rtw.c revision 1.118 1 /* $NetBSD: rtw.c,v 1.118 2010/11/15 05:56:29 uebayasi Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005, 2006, 2007 David Young. All rights
4 * reserved.
5 *
6 * Programmed for NetBSD by David Young.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
20 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
21 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
28 * OF SUCH DAMAGE.
29 */
30 /*
31 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.118 2010/11/15 05:56:29 uebayasi Exp $");
36
37
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/callout.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/time.h>
46 #include <sys/types.h>
47 #include <sys/device.h>
48 #include <sys/sockio.h>
49
50 #include <machine/endian.h>
51 #include <sys/bus.h>
52 #include <sys/intr.h> /* splnet */
53
54 #include <net/if.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_radiotap.h>
61
62 #include <net/bpf.h>
63
64 #include <dev/ic/rtwreg.h>
65 #include <dev/ic/rtwvar.h>
66 #include <dev/ic/rtwphyio.h>
67 #include <dev/ic/rtwphy.h>
68
69 #include <dev/ic/smc93cx6var.h>
70
71 static int rtw_rfprog_fallback = 0;
72 static int rtw_host_rfio = 0;
73
74 #ifdef RTW_DEBUG
75 int rtw_debug = 0;
76 static int rtw_rxbufs_limit = RTW_RXQLEN;
77 #endif /* RTW_DEBUG */
78
79 #define NEXT_ATTACH_STATE(sc, state) do { \
80 DPRINTF(sc, RTW_DEBUG_ATTACH, \
81 ("%s: attach state %s\n", __func__, #state)); \
82 sc->sc_attach_state = state; \
83 } while (0)
84
85 int rtw_dwelltime = 200; /* milliseconds */
86 static struct ieee80211_cipher rtw_cipher_wep;
87
88 static void rtw_disable_interrupts(struct rtw_regs *);
89 static void rtw_enable_interrupts(struct rtw_softc *);
90
91 static int rtw_init(struct ifnet *);
92
93 static void rtw_start(struct ifnet *);
94 static void rtw_reset_oactive(struct rtw_softc *);
95 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
96 struct ieee80211_node *);
97 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
98
99 static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
100 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
101 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
102 const u_int8_t[IEEE80211_ADDR_LEN]);
103 static void rtw_key_update_end(struct ieee80211com *);
104 static void rtw_key_update_begin(struct ieee80211com *);
105 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
106 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
107
108 static void rtw_led_attach(struct rtw_led_state *, void *);
109 static void rtw_led_detach(struct rtw_led_state *);
110 static void rtw_led_init(struct rtw_regs *);
111 static void rtw_led_slowblink(void *);
112 static void rtw_led_fastblink(void *);
113 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
114
115 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
116 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
117 #ifdef RTW_DEBUG
118 static void rtw_dump_rings(struct rtw_softc *sc);
119 static void rtw_print_txdesc(struct rtw_softc *, const char *,
120 struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
121 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
122 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
123 #endif /* RTW_DEBUG */
124 #ifdef RTW_DIAG
125 static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
126 #endif /* RTW_DIAG */
127
128 /*
129 * Setup sysctl(3) MIB, hw.rtw.*
130 *
131 * TBD condition CTLFLAG_PERMANENT on being a module or not
132 */
133 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
134 {
135 int rc;
136 const struct sysctlnode *cnode, *rnode;
137
138 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
139 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
140 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
141 goto err;
142
143 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
144 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
145 "Realtek RTL818x 802.11 controls",
146 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
147 goto err;
148
149 #ifdef RTW_DEBUG
150 /* control debugging printfs */
151 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
152 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
153 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
154 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
155 CTL_CREATE, CTL_EOL)) != 0)
156 goto err;
157
158 /* Limit rx buffers, for simulating resource exhaustion. */
159 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
160 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
161 "rxbufs_limit",
162 SYSCTL_DESCR("Set rx buffers limit"),
163 rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
164 CTL_CREATE, CTL_EOL)) != 0)
165 goto err;
166
167 #endif /* RTW_DEBUG */
168 /* set fallback RF programming method */
169 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
170 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
171 "rfprog_fallback",
172 SYSCTL_DESCR("Set fallback RF programming method"),
173 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
174 CTL_CREATE, CTL_EOL)) != 0)
175 goto err;
176
177 /* force host to control RF I/O bus */
178 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
179 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
180 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
181 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
182 CTL_CREATE, CTL_EOL)) != 0)
183 goto err;
184
185 return;
186 err:
187 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
188 }
189
190 static int
191 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
192 {
193 int error, t;
194 struct sysctlnode node;
195
196 node = *rnode;
197 t = *(int*)rnode->sysctl_data;
198 node.sysctl_data = &t;
199 error = sysctl_lookup(SYSCTLFN_CALL(&node));
200 if (error || newp == NULL)
201 return (error);
202
203 if (t < lower || t > upper)
204 return (EINVAL);
205
206 *(int*)rnode->sysctl_data = t;
207
208 return (0);
209 }
210
211 static int
212 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
213 {
214 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
215 __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
216 }
217
218 static int
219 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
220 {
221 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
222 }
223
224 #ifdef RTW_DEBUG
225 static int
226 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
227 {
228 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
229 0, RTW_DEBUG_MAX);
230 }
231
232 static int
233 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
234 {
235 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
236 0, RTW_RXQLEN);
237 }
238
239 static void
240 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
241 {
242 #define PRINTREG32(sc, reg) \
243 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
244 ("%s: reg[ " #reg " / %03x ] = %08x\n", \
245 dvname, reg, RTW_READ(regs, reg)))
246
247 #define PRINTREG16(sc, reg) \
248 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
249 ("%s: reg[ " #reg " / %03x ] = %04x\n", \
250 dvname, reg, RTW_READ16(regs, reg)))
251
252 #define PRINTREG8(sc, reg) \
253 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
254 ("%s: reg[ " #reg " / %03x ] = %02x\n", \
255 dvname, reg, RTW_READ8(regs, reg)))
256
257 RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
258
259 PRINTREG32(regs, RTW_IDR0);
260 PRINTREG32(regs, RTW_IDR1);
261 PRINTREG32(regs, RTW_MAR0);
262 PRINTREG32(regs, RTW_MAR1);
263 PRINTREG32(regs, RTW_TSFTRL);
264 PRINTREG32(regs, RTW_TSFTRH);
265 PRINTREG32(regs, RTW_TLPDA);
266 PRINTREG32(regs, RTW_TNPDA);
267 PRINTREG32(regs, RTW_THPDA);
268 PRINTREG32(regs, RTW_TCR);
269 PRINTREG32(regs, RTW_RCR);
270 PRINTREG32(regs, RTW_TINT);
271 PRINTREG32(regs, RTW_TBDA);
272 PRINTREG32(regs, RTW_ANAPARM);
273 PRINTREG32(regs, RTW_BB);
274 PRINTREG32(regs, RTW_PHYCFG);
275 PRINTREG32(regs, RTW_WAKEUP0L);
276 PRINTREG32(regs, RTW_WAKEUP0H);
277 PRINTREG32(regs, RTW_WAKEUP1L);
278 PRINTREG32(regs, RTW_WAKEUP1H);
279 PRINTREG32(regs, RTW_WAKEUP2LL);
280 PRINTREG32(regs, RTW_WAKEUP2LH);
281 PRINTREG32(regs, RTW_WAKEUP2HL);
282 PRINTREG32(regs, RTW_WAKEUP2HH);
283 PRINTREG32(regs, RTW_WAKEUP3LL);
284 PRINTREG32(regs, RTW_WAKEUP3LH);
285 PRINTREG32(regs, RTW_WAKEUP3HL);
286 PRINTREG32(regs, RTW_WAKEUP3HH);
287 PRINTREG32(regs, RTW_WAKEUP4LL);
288 PRINTREG32(regs, RTW_WAKEUP4LH);
289 PRINTREG32(regs, RTW_WAKEUP4HL);
290 PRINTREG32(regs, RTW_WAKEUP4HH);
291 PRINTREG32(regs, RTW_DK0);
292 PRINTREG32(regs, RTW_DK1);
293 PRINTREG32(regs, RTW_DK2);
294 PRINTREG32(regs, RTW_DK3);
295 PRINTREG32(regs, RTW_RETRYCTR);
296 PRINTREG32(regs, RTW_RDSAR);
297 PRINTREG32(regs, RTW_FER);
298 PRINTREG32(regs, RTW_FEMR);
299 PRINTREG32(regs, RTW_FPSR);
300 PRINTREG32(regs, RTW_FFER);
301
302 /* 16-bit registers */
303 PRINTREG16(regs, RTW_BRSR);
304 PRINTREG16(regs, RTW_IMR);
305 PRINTREG16(regs, RTW_ISR);
306 PRINTREG16(regs, RTW_BCNITV);
307 PRINTREG16(regs, RTW_ATIMWND);
308 PRINTREG16(regs, RTW_BINTRITV);
309 PRINTREG16(regs, RTW_ATIMTRITV);
310 PRINTREG16(regs, RTW_CRC16ERR);
311 PRINTREG16(regs, RTW_CRC0);
312 PRINTREG16(regs, RTW_CRC1);
313 PRINTREG16(regs, RTW_CRC2);
314 PRINTREG16(regs, RTW_CRC3);
315 PRINTREG16(regs, RTW_CRC4);
316 PRINTREG16(regs, RTW_CWR);
317
318 /* 8-bit registers */
319 PRINTREG8(regs, RTW_CR);
320 PRINTREG8(regs, RTW_9346CR);
321 PRINTREG8(regs, RTW_CONFIG0);
322 PRINTREG8(regs, RTW_CONFIG1);
323 PRINTREG8(regs, RTW_CONFIG2);
324 PRINTREG8(regs, RTW_MSR);
325 PRINTREG8(regs, RTW_CONFIG3);
326 PRINTREG8(regs, RTW_CONFIG4);
327 PRINTREG8(regs, RTW_TESTR);
328 PRINTREG8(regs, RTW_PSR);
329 PRINTREG8(regs, RTW_SCR);
330 PRINTREG8(regs, RTW_PHYDELAY);
331 PRINTREG8(regs, RTW_CRCOUNT);
332 PRINTREG8(regs, RTW_PHYADDR);
333 PRINTREG8(regs, RTW_PHYDATAW);
334 PRINTREG8(regs, RTW_PHYDATAR);
335 PRINTREG8(regs, RTW_CONFIG5);
336 PRINTREG8(regs, RTW_TPPOLL);
337
338 PRINTREG16(regs, RTW_BSSID16);
339 PRINTREG32(regs, RTW_BSSID32);
340 #undef PRINTREG32
341 #undef PRINTREG16
342 #undef PRINTREG8
343 }
344 #endif /* RTW_DEBUG */
345
346 void
347 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
348 {
349 struct rtw_regs *regs = &sc->sc_regs;
350
351 uint32_t tcr;
352 tcr = RTW_READ(regs, RTW_TCR);
353 tcr &= ~RTW_TCR_LBK_MASK;
354 if (enable)
355 tcr |= RTW_TCR_LBK_CONT;
356 else
357 tcr |= RTW_TCR_LBK_NORMAL;
358 RTW_WRITE(regs, RTW_TCR, tcr);
359 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
360 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
361 rtw_txdac_enable(sc, !enable);
362 rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
363 rtw_set_access(regs, RTW_ACCESS_NONE);
364 }
365
366 #ifdef RTW_DEBUG
367 static const char *
368 rtw_access_string(enum rtw_access access)
369 {
370 switch (access) {
371 case RTW_ACCESS_NONE:
372 return "none";
373 case RTW_ACCESS_CONFIG:
374 return "config";
375 case RTW_ACCESS_ANAPARM:
376 return "anaparm";
377 default:
378 return "unknown";
379 }
380 }
381 #endif /* RTW_DEBUG */
382
383 static void
384 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
385 {
386 KASSERT(/* naccess >= RTW_ACCESS_NONE && */
387 naccess <= RTW_ACCESS_ANAPARM);
388 KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
389 regs->r_access <= RTW_ACCESS_ANAPARM);
390
391 if (naccess == regs->r_access)
392 return;
393
394 switch (naccess) {
395 case RTW_ACCESS_NONE:
396 switch (regs->r_access) {
397 case RTW_ACCESS_ANAPARM:
398 rtw_anaparm_enable(regs, 0);
399 /*FALLTHROUGH*/
400 case RTW_ACCESS_CONFIG:
401 rtw_config0123_enable(regs, 0);
402 /*FALLTHROUGH*/
403 case RTW_ACCESS_NONE:
404 break;
405 }
406 break;
407 case RTW_ACCESS_CONFIG:
408 switch (regs->r_access) {
409 case RTW_ACCESS_NONE:
410 rtw_config0123_enable(regs, 1);
411 /*FALLTHROUGH*/
412 case RTW_ACCESS_CONFIG:
413 break;
414 case RTW_ACCESS_ANAPARM:
415 rtw_anaparm_enable(regs, 0);
416 break;
417 }
418 break;
419 case RTW_ACCESS_ANAPARM:
420 switch (regs->r_access) {
421 case RTW_ACCESS_NONE:
422 rtw_config0123_enable(regs, 1);
423 /*FALLTHROUGH*/
424 case RTW_ACCESS_CONFIG:
425 rtw_anaparm_enable(regs, 1);
426 /*FALLTHROUGH*/
427 case RTW_ACCESS_ANAPARM:
428 break;
429 }
430 break;
431 }
432 }
433
434 void
435 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
436 {
437 rtw_set_access1(regs, access);
438 RTW_DPRINTF(RTW_DEBUG_ACCESS,
439 ("%s: access %s -> %s\n", __func__,
440 rtw_access_string(regs->r_access),
441 rtw_access_string(access)));
442 regs->r_access = access;
443 }
444
445 /*
446 * Enable registers, switch register banks.
447 */
448 void
449 rtw_config0123_enable(struct rtw_regs *regs, int enable)
450 {
451 uint8_t ecr;
452 ecr = RTW_READ8(regs, RTW_9346CR);
453 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
454 if (enable)
455 ecr |= RTW_9346CR_EEM_CONFIG;
456 else {
457 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
458 ecr |= RTW_9346CR_EEM_NORMAL;
459 }
460 RTW_WRITE8(regs, RTW_9346CR, ecr);
461 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
462 }
463
464 /* requires rtw_config0123_enable(, 1) */
465 void
466 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
467 {
468 uint8_t cfg3;
469
470 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
471 cfg3 |= RTW_CONFIG3_CLKRUNEN;
472 if (enable)
473 cfg3 |= RTW_CONFIG3_PARMEN;
474 else
475 cfg3 &= ~RTW_CONFIG3_PARMEN;
476 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
477 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
478 }
479
480 /* requires rtw_anaparm_enable(, 1) */
481 void
482 rtw_txdac_enable(struct rtw_softc *sc, int enable)
483 {
484 uint32_t anaparm;
485 struct rtw_regs *regs = &sc->sc_regs;
486
487 anaparm = RTW_READ(regs, RTW_ANAPARM);
488 if (enable)
489 anaparm &= ~RTW_ANAPARM_TXDACOFF;
490 else
491 anaparm |= RTW_ANAPARM_TXDACOFF;
492 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
493 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
494 }
495
496 static inline int
497 rtw_chip_reset1(struct rtw_regs *regs, device_t dev)
498 {
499 uint8_t cr;
500 int i;
501
502 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
503
504 RTW_WBR(regs, RTW_CR, RTW_CR);
505
506 for (i = 0; i < 1000; i++) {
507 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
508 RTW_DPRINTF(RTW_DEBUG_RESET,
509 ("%s: reset in %dus\n", device_xname(dev), i));
510 return 0;
511 }
512 RTW_RBR(regs, RTW_CR, RTW_CR);
513 DELAY(10); /* 10us */
514 }
515
516 aprint_error_dev(dev, "reset failed\n");
517 return ETIMEDOUT;
518 }
519
520 static inline int
521 rtw_chip_reset(struct rtw_regs *regs, device_t dev)
522 {
523 uint32_t tcr;
524
525 /* from Linux driver */
526 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
527 __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
528
529 RTW_WRITE(regs, RTW_TCR, tcr);
530
531 RTW_WBW(regs, RTW_CR, RTW_TCR);
532
533 return rtw_chip_reset1(regs, dev);
534 }
535
536 static int
537 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
538 {
539 struct ieee80211_key keycopy;
540
541 RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
542
543 keycopy = *k;
544 keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
545
546 return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
547 }
548
549 static int
550 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
551 {
552 struct rtw_softc *sc = ic->ic_ifp->if_softc;
553
554 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__,
555 k->wk_keyix));
556
557 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
558
559 if (k->wk_keylen != 0 &&
560 k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP)
561 sc->sc_flags &= ~RTW_F_DK_VALID;
562
563 return 1;
564 }
565
566 static int
567 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
568 const u_int8_t mac[IEEE80211_ADDR_LEN])
569 {
570 struct rtw_softc *sc = ic->ic_ifp->if_softc;
571
572 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
573
574 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
575
576 sc->sc_flags &= ~RTW_F_DK_VALID;
577
578 return 1;
579 }
580
581 static void
582 rtw_key_update_begin(struct ieee80211com *ic)
583 {
584 #ifdef RTW_DEBUG
585 struct ifnet *ifp = ic->ic_ifp;
586 struct rtw_softc *sc = ifp->if_softc;
587 #endif
588
589 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
590 }
591
592 static void
593 rtw_tx_kick(struct rtw_regs *regs, uint8_t ringsel)
594 {
595 uint8_t tppoll;
596
597 tppoll = RTW_READ8(regs, RTW_TPPOLL);
598 tppoll &= ~RTW_TPPOLL_SALL;
599 tppoll |= ringsel & RTW_TPPOLL_ALL;
600 RTW_WRITE8(regs, RTW_TPPOLL, tppoll);
601 RTW_SYNC(regs, RTW_TPPOLL, RTW_TPPOLL);
602 }
603
604 static void
605 rtw_key_update_end(struct ieee80211com *ic)
606 {
607 struct ifnet *ifp = ic->ic_ifp;
608 struct rtw_softc *sc = ifp->if_softc;
609
610 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
611
612 if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
613 !device_is_active(sc->sc_dev))
614 return;
615
616 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
617 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
618 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
619 (ifp->if_flags & IFF_RUNNING) != 0);
620 }
621
622 static bool
623 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
624 {
625 if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
626 return false;
627
628 return ((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
629 ((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
630 }
631
632 static void
633 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
634 {
635 uint8_t psr, scr;
636 int i, keylen = 0;
637 struct rtw_regs *regs;
638 union rtw_keys *rk;
639
640 regs = &sc->sc_regs;
641 rk = &sc->sc_keys;
642
643 (void)memset(rk, 0, sizeof(rk));
644
645 /* Temporarily use software crypto for all keys. */
646 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
647 if (wk[i].wk_cipher == &rtw_cipher_wep)
648 wk[i].wk_cipher = &ieee80211_cipher_wep;
649 }
650
651 rtw_set_access(regs, RTW_ACCESS_CONFIG);
652
653 psr = RTW_READ8(regs, RTW_PSR);
654 scr = RTW_READ8(regs, RTW_SCR);
655 scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
656
657 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
658 goto out;
659
660 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
661 if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
662 continue;
663 if (i == txkey) {
664 keylen = wk[i].wk_keylen;
665 break;
666 }
667 keylen = MAX(keylen, wk[i].wk_keylen);
668 }
669
670 if (keylen == 5)
671 scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
672 else if (keylen == 13)
673 scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
674
675 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
676 if (wk[i].wk_keylen != keylen ||
677 wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
678 continue;
679 /* h/w will decrypt, s/w still strips headers */
680 wk[i].wk_cipher = &rtw_cipher_wep;
681 (void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
682 }
683
684 out:
685 RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
686
687 bus_space_write_region_stream_4(regs->r_bt, regs->r_bh,
688 RTW_DK0, rk->rk_words, __arraycount(rk->rk_words));
689
690 bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
691 BUS_SPACE_BARRIER_SYNC);
692
693 RTW_DPRINTF(RTW_DEBUG_KEY,
694 ("%s.%d: scr %02" PRIx8 ", keylen %d\n", __func__, __LINE__, scr,
695 keylen));
696
697 RTW_WBW(regs, RTW_DK0, RTW_PSR);
698 RTW_WRITE8(regs, RTW_PSR, psr);
699 RTW_WBW(regs, RTW_PSR, RTW_SCR);
700 RTW_WRITE8(regs, RTW_SCR, scr);
701 RTW_SYNC(regs, RTW_SCR, RTW_SCR);
702 rtw_set_access(regs, RTW_ACCESS_NONE);
703 sc->sc_flags |= RTW_F_DK_VALID;
704 }
705
706 static inline int
707 rtw_recall_eeprom(struct rtw_regs *regs, device_t dev)
708 {
709 int i;
710 uint8_t ecr;
711
712 ecr = RTW_READ8(regs, RTW_9346CR);
713 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
714 RTW_WRITE8(regs, RTW_9346CR, ecr);
715
716 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
717
718 /* wait 25ms for completion */
719 for (i = 0; i < 250; i++) {
720 ecr = RTW_READ8(regs, RTW_9346CR);
721 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
722 RTW_DPRINTF(RTW_DEBUG_RESET,
723 ("%s: recall EEPROM in %dus\n", device_xname(dev),
724 i * 100));
725 return 0;
726 }
727 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
728 DELAY(100);
729 }
730 aprint_error_dev(dev, "recall EEPROM failed\n");
731 return ETIMEDOUT;
732 }
733
734 static inline int
735 rtw_reset(struct rtw_softc *sc)
736 {
737 int rc;
738 uint8_t config1;
739
740 sc->sc_flags &= ~RTW_F_DK_VALID;
741
742 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev)) != 0)
743 return rc;
744
745 rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev);
746
747 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
748 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
749 /* TBD turn off maximum power saving? */
750
751 return 0;
752 }
753
754 static inline int
755 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
756 u_int ndescs)
757 {
758 int i, rc = 0;
759 for (i = 0; i < ndescs; i++) {
760 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
761 0, 0, &descs[i].ts_dmamap);
762 if (rc != 0)
763 break;
764 }
765 return rc;
766 }
767
768 static inline int
769 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
770 u_int ndescs)
771 {
772 int i, rc = 0;
773 for (i = 0; i < ndescs; i++) {
774 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
775 &descs[i].rs_dmamap);
776 if (rc != 0)
777 break;
778 }
779 return rc;
780 }
781
782 static inline void
783 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
784 u_int ndescs)
785 {
786 int i;
787 for (i = 0; i < ndescs; i++) {
788 if (descs[i].rs_dmamap != NULL)
789 bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
790 }
791 }
792
793 static inline void
794 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
795 u_int ndescs)
796 {
797 int i;
798 for (i = 0; i < ndescs; i++) {
799 if (descs[i].ts_dmamap != NULL)
800 bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
801 }
802 }
803
804 static inline void
805 rtw_srom_free(struct rtw_srom *sr)
806 {
807 sr->sr_size = 0;
808 if (sr->sr_content == NULL)
809 return;
810 free(sr->sr_content, M_DEVBUF);
811 sr->sr_content = NULL;
812 }
813
814 static void
815 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
816 uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
817 {
818 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
819 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
820 *rcr |= RTW_RCR_ENCS1;
821 *rfchipid = RTW_RFCHIPID_PHILIPS;
822 }
823
824 static int
825 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
826 enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
827 device_t dev)
828 {
829 int i;
830 const char *rfname, *paname;
831 char scratch[sizeof("unknown 0xXX")];
832 uint16_t srom_version;
833 uint8_t mac[IEEE80211_ADDR_LEN];
834
835 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
836 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
837
838 srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
839
840 if (srom_version <= 0x0101) {
841 aprint_error_dev(dev,
842 "SROM version %d.%d is not understood, "
843 "limping along with defaults\n",
844 srom_version >> 8, srom_version & 0xff);
845 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
846 return 0;
847 } else {
848 aprint_verbose_dev(dev, "SROM version %d.%d\n",
849 srom_version >> 8, srom_version & 0xff);
850 }
851
852 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
853 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
854
855 RTW_DPRINTF(RTW_DEBUG_ATTACH,
856 ("%s: EEPROM MAC %s\n", device_xname(dev), ether_sprintf(mac)));
857
858 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
859
860 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
861 *flags |= RTW_F_ANTDIV;
862
863 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
864 * to be reversed.
865 */
866 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
867 *flags |= RTW_F_DIGPHY;
868 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
869 *flags |= RTW_F_DFLANTB;
870
871 *rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
872 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
873
874 if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
875 *flags |= RTW_C_RXWEP_104;
876
877 *flags |= RTW_C_RXWEP_40; /* XXX */
878
879 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
880 switch (*rfchipid) {
881 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
882 rfname = "GCT GRF5101";
883 paname = "Winspring WS9901";
884 break;
885 case RTW_RFCHIPID_MAXIM:
886 rfname = "Maxim MAX2820"; /* guess */
887 paname = "Maxim MAX2422"; /* guess */
888 break;
889 case RTW_RFCHIPID_INTERSIL:
890 rfname = "Intersil HFA3873"; /* guess */
891 paname = "Intersil <unknown>";
892 break;
893 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
894 rfname = "Philips SA2400A";
895 paname = "Philips SA2411";
896 break;
897 case RTW_RFCHIPID_RFMD:
898 /* this is the same front-end as an atw(4)! */
899 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
900 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
901 "SYN: Silicon Labs Si4126"; /* inferred from
902 * reference driver
903 */
904 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
905 break;
906 case RTW_RFCHIPID_RESERVED:
907 rfname = paname = "reserved";
908 break;
909 default:
910 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
911 rfname = paname = scratch;
912 }
913 aprint_normal_dev(dev, "RF: %s, PA: %s\n", rfname, paname);
914
915 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
916 case RTW_CONFIG0_GL_USA:
917 case _RTW_CONFIG0_GL_USA:
918 *locale = RTW_LOCALE_USA;
919 break;
920 case RTW_CONFIG0_GL_EUROPE:
921 *locale = RTW_LOCALE_EUROPE;
922 break;
923 case RTW_CONFIG0_GL_JAPAN:
924 *locale = RTW_LOCALE_JAPAN;
925 break;
926 default:
927 *locale = RTW_LOCALE_UNKNOWN;
928 break;
929 }
930 return 0;
931 }
932
933 /* Returns -1 on failure. */
934 static int
935 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
936 device_t dev)
937 {
938 int rc;
939 struct seeprom_descriptor sd;
940 uint8_t ecr;
941
942 (void)memset(&sd, 0, sizeof(sd));
943
944 ecr = RTW_READ8(regs, RTW_9346CR);
945
946 if ((flags & RTW_F_9356SROM) != 0) {
947 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n",
948 device_xname(dev)));
949 sr->sr_size = 256;
950 sd.sd_chip = C56_66;
951 } else {
952 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n",
953 device_xname(dev)));
954 sr->sr_size = 128;
955 sd.sd_chip = C46;
956 }
957
958 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
959 RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
960 ecr |= RTW_9346CR_EEM_PROGRAM;
961
962 RTW_WRITE8(regs, RTW_9346CR, ecr);
963
964 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
965
966 if (sr->sr_content == NULL) {
967 aprint_error_dev(dev, "unable to allocate SROM buffer\n");
968 return ENOMEM;
969 }
970
971 (void)memset(sr->sr_content, 0, sr->sr_size);
972
973 /* RTL8180 has a single 8-bit register for controlling the
974 * 93cx6 SROM. There is no "ready" bit. The RTL8180
975 * input/output sense is the reverse of read_seeprom's.
976 */
977 sd.sd_tag = regs->r_bt;
978 sd.sd_bsh = regs->r_bh;
979 sd.sd_regsize = 1;
980 sd.sd_control_offset = RTW_9346CR;
981 sd.sd_status_offset = RTW_9346CR;
982 sd.sd_dataout_offset = RTW_9346CR;
983 sd.sd_CK = RTW_9346CR_EESK;
984 sd.sd_CS = RTW_9346CR_EECS;
985 sd.sd_DI = RTW_9346CR_EEDO;
986 sd.sd_DO = RTW_9346CR_EEDI;
987 /* make read_seeprom enter EEPROM read/write mode */
988 sd.sd_MS = ecr;
989 sd.sd_RDY = 0;
990
991 /* TBD bus barriers */
992 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
993 aprint_error_dev(dev, "could not read SROM\n");
994 free(sr->sr_content, M_DEVBUF);
995 sr->sr_content = NULL;
996 return -1; /* XXX */
997 }
998
999 /* end EEPROM read/write mode */
1000 RTW_WRITE8(regs, RTW_9346CR,
1001 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
1002 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
1003
1004 if ((rc = rtw_recall_eeprom(regs, dev)) != 0)
1005 return rc;
1006
1007 #ifdef RTW_DEBUG
1008 {
1009 int i;
1010 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1011 ("\n%s: serial ROM:\n\t", device_xname(dev)));
1012 for (i = 0; i < sr->sr_size/2; i++) {
1013 if (((i % 8) == 0) && (i != 0))
1014 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
1015 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1016 (" %04x", sr->sr_content[i]));
1017 }
1018 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
1019 }
1020 #endif /* RTW_DEBUG */
1021 return 0;
1022 }
1023
1024 static void
1025 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1026 device_t dev)
1027 {
1028 uint8_t cfg4;
1029 const char *method;
1030
1031 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1032
1033 switch (rfchipid) {
1034 default:
1035 cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1036 method = "fallback";
1037 break;
1038 case RTW_RFCHIPID_INTERSIL:
1039 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1040 method = "Intersil";
1041 break;
1042 case RTW_RFCHIPID_PHILIPS:
1043 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1044 method = "Philips";
1045 break;
1046 case RTW_RFCHIPID_GCT: /* XXX a guess */
1047 case RTW_RFCHIPID_RFMD:
1048 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1049 method = "RFMD";
1050 break;
1051 }
1052
1053 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1054
1055 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1056
1057 RTW_DPRINTF(RTW_DEBUG_INIT,
1058 ("%s: %s RF programming method, %#02x\n", device_xname(dev), method,
1059 RTW_READ8(regs, RTW_CONFIG4)));
1060 }
1061
1062 static inline void
1063 rtw_init_channels(enum rtw_locale locale,
1064 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1], device_t dev)
1065 {
1066 int i;
1067 const char *name = NULL;
1068 #define ADD_CHANNEL(_chans, _chan) do { \
1069 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
1070 (*_chans)[_chan].ic_freq = \
1071 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1072 } while (0)
1073
1074 switch (locale) {
1075 case RTW_LOCALE_USA: /* 1-11 */
1076 name = "USA";
1077 for (i = 1; i <= 11; i++)
1078 ADD_CHANNEL(chans, i);
1079 break;
1080 case RTW_LOCALE_JAPAN: /* 1-14 */
1081 name = "Japan";
1082 ADD_CHANNEL(chans, 14);
1083 for (i = 1; i <= 14; i++)
1084 ADD_CHANNEL(chans, i);
1085 break;
1086 case RTW_LOCALE_EUROPE: /* 1-13 */
1087 name = "Europe";
1088 for (i = 1; i <= 13; i++)
1089 ADD_CHANNEL(chans, i);
1090 break;
1091 default: /* 10-11 allowed by most countries */
1092 name = "<unknown>";
1093 for (i = 10; i <= 11; i++)
1094 ADD_CHANNEL(chans, i);
1095 break;
1096 }
1097 aprint_normal_dev(dev, "Geographic Location %s\n", name);
1098 #undef ADD_CHANNEL
1099 }
1100
1101
1102 static inline void
1103 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1104 {
1105 uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1106
1107 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1108 case RTW_CONFIG0_GL_USA:
1109 case _RTW_CONFIG0_GL_USA:
1110 *locale = RTW_LOCALE_USA;
1111 break;
1112 case RTW_CONFIG0_GL_JAPAN:
1113 *locale = RTW_LOCALE_JAPAN;
1114 break;
1115 case RTW_CONFIG0_GL_EUROPE:
1116 *locale = RTW_LOCALE_EUROPE;
1117 break;
1118 default:
1119 *locale = RTW_LOCALE_UNKNOWN;
1120 break;
1121 }
1122 }
1123
1124 static inline int
1125 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1126 device_t dev)
1127 {
1128 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1129 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1130 };
1131 uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1132 idr1 = RTW_READ(regs, RTW_IDR1);
1133
1134 (*addr)[0] = __SHIFTOUT(idr0, __BITS(0, 7));
1135 (*addr)[1] = __SHIFTOUT(idr0, __BITS(8, 15));
1136 (*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
1137 (*addr)[3] = __SHIFTOUT(idr0, __BITS(24 ,31));
1138
1139 (*addr)[4] = __SHIFTOUT(idr1, __BITS(0, 7));
1140 (*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
1141
1142 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1143 aprint_error_dev(dev,
1144 "could not get mac address, attach failed\n");
1145 return ENXIO;
1146 }
1147
1148 aprint_normal_dev(dev, "802.11 address %s\n", ether_sprintf(*addr));
1149
1150 return 0;
1151 }
1152
1153 static uint8_t
1154 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1155 struct ieee80211_channel *chan)
1156 {
1157 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1158 KASSERT(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14);
1159 return RTW_SR_GET(sr, idx);
1160 }
1161
1162 static void
1163 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1164 {
1165 int pri;
1166 /* nfree: the number of free descriptors in each ring.
1167 * The beacon ring is a special case: I do not let the
1168 * driver use all of the descriptors on the beacon ring.
1169 * The reasons are two-fold:
1170 *
1171 * (1) A BEACON descriptor's OWN bit is (apparently) not
1172 * updated, so the driver cannot easily know if the descriptor
1173 * belongs to it, or if it is racing the NIC. If the NIC
1174 * does not OWN every descriptor, then the driver can safely
1175 * update the descriptors when RTW_TBDA points at tdb_next.
1176 *
1177 * (2) I hope that the NIC will process more than one BEACON
1178 * descriptor in a single beacon interval, since that will
1179 * enable multiple-BSS support. Since the NIC does not
1180 * clear the OWN bit, there is no natural place for it to
1181 * stop processing BEACON desciptors. Maybe it will *not*
1182 * stop processing them! I do not want to chance the NIC
1183 * looping around and around a saturated beacon ring, so
1184 * I will leave one descriptor unOWNed at all times.
1185 */
1186 u_int nfree[RTW_NTXPRI] =
1187 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1188 RTW_NTXDESCBCN - 1};
1189
1190 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1191 tdb[pri].tdb_nfree = nfree[pri];
1192 tdb[pri].tdb_next = 0;
1193 }
1194 }
1195
1196 static int
1197 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1198 {
1199 int i;
1200 struct rtw_txsoft *ts;
1201
1202 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1203 SIMPLEQ_INIT(&tsb->tsb_freeq);
1204 for (i = 0; i < tsb->tsb_ndesc; i++) {
1205 ts = &tsb->tsb_desc[i];
1206 ts->ts_mbuf = NULL;
1207 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1208 }
1209 tsb->tsb_tx_timer = 0;
1210 return 0;
1211 }
1212
1213 static void
1214 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1215 {
1216 int pri;
1217 for (pri = 0; pri < RTW_NTXPRI; pri++)
1218 rtw_txsoft_blk_init(&tsb[pri]);
1219 }
1220
1221 static inline void
1222 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1223 {
1224 KASSERT(nsync <= rdb->rdb_ndesc);
1225 /* sync to end of ring */
1226 if (desc0 + nsync > rdb->rdb_ndesc) {
1227 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1228 offsetof(struct rtw_descs, hd_rx[desc0]),
1229 sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1230 nsync -= (rdb->rdb_ndesc - desc0);
1231 desc0 = 0;
1232 }
1233
1234 KASSERT(desc0 < rdb->rdb_ndesc);
1235 KASSERT(nsync <= rdb->rdb_ndesc);
1236 KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1237
1238 /* sync what remains */
1239 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1240 offsetof(struct rtw_descs, hd_rx[desc0]),
1241 sizeof(struct rtw_rxdesc) * nsync, ops);
1242 }
1243
1244 static void
1245 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1246 {
1247 /* sync to end of ring */
1248 if (desc0 + nsync > tdb->tdb_ndesc) {
1249 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1250 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1251 sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1252 ops);
1253 nsync -= (tdb->tdb_ndesc - desc0);
1254 desc0 = 0;
1255 }
1256
1257 /* sync what remains */
1258 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1259 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1260 sizeof(struct rtw_txdesc) * nsync, ops);
1261 }
1262
1263 static void
1264 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1265 {
1266 int pri;
1267 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1268 rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1269 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1270 }
1271 }
1272
1273 static void
1274 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1275 {
1276 int i;
1277 struct rtw_rxsoft *rs;
1278
1279 for (i = 0; i < RTW_RXQLEN; i++) {
1280 rs = &desc[i];
1281 if (rs->rs_mbuf == NULL)
1282 continue;
1283 bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1284 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1285 bus_dmamap_unload(dmat, rs->rs_dmamap);
1286 m_freem(rs->rs_mbuf);
1287 rs->rs_mbuf = NULL;
1288 }
1289 }
1290
1291 static inline int
1292 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1293 {
1294 int rc;
1295 struct mbuf *m;
1296
1297 MGETHDR(m, M_DONTWAIT, MT_DATA);
1298 if (m == NULL)
1299 return ENOBUFS;
1300
1301 MCLGET(m, M_DONTWAIT);
1302 if ((m->m_flags & M_EXT) == 0) {
1303 m_freem(m);
1304 return ENOBUFS;
1305 }
1306
1307 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1308
1309 if (rs->rs_mbuf != NULL)
1310 bus_dmamap_unload(dmat, rs->rs_dmamap);
1311
1312 rs->rs_mbuf = NULL;
1313
1314 rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1315 if (rc != 0) {
1316 m_freem(m);
1317 return -1;
1318 }
1319
1320 rs->rs_mbuf = m;
1321
1322 return 0;
1323 }
1324
1325 static int
1326 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1327 int *ndesc, device_t dev)
1328 {
1329 int i, rc = 0;
1330 struct rtw_rxsoft *rs;
1331
1332 for (i = 0; i < RTW_RXQLEN; i++) {
1333 rs = &desc[i];
1334 /* we're in rtw_init, so there should be no mbufs allocated */
1335 KASSERT(rs->rs_mbuf == NULL);
1336 #ifdef RTW_DEBUG
1337 if (i == rtw_rxbufs_limit) {
1338 aprint_error_dev(dev, "TEST hit %d-buffer limit\n", i);
1339 rc = ENOBUFS;
1340 break;
1341 }
1342 #endif /* RTW_DEBUG */
1343 if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1344 aprint_error_dev(dev,
1345 "rtw_rxsoft_alloc failed, %d buffers, rc %d\n",
1346 i, rc);
1347 break;
1348 }
1349 }
1350 *ndesc = i;
1351 return rc;
1352 }
1353
1354 static inline void
1355 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1356 int idx, int kick)
1357 {
1358 int is_last = (idx == rdb->rdb_ndesc - 1);
1359 uint32_t ctl, octl, obuf;
1360 struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1361
1362 /* sync the mbuf before the descriptor */
1363 bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1364 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1365
1366 obuf = rd->rd_buf;
1367 rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1368
1369 ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1370 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1371
1372 if (is_last)
1373 ctl |= RTW_RXCTL_EOR;
1374
1375 octl = rd->rd_ctl;
1376 rd->rd_ctl = htole32(ctl);
1377
1378 RTW_DPRINTF(
1379 kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1380 : RTW_DEBUG_RECV_DESC,
1381 ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1382 le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1383 le32toh(rd->rd_ctl)));
1384
1385 /* sync the descriptor */
1386 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1387 RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1388 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1389 }
1390
1391 static void
1392 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1393 {
1394 int i;
1395 struct rtw_rxdesc *rd;
1396 struct rtw_rxsoft *rs;
1397
1398 for (i = 0; i < rdb->rdb_ndesc; i++) {
1399 rd = &rdb->rdb_desc[i];
1400 rs = &ctl[i];
1401 rtw_rxdesc_init(rdb, rs, i, kick);
1402 }
1403 }
1404
1405 static void
1406 rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
1407 {
1408 struct rtw_regs *regs = &sc->sc_regs;
1409 uint8_t cr;
1410
1411 RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1412 enable ? "enable" : "disable", flags));
1413
1414 cr = RTW_READ8(regs, RTW_CR);
1415
1416 /* XXX reference source does not enable MULRW */
1417 /* enable PCI Read/Write Multiple */
1418 cr |= RTW_CR_MULRW;
1419
1420 /* The receive engine will always start at RDSAR. */
1421 if (enable && (flags & ~cr & RTW_CR_RE)) {
1422 struct rtw_rxdesc_blk *rdb;
1423 rdb = &sc->sc_rxdesc_blk;
1424 rdb->rdb_next = 0;
1425 }
1426
1427 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1428 if (enable)
1429 cr |= flags;
1430 else
1431 cr &= ~flags;
1432 RTW_WRITE8(regs, RTW_CR, cr);
1433 RTW_SYNC(regs, RTW_CR, RTW_CR);
1434
1435 #ifdef RTW_DIAG
1436 if (cr & RTW_CR_TE)
1437 rtw_txring_fixup(sc, __func__, __LINE__);
1438 #endif
1439 if (cr & RTW_CR_TE) {
1440 rtw_tx_kick(&sc->sc_regs,
1441 RTW_TPPOLL_HPQ | RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ);
1442 }
1443 }
1444
1445 static void
1446 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1447 {
1448 #define IS_BEACON(__fc0) \
1449 ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1450 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1451
1452 static const int ratetbl[4] = {2, 4, 11, 22}; /* convert rates:
1453 * hardware -> net80211
1454 */
1455 u_int next, nproc = 0;
1456 int hwrate, len, rate, rssi, sq;
1457 uint32_t hrssi, hstat, htsfth, htsftl;
1458 struct rtw_rxdesc *rd;
1459 struct rtw_rxsoft *rs;
1460 struct rtw_rxdesc_blk *rdb;
1461 struct mbuf *m;
1462 struct ifnet *ifp = &sc->sc_if;
1463
1464 struct ieee80211_node *ni;
1465 struct ieee80211_frame_min *wh;
1466
1467 rdb = &sc->sc_rxdesc_blk;
1468
1469 for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
1470 KASSERT(next < rdb->rdb_ndesc);
1471
1472 rtw_rxdescs_sync(rdb, next, 1,
1473 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1474 rd = &rdb->rdb_desc[next];
1475 rs = &sc->sc_rxsoft[next];
1476
1477 hstat = le32toh(rd->rd_stat);
1478 hrssi = le32toh(rd->rd_rssi);
1479 htsfth = le32toh(rd->rd_tsfth);
1480 htsftl = le32toh(rd->rd_tsftl);
1481
1482 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1483 ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1484 __func__, next, hstat, hrssi, htsfth, htsftl));
1485
1486 ++nproc;
1487
1488 /* still belongs to NIC */
1489 if ((hstat & RTW_RXSTAT_OWN) != 0) {
1490 rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
1491 break;
1492 }
1493
1494 /* ieee80211_input() might reset the receive engine
1495 * (e.g. by indirectly calling rtw_tune()), so save
1496 * the next pointer here and retrieve it again on
1497 * the next round.
1498 */
1499 rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
1500
1501 #ifdef RTW_DEBUG
1502 #define PRINTSTAT(flag) do { \
1503 if ((hstat & flag) != 0) { \
1504 printf("%s" #flag, delim); \
1505 delim = ","; \
1506 } \
1507 } while (0)
1508 if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1509 const char *delim = "<";
1510 printf("%s: ", device_xname(sc->sc_dev));
1511 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1512 printf("status %08x", hstat);
1513 PRINTSTAT(RTW_RXSTAT_SPLCP);
1514 PRINTSTAT(RTW_RXSTAT_MAR);
1515 PRINTSTAT(RTW_RXSTAT_PAR);
1516 PRINTSTAT(RTW_RXSTAT_BAR);
1517 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1518 PRINTSTAT(RTW_RXSTAT_CRC32);
1519 PRINTSTAT(RTW_RXSTAT_ICV);
1520 printf(">, ");
1521 }
1522 }
1523 #endif /* RTW_DEBUG */
1524
1525 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1526 aprint_error_dev(sc->sc_dev,
1527 "DMA error/FIFO overflow %08" PRIx32 ", "
1528 "rx descriptor %d\n", hstat, next);
1529 ifp->if_ierrors++;
1530 goto next;
1531 }
1532
1533 len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1534 if (len < IEEE80211_MIN_LEN) {
1535 sc->sc_ic.ic_stats.is_rx_tooshort++;
1536 goto next;
1537 }
1538 if (len > rs->rs_mbuf->m_len) {
1539 aprint_error_dev(sc->sc_dev,
1540 "rx frame too long, %d > %d, %08" PRIx32
1541 ", desc %d\n",
1542 len, rs->rs_mbuf->m_len, hstat, next);
1543 ifp->if_ierrors++;
1544 goto next;
1545 }
1546
1547 hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1548 if (hwrate >= __arraycount(ratetbl)) {
1549 aprint_error_dev(sc->sc_dev,
1550 "unknown rate #%" __PRIuBITS "\n",
1551 __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1552 ifp->if_ierrors++;
1553 goto next;
1554 }
1555 rate = ratetbl[hwrate];
1556
1557 #ifdef RTW_DEBUG
1558 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1559 ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1560 (rate * 5) % 10, htsfth, htsftl));
1561 #endif /* RTW_DEBUG */
1562
1563 /* if bad flags, skip descriptor */
1564 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1565 aprint_error_dev(sc->sc_dev, "too many rx segments, "
1566 "next=%d, %08" PRIx32 "\n", next, hstat);
1567 goto next;
1568 }
1569
1570 bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1571 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1572
1573 m = rs->rs_mbuf;
1574
1575 /* if temporarily out of memory, re-use mbuf */
1576 switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1577 case 0:
1578 break;
1579 case ENOBUFS:
1580 aprint_error_dev(sc->sc_dev,
1581 "rtw_rxsoft_alloc(, %d) failed, dropping packet\n",
1582 next);
1583 goto next;
1584 default:
1585 /* XXX shorten rx ring, instead? */
1586 aprint_error_dev(sc->sc_dev,
1587 "could not load DMA map\n");
1588 }
1589
1590 sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1591
1592 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1593 rssi = UINT8_MAX - sq;
1594 else {
1595 rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1596 /* TBD find out each front-end's LNA gain in the
1597 * front-end's units
1598 */
1599 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1600 rssi |= 0x80;
1601 }
1602
1603 /* Note well: now we cannot recycle the rs_mbuf unless
1604 * we restore its original length.
1605 */
1606 m->m_pkthdr.rcvif = ifp;
1607 m->m_pkthdr.len = m->m_len = len;
1608
1609 wh = mtod(m, struct ieee80211_frame_min *);
1610
1611 if (!IS_BEACON(wh->i_fc[0]))
1612 sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1613
1614 sc->sc_tsfth = htsfth;
1615
1616 #ifdef RTW_DEBUG
1617 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1618 (IFF_DEBUG|IFF_LINK2)) {
1619 ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1620 rate, rssi);
1621 }
1622 #endif /* RTW_DEBUG */
1623
1624 if (sc->sc_radiobpf != NULL) {
1625 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1626
1627 rr->rr_tsft =
1628 htole64(((uint64_t)htsfth << 32) | htsftl);
1629
1630 rr->rr_flags = IEEE80211_RADIOTAP_F_FCS;
1631
1632 if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1633 rr->rr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1634 if ((hstat & RTW_RXSTAT_CRC32) != 0)
1635 rr->rr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
1636
1637 rr->rr_rate = rate;
1638
1639 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1640 rr->rr_u.u_philips.p_antsignal = rssi;
1641 else {
1642 rr->rr_u.u_other.o_antsignal = rssi;
1643 rr->rr_u.u_other.o_barker_lock =
1644 htole16(UINT8_MAX - sq);
1645 }
1646
1647 bpf_mtap2(sc->sc_radiobpf,
1648 rr, sizeof(sc->sc_rxtapu), m);
1649 }
1650
1651 if ((hstat & RTW_RXSTAT_RES) != 0) {
1652 m_freem(m);
1653 goto next;
1654 }
1655
1656 /* CRC is included with the packet; trim it off. */
1657 m_adj(m, -IEEE80211_CRC_LEN);
1658
1659 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1660 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1661 ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1662 ieee80211_free_node(ni);
1663 next:
1664 rtw_rxdesc_init(rdb, rs, next, 0);
1665 }
1666 #undef IS_BEACON
1667 }
1668
1669 static void
1670 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1671 struct rtw_txsoft *ts)
1672 {
1673 struct mbuf *m;
1674 struct ieee80211_node *ni;
1675
1676 m = ts->ts_mbuf;
1677 ni = ts->ts_ni;
1678 KASSERT(m != NULL);
1679 KASSERT(ni != NULL);
1680 ts->ts_mbuf = NULL;
1681 ts->ts_ni = NULL;
1682
1683 bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1684 BUS_DMASYNC_POSTWRITE);
1685 bus_dmamap_unload(dmat, ts->ts_dmamap);
1686 m_freem(m);
1687 ieee80211_free_node(ni);
1688 }
1689
1690 static void
1691 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1692 struct rtw_txsoft_blk *tsb)
1693 {
1694 struct rtw_txsoft *ts;
1695
1696 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1697 rtw_txsoft_release(dmat, ic, ts);
1698 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1699 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1700 }
1701 tsb->tsb_tx_timer = 0;
1702 }
1703
1704 static inline void
1705 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1706 struct rtw_txsoft *ts, int ndesc)
1707 {
1708 uint32_t hstat;
1709 int data_retry, rts_retry;
1710 struct rtw_txdesc *tdn;
1711 const char *condstring;
1712 struct ifnet *ifp = &sc->sc_if;
1713
1714 rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1715
1716 tdb->tdb_nfree += ndesc;
1717
1718 tdn = &tdb->tdb_desc[ts->ts_last];
1719
1720 hstat = le32toh(tdn->td_stat);
1721 rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1722 data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1723
1724 ifp->if_collisions += rts_retry + data_retry;
1725
1726 if ((hstat & RTW_TXSTAT_TOK) != 0)
1727 condstring = "ok";
1728 else {
1729 ifp->if_oerrors++;
1730 condstring = "error";
1731 }
1732
1733 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1734 ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1735 device_xname(sc->sc_dev), ts, ts->ts_first, ts->ts_last,
1736 condstring, rts_retry, data_retry));
1737 }
1738
1739 static void
1740 rtw_reset_oactive(struct rtw_softc *sc)
1741 {
1742 short oflags;
1743 int pri;
1744 struct rtw_txsoft_blk *tsb;
1745 struct rtw_txdesc_blk *tdb;
1746 oflags = sc->sc_if.if_flags;
1747 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1748 tsb = &sc->sc_txsoft_blk[pri];
1749 tdb = &sc->sc_txdesc_blk[pri];
1750 if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1751 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1752 }
1753 if (oflags != sc->sc_if.if_flags) {
1754 DPRINTF(sc, RTW_DEBUG_OACTIVE,
1755 ("%s: reset OACTIVE\n", __func__));
1756 }
1757 }
1758
1759 /* Collect transmitted packets. */
1760 static bool
1761 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1762 struct rtw_txdesc_blk *tdb, int force)
1763 {
1764 bool collected = false;
1765 int ndesc;
1766 struct rtw_txsoft *ts;
1767
1768 #ifdef RTW_DEBUG
1769 rtw_dump_rings(sc);
1770 #endif
1771
1772 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1773 /* If we're clearing a failed transmission, only clear
1774 up to the last packet the hardware has processed. */
1775 if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
1776 break;
1777
1778 ndesc = 1 + ts->ts_last - ts->ts_first;
1779 if (ts->ts_last < ts->ts_first)
1780 ndesc += tdb->tdb_ndesc;
1781
1782 KASSERT(ndesc > 0);
1783
1784 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1785 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1786
1787 if (force) {
1788 int next;
1789 #ifdef RTW_DIAG
1790 printf("%s: clearing packet, stats", __func__);
1791 #endif
1792 for (next = ts->ts_first; ;
1793 next = RTW_NEXT_IDX(tdb, next)) {
1794 #ifdef RTW_DIAG
1795 printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
1796 #endif
1797 tdb->tdb_desc[next].td_stat &=
1798 ~htole32(RTW_TXSTAT_OWN);
1799 if (next == ts->ts_last)
1800 break;
1801 }
1802 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1803 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1804 #ifdef RTW_DIAG
1805 next = RTW_NEXT_IDX(tdb, next);
1806 printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
1807 le32toh(tdb->tdb_desc[next].td_stat),
1808 rtw_txring_next(&sc->sc_regs, tdb));
1809 #endif
1810 } else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1811 htole32(RTW_TXSTAT_OWN)) != 0) {
1812 rtw_txdescs_sync(tdb, ts->ts_last, 1,
1813 BUS_DMASYNC_PREREAD);
1814 break;
1815 }
1816
1817 collected = true;
1818
1819 rtw_collect_txpkt(sc, tdb, ts, ndesc);
1820 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1821 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1822 }
1823
1824 /* no more pending transmissions, cancel watchdog */
1825 if (ts == NULL)
1826 tsb->tsb_tx_timer = 0;
1827 rtw_reset_oactive(sc);
1828
1829 return collected;
1830 }
1831
1832 static void
1833 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1834 {
1835 int pri;
1836 struct rtw_txsoft_blk *tsb;
1837 struct rtw_txdesc_blk *tdb;
1838 struct ifnet *ifp = &sc->sc_if;
1839
1840 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1841 tsb = &sc->sc_txsoft_blk[pri];
1842 tdb = &sc->sc_txdesc_blk[pri];
1843 rtw_collect_txring(sc, tsb, tdb, 0);
1844 }
1845
1846 if ((isr & RTW_INTR_TX) != 0)
1847 rtw_start(ifp);
1848
1849 return;
1850 }
1851
1852 static void
1853 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1854 {
1855 u_int next;
1856 uint32_t tsfth, tsftl;
1857 struct ieee80211com *ic;
1858 struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1859 struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1860 struct mbuf *m;
1861
1862 tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1863 tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1864
1865 if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) {
1866 next = rtw_txring_next(&sc->sc_regs, tdb);
1867 RTW_DPRINTF(RTW_DEBUG_BEACON,
1868 ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1869 ", next %u expected %u, %" PRIu64 "\n", __func__,
1870 (next == tdb->tdb_next) ? "" : "un", isr, next,
1871 tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1872 if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
1873 rtw_collect_txring(sc, tsb, tdb, 1);
1874 }
1875 /* Start beacon transmission. */
1876
1877 if ((isr & RTW_INTR_BCNINT) != 0 &&
1878 sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1879 SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1880 RTW_DPRINTF(RTW_DEBUG_BEACON,
1881 ("%s: beacon prep. time, isr = %#04" PRIx16
1882 ", %16" PRIu64 "\n", __func__, isr,
1883 (uint64_t)tsfth << 32 | tsftl));
1884 ic = &sc->sc_ic;
1885 m = rtw_beacon_alloc(sc, ic->ic_bss);
1886
1887 if (m == NULL) {
1888 aprint_error_dev(sc->sc_dev,
1889 "could not allocate beacon\n");
1890 return;
1891 }
1892 m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss);
1893 IF_ENQUEUE(&sc->sc_beaconq, m);
1894 rtw_start(&sc->sc_if);
1895 }
1896 }
1897
1898 static void
1899 rtw_intr_atim(struct rtw_softc *sc)
1900 {
1901 /* TBD */
1902 return;
1903 }
1904
1905 #ifdef RTW_DEBUG
1906 static void
1907 rtw_dump_rings(struct rtw_softc *sc)
1908 {
1909 struct rtw_txdesc_blk *tdb;
1910 struct rtw_rxdesc *rd;
1911 struct rtw_rxdesc_blk *rdb;
1912 int desc, pri;
1913
1914 if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1915 return;
1916
1917 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1918 tdb = &sc->sc_txdesc_blk[pri];
1919 printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1920 tdb->tdb_ndesc, tdb->tdb_nfree);
1921 for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1922 rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1923 }
1924
1925 rdb = &sc->sc_rxdesc_blk;
1926
1927 for (desc = 0; desc < RTW_RXQLEN; desc++) {
1928 rd = &rdb->rdb_desc[desc];
1929 printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1930 "rsvd1/tsfth %08x\n", __func__,
1931 (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1932 le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1933 le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1934 }
1935 }
1936 #endif /* RTW_DEBUG */
1937
1938 static void
1939 rtw_hwring_setup(struct rtw_softc *sc)
1940 {
1941 int pri;
1942 struct rtw_regs *regs = &sc->sc_regs;
1943 struct rtw_txdesc_blk *tdb;
1944
1945 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1946 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1947 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1948 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1949 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1950 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1951 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1952 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1953
1954 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1955 tdb = &sc->sc_txdesc_blk[pri];
1956 RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1957 RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1958 ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1959 (uintptr_t)tdb->tdb_base));
1960 }
1961
1962 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1963
1964 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1965 ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1966 (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1967
1968 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1969
1970 }
1971
1972 static int
1973 rtw_swring_setup(struct rtw_softc *sc)
1974 {
1975 int rc;
1976 struct rtw_rxdesc_blk *rdb;
1977
1978 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1979
1980 rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
1981
1982 rdb = &sc->sc_rxdesc_blk;
1983 if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
1984 sc->sc_dev)) != 0 && rdb->rdb_ndesc == 0) {
1985 aprint_error_dev(sc->sc_dev, "could not allocate rx buffers\n");
1986 return rc;
1987 }
1988
1989 rdb = &sc->sc_rxdesc_blk;
1990 rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
1991 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1992 rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
1993 rdb->rdb_next = 0;
1994
1995 rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
1996 return 0;
1997 }
1998
1999 static void
2000 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
2001 {
2002 int i;
2003
2004 (void)memset(tdb->tdb_desc, 0,
2005 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
2006 for (i = 0; i < tdb->tdb_ndesc; i++)
2007 tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
2008 }
2009
2010 static u_int
2011 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
2012 {
2013 return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
2014 sizeof(struct rtw_txdesc);
2015 }
2016
2017 #ifdef RTW_DIAG
2018 static void
2019 rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
2020 {
2021 int pri;
2022 u_int next;
2023 struct rtw_txdesc_blk *tdb;
2024 struct rtw_regs *regs = &sc->sc_regs;
2025
2026 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2027 int i;
2028 tdb = &sc->sc_txdesc_blk[pri];
2029 next = rtw_txring_next(regs, tdb);
2030 if (tdb->tdb_next == next)
2031 continue;
2032 for (i = 0; next != tdb->tdb_next;
2033 next = RTW_NEXT_IDX(tdb, next), i++) {
2034 if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
2035 break;
2036 }
2037 printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
2038 ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
2039 if (tdb->tdb_next == next)
2040 continue;
2041 tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
2042 }
2043 }
2044 #endif
2045
2046 static void
2047 rtw_txdescs_reset(struct rtw_softc *sc)
2048 {
2049 int pri;
2050 struct rtw_txsoft_blk *tsb;
2051 struct rtw_txdesc_blk *tdb;
2052
2053 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2054 tsb = &sc->sc_txsoft_blk[pri];
2055 tdb = &sc->sc_txdesc_blk[pri];
2056 rtw_collect_txring(sc, tsb, tdb, 1);
2057 #ifdef RTW_DIAG
2058 if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
2059 printf("%s: packets left in ring %d\n", __func__, pri);
2060 #endif
2061 }
2062 }
2063
2064 static void
2065 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2066 {
2067 aprint_error_dev(sc->sc_dev, "tx fifo underflow\n");
2068
2069 RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
2070 "\n", device_xname(sc->sc_dev), isr));
2071
2072 #ifdef RTW_DEBUG
2073 rtw_dump_rings(sc);
2074 #endif /* RTW_DEBUG */
2075
2076 /* Collect tx'd packets. XXX let's hope this stops the transmit
2077 * timeouts.
2078 */
2079 rtw_txdescs_reset(sc);
2080
2081 #ifdef RTW_DEBUG
2082 rtw_dump_rings(sc);
2083 #endif /* RTW_DEBUG */
2084 }
2085
2086 static inline void
2087 rtw_suspend_ticks(struct rtw_softc *sc)
2088 {
2089 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2090 ("%s: suspending ticks\n", device_xname(sc->sc_dev)));
2091 sc->sc_do_tick = 0;
2092 }
2093
2094 static inline void
2095 rtw_resume_ticks(struct rtw_softc *sc)
2096 {
2097 uint32_t tsftrl0, tsftrl1, next_tint;
2098
2099 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2100
2101 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2102 next_tint = tsftrl1 + 1000000;
2103 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tint);
2104
2105 sc->sc_do_tick = 1;
2106
2107 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2108 ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2109 device_xname(sc->sc_dev), tsftrl1 - tsftrl0, tsftrl1, next_tint));
2110 }
2111
2112 static void
2113 rtw_intr_timeout(struct rtw_softc *sc)
2114 {
2115 RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", device_xname(sc->sc_dev)));
2116 if (sc->sc_do_tick)
2117 rtw_resume_ticks(sc);
2118 return;
2119 }
2120
2121 int
2122 rtw_intr(void *arg)
2123 {
2124 int i;
2125 struct rtw_softc *sc = arg;
2126 struct rtw_regs *regs = &sc->sc_regs;
2127 uint16_t isr;
2128 struct ifnet *ifp = &sc->sc_if;
2129
2130 /*
2131 * If the interface isn't running, the interrupt couldn't
2132 * possibly have come from us.
2133 */
2134 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2135 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
2136 RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n",
2137 device_xname(sc->sc_dev)));
2138 return (0);
2139 }
2140
2141 for (i = 0; i < 10; i++) {
2142 isr = RTW_READ16(regs, RTW_ISR);
2143
2144 RTW_WRITE16(regs, RTW_ISR, isr);
2145 RTW_WBR(regs, RTW_ISR, RTW_ISR);
2146
2147 if (sc->sc_intr_ack != NULL)
2148 (*sc->sc_intr_ack)(regs);
2149
2150 if (isr == 0)
2151 break;
2152
2153 #ifdef RTW_DEBUG
2154 #define PRINTINTR(flag) do { \
2155 if ((isr & flag) != 0) { \
2156 printf("%s" #flag, delim); \
2157 delim = ","; \
2158 } \
2159 } while (0)
2160
2161 if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2162 const char *delim = "<";
2163
2164 printf("%s: reg[ISR] = %x", device_xname(sc->sc_dev),
2165 isr);
2166
2167 PRINTINTR(RTW_INTR_TXFOVW);
2168 PRINTINTR(RTW_INTR_TIMEOUT);
2169 PRINTINTR(RTW_INTR_BCNINT);
2170 PRINTINTR(RTW_INTR_ATIMINT);
2171 PRINTINTR(RTW_INTR_TBDER);
2172 PRINTINTR(RTW_INTR_TBDOK);
2173 PRINTINTR(RTW_INTR_THPDER);
2174 PRINTINTR(RTW_INTR_THPDOK);
2175 PRINTINTR(RTW_INTR_TNPDER);
2176 PRINTINTR(RTW_INTR_TNPDOK);
2177 PRINTINTR(RTW_INTR_RXFOVW);
2178 PRINTINTR(RTW_INTR_RDU);
2179 PRINTINTR(RTW_INTR_TLPDER);
2180 PRINTINTR(RTW_INTR_TLPDOK);
2181 PRINTINTR(RTW_INTR_RER);
2182 PRINTINTR(RTW_INTR_ROK);
2183
2184 printf(">\n");
2185 }
2186 #undef PRINTINTR
2187 #endif /* RTW_DEBUG */
2188
2189 if ((isr & RTW_INTR_RX) != 0)
2190 rtw_intr_rx(sc, isr);
2191 if ((isr & RTW_INTR_TX) != 0)
2192 rtw_intr_tx(sc, isr);
2193 if ((isr & RTW_INTR_BEACON) != 0)
2194 rtw_intr_beacon(sc, isr);
2195 if ((isr & RTW_INTR_ATIMINT) != 0)
2196 rtw_intr_atim(sc);
2197 if ((isr & RTW_INTR_IOERROR) != 0)
2198 rtw_intr_ioerror(sc, isr);
2199 if ((isr & RTW_INTR_TIMEOUT) != 0)
2200 rtw_intr_timeout(sc);
2201 }
2202
2203 return 1;
2204 }
2205
2206 /* Must be called at splnet. */
2207 static void
2208 rtw_stop(struct ifnet *ifp, int disable)
2209 {
2210 int pri;
2211 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2212 struct ieee80211com *ic = &sc->sc_ic;
2213 struct rtw_regs *regs = &sc->sc_regs;
2214
2215 rtw_suspend_ticks(sc);
2216
2217 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2218
2219 if (device_has_power(sc->sc_dev)) {
2220 /* Disable interrupts. */
2221 RTW_WRITE16(regs, RTW_IMR, 0);
2222
2223 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2224
2225 /* Stop the transmit and receive processes. First stop DMA,
2226 * then disable receiver and transmitter.
2227 */
2228 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2229
2230 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2231
2232 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2233 }
2234
2235 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2236 rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2237 &sc->sc_txsoft_blk[pri]);
2238 }
2239
2240 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2241
2242 /* Mark the interface as not running. Cancel the watchdog timer. */
2243 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2244 ifp->if_timer = 0;
2245
2246 if (disable)
2247 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2248
2249 return;
2250 }
2251
2252 const char *
2253 rtw_pwrstate_string(enum rtw_pwrstate power)
2254 {
2255 switch (power) {
2256 case RTW_ON:
2257 return "on";
2258 case RTW_SLEEP:
2259 return "sleep";
2260 case RTW_OFF:
2261 return "off";
2262 default:
2263 return "unknown";
2264 }
2265 }
2266
2267 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2268 * reference driver, plus a magic Maxim "ON" value that comes from
2269 * the Realtek document "Windows PG for Rtl8180."
2270 */
2271 static void
2272 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2273 int before_rf, int digphy)
2274 {
2275 uint32_t anaparm;
2276
2277 anaparm = RTW_READ(regs, RTW_ANAPARM);
2278 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2279
2280 switch (power) {
2281 case RTW_OFF:
2282 if (before_rf)
2283 return;
2284 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2285 anaparm |= RTW_ANAPARM_TXDACOFF;
2286 break;
2287 case RTW_SLEEP:
2288 if (!before_rf)
2289 return;
2290 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2291 anaparm |= RTW_ANAPARM_TXDACOFF;
2292 break;
2293 case RTW_ON:
2294 if (!before_rf)
2295 return;
2296 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2297 break;
2298 }
2299 RTW_DPRINTF(RTW_DEBUG_PWR,
2300 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2301 __func__, rtw_pwrstate_string(power),
2302 (before_rf) ? "before" : "after", anaparm));
2303
2304 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2305 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2306 }
2307
2308 /* XXX I am using the RFMD settings gleaned from the reference
2309 * driver. They agree
2310 */
2311 static void
2312 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2313 int before_rf, int digphy)
2314 {
2315 uint32_t anaparm;
2316
2317 anaparm = RTW_READ(regs, RTW_ANAPARM);
2318 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2319
2320 switch (power) {
2321 case RTW_OFF:
2322 if (before_rf)
2323 return;
2324 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2325 anaparm |= RTW_ANAPARM_TXDACOFF;
2326 break;
2327 case RTW_SLEEP:
2328 if (!before_rf)
2329 return;
2330 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2331 anaparm |= RTW_ANAPARM_TXDACOFF;
2332 break;
2333 case RTW_ON:
2334 if (!before_rf)
2335 return;
2336 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2337 break;
2338 }
2339 RTW_DPRINTF(RTW_DEBUG_PWR,
2340 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2341 __func__, rtw_pwrstate_string(power),
2342 (before_rf) ? "before" : "after", anaparm));
2343
2344 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2345 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2346 }
2347
2348 static void
2349 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2350 int before_rf, int digphy)
2351 {
2352 uint32_t anaparm;
2353
2354 anaparm = RTW_READ(regs, RTW_ANAPARM);
2355 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2356
2357 switch (power) {
2358 case RTW_OFF:
2359 if (before_rf)
2360 return;
2361 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2362 anaparm |= RTW_ANAPARM_TXDACOFF;
2363 break;
2364 case RTW_SLEEP:
2365 if (!before_rf)
2366 return;
2367 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2368 anaparm |= RTW_ANAPARM_TXDACOFF;
2369 break;
2370 case RTW_ON:
2371 if (!before_rf)
2372 return;
2373 if (digphy) {
2374 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2375 /* XXX guess */
2376 anaparm |= RTW_ANAPARM_TXDACOFF;
2377 } else
2378 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2379 break;
2380 }
2381 RTW_DPRINTF(RTW_DEBUG_PWR,
2382 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2383 __func__, rtw_pwrstate_string(power),
2384 (before_rf) ? "before" : "after", anaparm));
2385
2386 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2387 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2388 }
2389
2390 static void
2391 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2392 int digphy)
2393 {
2394 struct rtw_regs *regs = &sc->sc_regs;
2395
2396 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2397
2398 (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2399
2400 rtw_set_access(regs, RTW_ACCESS_NONE);
2401
2402 return;
2403 }
2404
2405 static int
2406 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2407 {
2408 int rc;
2409
2410 RTW_DPRINTF(RTW_DEBUG_PWR,
2411 ("%s: %s->%s\n", __func__,
2412 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2413
2414 if (sc->sc_pwrstate == power)
2415 return 0;
2416
2417 rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2418 rc = rtw_rf_pwrstate(sc->sc_rf, power);
2419 rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2420
2421 switch (power) {
2422 case RTW_ON:
2423 /* TBD set LEDs */
2424 break;
2425 case RTW_SLEEP:
2426 /* TBD */
2427 break;
2428 case RTW_OFF:
2429 /* TBD */
2430 break;
2431 }
2432 if (rc == 0)
2433 sc->sc_pwrstate = power;
2434 else
2435 sc->sc_pwrstate = RTW_OFF;
2436 return rc;
2437 }
2438
2439 static int
2440 rtw_tune(struct rtw_softc *sc)
2441 {
2442 struct ieee80211com *ic = &sc->sc_ic;
2443 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
2444 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
2445 u_int chan;
2446 int rc;
2447 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2448 dflantb = sc->sc_flags & RTW_F_DFLANTB;
2449
2450 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2451 KASSERT(chan != IEEE80211_CHAN_ANY);
2452
2453 rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2454 rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2455
2456 rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2457 rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2458
2459 if (chan == sc->sc_cur_chan) {
2460 RTW_DPRINTF(RTW_DEBUG_TUNE,
2461 ("%s: already tuned chan #%d\n", __func__, chan));
2462 return 0;
2463 }
2464
2465 rtw_suspend_ticks(sc);
2466
2467 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2468
2469 /* TBD wait for Tx to complete */
2470
2471 KASSERT(device_has_power(sc->sc_dev));
2472
2473 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2474 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2475 ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2476 /* XXX condition on powersaving */
2477 aprint_error_dev(sc->sc_dev, "phy init failed\n");
2478 }
2479
2480 sc->sc_cur_chan = chan;
2481
2482 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2483
2484 rtw_resume_ticks(sc);
2485
2486 return rc;
2487 }
2488
2489 bool
2490 rtw_suspend(device_t self, const pmf_qual_t *qual)
2491 {
2492 int rc;
2493 struct rtw_softc *sc = device_private(self);
2494
2495 sc->sc_flags &= ~RTW_F_DK_VALID;
2496
2497 if (!device_has_power(self))
2498 return false;
2499
2500 /* turn off PHY */
2501 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2502 aprint_error_dev(self, "failed to turn off PHY (%d)\n", rc);
2503 return false;
2504 }
2505
2506 rtw_disable_interrupts(&sc->sc_regs);
2507
2508 return true;
2509 }
2510
2511 bool
2512 rtw_resume(device_t self, const pmf_qual_t *qual)
2513 {
2514 struct rtw_softc *sc = device_private(self);
2515
2516 /* Power may have been removed, resetting WEP keys.
2517 */
2518 sc->sc_flags &= ~RTW_F_DK_VALID;
2519 rtw_enable_interrupts(sc);
2520
2521 return true;
2522 }
2523
2524 static void
2525 rtw_transmit_config(struct rtw_regs *regs)
2526 {
2527 uint32_t tcr;
2528
2529 tcr = RTW_READ(regs, RTW_TCR);
2530
2531 tcr |= RTW_TCR_CWMIN;
2532 tcr &= ~RTW_TCR_MXDMA_MASK;
2533 tcr |= RTW_TCR_MXDMA_256;
2534 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
2535 tcr &= ~RTW_TCR_LBK_MASK;
2536 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
2537
2538 /* set short/long retry limits */
2539 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2540 tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
2541
2542 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
2543
2544 RTW_WRITE(regs, RTW_TCR, tcr);
2545 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2546 }
2547
2548 static void
2549 rtw_disable_interrupts(struct rtw_regs *regs)
2550 {
2551 RTW_WRITE16(regs, RTW_IMR, 0);
2552 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2553 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2554 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2555 }
2556
2557 static void
2558 rtw_enable_interrupts(struct rtw_softc *sc)
2559 {
2560 struct rtw_regs *regs = &sc->sc_regs;
2561
2562 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2563 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2564
2565 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2566 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2567 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2568 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2569
2570 /* XXX necessary? */
2571 if (sc->sc_intr_ack != NULL)
2572 (*sc->sc_intr_ack)(regs);
2573 }
2574
2575 static void
2576 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2577 {
2578 uint8_t msr;
2579
2580 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2581 rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2582
2583 msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2584
2585 switch (opmode) {
2586 case IEEE80211_M_AHDEMO:
2587 case IEEE80211_M_IBSS:
2588 msr |= RTW_MSR_NETYPE_ADHOC_OK;
2589 break;
2590 case IEEE80211_M_HOSTAP:
2591 msr |= RTW_MSR_NETYPE_AP_OK;
2592 break;
2593 case IEEE80211_M_MONITOR:
2594 /* XXX */
2595 msr |= RTW_MSR_NETYPE_NOLINK;
2596 break;
2597 case IEEE80211_M_STA:
2598 msr |= RTW_MSR_NETYPE_INFRA_OK;
2599 break;
2600 }
2601 RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2602
2603 rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2604 }
2605
2606 #define rtw_calchash(addr) \
2607 (ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2608
2609 static void
2610 rtw_pktfilt_load(struct rtw_softc *sc)
2611 {
2612 struct rtw_regs *regs = &sc->sc_regs;
2613 struct ieee80211com *ic = &sc->sc_ic;
2614 struct ethercom *ec = &sc->sc_ec;
2615 struct ifnet *ifp = &sc->sc_if;
2616 int hash;
2617 uint32_t hashes[2] = { 0, 0 };
2618 struct ether_multi *enm;
2619 struct ether_multistep step;
2620
2621 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2622
2623 sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2624 sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2625
2626 sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2627 /* MAC auto-reset PHY (huh?) */
2628 sc->sc_rcr |= RTW_RCR_ENMARP;
2629 /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
2630 sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2631
2632 switch (ic->ic_opmode) {
2633 case IEEE80211_M_MONITOR:
2634 sc->sc_rcr |= RTW_RCR_MONITOR;
2635 break;
2636 case IEEE80211_M_AHDEMO:
2637 case IEEE80211_M_IBSS:
2638 /* receive broadcasts in our BSS */
2639 sc->sc_rcr |= RTW_RCR_ADD3;
2640 break;
2641 default:
2642 break;
2643 }
2644
2645 ifp->if_flags &= ~IFF_ALLMULTI;
2646
2647 /*
2648 * Program the 64-bit multicast hash filter.
2649 */
2650 ETHER_FIRST_MULTI(step, ec, enm);
2651 while (enm != NULL) {
2652 /* XXX */
2653 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2654 ETHER_ADDR_LEN) != 0) {
2655 ifp->if_flags |= IFF_ALLMULTI;
2656 break;
2657 }
2658
2659 hash = rtw_calchash(enm->enm_addrlo);
2660 hashes[hash >> 5] |= (1 << (hash & 0x1f));
2661 ETHER_NEXT_MULTI(step, enm);
2662 }
2663
2664 /* XXX accept all broadcast if scanning */
2665 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2666 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2667
2668 if (ifp->if_flags & IFF_PROMISC) {
2669 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2670 sc->sc_rcr |= RTW_RCR_ACRC32; /* accept frames failing CRC */
2671 sc->sc_rcr |= RTW_RCR_AICV; /* accept frames failing ICV */
2672 ifp->if_flags |= IFF_ALLMULTI;
2673 }
2674
2675 if (ifp->if_flags & IFF_ALLMULTI)
2676 hashes[0] = hashes[1] = 0xffffffff;
2677
2678 if ((hashes[0] | hashes[1]) != 0)
2679 sc->sc_rcr |= RTW_RCR_AM; /* accept multicast */
2680
2681 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2682 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2683 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2684 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2685
2686 DPRINTF(sc, RTW_DEBUG_PKTFILT,
2687 ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2688 device_xname(sc->sc_dev), RTW_READ(regs, RTW_MAR0),
2689 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2690 }
2691
2692 static struct mbuf *
2693 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2694 {
2695 struct ieee80211com *ic = &sc->sc_ic;
2696 struct mbuf *m;
2697 struct ieee80211_beacon_offsets boff;
2698
2699 if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2700 RTW_DPRINTF(RTW_DEBUG_BEACON,
2701 ("%s: m %p len %u\n", __func__, m, m->m_len));
2702 }
2703 return m;
2704 }
2705
2706 /* Must be called at splnet. */
2707 static int
2708 rtw_init(struct ifnet *ifp)
2709 {
2710 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2711 struct ieee80211com *ic = &sc->sc_ic;
2712 struct rtw_regs *regs = &sc->sc_regs;
2713 int rc;
2714
2715 if (device_is_active(sc->sc_dev)) {
2716 /* Cancel pending I/O and reset. */
2717 rtw_stop(ifp, 0);
2718 } else if (!pmf_device_resume(sc->sc_dev, &sc->sc_qual) ||
2719 !device_is_active(sc->sc_dev))
2720 return 0;
2721
2722 DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2723 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2724 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2725
2726 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2727 goto out;
2728
2729 if ((rc = rtw_swring_setup(sc)) != 0)
2730 goto out;
2731
2732 rtw_transmit_config(regs);
2733
2734 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2735
2736 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2737 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2738
2739 /* long PLCP header, 1Mb/2Mb basic rate */
2740 RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2741 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2742
2743 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2744 rtw_set_access(regs, RTW_ACCESS_NONE);
2745
2746 /* XXX from reference sources */
2747 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2748 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2749
2750 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev);
2751
2752 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2753 /* from Linux driver */
2754 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2755
2756 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2757
2758 rtw_enable_interrupts(sc);
2759
2760 rtw_pktfilt_load(sc);
2761
2762 rtw_hwring_setup(sc);
2763
2764 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2765
2766 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2767
2768 ifp->if_flags |= IFF_RUNNING;
2769 ic->ic_state = IEEE80211_S_INIT;
2770
2771 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2772 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2773
2774 rtw_resume_ticks(sc);
2775
2776 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2777
2778 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2779 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2780 else
2781 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2782
2783 out:
2784 aprint_error_dev(sc->sc_dev, "interface not running\n");
2785 return rc;
2786 }
2787
2788 static inline void
2789 rtw_led_init(struct rtw_regs *regs)
2790 {
2791 uint8_t cfg0, cfg1;
2792
2793 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2794
2795 cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2796 cfg0 |= RTW_CONFIG0_LEDGPOEN;
2797 RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2798
2799 cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2800 RTW_DPRINTF(RTW_DEBUG_LED,
2801 ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2802
2803 cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2804 cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2805 RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2806
2807 rtw_set_access(regs, RTW_ACCESS_NONE);
2808 }
2809
2810 /*
2811 * IEEE80211_S_INIT: LED1 off
2812 *
2813 * IEEE80211_S_AUTH,
2814 * IEEE80211_S_ASSOC,
2815 * IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2816 *
2817 * IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx
2818 */
2819 static void
2820 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2821 {
2822 struct rtw_led_state *ls;
2823
2824 ls = &sc->sc_led_state;
2825
2826 switch (nstate) {
2827 case IEEE80211_S_INIT:
2828 rtw_led_init(&sc->sc_regs);
2829 aprint_debug_dev(sc->sc_dev, "stopping blink\n");
2830 callout_stop(&ls->ls_slow_ch);
2831 callout_stop(&ls->ls_fast_ch);
2832 ls->ls_slowblink = 0;
2833 ls->ls_actblink = 0;
2834 ls->ls_default = 0;
2835 break;
2836 case IEEE80211_S_SCAN:
2837 aprint_debug_dev(sc->sc_dev, "scheduling blink\n");
2838 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2839 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2840 /*FALLTHROUGH*/
2841 case IEEE80211_S_AUTH:
2842 case IEEE80211_S_ASSOC:
2843 ls->ls_default = RTW_LED1;
2844 ls->ls_actblink = RTW_LED1;
2845 ls->ls_slowblink = RTW_LED1;
2846 break;
2847 case IEEE80211_S_RUN:
2848 ls->ls_slowblink = 0;
2849 break;
2850 }
2851 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2852 }
2853
2854 static void
2855 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2856 {
2857 uint8_t led_condition;
2858 bus_size_t ofs;
2859 uint8_t mask, newval, val;
2860
2861 led_condition = ls->ls_default;
2862
2863 if (ls->ls_state & RTW_LED_S_SLOW)
2864 led_condition ^= ls->ls_slowblink;
2865 if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX))
2866 led_condition ^= ls->ls_actblink;
2867
2868 RTW_DPRINTF(RTW_DEBUG_LED,
2869 ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2870
2871 switch (hwverid) {
2872 default:
2873 case 'F':
2874 ofs = RTW_PSR;
2875 newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2876 if (led_condition & RTW_LED0)
2877 newval &= ~RTW_PSR_LEDGPO0;
2878 if (led_condition & RTW_LED1)
2879 newval &= ~RTW_PSR_LEDGPO1;
2880 break;
2881 case 'D':
2882 ofs = RTW_9346CR;
2883 mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2884 newval = RTW_9346CR_EEM_PROGRAM;
2885 if (led_condition & RTW_LED0)
2886 newval |= RTW_9346CR_EEDI;
2887 if (led_condition & RTW_LED1)
2888 newval |= RTW_9346CR_EECS;
2889 break;
2890 }
2891 val = RTW_READ8(regs, ofs);
2892 RTW_DPRINTF(RTW_DEBUG_LED,
2893 ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2894 (uintptr_t)ofs));
2895 val &= ~mask;
2896 val |= newval;
2897 RTW_WRITE8(regs, ofs, val);
2898 RTW_DPRINTF(RTW_DEBUG_LED,
2899 ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2900 (uintptr_t)ofs));
2901 RTW_SYNC(regs, ofs, ofs);
2902 }
2903
2904 static void
2905 rtw_led_fastblink(void *arg)
2906 {
2907 int ostate, s;
2908 struct rtw_softc *sc = (struct rtw_softc *)arg;
2909 struct rtw_led_state *ls = &sc->sc_led_state;
2910
2911 s = splnet();
2912 ostate = ls->ls_state;
2913 ls->ls_state ^= ls->ls_event;
2914
2915 if ((ls->ls_event & RTW_LED_S_TX) == 0)
2916 ls->ls_state &= ~RTW_LED_S_TX;
2917
2918 if ((ls->ls_event & RTW_LED_S_RX) == 0)
2919 ls->ls_state &= ~RTW_LED_S_RX;
2920
2921 ls->ls_event = 0;
2922
2923 if (ostate != ls->ls_state)
2924 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2925 splx(s);
2926
2927 aprint_debug_dev(sc->sc_dev, "scheduling fast blink\n");
2928 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2929 }
2930
2931 static void
2932 rtw_led_slowblink(void *arg)
2933 {
2934 int s;
2935 struct rtw_softc *sc = (struct rtw_softc *)arg;
2936 struct rtw_led_state *ls = &sc->sc_led_state;
2937
2938 s = splnet();
2939 ls->ls_state ^= RTW_LED_S_SLOW;
2940 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2941 splx(s);
2942 aprint_debug_dev(sc->sc_dev, "scheduling slow blink\n");
2943 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2944 }
2945
2946 static void
2947 rtw_led_detach(struct rtw_led_state *ls)
2948 {
2949 callout_destroy(&ls->ls_fast_ch);
2950 callout_destroy(&ls->ls_slow_ch);
2951 }
2952
2953 static void
2954 rtw_led_attach(struct rtw_led_state *ls, void *arg)
2955 {
2956 callout_init(&ls->ls_fast_ch, 0);
2957 callout_init(&ls->ls_slow_ch, 0);
2958 callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
2959 callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
2960 }
2961
2962 static int
2963 rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2964 {
2965 int rc = 0, s;
2966 struct rtw_softc *sc = ifp->if_softc;
2967
2968 s = splnet();
2969 if (cmd == SIOCSIFFLAGS) {
2970 if ((rc = ifioctl_common(ifp, cmd, data)) != 0)
2971 ;
2972 else switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2973 case IFF_UP:
2974 rc = rtw_init(ifp);
2975 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2976 break;
2977 case IFF_UP|IFF_RUNNING:
2978 if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2979 rtw_pktfilt_load(sc);
2980 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2981 break;
2982 case IFF_RUNNING:
2983 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2984 rtw_stop(ifp, 1);
2985 break;
2986 default:
2987 break;
2988 }
2989 } else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
2990 ; /* nothing to do */
2991 else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
2992 /* reload packet filter if running */
2993 if (ifp->if_flags & IFF_RUNNING)
2994 rtw_pktfilt_load(sc);
2995 rc = 0;
2996 } else if ((ifp->if_flags & IFF_UP) != 0)
2997 rc = rtw_init(ifp);
2998 else
2999 rc = 0;
3000 splx(s);
3001 return rc;
3002 }
3003
3004 /* Select a transmit ring with at least one h/w and s/w descriptor free.
3005 * Return 0 on success, -1 on failure.
3006 */
3007 static inline int
3008 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
3009 struct rtw_txdesc_blk **tdbp, int pri)
3010 {
3011 struct rtw_txsoft_blk *tsb;
3012 struct rtw_txdesc_blk *tdb;
3013
3014 KASSERT(pri >= 0 && pri < RTW_NTXPRI);
3015
3016 tsb = &sc->sc_txsoft_blk[pri];
3017 tdb = &sc->sc_txdesc_blk[pri];
3018
3019 if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
3020 if (tsb->tsb_tx_timer == 0)
3021 tsb->tsb_tx_timer = 5;
3022 *tsbp = NULL;
3023 *tdbp = NULL;
3024 return -1;
3025 }
3026 *tsbp = tsb;
3027 *tdbp = tdb;
3028 return 0;
3029 }
3030
3031 static inline struct mbuf *
3032 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
3033 struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
3034 struct ieee80211_node **nip, short *if_flagsp)
3035 {
3036 struct mbuf *m;
3037
3038 if (IF_IS_EMPTY(ifq))
3039 return NULL;
3040 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3041 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3042 __func__, pri));
3043 *if_flagsp |= IFF_OACTIVE;
3044 sc->sc_if.if_timer = 1;
3045 return NULL;
3046 }
3047 IF_DEQUEUE(ifq, m);
3048 *nip = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3049 m->m_pkthdr.rcvif = NULL;
3050 KASSERT(*nip != NULL);
3051 return m;
3052 }
3053
3054 /* Point *mp at the next 802.11 frame to transmit. Point *tsbp
3055 * at the driver's selection of transmit control block for the packet.
3056 */
3057 static inline int
3058 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
3059 struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
3060 struct ieee80211_node **nip)
3061 {
3062 int pri;
3063 struct ether_header *eh;
3064 struct mbuf *m0;
3065 struct rtw_softc *sc;
3066 short *if_flagsp;
3067
3068 *mp = NULL;
3069
3070 sc = (struct rtw_softc *)ifp->if_softc;
3071
3072 DPRINTF(sc, RTW_DEBUG_XMIT,
3073 ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3074
3075 if_flagsp = &ifp->if_flags;
3076
3077 if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3078 (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3079 tdbp, nip, if_flagsp)) != NULL) {
3080 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3081 __func__));
3082 return 0;
3083 }
3084
3085 if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3086 tdbp, nip, if_flagsp)) != NULL) {
3087 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3088 __func__));
3089 return 0;
3090 }
3091
3092 if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3093 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3094 return 0;
3095 }
3096
3097 IFQ_POLL(&ifp->if_snd, m0);
3098 if (m0 == NULL) {
3099 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3100 __func__));
3101 return 0;
3102 }
3103
3104 pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3105
3106 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3107 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3108 __func__, pri));
3109 *if_flagsp |= IFF_OACTIVE;
3110 sc->sc_if.if_timer = 1;
3111 return 0;
3112 }
3113
3114 IFQ_DEQUEUE(&ifp->if_snd, m0);
3115 if (m0 == NULL) {
3116 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3117 __func__));
3118 return 0;
3119 }
3120 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3121 ifp->if_opackets++;
3122 bpf_mtap(ifp, m0);
3123 eh = mtod(m0, struct ether_header *);
3124 *nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3125 if (*nip == NULL) {
3126 /* NB: ieee80211_find_txnode does stat+msg */
3127 m_freem(m0);
3128 return -1;
3129 }
3130 if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3131 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3132 ifp->if_oerrors++;
3133 return -1;
3134 }
3135 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3136 *mp = m0;
3137 return 0;
3138 }
3139
3140 static int
3141 rtw_seg_too_short(bus_dmamap_t dmamap)
3142 {
3143 int i;
3144 for (i = 0; i < dmamap->dm_nsegs; i++) {
3145 if (dmamap->dm_segs[i].ds_len < 4)
3146 return 1;
3147 }
3148 return 0;
3149 }
3150
3151 /* TBD factor with atw_start */
3152 static struct mbuf *
3153 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3154 u_int ndescfree, device_t dev)
3155 {
3156 int first, rc;
3157 struct mbuf *m, *m0;
3158
3159 m0 = chain;
3160
3161 /*
3162 * Load the DMA map. Copy and try (once) again if the packet
3163 * didn't fit in the alloted number of segments.
3164 */
3165 for (first = 1;
3166 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3167 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
3168 dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3169 first = 0) {
3170 if (rc == 0) {
3171 #ifdef RTW_DIAGxxx
3172 if (rtw_seg_too_short(dmam)) {
3173 printf("%s: short segment, mbuf lengths:", __func__);
3174 for (m = m0; m; m = m->m_next)
3175 printf(" %d", m->m_len);
3176 printf("\n");
3177 }
3178 #endif
3179 bus_dmamap_unload(dmat, dmam);
3180 }
3181 MGETHDR(m, M_DONTWAIT, MT_DATA);
3182 if (m == NULL) {
3183 aprint_error_dev(dev, "unable to allocate Tx mbuf\n");
3184 break;
3185 }
3186 if (m0->m_pkthdr.len > MHLEN) {
3187 MCLGET(m, M_DONTWAIT);
3188 if ((m->m_flags & M_EXT) == 0) {
3189 aprint_error_dev(dev,
3190 "cannot allocate Tx cluster\n");
3191 m_freem(m);
3192 break;
3193 }
3194 }
3195 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3196 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3197 m_freem(m0);
3198 m0 = m;
3199 m = NULL;
3200 }
3201 if (rc != 0) {
3202 aprint_error_dev(dev, "cannot load Tx buffer, rc = %d\n", rc);
3203 m_freem(m0);
3204 return NULL;
3205 } else if (rtw_seg_too_short(dmam)) {
3206 aprint_error_dev(dev,
3207 "cannot load Tx buffer, segment too short\n");
3208 bus_dmamap_unload(dmat, dmam);
3209 m_freem(m0);
3210 return NULL;
3211 } else if (dmam->dm_nsegs > ndescfree) {
3212 aprint_error_dev(dev, "too many tx segments\n");
3213 bus_dmamap_unload(dmat, dmam);
3214 m_freem(m0);
3215 return NULL;
3216 }
3217 return m0;
3218 }
3219
3220 #ifdef RTW_DEBUG
3221 static void
3222 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3223 struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3224 {
3225 struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3226 DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3227 "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3228 device_xname(sc->sc_dev), ts, action, desc,
3229 le32toh(td->td_buf), le32toh(td->td_next),
3230 le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3231 le32toh(td->td_len)));
3232 }
3233 #endif /* RTW_DEBUG */
3234
3235 static void
3236 rtw_start(struct ifnet *ifp)
3237 {
3238 int desc, i, lastdesc, npkt, rate;
3239 uint32_t proto_ctl0, ctl0, ctl1;
3240 bus_dmamap_t dmamap;
3241 struct ieee80211com *ic;
3242 struct ieee80211_duration *d0;
3243 struct ieee80211_frame_min *wh;
3244 struct ieee80211_node *ni = NULL; /* XXX: GCC */
3245 struct mbuf *m0;
3246 struct rtw_softc *sc;
3247 struct rtw_txsoft_blk *tsb = NULL; /* XXX: GCC */
3248 struct rtw_txdesc_blk *tdb = NULL; /* XXX: GCC */
3249 struct rtw_txsoft *ts;
3250 struct rtw_txdesc *td;
3251 struct ieee80211_key *k;
3252
3253 sc = (struct rtw_softc *)ifp->if_softc;
3254 ic = &sc->sc_ic;
3255
3256 DPRINTF(sc, RTW_DEBUG_XMIT,
3257 ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3258
3259 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3260 goto out;
3261
3262 /* XXX do real rate control */
3263 proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3264
3265 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3266 proto_ctl0 |= RTW_TXCTL0_SPLCP;
3267
3268 for (;;) {
3269 if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3270 continue;
3271 if (m0 == NULL)
3272 break;
3273
3274 wh = mtod(m0, struct ieee80211_frame_min *);
3275
3276 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3277 (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3278 m_freem(m0);
3279 break;
3280 } else
3281 k = NULL;
3282
3283 ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3284
3285 dmamap = ts->ts_dmamap;
3286
3287 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3288 tdb->tdb_nfree, sc->sc_dev);
3289
3290 if (m0 == NULL || dmamap->dm_nsegs == 0) {
3291 DPRINTF(sc, RTW_DEBUG_XMIT,
3292 ("%s: fail dmamap load\n", __func__));
3293 goto post_dequeue_err;
3294 }
3295
3296 /* Note well: rtw_dmamap_load_txbuf may have created
3297 * a new chain, so we must find the header once
3298 * more.
3299 */
3300 wh = mtod(m0, struct ieee80211_frame_min *);
3301
3302 /* XXX do real rate control */
3303 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3304 IEEE80211_FC0_TYPE_MGT)
3305 rate = 2;
3306 else
3307 rate = MAX(2, ieee80211_get_rate(ni));
3308
3309 #ifdef RTW_DEBUG
3310 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3311 (IFF_DEBUG|IFF_LINK2)) {
3312 ieee80211_dump_pkt(mtod(m0, uint8_t *),
3313 (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3314 : sizeof(wh),
3315 rate, 0);
3316 }
3317 #endif /* RTW_DEBUG */
3318 ctl0 = proto_ctl0 |
3319 __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3320
3321 switch (rate) {
3322 default:
3323 case 2:
3324 ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3325 break;
3326 case 4:
3327 ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3328 break;
3329 case 11:
3330 ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3331 break;
3332 case 22:
3333 ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3334 break;
3335 }
3336 /* XXX >= ? Compare after fragmentation? */
3337 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3338 ctl0 |= RTW_TXCTL0_RTSEN;
3339
3340 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3341 * seem to care, since we don't activate h/w Tx
3342 * encryption.
3343 */
3344 if (k != NULL &&
3345 k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP) {
3346 ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3347 RTW_TXCTL0_KEYID_MASK;
3348 }
3349
3350 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3351 IEEE80211_FC0_TYPE_MGT) {
3352 ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3353 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3354 IEEE80211_FC0_SUBTYPE_BEACON)
3355 ctl0 |= RTW_TXCTL0_BEACON;
3356 }
3357
3358 if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3359 ic->ic_flags, ic->ic_fragthreshold,
3360 rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3361 (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3362 (IFF_DEBUG|IFF_LINK2)) == -1) {
3363 DPRINTF(sc, RTW_DEBUG_XMIT,
3364 ("%s: fail compute duration\n", __func__));
3365 goto post_load_err;
3366 }
3367
3368 d0 = &ts->ts_d0;
3369
3370 *(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3371
3372 ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3373 __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3374
3375 if (d0->d_residue)
3376 ctl1 |= RTW_TXCTL1_LENGEXT;
3377
3378 /* TBD fragmentation */
3379
3380 ts->ts_first = tdb->tdb_next;
3381
3382 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3383 BUS_DMASYNC_PREWRITE);
3384
3385 KASSERT(ts->ts_first < tdb->tdb_ndesc);
3386
3387 bpf_mtap3(ic->ic_rawbpf, m0);
3388
3389 if (sc->sc_radiobpf != NULL) {
3390 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3391
3392 rt->rt_rate = rate;
3393
3394 bpf_mtap2(sc->sc_radiobpf, rt, sizeof(sc->sc_txtapu),
3395 m0);
3396 }
3397
3398 for (i = 0, lastdesc = desc = ts->ts_first;
3399 i < dmamap->dm_nsegs;
3400 i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3401 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3402 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3403 ("%s: seg too long\n", __func__));
3404 goto post_load_err;
3405 }
3406 td = &tdb->tdb_desc[desc];
3407 td->td_ctl0 = htole32(ctl0);
3408 td->td_ctl1 = htole32(ctl1);
3409 td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3410 td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3411 td->td_next = htole32(RTW_NEXT_DESC(tdb, desc));
3412 if (i != 0)
3413 td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3414 lastdesc = desc;
3415 #ifdef RTW_DEBUG
3416 rtw_print_txdesc(sc, "load", ts, tdb, desc);
3417 #endif /* RTW_DEBUG */
3418 }
3419
3420 KASSERT(desc < tdb->tdb_ndesc);
3421
3422 ts->ts_ni = ni;
3423 KASSERT(ni != NULL);
3424 ts->ts_mbuf = m0;
3425 ts->ts_last = lastdesc;
3426 tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3427 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3428 htole32(RTW_TXCTL0_FS);
3429
3430 #ifdef RTW_DEBUG
3431 rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3432 rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3433 #endif /* RTW_DEBUG */
3434
3435 tdb->tdb_nfree -= dmamap->dm_nsegs;
3436 tdb->tdb_next = desc;
3437
3438 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3439 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3440
3441 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3442 htole32(RTW_TXCTL0_OWN);
3443
3444 #ifdef RTW_DEBUG
3445 rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3446 #endif /* RTW_DEBUG */
3447
3448 rtw_txdescs_sync(tdb, ts->ts_first, 1,
3449 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3450
3451 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3452 SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3453
3454 if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3455 sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3456 tsb->tsb_tx_timer = 5;
3457 ifp->if_timer = 1;
3458 rtw_tx_kick(&sc->sc_regs, tsb->tsb_poll);
3459 }
3460 out:
3461 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3462 return;
3463 post_load_err:
3464 bus_dmamap_unload(sc->sc_dmat, dmamap);
3465 m_freem(m0);
3466 post_dequeue_err:
3467 ieee80211_free_node(ni);
3468 return;
3469 }
3470
3471 static void
3472 rtw_idle(struct rtw_regs *regs)
3473 {
3474 int active;
3475 uint8_t tppoll;
3476
3477 /* request stop DMA; wait for packets to stop transmitting. */
3478
3479 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3480 RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3481
3482 for (active = 0; active < 300 &&
3483 (tppoll = RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0;
3484 active++)
3485 DELAY(10);
3486 printf("%s: transmit DMA idle in %dus, tppoll %02" PRIx8 "\n", __func__,
3487 active * 10, tppoll);
3488 }
3489
3490 static void
3491 rtw_watchdog(struct ifnet *ifp)
3492 {
3493 int pri, tx_timeouts = 0;
3494 struct rtw_softc *sc;
3495 struct rtw_txsoft_blk *tsb;
3496
3497 sc = ifp->if_softc;
3498
3499 ifp->if_timer = 0;
3500
3501 if (!device_is_active(sc->sc_dev))
3502 return;
3503
3504 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3505 tsb = &sc->sc_txsoft_blk[pri];
3506
3507 if (tsb->tsb_tx_timer == 0)
3508 continue;
3509 else if (--tsb->tsb_tx_timer == 0) {
3510 if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3511 continue;
3512 else if (rtw_collect_txring(sc, tsb,
3513 &sc->sc_txdesc_blk[pri], 0))
3514 continue;
3515 printf("%s: transmit timeout, priority %d\n",
3516 ifp->if_xname, pri);
3517 ifp->if_oerrors++;
3518 if (pri != RTW_TXPRIBCN)
3519 tx_timeouts++;
3520 } else
3521 ifp->if_timer = 1;
3522 }
3523
3524 if (tx_timeouts > 0) {
3525 /* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3526 * reset s/w tx-ring pointers, and start transmission.
3527 *
3528 * TBD Stop/restart just the broken rings?
3529 */
3530 rtw_idle(&sc->sc_regs);
3531 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
3532 rtw_txdescs_reset(sc);
3533 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3534 rtw_start(ifp);
3535 }
3536 ieee80211_watchdog(&sc->sc_ic);
3537 return;
3538 }
3539
3540 static void
3541 rtw_next_scan(void *arg)
3542 {
3543 struct ieee80211com *ic = arg;
3544 int s;
3545
3546 /* don't call rtw_start w/o network interrupts blocked */
3547 s = splnet();
3548 if (ic->ic_state == IEEE80211_S_SCAN)
3549 ieee80211_next_scan(ic);
3550 splx(s);
3551 }
3552
3553 static void
3554 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3555 {
3556 uint16_t bcnitv, bintritv, intval;
3557 int i;
3558 struct rtw_regs *regs = &sc->sc_regs;
3559
3560 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3561 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3562
3563 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3564
3565 rtw_set_access(regs, RTW_ACCESS_CONFIG);
3566
3567 intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3568
3569 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3570 bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3571 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3572 /* interrupt host 1ms before the TBTT */
3573 bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3574 bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3575 RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3576 /* magic from Linux */
3577 RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3578 RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3579 rtw_set_access(regs, RTW_ACCESS_NONE);
3580
3581 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3582 }
3583
3584 /* Synchronize the hardware state with the software state. */
3585 static int
3586 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3587 {
3588 struct ifnet *ifp = ic->ic_ifp;
3589 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3590 enum ieee80211_state ostate;
3591 int error;
3592
3593 ostate = ic->ic_state;
3594
3595 aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3596 rtw_led_newstate(sc, nstate);
3597
3598 aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3599 if (nstate == IEEE80211_S_INIT) {
3600 callout_stop(&sc->sc_scan_ch);
3601 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3602 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3603 }
3604
3605 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3606 rtw_pwrstate(sc, RTW_ON);
3607
3608 if ((error = rtw_tune(sc)) != 0)
3609 return error;
3610
3611 switch (nstate) {
3612 case IEEE80211_S_INIT:
3613 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3614 break;
3615 case IEEE80211_S_SCAN:
3616 if (ostate != IEEE80211_S_SCAN) {
3617 (void)memset(ic->ic_bss->ni_bssid, 0,
3618 IEEE80211_ADDR_LEN);
3619 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3620 }
3621
3622 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3623 rtw_next_scan, ic);
3624
3625 break;
3626 case IEEE80211_S_RUN:
3627 switch (ic->ic_opmode) {
3628 case IEEE80211_M_HOSTAP:
3629 case IEEE80211_M_IBSS:
3630 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3631 /*FALLTHROUGH*/
3632 case IEEE80211_M_AHDEMO:
3633 case IEEE80211_M_STA:
3634 rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3635 ic->ic_bss->ni_intval);
3636 break;
3637 case IEEE80211_M_MONITOR:
3638 break;
3639 }
3640 rtw_set_nettype(sc, ic->ic_opmode);
3641 break;
3642 case IEEE80211_S_ASSOC:
3643 case IEEE80211_S_AUTH:
3644 break;
3645 }
3646
3647 if (nstate != IEEE80211_S_SCAN)
3648 callout_stop(&sc->sc_scan_ch);
3649
3650 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3651 }
3652
3653 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3654 static uint64_t
3655 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3656 {
3657 uint32_t tsftl, tsfth;
3658
3659 tsfth = RTW_READ(regs, RTW_TSFTRH);
3660 tsftl = RTW_READ(regs, RTW_TSFTRL);
3661 if (tsftl < rstamp) /* Compensate for rollover. */
3662 tsfth--;
3663 return ((uint64_t)tsfth << 32) | rstamp;
3664 }
3665
3666 static void
3667 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3668 struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3669 {
3670 struct ifnet *ifp = ic->ic_ifp;
3671 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3672
3673 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3674
3675 switch (subtype) {
3676 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3677 case IEEE80211_FC0_SUBTYPE_BEACON:
3678 if (ic->ic_opmode == IEEE80211_M_IBSS &&
3679 ic->ic_state == IEEE80211_S_RUN &&
3680 device_is_active(sc->sc_dev)) {
3681 uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3682 if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3683 (void)ieee80211_ibss_merge(ni);
3684 }
3685 break;
3686 default:
3687 break;
3688 }
3689 return;
3690 }
3691
3692 static struct ieee80211_node *
3693 rtw_node_alloc(struct ieee80211_node_table *nt)
3694 {
3695 struct ifnet *ifp = nt->nt_ic->ic_ifp;
3696 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3697 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3698
3699 DPRINTF(sc, RTW_DEBUG_NODE,
3700 ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
3701 return ni;
3702 }
3703
3704 static void
3705 rtw_node_free(struct ieee80211_node *ni)
3706 {
3707 struct ieee80211com *ic = ni->ni_ic;
3708 struct ifnet *ifp = ic->ic_ifp;
3709 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3710
3711 DPRINTF(sc, RTW_DEBUG_NODE,
3712 ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
3713 ether_sprintf(ni->ni_bssid)));
3714 (*sc->sc_mtbl.mt_node_free)(ni);
3715 }
3716
3717 static int
3718 rtw_media_change(struct ifnet *ifp)
3719 {
3720 int error;
3721
3722 error = ieee80211_media_change(ifp);
3723 if (error == ENETRESET) {
3724 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3725 (IFF_RUNNING|IFF_UP))
3726 rtw_init(ifp); /* XXX lose error */
3727 error = 0;
3728 }
3729 return error;
3730 }
3731
3732 static void
3733 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3734 {
3735 struct rtw_softc *sc = ifp->if_softc;
3736
3737 if (!device_is_active(sc->sc_dev)) {
3738 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3739 imr->ifm_status = 0;
3740 return;
3741 }
3742 ieee80211_media_status(ifp, imr);
3743 }
3744
3745 static inline void
3746 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3747 {
3748 (void)strlcpy(ifp->if_xname, dvname, IFNAMSIZ);
3749 ifp->if_softc = softc;
3750 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
3751 IFF_NOTRAILERS;
3752 ifp->if_ioctl = rtw_ioctl;
3753 ifp->if_start = rtw_start;
3754 ifp->if_watchdog = rtw_watchdog;
3755 ifp->if_init = rtw_init;
3756 ifp->if_stop = rtw_stop;
3757 }
3758
3759 static inline void
3760 rtw_set80211props(struct ieee80211com *ic)
3761 {
3762 int nrate;
3763 ic->ic_phytype = IEEE80211_T_DS;
3764 ic->ic_opmode = IEEE80211_M_STA;
3765 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3766 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
3767
3768 nrate = 0;
3769 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3770 IEEE80211_RATE_BASIC | 2;
3771 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3772 IEEE80211_RATE_BASIC | 4;
3773 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3774 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3775 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3776 }
3777
3778 static inline void
3779 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3780 {
3781 mtbl->mt_newstate = ic->ic_newstate;
3782 ic->ic_newstate = rtw_newstate;
3783
3784 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3785 ic->ic_recv_mgmt = rtw_recv_mgmt;
3786
3787 mtbl->mt_node_free = ic->ic_node_free;
3788 ic->ic_node_free = rtw_node_free;
3789
3790 mtbl->mt_node_alloc = ic->ic_node_alloc;
3791 ic->ic_node_alloc = rtw_node_alloc;
3792
3793 ic->ic_crypto.cs_key_delete = rtw_key_delete;
3794 ic->ic_crypto.cs_key_set = rtw_key_set;
3795 ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3796 ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3797 }
3798
3799 static inline void
3800 rtw_init_radiotap(struct rtw_softc *sc)
3801 {
3802 uint32_t present;
3803
3804 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3805 sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3806
3807 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
3808 present = htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT);
3809 else
3810 present = htole32(RTW_RX_RADIOTAP_PRESENT);
3811 sc->sc_rxtap.rr_ihdr.it_present = present;
3812
3813 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3814 sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3815 sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3816 }
3817
3818 static int
3819 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3820 {
3821 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3822 SIMPLEQ_INIT(&tsb->tsb_freeq);
3823 tsb->tsb_ndesc = qlen;
3824 tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3825 M_NOWAIT);
3826 if (tsb->tsb_desc == NULL)
3827 return ENOMEM;
3828 return 0;
3829 }
3830
3831 static void
3832 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3833 {
3834 int pri;
3835 struct rtw_txsoft_blk *tsb;
3836
3837 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3838 tsb = &sc->sc_txsoft_blk[pri];
3839 free(tsb->tsb_desc, M_DEVBUF);
3840 tsb->tsb_desc = NULL;
3841 }
3842 }
3843
3844 static int
3845 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3846 {
3847 int pri, rc = 0;
3848 int qlen[RTW_NTXPRI] =
3849 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3850 struct rtw_txsoft_blk *tsbs;
3851
3852 tsbs = sc->sc_txsoft_blk;
3853
3854 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3855 rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3856 if (rc != 0)
3857 break;
3858 }
3859 tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3860 tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3861 tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3862 tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3863 return rc;
3864 }
3865
3866 static void
3867 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3868 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3869 {
3870 tdb->tdb_ndesc = ndesc;
3871 tdb->tdb_desc = desc;
3872 tdb->tdb_physbase = physbase;
3873 tdb->tdb_ofs = ofs;
3874
3875 (void)memset(tdb->tdb_desc, 0,
3876 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3877
3878 rtw_txdesc_blk_init(tdb);
3879 tdb->tdb_next = 0;
3880 }
3881
3882 static void
3883 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3884 {
3885 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3886 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3887 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3888
3889 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3890 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3891 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3892
3893 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3894 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3895 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3896
3897 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3898 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3899 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3900 }
3901
3902 static struct rtw_rf *
3903 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3904 {
3905 rtw_rf_write_t rf_write;
3906 struct rtw_rf *rf;
3907
3908 switch (rfchipid) {
3909 default:
3910 rf_write = rtw_rf_hostwrite;
3911 break;
3912 case RTW_RFCHIPID_INTERSIL:
3913 case RTW_RFCHIPID_PHILIPS:
3914 case RTW_RFCHIPID_GCT: /* XXX a guess */
3915 case RTW_RFCHIPID_RFMD:
3916 rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3917 break;
3918 }
3919
3920 switch (rfchipid) {
3921 case RTW_RFCHIPID_GCT:
3922 rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3923 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3924 break;
3925 case RTW_RFCHIPID_MAXIM:
3926 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3927 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3928 break;
3929 case RTW_RFCHIPID_PHILIPS:
3930 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3931 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3932 break;
3933 case RTW_RFCHIPID_RFMD:
3934 /* XXX RFMD has no RF constructor */
3935 sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3936 /*FALLTHROUGH*/
3937 default:
3938 return NULL;
3939 }
3940 rf->rf_continuous_tx_cb =
3941 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3942 rf->rf_continuous_tx_arg = (void *)sc;
3943 return rf;
3944 }
3945
3946 /* Revision C and later use a different PHY delay setting than
3947 * revisions A and B.
3948 */
3949 static uint8_t
3950 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
3951 {
3952 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3953 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3954
3955 uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
3956
3957 RTW_WRITE(regs, RTW_RCR, REVAB);
3958 RTW_WBW(regs, RTW_RCR, RTW_RCR);
3959 RTW_WRITE(regs, RTW_RCR, REVC);
3960
3961 RTW_WBR(regs, RTW_RCR, RTW_RCR);
3962 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3963 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3964
3965 RTW_WRITE(regs, RTW_RCR, old_rcr); /* restore RCR */
3966 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3967
3968 return phydelay;
3969 #undef REVC
3970 }
3971
3972 void
3973 rtw_attach(struct rtw_softc *sc)
3974 {
3975 struct ifnet *ifp = &sc->sc_if;
3976 struct ieee80211com *ic = &sc->sc_ic;
3977 struct rtw_txsoft_blk *tsb;
3978 int pri, rc;
3979
3980 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
3981
3982 rtw_cipher_wep = ieee80211_cipher_wep;
3983 rtw_cipher_wep.ic_decap = rtw_wep_decap;
3984
3985 NEXT_ATTACH_STATE(sc, DETACHED);
3986
3987 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
3988 case RTW_TCR_HWVERID_F:
3989 sc->sc_hwverid = 'F';
3990 break;
3991 case RTW_TCR_HWVERID_D:
3992 sc->sc_hwverid = 'D';
3993 break;
3994 default:
3995 sc->sc_hwverid = '?';
3996 break;
3997 }
3998 aprint_verbose_dev(sc->sc_dev, "hardware version %c\n",
3999 sc->sc_hwverid);
4000
4001 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
4002 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
4003 0);
4004
4005 if (rc != 0) {
4006 aprint_error_dev(sc->sc_dev,
4007 "could not allocate hw descriptors, error %d\n", rc);
4008 goto err;
4009 }
4010
4011 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
4012
4013 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
4014 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
4015 (void **)&sc->sc_descs, BUS_DMA_COHERENT);
4016
4017 if (rc != 0) {
4018 aprint_error_dev(sc->sc_dev,
4019 "could not map hw descriptors, error %d\n", rc);
4020 goto err;
4021 }
4022 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
4023
4024 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
4025 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
4026
4027 if (rc != 0) {
4028 aprint_error_dev(sc->sc_dev,
4029 "could not create DMA map for hw descriptors, error %d\n",
4030 rc);
4031 goto err;
4032 }
4033 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
4034
4035 sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
4036 sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
4037
4038 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4039 sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
4040 sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
4041 }
4042
4043 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
4044 sizeof(struct rtw_descs), NULL, 0);
4045
4046 if (rc != 0) {
4047 aprint_error_dev(sc->sc_dev,
4048 "could not load DMA map for hw descriptors, error %d\n",
4049 rc);
4050 goto err;
4051 }
4052 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
4053
4054 if (rtw_txsoft_blk_setup_all(sc) != 0)
4055 goto err;
4056 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
4057
4058 rtw_txdesc_blk_setup_all(sc);
4059
4060 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4061
4062 sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4063
4064 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4065 tsb = &sc->sc_txsoft_blk[pri];
4066
4067 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4068 &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4069 aprint_error_dev(sc->sc_dev,
4070 "could not load DMA map for hw tx descriptors, "
4071 "error %d\n", rc);
4072 goto err;
4073 }
4074 }
4075
4076 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4077 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4078 RTW_RXQLEN)) != 0) {
4079 aprint_error_dev(sc->sc_dev,
4080 "could not load DMA map for hw rx descriptors, error %d\n",
4081 rc);
4082 goto err;
4083 }
4084 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4085
4086 /* Reset the chip to a known state. */
4087 if (rtw_reset(sc) != 0)
4088 goto err;
4089 NEXT_ATTACH_STATE(sc, FINISH_RESET);
4090
4091 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4092
4093 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4094 sc->sc_flags |= RTW_F_9356SROM;
4095
4096 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4097 sc->sc_dev) != 0)
4098 goto err;
4099
4100 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4101
4102 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4103 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4104 sc->sc_dev) != 0) {
4105 aprint_error_dev(sc->sc_dev,
4106 "attach failed, malformed serial ROM\n");
4107 goto err;
4108 }
4109
4110 aprint_verbose_dev(sc->sc_dev, "%s PHY\n",
4111 ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4112
4113 aprint_verbose_dev(sc->sc_dev, "carrier-sense threshold %u\n",
4114 sc->sc_csthr);
4115
4116 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4117
4118 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4119 sc->sc_flags & RTW_F_DIGPHY);
4120
4121 if (sc->sc_rf == NULL) {
4122 aprint_verbose_dev(sc->sc_dev,
4123 "attach failed, could not attach RF\n");
4124 goto err;
4125 }
4126
4127 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4128
4129 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4130
4131 RTW_DPRINTF(RTW_DEBUG_ATTACH,
4132 ("%s: PHY delay %d\n", device_xname(sc->sc_dev), sc->sc_phydelay));
4133
4134 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4135 rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4136
4137 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels, sc->sc_dev);
4138
4139 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4140 sc->sc_dev) != 0)
4141 goto err;
4142 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4143
4144 rtw_setifprops(ifp, device_xname(sc->sc_dev), (void*)sc);
4145
4146 IFQ_SET_READY(&ifp->if_snd);
4147
4148 sc->sc_ic.ic_ifp = ifp;
4149 rtw_set80211props(&sc->sc_ic);
4150
4151 rtw_led_attach(&sc->sc_led_state, (void *)sc);
4152
4153 /*
4154 * Call MI attach routines.
4155 */
4156 if_attach(ifp);
4157 ieee80211_ifattach(&sc->sc_ic);
4158
4159 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4160
4161 /* possibly we should fill in our own sc_send_prresp, since
4162 * the RTL8180 is probably sending probe responses in ad hoc
4163 * mode.
4164 */
4165
4166 /* complete initialization */
4167 ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4168 callout_init(&sc->sc_scan_ch, 0);
4169
4170 rtw_init_radiotap(sc);
4171
4172 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
4173 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4174
4175 NEXT_ATTACH_STATE(sc, FINISHED);
4176
4177 ieee80211_announce(ic);
4178 return;
4179 err:
4180 rtw_detach(sc);
4181 return;
4182 }
4183
4184 int
4185 rtw_detach(struct rtw_softc *sc)
4186 {
4187 struct ifnet *ifp = &sc->sc_if;
4188 int pri, s;
4189
4190 s = splnet();
4191
4192 switch (sc->sc_attach_state) {
4193 case FINISHED:
4194 rtw_stop(ifp, 1);
4195
4196 pmf_device_deregister(sc->sc_dev);
4197 callout_stop(&sc->sc_scan_ch);
4198 ieee80211_ifdetach(&sc->sc_ic);
4199 if_detach(ifp);
4200 rtw_led_detach(&sc->sc_led_state);
4201 /*FALLTHROUGH*/
4202 case FINISH_ID_STA:
4203 case FINISH_RF_ATTACH:
4204 rtw_rf_destroy(sc->sc_rf);
4205 sc->sc_rf = NULL;
4206 /*FALLTHROUGH*/
4207 case FINISH_PARSE_SROM:
4208 case FINISH_READ_SROM:
4209 rtw_srom_free(&sc->sc_srom);
4210 /*FALLTHROUGH*/
4211 case FINISH_RESET:
4212 case FINISH_RXMAPS_CREATE:
4213 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4214 RTW_RXQLEN);
4215 /*FALLTHROUGH*/
4216 case FINISH_TXMAPS_CREATE:
4217 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4218 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4219 sc->sc_txsoft_blk[pri].tsb_desc,
4220 sc->sc_txsoft_blk[pri].tsb_ndesc);
4221 }
4222 /*FALLTHROUGH*/
4223 case FINISH_TXDESCBLK_SETUP:
4224 case FINISH_TXCTLBLK_SETUP:
4225 rtw_txsoft_blk_cleanup_all(sc);
4226 /*FALLTHROUGH*/
4227 case FINISH_DESCMAP_LOAD:
4228 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4229 /*FALLTHROUGH*/
4230 case FINISH_DESCMAP_CREATE:
4231 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4232 /*FALLTHROUGH*/
4233 case FINISH_DESC_MAP:
4234 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
4235 sizeof(struct rtw_descs));
4236 /*FALLTHROUGH*/
4237 case FINISH_DESC_ALLOC:
4238 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4239 sc->sc_desc_nsegs);
4240 /*FALLTHROUGH*/
4241 case DETACHED:
4242 NEXT_ATTACH_STATE(sc, DETACHED);
4243 break;
4244 }
4245 splx(s);
4246 return 0;
4247 }
4248