASSERT(pri >= 0 && pri < RTW_NTXPRI);
3014
3015 tsb = &sc->sc_txsoft_blk[pri];
3016 tdb = &sc->sc_txdesc_blk[pri];
3017
3018 if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
3019 if (tsb->tsb_tx_timer == 0)
3020 tsb->tsb_tx_timer = 5;
3021 *tsbp = NULL;
3022 *tdbp = NULL;
3023 return -1;
3024 }
3025 *tsbp = tsb;
3026 *tdbp = tdb;
3027 return 0;
3028 }
3029
3030 static inline struct mbuf *
3031 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
3032 struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
3033 struct ieee80211_node **nip, short *if_flagsp)
3034 {
3035 struct mbuf *m;
3036
3037 if (IF_IS_EMPTY(ifq))
3038 return NULL;
3039 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3040 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3041 __func__, pri));
3042 *if_flagsp |= IFF_OACTIVE;
3043 sc->sc_if.if_timer = 1;
3044 return NULL;
3045 }
3046 IF_DEQUEUE(ifq, m);
3047 *nip = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3048 m->m_pkthdr.rcvif = NULL;
3049 KASSERT(*nip != NULL);
3050 return m;
3051 }
3052
3053 /* Point *mp at the next 802.11 frame to transmit. Point *tsbp
3054 * at the driver's selection of transmit control block for the packet.
3055 */
3056 static inline int
3057 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
3058 struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
3059 struct ieee80211_node **nip)
3060 {
3061 int pri;
3062 struct ether_header *eh;
3063 struct mbuf *m0;
3064 struct rtw_softc *sc;
3065 short *if_flagsp;
3066
3067 *mp = NULL;
3068
3069 sc = (struct rtw_softc *)ifp->if_softc;
3070
3071 DPRINTF(sc, RTW_DEBUG_XMIT,
3072 ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3073
3074 if_flagsp = &ifp->if_flags;
3075
3076 if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3077 (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3078 tdbp, nip, if_flagsp)) != NULL) {
3079 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3080 __func__));
3081 return 0;
3082 }
3083
3084 if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3085 tdbp, nip, if_flagsp)) != NULL) {
3086 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3087 __func__));
3088 return 0;
3089 }
3090
3091 if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3092 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3093 return 0;
3094 }
3095
3096 IFQ_POLL(&ifp->if_snd, m0);
3097 if (m0 == NULL) {
3098 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3099 __func__));
3100 return 0;
3101 }
3102
3103 pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3104
3105 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3106 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3107 __func__, pri));
3108 *if_flagsp |= IFF_OACTIVE;
3109 sc->sc_if.if_timer = 1;
3110 return 0;
3111 }
3112
3113 IFQ_DEQUEUE(&ifp->if_snd, m0);
3114 if (m0 == NULL) {
3115 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3116 __func__));
3117 return 0;
3118 }
3119 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3120 ifp->if_opackets++;
3121 bpf_mtap(ifp, m0);
3122 eh = mtod(m0, struct ether_header *);
3123 *nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3124 if (*nip == NULL) {
3125 /* NB: ieee80211_find_txnode does stat+msg */
3126 m_freem(m0);
3127 return -1;
3128 }
3129 if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3130 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3131 ifp->if_oerrors++;
3132 return -1;
3133 }
3134 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3135 *mp = m0;
3136 return 0;
3137 }
3138
3139 static int
3140 rtw_seg_too_short(bus_dmamap_t dmamap)
3141 {
3142 int i;
3143 for (i = 0; i < dmamap->dm_nsegs; i++) {
3144 if (dmamap->dm_segs[i].ds_len < 4)
3145 return 1;
3146 }
3147 return 0;
3148 }
3149
3150 /* TBD factor with atw_start */
3151 static struct mbuf *
3152 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3153 u_int ndescfree, device_t dev)
3154 {
3155 int first, rc;
3156 struct mbuf *m, *m0;
3157
3158 m0 = chain;
3159
3160 /*
3161 * Load the DMA map. Copy and try (once) again if the packet
3162 * didn't fit in the alloted number of segments.
3163 */
3164 for (first = 1;
3165 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3166 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
3167 dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3168 first = 0) {
3169 if (rc == 0) {
3170 #ifdef RTW_DIAGxxx
3171 if (rtw_seg_too_short(dmam)) {
3172 printf("%s: short segment, mbuf lengths:", __func__);
3173 for (m = m0; m; m = m->m_next)
3174 printf(" %d", m->m_len);
3175 printf("\n");
3176 }
3177 #endif
3178 bus_dmamap_unload(dmat, dmam);
3179 }
3180 MGETHDR(m, M_DONTWAIT, MT_DATA);
3181 if (m == NULL) {
3182 aprint_error_dev(dev, "unable to allocate Tx mbuf\n");
3183 break;
3184 }
3185 if (m0->m_pkthdr.len > MHLEN) {
3186 MCLGET(m, M_DONTWAIT);
3187 if ((m->m_flags & M_EXT) == 0) {
3188 aprint_error_dev(dev,
3189 "cannot allocate Tx cluster\n");
3190 m_freem(m);
3191 break;
3192 }
3193 }
3194 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3195 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3196 m_freem(m0);
3197 m0 = m;
3198 m = NULL;
3199 }
3200 if (rc != 0) {
3201 aprint_error_dev(dev, "cannot load Tx buffer, rc = %d\n", rc);
3202 m_freem(m0);
3203 return NULL;
3204 } else if (rtw_seg_too_short(dmam)) {
3205 aprint_error_dev(dev,
3206 "cannot load Tx buffer, segment too short\n");
3207 bus_dmamap_unload(dmat, dmam);
3208 m_freem(m0);
3209 return NULL;
3210 } else if (dmam->dm_nsegs > ndescfree) {
3211 aprint_error_dev(dev, "too many tx segments\n");
3212 bus_dmamap_unload(dmat, dmam);
3213 m_freem(m0);
3214 return NULL;
3215 }
3216 return m0;
3217 }
3218
3219 #ifdef RTW_DEBUG
3220 static void
3221 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3222 struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3223 {
3224 struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3225 DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3226 "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3227 device_xname(sc->sc_dev), ts, action, desc,
3228 le32toh(td->td_buf), le32toh(td->td_next),
3229 le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3230 le32toh(td->td_len)));
3231 }
3232 #endif /* RTW_DEBUG */
3233
3234 static void
3235 rtw_start(struct ifnet *ifp)
3236 {
3237 int desc, i, lastdesc, npkt, rate;
3238 uint32_t proto_ctl0, ctl0, ctl1;
3239 bus_dmamap_t dmamap;
3240 struct ieee80211com *ic;
3241 struct ieee80211_duration *d0;
3242 struct ieee80211_frame_min *wh;
3243 struct ieee80211_node *ni = NULL; /* XXX: GCC */
3244 struct mbuf *m0;
3245 struct rtw_softc *sc;
3246 struct rtw_txsoft_blk *tsb = NULL; /* XXX: GCC */
3247 struct rtw_txdesc_blk *tdb = NULL; /* XXX: GCC */
3248 struct rtw_txsoft *ts;
3249 struct rtw_txdesc *td;
3250 struct ieee80211_key *k;
3251
3252 sc = (struct rtw_softc *)ifp->if_softc;
3253 ic = &sc->sc_ic;
3254
3255 DPRINTF(sc, RTW_DEBUG_XMIT,
3256 ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3257
3258 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3259 goto out;
3260
3261 /* XXX do real rate control */
3262 proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3263
3264 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3265 proto_ctl0 |= RTW_TXCTL0_SPLCP;
3266
3267 for (;;) {
3268 if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3269 continue;
3270 if (m0 == NULL)
3271 break;
3272
3273 wh = mtod(m0, struct ieee80211_frame_min *);
3274
3275 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3276 (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3277 m_freem(m0);
3278 break;
3279 } else
3280 k = NULL;
3281
3282 ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3283
3284 dmamap = ts->ts_dmamap;
3285
3286 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3287 tdb->tdb_nfree, sc->sc_dev);
3288
3289 if (m0 == NULL || dmamap->dm_nsegs == 0) {
3290 DPRINTF(sc, RTW_DEBUG_XMIT,
3291 ("%s: fail dmamap load\n", __func__));
3292 goto post_dequeue_err;
3293 }
3294
3295 /* Note well: rtw_dmamap_load_txbuf may have created
3296 * a new chain, so we must find the header once
3297 * more.
3298 */
3299 wh = mtod(m0, struct ieee80211_frame_min *);
3300
3301 /* XXX do real rate control */
3302 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3303 IEEE80211_FC0_TYPE_MGT)
3304 rate = 2;
3305 else
3306 rate = MAX(2, ieee80211_get_rate(ni));
3307
3308 #ifdef RTW_DEBUG
3309 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3310 (IFF_DEBUG|IFF_LINK2)) {
3311 ieee80211_dump_pkt(mtod(m0, uint8_t *),
3312 (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3313 : sizeof(wh),
3314 rate, 0);
3315 }
3316 #endif /* RTW_DEBUG */
3317 ctl0 = proto_ctl0 |
3318 __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3319
3320 switch (rate) {
3321 default:
3322 case 2:
3323 ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3324 break;
3325 case 4:
3326 ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3327 break;
3328 case 11:
3329 ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3330 break;
3331 case 22:
3332 ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3333 break;
3334 }
3335 /* XXX >= ? Compare after fragmentation? */
3336 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3337 ctl0 |= RTW_TXCTL0_RTSEN;
3338
3339 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3340 * seem to care, since we don't activate h/w Tx
3341 * encryption.
3342 */
3343 if (k != NULL &&
3344 k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP) {
3345 ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3346 RTW_TXCTL0_KEYID_MASK;
3347 }
3348
3349 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3350 IEEE80211_FC0_TYPE_MGT) {
3351 ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3352 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3353 IEEE80211_FC0_SUBTYPE_BEACON)
3354 ctl0 |= RTW_TXCTL0_BEACON;
3355 }
3356
3357 if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3358 ic->ic_flags, ic->ic_fragthreshold,
3359 rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3360 (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3361 (IFF_DEBUG|IFF_LINK2)) == -1) {
3362 DPRINTF(sc, RTW_DEBUG_XMIT,
3363 ("%s: fail compute duration\n", __func__));
3364 goto post_load_err;
3365 }
3366
3367 d0 = &ts->ts_d0;
3368
3369 *(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3370
3371 ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3372 __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3373
3374 if (d0->d_residue)
3375 ctl1 |= RTW_TXCTL1_LENGEXT;
3376
3377 /* TBD fragmentation */
3378
3379 ts->ts_first = tdb->tdb_next;
3380
3381 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3382 BUS_DMASYNC_PREWRITE);
3383
3384 KASSERT(ts->ts_first < tdb->tdb_ndesc);
3385
3386 bpf_mtap3(ic->ic_rawbpf, m0);
3387
3388 if (sc->sc_radiobpf != NULL) {
3389 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3390
3391 rt->rt_rate = rate;
3392
3393 bpf_mtap2(sc->sc_radiobpf, rt, sizeof(sc->sc_txtapu),
3394 m0);
3395 }
3396
3397 for (i = 0, lastdesc = desc = ts->ts_first;
3398 i < dmamap->dm_nsegs;
3399 i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3400 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3401 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3402 ("%s: seg too long\n", __func__));
3403 goto post_load_err;
3404 }
3405 td = &tdb->tdb_desc[desc];
3406 td->td_ctl0 = htole32(ctl0);
3407 td->td_ctl1 = htole32(ctl1);
3408 td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3409 td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3410 td->td_next = htole32(RTW_NEXT_DESC(tdb, desc));
3411 if (i != 0)
3412 td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3413 lastdesc = desc;
3414 #ifdef RTW_DEBUG
3415 rtw_print_txdesc(sc, "load", ts, tdb, desc);
3416 #endif /* RTW_DEBUG */
3417 }
3418
3419 KASSERT(desc < tdb->tdb_ndesc);
3420
3421 ts->ts_ni = ni;
3422 KASSERT(ni != NULL);
3423 ts->ts_mbuf = m0;
3424 ts->ts_last = lastdesc;
3425 tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3426 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3427 htole32(RTW_TXCTL0_FS);
3428
3429 #ifdef RTW_DEBUG
3430 rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3431 rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3432 #endif /* RTW_DEBUG */
3433
3434 tdb->tdb_nfree -= dmamap->dm_nsegs;
3435 tdb->tdb_next = desc;
3436
3437 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3438 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3439
3440 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3441 htole32(RTW_TXCTL0_OWN);
3442
3443 #ifdef RTW_DEBUG
3444 rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3445 #endif /* RTW_DEBUG */
3446
3447 rtw_txdescs_sync(tdb, ts->ts_first, 1,
3448 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3449
3450 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3451 SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3452
3453 if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3454 sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3455 tsb->tsb_tx_timer = 5;
3456 ifp->if_timer = 1;
3457 rtw_tx_kick(&sc->sc_regs, tsb->tsb_poll);
3458 }
3459 out:
3460 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3461 return;
3462 post_load_err:
3463 bus_dmamap_unload(sc->sc_dmat, dmamap);
3464 m_freem(m0);
3465 post_dequeue_err:
3466 ieee80211_free_node(ni);
3467 return;
3468 }
3469
3470 static void
3471 rtw_idle(struct rtw_regs *regs)
3472 {
3473 int active;
3474 uint8_t tppoll;
3475
3476 /* request stop DMA; wait for packets to stop transmitting. */
3477
3478 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3479 RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3480
3481 for (active = 0; active < 300 &&
3482 (tppoll = RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0;
3483 active++)
3484 DELAY(10);
3485 printf("%s: transmit DMA idle in %dus, tppoll %02" PRIx8 "\n", __func__,
3486 active * 10, tppoll);
3487 }
3488
3489 static void
3490 rtw_watchdog(struct ifnet *ifp)
3491 {
3492 int pri, tx_timeouts = 0;
3493 struct rtw_softc *sc;
3494 struct rtw_txsoft_blk *tsb;
3495
3496 sc = ifp->if_softc;
3497
3498 ifp->if_timer = 0;
3499
3500 if (!device_is_active(sc->sc_dev))
3501 return;
3502
3503 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3504 tsb = &sc->sc_txsoft_blk[pri];
3505
3506 if (tsb->tsb_tx_timer == 0)
3507 continue;
3508 else if (--tsb->tsb_tx_timer == 0) {
3509 if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3510 continue;
3511 else if (rtw_collect_txring(sc, tsb,
3512 &sc->sc_txdesc_blk[pri], 0))
3513 continue;
3514 printf("%s: transmit timeout, priority %d\n",
3515 ifp->if_xname, pri);
3516 ifp->if_oerrors++;
3517 if (pri != RTW_TXPRIBCN)
3518 tx_timeouts++;
3519 } else
3520 ifp->if_timer = 1;
3521 }
3522
3523 if (tx_timeouts > 0) {
3524 /* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3525 * reset s/w tx-ring pointers, and start transmission.
3526 *
3527 * TBD Stop/restart just the broken rings?
3528 */
3529 rtw_idle(&sc->sc_regs);
3530 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
3531 rtw_txdescs_reset(sc);
3532 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3533 rtw_start(ifp);
3534 }
3535 ieee80211_watchdog(&sc->sc_ic);
3536 return;
3537 }
3538
3539 static void
3540 rtw_next_scan(void *arg)
3541 {
3542 struct ieee80211com *ic = arg;
3543 int s;
3544
3545 /* don't call rtw_start w/o network interrupts blocked */
3546 s = splnet();
3547 if (ic->ic_state == IEEE80211_S_SCAN)
3548 ieee80211_next_scan(ic);
3549 splx(s);
3550 }
3551
3552 static void
3553 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3554 {
3555 uint16_t bcnitv, bintritv, intval;
3556 int i;
3557 struct rtw_regs *regs = &sc->sc_regs;
3558
3559 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3560 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3561
3562 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3563
3564 rtw_set_access(regs, RTW_ACCESS_CONFIG);
3565
3566 intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3567
3568 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3569 bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3570 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3571 /* interrupt host 1ms before the TBTT */
3572 bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3573 bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3574 RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3575 /* magic from Linux */
3576 RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3577 RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3578 rtw_set_access(regs, RTW_ACCESS_NONE);
3579
3580 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3581 }
3582
3583 /* Synchronize the hardware state with the software state. */
3584 static int
3585 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3586 {
3587 struct ifnet *ifp = ic->ic_ifp;
3588 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3589 enum ieee80211_state ostate;
3590 int error;
3591
3592 ostate = ic->ic_state;
3593
3594 aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3595 rtw_led_newstate(sc, nstate);
3596
3597 aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3598 if (nstate == IEEE80211_S_INIT) {
3599 callout_stop(&sc->sc_scan_ch);
3600 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3601 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3602 }
3603
3604 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3605 rtw_pwrstate(sc, RTW_ON);
3606
3607 if ((error = rtw_tune(sc)) != 0)
3608 return error;
3609
3610 switch (nstate) {
3611 case IEEE80211_S_INIT:
3612 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3613 break;
3614 case IEEE80211_S_SCAN:
3615 if (ostate != IEEE80211_S_SCAN) {
3616 (void)memset(ic->ic_bss->ni_bssid, 0,
3617 IEEE80211_ADDR_LEN);
3618 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3619 }
3620
3621 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3622 rtw_next_scan, ic);
3623
3624 break;
3625 case IEEE80211_S_RUN:
3626 switch (ic->ic_opmode) {
3627 case IEEE80211_M_HOSTAP:
3628 case IEEE80211_M_IBSS:
3629 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3630 /*FALLTHROUGH*/
3631 case IEEE80211_M_AHDEMO:
3632 case IEEE80211_M_STA:
3633 rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3634 ic->ic_bss->ni_intval);
3635 break;
3636 case IEEE80211_M_MONITOR:
3637 break;
3638 }
3639 rtw_set_nettype(sc, ic->ic_opmode);
3640 break;
3641 case IEEE80211_S_ASSOC:
3642 case IEEE80211_S_AUTH:
3643 break;
3644 }
3645
3646 if (nstate != IEEE80211_S_SCAN)
3647 callout_stop(&sc->sc_scan_ch);
3648
3649 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3650 }
3651
3652 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3653 static uint64_t
3654 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3655 {
3656 uint32_t tsftl, tsfth;
3657
3658 tsfth = RTW_READ(regs, RTW_TSFTRH);
3659 tsftl = RTW_READ(regs, RTW_TSFTRL);
3660 if (tsftl < rstamp) /* Compensate for rollover. */
3661 tsfth--;
3662 return ((uint64_t)tsfth << 32) | rstamp;
3663 }
3664
3665 static void
3666 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3667 struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3668 {
3669 struct ifnet *ifp = ic->ic_ifp;
3670 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3671
3672 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3673
3674 switch (subtype) {
3675 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3676 case IEEE80211_FC0_SUBTYPE_BEACON:
3677 if (ic->ic_opmode == IEEE80211_M_IBSS &&
3678 ic->ic_state == IEEE80211_S_RUN &&
3679 device_is_active(sc->sc_dev)) {
3680 uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3681 if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3682 (void)ieee80211_ibss_merge(ni);
3683 }
3684 break;
3685 default:
3686 break;
3687 }
3688 return;
3689 }
3690
3691 static struct ieee80211_node *
3692 rtw_node_alloc(struct ieee80211_node_table *nt)
3693 {
3694 struct ifnet *ifp = nt->nt_ic->ic_ifp;
3695 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3696 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3697
3698 DPRINTF(sc, RTW_DEBUG_NODE,
3699 ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
3700 return ni;
3701 }
3702
3703 static void
3704 rtw_node_free(struct ieee80211_node *ni)
3705 {
3706 struct ieee80211com *ic = ni->ni_ic;
3707 struct ifnet *ifp = ic->ic_ifp;
3708 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3709
3710 DPRINTF(sc, RTW_DEBUG_NODE,
3711 ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
3712 ether_sprintf(ni->ni_bssid)));
3713 (*sc->sc_mtbl.mt_node_free)(ni);
3714 }
3715
3716 static int
3717 rtw_media_change(struct ifnet *ifp)
3718 {
3719 int error;
3720
3721 error = ieee80211_media_change(ifp);
3722 if (error == ENETRESET) {
3723 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3724 (IFF_RUNNING|IFF_UP))
3725 rtw_init(ifp); /* XXX lose error */
3726 error = 0;
3727 }
3728 return error;
3729 }
3730
3731 static void
3732 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3733 {
3734 struct rtw_softc *sc = ifp->if_softc;
3735
3736 if (!device_is_active(sc->sc_dev)) {
3737 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3738 imr->ifm_status = 0;
3739 return;
3740 }
3741 ieee80211_media_status(ifp, imr);
3742 }
3743
3744 static inline void
3745 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3746 {
3747 (void)strlcpy(ifp->if_xname, dvname, IFNAMSIZ);
3748 ifp->if_softc = softc;
3749 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
3750 IFF_NOTRAILERS;
3751 ifp->if_ioctl = rtw_ioctl;
3752 ifp->if_start = rtw_start;
3753 ifp->if_watchdog = rtw_watchdog;
3754 ifp->if_init = rtw_init;
3755 ifp->if_stop = rtw_stop;
3756 }
3757
3758 static inline void
3759 rtw_set80211props(struct ieee80211com *ic)
3760 {
3761 int nrate;
3762 ic->ic_phytype = IEEE80211_T_DS;
3763 ic->ic_opmode = IEEE80211_M_STA;
3764 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3765 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
3766
3767 nrate = 0;
3768 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3769 IEEE80211_RATE_BASIC | 2;
3770 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3771 IEEE80211_RATE_BASIC | 4;
3772 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3773 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3774 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3775 }
3776
3777 static inline void
3778 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3779 {
3780 mtbl->mt_newstate = ic->ic_newstate;
3781 ic->ic_newstate = rtw_newstate;
3782
3783 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3784 ic->ic_recv_mgmt = rtw_recv_mgmt;
3785
3786 mtbl->mt_node_free = ic->ic_node_free;
3787 ic->ic_node_free = rtw_node_free;
3788
3789 mtbl->mt_node_alloc = ic->ic_node_alloc;
3790 ic->ic_node_alloc = rtw_node_alloc;
3791
3792 ic->ic_crypto.cs_key_delete = rtw_key_delete;
3793 ic->ic_crypto.cs_key_set = rtw_key_set;
3794 ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3795 ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3796 }
3797
3798 static inline void
3799 rtw_init_radiotap(struct rtw_softc *sc)
3800 {
3801 uint32_t present;
3802
3803 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3804 sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3805
3806 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
3807 present = htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT);
3808 else
3809 present = htole32(RTW_RX_RADIOTAP_PRESENT);
3810 sc->sc_rxtap.rr_ihdr.it_present = present;
3811
3812 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3813 sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3814 sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3815 }
3816
3817 static int
3818 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3819 {
3820 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3821 SIMPLEQ_INIT(&tsb->tsb_freeq);
3822 tsb->tsb_ndesc = qlen;
3823 tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3824 M_NOWAIT);
3825 if (tsb->tsb_desc == NULL)
3826 return ENOMEM;
3827 return 0;
3828 }
3829
3830 static void
3831 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3832 {
3833 int pri;
3834 struct rtw_txsoft_blk *tsb;
3835
3836 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3837 tsb = &sc->sc_txsoft_blk[pri];
3838 free(tsb->tsb_desc, M_DEVBUF);
3839 tsb->tsb_desc = NULL;
3840 }
3841 }
3842
3843 static int
3844 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3845 {
3846 int pri, rc = 0;
3847 int qlen[RTW_NTXPRI] =
3848 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3849 struct rtw_txsoft_blk *tsbs;
3850
3851 tsbs = sc->sc_txsoft_blk;
3852
3853 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3854 rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3855 if (rc != 0)
3856 break;
3857 }
3858 tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3859 tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3860 tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3861 tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3862 return rc;
3863 }
3864
3865 static void
3866 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3867 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3868 {
3869 tdb->tdb_ndesc = ndesc;
3870 tdb->tdb_desc = desc;
3871 tdb->tdb_physbase = physbase;
3872 tdb->tdb_ofs = ofs;
3873
3874 (void)memset(tdb->tdb_desc, 0,
3875 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3876
3877 rtw_txdesc_blk_init(tdb);
3878 tdb->tdb_next = 0;
3879 }
3880
3881 static void
3882 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3883 {
3884 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3885 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3886 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3887
3888 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3889 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3890 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3891
3892 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3893 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3894 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3895
3896 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3897 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3898 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3899 }
3900
3901 static struct rtw_rf *
3902 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3903 {
3904 rtw_rf_write_t rf_write;
3905 struct rtw_rf *rf;
3906
3907 switch (rfchipid) {
3908 default:
3909 rf_write = rtw_rf_hostwrite;
3910 break;
3911 case RTW_RFCHIPID_INTERSIL:
3912 case RTW_RFCHIPID_PHILIPS:
3913 case RTW_RFCHIPID_GCT: /* XXX a guess */
3914 case RTW_RFCHIPID_RFMD:
3915 rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3916 break;
3917 }
3918
3919 switch (rfchipid) {
3920 case RTW_RFCHIPID_GCT:
3921 rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3922 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3923 break;
3924 case RTW_RFCHIPID_MAXIM:
3925 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3926 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3927 break;
3928 case RTW_RFCHIPID_PHILIPS:
3929 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3930 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3931 break;
3932 case RTW_RFCHIPID_RFMD:
3933 /* XXX RFMD has no RF constructor */
3934 sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3935 /*FALLTHROUGH*/
3936 default:
3937 return NULL;
3938 }
3939 rf->rf_continuous_tx_cb =
3940 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3941 rf->rf_continuous_tx_arg = (void *)sc;
3942 return rf;
3943 }
3944
3945 /* Revision C and later use a different PHY delay setting than
3946 * revisions A and B.
3947 */
3948 static uint8_t
3949 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
3950 {
3951 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3952 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3953
3954 uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
3955
3956 RTW_WRITE(regs, RTW_RCR, REVAB);
3957 RTW_WBW(regs, RTW_RCR, RTW_RCR);
3958 RTW_WRITE(regs, RTW_RCR, REVC);
3959
3960 RTW_WBR(regs, RTW_RCR, RTW_RCR);
3961 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3962 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3963
3964 RTW_WRITE(regs, RTW_RCR, old_rcr); /* restore RCR */
3965 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3966
3967 return phydelay;
3968 #undef REVC
3969 }
3970
3971 void
3972 rtw_attach(struct rtw_softc *sc)
3973 {
3974 struct ifnet *ifp = &sc->sc_if;
3975 struct ieee80211com *ic = &sc->sc_ic;
3976 struct rtw_txsoft_blk *tsb;
3977 int pri, rc;
3978
3979 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
3980
3981 rtw_cipher_wep = ieee80211_cipher_wep;
3982 rtw_cipher_wep.ic_decap = rtw_wep_decap;
3983
3984 NEXT_ATTACH_STATE(sc, DETACHED);
3985
3986 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
3987 case RTW_TCR_HWVERID_F:
3988 sc->sc_hwverid = 'F';
3989 break;
3990 case RTW_TCR_HWVERID_D:
3991 sc->sc_hwverid = 'D';
3992 break;
3993 default:
3994 sc->sc_hwverid = '?';
3995 break;
3996 }
3997 aprint_verbose_dev(sc->sc_dev, "hardware version %c\n",
3998 sc->sc_hwverid);
3999
4000 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
4001 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
4002 0);
4003
4004 if (rc != 0) {
4005 aprint_error_dev(sc->sc_dev,
4006 "could not allocate hw descriptors, error %d\n", rc);
4007 goto err;
4008 }
4009
4010 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
4011
4012 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
4013 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
4014 (void **)&sc->sc_descs, BUS_DMA_COHERENT);
4015
4016 if (rc != 0) {
4017 aprint_error_dev(sc->sc_dev,
4018 "could not map hw descriptors, error %d\n", rc);
4019 goto err;
4020 }
4021 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
4022
4023 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
4024 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
4025
4026 if (rc != 0) {
4027 aprint_error_dev(sc->sc_dev,
4028 "could not create DMA map for hw descriptors, error %d\n",
4029 rc);
4030 goto err;
4031 }
4032 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
4033
4034 sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
4035 sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
4036
4037 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4038 sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
4039 sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
4040 }
4041
4042 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
4043 sizeof(struct rtw_descs), NULL, 0);
4044
4045 if (rc != 0) {
4046 aprint_error_dev(sc->sc_dev,
4047 "could not load DMA map for hw descriptors, error %d\n",
4048 rc);
4049 goto err;
4050 }
4051 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
4052
4053 if (rtw_txsoft_blk_setup_all(sc) != 0)
4054 goto err;
4055 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
4056
4057 rtw_txdesc_blk_setup_all(sc);
4058
4059 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4060
4061 sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4062
4063 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4064 tsb = &sc->sc_txsoft_blk[pri];
4065
4066 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4067 &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4068 aprint_error_dev(sc->sc_dev,
4069 "could not load DMA map for hw tx descriptors, "
4070 "error %d\n", rc);
4071 goto err;
4072 }
4073 }
4074
4075 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4076 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4077 RTW_RXQLEN)) != 0) {
4078 aprint_error_dev(sc->sc_dev,
4079 "could not load DMA map for hw rx descriptors, error %d\n",
4080 rc);
4081 goto err;
4082 }
4083 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4084
4085 /* Reset the chip to a known state. */
4086 if (rtw_reset(sc) != 0)
4087 goto err;
4088 NEXT_ATTACH_STATE(sc, FINISH_RESET);
4089
4090 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4091
4092 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4093 sc->sc_flags |= RTW_F_9356SROM;
4094
4095 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4096 sc->sc_dev) != 0)
4097 goto err;
4098
4099 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4100
4101 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4102 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4103 sc->sc_dev) != 0) {
4104 aprint_error_dev(sc->sc_dev,
4105 "attach failed, malformed serial ROM\n");
4106 goto err;
4107 }
4108
4109 aprint_verbose_dev(sc->sc_dev, "%s PHY\n",
4110 ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4111
4112 aprint_verbose_dev(sc->sc_dev, "carrier-sense threshold %u\n",
4113 sc->sc_csthr);
4114
4115 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4116
4117 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4118 sc->sc_flags & RTW_F_DIGPHY);
4119
4120 if (sc->sc_rf == NULL) {
4121 aprint_verbose_dev(sc->sc_dev,
4122 "attach failed, could not attach RF\n");
4123 goto err;
4124 }
4125
4126 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4127
4128 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4129
4130 RTW_DPRINTF(RTW_DEBUG_ATTACH,
4131 ("%s: PHY delay %d\n", device_xname(sc->sc_dev), sc->sc_phydelay));
4132
4133 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4134 rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4135
4136 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels, sc->sc_dev);
4137
4138 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4139 sc->sc_dev) != 0)
4140 goto err;
4141 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4142
4143 rtw_setifprops(ifp, device_xname(sc->sc_dev), (void*)sc);
4144
4145 IFQ_SET_READY(&ifp->if_snd);
4146
4147 sc->sc_ic.ic_ifp = ifp;
4148 rtw_set80211props(&sc->sc_ic);
4149
4150 rtw_led_attach(&sc->sc_led_state, (void *)sc);
4151
4152 /*
4153 * Call MI attach routines.
4154 */
4155 if_attach(ifp);
4156 ieee80211_ifattach(&sc->sc_ic);
4157
4158 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4159
4160 /* possibly we should fill in our own sc_send_prresp, since
4161 * the RTL8180 is probably sending probe responses in ad hoc
4162 * mode.
4163 */
4164
4165 /* complete initialization */
4166 ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4167 callout_init(&sc->sc_scan_ch, 0);
4168
4169 rtw_init_radiotap(sc);
4170
4171 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
4172 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4173
4174 NEXT_ATTACH_STATE(sc, FINISHED);
4175
4176 ieee80211_announce(ic);
4177 return;
4178 err:
4179 rtw_detach(sc);
4180 return;
4181 }
4182
4183 int
4184 rtw_detach(struct rtw_softc *sc)
4185 {
4186 struct ifnet *ifp = &sc->sc_if;
4187 int pri, s;
4188
4189 s = splnet();
4190
4191 switch (sc->sc_attach_state) {
4192 case FINISHED:
4193 rtw_stop(ifp, 1);
4194
4195 pmf_device_deregister(sc->sc_dev);
4196 callout_stop(&sc->sc_scan_ch);
4197 ieee80211_ifdetach(&sc->sc_ic);
4198 if_detach(ifp);
4199 rtw_led_detach(&sc->sc_led_state);
4200 /*FALLTHROUGH*/
4201 case FINISH_ID_STA:
4202 case FINISH_RF_ATTACH:
4203 rtw_rf_destroy(sc->sc_rf);
4204 sc->sc_rf = NULL;
4205 /*FALLTHROUGH*/
4206 case FINISH_PARSE_SROM:
4207 case FINISH_READ_SROM:
4208 rtw_srom_free(&sc->sc_srom);
4209 /*FALLTHROUGH*/
4210 case FINISH_RESET:
4211 case FINISH_RXMAPS_CREATE:
4212 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4213 RTW_RXQLEN);
4214 /*FALLTHROUGH*/
4215 case FINISH_TXMAPS_CREATE:
4216 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4217 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4218 sc->sc_txsoft_blk[pri].tsb_desc,
4219 sc->sc_txsoft_blk[pri].tsb_ndesc);
4220 }
4221 /*FALLTHROUGH*/
4222 case FINISH_TXDESCBLK_SETUP:
4223 case FINISH_TXCTLBLK_SETUP:
4224 rtw_txsoft_blk_cleanup_all(sc);
4225 /*FALLTHROUGH*/
4226 case FINISH_DESCMAP_LOAD:
4227 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4228 /*FALLTHROUGH*/
4229 case FINISH_DESCMAP_CREATE:
4230 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4231 /*FALLTHROUGH*/
4232 case FINISH_DESC_MAP:
4233 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
4234 sizeof(struct rtw_descs));
4235 /*FALLTHROUGH*/
4236 case FINISH_DESC_ALLOC:
4237 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4238 sc->sc_desc_nsegs);
4239 /*FALLTHROUGH*/
4240 case DETACHED:
4241 NEXT_ATTACH_STATE(sc, DETACHED);
4242 break;
4243 }
4244 splx(s);
4245 return 0;
4246 }
4247