rtw.c revision 1.134 1 /* $NetBSD: rtw.c,v 1.134 2019/11/10 21:16:35 chs Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005, 2006, 2007 David Young. All rights
4 * reserved.
5 *
6 * Programmed for NetBSD by David Young.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
19 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
20 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
21 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
28 * OF SUCH DAMAGE.
29 */
30 /*
31 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.134 2019/11/10 21:16:35 chs Exp $");
36
37
38 #include <sys/param.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/callout.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/time.h>
46 #include <sys/types.h>
47 #include <sys/device.h>
48 #include <sys/sockio.h>
49
50 #include <machine/endian.h>
51 #include <sys/bus.h>
52 #include <sys/intr.h> /* splnet */
53
54 #include <net/if.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_radiotap.h>
61
62 #include <net/bpf.h>
63
64 #include <dev/ic/rtwreg.h>
65 #include <dev/ic/rtwvar.h>
66 #include <dev/ic/rtwphyio.h>
67 #include <dev/ic/rtwphy.h>
68
69 #include <dev/ic/smc93cx6var.h>
70
71 static int rtw_rfprog_fallback = 0;
72 static int rtw_host_rfio = 0;
73
74 #ifdef RTW_DEBUG
75 int rtw_debug = 0;
76 static int rtw_rxbufs_limit = RTW_RXQLEN;
77 #endif /* RTW_DEBUG */
78
79 #define NEXT_ATTACH_STATE(sc, state) do { \
80 DPRINTF(sc, RTW_DEBUG_ATTACH, \
81 ("%s: attach state %s\n", __func__, #state)); \
82 sc->sc_attach_state = state; \
83 } while (0)
84
85 int rtw_dwelltime = 200; /* milliseconds */
86 static struct ieee80211_cipher rtw_cipher_wep;
87
88 static void rtw_disable_interrupts(struct rtw_regs *);
89 static void rtw_enable_interrupts(struct rtw_softc *);
90
91 static int rtw_init(struct ifnet *);
92 static void rtw_softintr(void *);
93
94 static void rtw_start(struct ifnet *);
95 static void rtw_reset_oactive(struct rtw_softc *);
96 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
97 struct ieee80211_node *);
98 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
99
100 static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
101 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
102 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
103 const uint8_t[IEEE80211_ADDR_LEN]);
104 static void rtw_key_update_end(struct ieee80211com *);
105 static void rtw_key_update_begin(struct ieee80211com *);
106 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
107 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
108
109 static void rtw_led_attach(struct rtw_led_state *, void *);
110 static void rtw_led_detach(struct rtw_led_state *);
111 static void rtw_led_init(struct rtw_regs *);
112 static void rtw_led_slowblink(void *);
113 static void rtw_led_fastblink(void *);
114 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
115
116 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
117 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
118 #ifdef RTW_DEBUG
119 static void rtw_dump_rings(struct rtw_softc *sc);
120 static void rtw_print_txdesc(struct rtw_softc *, const char *,
121 struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
122 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
123 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
124 #endif /* RTW_DEBUG */
125 #ifdef RTW_DIAG
126 static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
127 #endif /* RTW_DIAG */
128
129 /*
130 * Setup sysctl(3) MIB, hw.rtw.*
131 *
132 * TBD condition CTLFLAG_PERMANENT on being a module or not
133 */
134 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
135 {
136 int rc;
137 const struct sysctlnode *cnode, *rnode;
138
139 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
140 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
141 "Realtek RTL818x 802.11 controls",
142 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
143 goto err;
144
145 #ifdef RTW_DEBUG
146 /* control debugging printfs */
147 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
148 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
149 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
150 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
151 CTL_CREATE, CTL_EOL)) != 0)
152 goto err;
153
154 /* Limit rx buffers, for simulating resource exhaustion. */
155 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
156 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
157 "rxbufs_limit",
158 SYSCTL_DESCR("Set rx buffers limit"),
159 rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
160 CTL_CREATE, CTL_EOL)) != 0)
161 goto err;
162
163 #endif /* RTW_DEBUG */
164 /* set fallback RF programming method */
165 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
166 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
167 "rfprog_fallback",
168 SYSCTL_DESCR("Set fallback RF programming method"),
169 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
170 CTL_CREATE, CTL_EOL)) != 0)
171 goto err;
172
173 /* force host to control RF I/O bus */
174 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
175 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
176 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
177 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
178 CTL_CREATE, CTL_EOL)) != 0)
179 goto err;
180
181 return;
182 err:
183 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
184 }
185
186 static int
187 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
188 {
189 int error, t;
190 struct sysctlnode node;
191
192 node = *rnode;
193 t = *(int*)rnode->sysctl_data;
194 node.sysctl_data = &t;
195 error = sysctl_lookup(SYSCTLFN_CALL(&node));
196 if (error || newp == NULL)
197 return (error);
198
199 if (t < lower || t > upper)
200 return (EINVAL);
201
202 *(int*)rnode->sysctl_data = t;
203
204 return (0);
205 }
206
207 static int
208 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
209 {
210 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
211 __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
212 }
213
214 static int
215 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
216 {
217 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
218 }
219
220 #ifdef RTW_DEBUG
221 static int
222 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
223 {
224 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
225 0, RTW_DEBUG_MAX);
226 }
227
228 static int
229 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
230 {
231 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
232 0, RTW_RXQLEN);
233 }
234
235 static void
236 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
237 {
238 #define PRINTREG32(sc, reg) \
239 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
240 ("%s: reg[ " #reg " / %03x ] = %08x\n", \
241 dvname, reg, RTW_READ(regs, reg)))
242
243 #define PRINTREG16(sc, reg) \
244 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
245 ("%s: reg[ " #reg " / %03x ] = %04x\n", \
246 dvname, reg, RTW_READ16(regs, reg)))
247
248 #define PRINTREG8(sc, reg) \
249 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
250 ("%s: reg[ " #reg " / %03x ] = %02x\n", \
251 dvname, reg, RTW_READ8(regs, reg)))
252
253 RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
254
255 PRINTREG32(regs, RTW_IDR0);
256 PRINTREG32(regs, RTW_IDR1);
257 PRINTREG32(regs, RTW_MAR0);
258 PRINTREG32(regs, RTW_MAR1);
259 PRINTREG32(regs, RTW_TSFTRL);
260 PRINTREG32(regs, RTW_TSFTRH);
261 PRINTREG32(regs, RTW_TLPDA);
262 PRINTREG32(regs, RTW_TNPDA);
263 PRINTREG32(regs, RTW_THPDA);
264 PRINTREG32(regs, RTW_TCR);
265 PRINTREG32(regs, RTW_RCR);
266 PRINTREG32(regs, RTW_TINT);
267 PRINTREG32(regs, RTW_TBDA);
268 PRINTREG32(regs, RTW_ANAPARM);
269 PRINTREG32(regs, RTW_BB);
270 PRINTREG32(regs, RTW_PHYCFG);
271 PRINTREG32(regs, RTW_WAKEUP0L);
272 PRINTREG32(regs, RTW_WAKEUP0H);
273 PRINTREG32(regs, RTW_WAKEUP1L);
274 PRINTREG32(regs, RTW_WAKEUP1H);
275 PRINTREG32(regs, RTW_WAKEUP2LL);
276 PRINTREG32(regs, RTW_WAKEUP2LH);
277 PRINTREG32(regs, RTW_WAKEUP2HL);
278 PRINTREG32(regs, RTW_WAKEUP2HH);
279 PRINTREG32(regs, RTW_WAKEUP3LL);
280 PRINTREG32(regs, RTW_WAKEUP3LH);
281 PRINTREG32(regs, RTW_WAKEUP3HL);
282 PRINTREG32(regs, RTW_WAKEUP3HH);
283 PRINTREG32(regs, RTW_WAKEUP4LL);
284 PRINTREG32(regs, RTW_WAKEUP4LH);
285 PRINTREG32(regs, RTW_WAKEUP4HL);
286 PRINTREG32(regs, RTW_WAKEUP4HH);
287 PRINTREG32(regs, RTW_DK0);
288 PRINTREG32(regs, RTW_DK1);
289 PRINTREG32(regs, RTW_DK2);
290 PRINTREG32(regs, RTW_DK3);
291 PRINTREG32(regs, RTW_RETRYCTR);
292 PRINTREG32(regs, RTW_RDSAR);
293 PRINTREG32(regs, RTW_FER);
294 PRINTREG32(regs, RTW_FEMR);
295 PRINTREG32(regs, RTW_FPSR);
296 PRINTREG32(regs, RTW_FFER);
297
298 /* 16-bit registers */
299 PRINTREG16(regs, RTW_BRSR);
300 PRINTREG16(regs, RTW_IMR);
301 PRINTREG16(regs, RTW_ISR);
302 PRINTREG16(regs, RTW_BCNITV);
303 PRINTREG16(regs, RTW_ATIMWND);
304 PRINTREG16(regs, RTW_BINTRITV);
305 PRINTREG16(regs, RTW_ATIMTRITV);
306 PRINTREG16(regs, RTW_CRC16ERR);
307 PRINTREG16(regs, RTW_CRC0);
308 PRINTREG16(regs, RTW_CRC1);
309 PRINTREG16(regs, RTW_CRC2);
310 PRINTREG16(regs, RTW_CRC3);
311 PRINTREG16(regs, RTW_CRC4);
312 PRINTREG16(regs, RTW_CWR);
313
314 /* 8-bit registers */
315 PRINTREG8(regs, RTW_CR);
316 PRINTREG8(regs, RTW_9346CR);
317 PRINTREG8(regs, RTW_CONFIG0);
318 PRINTREG8(regs, RTW_CONFIG1);
319 PRINTREG8(regs, RTW_CONFIG2);
320 PRINTREG8(regs, RTW_MSR);
321 PRINTREG8(regs, RTW_CONFIG3);
322 PRINTREG8(regs, RTW_CONFIG4);
323 PRINTREG8(regs, RTW_TESTR);
324 PRINTREG8(regs, RTW_PSR);
325 PRINTREG8(regs, RTW_SCR);
326 PRINTREG8(regs, RTW_PHYDELAY);
327 PRINTREG8(regs, RTW_CRCOUNT);
328 PRINTREG8(regs, RTW_PHYADDR);
329 PRINTREG8(regs, RTW_PHYDATAW);
330 PRINTREG8(regs, RTW_PHYDATAR);
331 PRINTREG8(regs, RTW_CONFIG5);
332 PRINTREG8(regs, RTW_TPPOLL);
333
334 PRINTREG16(regs, RTW_BSSID16);
335 PRINTREG32(regs, RTW_BSSID32);
336 #undef PRINTREG32
337 #undef PRINTREG16
338 #undef PRINTREG8
339 }
340 #endif /* RTW_DEBUG */
341
342 void
343 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
344 {
345 struct rtw_regs *regs = &sc->sc_regs;
346
347 uint32_t tcr;
348 tcr = RTW_READ(regs, RTW_TCR);
349 tcr &= ~RTW_TCR_LBK_MASK;
350 if (enable)
351 tcr |= RTW_TCR_LBK_CONT;
352 else
353 tcr |= RTW_TCR_LBK_NORMAL;
354 RTW_WRITE(regs, RTW_TCR, tcr);
355 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
356 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
357 rtw_txdac_enable(sc, !enable);
358 rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
359 rtw_set_access(regs, RTW_ACCESS_NONE);
360 }
361
362 #ifdef RTW_DEBUG
363 static const char *
364 rtw_access_string(enum rtw_access access)
365 {
366 switch (access) {
367 case RTW_ACCESS_NONE:
368 return "none";
369 case RTW_ACCESS_CONFIG:
370 return "config";
371 case RTW_ACCESS_ANAPARM:
372 return "anaparm";
373 default:
374 return "unknown";
375 }
376 }
377 #endif /* RTW_DEBUG */
378
379 static void
380 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
381 {
382 KASSERT(/* naccess >= RTW_ACCESS_NONE && */
383 naccess <= RTW_ACCESS_ANAPARM);
384 KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
385 regs->r_access <= RTW_ACCESS_ANAPARM);
386
387 if (naccess == regs->r_access)
388 return;
389
390 switch (naccess) {
391 case RTW_ACCESS_NONE:
392 switch (regs->r_access) {
393 case RTW_ACCESS_ANAPARM:
394 rtw_anaparm_enable(regs, 0);
395 /*FALLTHROUGH*/
396 case RTW_ACCESS_CONFIG:
397 rtw_config0123_enable(regs, 0);
398 /*FALLTHROUGH*/
399 case RTW_ACCESS_NONE:
400 break;
401 }
402 break;
403 case RTW_ACCESS_CONFIG:
404 switch (regs->r_access) {
405 case RTW_ACCESS_NONE:
406 rtw_config0123_enable(regs, 1);
407 /*FALLTHROUGH*/
408 case RTW_ACCESS_CONFIG:
409 break;
410 case RTW_ACCESS_ANAPARM:
411 rtw_anaparm_enable(regs, 0);
412 break;
413 }
414 break;
415 case RTW_ACCESS_ANAPARM:
416 switch (regs->r_access) {
417 case RTW_ACCESS_NONE:
418 rtw_config0123_enable(regs, 1);
419 /*FALLTHROUGH*/
420 case RTW_ACCESS_CONFIG:
421 rtw_anaparm_enable(regs, 1);
422 /*FALLTHROUGH*/
423 case RTW_ACCESS_ANAPARM:
424 break;
425 }
426 break;
427 }
428 }
429
430 void
431 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
432 {
433 rtw_set_access1(regs, access);
434 RTW_DPRINTF(RTW_DEBUG_ACCESS,
435 ("%s: access %s -> %s\n", __func__,
436 rtw_access_string(regs->r_access),
437 rtw_access_string(access)));
438 regs->r_access = access;
439 }
440
441 /*
442 * Enable registers, switch register banks.
443 */
444 void
445 rtw_config0123_enable(struct rtw_regs *regs, int enable)
446 {
447 uint8_t ecr;
448 ecr = RTW_READ8(regs, RTW_9346CR);
449 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
450 if (enable)
451 ecr |= RTW_9346CR_EEM_CONFIG;
452 else {
453 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
454 ecr |= RTW_9346CR_EEM_NORMAL;
455 }
456 RTW_WRITE8(regs, RTW_9346CR, ecr);
457 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
458 }
459
460 /* requires rtw_config0123_enable(, 1) */
461 void
462 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
463 {
464 uint8_t cfg3;
465
466 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
467 cfg3 |= RTW_CONFIG3_CLKRUNEN;
468 if (enable)
469 cfg3 |= RTW_CONFIG3_PARMEN;
470 else
471 cfg3 &= ~RTW_CONFIG3_PARMEN;
472 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
473 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
474 }
475
476 /* requires rtw_anaparm_enable(, 1) */
477 void
478 rtw_txdac_enable(struct rtw_softc *sc, int enable)
479 {
480 uint32_t anaparm;
481 struct rtw_regs *regs = &sc->sc_regs;
482
483 anaparm = RTW_READ(regs, RTW_ANAPARM);
484 if (enable)
485 anaparm &= ~RTW_ANAPARM_TXDACOFF;
486 else
487 anaparm |= RTW_ANAPARM_TXDACOFF;
488 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
489 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
490 }
491
492 static inline int
493 rtw_chip_reset1(struct rtw_regs *regs, device_t dev)
494 {
495 uint8_t cr;
496 int i;
497
498 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
499
500 RTW_WBR(regs, RTW_CR, RTW_CR);
501
502 for (i = 0; i < 1000; i++) {
503 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
504 RTW_DPRINTF(RTW_DEBUG_RESET,
505 ("%s: reset in %dus\n", device_xname(dev), i));
506 return 0;
507 }
508 RTW_RBR(regs, RTW_CR, RTW_CR);
509 DELAY(10); /* 10us */
510 }
511
512 aprint_error_dev(dev, "reset failed\n");
513 return ETIMEDOUT;
514 }
515
516 static inline int
517 rtw_chip_reset(struct rtw_regs *regs, device_t dev)
518 {
519 uint32_t tcr;
520
521 /* from Linux driver */
522 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
523 __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
524
525 RTW_WRITE(regs, RTW_TCR, tcr);
526
527 RTW_WBW(regs, RTW_CR, RTW_TCR);
528
529 return rtw_chip_reset1(regs, dev);
530 }
531
532 static int
533 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
534 {
535 struct ieee80211_key keycopy;
536
537 RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
538
539 keycopy = *k;
540 keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
541
542 return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
543 }
544
545 static int
546 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
547 {
548 struct rtw_softc *sc = ic->ic_ifp->if_softc;
549
550 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__,
551 k->wk_keyix));
552
553 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
554
555 if (k->wk_keylen != 0 &&
556 k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP)
557 sc->sc_flags &= ~RTW_F_DK_VALID;
558
559 return 1;
560 }
561
562 static int
563 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
564 const uint8_t mac[IEEE80211_ADDR_LEN])
565 {
566 struct rtw_softc *sc = ic->ic_ifp->if_softc;
567
568 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
569
570 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
571
572 sc->sc_flags &= ~RTW_F_DK_VALID;
573
574 return 1;
575 }
576
577 static void
578 rtw_key_update_begin(struct ieee80211com *ic)
579 {
580 #ifdef RTW_DEBUG
581 struct ifnet *ifp = ic->ic_ifp;
582 struct rtw_softc *sc = ifp->if_softc;
583 #endif
584
585 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
586 }
587
588 static void
589 rtw_tx_kick(struct rtw_regs *regs, uint8_t ringsel)
590 {
591 uint8_t tppoll;
592
593 tppoll = RTW_READ8(regs, RTW_TPPOLL);
594 tppoll &= ~RTW_TPPOLL_SALL;
595 tppoll |= ringsel & RTW_TPPOLL_ALL;
596 RTW_WRITE8(regs, RTW_TPPOLL, tppoll);
597 RTW_SYNC(regs, RTW_TPPOLL, RTW_TPPOLL);
598 }
599
600 static void
601 rtw_key_update_end(struct ieee80211com *ic)
602 {
603 struct ifnet *ifp = ic->ic_ifp;
604 struct rtw_softc *sc = ifp->if_softc;
605
606 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
607
608 if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
609 !device_is_active(sc->sc_dev))
610 return;
611
612 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
613 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
614 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
615 (ifp->if_flags & IFF_RUNNING) != 0);
616 }
617
618 static bool
619 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
620 {
621 if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
622 return false;
623
624 return ((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
625 ((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
626 }
627
628 static void
629 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
630 {
631 uint8_t psr, scr;
632 int i, keylen = 0;
633 struct rtw_regs *regs;
634 union rtw_keys *rk;
635
636 regs = &sc->sc_regs;
637 rk = &sc->sc_keys;
638
639 (void)memset(rk, 0, sizeof(*rk));
640
641 /* Temporarily use software crypto for all keys. */
642 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
643 if (wk[i].wk_cipher == &rtw_cipher_wep)
644 wk[i].wk_cipher = &ieee80211_cipher_wep;
645 }
646
647 rtw_set_access(regs, RTW_ACCESS_CONFIG);
648
649 psr = RTW_READ8(regs, RTW_PSR);
650 scr = RTW_READ8(regs, RTW_SCR);
651 scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
652
653 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
654 goto out;
655
656 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
657 if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
658 continue;
659 if (i == txkey) {
660 keylen = wk[i].wk_keylen;
661 break;
662 }
663 keylen = MAX(keylen, wk[i].wk_keylen);
664 }
665
666 if (keylen == 5)
667 scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
668 else if (keylen == 13)
669 scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
670
671 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
672 if (wk[i].wk_keylen != keylen ||
673 wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
674 continue;
675 /* h/w will decrypt, s/w still strips headers */
676 wk[i].wk_cipher = &rtw_cipher_wep;
677 (void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
678 }
679
680 out:
681 RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
682
683 bus_space_write_region_stream_4(regs->r_bt, regs->r_bh,
684 RTW_DK0, rk->rk_words, __arraycount(rk->rk_words));
685
686 bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
687 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
688
689 RTW_DPRINTF(RTW_DEBUG_KEY,
690 ("%s.%d: scr %02" PRIx8 ", keylen %d\n", __func__, __LINE__, scr,
691 keylen));
692
693 RTW_WBW(regs, RTW_DK0, RTW_PSR);
694 RTW_WRITE8(regs, RTW_PSR, psr);
695 RTW_WBW(regs, RTW_PSR, RTW_SCR);
696 RTW_WRITE8(regs, RTW_SCR, scr);
697 RTW_SYNC(regs, RTW_SCR, RTW_SCR);
698 rtw_set_access(regs, RTW_ACCESS_NONE);
699 sc->sc_flags |= RTW_F_DK_VALID;
700 }
701
702 static inline int
703 rtw_recall_eeprom(struct rtw_regs *regs, device_t dev)
704 {
705 int i;
706 uint8_t ecr;
707
708 ecr = RTW_READ8(regs, RTW_9346CR);
709 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
710 RTW_WRITE8(regs, RTW_9346CR, ecr);
711
712 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
713
714 /* wait 25ms for completion */
715 for (i = 0; i < 250; i++) {
716 ecr = RTW_READ8(regs, RTW_9346CR);
717 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
718 RTW_DPRINTF(RTW_DEBUG_RESET,
719 ("%s: recall EEPROM in %dus\n", device_xname(dev),
720 i * 100));
721 return 0;
722 }
723 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
724 DELAY(100);
725 }
726 aprint_error_dev(dev, "recall EEPROM failed\n");
727 return ETIMEDOUT;
728 }
729
730 static inline int
731 rtw_reset(struct rtw_softc *sc)
732 {
733 int rc;
734 uint8_t config1;
735
736 sc->sc_flags &= ~RTW_F_DK_VALID;
737
738 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev)) != 0)
739 return rc;
740
741 rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev);
742
743 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
744 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
745 /* TBD turn off maximum power saving? */
746
747 return 0;
748 }
749
750 static inline int
751 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
752 u_int ndescs)
753 {
754 int i, rc = 0;
755 for (i = 0; i < ndescs; i++) {
756 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
757 0, 0, &descs[i].ts_dmamap);
758 if (rc != 0)
759 break;
760 }
761 return rc;
762 }
763
764 static inline int
765 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
766 u_int ndescs)
767 {
768 int i, rc = 0;
769 for (i = 0; i < ndescs; i++) {
770 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
771 &descs[i].rs_dmamap);
772 if (rc != 0)
773 break;
774 }
775 return rc;
776 }
777
778 static inline void
779 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
780 u_int ndescs)
781 {
782 int i;
783 for (i = 0; i < ndescs; i++) {
784 if (descs[i].rs_dmamap != NULL)
785 bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
786 }
787 }
788
789 static inline void
790 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
791 u_int ndescs)
792 {
793 int i;
794 for (i = 0; i < ndescs; i++) {
795 if (descs[i].ts_dmamap != NULL)
796 bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
797 }
798 }
799
800 static inline void
801 rtw_srom_free(struct rtw_srom *sr)
802 {
803 sr->sr_size = 0;
804 if (sr->sr_content == NULL)
805 return;
806 free(sr->sr_content, M_DEVBUF);
807 sr->sr_content = NULL;
808 }
809
810 static void
811 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
812 uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
813 {
814 *flags |= (RTW_F_DIGPHY | RTW_F_ANTDIV);
815 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
816 *rcr |= RTW_RCR_ENCS1;
817 *rfchipid = RTW_RFCHIPID_PHILIPS;
818 }
819
820 static int
821 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
822 enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
823 device_t dev)
824 {
825 int i;
826 const char *rfname, *paname;
827 char scratch[sizeof("unknown 0xXX")];
828 uint16_t srom_version;
829
830 *flags &= ~(RTW_F_DIGPHY | RTW_F_DFLANTB | RTW_F_ANTDIV);
831 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
832
833 srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
834
835 if (srom_version <= 0x0101) {
836 aprint_error_dev(dev,
837 "SROM version %d.%d is not understood, "
838 "limping along with defaults\n",
839 srom_version >> 8, srom_version & 0xff);
840 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
841 return 0;
842 } else {
843 aprint_verbose_dev(dev, "SROM version %d.%d\n",
844 srom_version >> 8, srom_version & 0xff);
845 }
846
847 uint8_t mac[IEEE80211_ADDR_LEN];
848 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
849 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
850 __USE(mac);
851
852 RTW_DPRINTF(RTW_DEBUG_ATTACH,
853 ("%s: EEPROM MAC %s\n", device_xname(dev), ether_sprintf(mac)));
854
855 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
856
857 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
858 *flags |= RTW_F_ANTDIV;
859
860 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
861 * to be reversed.
862 */
863 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
864 *flags |= RTW_F_DIGPHY;
865 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
866 *flags |= RTW_F_DFLANTB;
867
868 *rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
869 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
870
871 if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
872 *flags |= RTW_C_RXWEP_104;
873
874 *flags |= RTW_C_RXWEP_40; /* XXX */
875
876 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
877 switch (*rfchipid) {
878 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
879 rfname = "GCT GRF5101";
880 paname = "Winspring WS9901";
881 break;
882 case RTW_RFCHIPID_MAXIM:
883 rfname = "Maxim MAX2820"; /* guess */
884 paname = "Maxim MAX2422"; /* guess */
885 break;
886 case RTW_RFCHIPID_INTERSIL:
887 rfname = "Intersil HFA3873"; /* guess */
888 paname = "Intersil <unknown>";
889 break;
890 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
891 rfname = "Philips SA2400A";
892 paname = "Philips SA2411";
893 break;
894 case RTW_RFCHIPID_RFMD:
895 /* this is the same front-end as an atw(4)! */
896 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
897 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
898 "SYN: Silicon Labs Si4126"; /* inferred from
899 * reference driver
900 */
901 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
902 break;
903 case RTW_RFCHIPID_RESERVED:
904 rfname = paname = "reserved";
905 break;
906 default:
907 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
908 rfname = paname = scratch;
909 }
910 aprint_normal_dev(dev, "RF: %s, PA: %s\n", rfname, paname);
911
912 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
913 case RTW_CONFIG0_GL_USA:
914 case _RTW_CONFIG0_GL_USA:
915 *locale = RTW_LOCALE_USA;
916 break;
917 case RTW_CONFIG0_GL_EUROPE:
918 *locale = RTW_LOCALE_EUROPE;
919 break;
920 case RTW_CONFIG0_GL_JAPAN:
921 *locale = RTW_LOCALE_JAPAN;
922 break;
923 default:
924 *locale = RTW_LOCALE_UNKNOWN;
925 break;
926 }
927 return 0;
928 }
929
930 /* Returns -1 on failure. */
931 static int
932 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
933 device_t dev)
934 {
935 int rc;
936 struct seeprom_descriptor sd;
937 uint8_t ecr;
938
939 (void)memset(&sd, 0, sizeof(sd));
940
941 ecr = RTW_READ8(regs, RTW_9346CR);
942
943 if ((flags & RTW_F_9356SROM) != 0) {
944 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n",
945 device_xname(dev)));
946 sr->sr_size = 256;
947 sd.sd_chip = C56_66;
948 } else {
949 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n",
950 device_xname(dev)));
951 sr->sr_size = 128;
952 sd.sd_chip = C46;
953 }
954
955 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
956 RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
957 ecr |= RTW_9346CR_EEM_PROGRAM;
958
959 RTW_WRITE8(regs, RTW_9346CR, ecr);
960
961 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_WAITOK | M_ZERO);
962
963 /* RTL8180 has a single 8-bit register for controlling the
964 * 93cx6 SROM. There is no "ready" bit. The RTL8180
965 * input/output sense is the reverse of read_seeprom's.
966 */
967 sd.sd_tag = regs->r_bt;
968 sd.sd_bsh = regs->r_bh;
969 sd.sd_regsize = 1;
970 sd.sd_control_offset = RTW_9346CR;
971 sd.sd_status_offset = RTW_9346CR;
972 sd.sd_dataout_offset = RTW_9346CR;
973 sd.sd_CK = RTW_9346CR_EESK;
974 sd.sd_CS = RTW_9346CR_EECS;
975 sd.sd_DI = RTW_9346CR_EEDO;
976 sd.sd_DO = RTW_9346CR_EEDI;
977 /* make read_seeprom enter EEPROM read/write mode */
978 sd.sd_MS = ecr;
979 sd.sd_RDY = 0;
980
981 /* TBD bus barriers */
982 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
983 aprint_error_dev(dev, "could not read SROM\n");
984 free(sr->sr_content, M_DEVBUF);
985 sr->sr_content = NULL;
986 return -1; /* XXX */
987 }
988
989 /* end EEPROM read/write mode */
990 RTW_WRITE8(regs, RTW_9346CR,
991 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
992 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
993
994 if ((rc = rtw_recall_eeprom(regs, dev)) != 0)
995 return rc;
996
997 #ifdef RTW_DEBUG
998 {
999 int i;
1000 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1001 ("\n%s: serial ROM:\n\t", device_xname(dev)));
1002 for (i = 0; i < sr->sr_size/2; i++) {
1003 if (((i % 8) == 0) && (i != 0))
1004 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
1005 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1006 (" %04x", sr->sr_content[i]));
1007 }
1008 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
1009 }
1010 #endif /* RTW_DEBUG */
1011 return 0;
1012 }
1013
1014 static void
1015 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1016 device_t dev)
1017 {
1018 uint8_t cfg4;
1019 const char *method;
1020
1021 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1022
1023 switch (rfchipid) {
1024 default:
1025 cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1026 method = "fallback";
1027 break;
1028 case RTW_RFCHIPID_INTERSIL:
1029 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1030 method = "Intersil";
1031 break;
1032 case RTW_RFCHIPID_PHILIPS:
1033 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1034 method = "Philips";
1035 break;
1036 case RTW_RFCHIPID_GCT: /* XXX a guess */
1037 case RTW_RFCHIPID_RFMD:
1038 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1039 method = "RFMD";
1040 break;
1041 }
1042
1043 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1044
1045 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1046
1047 #ifdef RTW_DEBUG
1048 RTW_DPRINTF(RTW_DEBUG_INIT,
1049 ("%s: %s RF programming method, %#02x\n", device_xname(dev), method,
1050 RTW_READ8(regs, RTW_CONFIG4)));
1051 #else
1052 __USE(method);
1053 #endif
1054 }
1055
1056 static inline void
1057 rtw_init_channels(enum rtw_locale locale,
1058 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1], device_t dev)
1059 {
1060 int i;
1061 const char *name = NULL;
1062 #define ADD_CHANNEL(_chans, _chan) do { \
1063 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
1064 (*_chans)[_chan].ic_freq = \
1065 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1066 } while (0)
1067
1068 switch (locale) {
1069 case RTW_LOCALE_USA: /* 1-11 */
1070 name = "USA";
1071 for (i = 1; i <= 11; i++)
1072 ADD_CHANNEL(chans, i);
1073 break;
1074 case RTW_LOCALE_JAPAN: /* 1-14 */
1075 name = "Japan";
1076 ADD_CHANNEL(chans, 14);
1077 for (i = 1; i <= 14; i++)
1078 ADD_CHANNEL(chans, i);
1079 break;
1080 case RTW_LOCALE_EUROPE: /* 1-13 */
1081 name = "Europe";
1082 for (i = 1; i <= 13; i++)
1083 ADD_CHANNEL(chans, i);
1084 break;
1085 default: /* 10-11 allowed by most countries */
1086 name = "<unknown>";
1087 for (i = 10; i <= 11; i++)
1088 ADD_CHANNEL(chans, i);
1089 break;
1090 }
1091 aprint_normal_dev(dev, "Geographic Location %s\n", name);
1092 #undef ADD_CHANNEL
1093 }
1094
1095
1096 static inline void
1097 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1098 {
1099 uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1100
1101 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1102 case RTW_CONFIG0_GL_USA:
1103 case _RTW_CONFIG0_GL_USA:
1104 *locale = RTW_LOCALE_USA;
1105 break;
1106 case RTW_CONFIG0_GL_JAPAN:
1107 *locale = RTW_LOCALE_JAPAN;
1108 break;
1109 case RTW_CONFIG0_GL_EUROPE:
1110 *locale = RTW_LOCALE_EUROPE;
1111 break;
1112 default:
1113 *locale = RTW_LOCALE_UNKNOWN;
1114 break;
1115 }
1116 }
1117
1118 static inline int
1119 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1120 device_t dev)
1121 {
1122 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1123 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1124 };
1125 uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1126 idr1 = RTW_READ(regs, RTW_IDR1);
1127
1128 (*addr)[0] = __SHIFTOUT(idr0, __BITS(0, 7));
1129 (*addr)[1] = __SHIFTOUT(idr0, __BITS(8, 15));
1130 (*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
1131 (*addr)[3] = __SHIFTOUT(idr0, __BITS(24, 31));
1132
1133 (*addr)[4] = __SHIFTOUT(idr1, __BITS(0, 7));
1134 (*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
1135
1136 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1137 aprint_error_dev(dev,
1138 "could not get mac address, attach failed\n");
1139 return ENXIO;
1140 }
1141
1142 aprint_normal_dev(dev, "802.11 address %s\n", ether_sprintf(*addr));
1143
1144 return 0;
1145 }
1146
1147 static uint8_t
1148 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1149 struct ieee80211_channel *chan)
1150 {
1151 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1152 KASSERT(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14);
1153 return RTW_SR_GET(sr, idx);
1154 }
1155
1156 static void
1157 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1158 {
1159 int pri;
1160 /* nfree: the number of free descriptors in each ring.
1161 * The beacon ring is a special case: I do not let the
1162 * driver use all of the descriptors on the beacon ring.
1163 * The reasons are two-fold:
1164 *
1165 * (1) A BEACON descriptor's OWN bit is (apparently) not
1166 * updated, so the driver cannot easily know if the descriptor
1167 * belongs to it, or if it is racing the NIC. If the NIC
1168 * does not OWN every descriptor, then the driver can safely
1169 * update the descriptors when RTW_TBDA points at tdb_next.
1170 *
1171 * (2) I hope that the NIC will process more than one BEACON
1172 * descriptor in a single beacon interval, since that will
1173 * enable multiple-BSS support. Since the NIC does not
1174 * clear the OWN bit, there is no natural place for it to
1175 * stop processing BEACON desciptors. Maybe it will *not*
1176 * stop processing them! I do not want to chance the NIC
1177 * looping around and around a saturated beacon ring, so
1178 * I will leave one descriptor unOWNed at all times.
1179 */
1180 u_int nfree[RTW_NTXPRI] =
1181 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1182 RTW_NTXDESCBCN - 1};
1183
1184 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1185 tdb[pri].tdb_nfree = nfree[pri];
1186 tdb[pri].tdb_next = 0;
1187 }
1188 }
1189
1190 static int
1191 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1192 {
1193 int i;
1194 struct rtw_txsoft *ts;
1195
1196 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1197 SIMPLEQ_INIT(&tsb->tsb_freeq);
1198 for (i = 0; i < tsb->tsb_ndesc; i++) {
1199 ts = &tsb->tsb_desc[i];
1200 ts->ts_mbuf = NULL;
1201 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1202 }
1203 tsb->tsb_tx_timer = 0;
1204 return 0;
1205 }
1206
1207 static void
1208 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1209 {
1210 int pri;
1211 for (pri = 0; pri < RTW_NTXPRI; pri++)
1212 rtw_txsoft_blk_init(&tsb[pri]);
1213 }
1214
1215 static inline void
1216 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1217 {
1218 KASSERT(nsync <= rdb->rdb_ndesc);
1219 /* sync to end of ring */
1220 if (desc0 + nsync > rdb->rdb_ndesc) {
1221 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1222 offsetof(struct rtw_descs, hd_rx[desc0]),
1223 sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1224 nsync -= (rdb->rdb_ndesc - desc0);
1225 desc0 = 0;
1226 }
1227
1228 KASSERT(desc0 < rdb->rdb_ndesc);
1229 KASSERT(nsync <= rdb->rdb_ndesc);
1230 KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1231
1232 /* sync what remains */
1233 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1234 offsetof(struct rtw_descs, hd_rx[desc0]),
1235 sizeof(struct rtw_rxdesc) * nsync, ops);
1236 }
1237
1238 static void
1239 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1240 {
1241 /* sync to end of ring */
1242 if (desc0 + nsync > tdb->tdb_ndesc) {
1243 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1244 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1245 sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1246 ops);
1247 nsync -= (tdb->tdb_ndesc - desc0);
1248 desc0 = 0;
1249 }
1250
1251 /* sync what remains */
1252 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1253 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1254 sizeof(struct rtw_txdesc) * nsync, ops);
1255 }
1256
1257 static void
1258 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1259 {
1260 int pri;
1261 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1262 rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1263 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1264 }
1265 }
1266
1267 static void
1268 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1269 {
1270 int i;
1271 struct rtw_rxsoft *rs;
1272
1273 for (i = 0; i < RTW_RXQLEN; i++) {
1274 rs = &desc[i];
1275 if (rs->rs_mbuf == NULL)
1276 continue;
1277 bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1278 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1279 bus_dmamap_unload(dmat, rs->rs_dmamap);
1280 m_freem(rs->rs_mbuf);
1281 rs->rs_mbuf = NULL;
1282 }
1283 }
1284
1285 static inline int
1286 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1287 {
1288 int rc;
1289 struct mbuf *m;
1290
1291 MGETHDR(m, M_DONTWAIT, MT_DATA);
1292 if (m == NULL)
1293 return ENOBUFS;
1294
1295 MCLGET(m, M_DONTWAIT);
1296 if ((m->m_flags & M_EXT) == 0) {
1297 m_freem(m);
1298 return ENOBUFS;
1299 }
1300
1301 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1302
1303 if (rs->rs_mbuf != NULL)
1304 bus_dmamap_unload(dmat, rs->rs_dmamap);
1305
1306 rs->rs_mbuf = NULL;
1307
1308 rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1309 if (rc != 0) {
1310 m_freem(m);
1311 return -1;
1312 }
1313
1314 rs->rs_mbuf = m;
1315
1316 return 0;
1317 }
1318
1319 static int
1320 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1321 int *ndesc, device_t dev)
1322 {
1323 int i, rc = 0;
1324 struct rtw_rxsoft *rs;
1325
1326 for (i = 0; i < RTW_RXQLEN; i++) {
1327 rs = &desc[i];
1328 /* we're in rtw_init, so there should be no mbufs allocated */
1329 KASSERT(rs->rs_mbuf == NULL);
1330 #ifdef RTW_DEBUG
1331 if (i == rtw_rxbufs_limit) {
1332 aprint_error_dev(dev, "TEST hit %d-buffer limit\n", i);
1333 rc = ENOBUFS;
1334 break;
1335 }
1336 #endif /* RTW_DEBUG */
1337 if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1338 aprint_error_dev(dev,
1339 "rtw_rxsoft_alloc failed, %d buffers, rc %d\n",
1340 i, rc);
1341 break;
1342 }
1343 }
1344 *ndesc = i;
1345 return rc;
1346 }
1347
1348 static inline void
1349 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1350 int idx, int kick)
1351 {
1352 int is_last = (idx == rdb->rdb_ndesc - 1);
1353 uint32_t ctl, octl, obuf;
1354 struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1355
1356 /* sync the mbuf before the descriptor */
1357 bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1358 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1359
1360 obuf = rd->rd_buf;
1361 rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1362
1363 ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1364 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1365
1366 if (is_last)
1367 ctl |= RTW_RXCTL_EOR;
1368
1369 octl = rd->rd_ctl;
1370 rd->rd_ctl = htole32(ctl);
1371
1372 #ifdef RTW_DEBUG
1373 RTW_DPRINTF(
1374 kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1375 : RTW_DEBUG_RECV_DESC,
1376 ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1377 le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1378 le32toh(rd->rd_ctl)));
1379 #else
1380 __USE(octl);
1381 __USE(obuf);
1382 #endif
1383
1384 /* sync the descriptor */
1385 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1386 RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1387 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1388 }
1389
1390 static void
1391 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1392 {
1393 int i;
1394 struct rtw_rxsoft *rs;
1395
1396 for (i = 0; i < rdb->rdb_ndesc; i++) {
1397 rs = &ctl[i];
1398 rtw_rxdesc_init(rdb, rs, i, kick);
1399 }
1400 }
1401
1402 static void
1403 rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
1404 {
1405 struct rtw_regs *regs = &sc->sc_regs;
1406 uint8_t cr;
1407
1408 RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1409 enable ? "enable" : "disable", flags));
1410
1411 cr = RTW_READ8(regs, RTW_CR);
1412
1413 /* XXX reference source does not enable MULRW */
1414 /* enable PCI Read/Write Multiple */
1415 cr |= RTW_CR_MULRW;
1416
1417 /* The receive engine will always start at RDSAR. */
1418 if (enable && (flags & ~cr & RTW_CR_RE)) {
1419 struct rtw_rxdesc_blk *rdb;
1420 rdb = &sc->sc_rxdesc_blk;
1421 rdb->rdb_next = 0;
1422 }
1423
1424 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1425 if (enable)
1426 cr |= flags;
1427 else
1428 cr &= ~flags;
1429 RTW_WRITE8(regs, RTW_CR, cr);
1430 RTW_SYNC(regs, RTW_CR, RTW_CR);
1431
1432 #ifdef RTW_DIAG
1433 if (cr & RTW_CR_TE)
1434 rtw_txring_fixup(sc, __func__, __LINE__);
1435 #endif
1436 if (cr & RTW_CR_TE) {
1437 rtw_tx_kick(&sc->sc_regs,
1438 RTW_TPPOLL_HPQ | RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ);
1439 }
1440 }
1441
1442 static void
1443 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1444 {
1445 #define IS_BEACON(__fc0) \
1446 ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1447 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1448
1449 static const int ratetbl[4] = {2, 4, 11, 22}; /* convert rates:
1450 * hardware -> net80211
1451 */
1452 u_int next, nproc = 0;
1453 int hwrate, len, rate, rssi, sq, s;
1454 uint32_t hrssi, hstat, htsfth, htsftl;
1455 struct rtw_rxdesc *rd;
1456 struct rtw_rxsoft *rs;
1457 struct rtw_rxdesc_blk *rdb;
1458 struct mbuf *m;
1459 struct ifnet *ifp = &sc->sc_if;
1460
1461 struct ieee80211_node *ni;
1462 struct ieee80211_frame_min *wh;
1463
1464 rdb = &sc->sc_rxdesc_blk;
1465
1466 for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
1467 KASSERT(next < rdb->rdb_ndesc);
1468
1469 rtw_rxdescs_sync(rdb, next, 1,
1470 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1471 rd = &rdb->rdb_desc[next];
1472 rs = &sc->sc_rxsoft[next];
1473
1474 hstat = le32toh(rd->rd_stat);
1475 hrssi = le32toh(rd->rd_rssi);
1476 htsfth = le32toh(rd->rd_tsfth);
1477 htsftl = le32toh(rd->rd_tsftl);
1478
1479 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1480 ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1481 __func__, next, hstat, hrssi, htsfth, htsftl));
1482
1483 ++nproc;
1484
1485 /* still belongs to NIC */
1486 if ((hstat & RTW_RXSTAT_OWN) != 0) {
1487 rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
1488 break;
1489 }
1490
1491 /* ieee80211_input() might reset the receive engine
1492 * (e.g. by indirectly calling rtw_tune()), so save
1493 * the next pointer here and retrieve it again on
1494 * the next round.
1495 */
1496 rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
1497
1498 #ifdef RTW_DEBUG
1499 #define PRINTSTAT(flag) do { \
1500 if ((hstat & flag) != 0) { \
1501 printf("%s" #flag, delim); \
1502 delim = ","; \
1503 } \
1504 } while (0)
1505 if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1506 const char *delim = "<";
1507 printf("%s: ", device_xname(sc->sc_dev));
1508 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1509 printf("status %08x", hstat);
1510 PRINTSTAT(RTW_RXSTAT_SPLCP);
1511 PRINTSTAT(RTW_RXSTAT_MAR);
1512 PRINTSTAT(RTW_RXSTAT_PAR);
1513 PRINTSTAT(RTW_RXSTAT_BAR);
1514 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1515 PRINTSTAT(RTW_RXSTAT_CRC32);
1516 PRINTSTAT(RTW_RXSTAT_ICV);
1517 printf(">, ");
1518 }
1519 }
1520 #endif /* RTW_DEBUG */
1521
1522 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1523 aprint_error_dev(sc->sc_dev,
1524 "DMA error/FIFO overflow %08" PRIx32 ", "
1525 "rx descriptor %d\n", hstat, next);
1526 ifp->if_ierrors++;
1527 goto next;
1528 }
1529
1530 len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1531 if (len < IEEE80211_MIN_LEN) {
1532 sc->sc_ic.ic_stats.is_rx_tooshort++;
1533 goto next;
1534 }
1535 if (len > rs->rs_mbuf->m_len) {
1536 aprint_error_dev(sc->sc_dev,
1537 "rx frame too long, %d > %d, %08" PRIx32
1538 ", desc %d\n",
1539 len, rs->rs_mbuf->m_len, hstat, next);
1540 ifp->if_ierrors++;
1541 goto next;
1542 }
1543
1544 hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1545 if (hwrate >= __arraycount(ratetbl)) {
1546 aprint_error_dev(sc->sc_dev,
1547 "unknown rate #%" __PRIuBITS "\n",
1548 __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1549 ifp->if_ierrors++;
1550 goto next;
1551 }
1552 rate = ratetbl[hwrate];
1553
1554 #ifdef RTW_DEBUG
1555 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1556 ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1557 (rate * 5) % 10, htsfth, htsftl));
1558 #endif /* RTW_DEBUG */
1559
1560 /* if bad flags, skip descriptor */
1561 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1562 aprint_error_dev(sc->sc_dev, "too many rx segments, "
1563 "next=%d, %08" PRIx32 "\n", next, hstat);
1564 goto next;
1565 }
1566
1567 bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1568 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1569
1570 m = rs->rs_mbuf;
1571
1572 /* if temporarily out of memory, re-use mbuf */
1573 switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1574 case 0:
1575 break;
1576 case ENOBUFS:
1577 aprint_error_dev(sc->sc_dev,
1578 "rtw_rxsoft_alloc(, %d) failed, dropping packet\n",
1579 next);
1580 goto next;
1581 default:
1582 /* XXX shorten rx ring, instead? */
1583 aprint_error_dev(sc->sc_dev,
1584 "could not load DMA map\n");
1585 }
1586
1587 sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1588
1589 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1590 rssi = UINT8_MAX - sq;
1591 else {
1592 rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1593 /* TBD find out each front-end's LNA gain in the
1594 * front-end's units
1595 */
1596 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1597 rssi |= 0x80;
1598 }
1599
1600 /* Note well: now we cannot recycle the rs_mbuf unless
1601 * we restore its original length.
1602 */
1603 m_set_rcvif(m, ifp);
1604 m->m_pkthdr.len = m->m_len = len;
1605
1606 wh = mtod(m, struct ieee80211_frame_min *);
1607
1608 s = splnet();
1609
1610 if (!IS_BEACON(wh->i_fc[0]))
1611 sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1612
1613 sc->sc_tsfth = htsfth;
1614
1615 #ifdef RTW_DEBUG
1616 if ((ifp->if_flags & (IFF_DEBUG | IFF_LINK2)) ==
1617 (IFF_DEBUG | IFF_LINK2)) {
1618 ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1619 rate, rssi);
1620 }
1621 #endif /* RTW_DEBUG */
1622
1623 if (sc->sc_radiobpf != NULL) {
1624 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1625
1626 rr->rr_tsft =
1627 htole64(((uint64_t)htsfth << 32) | htsftl);
1628
1629 rr->rr_flags = IEEE80211_RADIOTAP_F_FCS;
1630
1631 if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1632 rr->rr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1633 if ((hstat & RTW_RXSTAT_CRC32) != 0)
1634 rr->rr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
1635
1636 rr->rr_rate = rate;
1637
1638 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1639 rr->rr_u.u_philips.p_antsignal = rssi;
1640 else {
1641 rr->rr_u.u_other.o_antsignal = rssi;
1642 rr->rr_u.u_other.o_barker_lock =
1643 htole16(UINT8_MAX - sq);
1644 }
1645
1646 bpf_mtap2(sc->sc_radiobpf,
1647 rr, sizeof(sc->sc_rxtapu), m, BPF_D_IN);
1648 }
1649
1650 if ((hstat & RTW_RXSTAT_RES) != 0) {
1651 m_freem(m);
1652 splx(s);
1653 goto next;
1654 }
1655
1656 /* CRC is included with the packet; trim it off. */
1657 m_adj(m, -IEEE80211_CRC_LEN);
1658
1659 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1660 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1661 ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1662 ieee80211_free_node(ni);
1663 splx(s);
1664 next:
1665 rtw_rxdesc_init(rdb, rs, next, 0);
1666 }
1667 #undef IS_BEACON
1668 }
1669
1670 static void
1671 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1672 struct rtw_txsoft *ts)
1673 {
1674 struct mbuf *m;
1675 struct ieee80211_node *ni;
1676
1677 m = ts->ts_mbuf;
1678 ni = ts->ts_ni;
1679 KASSERT(m != NULL);
1680 KASSERT(ni != NULL);
1681 ts->ts_mbuf = NULL;
1682 ts->ts_ni = NULL;
1683
1684 bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1685 BUS_DMASYNC_POSTWRITE);
1686 bus_dmamap_unload(dmat, ts->ts_dmamap);
1687 m_freem(m);
1688 ieee80211_free_node(ni);
1689 }
1690
1691 static void
1692 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1693 struct rtw_txsoft_blk *tsb)
1694 {
1695 struct rtw_txsoft *ts;
1696
1697 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1698 rtw_txsoft_release(dmat, ic, ts);
1699 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1700 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1701 }
1702 tsb->tsb_tx_timer = 0;
1703 }
1704
1705 static inline void
1706 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1707 struct rtw_txsoft *ts, int ndesc)
1708 {
1709 uint32_t hstat;
1710 int data_retry, rts_retry;
1711 struct rtw_txdesc *tdn;
1712 const char *condstring;
1713 struct ifnet *ifp = &sc->sc_if;
1714
1715 rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1716
1717 tdb->tdb_nfree += ndesc;
1718
1719 tdn = &tdb->tdb_desc[ts->ts_last];
1720
1721 hstat = le32toh(tdn->td_stat);
1722 rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1723 data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1724
1725 ifp->if_collisions += rts_retry + data_retry;
1726
1727 if ((hstat & RTW_TXSTAT_TOK) != 0)
1728 condstring = "ok";
1729 else {
1730 ifp->if_oerrors++;
1731 condstring = "error";
1732 }
1733
1734 #ifdef RTW_DEBUG
1735 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1736 ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1737 device_xname(sc->sc_dev), ts, ts->ts_first, ts->ts_last,
1738 condstring, rts_retry, data_retry));
1739 #else
1740 __USE(condstring);
1741 #endif
1742 }
1743
1744 static void
1745 rtw_reset_oactive(struct rtw_softc *sc)
1746 {
1747 short oflags;
1748 int pri;
1749 struct rtw_txsoft_blk *tsb;
1750 struct rtw_txdesc_blk *tdb;
1751 oflags = sc->sc_if.if_flags;
1752 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1753 tsb = &sc->sc_txsoft_blk[pri];
1754 tdb = &sc->sc_txdesc_blk[pri];
1755 if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1756 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1757 }
1758 if (oflags != sc->sc_if.if_flags) {
1759 DPRINTF(sc, RTW_DEBUG_OACTIVE,
1760 ("%s: reset OACTIVE\n", __func__));
1761 }
1762 }
1763
1764 /* Collect transmitted packets. */
1765 static bool
1766 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1767 struct rtw_txdesc_blk *tdb, int force)
1768 {
1769 bool collected = false;
1770 int ndesc;
1771 struct rtw_txsoft *ts;
1772
1773 #ifdef RTW_DEBUG
1774 rtw_dump_rings(sc);
1775 #endif
1776
1777 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1778 /* If we're clearing a failed transmission, only clear
1779 up to the last packet the hardware has processed. */
1780 if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
1781 break;
1782
1783 ndesc = 1 + ts->ts_last - ts->ts_first;
1784 if (ts->ts_last < ts->ts_first)
1785 ndesc += tdb->tdb_ndesc;
1786
1787 KASSERT(ndesc > 0);
1788
1789 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1790 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1791
1792 if (force) {
1793 int next;
1794 #ifdef RTW_DIAG
1795 printf("%s: clearing packet, stats", __func__);
1796 #endif
1797 for (next = ts->ts_first; ;
1798 next = RTW_NEXT_IDX(tdb, next)) {
1799 #ifdef RTW_DIAG
1800 printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
1801 #endif
1802 tdb->tdb_desc[next].td_stat &=
1803 ~htole32(RTW_TXSTAT_OWN);
1804 if (next == ts->ts_last)
1805 break;
1806 }
1807 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1808 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1809 #ifdef RTW_DIAG
1810 next = RTW_NEXT_IDX(tdb, next);
1811 printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
1812 le32toh(tdb->tdb_desc[next].td_stat),
1813 rtw_txring_next(&sc->sc_regs, tdb));
1814 #endif
1815 } else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1816 htole32(RTW_TXSTAT_OWN)) != 0) {
1817 rtw_txdescs_sync(tdb, ts->ts_last, 1,
1818 BUS_DMASYNC_PREREAD);
1819 break;
1820 }
1821
1822 collected = true;
1823
1824 rtw_collect_txpkt(sc, tdb, ts, ndesc);
1825 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1826 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1827 }
1828
1829 /* no more pending transmissions, cancel watchdog */
1830 if (ts == NULL)
1831 tsb->tsb_tx_timer = 0;
1832 rtw_reset_oactive(sc);
1833
1834 return collected;
1835 }
1836
1837 static void
1838 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1839 {
1840 int pri, s;
1841 struct rtw_txsoft_blk *tsb;
1842 struct rtw_txdesc_blk *tdb;
1843 struct ifnet *ifp = &sc->sc_if;
1844
1845 s = splnet();
1846
1847 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1848 tsb = &sc->sc_txsoft_blk[pri];
1849 tdb = &sc->sc_txdesc_blk[pri];
1850 rtw_collect_txring(sc, tsb, tdb, 0);
1851 }
1852
1853 if ((isr & RTW_INTR_TX) != 0)
1854 rtw_start(ifp); /* in softint */
1855
1856 splx(s);
1857 }
1858
1859 static void
1860 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1861 {
1862 u_int next;
1863 uint32_t tsfth, tsftl;
1864 struct ieee80211com *ic;
1865 struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1866 struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1867 struct mbuf *m;
1868 int s;
1869
1870 s = splnet();
1871
1872 tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1873 tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1874
1875 if ((isr & (RTW_INTR_TBDOK | RTW_INTR_TBDER)) != 0) {
1876 next = rtw_txring_next(&sc->sc_regs, tdb);
1877 #ifdef RTW_DEBUG
1878 RTW_DPRINTF(RTW_DEBUG_BEACON,
1879 ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1880 ", next %u expected %u, %" PRIu64 "\n", __func__,
1881 (next == tdb->tdb_next) ? "" : "un", isr, next,
1882 tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1883 #else
1884 __USE(next);
1885 __USE(tsfth);
1886 __USE(tsftl);
1887 #endif
1888 if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
1889 rtw_collect_txring(sc, tsb, tdb, 1);
1890 }
1891 /* Start beacon transmission. */
1892
1893 if ((isr & RTW_INTR_BCNINT) != 0 &&
1894 sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1895 SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1896 RTW_DPRINTF(RTW_DEBUG_BEACON,
1897 ("%s: beacon prep. time, isr = %#04" PRIx16
1898 ", %16" PRIu64 "\n", __func__, isr,
1899 (uint64_t)tsfth << 32 | tsftl));
1900 ic = &sc->sc_ic;
1901 m = rtw_beacon_alloc(sc, ic->ic_bss);
1902
1903 if (m == NULL) {
1904 aprint_error_dev(sc->sc_dev,
1905 "could not allocate beacon\n");
1906 splx(s);
1907 return;
1908 }
1909 M_SETCTX(m, ieee80211_ref_node(ic->ic_bss));
1910 IF_ENQUEUE(&sc->sc_beaconq, m);
1911 rtw_start(&sc->sc_if); /* in softint */
1912 }
1913
1914 splx(s);
1915 }
1916
1917 static void
1918 rtw_intr_atim(struct rtw_softc *sc)
1919 {
1920 /* TBD */
1921 return;
1922 }
1923
1924 #ifdef RTW_DEBUG
1925 static void
1926 rtw_dump_rings(struct rtw_softc *sc)
1927 {
1928 struct rtw_txdesc_blk *tdb;
1929 struct rtw_rxdesc *rd;
1930 struct rtw_rxdesc_blk *rdb;
1931 int desc, pri;
1932
1933 if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1934 return;
1935
1936 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1937 tdb = &sc->sc_txdesc_blk[pri];
1938 printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1939 tdb->tdb_ndesc, tdb->tdb_nfree);
1940 for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1941 rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1942 }
1943
1944 rdb = &sc->sc_rxdesc_blk;
1945
1946 for (desc = 0; desc < RTW_RXQLEN; desc++) {
1947 rd = &rdb->rdb_desc[desc];
1948 printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1949 "rsvd1/tsfth %08x\n", __func__,
1950 (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1951 le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1952 le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1953 }
1954 }
1955 #endif /* RTW_DEBUG */
1956
1957 static void
1958 rtw_hwring_setup(struct rtw_softc *sc)
1959 {
1960 int pri;
1961 struct rtw_regs *regs = &sc->sc_regs;
1962 struct rtw_txdesc_blk *tdb;
1963
1964 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1965 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1966 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1967 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1968 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1969 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1970 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1971 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1972
1973 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1974 tdb = &sc->sc_txdesc_blk[pri];
1975 RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1976 RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1977 ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1978 (uintptr_t)tdb->tdb_base));
1979 }
1980
1981 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1982
1983 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1984 ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1985 (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1986
1987 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1988
1989 }
1990
1991 static int
1992 rtw_swring_setup(struct rtw_softc *sc)
1993 {
1994 int rc;
1995 struct rtw_rxdesc_blk *rdb;
1996
1997 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1998
1999 rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
2000
2001 rdb = &sc->sc_rxdesc_blk;
2002 if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
2003 sc->sc_dev)) != 0 && rdb->rdb_ndesc == 0) {
2004 aprint_error_dev(sc->sc_dev, "could not allocate rx buffers\n");
2005 return rc;
2006 }
2007
2008 rdb = &sc->sc_rxdesc_blk;
2009 rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
2010 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2011 rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
2012 rdb->rdb_next = 0;
2013
2014 rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
2015 return 0;
2016 }
2017
2018 static void
2019 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
2020 {
2021 int i;
2022
2023 (void)memset(tdb->tdb_desc, 0,
2024 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
2025 for (i = 0; i < tdb->tdb_ndesc; i++)
2026 tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
2027 }
2028
2029 static u_int
2030 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
2031 {
2032 return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
2033 sizeof(struct rtw_txdesc);
2034 }
2035
2036 #ifdef RTW_DIAG
2037 static void
2038 rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
2039 {
2040 int pri;
2041 u_int next;
2042 struct rtw_txdesc_blk *tdb;
2043 struct rtw_regs *regs = &sc->sc_regs;
2044
2045 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2046 int i;
2047 tdb = &sc->sc_txdesc_blk[pri];
2048 next = rtw_txring_next(regs, tdb);
2049 if (tdb->tdb_next == next)
2050 continue;
2051 for (i = 0; next != tdb->tdb_next;
2052 next = RTW_NEXT_IDX(tdb, next), i++) {
2053 if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
2054 break;
2055 }
2056 printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
2057 ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
2058 if (tdb->tdb_next == next)
2059 continue;
2060 tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
2061 }
2062 }
2063 #endif
2064
2065 static void
2066 rtw_txdescs_reset(struct rtw_softc *sc)
2067 {
2068 int pri;
2069 struct rtw_txsoft_blk *tsb;
2070 struct rtw_txdesc_blk *tdb;
2071
2072 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2073 tsb = &sc->sc_txsoft_blk[pri];
2074 tdb = &sc->sc_txdesc_blk[pri];
2075 rtw_collect_txring(sc, tsb, tdb, 1);
2076 #ifdef RTW_DIAG
2077 if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
2078 printf("%s: packets left in ring %d\n", __func__, pri);
2079 #endif
2080 }
2081 }
2082
2083 static void
2084 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2085 {
2086 int s;
2087
2088 aprint_error_dev(sc->sc_dev, "tx fifo underflow\n");
2089
2090 RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
2091 "\n", device_xname(sc->sc_dev), isr));
2092
2093 s = splnet();
2094
2095 #ifdef RTW_DEBUG
2096 rtw_dump_rings(sc);
2097 #endif /* RTW_DEBUG */
2098
2099 /* Collect tx'd packets. XXX let's hope this stops the transmit
2100 * timeouts.
2101 */
2102 rtw_txdescs_reset(sc);
2103
2104 #ifdef RTW_DEBUG
2105 rtw_dump_rings(sc);
2106 #endif /* RTW_DEBUG */
2107
2108 splx(s);
2109 }
2110
2111 static inline void
2112 rtw_suspend_ticks(struct rtw_softc *sc)
2113 {
2114 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2115 ("%s: suspending ticks\n", device_xname(sc->sc_dev)));
2116 sc->sc_do_tick = 0;
2117 }
2118
2119 static inline void
2120 rtw_resume_ticks(struct rtw_softc *sc)
2121 {
2122 uint32_t tsftrl0, tsftrl1, next_tint;
2123
2124 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2125
2126 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2127 next_tint = tsftrl1 + 1000000;
2128 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tint);
2129
2130 sc->sc_do_tick = 1;
2131
2132 #ifdef RTW_DEBUG
2133 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2134 ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2135 device_xname(sc->sc_dev), tsftrl1 - tsftrl0, tsftrl1, next_tint));
2136 #else
2137 __USE(tsftrl0);
2138 #endif
2139 }
2140
2141 static void
2142 rtw_intr_timeout(struct rtw_softc *sc)
2143 {
2144 int s;
2145
2146 s = splnet();
2147 RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", device_xname(sc->sc_dev)));
2148 if (sc->sc_do_tick)
2149 rtw_resume_ticks(sc);
2150 splx(s);
2151 }
2152
2153 int
2154 rtw_intr(void *arg)
2155 {
2156 struct rtw_softc *sc = arg;
2157 struct rtw_regs *regs = &sc->sc_regs;
2158 uint16_t isr;
2159 struct ifnet *ifp = &sc->sc_if;
2160
2161 /*
2162 * If the interface isn't running, the interrupt couldn't
2163 * possibly have come from us.
2164 */
2165 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2166 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
2167 RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n",
2168 device_xname(sc->sc_dev)));
2169 return (0);
2170 }
2171
2172 isr = RTW_READ16(regs, RTW_ISR);
2173 if (isr == 0)
2174 return (0);
2175
2176 /* Disable interrupts. */
2177 RTW_WRITE16(regs, RTW_IMR, 0);
2178 RTW_WBW(regs, RTW_IMR, RTW_IMR);
2179
2180 softint_schedule(sc->sc_soft_ih);
2181 return (1);
2182 }
2183
2184 static void
2185 rtw_softintr(void *arg)
2186 {
2187 int i;
2188 struct rtw_softc *sc = arg;
2189 struct rtw_regs *regs = &sc->sc_regs;
2190 uint16_t isr;
2191 struct ifnet *ifp = &sc->sc_if;
2192
2193 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2194 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
2195 RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n",
2196 device_xname(sc->sc_dev)));
2197 return;
2198 }
2199
2200 for (i = 0; i < 10; i++) {
2201 isr = RTW_READ16(regs, RTW_ISR);
2202
2203 RTW_WRITE16(regs, RTW_ISR, isr);
2204 RTW_WBR(regs, RTW_ISR, RTW_ISR);
2205
2206 if (sc->sc_intr_ack != NULL)
2207 (*sc->sc_intr_ack)(regs);
2208
2209 if (isr == 0)
2210 break;
2211
2212 #ifdef RTW_DEBUG
2213 #define PRINTINTR(flag) do { \
2214 if ((isr & flag) != 0) { \
2215 printf("%s" #flag, delim); \
2216 delim = ","; \
2217 } \
2218 } while (0)
2219
2220 if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2221 const char *delim = "<";
2222
2223 printf("%s: reg[ISR] = %x", device_xname(sc->sc_dev),
2224 isr);
2225
2226 PRINTINTR(RTW_INTR_TXFOVW);
2227 PRINTINTR(RTW_INTR_TIMEOUT);
2228 PRINTINTR(RTW_INTR_BCNINT);
2229 PRINTINTR(RTW_INTR_ATIMINT);
2230 PRINTINTR(RTW_INTR_TBDER);
2231 PRINTINTR(RTW_INTR_TBDOK);
2232 PRINTINTR(RTW_INTR_THPDER);
2233 PRINTINTR(RTW_INTR_THPDOK);
2234 PRINTINTR(RTW_INTR_TNPDER);
2235 PRINTINTR(RTW_INTR_TNPDOK);
2236 PRINTINTR(RTW_INTR_RXFOVW);
2237 PRINTINTR(RTW_INTR_RDU);
2238 PRINTINTR(RTW_INTR_TLPDER);
2239 PRINTINTR(RTW_INTR_TLPDOK);
2240 PRINTINTR(RTW_INTR_RER);
2241 PRINTINTR(RTW_INTR_ROK);
2242
2243 printf(">\n");
2244 }
2245 #undef PRINTINTR
2246 #endif /* RTW_DEBUG */
2247
2248 if ((isr & RTW_INTR_RX) != 0)
2249 rtw_intr_rx(sc, isr);
2250 if ((isr & RTW_INTR_TX) != 0)
2251 rtw_intr_tx(sc, isr);
2252 if ((isr & RTW_INTR_BEACON) != 0)
2253 rtw_intr_beacon(sc, isr);
2254 if ((isr & RTW_INTR_ATIMINT) != 0)
2255 rtw_intr_atim(sc);
2256 if ((isr & RTW_INTR_IOERROR) != 0)
2257 rtw_intr_ioerror(sc, isr);
2258 if ((isr & RTW_INTR_TIMEOUT) != 0)
2259 rtw_intr_timeout(sc);
2260 }
2261 if (i == 10)
2262 softint_schedule(sc->sc_soft_ih);
2263
2264 /* Re-enable interrupts */
2265 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2266 RTW_WBW(regs, RTW_IMR, RTW_IMR);
2267 }
2268
2269 /* Must be called at splnet. */
2270 static void
2271 rtw_stop(struct ifnet *ifp, int disable)
2272 {
2273 int pri;
2274 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2275 struct ieee80211com *ic = &sc->sc_ic;
2276 struct rtw_regs *regs = &sc->sc_regs;
2277
2278 rtw_suspend_ticks(sc);
2279
2280 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2281
2282 if (device_has_power(sc->sc_dev)) {
2283 /* Disable interrupts. */
2284 RTW_WRITE16(regs, RTW_IMR, 0);
2285
2286 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2287
2288 /* Stop the transmit and receive processes. First stop DMA,
2289 * then disable receiver and transmitter.
2290 */
2291 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2292
2293 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2294
2295 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2296 }
2297
2298 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2299 rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2300 &sc->sc_txsoft_blk[pri]);
2301 }
2302
2303 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2304
2305 /* Mark the interface as not running. Cancel the watchdog timer. */
2306 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2307 ifp->if_timer = 0;
2308
2309 if (disable)
2310 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2311
2312 return;
2313 }
2314
2315 const char *
2316 rtw_pwrstate_string(enum rtw_pwrstate power)
2317 {
2318 switch (power) {
2319 case RTW_ON:
2320 return "on";
2321 case RTW_SLEEP:
2322 return "sleep";
2323 case RTW_OFF:
2324 return "off";
2325 default:
2326 return "unknown";
2327 }
2328 }
2329
2330 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2331 * reference driver, plus a magic Maxim "ON" value that comes from
2332 * the Realtek document "Windows PG for Rtl8180."
2333 */
2334 static void
2335 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2336 int before_rf, int digphy)
2337 {
2338 uint32_t anaparm;
2339
2340 anaparm = RTW_READ(regs, RTW_ANAPARM);
2341 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2342
2343 switch (power) {
2344 case RTW_OFF:
2345 if (before_rf)
2346 return;
2347 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2348 anaparm |= RTW_ANAPARM_TXDACOFF;
2349 break;
2350 case RTW_SLEEP:
2351 if (!before_rf)
2352 return;
2353 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2354 anaparm |= RTW_ANAPARM_TXDACOFF;
2355 break;
2356 case RTW_ON:
2357 if (!before_rf)
2358 return;
2359 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2360 break;
2361 }
2362 RTW_DPRINTF(RTW_DEBUG_PWR,
2363 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2364 __func__, rtw_pwrstate_string(power),
2365 (before_rf) ? "before" : "after", anaparm));
2366
2367 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2368 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2369 }
2370
2371 /* XXX I am using the RFMD settings gleaned from the reference
2372 * driver. They agree
2373 */
2374 static void
2375 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2376 int before_rf, int digphy)
2377 {
2378 uint32_t anaparm;
2379
2380 anaparm = RTW_READ(regs, RTW_ANAPARM);
2381 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2382
2383 switch (power) {
2384 case RTW_OFF:
2385 if (before_rf)
2386 return;
2387 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2388 anaparm |= RTW_ANAPARM_TXDACOFF;
2389 break;
2390 case RTW_SLEEP:
2391 if (!before_rf)
2392 return;
2393 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2394 anaparm |= RTW_ANAPARM_TXDACOFF;
2395 break;
2396 case RTW_ON:
2397 if (!before_rf)
2398 return;
2399 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2400 break;
2401 }
2402 RTW_DPRINTF(RTW_DEBUG_PWR,
2403 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2404 __func__, rtw_pwrstate_string(power),
2405 (before_rf) ? "before" : "after", anaparm));
2406
2407 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2408 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2409 }
2410
2411 static void
2412 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2413 int before_rf, int digphy)
2414 {
2415 uint32_t anaparm;
2416
2417 anaparm = RTW_READ(regs, RTW_ANAPARM);
2418 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2419
2420 switch (power) {
2421 case RTW_OFF:
2422 if (before_rf)
2423 return;
2424 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2425 anaparm |= RTW_ANAPARM_TXDACOFF;
2426 break;
2427 case RTW_SLEEP:
2428 if (!before_rf)
2429 return;
2430 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2431 anaparm |= RTW_ANAPARM_TXDACOFF;
2432 break;
2433 case RTW_ON:
2434 if (!before_rf)
2435 return;
2436 if (digphy) {
2437 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2438 /* XXX guess */
2439 anaparm |= RTW_ANAPARM_TXDACOFF;
2440 } else
2441 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2442 break;
2443 }
2444 RTW_DPRINTF(RTW_DEBUG_PWR,
2445 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2446 __func__, rtw_pwrstate_string(power),
2447 (before_rf) ? "before" : "after", anaparm));
2448
2449 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2450 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2451 }
2452
2453 static void
2454 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2455 int digphy)
2456 {
2457 struct rtw_regs *regs = &sc->sc_regs;
2458
2459 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2460
2461 (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2462
2463 rtw_set_access(regs, RTW_ACCESS_NONE);
2464
2465 return;
2466 }
2467
2468 static int
2469 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2470 {
2471 int rc;
2472
2473 RTW_DPRINTF(RTW_DEBUG_PWR,
2474 ("%s: %s->%s\n", __func__,
2475 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2476
2477 if (sc->sc_pwrstate == power)
2478 return 0;
2479
2480 rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2481 rc = rtw_rf_pwrstate(sc->sc_rf, power);
2482 rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2483
2484 switch (power) {
2485 case RTW_ON:
2486 /* TBD set LEDs */
2487 break;
2488 case RTW_SLEEP:
2489 /* TBD */
2490 break;
2491 case RTW_OFF:
2492 /* TBD */
2493 break;
2494 }
2495 if (rc == 0)
2496 sc->sc_pwrstate = power;
2497 else
2498 sc->sc_pwrstate = RTW_OFF;
2499 return rc;
2500 }
2501
2502 static int
2503 rtw_tune(struct rtw_softc *sc)
2504 {
2505 struct ieee80211com *ic = &sc->sc_ic;
2506 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
2507 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
2508 u_int chan;
2509 int rc;
2510 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2511 dflantb = sc->sc_flags & RTW_F_DFLANTB;
2512
2513 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2514 KASSERT(chan != IEEE80211_CHAN_ANY);
2515
2516 rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2517 rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2518
2519 rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2520 rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2521
2522 if (chan == sc->sc_cur_chan) {
2523 RTW_DPRINTF(RTW_DEBUG_TUNE,
2524 ("%s: already tuned chan #%d\n", __func__, chan));
2525 return 0;
2526 }
2527
2528 rtw_suspend_ticks(sc);
2529
2530 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2531
2532 /* TBD wait for Tx to complete */
2533
2534 KASSERT(device_has_power(sc->sc_dev));
2535
2536 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2537 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2538 ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2539 /* XXX condition on powersaving */
2540 aprint_error_dev(sc->sc_dev, "phy init failed\n");
2541 }
2542
2543 sc->sc_cur_chan = chan;
2544
2545 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2546
2547 rtw_resume_ticks(sc);
2548
2549 return rc;
2550 }
2551
2552 bool
2553 rtw_suspend(device_t self, const pmf_qual_t *qual)
2554 {
2555 int rc;
2556 struct rtw_softc *sc = device_private(self);
2557
2558 sc->sc_flags &= ~RTW_F_DK_VALID;
2559
2560 if (!device_has_power(self))
2561 return false;
2562
2563 /* turn off PHY */
2564 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2565 aprint_error_dev(self, "failed to turn off PHY (%d)\n", rc);
2566 return false;
2567 }
2568
2569 rtw_disable_interrupts(&sc->sc_regs);
2570
2571 return true;
2572 }
2573
2574 bool
2575 rtw_resume(device_t self, const pmf_qual_t *qual)
2576 {
2577 struct rtw_softc *sc = device_private(self);
2578
2579 /* Power may have been removed, resetting WEP keys.
2580 */
2581 sc->sc_flags &= ~RTW_F_DK_VALID;
2582 rtw_enable_interrupts(sc);
2583
2584 return true;
2585 }
2586
2587 static void
2588 rtw_transmit_config(struct rtw_regs *regs)
2589 {
2590 uint32_t tcr;
2591
2592 tcr = RTW_READ(regs, RTW_TCR);
2593
2594 tcr |= RTW_TCR_CWMIN;
2595 tcr &= ~RTW_TCR_MXDMA_MASK;
2596 tcr |= RTW_TCR_MXDMA_256;
2597 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
2598 tcr &= ~RTW_TCR_LBK_MASK;
2599 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
2600
2601 /* set short/long retry limits */
2602 tcr &= ~(RTW_TCR_SRL_MASK | RTW_TCR_LRL_MASK);
2603 tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
2604
2605 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
2606
2607 RTW_WRITE(regs, RTW_TCR, tcr);
2608 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2609 }
2610
2611 static void
2612 rtw_disable_interrupts(struct rtw_regs *regs)
2613 {
2614 RTW_WRITE16(regs, RTW_IMR, 0);
2615 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2616 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2617 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2618 }
2619
2620 static void
2621 rtw_enable_interrupts(struct rtw_softc *sc)
2622 {
2623 struct rtw_regs *regs = &sc->sc_regs;
2624
2625 sc->sc_inten = RTW_INTR_RX | RTW_INTR_TX | RTW_INTR_BEACON
2626 | RTW_INTR_ATIMINT;
2627 sc->sc_inten |= RTW_INTR_IOERROR | RTW_INTR_TIMEOUT;
2628
2629 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2630 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2631 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2632 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2633
2634 /* XXX necessary? */
2635 if (sc->sc_intr_ack != NULL)
2636 (*sc->sc_intr_ack)(regs);
2637 }
2638
2639 static void
2640 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2641 {
2642 uint8_t msr;
2643
2644 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2645 rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2646
2647 msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2648
2649 switch (opmode) {
2650 case IEEE80211_M_AHDEMO:
2651 case IEEE80211_M_IBSS:
2652 msr |= RTW_MSR_NETYPE_ADHOC_OK;
2653 break;
2654 case IEEE80211_M_HOSTAP:
2655 msr |= RTW_MSR_NETYPE_AP_OK;
2656 break;
2657 case IEEE80211_M_MONITOR:
2658 /* XXX */
2659 msr |= RTW_MSR_NETYPE_NOLINK;
2660 break;
2661 case IEEE80211_M_STA:
2662 msr |= RTW_MSR_NETYPE_INFRA_OK;
2663 break;
2664 }
2665 RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2666
2667 rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2668 }
2669
2670 #define rtw_calchash(addr) \
2671 (ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2672
2673 static void
2674 rtw_pktfilt_load(struct rtw_softc *sc)
2675 {
2676 struct rtw_regs *regs = &sc->sc_regs;
2677 struct ieee80211com *ic = &sc->sc_ic;
2678 struct ethercom *ec = &sc->sc_ec;
2679 struct ifnet *ifp = &sc->sc_if;
2680 int hash;
2681 uint32_t hashes[2] = { 0, 0 };
2682 struct ether_multi *enm;
2683 struct ether_multistep step;
2684
2685 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2686
2687 sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2688 sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2689
2690 sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2691 /* MAC auto-reset PHY (huh?) */
2692 sc->sc_rcr |= RTW_RCR_ENMARP;
2693 /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
2694 sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2695
2696 switch (ic->ic_opmode) {
2697 case IEEE80211_M_MONITOR:
2698 sc->sc_rcr |= RTW_RCR_MONITOR;
2699 break;
2700 case IEEE80211_M_AHDEMO:
2701 case IEEE80211_M_IBSS:
2702 /* receive broadcasts in our BSS */
2703 sc->sc_rcr |= RTW_RCR_ADD3;
2704 break;
2705 default:
2706 break;
2707 }
2708
2709 ifp->if_flags &= ~IFF_ALLMULTI;
2710
2711 /*
2712 * Program the 64-bit multicast hash filter.
2713 */
2714 ETHER_LOCK(ec);
2715 ETHER_FIRST_MULTI(step, ec, enm);
2716 while (enm != NULL) {
2717 /* XXX */
2718 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2719 ETHER_ADDR_LEN) != 0) {
2720 ifp->if_flags |= IFF_ALLMULTI;
2721 break;
2722 }
2723
2724 hash = rtw_calchash(enm->enm_addrlo);
2725 hashes[hash >> 5] |= (1 << (hash & 0x1f));
2726 ETHER_NEXT_MULTI(step, enm);
2727 }
2728 ETHER_UNLOCK(ec);
2729
2730 /* XXX accept all broadcast if scanning */
2731 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2732 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2733
2734 if (ifp->if_flags & IFF_PROMISC) {
2735 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2736 sc->sc_rcr |= RTW_RCR_ACRC32; /* accept frames failing CRC */
2737 sc->sc_rcr |= RTW_RCR_AICV; /* accept frames failing ICV */
2738 ifp->if_flags |= IFF_ALLMULTI;
2739 }
2740
2741 if (ifp->if_flags & IFF_ALLMULTI)
2742 hashes[0] = hashes[1] = 0xffffffff;
2743
2744 if ((hashes[0] | hashes[1]) != 0)
2745 sc->sc_rcr |= RTW_RCR_AM; /* accept multicast */
2746
2747 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2748 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2749 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2750 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2751
2752 DPRINTF(sc, RTW_DEBUG_PKTFILT,
2753 ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2754 device_xname(sc->sc_dev), RTW_READ(regs, RTW_MAR0),
2755 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2756 }
2757
2758 static struct mbuf *
2759 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2760 {
2761 struct ieee80211com *ic = &sc->sc_ic;
2762 struct mbuf *m;
2763 struct ieee80211_beacon_offsets boff;
2764
2765 if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2766 RTW_DPRINTF(RTW_DEBUG_BEACON,
2767 ("%s: m %p len %u\n", __func__, m, m->m_len));
2768 }
2769 return m;
2770 }
2771
2772 /* Must be called at splnet. */
2773 static int
2774 rtw_init(struct ifnet *ifp)
2775 {
2776 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2777 struct ieee80211com *ic = &sc->sc_ic;
2778 struct rtw_regs *regs = &sc->sc_regs;
2779 int rc;
2780
2781 if (device_is_active(sc->sc_dev)) {
2782 /* Cancel pending I/O and reset. */
2783 rtw_stop(ifp, 0);
2784 } else if (!pmf_device_resume(sc->sc_dev, &sc->sc_qual) ||
2785 !device_is_active(sc->sc_dev))
2786 return 0;
2787
2788 DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2789 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2790 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2791
2792 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2793 goto out;
2794
2795 if ((rc = rtw_swring_setup(sc)) != 0)
2796 goto out;
2797
2798 rtw_transmit_config(regs);
2799
2800 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2801
2802 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2803 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2804
2805 /* long PLCP header, 1Mb/2Mb basic rate */
2806 RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2807 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2808
2809 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2810 rtw_set_access(regs, RTW_ACCESS_NONE);
2811
2812 /* XXX from reference sources */
2813 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2814 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2815
2816 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev);
2817
2818 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2819 /* from Linux driver */
2820 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2821
2822 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2823
2824 rtw_enable_interrupts(sc);
2825
2826 rtw_pktfilt_load(sc);
2827
2828 rtw_hwring_setup(sc);
2829
2830 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2831
2832 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2833
2834 ifp->if_flags |= IFF_RUNNING;
2835 ic->ic_state = IEEE80211_S_INIT;
2836
2837 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2838 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2839
2840 rtw_resume_ticks(sc);
2841
2842 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2843
2844 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2845 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2846 else
2847 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2848
2849 out:
2850 aprint_error_dev(sc->sc_dev, "interface not running\n");
2851 return rc;
2852 }
2853
2854 static inline void
2855 rtw_led_init(struct rtw_regs *regs)
2856 {
2857 uint8_t cfg0, cfg1;
2858
2859 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2860
2861 cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2862 cfg0 |= RTW_CONFIG0_LEDGPOEN;
2863 RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2864
2865 cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2866 RTW_DPRINTF(RTW_DEBUG_LED,
2867 ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2868
2869 cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2870 cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2871 RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2872
2873 rtw_set_access(regs, RTW_ACCESS_NONE);
2874 }
2875
2876 /*
2877 * IEEE80211_S_INIT: LED1 off
2878 *
2879 * IEEE80211_S_AUTH,
2880 * IEEE80211_S_ASSOC,
2881 * IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2882 *
2883 * IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx
2884 */
2885 static void
2886 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2887 {
2888 struct rtw_led_state *ls;
2889
2890 ls = &sc->sc_led_state;
2891
2892 switch (nstate) {
2893 case IEEE80211_S_INIT:
2894 rtw_led_init(&sc->sc_regs);
2895 aprint_debug_dev(sc->sc_dev, "stopping blink\n");
2896 callout_stop(&ls->ls_slow_ch);
2897 callout_stop(&ls->ls_fast_ch);
2898 ls->ls_slowblink = 0;
2899 ls->ls_actblink = 0;
2900 ls->ls_default = 0;
2901 break;
2902 case IEEE80211_S_SCAN:
2903 aprint_debug_dev(sc->sc_dev, "scheduling blink\n");
2904 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2905 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2906 /*FALLTHROUGH*/
2907 case IEEE80211_S_AUTH:
2908 case IEEE80211_S_ASSOC:
2909 ls->ls_default = RTW_LED1;
2910 ls->ls_actblink = RTW_LED1;
2911 ls->ls_slowblink = RTW_LED1;
2912 break;
2913 case IEEE80211_S_RUN:
2914 ls->ls_slowblink = 0;
2915 break;
2916 }
2917 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2918 }
2919
2920 static void
2921 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2922 {
2923 uint8_t led_condition;
2924 bus_size_t ofs;
2925 uint8_t mask, newval, val;
2926
2927 led_condition = ls->ls_default;
2928
2929 if (ls->ls_state & RTW_LED_S_SLOW)
2930 led_condition ^= ls->ls_slowblink;
2931 if (ls->ls_state & (RTW_LED_S_RX | RTW_LED_S_TX))
2932 led_condition ^= ls->ls_actblink;
2933
2934 RTW_DPRINTF(RTW_DEBUG_LED,
2935 ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2936
2937 switch (hwverid) {
2938 default:
2939 case 'F':
2940 ofs = RTW_PSR;
2941 newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2942 if (led_condition & RTW_LED0)
2943 newval &= ~RTW_PSR_LEDGPO0;
2944 if (led_condition & RTW_LED1)
2945 newval &= ~RTW_PSR_LEDGPO1;
2946 break;
2947 case 'D':
2948 ofs = RTW_9346CR;
2949 mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2950 newval = RTW_9346CR_EEM_PROGRAM;
2951 if (led_condition & RTW_LED0)
2952 newval |= RTW_9346CR_EEDI;
2953 if (led_condition & RTW_LED1)
2954 newval |= RTW_9346CR_EECS;
2955 break;
2956 }
2957 val = RTW_READ8(regs, ofs);
2958 RTW_DPRINTF(RTW_DEBUG_LED,
2959 ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2960 (uintptr_t)ofs));
2961 val &= ~mask;
2962 val |= newval;
2963 RTW_WRITE8(regs, ofs, val);
2964 RTW_DPRINTF(RTW_DEBUG_LED,
2965 ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2966 (uintptr_t)ofs));
2967 RTW_SYNC(regs, ofs, ofs);
2968 }
2969
2970 static void
2971 rtw_led_fastblink(void *arg)
2972 {
2973 int ostate, s;
2974 struct rtw_softc *sc = (struct rtw_softc *)arg;
2975 struct rtw_led_state *ls = &sc->sc_led_state;
2976
2977 s = splnet();
2978 ostate = ls->ls_state;
2979 ls->ls_state ^= ls->ls_event;
2980
2981 if ((ls->ls_event & RTW_LED_S_TX) == 0)
2982 ls->ls_state &= ~RTW_LED_S_TX;
2983
2984 if ((ls->ls_event & RTW_LED_S_RX) == 0)
2985 ls->ls_state &= ~RTW_LED_S_RX;
2986
2987 ls->ls_event = 0;
2988
2989 if (ostate != ls->ls_state)
2990 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2991 splx(s);
2992
2993 aprint_debug_dev(sc->sc_dev, "scheduling fast blink\n");
2994 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2995 }
2996
2997 static void
2998 rtw_led_slowblink(void *arg)
2999 {
3000 int s;
3001 struct rtw_softc *sc = (struct rtw_softc *)arg;
3002 struct rtw_led_state *ls = &sc->sc_led_state;
3003
3004 s = splnet();
3005 ls->ls_state ^= RTW_LED_S_SLOW;
3006 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
3007 splx(s);
3008 aprint_debug_dev(sc->sc_dev, "scheduling slow blink\n");
3009 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
3010 }
3011
3012 static void
3013 rtw_led_detach(struct rtw_led_state *ls)
3014 {
3015 callout_destroy(&ls->ls_fast_ch);
3016 callout_destroy(&ls->ls_slow_ch);
3017 }
3018
3019 static void
3020 rtw_led_attach(struct rtw_led_state *ls, void *arg)
3021 {
3022 callout_init(&ls->ls_fast_ch, 0);
3023 callout_init(&ls->ls_slow_ch, 0);
3024 callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
3025 callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
3026 }
3027
3028 static int
3029 rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3030 {
3031 int rc = 0, s;
3032 struct rtw_softc *sc = ifp->if_softc;
3033
3034 s = splnet();
3035 if (cmd == SIOCSIFFLAGS) {
3036 if ((rc = ifioctl_common(ifp, cmd, data)) != 0)
3037 ;
3038 else switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
3039 case IFF_UP:
3040 rc = rtw_init(ifp);
3041 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
3042 break;
3043 case IFF_UP | IFF_RUNNING:
3044 if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3045 rtw_pktfilt_load(sc);
3046 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
3047 break;
3048 case IFF_RUNNING:
3049 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
3050 rtw_stop(ifp, 1);
3051 break;
3052 default:
3053 break;
3054 }
3055 } else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
3056 ; /* nothing to do */
3057 else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
3058 /* reload packet filter if running */
3059 if (ifp->if_flags & IFF_RUNNING)
3060 rtw_pktfilt_load(sc);
3061 rc = 0;
3062 } else if ((ifp->if_flags & IFF_UP) != 0)
3063 rc = rtw_init(ifp);
3064 else
3065 rc = 0;
3066 splx(s);
3067 return rc;
3068 }
3069
3070 /* Select a transmit ring with at least one h/w and s/w descriptor free.
3071 * Return 0 on success, -1 on failure.
3072 */
3073 static inline int
3074 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
3075 struct rtw_txdesc_blk **tdbp, int pri)
3076 {
3077 struct rtw_txsoft_blk *tsb;
3078 struct rtw_txdesc_blk *tdb;
3079
3080 KASSERT(pri >= 0 && pri < RTW_NTXPRI);
3081
3082 tsb = &sc->sc_txsoft_blk[pri];
3083 tdb = &sc->sc_txdesc_blk[pri];
3084
3085 if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
3086 if (tsb->tsb_tx_timer == 0)
3087 tsb->tsb_tx_timer = 5;
3088 *tsbp = NULL;
3089 *tdbp = NULL;
3090 return -1;
3091 }
3092 *tsbp = tsb;
3093 *tdbp = tdb;
3094 return 0;
3095 }
3096
3097 static inline struct mbuf *
3098 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
3099 struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
3100 struct ieee80211_node **nip, short *if_flagsp)
3101 {
3102 struct mbuf *m;
3103
3104 if (IF_IS_EMPTY(ifq))
3105 return NULL;
3106 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3107 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3108 __func__, pri));
3109 *if_flagsp |= IFF_OACTIVE;
3110 sc->sc_if.if_timer = 1;
3111 return NULL;
3112 }
3113 IF_DEQUEUE(ifq, m);
3114 *nip = M_GETCTX(m, struct ieee80211_node *);
3115 M_SETCTX(m, NULL);
3116 KASSERT(*nip != NULL);
3117 return m;
3118 }
3119
3120 /* Point *mp at the next 802.11 frame to transmit. Point *tsbp
3121 * at the driver's selection of transmit control block for the packet.
3122 */
3123 static inline int
3124 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
3125 struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
3126 struct ieee80211_node **nip)
3127 {
3128 int pri;
3129 struct ether_header *eh;
3130 struct mbuf *m0;
3131 struct rtw_softc *sc;
3132 short *if_flagsp;
3133
3134 *mp = NULL;
3135
3136 sc = (struct rtw_softc *)ifp->if_softc;
3137
3138 DPRINTF(sc, RTW_DEBUG_XMIT,
3139 ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3140
3141 if_flagsp = &ifp->if_flags;
3142
3143 if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3144 (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3145 tdbp, nip, if_flagsp)) != NULL) {
3146 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3147 __func__));
3148 return 0;
3149 }
3150
3151 if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3152 tdbp, nip, if_flagsp)) != NULL) {
3153 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3154 __func__));
3155 return 0;
3156 }
3157
3158 if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3159 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3160 return 0;
3161 }
3162
3163 IFQ_POLL(&ifp->if_snd, m0);
3164 if (m0 == NULL) {
3165 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3166 __func__));
3167 return 0;
3168 }
3169
3170 pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3171
3172 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3173 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3174 __func__, pri));
3175 *if_flagsp |= IFF_OACTIVE;
3176 sc->sc_if.if_timer = 1;
3177 return 0;
3178 }
3179
3180 IFQ_DEQUEUE(&ifp->if_snd, m0);
3181 if (m0 == NULL) {
3182 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3183 __func__));
3184 return 0;
3185 }
3186 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3187 ifp->if_opackets++;
3188 bpf_mtap(ifp, m0, BPF_D_OUT);
3189 eh = mtod(m0, struct ether_header *);
3190 *nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3191 if (*nip == NULL) {
3192 /* NB: ieee80211_find_txnode does stat+msg */
3193 m_freem(m0);
3194 return -1;
3195 }
3196 if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3197 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3198 ifp->if_oerrors++;
3199 return -1;
3200 }
3201 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3202 *mp = m0;
3203 return 0;
3204 }
3205
3206 static int
3207 rtw_seg_too_short(bus_dmamap_t dmamap)
3208 {
3209 int i;
3210 for (i = 0; i < dmamap->dm_nsegs; i++) {
3211 if (dmamap->dm_segs[i].ds_len < 4)
3212 return 1;
3213 }
3214 return 0;
3215 }
3216
3217 /* TBD factor with atw_start */
3218 static struct mbuf *
3219 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3220 u_int ndescfree, device_t dev)
3221 {
3222 int first, rc;
3223 struct mbuf *m, *m0;
3224
3225 m0 = chain;
3226
3227 /*
3228 * Load the DMA map. Copy and try (once) again if the packet
3229 * didn't fit in the alloted number of segments.
3230 */
3231 for (first = 1;
3232 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3233 BUS_DMA_WRITE | BUS_DMA_NOWAIT)) != 0 ||
3234 dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3235 first = 0) {
3236 if (rc == 0) {
3237 #ifdef RTW_DIAGxxx
3238 if (rtw_seg_too_short(dmam)) {
3239 printf("%s: short segment, mbuf lengths:", __func__);
3240 for (m = m0; m; m = m->m_next)
3241 printf(" %d", m->m_len);
3242 printf("\n");
3243 }
3244 #endif
3245 bus_dmamap_unload(dmat, dmam);
3246 }
3247 MGETHDR(m, M_DONTWAIT, MT_DATA);
3248 if (m == NULL) {
3249 aprint_error_dev(dev, "unable to allocate Tx mbuf\n");
3250 break;
3251 }
3252 if (m0->m_pkthdr.len > MHLEN) {
3253 MCLGET(m, M_DONTWAIT);
3254 if ((m->m_flags & M_EXT) == 0) {
3255 aprint_error_dev(dev,
3256 "cannot allocate Tx cluster\n");
3257 m_freem(m);
3258 break;
3259 }
3260 }
3261 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3262 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3263 m_freem(m0);
3264 m0 = m;
3265 m = NULL;
3266 }
3267 if (rc != 0) {
3268 aprint_error_dev(dev, "cannot load Tx buffer, rc = %d\n", rc);
3269 m_freem(m0);
3270 return NULL;
3271 } else if (rtw_seg_too_short(dmam)) {
3272 aprint_error_dev(dev,
3273 "cannot load Tx buffer, segment too short\n");
3274 bus_dmamap_unload(dmat, dmam);
3275 m_freem(m0);
3276 return NULL;
3277 } else if (dmam->dm_nsegs > ndescfree) {
3278 aprint_error_dev(dev, "too many tx segments\n");
3279 bus_dmamap_unload(dmat, dmam);
3280 m_freem(m0);
3281 return NULL;
3282 }
3283 return m0;
3284 }
3285
3286 #ifdef RTW_DEBUG
3287 static void
3288 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3289 struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3290 {
3291 struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3292 DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3293 "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3294 device_xname(sc->sc_dev), ts, action, desc,
3295 le32toh(td->td_buf), le32toh(td->td_next),
3296 le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3297 le32toh(td->td_len)));
3298 }
3299 #endif /* RTW_DEBUG */
3300
3301 static void
3302 rtw_start(struct ifnet *ifp)
3303 {
3304 int desc, i, lastdesc, npkt, rate;
3305 uint32_t proto_ctl0, ctl0, ctl1;
3306 bus_dmamap_t dmamap;
3307 struct ieee80211com *ic;
3308 struct ieee80211_duration *d0;
3309 struct ieee80211_frame_min *wh;
3310 struct ieee80211_node *ni = NULL; /* XXX: GCC */
3311 struct mbuf *m0;
3312 struct rtw_softc *sc;
3313 struct rtw_txsoft_blk *tsb = NULL; /* XXX: GCC */
3314 struct rtw_txdesc_blk *tdb = NULL; /* XXX: GCC */
3315 struct rtw_txsoft *ts;
3316 struct rtw_txdesc *td;
3317 struct ieee80211_key *k;
3318
3319 sc = (struct rtw_softc *)ifp->if_softc;
3320 ic = &sc->sc_ic;
3321
3322 DPRINTF(sc, RTW_DEBUG_XMIT,
3323 ("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
3324
3325 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3326 goto out;
3327
3328 /* XXX do real rate control */
3329 proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3330
3331 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3332 proto_ctl0 |= RTW_TXCTL0_SPLCP;
3333
3334 for (;;) {
3335 if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3336 continue;
3337 if (m0 == NULL)
3338 break;
3339
3340 wh = mtod(m0, struct ieee80211_frame_min *);
3341
3342 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3343 (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3344 m_freem(m0);
3345 break;
3346 } else
3347 k = NULL;
3348
3349 ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3350
3351 dmamap = ts->ts_dmamap;
3352
3353 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3354 tdb->tdb_nfree, sc->sc_dev);
3355
3356 if (m0 == NULL || dmamap->dm_nsegs == 0) {
3357 DPRINTF(sc, RTW_DEBUG_XMIT,
3358 ("%s: fail dmamap load\n", __func__));
3359 goto post_dequeue_err;
3360 }
3361
3362 /* Note well: rtw_dmamap_load_txbuf may have created
3363 * a new chain, so we must find the header once
3364 * more.
3365 */
3366 wh = mtod(m0, struct ieee80211_frame_min *);
3367
3368 /* XXX do real rate control */
3369 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3370 IEEE80211_FC0_TYPE_MGT)
3371 rate = 2;
3372 else
3373 rate = MAX(2, ieee80211_get_rate(ni));
3374
3375 #ifdef RTW_DEBUG
3376 if ((ifp->if_flags & (IFF_DEBUG | IFF_LINK2)) ==
3377 (IFF_DEBUG | IFF_LINK2)) {
3378 ieee80211_dump_pkt(mtod(m0, uint8_t *),
3379 (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3380 : sizeof(wh),
3381 rate, 0);
3382 }
3383 #endif /* RTW_DEBUG */
3384 ctl0 = proto_ctl0 |
3385 __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3386
3387 switch (rate) {
3388 default:
3389 case 2:
3390 ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3391 break;
3392 case 4:
3393 ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3394 break;
3395 case 11:
3396 ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3397 break;
3398 case 22:
3399 ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3400 break;
3401 }
3402 /* XXX >= ? Compare after fragmentation? */
3403 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3404 ctl0 |= RTW_TXCTL0_RTSEN;
3405
3406 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3407 * seem to care, since we don't activate h/w Tx
3408 * encryption.
3409 */
3410 if (k != NULL &&
3411 k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP) {
3412 ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3413 RTW_TXCTL0_KEYID_MASK;
3414 }
3415
3416 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3417 IEEE80211_FC0_TYPE_MGT) {
3418 ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3419 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3420 IEEE80211_FC0_SUBTYPE_BEACON)
3421 ctl0 |= RTW_TXCTL0_BEACON;
3422 }
3423
3424 if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3425 ic->ic_flags, ic->ic_fragthreshold,
3426 rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3427 (ifp->if_flags & (IFF_DEBUG | IFF_LINK2)) ==
3428 (IFF_DEBUG | IFF_LINK2)) == -1) {
3429 DPRINTF(sc, RTW_DEBUG_XMIT,
3430 ("%s: fail compute duration\n", __func__));
3431 goto post_load_err;
3432 }
3433
3434 d0 = &ts->ts_d0;
3435
3436 *(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3437
3438 ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3439 __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3440
3441 if (d0->d_residue)
3442 ctl1 |= RTW_TXCTL1_LENGEXT;
3443
3444 /* TBD fragmentation */
3445
3446 ts->ts_first = tdb->tdb_next;
3447
3448 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3449 BUS_DMASYNC_PREWRITE);
3450
3451 KASSERT(ts->ts_first < tdb->tdb_ndesc);
3452
3453 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3454
3455 if (sc->sc_radiobpf != NULL) {
3456 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3457
3458 rt->rt_rate = rate;
3459
3460 bpf_mtap2(sc->sc_radiobpf, rt, sizeof(sc->sc_txtapu),
3461 m0, BPF_D_OUT);
3462 }
3463
3464 for (i = 0, lastdesc = desc = ts->ts_first;
3465 i < dmamap->dm_nsegs;
3466 i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3467 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3468 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3469 ("%s: seg too long\n", __func__));
3470 goto post_load_err;
3471 }
3472 td = &tdb->tdb_desc[desc];
3473 td->td_ctl0 = htole32(ctl0);
3474 td->td_ctl1 = htole32(ctl1);
3475 td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3476 td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3477 td->td_next = htole32(RTW_NEXT_DESC(tdb, desc));
3478 if (i != 0)
3479 td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3480 lastdesc = desc;
3481 #ifdef RTW_DEBUG
3482 rtw_print_txdesc(sc, "load", ts, tdb, desc);
3483 #endif /* RTW_DEBUG */
3484 }
3485
3486 KASSERT(desc < tdb->tdb_ndesc);
3487
3488 ts->ts_ni = ni;
3489 KASSERT(ni != NULL);
3490 ts->ts_mbuf = m0;
3491 ts->ts_last = lastdesc;
3492 tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3493 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3494 htole32(RTW_TXCTL0_FS);
3495
3496 #ifdef RTW_DEBUG
3497 rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3498 rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3499 #endif /* RTW_DEBUG */
3500
3501 tdb->tdb_nfree -= dmamap->dm_nsegs;
3502 tdb->tdb_next = desc;
3503
3504 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3505 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3506
3507 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3508 htole32(RTW_TXCTL0_OWN);
3509
3510 #ifdef RTW_DEBUG
3511 rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3512 #endif /* RTW_DEBUG */
3513
3514 rtw_txdescs_sync(tdb, ts->ts_first, 1,
3515 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3516
3517 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3518 SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3519
3520 if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3521 sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3522 tsb->tsb_tx_timer = 5;
3523 ifp->if_timer = 1;
3524 rtw_tx_kick(&sc->sc_regs, tsb->tsb_poll);
3525 }
3526 out:
3527 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3528 return;
3529 post_load_err:
3530 bus_dmamap_unload(sc->sc_dmat, dmamap);
3531 m_freem(m0);
3532 post_dequeue_err:
3533 ieee80211_free_node(ni);
3534 return;
3535 }
3536
3537 static void
3538 rtw_idle(struct rtw_regs *regs)
3539 {
3540 int active;
3541 uint8_t tppoll;
3542
3543 /* request stop DMA; wait for packets to stop transmitting. */
3544
3545 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3546 RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3547
3548 for (active = 0; active < 300 &&
3549 (tppoll = RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0;
3550 active++)
3551 DELAY(10);
3552 printf("%s: transmit DMA idle in %dus, tppoll %02" PRIx8 "\n", __func__,
3553 active * 10, tppoll);
3554 }
3555
3556 static void
3557 rtw_watchdog(struct ifnet *ifp)
3558 {
3559 int pri, tx_timeouts = 0;
3560 struct rtw_softc *sc;
3561 struct rtw_txsoft_blk *tsb;
3562
3563 sc = ifp->if_softc;
3564
3565 ifp->if_timer = 0;
3566
3567 if (!device_is_active(sc->sc_dev))
3568 return;
3569
3570 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3571 tsb = &sc->sc_txsoft_blk[pri];
3572
3573 if (tsb->tsb_tx_timer == 0)
3574 continue;
3575 else if (--tsb->tsb_tx_timer == 0) {
3576 if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3577 continue;
3578 else if (rtw_collect_txring(sc, tsb,
3579 &sc->sc_txdesc_blk[pri], 0))
3580 continue;
3581 printf("%s: transmit timeout, priority %d\n",
3582 ifp->if_xname, pri);
3583 ifp->if_oerrors++;
3584 if (pri != RTW_TXPRIBCN)
3585 tx_timeouts++;
3586 } else
3587 ifp->if_timer = 1;
3588 }
3589
3590 if (tx_timeouts > 0) {
3591 /* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3592 * reset s/w tx-ring pointers, and start transmission.
3593 *
3594 * TBD Stop/restart just the broken rings?
3595 */
3596 rtw_idle(&sc->sc_regs);
3597 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
3598 rtw_txdescs_reset(sc);
3599 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3600 rtw_start(ifp);
3601 }
3602 ieee80211_watchdog(&sc->sc_ic);
3603 return;
3604 }
3605
3606 static void
3607 rtw_next_scan(void *arg)
3608 {
3609 struct ieee80211com *ic = arg;
3610 int s;
3611
3612 /* don't call rtw_start w/o network interrupts blocked */
3613 s = splnet();
3614 if (ic->ic_state == IEEE80211_S_SCAN)
3615 ieee80211_next_scan(ic);
3616 splx(s);
3617 }
3618
3619 static void
3620 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3621 {
3622 uint16_t bcnitv, bintritv, intval;
3623 int i;
3624 struct rtw_regs *regs = &sc->sc_regs;
3625
3626 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3627 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3628
3629 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3630
3631 rtw_set_access(regs, RTW_ACCESS_CONFIG);
3632
3633 intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3634
3635 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3636 bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3637 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3638 /* interrupt host 1ms before the TBTT */
3639 bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3640 bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3641 RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3642 /* magic from Linux */
3643 RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3644 RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3645 rtw_set_access(regs, RTW_ACCESS_NONE);
3646
3647 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3648 }
3649
3650 /* Synchronize the hardware state with the software state. */
3651 static int
3652 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3653 {
3654 struct ifnet *ifp = ic->ic_ifp;
3655 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3656 enum ieee80211_state ostate;
3657 int error;
3658
3659 ostate = ic->ic_state;
3660
3661 aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3662 rtw_led_newstate(sc, nstate);
3663
3664 aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
3665 if (nstate == IEEE80211_S_INIT) {
3666 callout_stop(&sc->sc_scan_ch);
3667 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3668 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3669 }
3670
3671 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3672 rtw_pwrstate(sc, RTW_ON);
3673
3674 if ((error = rtw_tune(sc)) != 0)
3675 return error;
3676
3677 switch (nstate) {
3678 case IEEE80211_S_INIT:
3679 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3680 break;
3681 case IEEE80211_S_SCAN:
3682 if (ostate != IEEE80211_S_SCAN) {
3683 (void)memset(ic->ic_bss->ni_bssid, 0,
3684 IEEE80211_ADDR_LEN);
3685 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3686 }
3687
3688 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3689 rtw_next_scan, ic);
3690
3691 break;
3692 case IEEE80211_S_RUN:
3693 switch (ic->ic_opmode) {
3694 case IEEE80211_M_HOSTAP:
3695 case IEEE80211_M_IBSS:
3696 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3697 /*FALLTHROUGH*/
3698 case IEEE80211_M_AHDEMO:
3699 case IEEE80211_M_STA:
3700 rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3701 ic->ic_bss->ni_intval);
3702 break;
3703 case IEEE80211_M_MONITOR:
3704 break;
3705 }
3706 rtw_set_nettype(sc, ic->ic_opmode);
3707 break;
3708 case IEEE80211_S_ASSOC:
3709 case IEEE80211_S_AUTH:
3710 break;
3711 }
3712
3713 if (nstate != IEEE80211_S_SCAN)
3714 callout_stop(&sc->sc_scan_ch);
3715
3716 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3717 }
3718
3719 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3720 static uint64_t
3721 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3722 {
3723 uint32_t tsftl, tsfth;
3724
3725 tsfth = RTW_READ(regs, RTW_TSFTRH);
3726 tsftl = RTW_READ(regs, RTW_TSFTRL);
3727 if (tsftl < rstamp) /* Compensate for rollover. */
3728 tsfth--;
3729 return ((uint64_t)tsfth << 32) | rstamp;
3730 }
3731
3732 static void
3733 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3734 struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3735 {
3736 struct ifnet *ifp = ic->ic_ifp;
3737 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3738
3739 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3740
3741 switch (subtype) {
3742 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3743 case IEEE80211_FC0_SUBTYPE_BEACON:
3744 if (ic->ic_opmode == IEEE80211_M_IBSS &&
3745 ic->ic_state == IEEE80211_S_RUN &&
3746 device_is_active(sc->sc_dev)) {
3747 uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3748 if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3749 (void)ieee80211_ibss_merge(ni);
3750 }
3751 break;
3752 default:
3753 break;
3754 }
3755 return;
3756 }
3757
3758 static struct ieee80211_node *
3759 rtw_node_alloc(struct ieee80211_node_table *nt)
3760 {
3761 struct ifnet *ifp = nt->nt_ic->ic_ifp;
3762 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3763 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3764
3765 DPRINTF(sc, RTW_DEBUG_NODE,
3766 ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
3767 return ni;
3768 }
3769
3770 static void
3771 rtw_node_free(struct ieee80211_node *ni)
3772 {
3773 struct ieee80211com *ic = ni->ni_ic;
3774 struct ifnet *ifp = ic->ic_ifp;
3775 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3776
3777 DPRINTF(sc, RTW_DEBUG_NODE,
3778 ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
3779 ether_sprintf(ni->ni_bssid)));
3780 (*sc->sc_mtbl.mt_node_free)(ni);
3781 }
3782
3783 static int
3784 rtw_media_change(struct ifnet *ifp)
3785 {
3786 int error;
3787
3788 error = ieee80211_media_change(ifp);
3789 if (error == ENETRESET) {
3790 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
3791 (IFF_RUNNING | IFF_UP))
3792 rtw_init(ifp); /* XXX lose error */
3793 error = 0;
3794 }
3795 return error;
3796 }
3797
3798 static void
3799 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3800 {
3801 struct rtw_softc *sc = ifp->if_softc;
3802
3803 if (!device_is_active(sc->sc_dev)) {
3804 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3805 imr->ifm_status = 0;
3806 return;
3807 }
3808 ieee80211_media_status(ifp, imr);
3809 }
3810
3811 static inline void
3812 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3813 {
3814 (void)strlcpy(ifp->if_xname, dvname, IFNAMSIZ);
3815 ifp->if_softc = softc;
3816 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
3817 ifp->if_ioctl = rtw_ioctl;
3818 ifp->if_start = rtw_start;
3819 ifp->if_watchdog = rtw_watchdog;
3820 ifp->if_init = rtw_init;
3821 ifp->if_stop = rtw_stop;
3822 }
3823
3824 static inline void
3825 rtw_set80211props(struct ieee80211com *ic)
3826 {
3827 int nrate;
3828 ic->ic_phytype = IEEE80211_T_DS;
3829 ic->ic_opmode = IEEE80211_M_STA;
3830 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3831 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
3832
3833 nrate = 0;
3834 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3835 IEEE80211_RATE_BASIC | 2;
3836 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3837 IEEE80211_RATE_BASIC | 4;
3838 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3839 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3840 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3841 }
3842
3843 static inline void
3844 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3845 {
3846 mtbl->mt_newstate = ic->ic_newstate;
3847 ic->ic_newstate = rtw_newstate;
3848
3849 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3850 ic->ic_recv_mgmt = rtw_recv_mgmt;
3851
3852 mtbl->mt_node_free = ic->ic_node_free;
3853 ic->ic_node_free = rtw_node_free;
3854
3855 mtbl->mt_node_alloc = ic->ic_node_alloc;
3856 ic->ic_node_alloc = rtw_node_alloc;
3857
3858 ic->ic_crypto.cs_key_delete = rtw_key_delete;
3859 ic->ic_crypto.cs_key_set = rtw_key_set;
3860 ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3861 ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3862 }
3863
3864 static inline void
3865 rtw_init_radiotap(struct rtw_softc *sc)
3866 {
3867 uint32_t present;
3868
3869 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3870 sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3871
3872 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
3873 present = htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT);
3874 else
3875 present = htole32(RTW_RX_RADIOTAP_PRESENT);
3876 sc->sc_rxtap.rr_ihdr.it_present = present;
3877
3878 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3879 sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3880 sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3881 }
3882
3883 static int
3884 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3885 {
3886 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3887 SIMPLEQ_INIT(&tsb->tsb_freeq);
3888 tsb->tsb_ndesc = qlen;
3889 tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3890 M_WAITOK);
3891 return 0;
3892 }
3893
3894 static void
3895 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3896 {
3897 int pri;
3898 struct rtw_txsoft_blk *tsb;
3899
3900 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3901 tsb = &sc->sc_txsoft_blk[pri];
3902 free(tsb->tsb_desc, M_DEVBUF);
3903 tsb->tsb_desc = NULL;
3904 }
3905 }
3906
3907 static int
3908 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3909 {
3910 int pri, rc = 0;
3911 int qlen[RTW_NTXPRI] =
3912 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3913 struct rtw_txsoft_blk *tsbs;
3914
3915 tsbs = sc->sc_txsoft_blk;
3916
3917 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3918 rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3919 if (rc != 0)
3920 break;
3921 }
3922 tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3923 tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3924 tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3925 tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3926 return rc;
3927 }
3928
3929 static void
3930 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3931 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3932 {
3933 tdb->tdb_ndesc = ndesc;
3934 tdb->tdb_desc = desc;
3935 tdb->tdb_physbase = physbase;
3936 tdb->tdb_ofs = ofs;
3937
3938 (void)memset(tdb->tdb_desc, 0,
3939 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3940
3941 rtw_txdesc_blk_init(tdb);
3942 tdb->tdb_next = 0;
3943 }
3944
3945 static void
3946 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3947 {
3948 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3949 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3950 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3951
3952 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3953 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3954 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3955
3956 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3957 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3958 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3959
3960 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3961 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3962 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3963 }
3964
3965 static struct rtw_rf *
3966 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3967 {
3968 rtw_rf_write_t rf_write;
3969 struct rtw_rf *rf;
3970
3971 switch (rfchipid) {
3972 default:
3973 rf_write = rtw_rf_hostwrite;
3974 break;
3975 case RTW_RFCHIPID_INTERSIL:
3976 case RTW_RFCHIPID_PHILIPS:
3977 case RTW_RFCHIPID_GCT: /* XXX a guess */
3978 case RTW_RFCHIPID_RFMD:
3979 rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3980 break;
3981 }
3982
3983 switch (rfchipid) {
3984 case RTW_RFCHIPID_GCT:
3985 rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3986 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3987 break;
3988 case RTW_RFCHIPID_MAXIM:
3989 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3990 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3991 break;
3992 case RTW_RFCHIPID_PHILIPS:
3993 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3994 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3995 break;
3996 case RTW_RFCHIPID_RFMD:
3997 /* XXX RFMD has no RF constructor */
3998 sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3999 /*FALLTHROUGH*/
4000 default:
4001 return NULL;
4002 }
4003 rf->rf_continuous_tx_cb =
4004 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
4005 rf->rf_continuous_tx_arg = (void *)sc;
4006 return rf;
4007 }
4008
4009 /* Revision C and later use a different PHY delay setting than
4010 * revisions A and B.
4011 */
4012 static uint8_t
4013 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
4014 {
4015 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
4016 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
4017
4018 uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
4019
4020 RTW_WRITE(regs, RTW_RCR, REVAB);
4021 RTW_WBW(regs, RTW_RCR, RTW_RCR);
4022 RTW_WRITE(regs, RTW_RCR, REVC);
4023
4024 RTW_WBR(regs, RTW_RCR, RTW_RCR);
4025 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
4026 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
4027
4028 RTW_WRITE(regs, RTW_RCR, old_rcr); /* restore RCR */
4029 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
4030
4031 return phydelay;
4032 #undef REVC
4033 }
4034
4035 void
4036 rtw_attach(struct rtw_softc *sc)
4037 {
4038 struct ifnet *ifp = &sc->sc_if;
4039 struct ieee80211com *ic = &sc->sc_ic;
4040 struct rtw_txsoft_blk *tsb;
4041 int pri, rc;
4042
4043 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
4044
4045 rtw_cipher_wep = ieee80211_cipher_wep;
4046 rtw_cipher_wep.ic_decap = rtw_wep_decap;
4047
4048 NEXT_ATTACH_STATE(sc, DETACHED);
4049
4050 sc->sc_soft_ih = softint_establish(SOFTINT_NET, rtw_softintr, sc);
4051 if (sc->sc_soft_ih == NULL) {
4052 aprint_error_dev(sc->sc_dev, "could not establish softint\n");
4053 goto err;
4054 }
4055
4056 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
4057 case RTW_TCR_HWVERID_F:
4058 sc->sc_hwverid = 'F';
4059 break;
4060 case RTW_TCR_HWVERID_D:
4061 sc->sc_hwverid = 'D';
4062 break;
4063 default:
4064 sc->sc_hwverid = '?';
4065 break;
4066 }
4067 aprint_verbose_dev(sc->sc_dev, "hardware version %c\n",
4068 sc->sc_hwverid);
4069
4070 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
4071 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
4072 0);
4073
4074 if (rc != 0) {
4075 aprint_error_dev(sc->sc_dev,
4076 "could not allocate hw descriptors, error %d\n", rc);
4077 goto err;
4078 }
4079
4080 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
4081
4082 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
4083 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
4084 (void **)&sc->sc_descs, BUS_DMA_COHERENT);
4085
4086 if (rc != 0) {
4087 aprint_error_dev(sc->sc_dev,
4088 "could not map hw descriptors, error %d\n", rc);
4089 goto err;
4090 }
4091 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
4092
4093 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
4094 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
4095
4096 if (rc != 0) {
4097 aprint_error_dev(sc->sc_dev,
4098 "could not create DMA map for hw descriptors, error %d\n",
4099 rc);
4100 goto err;
4101 }
4102 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
4103
4104 sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
4105 sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
4106
4107 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4108 sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
4109 sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
4110 }
4111
4112 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
4113 sizeof(struct rtw_descs), NULL, 0);
4114
4115 if (rc != 0) {
4116 aprint_error_dev(sc->sc_dev,
4117 "could not load DMA map for hw descriptors, error %d\n",
4118 rc);
4119 goto err;
4120 }
4121 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
4122
4123 if (rtw_txsoft_blk_setup_all(sc) != 0)
4124 goto err;
4125 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
4126
4127 rtw_txdesc_blk_setup_all(sc);
4128
4129 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4130
4131 sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4132
4133 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4134 tsb = &sc->sc_txsoft_blk[pri];
4135
4136 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4137 &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4138 aprint_error_dev(sc->sc_dev,
4139 "could not load DMA map for hw tx descriptors, "
4140 "error %d\n", rc);
4141 goto err;
4142 }
4143 }
4144
4145 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4146 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4147 RTW_RXQLEN)) != 0) {
4148 aprint_error_dev(sc->sc_dev,
4149 "could not load DMA map for hw rx descriptors, error %d\n",
4150 rc);
4151 goto err;
4152 }
4153 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4154
4155 /* Reset the chip to a known state. */
4156 if (rtw_reset(sc) != 0)
4157 goto err;
4158 NEXT_ATTACH_STATE(sc, FINISH_RESET);
4159
4160 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4161
4162 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4163 sc->sc_flags |= RTW_F_9356SROM;
4164
4165 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4166 sc->sc_dev) != 0)
4167 goto err;
4168
4169 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4170
4171 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4172 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4173 sc->sc_dev) != 0) {
4174 aprint_error_dev(sc->sc_dev,
4175 "attach failed, malformed serial ROM\n");
4176 goto err;
4177 }
4178
4179 aprint_verbose_dev(sc->sc_dev, "%s PHY\n",
4180 ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4181
4182 aprint_verbose_dev(sc->sc_dev, "carrier-sense threshold %u\n",
4183 sc->sc_csthr);
4184
4185 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4186
4187 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4188 sc->sc_flags & RTW_F_DIGPHY);
4189
4190 if (sc->sc_rf == NULL) {
4191 aprint_verbose_dev(sc->sc_dev,
4192 "attach failed, could not attach RF\n");
4193 goto err;
4194 }
4195
4196 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4197
4198 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4199
4200 RTW_DPRINTF(RTW_DEBUG_ATTACH,
4201 ("%s: PHY delay %d\n", device_xname(sc->sc_dev), sc->sc_phydelay));
4202
4203 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4204 rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4205
4206 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels, sc->sc_dev);
4207
4208 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4209 sc->sc_dev) != 0)
4210 goto err;
4211 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4212
4213 rtw_setifprops(ifp, device_xname(sc->sc_dev), (void*)sc);
4214
4215 IFQ_SET_READY(&ifp->if_snd);
4216
4217 sc->sc_ic.ic_ifp = ifp;
4218 rtw_set80211props(&sc->sc_ic);
4219
4220 rtw_led_attach(&sc->sc_led_state, (void *)sc);
4221 NEXT_ATTACH_STATE(sc, FINISH_LED_ATTACH);
4222
4223 /*
4224 * Call MI attach routines.
4225 */
4226 rc = if_initialize(ifp);
4227 if (rc != 0) {
4228 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n", rc);
4229 goto err;
4230 }
4231 ieee80211_ifattach(ic);
4232 /* Use common softint-based if_input */
4233 ifp->if_percpuq = if_percpuq_create(ifp);
4234 if_register(ifp);
4235
4236 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4237
4238 /* possibly we should fill in our own sc_send_prresp, since
4239 * the RTL8180 is probably sending probe responses in ad hoc
4240 * mode.
4241 */
4242
4243 /* complete initialization */
4244 ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4245 callout_init(&sc->sc_scan_ch, 0);
4246
4247 rtw_init_radiotap(sc);
4248
4249 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
4250 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4251
4252 NEXT_ATTACH_STATE(sc, FINISHED);
4253
4254 ieee80211_announce(ic);
4255 return;
4256 err:
4257 rtw_detach(sc);
4258 return;
4259 }
4260
4261 int
4262 rtw_detach(struct rtw_softc *sc)
4263 {
4264 struct ifnet *ifp = &sc->sc_if;
4265 int pri, s;
4266
4267 s = splnet();
4268
4269 switch (sc->sc_attach_state) {
4270 case FINISHED:
4271 rtw_stop(ifp, 1);
4272
4273 pmf_device_deregister(sc->sc_dev);
4274 callout_stop(&sc->sc_scan_ch);
4275 ieee80211_ifdetach(&sc->sc_ic);
4276 if_detach(ifp);
4277 /*FALLTHROUGH*/
4278 case FINISH_LED_ATTACH:
4279 rtw_led_detach(&sc->sc_led_state);
4280 /*FALLTHROUGH*/
4281 case FINISH_ID_STA:
4282 case FINISH_RF_ATTACH:
4283 rtw_rf_destroy(sc->sc_rf);
4284 sc->sc_rf = NULL;
4285 /*FALLTHROUGH*/
4286 case FINISH_PARSE_SROM:
4287 case FINISH_READ_SROM:
4288 rtw_srom_free(&sc->sc_srom);
4289 /*FALLTHROUGH*/
4290 case FINISH_RESET:
4291 case FINISH_RXMAPS_CREATE:
4292 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4293 RTW_RXQLEN);
4294 /*FALLTHROUGH*/
4295 case FINISH_TXMAPS_CREATE:
4296 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4297 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4298 sc->sc_txsoft_blk[pri].tsb_desc,
4299 sc->sc_txsoft_blk[pri].tsb_ndesc);
4300 }
4301 /*FALLTHROUGH*/
4302 case FINISH_TXDESCBLK_SETUP:
4303 case FINISH_TXCTLBLK_SETUP:
4304 rtw_txsoft_blk_cleanup_all(sc);
4305 /*FALLTHROUGH*/
4306 case FINISH_DESCMAP_LOAD:
4307 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4308 /*FALLTHROUGH*/
4309 case FINISH_DESCMAP_CREATE:
4310 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4311 /*FALLTHROUGH*/
4312 case FINISH_DESC_MAP:
4313 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
4314 sizeof(struct rtw_descs));
4315 /*FALLTHROUGH*/
4316 case FINISH_DESC_ALLOC:
4317 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4318 sc->sc_desc_nsegs);
4319 /*FALLTHROUGH*/
4320 case DETACHED:
4321 if (sc->sc_soft_ih != NULL) {
4322 softint_disestablish(sc->sc_soft_ih);
4323 sc->sc_soft_ih = NULL;
4324 }
4325 NEXT_ATTACH_STATE(sc, DETACHED);
4326 break;
4327 }
4328 splx(s);
4329 return 0;
4330 }
4331