rtw.c revision 1.17 1 /* $NetBSD: rtw.c,v 1.17 2004/12/23 06:00:35 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005 David Young. All rights reserved.
4 *
5 * Programmed for NetBSD by David Young.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of David Young may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
23 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30 * OF SUCH DAMAGE.
31 */
32 /*
33 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.17 2004/12/23 06:00:35 dyoung Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/sysctl.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #if 0
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #endif
54 #include <sys/time.h>
55 #include <sys/types.h>
56
57 #include <machine/endian.h>
58 #include <machine/bus.h>
59 #include <machine/intr.h> /* splnet */
60
61 #include <uvm/uvm_extern.h>
62
63 #include <net/if.h>
64 #include <net/if_media.h>
65 #include <net/if_ether.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_compat.h>
69 #include <net80211/ieee80211_radiotap.h>
70
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 #include <dev/ic/rtwreg.h>
76 #include <dev/ic/rtwvar.h>
77 #include <dev/ic/rtwphyio.h>
78 #include <dev/ic/rtwphy.h>
79
80 #include <dev/ic/smc93cx6var.h>
81
82 #define KASSERT2(__cond, __msg) \
83 do { \
84 if (!(__cond)) \
85 panic __msg ; \
86 } while (0)
87
88 int rtw_rfprog_fallback = 0;
89 int rtw_host_rfio = 0;
90 int rtw_flush_rfio = 1;
91 int rtw_rfio_delay = 0;
92
93 #ifdef RTW_DEBUG
94 int rtw_debug = 2;
95 #endif /* RTW_DEBUG */
96
97 #define NEXT_ATTACH_STATE(sc, state) do { \
98 DPRINTF(sc, ("%s: attach state %s\n", __func__, #state)); \
99 sc->sc_attach_state = state; \
100 } while (0)
101
102 int rtw_dwelltime = 1000; /* milliseconds */
103
104 static void rtw_start(struct ifnet *);
105
106 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
107 static int rtw_sysctl_verify_rfio_delay(SYSCTLFN_PROTO);
108 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
109 #ifdef RTW_DEBUG
110 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
111 #endif /* RTW_DEBUG */
112
113 /*
114 * Setup sysctl(3) MIB, hw.rtw.*
115 *
116 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
117 */
118 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
119 {
120 int rc;
121 struct sysctlnode *cnode, *rnode;
122
123 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
124 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
125 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
126 goto err;
127
128 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
129 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
130 "Realtek RTL818x 802.11 controls",
131 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
132 goto err;
133
134 #ifdef RTW_DEBUG
135 /* control debugging printfs */
136 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
137 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
138 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
139 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
140 CTL_CREATE, CTL_EOL)) != 0)
141 goto err;
142 #endif /* RTW_DEBUG */
143 /* set fallback RF programming method */
144 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
145 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
146 "rfprog_fallback",
147 SYSCTL_DESCR("Set fallback RF programming method"),
148 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
149 CTL_CREATE, CTL_EOL)) != 0)
150 goto err;
151
152 /* force host to flush I/O by reading RTW_PHYADDR */
153 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
154 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
155 "flush_rfio", SYSCTL_DESCR("Enable RF I/O flushing"),
156 rtw_sysctl_verify_rfio, 0, &rtw_flush_rfio, 0,
157 CTL_CREATE, CTL_EOL)) != 0)
158 goto err;
159
160 /* force host to control RF I/O bus */
161 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
162 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
163 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
164 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
165 CTL_CREATE, CTL_EOL)) != 0)
166 goto err;
167
168 /* control RF I/O delay */
169 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
170 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
171 "rfio_delay", SYSCTL_DESCR("Set RF I/O delay"),
172 rtw_sysctl_verify_rfio_delay, 0, &rtw_rfio_delay, 0,
173 CTL_CREATE, CTL_EOL)) != 0)
174 goto err;
175
176 return;
177 err:
178 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
179 }
180
181 static int
182 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
183 {
184 int error, t;
185 struct sysctlnode node;
186
187 node = *rnode;
188 t = *(int*)rnode->sysctl_data;
189 node.sysctl_data = &t;
190 error = sysctl_lookup(SYSCTLFN_CALL(&node));
191 if (error || newp == NULL)
192 return (error);
193
194 if (t < lower || t > upper)
195 return (EINVAL);
196
197 *(int*)rnode->sysctl_data = t;
198
199 return (0);
200 }
201
202 static int
203 rtw_sysctl_verify_rfio_delay(SYSCTLFN_ARGS)
204 {
205 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 1000000);
206 }
207
208 static int
209 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
210 {
211 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0,
212 MASK_AND_RSHIFT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
213 }
214
215 static int
216 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
217 {
218 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 1);
219 }
220
221 #ifdef RTW_DEBUG
222 static int
223 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
224 {
225 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 2);
226 }
227
228 static void
229 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
230 {
231 #define PRINTREG32(sc, reg) \
232 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
233 dvname, reg, RTW_READ(regs, reg)))
234
235 #define PRINTREG16(sc, reg) \
236 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %04x\n", \
237 dvname, reg, RTW_READ16(regs, reg)))
238
239 #define PRINTREG8(sc, reg) \
240 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %02x\n", \
241 dvname, reg, RTW_READ8(regs, reg)))
242
243 RTW_DPRINTF2(("%s: %s\n", dvname, where));
244
245 PRINTREG32(regs, RTW_IDR0);
246 PRINTREG32(regs, RTW_IDR1);
247 PRINTREG32(regs, RTW_MAR0);
248 PRINTREG32(regs, RTW_MAR1);
249 PRINTREG32(regs, RTW_TSFTRL);
250 PRINTREG32(regs, RTW_TSFTRH);
251 PRINTREG32(regs, RTW_TLPDA);
252 PRINTREG32(regs, RTW_TNPDA);
253 PRINTREG32(regs, RTW_THPDA);
254 PRINTREG32(regs, RTW_TCR);
255 PRINTREG32(regs, RTW_RCR);
256 PRINTREG32(regs, RTW_TINT);
257 PRINTREG32(regs, RTW_TBDA);
258 PRINTREG32(regs, RTW_ANAPARM);
259 PRINTREG32(regs, RTW_BB);
260 PRINTREG32(regs, RTW_PHYCFG);
261 PRINTREG32(regs, RTW_WAKEUP0L);
262 PRINTREG32(regs, RTW_WAKEUP0H);
263 PRINTREG32(regs, RTW_WAKEUP1L);
264 PRINTREG32(regs, RTW_WAKEUP1H);
265 PRINTREG32(regs, RTW_WAKEUP2LL);
266 PRINTREG32(regs, RTW_WAKEUP2LH);
267 PRINTREG32(regs, RTW_WAKEUP2HL);
268 PRINTREG32(regs, RTW_WAKEUP2HH);
269 PRINTREG32(regs, RTW_WAKEUP3LL);
270 PRINTREG32(regs, RTW_WAKEUP3LH);
271 PRINTREG32(regs, RTW_WAKEUP3HL);
272 PRINTREG32(regs, RTW_WAKEUP3HH);
273 PRINTREG32(regs, RTW_WAKEUP4LL);
274 PRINTREG32(regs, RTW_WAKEUP4LH);
275 PRINTREG32(regs, RTW_WAKEUP4HL);
276 PRINTREG32(regs, RTW_WAKEUP4HH);
277 PRINTREG32(regs, RTW_DK0);
278 PRINTREG32(regs, RTW_DK1);
279 PRINTREG32(regs, RTW_DK2);
280 PRINTREG32(regs, RTW_DK3);
281 PRINTREG32(regs, RTW_RETRYCTR);
282 PRINTREG32(regs, RTW_RDSAR);
283 PRINTREG32(regs, RTW_FER);
284 PRINTREG32(regs, RTW_FEMR);
285 PRINTREG32(regs, RTW_FPSR);
286 PRINTREG32(regs, RTW_FFER);
287
288 /* 16-bit registers */
289 PRINTREG16(regs, RTW_BRSR);
290 PRINTREG16(regs, RTW_IMR);
291 PRINTREG16(regs, RTW_ISR);
292 PRINTREG16(regs, RTW_BCNITV);
293 PRINTREG16(regs, RTW_ATIMWND);
294 PRINTREG16(regs, RTW_BINTRITV);
295 PRINTREG16(regs, RTW_ATIMTRITV);
296 PRINTREG16(regs, RTW_CRC16ERR);
297 PRINTREG16(regs, RTW_CRC0);
298 PRINTREG16(regs, RTW_CRC1);
299 PRINTREG16(regs, RTW_CRC2);
300 PRINTREG16(regs, RTW_CRC3);
301 PRINTREG16(regs, RTW_CRC4);
302 PRINTREG16(regs, RTW_CWR);
303
304 /* 8-bit registers */
305 PRINTREG8(regs, RTW_CR);
306 PRINTREG8(regs, RTW_9346CR);
307 PRINTREG8(regs, RTW_CONFIG0);
308 PRINTREG8(regs, RTW_CONFIG1);
309 PRINTREG8(regs, RTW_CONFIG2);
310 PRINTREG8(regs, RTW_MSR);
311 PRINTREG8(regs, RTW_CONFIG3);
312 PRINTREG8(regs, RTW_CONFIG4);
313 PRINTREG8(regs, RTW_TESTR);
314 PRINTREG8(regs, RTW_PSR);
315 PRINTREG8(regs, RTW_SCR);
316 PRINTREG8(regs, RTW_PHYDELAY);
317 PRINTREG8(regs, RTW_CRCOUNT);
318 PRINTREG8(regs, RTW_PHYADDR);
319 PRINTREG8(regs, RTW_PHYDATAW);
320 PRINTREG8(regs, RTW_PHYDATAR);
321 PRINTREG8(regs, RTW_CONFIG5);
322 PRINTREG8(regs, RTW_TPPOLL);
323
324 PRINTREG16(regs, RTW_BSSID16);
325 PRINTREG32(regs, RTW_BSSID32);
326 #undef PRINTREG32
327 #undef PRINTREG16
328 #undef PRINTREG8
329 }
330 #endif /* RTW_DEBUG */
331
332 void
333 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
334 {
335 struct rtw_regs *regs = &sc->sc_regs;
336
337 u_int32_t tcr;
338 tcr = RTW_READ(regs, RTW_TCR);
339 tcr &= ~RTW_TCR_LBK_MASK;
340 if (enable)
341 tcr |= RTW_TCR_LBK_CONT;
342 else
343 tcr |= RTW_TCR_LBK_NORMAL;
344 RTW_WRITE(regs, RTW_TCR, tcr);
345 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
346 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
347 rtw_txdac_enable(sc, !enable);
348 rtw_set_access(sc, RTW_ACCESS_ANAPARM); /* XXX Voodoo from Linux. */
349 rtw_set_access(sc, RTW_ACCESS_NONE);
350 }
351
352 static const char *
353 rtw_access_string(enum rtw_access access)
354 {
355 switch (access) {
356 case RTW_ACCESS_NONE:
357 return "none";
358 case RTW_ACCESS_CONFIG:
359 return "config";
360 case RTW_ACCESS_ANAPARM:
361 return "anaparm";
362 default:
363 return "unknown";
364 }
365 }
366
367 static void
368 rtw_set_access1(struct rtw_regs *regs,
369 enum rtw_access oaccess, enum rtw_access naccess)
370 {
371 KASSERT(naccess >= RTW_ACCESS_NONE && naccess <= RTW_ACCESS_ANAPARM);
372 KASSERT(oaccess >= RTW_ACCESS_NONE && oaccess <= RTW_ACCESS_ANAPARM);
373
374 if (naccess == oaccess)
375 return;
376
377 switch (naccess) {
378 case RTW_ACCESS_NONE:
379 switch (oaccess) {
380 case RTW_ACCESS_ANAPARM:
381 rtw_anaparm_enable(regs, 0);
382 /*FALLTHROUGH*/
383 case RTW_ACCESS_CONFIG:
384 rtw_config0123_enable(regs, 0);
385 /*FALLTHROUGH*/
386 case RTW_ACCESS_NONE:
387 break;
388 }
389 break;
390 case RTW_ACCESS_CONFIG:
391 switch (oaccess) {
392 case RTW_ACCESS_NONE:
393 rtw_config0123_enable(regs, 1);
394 /*FALLTHROUGH*/
395 case RTW_ACCESS_CONFIG:
396 break;
397 case RTW_ACCESS_ANAPARM:
398 rtw_anaparm_enable(regs, 0);
399 break;
400 }
401 break;
402 case RTW_ACCESS_ANAPARM:
403 switch (oaccess) {
404 case RTW_ACCESS_NONE:
405 rtw_config0123_enable(regs, 1);
406 /*FALLTHROUGH*/
407 case RTW_ACCESS_CONFIG:
408 rtw_anaparm_enable(regs, 1);
409 /*FALLTHROUGH*/
410 case RTW_ACCESS_ANAPARM:
411 break;
412 }
413 break;
414 }
415 }
416
417 void
418 rtw_set_access(struct rtw_softc *sc, enum rtw_access access)
419 {
420 rtw_set_access1(&sc->sc_regs, sc->sc_access, access);
421 RTW_DPRINTF(("%s: access %s -> %s\n", sc->sc_dev.dv_xname,
422 rtw_access_string(sc->sc_access),
423 rtw_access_string(access)));
424 sc->sc_access = access;
425 }
426
427 /*
428 * Enable registers, switch register banks.
429 */
430 void
431 rtw_config0123_enable(struct rtw_regs *regs, int enable)
432 {
433 u_int8_t ecr;
434 ecr = RTW_READ8(regs, RTW_9346CR);
435 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
436 if (enable)
437 ecr |= RTW_9346CR_EEM_CONFIG;
438 else {
439 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
440 ecr |= RTW_9346CR_EEM_NORMAL;
441 }
442 RTW_WRITE8(regs, RTW_9346CR, ecr);
443 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
444 }
445
446 /* requires rtw_config0123_enable(, 1) */
447 void
448 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
449 {
450 u_int8_t cfg3;
451
452 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
453 cfg3 |= RTW_CONFIG3_CLKRUNEN;
454 if (enable)
455 cfg3 |= RTW_CONFIG3_PARMEN;
456 else
457 cfg3 &= ~RTW_CONFIG3_PARMEN;
458 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
459 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
460 }
461
462 /* requires rtw_anaparm_enable(, 1) */
463 void
464 rtw_txdac_enable(struct rtw_softc *sc, int enable)
465 {
466 u_int32_t anaparm;
467 struct rtw_regs *regs = &sc->sc_regs;
468
469 anaparm = RTW_READ(regs, RTW_ANAPARM);
470 if (enable)
471 anaparm &= ~RTW_ANAPARM_TXDACOFF;
472 else
473 anaparm |= RTW_ANAPARM_TXDACOFF;
474 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
475 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
476 }
477
478 static __inline int
479 rtw_chip_reset1(struct rtw_regs *regs, const char *dvname)
480 {
481 u_int8_t cr;
482 int i;
483
484 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
485
486 RTW_WBR(regs, RTW_CR, RTW_CR);
487
488 for (i = 0; i < 10000; i++) {
489 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
490 RTW_DPRINTF(("%s: reset in %dus\n", dvname, i));
491 return 0;
492 }
493 RTW_RBR(regs, RTW_CR, RTW_CR);
494 DELAY(1); /* 1us */
495 }
496
497 printf("%s: reset failed\n", dvname);
498 return ETIMEDOUT;
499 }
500
501 static __inline int
502 rtw_chip_reset(struct rtw_regs *regs, const char *dvname)
503 {
504 uint32_t tcr;
505
506 /* from Linux driver */
507 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
508 LSHIFT(7, RTW_TCR_SRL_MASK) | LSHIFT(7, RTW_TCR_LRL_MASK);
509
510 RTW_WRITE(regs, RTW_TCR, tcr);
511
512 RTW_WBW(regs, RTW_CR, RTW_TCR);
513
514 return rtw_chip_reset1(regs, dvname);
515 }
516
517 static __inline int
518 rtw_recall_eeprom(struct rtw_regs *regs, const char *dvname)
519 {
520 int i;
521 u_int8_t ecr;
522
523 ecr = RTW_READ8(regs, RTW_9346CR);
524 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
525 RTW_WRITE8(regs, RTW_9346CR, ecr);
526
527 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
528
529 /* wait 2.5ms for completion */
530 for (i = 0; i < 25; i++) {
531 ecr = RTW_READ8(regs, RTW_9346CR);
532 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
533 RTW_DPRINTF(("%s: recall EEPROM in %dus\n", dvname,
534 i * 100));
535 return 0;
536 }
537 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
538 DELAY(100);
539 }
540 printf("%s: recall EEPROM failed\n", dvname);
541 return ETIMEDOUT;
542 }
543
544 static __inline int
545 rtw_reset(struct rtw_softc *sc)
546 {
547 int rc;
548 uint8_t config1;
549
550 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev.dv_xname)) != 0)
551 return rc;
552
553 if ((rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev.dv_xname)) != 0)
554 ;
555
556 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
557 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
558 /* TBD turn off maximum power saving? */
559
560 return 0;
561 }
562
563 static __inline int
564 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txctl *descs,
565 u_int ndescs)
566 {
567 int i, rc = 0;
568 for (i = 0; i < ndescs; i++) {
569 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
570 0, 0, &descs[i].stx_dmamap);
571 if (rc != 0)
572 break;
573 }
574 return rc;
575 }
576
577 static __inline int
578 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
579 u_int ndescs)
580 {
581 int i, rc = 0;
582 for (i = 0; i < ndescs; i++) {
583 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
584 &descs[i].srx_dmamap);
585 if (rc != 0)
586 break;
587 }
588 return rc;
589 }
590
591 static __inline void
592 rtw_rxctls_setup(struct rtw_rxctl *descs)
593 {
594 int i;
595 for (i = 0; i < RTW_RXQLEN; i++)
596 descs[i].srx_mbuf = NULL;
597 }
598
599 static __inline void
600 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
601 u_int ndescs)
602 {
603 int i;
604 for (i = 0; i < ndescs; i++) {
605 if (descs[i].srx_dmamap != NULL)
606 bus_dmamap_destroy(dmat, descs[i].srx_dmamap);
607 }
608 }
609
610 static __inline void
611 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txctl *descs,
612 u_int ndescs)
613 {
614 int i;
615 for (i = 0; i < ndescs; i++) {
616 if (descs[i].stx_dmamap != NULL)
617 bus_dmamap_destroy(dmat, descs[i].stx_dmamap);
618 }
619 }
620
621 static __inline void
622 rtw_srom_free(struct rtw_srom *sr)
623 {
624 sr->sr_size = 0;
625 if (sr->sr_content == NULL)
626 return;
627 free(sr->sr_content, M_DEVBUF);
628 sr->sr_content = NULL;
629 }
630
631 static void
632 rtw_srom_defaults(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
633 enum rtw_rfchipid *rfchipid, u_int32_t *rcr)
634 {
635 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
636 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
637 *rcr |= RTW_RCR_ENCS1;
638 *rfchipid = RTW_RFCHIPID_PHILIPS;
639 }
640
641 static int
642 rtw_srom_parse(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
643 enum rtw_rfchipid *rfchipid, u_int32_t *rcr, enum rtw_locale *locale,
644 const char *dvname)
645 {
646 int i;
647 const char *rfname, *paname;
648 char scratch[sizeof("unknown 0xXX")];
649 u_int16_t version;
650 u_int8_t mac[IEEE80211_ADDR_LEN];
651
652 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
653 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
654
655 version = RTW_SR_GET16(sr, RTW_SR_VERSION);
656 printf("%s: SROM version %d.%d", dvname, version >> 8, version & 0xff);
657
658 if (version <= 0x0101) {
659 printf(" is not understood, limping along with defaults\n");
660 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
661 return 0;
662 }
663 printf("\n");
664
665 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
666 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
667
668 RTW_DPRINTF(("%s: EEPROM MAC %s\n", dvname, ether_sprintf(mac)));
669
670 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
671
672 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
673 *flags |= RTW_F_ANTDIV;
674
675 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
676 * to be reversed.
677 */
678 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
679 *flags |= RTW_F_DIGPHY;
680 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
681 *flags |= RTW_F_DFLANTB;
682
683 *rcr |= LSHIFT(MASK_AND_RSHIFT(RTW_SR_GET(sr, RTW_SR_RFPARM),
684 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
685
686 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
687 switch (*rfchipid) {
688 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
689 rfname = "GCT GRF5101";
690 paname = "Winspring WS9901";
691 break;
692 case RTW_RFCHIPID_MAXIM:
693 rfname = "Maxim MAX2820"; /* guess */
694 paname = "Maxim MAX2422"; /* guess */
695 break;
696 case RTW_RFCHIPID_INTERSIL:
697 rfname = "Intersil HFA3873"; /* guess */
698 paname = "Intersil <unknown>";
699 break;
700 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
701 rfname = "Philips SA2400A";
702 paname = "Philips SA2411";
703 break;
704 case RTW_RFCHIPID_RFMD:
705 /* this is the same front-end as an atw(4)! */
706 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
707 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
708 "SYN: Silicon Labs Si4126"; /* inferred from
709 * reference driver
710 */
711 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
712 break;
713 case RTW_RFCHIPID_RESERVED:
714 rfname = paname = "reserved";
715 break;
716 default:
717 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
718 rfname = paname = scratch;
719 }
720 printf("%s: RF: %s, PA: %s\n", dvname, rfname, paname);
721
722 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
723 case RTW_CONFIG0_GL_USA:
724 *locale = RTW_LOCALE_USA;
725 break;
726 case RTW_CONFIG0_GL_EUROPE:
727 *locale = RTW_LOCALE_EUROPE;
728 break;
729 case RTW_CONFIG0_GL_JAPAN:
730 *locale = RTW_LOCALE_JAPAN;
731 break;
732 default:
733 *locale = RTW_LOCALE_UNKNOWN;
734 break;
735 }
736 return 0;
737 }
738
739 /* Returns -1 on failure. */
740 static int
741 rtw_srom_read(struct rtw_regs *regs, u_int32_t flags, struct rtw_srom *sr,
742 const char *dvname)
743 {
744 int rc;
745 struct seeprom_descriptor sd;
746 u_int8_t ecr;
747
748 (void)memset(&sd, 0, sizeof(sd));
749
750 ecr = RTW_READ8(regs, RTW_9346CR);
751
752 if ((flags & RTW_F_9356SROM) != 0) {
753 RTW_DPRINTF(("%s: 93c56 SROM\n", dvname));
754 sr->sr_size = 256;
755 sd.sd_chip = C56_66;
756 } else {
757 RTW_DPRINTF(("%s: 93c46 SROM\n", dvname));
758 sr->sr_size = 128;
759 sd.sd_chip = C46;
760 }
761
762 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
763 RTW_9346CR_EEM_MASK);
764 ecr |= RTW_9346CR_EEM_PROGRAM;
765
766 RTW_WRITE8(regs, RTW_9346CR, ecr);
767
768 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
769
770 if (sr->sr_content == NULL) {
771 printf("%s: unable to allocate SROM buffer\n", dvname);
772 return ENOMEM;
773 }
774
775 (void)memset(sr->sr_content, 0, sr->sr_size);
776
777 /* RTL8180 has a single 8-bit register for controlling the
778 * 93cx6 SROM. There is no "ready" bit. The RTL8180
779 * input/output sense is the reverse of read_seeprom's.
780 */
781 sd.sd_tag = regs->r_bt;
782 sd.sd_bsh = regs->r_bh;
783 sd.sd_regsize = 1;
784 sd.sd_control_offset = RTW_9346CR;
785 sd.sd_status_offset = RTW_9346CR;
786 sd.sd_dataout_offset = RTW_9346CR;
787 sd.sd_CK = RTW_9346CR_EESK;
788 sd.sd_CS = RTW_9346CR_EECS;
789 sd.sd_DI = RTW_9346CR_EEDO;
790 sd.sd_DO = RTW_9346CR_EEDI;
791 /* make read_seeprom enter EEPROM read/write mode */
792 sd.sd_MS = ecr;
793 sd.sd_RDY = 0;
794 #if 0
795 sd.sd_clkdelay = 50;
796 #endif
797
798 /* TBD bus barriers */
799 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
800 printf("%s: could not read SROM\n", dvname);
801 free(sr->sr_content, M_DEVBUF);
802 sr->sr_content = NULL;
803 return -1; /* XXX */
804 }
805
806 /* end EEPROM read/write mode */
807 RTW_WRITE8(regs, RTW_9346CR,
808 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
809 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
810
811 if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
812 return rc;
813
814 #ifdef RTW_DEBUG
815 {
816 int i;
817 RTW_DPRINTF(("\n%s: serial ROM:\n\t", dvname));
818 for (i = 0; i < sr->sr_size/2; i++) {
819 if (((i % 8) == 0) && (i != 0))
820 RTW_DPRINTF(("\n\t"));
821 RTW_DPRINTF((" %04x", sr->sr_content[i]));
822 }
823 RTW_DPRINTF(("\n"));
824 }
825 #endif /* RTW_DEBUG */
826 return 0;
827 }
828
829 static void
830 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
831 const char *dvname)
832 {
833 u_int8_t cfg4;
834 const char *method;
835
836 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
837
838 switch (rfchipid) {
839 default:
840 cfg4 |= LSHIFT(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
841 method = "fallback";
842 break;
843 case RTW_RFCHIPID_INTERSIL:
844 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
845 method = "Intersil";
846 break;
847 case RTW_RFCHIPID_PHILIPS:
848 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
849 method = "Philips";
850 break;
851 case RTW_RFCHIPID_RFMD:
852 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
853 method = "RFMD";
854 break;
855 }
856
857 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
858
859 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
860
861 RTW_DPRINTF(("%s: %s RF programming method, %#02x\n", dvname, method,
862 RTW_READ8(regs, RTW_CONFIG4)));
863 }
864
865 #if 0
866 static __inline int
867 rtw_identify_rf(struct rtw_regs *regs, enum rtw_rftype *rftype,
868 const char *dvname)
869 {
870 u_int8_t cfg4;
871 const char *name;
872
873 cfg4 = RTW_READ8(regs, RTW_CONFIG4);
874
875 switch (cfg4 & RTW_CONFIG4_RFTYPE_MASK) {
876 case RTW_CONFIG4_RFTYPE_PHILIPS:
877 *rftype = RTW_RFTYPE_PHILIPS;
878 name = "Philips";
879 break;
880 case RTW_CONFIG4_RFTYPE_INTERSIL:
881 *rftype = RTW_RFTYPE_INTERSIL;
882 name = "Intersil";
883 break;
884 case RTW_CONFIG4_RFTYPE_RFMD:
885 *rftype = RTW_RFTYPE_RFMD;
886 name = "RFMD";
887 break;
888 default:
889 name = "<unknown>";
890 return ENXIO;
891 }
892
893 printf("%s: RF prog type %s\n", dvname, name);
894 return 0;
895 }
896 #endif
897
898 static __inline void
899 rtw_init_channels(enum rtw_locale locale,
900 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
901 const char *dvname)
902 {
903 int i;
904 const char *name = NULL;
905 #define ADD_CHANNEL(_chans, _chan) do { \
906 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
907 (*_chans)[_chan].ic_freq = \
908 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
909 } while (0)
910
911 switch (locale) {
912 case RTW_LOCALE_USA: /* 1-11 */
913 name = "USA";
914 for (i = 1; i <= 11; i++)
915 ADD_CHANNEL(chans, i);
916 break;
917 case RTW_LOCALE_JAPAN: /* 1-14 */
918 name = "Japan";
919 ADD_CHANNEL(chans, 14);
920 for (i = 1; i <= 14; i++)
921 ADD_CHANNEL(chans, i);
922 break;
923 case RTW_LOCALE_EUROPE: /* 1-13 */
924 name = "Europe";
925 for (i = 1; i <= 13; i++)
926 ADD_CHANNEL(chans, i);
927 break;
928 default: /* 10-11 allowed by most countries */
929 name = "<unknown>";
930 for (i = 10; i <= 11; i++)
931 ADD_CHANNEL(chans, i);
932 break;
933 }
934 printf("%s: Geographic Location %s\n", dvname, name);
935 #undef ADD_CHANNEL
936 }
937
938 static __inline void
939 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale,
940 const char *dvname)
941 {
942 u_int8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
943
944 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
945 case RTW_CONFIG0_GL_USA:
946 *locale = RTW_LOCALE_USA;
947 break;
948 case RTW_CONFIG0_GL_JAPAN:
949 *locale = RTW_LOCALE_JAPAN;
950 break;
951 case RTW_CONFIG0_GL_EUROPE:
952 *locale = RTW_LOCALE_EUROPE;
953 break;
954 default:
955 *locale = RTW_LOCALE_UNKNOWN;
956 break;
957 }
958 }
959
960 static __inline int
961 rtw_identify_sta(struct rtw_regs *regs, u_int8_t (*addr)[IEEE80211_ADDR_LEN],
962 const char *dvname)
963 {
964 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
965 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
966 };
967 u_int32_t idr0 = RTW_READ(regs, RTW_IDR0),
968 idr1 = RTW_READ(regs, RTW_IDR1);
969
970 (*addr)[0] = MASK_AND_RSHIFT(idr0, BITS(0, 7));
971 (*addr)[1] = MASK_AND_RSHIFT(idr0, BITS(8, 15));
972 (*addr)[2] = MASK_AND_RSHIFT(idr0, BITS(16, 23));
973 (*addr)[3] = MASK_AND_RSHIFT(idr0, BITS(24 ,31));
974
975 (*addr)[4] = MASK_AND_RSHIFT(idr1, BITS(0, 7));
976 (*addr)[5] = MASK_AND_RSHIFT(idr1, BITS(8, 15));
977
978 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
979 printf("%s: could not get mac address, attach failed\n",
980 dvname);
981 return ENXIO;
982 }
983
984 printf("%s: 802.11 address %s\n", dvname, ether_sprintf(*addr));
985
986 return 0;
987 }
988
989 static u_int8_t
990 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
991 struct ieee80211_channel *chan)
992 {
993 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
994 KASSERT2(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14,
995 ("%s: channel %d out of range", __func__,
996 idx - RTW_SR_TXPOWER1 + 1));
997 return RTW_SR_GET(sr, idx);
998 }
999
1000 static void
1001 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *htcs)
1002 {
1003 int pri;
1004 u_int ndesc[RTW_NTXPRI] =
1005 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI, RTW_NTXDESCBCN};
1006
1007 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1008 htcs[pri].htc_nfree = ndesc[pri];
1009 htcs[pri].htc_next = 0;
1010 }
1011 }
1012
1013 static int
1014 rtw_txctl_blk_init(struct rtw_txctl_blk *stc)
1015 {
1016 int i;
1017 struct rtw_txctl *stx;
1018
1019 SIMPLEQ_INIT(&stc->stc_dirtyq);
1020 SIMPLEQ_INIT(&stc->stc_freeq);
1021 for (i = 0; i < stc->stc_ndesc; i++) {
1022 stx = &stc->stc_desc[i];
1023 stx->stx_mbuf = NULL;
1024 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1025 }
1026 return 0;
1027 }
1028
1029 static void
1030 rtw_txctl_blk_init_all(struct rtw_txctl_blk *stcs)
1031 {
1032 int pri;
1033 for (pri = 0; pri < RTW_NTXPRI; pri++)
1034 rtw_txctl_blk_init(&stcs[pri]);
1035 }
1036
1037 static __inline void
1038 rtw_rxdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap, u_int desc0, u_int
1039 nsync, int ops)
1040 {
1041 /* sync to end of ring */
1042 if (desc0 + nsync > RTW_NRXDESC) {
1043 bus_dmamap_sync(dmat, dmap,
1044 offsetof(struct rtw_descs, hd_rx[desc0]),
1045 sizeof(struct rtw_rxdesc) * (RTW_NRXDESC - desc0), ops);
1046 nsync -= (RTW_NRXDESC - desc0);
1047 desc0 = 0;
1048 }
1049
1050 /* sync what remains */
1051 bus_dmamap_sync(dmat, dmap,
1052 offsetof(struct rtw_descs, hd_rx[desc0]),
1053 sizeof(struct rtw_rxdesc) * nsync, ops);
1054 }
1055
1056 static void
1057 rtw_txdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap,
1058 struct rtw_txdesc_blk *htc, u_int desc0, u_int nsync, int ops)
1059 {
1060 /* sync to end of ring */
1061 if (desc0 + nsync > htc->htc_ndesc) {
1062 bus_dmamap_sync(dmat, dmap,
1063 htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
1064 sizeof(struct rtw_txdesc) * (htc->htc_ndesc - desc0),
1065 ops);
1066 nsync -= (htc->htc_ndesc - desc0);
1067 desc0 = 0;
1068 }
1069
1070 /* sync what remains */
1071 bus_dmamap_sync(dmat, dmap,
1072 htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
1073 sizeof(struct rtw_txdesc) * nsync, ops);
1074 }
1075
1076 static void
1077 rtw_txdescs_sync_all(bus_dma_tag_t dmat, bus_dmamap_t dmap,
1078 struct rtw_txdesc_blk *htcs)
1079 {
1080 int pri;
1081 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1082 rtw_txdescs_sync(dmat, dmap,
1083 &htcs[pri], 0, htcs[pri].htc_ndesc,
1084 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1085 }
1086 }
1087
1088 static void
1089 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxctl *desc)
1090 {
1091 int i;
1092 struct rtw_rxctl *srx;
1093
1094 for (i = 0; i < RTW_NRXDESC; i++) {
1095 srx = &desc[i];
1096 bus_dmamap_sync(dmat, srx->srx_dmamap, 0,
1097 srx->srx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1098 bus_dmamap_unload(dmat, srx->srx_dmamap);
1099 m_freem(srx->srx_mbuf);
1100 srx->srx_mbuf = NULL;
1101 }
1102 }
1103
1104 static __inline int
1105 rtw_rxbuf_alloc(bus_dma_tag_t dmat, struct rtw_rxctl *srx)
1106 {
1107 int rc;
1108 struct mbuf *m;
1109
1110 MGETHDR(m, M_DONTWAIT, MT_DATA);
1111 if (m == NULL)
1112 return ENOMEM;
1113
1114 MCLGET(m, M_DONTWAIT);
1115 if (m == NULL)
1116 return ENOMEM;
1117
1118 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1119
1120 rc = bus_dmamap_load_mbuf(dmat, srx->srx_dmamap, m, BUS_DMA_NOWAIT);
1121 if (rc != 0)
1122 return rc;
1123
1124 srx->srx_mbuf = m;
1125
1126 return 0;
1127 }
1128
1129 static int
1130 rtw_rxctl_init_all(bus_dma_tag_t dmat, struct rtw_rxctl *desc,
1131 u_int *next, const char *dvname)
1132 {
1133 int i, rc;
1134 struct rtw_rxctl *srx;
1135
1136 for (i = 0; i < RTW_NRXDESC; i++) {
1137 srx = &desc[i];
1138 if ((rc = rtw_rxbuf_alloc(dmat, srx)) == 0)
1139 continue;
1140 printf("%s: failed rtw_rxbuf_alloc after %d buffers, rc = %d\n",
1141 dvname, i, rc);
1142 if (i == 0) {
1143 rtw_rxbufs_release(dmat, desc);
1144 return rc;
1145 }
1146 }
1147 *next = 0;
1148 return 0;
1149 }
1150
1151 static __inline void
1152 rtw_rxdesc_init(bus_dma_tag_t dmat, bus_dmamap_t dmam,
1153 struct rtw_rxdesc *hrx, struct rtw_rxctl *srx, int idx)
1154 {
1155 int is_last = (idx == RTW_NRXDESC - 1);
1156 uint32_t ctl;
1157
1158 hrx->hrx_buf = htole32(srx->srx_dmamap->dm_segs[0].ds_addr);
1159
1160 ctl = LSHIFT(srx->srx_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1161 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1162
1163 if (is_last)
1164 ctl |= RTW_RXCTL_EOR;
1165
1166 hrx->hrx_ctl = htole32(ctl);
1167
1168 /* sync the mbuf */
1169 bus_dmamap_sync(dmat, srx->srx_dmamap, 0, srx->srx_dmamap->dm_mapsize,
1170 BUS_DMASYNC_PREREAD);
1171
1172 /* sync the descriptor */
1173 bus_dmamap_sync(dmat, dmam, RTW_DESC_OFFSET(hd_rx, idx),
1174 sizeof(struct rtw_rxdesc),
1175 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1176 }
1177
1178 static void
1179 rtw_rxdesc_init_all(bus_dma_tag_t dmat, bus_dmamap_t dmam,
1180 struct rtw_rxdesc *desc, struct rtw_rxctl *ctl)
1181 {
1182 int i;
1183 struct rtw_rxdesc *hrx;
1184 struct rtw_rxctl *srx;
1185
1186 for (i = 0; i < RTW_NRXDESC; i++) {
1187 hrx = &desc[i];
1188 srx = &ctl[i];
1189 rtw_rxdesc_init(dmat, dmam, hrx, srx, i);
1190 }
1191 }
1192
1193 static void
1194 rtw_io_enable(struct rtw_regs *regs, u_int8_t flags, int enable)
1195 {
1196 u_int8_t cr;
1197
1198 RTW_DPRINTF(("%s: %s 0x%02x\n", __func__,
1199 enable ? "enable" : "disable", flags));
1200
1201 cr = RTW_READ8(regs, RTW_CR);
1202
1203 /* XXX reference source does not enable MULRW */
1204 #if 0
1205 /* enable PCI Read/Write Multiple */
1206 cr |= RTW_CR_MULRW;
1207 #endif
1208
1209 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1210 if (enable)
1211 cr |= flags;
1212 else
1213 cr &= ~flags;
1214 RTW_WRITE8(regs, RTW_CR, cr);
1215 RTW_SYNC(regs, RTW_CR, RTW_CR);
1216 }
1217
1218 static void
1219 rtw_intr_rx(struct rtw_softc *sc, u_int16_t isr)
1220 {
1221 u_int next;
1222 int rate, rssi;
1223 u_int32_t hrssi, hstat, htsfth, htsftl;
1224 struct rtw_rxdesc *hrx;
1225 struct rtw_rxctl *srx;
1226 struct mbuf *m;
1227
1228 struct ieee80211_node *ni;
1229 struct ieee80211_frame *wh;
1230
1231 for (next = sc->sc_rxnext; ; next = (next + 1) % RTW_RXQLEN) {
1232 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1233 next, 1, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1234 hrx = &sc->sc_rxdesc[next];
1235 srx = &sc->sc_rxctl[next];
1236
1237 hstat = le32toh(hrx->hrx_stat);
1238 hrssi = le32toh(hrx->hrx_rssi);
1239 htsfth = le32toh(hrx->hrx_tsfth);
1240 htsftl = le32toh(hrx->hrx_tsftl);
1241
1242 RTW_DPRINTF2(("%s: rxdesc[%d] hstat %08x hrssi %08x "
1243 "htsft %08x%08x\n", __func__, next,
1244 hstat, hrssi, htsfth, htsftl));
1245
1246 if ((hstat & RTW_RXSTAT_OWN) != 0) /* belongs to NIC */
1247 break;
1248
1249 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1250 printf("%s: DMA error/FIFO overflow %08x, "
1251 "rx descriptor %d\n", sc->sc_dev.dv_xname,
1252 hstat & RTW_RXSTAT_IOERROR, next);
1253 goto next;
1254 }
1255
1256 switch (hstat & RTW_RXSTAT_RATE_MASK) {
1257 case RTW_RXSTAT_RATE_1MBPS:
1258 rate = 2;
1259 break;
1260 case RTW_RXSTAT_RATE_2MBPS:
1261 rate = 4;
1262 break;
1263 case RTW_RXSTAT_RATE_5MBPS:
1264 rate = 11;
1265 break;
1266 default:
1267 #ifdef RTW_DEBUG
1268 if (rtw_debug > 1)
1269 printf("%s: interpreting rate #%d as 11 MB/s\n",
1270 sc->sc_dev.dv_xname,
1271 MASK_AND_RSHIFT(hstat,
1272 RTW_RXSTAT_RATE_MASK));
1273 #endif /* RTW_DEBUG */
1274 /*FALLTHROUGH*/
1275 case RTW_RXSTAT_RATE_11MBPS:
1276 rate = 22;
1277 break;
1278 }
1279
1280 #ifdef RTW_DEBUG
1281 #define PRINTSTAT(flag) do { \
1282 if ((hstat & flag) != 0) { \
1283 printf("%s" #flag, delim); \
1284 delim = ","; \
1285 } \
1286 } while (0)
1287 if (rtw_debug > 1) {
1288 const char *delim = "<";
1289 printf("%s: ", sc->sc_dev.dv_xname);
1290 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1291 printf("status %08x", hstat);
1292 PRINTSTAT(RTW_RXSTAT_SPLCP);
1293 PRINTSTAT(RTW_RXSTAT_MAR);
1294 PRINTSTAT(RTW_RXSTAT_PAR);
1295 PRINTSTAT(RTW_RXSTAT_BAR);
1296 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1297 PRINTSTAT(RTW_RXSTAT_CRC32);
1298 PRINTSTAT(RTW_RXSTAT_ICV);
1299 printf(">, ");
1300 }
1301 printf("rate %d.%d Mb/s, time %08x%08x\n",
1302 (rate * 5) / 10, (rate * 5) % 10, htsfth, htsftl);
1303 }
1304 #endif /* RTW_DEBUG */
1305
1306 if ((hstat & RTW_RXSTAT_RES) != 0 &&
1307 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
1308 goto next;
1309
1310 /* if bad flags, skip descriptor */
1311 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1312 printf("%s: too many rx segments\n",
1313 sc->sc_dev.dv_xname);
1314 goto next;
1315 }
1316
1317 m = srx->srx_mbuf;
1318
1319 /* if temporarily out of memory, re-use mbuf */
1320 if (rtw_rxbuf_alloc(sc->sc_dmat, srx) != 0) {
1321 printf("%s: rtw_rxbuf_alloc(, %d) failed, "
1322 "dropping this packet\n", sc->sc_dev.dv_xname,
1323 next);
1324 goto next;
1325 }
1326
1327 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1328 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_RSSI);
1329 else {
1330 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_IMR_RSSI);
1331 /* TBD find out each front-end's LNA gain in the
1332 * front-end's units
1333 */
1334 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1335 rssi |= 0x80;
1336 }
1337
1338 m->m_pkthdr.len = m->m_len =
1339 MASK_AND_RSHIFT(hstat, RTW_RXSTAT_LENGTH_MASK);
1340 m->m_flags |= M_HASFCS;
1341
1342 if (m->m_pkthdr.len < IEEE80211_MIN_LEN) {
1343 sc->sc_ic.ic_stats.is_rx_tooshort++;
1344 goto next;
1345 }
1346 wh = mtod(m, struct ieee80211_frame *);
1347 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1348 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1349
1350 sc->sc_tsfth = htsfth;
1351
1352 #ifdef RTW_DEBUG
1353 if ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1354 (IFF_DEBUG|IFF_LINK2)) {
1355 ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1356 rate, rssi);
1357 }
1358 #endif /* RTW_DEBUG */
1359 ieee80211_input(&sc->sc_if, m, ni, rssi, htsftl);
1360 ieee80211_release_node(&sc->sc_ic, ni);
1361 next:
1362 rtw_rxdesc_init(sc->sc_dmat, sc->sc_desc_dmamap,
1363 hrx, srx, next);
1364 }
1365 sc->sc_rxnext = next;
1366
1367 return;
1368 }
1369
1370 static void
1371 rtw_txbuf_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1372 struct rtw_txctl *stx)
1373 {
1374 struct mbuf *m;
1375 struct ieee80211_node *ni;
1376 bus_dmamap_t dmamap;
1377
1378 dmamap = stx->stx_dmamap;
1379 m = stx->stx_mbuf;
1380 ni = stx->stx_ni;
1381 stx->stx_dmamap = NULL;
1382 stx->stx_mbuf = NULL;
1383 stx->stx_ni = NULL;
1384
1385 bus_dmamap_sync(dmat, dmamap, 0, dmamap->dm_mapsize,
1386 BUS_DMASYNC_POSTWRITE);
1387 bus_dmamap_unload(dmat, dmamap);
1388 m_freem(m);
1389 ieee80211_release_node(ic, ni);
1390 }
1391
1392 static void
1393 rtw_txbufs_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1394 struct rtw_txctl_blk *stc)
1395 {
1396 struct rtw_txctl *stx;
1397
1398 while ((stx = SIMPLEQ_FIRST(&stc->stc_dirtyq)) != NULL) {
1399 rtw_txbuf_release(dmat, ic, stx);
1400 SIMPLEQ_REMOVE_HEAD(&stc->stc_dirtyq, stx_q);
1401 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1402 }
1403 }
1404
1405 static __inline void
1406 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *htc,
1407 struct rtw_txctl *stx, int ndesc)
1408 {
1409 uint32_t hstat;
1410 int data_retry, rts_retry;
1411 struct rtw_txdesc *htx0, *htxn;
1412 const char *condstring;
1413
1414 rtw_txbuf_release(sc->sc_dmat, &sc->sc_ic, stx);
1415
1416 htc->htc_nfree += ndesc;
1417
1418 htx0 = &htc->htc_desc[stx->stx_first];
1419 htxn = &htc->htc_desc[stx->stx_last];
1420
1421 hstat = le32toh(htx0->htx_stat);
1422 rts_retry = MASK_AND_RSHIFT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1423 data_retry = MASK_AND_RSHIFT(hstat, RTW_TXSTAT_DRC_MASK);
1424
1425 sc->sc_if.if_collisions += rts_retry + data_retry;
1426
1427 if ((hstat & RTW_TXSTAT_TOK) != 0)
1428 condstring = "ok";
1429 else {
1430 sc->sc_if.if_oerrors++;
1431 condstring = "error";
1432 }
1433
1434 DPRINTF2(sc, ("%s: stx %p txdesc[%d, %d] %s tries rts %u data %u\n",
1435 sc->sc_dev.dv_xname, stx, stx->stx_first, stx->stx_last,
1436 condstring, rts_retry, data_retry));
1437 }
1438
1439 /* Collect transmitted packets. */
1440 static __inline void
1441 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txctl_blk *stc,
1442 struct rtw_txdesc_blk *htc)
1443 {
1444 int ndesc;
1445 struct rtw_txctl *stx;
1446
1447 while ((stx = SIMPLEQ_FIRST(&stc->stc_dirtyq)) != NULL) {
1448 ndesc = 1 + stx->stx_last - stx->stx_first;
1449 if (stx->stx_last < stx->stx_first)
1450 ndesc += htc->htc_ndesc;
1451
1452 KASSERT(ndesc > 0);
1453
1454 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap, htc,
1455 stx->stx_first, ndesc,
1456 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1457
1458 if ((htc->htc_desc[stx->stx_first].htx_stat &
1459 htole32(RTW_TXSTAT_OWN)) != 0)
1460 break;
1461
1462 rtw_collect_txpkt(sc, htc, stx, ndesc);
1463 SIMPLEQ_REMOVE_HEAD(&stc->stc_dirtyq, stx_q);
1464 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1465 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1466 }
1467 if (stx == NULL)
1468 stc->stc_tx_timer = 0;
1469 }
1470
1471 static void
1472 rtw_intr_tx(struct rtw_softc *sc, u_int16_t isr)
1473 {
1474 int pri;
1475 struct rtw_txctl_blk *stc;
1476 struct rtw_txdesc_blk *htc;
1477
1478 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1479 stc = &sc->sc_txctl_blk[pri];
1480 htc = &sc->sc_txdesc_blk[pri];
1481
1482 rtw_collect_txring(sc, stc, htc);
1483
1484 rtw_start(&sc->sc_if);
1485 }
1486
1487 /* TBD */
1488 return;
1489 }
1490
1491 static void
1492 rtw_intr_beacon(struct rtw_softc *sc, u_int16_t isr)
1493 {
1494 /* TBD */
1495 return;
1496 }
1497
1498 static void
1499 rtw_intr_atim(struct rtw_softc *sc)
1500 {
1501 /* TBD */
1502 return;
1503 }
1504
1505 static void
1506 rtw_hwring_setup(struct rtw_softc *sc)
1507 {
1508 struct rtw_regs *regs = &sc->sc_regs;
1509 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1510 RTW_WRITE(regs, RTW_TLPDA, RTW_RING_BASE(sc, hd_txlo));
1511 RTW_WRITE(regs, RTW_TNPDA, RTW_RING_BASE(sc, hd_txmd));
1512 RTW_WRITE(regs, RTW_THPDA, RTW_RING_BASE(sc, hd_txhi));
1513 RTW_WRITE(regs, RTW_TBDA, RTW_RING_BASE(sc, hd_bcn));
1514 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1515 }
1516
1517 static void
1518 rtw_swring_setup(struct rtw_softc *sc)
1519 {
1520 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1521
1522 rtw_txctl_blk_init_all(&sc->sc_txctl_blk[0]);
1523
1524 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1525 0, RTW_NRXDESC, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1526 rtw_rxctl_init_all(sc->sc_dmat, sc->sc_rxctl, &sc->sc_rxnext,
1527 sc->sc_dev.dv_xname);
1528 rtw_rxdesc_init_all(sc->sc_dmat, sc->sc_desc_dmamap,
1529 sc->sc_rxdesc, sc->sc_rxctl);
1530
1531 rtw_txdescs_sync_all(sc->sc_dmat, sc->sc_desc_dmamap,
1532 &sc->sc_txdesc_blk[0]);
1533 #if 0 /* redundant with rtw_rxdesc_init_all */
1534 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1535 0, RTW_NRXDESC, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1536 #endif
1537 }
1538
1539 static void
1540 rtw_kick(struct rtw_softc *sc)
1541 {
1542 int pri;
1543 struct rtw_regs *regs = &sc->sc_regs;
1544
1545 RTW_WRITE16(regs, RTW_IMR, 0);
1546 RTW_WBW(regs, RTW_IMR, RTW_TPPOLL);
1547
1548 RTW_WRITE8(regs, RTW_TPPOLL,
1549 RTW_TPPOLL_SBQ|RTW_TPPOLL_SHPQ|RTW_TPPOLL_SNPQ|RTW_TPPOLL_SLPQ);
1550
1551 RTW_SYNC(regs, RTW_TPPOLL, RTW_TPPOLL);
1552
1553 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 0);
1554
1555 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1556 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1557 rtw_txbufs_release(sc->sc_dmat, &sc->sc_ic,
1558 &sc->sc_txctl_blk[pri]);
1559 }
1560 rtw_swring_setup(sc);
1561 rtw_hwring_setup(sc);
1562 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
1563 RTW_SYNC(regs, RTW_IMR, RTW_IMR);
1564 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 1);
1565 }
1566
1567 static void
1568 rtw_intr_ioerror(struct rtw_softc *sc, u_int16_t isr)
1569 {
1570 if ((isr & (RTW_INTR_RDU|RTW_INTR_RXFOVW)) != 0)
1571 rtw_kick(sc);
1572 if ((isr & RTW_INTR_TXFOVW) != 0)
1573 ; /* TBD restart transmit engine */
1574 return;
1575 }
1576
1577 static __inline void
1578 rtw_suspend_ticks(struct rtw_softc *sc)
1579 {
1580 RTW_DPRINTF2(("%s: suspending ticks\n", sc->sc_dev.dv_xname));
1581 sc->sc_do_tick = 0;
1582 }
1583
1584 static __inline void
1585 rtw_resume_ticks(struct rtw_softc *sc)
1586 {
1587 u_int32_t tsftrl0, tsftrl1, next_tick;
1588
1589 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1590
1591 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1592 next_tick = tsftrl1 + 1000000;
1593 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
1594
1595 sc->sc_do_tick = 1;
1596
1597 RTW_DPRINTF2(("%s: resume ticks delta %#08x now %#08x next %#08x\n",
1598 sc->sc_dev.dv_xname, tsftrl1 - tsftrl0, tsftrl1, next_tick));
1599 }
1600
1601 static void
1602 rtw_intr_timeout(struct rtw_softc *sc)
1603 {
1604 RTW_DPRINTF2(("%s: timeout\n", sc->sc_dev.dv_xname));
1605 if (sc->sc_do_tick)
1606 rtw_resume_ticks(sc);
1607 return;
1608 }
1609
1610 int
1611 rtw_intr(void *arg)
1612 {
1613 int i;
1614 struct rtw_softc *sc = arg;
1615 struct rtw_regs *regs = &sc->sc_regs;
1616 u_int16_t isr;
1617
1618 /*
1619 * If the interface isn't running, the interrupt couldn't
1620 * possibly have come from us.
1621 */
1622 if ((sc->sc_flags & RTW_F_ENABLED) == 0 ||
1623 (sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
1624 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) {
1625 RTW_DPRINTF2(("%s: stray interrupt\n", sc->sc_dev.dv_xname));
1626 return (0);
1627 }
1628
1629 for (i = 0; i < 10; i++) {
1630 isr = RTW_READ16(regs, RTW_ISR);
1631
1632 RTW_WRITE16(regs, RTW_ISR, isr);
1633 RTW_WBR(regs, RTW_ISR, RTW_ISR);
1634
1635 if (sc->sc_intr_ack != NULL)
1636 (*sc->sc_intr_ack)(regs);
1637
1638 if (isr == 0)
1639 break;
1640
1641 #ifdef RTW_DEBUG
1642 #define PRINTINTR(flag) do { \
1643 if ((isr & flag) != 0) { \
1644 printf("%s" #flag, delim); \
1645 delim = ","; \
1646 } \
1647 } while (0)
1648
1649 if (rtw_debug > 1 && isr != 0) {
1650 const char *delim = "<";
1651
1652 printf("%s: reg[ISR] = %x", sc->sc_dev.dv_xname, isr);
1653
1654 PRINTINTR(RTW_INTR_TXFOVW);
1655 PRINTINTR(RTW_INTR_TIMEOUT);
1656 PRINTINTR(RTW_INTR_BCNINT);
1657 PRINTINTR(RTW_INTR_ATIMINT);
1658 PRINTINTR(RTW_INTR_TBDER);
1659 PRINTINTR(RTW_INTR_TBDOK);
1660 PRINTINTR(RTW_INTR_THPDER);
1661 PRINTINTR(RTW_INTR_THPDOK);
1662 PRINTINTR(RTW_INTR_TNPDER);
1663 PRINTINTR(RTW_INTR_TNPDOK);
1664 PRINTINTR(RTW_INTR_RXFOVW);
1665 PRINTINTR(RTW_INTR_RDU);
1666 PRINTINTR(RTW_INTR_TLPDER);
1667 PRINTINTR(RTW_INTR_TLPDOK);
1668 PRINTINTR(RTW_INTR_RER);
1669 PRINTINTR(RTW_INTR_ROK);
1670
1671 printf(">\n");
1672 }
1673 #undef PRINTINTR
1674 #endif /* RTW_DEBUG */
1675
1676 if ((isr & RTW_INTR_RX) != 0)
1677 rtw_intr_rx(sc, isr & RTW_INTR_RX);
1678 if ((isr & RTW_INTR_TX) != 0)
1679 rtw_intr_tx(sc, isr & RTW_INTR_TX);
1680 if ((isr & RTW_INTR_BEACON) != 0)
1681 rtw_intr_beacon(sc, isr & RTW_INTR_BEACON);
1682 if ((isr & RTW_INTR_ATIMINT) != 0)
1683 rtw_intr_atim(sc);
1684 if ((isr & RTW_INTR_IOERROR) != 0)
1685 rtw_intr_ioerror(sc, isr & RTW_INTR_IOERROR);
1686 if ((isr & RTW_INTR_TIMEOUT) != 0)
1687 rtw_intr_timeout(sc);
1688 }
1689
1690 return 1;
1691 }
1692
1693 static void
1694 rtw_stop(struct ifnet *ifp, int disable)
1695 {
1696 int pri, s;
1697 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
1698 struct ieee80211com *ic = &sc->sc_ic;
1699 struct rtw_regs *regs = &sc->sc_regs;
1700
1701 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1702 return;
1703
1704 rtw_suspend_ticks(sc);
1705
1706 s = splnet();
1707
1708 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1709
1710 if ((sc->sc_flags & RTW_F_INVALID) == 0) {
1711 /* Disable interrupts. */
1712 RTW_WRITE16(regs, RTW_IMR, 0);
1713
1714 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
1715
1716 /* Stop the transmit and receive processes. First stop DMA,
1717 * then disable receiver and transmitter.
1718 */
1719 RTW_WRITE8(regs, RTW_TPPOLL,
1720 RTW_TPPOLL_SBQ|RTW_TPPOLL_SHPQ|RTW_TPPOLL_SNPQ|
1721 RTW_TPPOLL_SLPQ);
1722
1723 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
1724
1725 rtw_io_enable(&sc->sc_regs, RTW_CR_RE|RTW_CR_TE, 0);
1726 }
1727
1728 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1729 rtw_txbufs_release(sc->sc_dmat, &sc->sc_ic,
1730 &sc->sc_txctl_blk[pri]);
1731 }
1732
1733 if (disable) {
1734 rtw_disable(sc);
1735 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1736 }
1737
1738 /* Mark the interface as not running. Cancel the watchdog timer. */
1739 ifp->if_flags &= ~IFF_RUNNING;
1740 ifp->if_timer = 0;
1741
1742 splx(s);
1743
1744 return;
1745 }
1746
1747 const char *
1748 rtw_pwrstate_string(enum rtw_pwrstate power)
1749 {
1750 switch (power) {
1751 case RTW_ON:
1752 return "on";
1753 case RTW_SLEEP:
1754 return "sleep";
1755 case RTW_OFF:
1756 return "off";
1757 default:
1758 return "unknown";
1759 }
1760 }
1761
1762 /* XXX For Maxim, I am using the RFMD settings gleaned from the
1763 * reference driver, plus a magic Maxim "ON" value that comes from
1764 * the Realtek document "Windows PG for Rtl8180."
1765 */
1766 static void
1767 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1768 int before_rf, int digphy)
1769 {
1770 u_int32_t anaparm;
1771
1772 anaparm = RTW_READ(regs, RTW_ANAPARM);
1773 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
1774
1775 switch (power) {
1776 case RTW_OFF:
1777 if (before_rf)
1778 return;
1779 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
1780 anaparm |= RTW_ANAPARM_TXDACOFF;
1781 break;
1782 case RTW_SLEEP:
1783 if (!before_rf)
1784 return;
1785 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
1786 anaparm |= RTW_ANAPARM_TXDACOFF;
1787 break;
1788 case RTW_ON:
1789 if (!before_rf)
1790 return;
1791 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
1792 break;
1793 }
1794 RTW_DPRINTF(("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
1795 __func__, rtw_pwrstate_string(power),
1796 (before_rf) ? "before" : "after", anaparm));
1797
1798 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1799 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1800 }
1801
1802 /* XXX I am using the RFMD settings gleaned from the reference
1803 * driver. They agree
1804 */
1805 static void
1806 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1807 int before_rf, int digphy)
1808 {
1809 u_int32_t anaparm;
1810
1811 anaparm = RTW_READ(regs, RTW_ANAPARM);
1812 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
1813
1814 switch (power) {
1815 case RTW_OFF:
1816 if (before_rf)
1817 return;
1818 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
1819 anaparm |= RTW_ANAPARM_TXDACOFF;
1820 break;
1821 case RTW_SLEEP:
1822 if (!before_rf)
1823 return;
1824 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
1825 anaparm |= RTW_ANAPARM_TXDACOFF;
1826 break;
1827 case RTW_ON:
1828 if (!before_rf)
1829 return;
1830 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
1831 break;
1832 }
1833 RTW_DPRINTF(("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
1834 __func__, rtw_pwrstate_string(power),
1835 (before_rf) ? "before" : "after", anaparm));
1836
1837 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1838 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1839 }
1840
1841 static void
1842 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1843 int before_rf, int digphy)
1844 {
1845 u_int32_t anaparm;
1846
1847 anaparm = RTW_READ(regs, RTW_ANAPARM);
1848 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
1849
1850 switch (power) {
1851 case RTW_OFF:
1852 if (before_rf)
1853 return;
1854 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
1855 anaparm |= RTW_ANAPARM_TXDACOFF;
1856 break;
1857 case RTW_SLEEP:
1858 if (!before_rf)
1859 return;
1860 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
1861 anaparm |= RTW_ANAPARM_TXDACOFF;
1862 break;
1863 case RTW_ON:
1864 if (!before_rf)
1865 return;
1866 if (digphy) {
1867 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
1868 /* XXX guess */
1869 anaparm |= RTW_ANAPARM_TXDACOFF;
1870 } else
1871 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
1872 break;
1873 }
1874 RTW_DPRINTF(("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
1875 __func__, rtw_pwrstate_string(power),
1876 (before_rf) ? "before" : "after", anaparm));
1877
1878 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1879 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1880 }
1881
1882 static void
1883 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
1884 int digphy)
1885 {
1886 struct rtw_regs *regs = &sc->sc_regs;
1887
1888 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
1889
1890 (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
1891
1892 rtw_set_access(sc, RTW_ACCESS_NONE);
1893
1894 return;
1895 }
1896
1897 static int
1898 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
1899 {
1900 int rc;
1901
1902 RTW_DPRINTF2(("%s: %s->%s\n", __func__,
1903 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
1904
1905 if (sc->sc_pwrstate == power)
1906 return 0;
1907
1908 rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
1909 rc = rtw_rf_pwrstate(sc->sc_rf, power);
1910 rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
1911
1912 switch (power) {
1913 case RTW_ON:
1914 /* TBD set LEDs */
1915 break;
1916 case RTW_SLEEP:
1917 /* TBD */
1918 break;
1919 case RTW_OFF:
1920 /* TBD */
1921 break;
1922 }
1923 if (rc == 0)
1924 sc->sc_pwrstate = power;
1925 else
1926 sc->sc_pwrstate = RTW_OFF;
1927 return rc;
1928 }
1929
1930 static int
1931 rtw_tune(struct rtw_softc *sc)
1932 {
1933 struct ieee80211com *ic = &sc->sc_ic;
1934 u_int chan;
1935 int rc;
1936 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
1937 dflantb = sc->sc_flags & RTW_F_DFLANTB;
1938
1939 KASSERT(ic->ic_bss->ni_chan != NULL);
1940
1941 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1942 if (chan == IEEE80211_CHAN_ANY)
1943 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1944
1945 if (chan == sc->sc_cur_chan) {
1946 RTW_DPRINTF(("%s: already tuned chan #%d\n", __func__, chan));
1947 return 0;
1948 }
1949
1950 rtw_suspend_ticks(sc);
1951
1952 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 0);
1953
1954 /* TBD wait for Tx to complete */
1955
1956 KASSERT((sc->sc_flags & RTW_F_ENABLED) != 0);
1957
1958 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
1959 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_bss->ni_chan),
1960 sc->sc_csthr, ic->ic_bss->ni_chan->ic_freq, antdiv,
1961 dflantb, RTW_ON)) != 0) {
1962 /* XXX condition on powersaving */
1963 printf("%s: phy init failed\n", sc->sc_dev.dv_xname);
1964 }
1965
1966 sc->sc_cur_chan = chan;
1967
1968 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 1);
1969
1970 rtw_resume_ticks(sc);
1971
1972 return rc;
1973 }
1974
1975 void
1976 rtw_disable(struct rtw_softc *sc)
1977 {
1978 int rc;
1979
1980 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1981 return;
1982
1983 /* turn off PHY */
1984 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
1985 printf("%s: failed to turn off PHY (%d)\n",
1986 sc->sc_dev.dv_xname, rc);
1987
1988 if (sc->sc_disable != NULL)
1989 (*sc->sc_disable)(sc);
1990
1991 sc->sc_flags &= ~RTW_F_ENABLED;
1992 }
1993
1994 int
1995 rtw_enable(struct rtw_softc *sc)
1996 {
1997 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
1998 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
1999 printf("%s: device enable failed\n",
2000 sc->sc_dev.dv_xname);
2001 return (EIO);
2002 }
2003 sc->sc_flags |= RTW_F_ENABLED;
2004 }
2005 return (0);
2006 }
2007
2008 static void
2009 rtw_transmit_config(struct rtw_regs *regs)
2010 {
2011 u_int32_t tcr;
2012
2013 tcr = RTW_READ(regs, RTW_TCR);
2014
2015 tcr |= RTW_TCR_CWMIN;
2016 tcr &= ~RTW_TCR_MXDMA_MASK;
2017 tcr |= RTW_TCR_MXDMA_256;
2018 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
2019 tcr &= ~RTW_TCR_LBK_MASK;
2020 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
2021
2022 /* set short/long retry limits */
2023 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2024 tcr |= LSHIFT(4, RTW_TCR_SRL_MASK) | LSHIFT(4, RTW_TCR_LRL_MASK);
2025
2026 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
2027
2028 RTW_WRITE(regs, RTW_TCR, tcr);
2029 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2030 }
2031
2032 static __inline void
2033 rtw_enable_interrupts(struct rtw_softc *sc)
2034 {
2035 struct rtw_regs *regs = &sc->sc_regs;
2036
2037 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2038 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2039
2040 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2041 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2042 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2043 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2044
2045 /* XXX necessary? */
2046 if (sc->sc_intr_ack != NULL)
2047 (*sc->sc_intr_ack)(regs);
2048 }
2049
2050 static void
2051 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2052 {
2053 uint8_t msr;
2054
2055 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2056 rtw_set_access(sc, RTW_ACCESS_CONFIG);
2057
2058 msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2059
2060 switch (opmode) {
2061 case IEEE80211_M_AHDEMO:
2062 case IEEE80211_M_IBSS:
2063 msr |= RTW_MSR_NETYPE_ADHOC_OK;
2064 break;
2065 case IEEE80211_M_HOSTAP:
2066 msr |= RTW_MSR_NETYPE_AP_OK;
2067 break;
2068 case IEEE80211_M_MONITOR:
2069 /* XXX */
2070 msr |= RTW_MSR_NETYPE_NOLINK;
2071 break;
2072 case IEEE80211_M_STA:
2073 msr |= RTW_MSR_NETYPE_INFRA_OK;
2074 break;
2075 }
2076 RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2077
2078 rtw_set_access(sc, RTW_ACCESS_NONE);
2079 }
2080
2081 /* XXX is the endianness correct? test. */
2082 #define rtw_calchash(addr) \
2083 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
2084
2085 static void
2086 rtw_pktfilt_load(struct rtw_softc *sc)
2087 {
2088 struct rtw_regs *regs = &sc->sc_regs;
2089 struct ieee80211com *ic = &sc->sc_ic;
2090 struct ethercom *ec = &ic->ic_ec;
2091 struct ifnet *ifp = &sc->sc_ic.ic_if;
2092 int hash;
2093 u_int32_t hashes[2] = { 0, 0 };
2094 struct ether_multi *enm;
2095 struct ether_multistep step;
2096
2097 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2098
2099 #define RTW_RCR_MONITOR (RTW_RCR_ACRC32|RTW_RCR_APM|RTW_RCR_AAP|RTW_RCR_AB|RTW_RCR_ACF | RTW_RCR_AICV | RTW_RCR_ACRC32)
2100
2101 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2102 sc->sc_rcr |= RTW_RCR_MONITOR;
2103 else
2104 sc->sc_rcr &= ~RTW_RCR_MONITOR;
2105
2106 /* XXX reference sources BEGIN */
2107 sc->sc_rcr |= RTW_RCR_ENMARP;
2108 sc->sc_rcr |= RTW_RCR_AB | RTW_RCR_AM | RTW_RCR_APM;
2109 #if 0
2110 /* receive broadcasts in our BSS */
2111 sc->sc_rcr |= RTW_RCR_ADD3;
2112 #endif
2113 /* XXX reference sources END */
2114
2115 /* receive pwrmgmt frames. */
2116 sc->sc_rcr |= RTW_RCR_APWRMGT;
2117 /* receive mgmt/ctrl/data frames. */
2118 sc->sc_rcr |= RTW_RCR_ADF | RTW_RCR_AMF;
2119 /* initialize Rx DMA threshold, Tx DMA burst size */
2120 sc->sc_rcr |= RTW_RCR_RXFTH_WHOLE | RTW_RCR_MXDMA_1024;
2121
2122 ifp->if_flags &= ~IFF_ALLMULTI;
2123
2124 if (ifp->if_flags & IFF_PROMISC) {
2125 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2126 allmulti:
2127 ifp->if_flags |= IFF_ALLMULTI;
2128 goto setit;
2129 }
2130
2131 /*
2132 * Program the 64-bit multicast hash filter.
2133 */
2134 ETHER_FIRST_MULTI(step, ec, enm);
2135 while (enm != NULL) {
2136 /* XXX */
2137 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2138 ETHER_ADDR_LEN) != 0)
2139 goto allmulti;
2140
2141 hash = rtw_calchash(enm->enm_addrlo);
2142 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2143 ETHER_NEXT_MULTI(step, enm);
2144 }
2145
2146 if (ifp->if_flags & IFF_BROADCAST) {
2147 hash = rtw_calchash(etherbroadcastaddr);
2148 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2149 }
2150
2151 /* all bits set => hash is useless */
2152 if (~(hashes[0] & hashes[1]) == 0)
2153 goto allmulti;
2154
2155 setit:
2156 if (ifp->if_flags & IFF_ALLMULTI)
2157 sc->sc_rcr |= RTW_RCR_AM; /* accept all multicast */
2158
2159 if (ic->ic_state == IEEE80211_S_SCAN)
2160 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2161
2162 hashes[0] = hashes[1] = 0xffffffff;
2163
2164 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2165 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2166 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2167 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2168
2169 DPRINTF(sc, ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2170 sc->sc_dev.dv_xname, RTW_READ(regs, RTW_MAR0),
2171 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2172
2173 return;
2174 }
2175
2176 static int
2177 rtw_init(struct ifnet *ifp)
2178 {
2179 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2180 struct ieee80211com *ic = &sc->sc_ic;
2181 struct rtw_regs *regs = &sc->sc_regs;
2182 int rc = 0;
2183
2184 if ((rc = rtw_enable(sc)) != 0)
2185 goto out;
2186
2187 /* Cancel pending I/O and reset. */
2188 rtw_stop(ifp, 0);
2189
2190 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2191 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
2192 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
2193 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
2194
2195 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2196 goto out;
2197
2198 rtw_swring_setup(sc);
2199
2200 rtw_transmit_config(regs);
2201
2202 rtw_set_access(sc, RTW_ACCESS_CONFIG);
2203
2204 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2205 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2206
2207 /* long PLCP header, 1Mbps basic rate */
2208 RTW_WRITE16(regs, RTW_BRSR, 0x0f);
2209 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2210
2211 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
2212 rtw_set_access(sc, RTW_ACCESS_NONE);
2213
2214 #if 0
2215 RTW_WRITE(regs, RTW_FEMR, RTW_FEMR_GWAKE|RTW_FEMR_WKUP|RTW_FEMR_INTR);
2216 #endif
2217 /* XXX from reference sources */
2218 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2219 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2220
2221 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev.dv_xname);
2222
2223 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2224 /* from Linux driver */
2225 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2226
2227 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2228
2229 rtw_enable_interrupts(sc);
2230
2231 rtw_pktfilt_load(sc);
2232
2233 rtw_hwring_setup(sc);
2234
2235 rtw_io_enable(regs, RTW_CR_RE|RTW_CR_TE, 1);
2236
2237 ifp->if_flags |= IFF_RUNNING;
2238 ic->ic_state = IEEE80211_S_INIT;
2239
2240 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2241 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2242
2243 rtw_resume_ticks(sc);
2244
2245 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2246
2247 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2248 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2249 else
2250 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2251
2252 out:
2253 return rc;
2254 }
2255
2256 static int
2257 rtw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2258 {
2259 int rc = 0;
2260 struct rtw_softc *sc = ifp->if_softc;
2261 struct ifreq *ifr = (struct ifreq *)data;
2262
2263 switch (cmd) {
2264 case SIOCSIFFLAGS:
2265 if ((ifp->if_flags & IFF_UP) != 0) {
2266 if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2267 rtw_pktfilt_load(sc);
2268 } else
2269 rc = rtw_init(ifp);
2270 #ifdef RTW_DEBUG
2271 rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
2272 #endif /* RTW_DEBUG */
2273 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2274 #ifdef RTW_DEBUG
2275 rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
2276 #endif /* RTW_DEBUG */
2277 rtw_stop(ifp, 1);
2278 }
2279 break;
2280 case SIOCADDMULTI:
2281 case SIOCDELMULTI:
2282 if (cmd == SIOCADDMULTI)
2283 rc = ether_addmulti(ifr, &sc->sc_ic.ic_ec);
2284 else
2285 rc = ether_delmulti(ifr, &sc->sc_ic.ic_ec);
2286 if (rc == ENETRESET) {
2287 if (ifp->if_flags & IFF_RUNNING)
2288 rtw_pktfilt_load(sc);
2289 rc = 0;
2290 }
2291 break;
2292 default:
2293 if ((rc = ieee80211_ioctl(ifp, cmd, data)) == ENETRESET) {
2294 if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2295 rc = rtw_init(ifp);
2296 else
2297 rc = 0;
2298 }
2299 break;
2300 }
2301 return rc;
2302 }
2303
2304 /* Point *mp at the next 802.11 frame to transmit. Point *stcp
2305 * at the driver's selection of transmit control block for the packet.
2306 */
2307 static __inline int
2308 rtw_dequeue(struct ifnet *ifp, struct rtw_txctl_blk **stcp,
2309 struct rtw_txdesc_blk **htcp, struct mbuf **mp,
2310 struct ieee80211_node **nip)
2311 {
2312 struct rtw_txctl_blk *stc;
2313 struct rtw_txdesc_blk *htc;
2314 struct mbuf *m0;
2315 struct rtw_softc *sc;
2316 struct ieee80211com *ic;
2317
2318 sc = (struct rtw_softc *)ifp->if_softc;
2319
2320 DPRINTF2(sc, ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
2321 *mp = NULL;
2322
2323 stc = &sc->sc_txctl_blk[RTW_TXPRIMD];
2324 htc = &sc->sc_txdesc_blk[RTW_TXPRIMD];
2325
2326 if (SIMPLEQ_EMPTY(&stc->stc_freeq) || htc->htc_nfree == 0) {
2327 DPRINTF2(sc, ("%s: out of descriptors\n", __func__));
2328 ifp->if_flags |= IFF_OACTIVE;
2329 return 0;
2330 }
2331
2332 ic = &sc->sc_ic;
2333
2334 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
2335 IF_DEQUEUE(&ic->ic_mgtq, m0);
2336 *nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2337 m0->m_pkthdr.rcvif = NULL;
2338 DPRINTF2(sc, ("%s: dequeue mgt frame\n", __func__));
2339 } else if (ic->ic_state != IEEE80211_S_RUN) {
2340 DPRINTF2(sc, ("%s: not running\n", __func__));
2341 return 0;
2342 } else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
2343 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
2344 *nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2345 m0->m_pkthdr.rcvif = NULL;
2346 DPRINTF2(sc, ("%s: dequeue pwrsave frame\n", __func__));
2347 } else {
2348 IFQ_POLL(&ifp->if_snd, m0);
2349 if (m0 == NULL) {
2350 DPRINTF2(sc, ("%s: no frame\n", __func__));
2351 return 0;
2352 }
2353 DPRINTF2(sc, ("%s: dequeue data frame\n", __func__));
2354 IFQ_DEQUEUE(&ifp->if_snd, m0);
2355 ifp->if_opackets++;
2356 #if NBPFILTER > 0
2357 if (ifp->if_bpf)
2358 bpf_mtap(ifp->if_bpf, m0);
2359 #endif
2360 if ((m0 = ieee80211_encap(ifp, m0, nip)) == NULL) {
2361 DPRINTF2(sc, ("%s: encap error\n", __func__));
2362 ifp->if_oerrors++;
2363 return -1;
2364 }
2365 }
2366 DPRINTF2(sc, ("%s: leave\n", __func__));
2367 *stcp = stc;
2368 *htcp = htc;
2369 *mp = m0;
2370 return 0;
2371 }
2372
2373 /* TBD factor with atw_start */
2374 static struct mbuf *
2375 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
2376 u_int ndescfree, short *ifflagsp, const char *dvname)
2377 {
2378 int first, rc;
2379 struct mbuf *m, *m0;
2380
2381 m0 = chain;
2382
2383 /*
2384 * Load the DMA map. Copy and try (once) again if the packet
2385 * didn't fit in the alloted number of segments.
2386 */
2387 for (first = 1;
2388 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
2389 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
2390 dmam->dm_nsegs > ndescfree) && first;
2391 first = 0) {
2392 if (rc == 0)
2393 bus_dmamap_unload(dmat, dmam);
2394 MGETHDR(m, M_DONTWAIT, MT_DATA);
2395 if (m == NULL) {
2396 printf("%s: unable to allocate Tx mbuf\n",
2397 dvname);
2398 break;
2399 }
2400 if (m0->m_pkthdr.len > MHLEN) {
2401 MCLGET(m, M_DONTWAIT);
2402 if ((m->m_flags & M_EXT) == 0) {
2403 printf("%s: cannot allocate Tx cluster\n",
2404 dvname);
2405 m_freem(m);
2406 break;
2407 }
2408 }
2409 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2410 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
2411 m_freem(m0);
2412 m0 = m;
2413 m = NULL;
2414 }
2415 if (rc != 0) {
2416 printf("%s: cannot load Tx buffer, rc = %d\n", dvname, rc);
2417 m_freem(m0);
2418 return NULL;
2419 } else if (dmam->dm_nsegs > ndescfree) {
2420 *ifflagsp |= IFF_OACTIVE;
2421 bus_dmamap_unload(dmat, dmam);
2422 m_freem(m0);
2423 return NULL;
2424 }
2425 return m0;
2426 }
2427
2428 static void
2429 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
2430 struct rtw_txctl *stx, struct rtw_txdesc_blk *htc, int desc)
2431 {
2432 struct rtw_txdesc *htx = &htc->htc_desc[desc];
2433 DPRINTF2(sc, ("%s: stx %p %s txdesc[%d] ctl0 %#08x "
2434 "ctl1 %#08x buf %#08x len %#08x\n",
2435 sc->sc_dev.dv_xname, stx, action, desc,
2436 le32toh(htx->htx_ctl0),
2437 le32toh(htx->htx_ctl1), le32toh(htx->htx_buf),
2438 le32toh(htx->htx_len)));
2439 }
2440
2441 static void
2442 rtw_start(struct ifnet *ifp)
2443 {
2444 uint8_t tppoll;
2445 int desc, i, lastdesc, npkt, rate;
2446 uint32_t proto_ctl0, ctl0, ctl1;
2447 bus_dmamap_t dmamap;
2448 struct ieee80211com *ic;
2449 struct ieee80211_duration *d0;
2450 struct ieee80211_frame *wh;
2451 struct ieee80211_node *ni;
2452 struct mbuf *m0;
2453 struct rtw_softc *sc;
2454 struct rtw_txctl_blk *stc;
2455 struct rtw_txdesc_blk *htc;
2456 struct rtw_txctl *stx;
2457 struct rtw_txdesc *htx;
2458
2459 sc = (struct rtw_softc *)ifp->if_softc;
2460 ic = &sc->sc_ic;
2461
2462 DPRINTF2(sc, ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
2463
2464 /* XXX do real rate control */
2465 proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
2466
2467 switch (rate = MAX(2, ieee80211_get_rate(ic))) {
2468 case 2:
2469 proto_ctl0 |= RTW_TXCTL0_RATE_1MBPS;
2470 break;
2471 case 4:
2472 proto_ctl0 |= RTW_TXCTL0_RATE_2MBPS;
2473 break;
2474 case 11:
2475 proto_ctl0 |= RTW_TXCTL0_RATE_5MBPS;
2476 break;
2477 case 22:
2478 proto_ctl0 |= RTW_TXCTL0_RATE_11MBPS;
2479 break;
2480 }
2481
2482 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
2483 proto_ctl0 |= RTW_TXCTL0_SPLCP;
2484
2485 for (;;) {
2486 if (rtw_dequeue(ifp, &stc, &htc, &m0, &ni) == -1)
2487 continue;
2488 if (m0 == NULL)
2489 break;
2490 stx = SIMPLEQ_FIRST(&stc->stc_freeq);
2491
2492 dmamap = stx->stx_dmamap;
2493
2494 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
2495 htc->htc_nfree, &ifp->if_flags, sc->sc_dev.dv_xname);
2496
2497 if (m0 == NULL || dmamap->dm_nsegs == 0) {
2498 DPRINTF2(sc, ("%s: fail dmamap load\n", __func__));
2499 goto post_dequeue_err;
2500 }
2501
2502 #ifdef RTW_DEBUG
2503 if ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) ==
2504 (IFF_DEBUG|IFF_LINK2)) {
2505 ieee80211_dump_pkt(mtod(m0, uint8_t *),
2506 (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
2507 : sizeof(wh),
2508 rate, 0);
2509 }
2510 #endif /* RTW_DEBUG */
2511 ctl0 = proto_ctl0 |
2512 LSHIFT(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
2513
2514 wh = mtod(m0, struct ieee80211_frame *);
2515
2516 if (ieee80211_compute_duration(wh,
2517 m0->m_pkthdr.len - sizeof(wh),
2518 ic->ic_flags, ic->ic_fragthreshold,
2519 rate, &stx->stx_d0, &stx->stx_dn, &npkt) == -1) {
2520 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
2521 goto post_load_err;
2522 }
2523
2524 /* XXX >= ? */
2525 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
2526 ctl0 |= RTW_TXCTL0_RTSEN;
2527
2528 d0 = &stx->stx_d0;
2529
2530 ctl1 = LSHIFT(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
2531 LSHIFT(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
2532
2533 if ((d0->d_plcp_svc & IEEE80211_PLCP_SERVICE_LENEXT) != 0)
2534 ctl1 |= RTW_TXCTL1_LENGEXT;
2535
2536 /* TBD fragmentation */
2537
2538 stx->stx_first = htc->htc_next;
2539
2540 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2541 htc, stx->stx_first, dmamap->dm_nsegs,
2542 BUS_DMASYNC_PREWRITE);
2543
2544 for (i = 0, lastdesc = desc = stx->stx_first;
2545 i < dmamap->dm_nsegs;
2546 i++, desc = RTW_NEXT_IDX(htc, desc)) {
2547 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
2548 DPRINTF2(sc, ("%s: seg too long\n", __func__));
2549 goto post_load_err;
2550 }
2551 htx = &htc->htc_desc[desc];
2552 htx->htx_ctl0 = htole32(ctl0);
2553 if (i != 0)
2554 htx->htx_ctl0 |= htole32(RTW_TXCTL0_OWN);
2555 htx->htx_ctl1 = htole32(ctl1);
2556 htx->htx_buf = htole32(dmamap->dm_segs[i].ds_addr);
2557 htx->htx_len = htole32(dmamap->dm_segs[i].ds_len);
2558 lastdesc = desc;
2559 #ifdef RTW_DEBUG
2560 rtw_print_txdesc(sc, "load", stx, htc, desc);
2561 #endif /* RTW_DEBUG */
2562 }
2563
2564 stx->stx_ni = ni;
2565 stx->stx_mbuf = m0;
2566 stx->stx_last = lastdesc;
2567 htc->htc_desc[stx->stx_last].htx_ctl0 |= htole32(RTW_TXCTL0_LS);
2568 htc->htc_desc[stx->stx_first].htx_ctl0 |=
2569 htole32(RTW_TXCTL0_FS);
2570
2571 #ifdef RTW_DEBUG
2572 rtw_print_txdesc(sc, "FS on", stx, htc, stx->stx_first);
2573 #endif /* RTW_DEBUG */
2574 #ifdef RTW_DEBUG
2575 rtw_print_txdesc(sc, "LS on", stx, htc, stx->stx_last);
2576 #endif /* RTW_DEBUG */
2577
2578 htc->htc_nfree -= dmamap->dm_nsegs;
2579 htc->htc_next = desc;
2580
2581 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2582 htc, stx->stx_first, dmamap->dm_nsegs,
2583 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2584
2585 htc->htc_desc[stx->stx_first].htx_ctl0 |=
2586 htole32(RTW_TXCTL0_OWN);
2587
2588 #ifdef RTW_DEBUG
2589 rtw_print_txdesc(sc, "OWN on", stx, htc, stx->stx_first);
2590 #endif /* RTW_DEBUG */
2591
2592 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2593 htc, stx->stx_first, 1,
2594 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2595
2596 SIMPLEQ_REMOVE_HEAD(&stc->stc_freeq, stx_q);
2597 SIMPLEQ_INSERT_TAIL(&stc->stc_dirtyq, stx, stx_q);
2598
2599 stc->stc_tx_timer = 5;
2600 ifp->if_timer = 1;
2601
2602 tppoll = RTW_READ8(&sc->sc_regs, RTW_TPPOLL);
2603
2604 /* TBD poke other queues. */
2605 RTW_WRITE8(&sc->sc_regs, RTW_TPPOLL, tppoll | RTW_TPPOLL_NPQ);
2606 RTW_SYNC(&sc->sc_regs, RTW_TPPOLL, RTW_TPPOLL);
2607 }
2608 DPRINTF2(sc, ("%s: leave\n", __func__));
2609 return;
2610 post_load_err:
2611 bus_dmamap_unload(sc->sc_dmat, dmamap);
2612 m_freem(m0);
2613 post_dequeue_err:
2614 ieee80211_release_node(&sc->sc_ic, ni);
2615 return;
2616 }
2617
2618 static void
2619 rtw_watchdog(struct ifnet *ifp)
2620 {
2621 int pri;
2622 struct rtw_softc *sc;
2623 struct rtw_txctl_blk *stc;
2624
2625 sc = ifp->if_softc;
2626
2627 ifp->if_timer = 0;
2628
2629 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2630 return;
2631
2632 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2633 stc = &sc->sc_txctl_blk[pri];
2634
2635 if (stc->stc_tx_timer == 0)
2636 continue;
2637
2638 if (--stc->stc_tx_timer == 0) {
2639 if (SIMPLEQ_EMPTY(&stc->stc_dirtyq))
2640 continue;
2641 printf("%s: transmit timeout, priority %d\n",
2642 ifp->if_xname, pri);
2643 ifp->if_oerrors++;
2644 /* XXX be gentle */
2645 (void)rtw_init(ifp);
2646 rtw_start(ifp);
2647 } else
2648 ifp->if_timer = 1;
2649 }
2650 ieee80211_watchdog(ifp);
2651 return;
2652 }
2653
2654 static void
2655 rtw_start_beacon(struct rtw_softc *sc, int enable)
2656 {
2657 /* TBD */
2658 return;
2659 }
2660
2661 static void
2662 rtw_next_scan(void *arg)
2663 {
2664 struct ieee80211com *ic = arg;
2665 int s;
2666
2667 /* don't call rtw_start w/o network interrupts blocked */
2668 s = splnet();
2669 if (ic->ic_state == IEEE80211_S_SCAN)
2670 ieee80211_next_scan(ic);
2671 splx(s);
2672 }
2673
2674 static void
2675 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, enum ieee80211_opmode opmode,
2676 uint16_t intval0)
2677 {
2678 uint16_t bcnitv, intval;
2679 int i;
2680 struct rtw_regs *regs = &sc->sc_regs;
2681
2682 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
2683 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
2684
2685 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
2686
2687 rtw_set_access(sc, RTW_ACCESS_CONFIG);
2688
2689 intval = MIN(intval0, PRESHIFT(RTW_BCNITV_BCNITV_MASK));
2690
2691 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
2692 bcnitv |= LSHIFT(intval, RTW_BCNITV_BCNITV_MASK);
2693 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
2694 /* magic from Linux */
2695 RTW_WRITE16(regs, RTW_ATIMWND, LSHIFT(1, RTW_ATIMWND_ATIMWND));
2696 RTW_WRITE16(regs, RTW_ATIMTRITV, LSHIFT(2, RTW_ATIMTRITV_ATIMTRITV));
2697
2698 rtw_set_nettype(sc, opmode);
2699
2700 rtw_set_access(sc, RTW_ACCESS_NONE);
2701
2702 /* TBD WEP */
2703 RTW_WRITE8(regs, RTW_SCR, 0);
2704
2705 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 1);
2706 }
2707
2708 /* Synchronize the hardware state with the software state. */
2709 static int
2710 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2711 {
2712 struct ifnet *ifp = &ic->ic_if;
2713 struct rtw_softc *sc = ifp->if_softc;
2714 enum ieee80211_state ostate;
2715 int error;
2716
2717 ostate = ic->ic_state;
2718
2719 if (nstate == IEEE80211_S_INIT) {
2720 callout_stop(&sc->sc_scan_ch);
2721 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2722 rtw_start_beacon(sc, 0);
2723 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
2724 }
2725
2726 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
2727 rtw_pwrstate(sc, RTW_ON);
2728
2729 if ((error = rtw_tune(sc)) != 0)
2730 return error;
2731
2732 switch (nstate) {
2733 case IEEE80211_S_ASSOC:
2734 rtw_join_bss(sc, ic->ic_bss->ni_bssid, ic->ic_opmode,
2735 ic->ic_bss->ni_intval);
2736 break;
2737 case IEEE80211_S_INIT:
2738 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2739 break;
2740 case IEEE80211_S_SCAN:
2741 #if 0
2742 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2743 rtw_write_bssid(sc);
2744 #endif
2745
2746 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
2747 rtw_next_scan, ic);
2748
2749 break;
2750 case IEEE80211_S_RUN:
2751 if (ic->ic_opmode == IEEE80211_M_STA)
2752 break;
2753 /*FALLTHROUGH*/
2754 case IEEE80211_S_AUTH:
2755 #if 0
2756 rtw_write_bcn_thresh(sc);
2757 rtw_write_ssid(sc);
2758 rtw_write_sup_rates(sc);
2759 #endif
2760 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2761 ic->ic_opmode == IEEE80211_M_MONITOR)
2762 break;
2763
2764 /* TBD set listen interval */
2765
2766 #if 0
2767 rtw_tsf(sc);
2768 #endif
2769 break;
2770 }
2771
2772 if (nstate != IEEE80211_S_SCAN)
2773 callout_stop(&sc->sc_scan_ch);
2774
2775 if (nstate == IEEE80211_S_RUN &&
2776 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2777 ic->ic_opmode == IEEE80211_M_IBSS))
2778 rtw_start_beacon(sc, 1);
2779 else
2780 rtw_start_beacon(sc, 0);
2781
2782 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
2783 }
2784
2785 static void
2786 rtw_recv_beacon(struct rtw_softc *sc, struct mbuf *m,
2787 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2788 {
2789 (*sc->sc_mtbl.mt_recv_mgmt)(&sc->sc_ic, m, ni, subtype, rssi, rstamp);
2790 return;
2791 }
2792
2793 static void
2794 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2795 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2796 {
2797 struct rtw_softc *sc = (struct rtw_softc*)ic->ic_softc;
2798
2799 switch (subtype) {
2800 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2801 /* do nothing: hardware answers probe request XXX */
2802 break;
2803 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2804 case IEEE80211_FC0_SUBTYPE_BEACON:
2805 rtw_recv_beacon(sc, m, ni, subtype, rssi, rstamp);
2806 break;
2807 default:
2808 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2809 break;
2810 }
2811 return;
2812 }
2813
2814 static struct ieee80211_node *
2815 rtw_node_alloc(struct ieee80211com *ic)
2816 {
2817 struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2818 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(ic);
2819
2820 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
2821 return ni;
2822 }
2823
2824 static void
2825 rtw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2826 {
2827 struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2828
2829 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
2830 ether_sprintf(ni->ni_bssid)));
2831 (*sc->sc_mtbl.mt_node_free)(ic, ni);
2832 }
2833
2834 static int
2835 rtw_media_change(struct ifnet *ifp)
2836 {
2837 int error;
2838
2839 error = ieee80211_media_change(ifp);
2840 if (error == ENETRESET) {
2841 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
2842 (IFF_RUNNING|IFF_UP))
2843 rtw_init(ifp); /* XXX lose error */
2844 error = 0;
2845 }
2846 return error;
2847 }
2848
2849 static void
2850 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2851 {
2852 struct rtw_softc *sc = ifp->if_softc;
2853
2854 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2855 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
2856 imr->ifm_status = 0;
2857 return;
2858 }
2859 ieee80211_media_status(ifp, imr);
2860 }
2861
2862 void
2863 rtw_power(int why, void *arg)
2864 {
2865 struct rtw_softc *sc = arg;
2866 struct ifnet *ifp = &sc->sc_ic.ic_if;
2867 int s;
2868
2869 DPRINTF(sc, ("%s: rtw_power(%d,)\n", sc->sc_dev.dv_xname, why));
2870
2871 s = splnet();
2872 switch (why) {
2873 case PWR_STANDBY:
2874 /* XXX do nothing. */
2875 break;
2876 case PWR_SUSPEND:
2877 rtw_stop(ifp, 0);
2878 if (sc->sc_power != NULL)
2879 (*sc->sc_power)(sc, why);
2880 break;
2881 case PWR_RESUME:
2882 if (ifp->if_flags & IFF_UP) {
2883 if (sc->sc_power != NULL)
2884 (*sc->sc_power)(sc, why);
2885 rtw_init(ifp);
2886 }
2887 break;
2888 case PWR_SOFTSUSPEND:
2889 case PWR_SOFTSTANDBY:
2890 case PWR_SOFTRESUME:
2891 break;
2892 }
2893 splx(s);
2894 }
2895
2896 /* rtw_shutdown: make sure the interface is stopped at reboot time. */
2897 void
2898 rtw_shutdown(void *arg)
2899 {
2900 struct rtw_softc *sc = arg;
2901
2902 rtw_stop(&sc->sc_ic.ic_if, 1);
2903 }
2904
2905 static __inline void
2906 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
2907 {
2908 (void)memcpy(ifp->if_xname, dvname, IFNAMSIZ);
2909 ifp->if_softc = softc;
2910 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
2911 IFF_NOTRAILERS;
2912 ifp->if_ioctl = rtw_ioctl;
2913 ifp->if_start = rtw_start;
2914 ifp->if_watchdog = rtw_watchdog;
2915 ifp->if_init = rtw_init;
2916 ifp->if_stop = rtw_stop;
2917 }
2918
2919 static __inline void
2920 rtw_set80211props(struct ieee80211com *ic)
2921 {
2922 int nrate;
2923 ic->ic_phytype = IEEE80211_T_DS;
2924 ic->ic_opmode = IEEE80211_M_STA;
2925 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
2926 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
2927
2928 nrate = 0;
2929 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
2930 IEEE80211_RATE_BASIC | 2;
2931 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
2932 IEEE80211_RATE_BASIC | 4;
2933 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
2934 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
2935 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
2936 }
2937
2938 static __inline void
2939 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
2940 {
2941 mtbl->mt_newstate = ic->ic_newstate;
2942 ic->ic_newstate = rtw_newstate;
2943
2944 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
2945 ic->ic_recv_mgmt = rtw_recv_mgmt;
2946
2947 mtbl->mt_node_free = ic->ic_node_free;
2948 ic->ic_node_free = rtw_node_free;
2949
2950 mtbl->mt_node_alloc = ic->ic_node_alloc;
2951 ic->ic_node_alloc = rtw_node_alloc;
2952 }
2953
2954 static __inline void
2955 rtw_establish_hooks(struct rtw_hooks *hooks, const char *dvname,
2956 void *arg)
2957 {
2958 /*
2959 * Make sure the interface is shutdown during reboot.
2960 */
2961 hooks->rh_shutdown = shutdownhook_establish(rtw_shutdown, arg);
2962 if (hooks->rh_shutdown == NULL)
2963 printf("%s: WARNING: unable to establish shutdown hook\n",
2964 dvname);
2965
2966 /*
2967 * Add a suspend hook to make sure we come back up after a
2968 * resume.
2969 */
2970 hooks->rh_power = powerhook_establish(rtw_power, arg);
2971 if (hooks->rh_power == NULL)
2972 printf("%s: WARNING: unable to establish power hook\n",
2973 dvname);
2974 }
2975
2976 static __inline void
2977 rtw_disestablish_hooks(struct rtw_hooks *hooks, const char *dvname,
2978 void *arg)
2979 {
2980 if (hooks->rh_shutdown != NULL)
2981 shutdownhook_disestablish(hooks->rh_shutdown);
2982
2983 if (hooks->rh_power != NULL)
2984 powerhook_disestablish(hooks->rh_power);
2985 }
2986
2987 static __inline void
2988 rtw_init_radiotap(struct rtw_softc *sc)
2989 {
2990 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
2991 sc->sc_rxtap.rr_ihdr.it_len = sizeof(sc->sc_rxtapu);
2992 sc->sc_rxtap.rr_ihdr.it_present = RTW_RX_RADIOTAP_PRESENT;
2993
2994 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
2995 sc->sc_txtap.rt_ihdr.it_len = sizeof(sc->sc_txtapu);
2996 sc->sc_txtap.rt_ihdr.it_present = RTW_TX_RADIOTAP_PRESENT;
2997 }
2998
2999 static int
3000 rtw_txctl_blk_setup(struct rtw_txctl_blk *stc, u_int qlen)
3001 {
3002 SIMPLEQ_INIT(&stc->stc_dirtyq);
3003 SIMPLEQ_INIT(&stc->stc_freeq);
3004 stc->stc_ndesc = qlen;
3005 stc->stc_desc = malloc(qlen * sizeof(*stc->stc_desc), M_DEVBUF,
3006 M_NOWAIT);
3007 if (stc->stc_desc == NULL)
3008 return ENOMEM;
3009 return 0;
3010 }
3011
3012 static void
3013 rtw_txctl_blk_cleanup_all(struct rtw_softc *sc)
3014 {
3015 struct rtw_txctl_blk *stc;
3016 int qlen[RTW_NTXPRI] =
3017 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3018 int pri;
3019
3020 for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
3021 stc = &sc->sc_txctl_blk[pri];
3022 free(stc->stc_desc, M_DEVBUF);
3023 stc->stc_desc = NULL;
3024 }
3025 }
3026
3027 static int
3028 rtw_txctl_blk_setup_all(struct rtw_softc *sc)
3029 {
3030 int pri, rc = 0;
3031 int qlen[RTW_NTXPRI] =
3032 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3033
3034 for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
3035 rc = rtw_txctl_blk_setup(&sc->sc_txctl_blk[pri], qlen[pri]);
3036 if (rc != 0)
3037 break;
3038 }
3039 return rc;
3040 }
3041
3042 static void
3043 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *htc, struct rtw_txdesc *desc,
3044 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3045 {
3046 int i;
3047
3048 htc->htc_ndesc = ndesc;
3049 htc->htc_desc = desc;
3050 htc->htc_physbase = physbase;
3051 htc->htc_ofs = ofs;
3052
3053 (void)memset(htc->htc_desc, 0,
3054 sizeof(htc->htc_desc[0]) * htc->htc_ndesc);
3055
3056 for (i = 0; i < htc->htc_ndesc; i++) {
3057 htc->htc_desc[i].htx_next = htole32(RTW_NEXT_DESC(htc, i));
3058 }
3059 }
3060
3061 static void
3062 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3063 {
3064 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3065 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3066 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3067
3068 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3069 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3070 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3071
3072 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3073 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3074 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3075
3076 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3077 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3078 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3079 }
3080
3081 static struct rtw_rf *
3082 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid,
3083 rtw_rf_write_t rf_write, int digphy)
3084 {
3085 struct rtw_rf *rf;
3086
3087 switch (rfchipid) {
3088 case RTW_RFCHIPID_MAXIM:
3089 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3090 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3091 break;
3092 case RTW_RFCHIPID_PHILIPS:
3093 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3094 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3095 break;
3096 case RTW_RFCHIPID_RFMD:
3097 /* XXX RFMD has no RF constructor */
3098 sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3099 /*FALLTHROUGH*/
3100 default:
3101 return NULL;
3102 }
3103 rf->rf_continuous_tx_cb =
3104 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3105 rf->rf_continuous_tx_arg = (void *)sc;
3106 return rf;
3107 }
3108
3109 /* Revision C and later use a different PHY delay setting than
3110 * revisions A and B.
3111 */
3112 static u_int8_t
3113 rtw_check_phydelay(struct rtw_regs *regs, u_int32_t rcr0)
3114 {
3115 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3116 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3117
3118 u_int8_t phydelay = LSHIFT(0x6, RTW_PHYDELAY_PHYDELAY);
3119
3120 RTW_WRITE(regs, RTW_RCR, REVAB);
3121 RTW_WBW(regs, RTW_RCR, RTW_RCR);
3122 RTW_WRITE(regs, RTW_RCR, REVC);
3123
3124 RTW_WBR(regs, RTW_RCR, RTW_RCR);
3125 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3126 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3127
3128 RTW_WRITE(regs, RTW_RCR, rcr0); /* restore RCR */
3129 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3130
3131 return phydelay;
3132 #undef REVC
3133 }
3134
3135 void
3136 rtw_attach(struct rtw_softc *sc)
3137 {
3138 rtw_rf_write_t rf_write;
3139 struct rtw_txctl_blk *stc;
3140 int pri, rc, vers;
3141
3142 #if 0
3143 CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_txdesc) == 0,
3144 "RTW_DESC_ALIGNMENT is not a multiple of "
3145 "sizeof(struct rtw_txdesc)");
3146
3147 CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_rxdesc) == 0,
3148 "RTW_DESC_ALIGNMENT is not a multiple of "
3149 "sizeof(struct rtw_rxdesc)");
3150
3151 CASSERT(RTW_DESC_ALIGNMENT % RTW_MAXPKTSEGS == 0,
3152 "RTW_DESC_ALIGNMENT is not a multiple of RTW_MAXPKTSEGS");
3153 #endif
3154
3155 NEXT_ATTACH_STATE(sc, DETACHED);
3156
3157 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
3158 case RTW_TCR_HWVERID_F:
3159 vers = 'F';
3160 rf_write = rtw_rf_hostwrite;
3161 break;
3162 case RTW_TCR_HWVERID_D:
3163 vers = 'D';
3164 if (rtw_host_rfio)
3165 rf_write = rtw_rf_hostwrite;
3166 else
3167 rf_write = rtw_rf_macwrite;
3168 break;
3169 default:
3170 vers = '?';
3171 rf_write = rtw_rf_macwrite;
3172 break;
3173 }
3174 printf("%s: hardware version %c\n", sc->sc_dev.dv_xname, vers);
3175
3176 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
3177 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
3178 0);
3179
3180 if (rc != 0) {
3181 printf("%s: could not allocate hw descriptors, error %d\n",
3182 sc->sc_dev.dv_xname, rc);
3183 goto err;
3184 }
3185
3186 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
3187
3188 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
3189 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
3190 (caddr_t*)&sc->sc_descs, BUS_DMA_COHERENT);
3191
3192 if (rc != 0) {
3193 printf("%s: could not map hw descriptors, error %d\n",
3194 sc->sc_dev.dv_xname, rc);
3195 goto err;
3196 }
3197 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
3198
3199 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
3200 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
3201
3202 if (rc != 0) {
3203 printf("%s: could not create DMA map for hw descriptors, "
3204 "error %d\n", sc->sc_dev.dv_xname, rc);
3205 goto err;
3206 }
3207 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
3208
3209 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
3210 sizeof(struct rtw_descs), NULL, 0);
3211
3212 if (rc != 0) {
3213 printf("%s: could not load DMA map for hw descriptors, "
3214 "error %d\n", sc->sc_dev.dv_xname, rc);
3215 goto err;
3216 }
3217 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
3218
3219 if (rtw_txctl_blk_setup_all(sc) != 0)
3220 goto err;
3221 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
3222
3223 rtw_txdesc_blk_setup_all(sc);
3224
3225 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
3226
3227 sc->sc_rxdesc = &sc->sc_descs->hd_rx[0];
3228
3229 rtw_rxctls_setup(&sc->sc_rxctl[0]);
3230
3231 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3232 stc = &sc->sc_txctl_blk[pri];
3233
3234 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
3235 &stc->stc_desc[0], stc->stc_ndesc)) != 0) {
3236 printf("%s: could not load DMA map for "
3237 "hw tx descriptors, error %d\n",
3238 sc->sc_dev.dv_xname, rc);
3239 goto err;
3240 }
3241 }
3242
3243 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
3244 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxctl[0],
3245 RTW_RXQLEN)) != 0) {
3246 printf("%s: could not load DMA map for hw rx descriptors, "
3247 "error %d\n", sc->sc_dev.dv_xname, rc);
3248 goto err;
3249 }
3250 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
3251
3252 /* Reset the chip to a known state. */
3253 if (rtw_reset(sc) != 0)
3254 goto err;
3255 NEXT_ATTACH_STATE(sc, FINISH_RESET);
3256
3257 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
3258
3259 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
3260 sc->sc_flags |= RTW_F_9356SROM;
3261
3262 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
3263 sc->sc_dev.dv_xname) != 0)
3264 goto err;
3265
3266 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
3267
3268 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
3269 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
3270 sc->sc_dev.dv_xname) != 0) {
3271 printf("%s: attach failed, malformed serial ROM\n",
3272 sc->sc_dev.dv_xname);
3273 goto err;
3274 }
3275
3276 printf("%s: %s PHY\n", sc->sc_dev.dv_xname,
3277 ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
3278
3279 printf("%s: CS threshold %u\n", sc->sc_dev.dv_xname, sc->sc_csthr);
3280
3281 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
3282
3283 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid, rf_write,
3284 sc->sc_flags & RTW_F_DIGPHY);
3285
3286 if (sc->sc_rf == NULL) {
3287 printf("%s: attach failed, could not attach RF\n",
3288 sc->sc_dev.dv_xname);
3289 goto err;
3290 }
3291
3292 #if 0
3293 if (rtw_identify_rf(&sc->sc_regs, &sc->sc_rftype,
3294 sc->sc_dev.dv_xname) != 0) {
3295 printf("%s: attach failed, unknown RF unidentified\n",
3296 sc->sc_dev.dv_xname);
3297 goto err;
3298 }
3299 #endif
3300
3301 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
3302
3303 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
3304
3305 RTW_DPRINTF(("%s: PHY delay %d\n", sc->sc_dev.dv_xname,
3306 sc->sc_phydelay));
3307
3308 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
3309 rtw_identify_country(&sc->sc_regs, &sc->sc_locale,
3310 sc->sc_dev.dv_xname);
3311
3312 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels,
3313 sc->sc_dev.dv_xname);
3314
3315 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
3316 sc->sc_dev.dv_xname) != 0)
3317 goto err;
3318 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
3319
3320 rtw_setifprops(&sc->sc_if, sc->sc_dev.dv_xname, (void*)sc);
3321
3322 IFQ_SET_READY(&sc->sc_if.if_snd);
3323
3324 rtw_set80211props(&sc->sc_ic);
3325
3326 /*
3327 * Call MI attach routines.
3328 */
3329 if_attach(&sc->sc_if);
3330 ieee80211_ifattach(&sc->sc_if);
3331
3332 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
3333
3334 /* possibly we should fill in our own sc_send_prresp, since
3335 * the RTL8180 is probably sending probe responses in ad hoc
3336 * mode.
3337 */
3338
3339 /* complete initialization */
3340 ieee80211_media_init(&sc->sc_if, rtw_media_change, rtw_media_status);
3341 callout_init(&sc->sc_scan_ch);
3342
3343 #if NBPFILTER > 0
3344 bpfattach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
3345 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
3346 #endif
3347
3348 rtw_establish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname, (void*)sc);
3349
3350 rtw_init_radiotap(sc);
3351
3352 NEXT_ATTACH_STATE(sc, FINISHED);
3353
3354 return;
3355 err:
3356 rtw_detach(sc);
3357 return;
3358 }
3359
3360 int
3361 rtw_detach(struct rtw_softc *sc)
3362 {
3363 int pri;
3364
3365 switch (sc->sc_attach_state) {
3366 case FINISHED:
3367 rtw_stop(&sc->sc_if, 1);
3368
3369 rtw_disestablish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname,
3370 (void*)sc);
3371 callout_stop(&sc->sc_scan_ch);
3372 ieee80211_ifdetach(&sc->sc_if);
3373 if_detach(&sc->sc_if);
3374 break;
3375 case FINISH_ID_STA:
3376 case FINISH_RF_ATTACH:
3377 rtw_rf_destroy(sc->sc_rf);
3378 sc->sc_rf = NULL;
3379 /*FALLTHROUGH*/
3380 case FINISH_PARSE_SROM:
3381 case FINISH_READ_SROM:
3382 rtw_srom_free(&sc->sc_srom);
3383 /*FALLTHROUGH*/
3384 case FINISH_RESET:
3385 case FINISH_RXMAPS_CREATE:
3386 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxctl[0],
3387 RTW_RXQLEN);
3388 /*FALLTHROUGH*/
3389 case FINISH_TXMAPS_CREATE:
3390 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3391 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
3392 sc->sc_txctl_blk[pri].stc_desc,
3393 sc->sc_txctl_blk[pri].stc_ndesc);
3394 }
3395 /*FALLTHROUGH*/
3396 case FINISH_TXDESCBLK_SETUP:
3397 case FINISH_TXCTLBLK_SETUP:
3398 rtw_txctl_blk_cleanup_all(sc);
3399 /*FALLTHROUGH*/
3400 case FINISH_DESCMAP_LOAD:
3401 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
3402 /*FALLTHROUGH*/
3403 case FINISH_DESCMAP_CREATE:
3404 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
3405 /*FALLTHROUGH*/
3406 case FINISH_DESC_MAP:
3407 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_descs,
3408 sizeof(struct rtw_descs));
3409 /*FALLTHROUGH*/
3410 case FINISH_DESC_ALLOC:
3411 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
3412 sc->sc_desc_nsegs);
3413 /*FALLTHROUGH*/
3414 case DETACHED:
3415 NEXT_ATTACH_STATE(sc, DETACHED);
3416 break;
3417 }
3418 return 0;
3419 }
3420
3421 int
3422 rtw_activate(struct device *self, enum devact act)
3423 {
3424 struct rtw_softc *sc = (struct rtw_softc *)self;
3425 int rc = 0, s;
3426
3427 s = splnet();
3428 switch (act) {
3429 case DVACT_ACTIVATE:
3430 rc = EOPNOTSUPP;
3431 break;
3432
3433 case DVACT_DEACTIVATE:
3434 if_deactivate(&sc->sc_ic.ic_if);
3435 break;
3436 }
3437 splx(s);
3438 return rc;
3439 }
3440