rtw.c revision 1.20 1 /* $NetBSD: rtw.c,v 1.20 2004/12/23 06:12:43 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005 David Young. All rights reserved.
4 *
5 * Programmed for NetBSD by David Young.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of David Young may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
23 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30 * OF SUCH DAMAGE.
31 */
32 /*
33 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.20 2004/12/23 06:12:43 dyoung Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/sysctl.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #if 0
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #endif
54 #include <sys/time.h>
55 #include <sys/types.h>
56
57 #include <machine/endian.h>
58 #include <machine/bus.h>
59 #include <machine/intr.h> /* splnet */
60
61 #include <uvm/uvm_extern.h>
62
63 #include <net/if.h>
64 #include <net/if_media.h>
65 #include <net/if_ether.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_compat.h>
69 #include <net80211/ieee80211_radiotap.h>
70
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 #include <dev/ic/rtwreg.h>
76 #include <dev/ic/rtwvar.h>
77 #include <dev/ic/rtwphyio.h>
78 #include <dev/ic/rtwphy.h>
79
80 #include <dev/ic/smc93cx6var.h>
81
82 #define KASSERT2(__cond, __msg) \
83 do { \
84 if (!(__cond)) \
85 panic __msg ; \
86 } while (0)
87
88 int rtw_rfprog_fallback = 0;
89 int rtw_host_rfio = 0;
90 int rtw_flush_rfio = 1;
91 int rtw_rfio_delay = 0;
92
93 #ifdef RTW_DEBUG
94 int rtw_debug = 2;
95 #endif /* RTW_DEBUG */
96
97 #define NEXT_ATTACH_STATE(sc, state) do { \
98 DPRINTF(sc, ("%s: attach state %s\n", __func__, #state)); \
99 sc->sc_attach_state = state; \
100 } while (0)
101
102 int rtw_dwelltime = 1000; /* milliseconds */
103
104 static void rtw_start(struct ifnet *);
105
106 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
107 static int rtw_sysctl_verify_rfio_delay(SYSCTLFN_PROTO);
108 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
109 #ifdef RTW_DEBUG
110 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
111 #endif /* RTW_DEBUG */
112
113 /*
114 * Setup sysctl(3) MIB, hw.rtw.*
115 *
116 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
117 */
118 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
119 {
120 int rc;
121 struct sysctlnode *cnode, *rnode;
122
123 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
124 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
125 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
126 goto err;
127
128 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
129 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
130 "Realtek RTL818x 802.11 controls",
131 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
132 goto err;
133
134 #ifdef RTW_DEBUG
135 /* control debugging printfs */
136 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
137 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
138 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
139 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
140 CTL_CREATE, CTL_EOL)) != 0)
141 goto err;
142 #endif /* RTW_DEBUG */
143 /* set fallback RF programming method */
144 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
145 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
146 "rfprog_fallback",
147 SYSCTL_DESCR("Set fallback RF programming method"),
148 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
149 CTL_CREATE, CTL_EOL)) != 0)
150 goto err;
151
152 /* force host to flush I/O by reading RTW_PHYADDR */
153 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
154 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
155 "flush_rfio", SYSCTL_DESCR("Enable RF I/O flushing"),
156 rtw_sysctl_verify_rfio, 0, &rtw_flush_rfio, 0,
157 CTL_CREATE, CTL_EOL)) != 0)
158 goto err;
159
160 /* force host to control RF I/O bus */
161 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
162 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
163 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
164 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
165 CTL_CREATE, CTL_EOL)) != 0)
166 goto err;
167
168 /* control RF I/O delay */
169 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
170 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
171 "rfio_delay", SYSCTL_DESCR("Set RF I/O delay"),
172 rtw_sysctl_verify_rfio_delay, 0, &rtw_rfio_delay, 0,
173 CTL_CREATE, CTL_EOL)) != 0)
174 goto err;
175
176 return;
177 err:
178 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
179 }
180
181 static int
182 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
183 {
184 int error, t;
185 struct sysctlnode node;
186
187 node = *rnode;
188 t = *(int*)rnode->sysctl_data;
189 node.sysctl_data = &t;
190 error = sysctl_lookup(SYSCTLFN_CALL(&node));
191 if (error || newp == NULL)
192 return (error);
193
194 if (t < lower || t > upper)
195 return (EINVAL);
196
197 *(int*)rnode->sysctl_data = t;
198
199 return (0);
200 }
201
202 static int
203 rtw_sysctl_verify_rfio_delay(SYSCTLFN_ARGS)
204 {
205 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 1000000);
206 }
207
208 static int
209 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
210 {
211 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0,
212 MASK_AND_RSHIFT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
213 }
214
215 static int
216 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
217 {
218 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 1);
219 }
220
221 #ifdef RTW_DEBUG
222 static int
223 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
224 {
225 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 2);
226 }
227
228 static void
229 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
230 {
231 #define PRINTREG32(sc, reg) \
232 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
233 dvname, reg, RTW_READ(regs, reg)))
234
235 #define PRINTREG16(sc, reg) \
236 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %04x\n", \
237 dvname, reg, RTW_READ16(regs, reg)))
238
239 #define PRINTREG8(sc, reg) \
240 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %02x\n", \
241 dvname, reg, RTW_READ8(regs, reg)))
242
243 RTW_DPRINTF2(("%s: %s\n", dvname, where));
244
245 PRINTREG32(regs, RTW_IDR0);
246 PRINTREG32(regs, RTW_IDR1);
247 PRINTREG32(regs, RTW_MAR0);
248 PRINTREG32(regs, RTW_MAR1);
249 PRINTREG32(regs, RTW_TSFTRL);
250 PRINTREG32(regs, RTW_TSFTRH);
251 PRINTREG32(regs, RTW_TLPDA);
252 PRINTREG32(regs, RTW_TNPDA);
253 PRINTREG32(regs, RTW_THPDA);
254 PRINTREG32(regs, RTW_TCR);
255 PRINTREG32(regs, RTW_RCR);
256 PRINTREG32(regs, RTW_TINT);
257 PRINTREG32(regs, RTW_TBDA);
258 PRINTREG32(regs, RTW_ANAPARM);
259 PRINTREG32(regs, RTW_BB);
260 PRINTREG32(regs, RTW_PHYCFG);
261 PRINTREG32(regs, RTW_WAKEUP0L);
262 PRINTREG32(regs, RTW_WAKEUP0H);
263 PRINTREG32(regs, RTW_WAKEUP1L);
264 PRINTREG32(regs, RTW_WAKEUP1H);
265 PRINTREG32(regs, RTW_WAKEUP2LL);
266 PRINTREG32(regs, RTW_WAKEUP2LH);
267 PRINTREG32(regs, RTW_WAKEUP2HL);
268 PRINTREG32(regs, RTW_WAKEUP2HH);
269 PRINTREG32(regs, RTW_WAKEUP3LL);
270 PRINTREG32(regs, RTW_WAKEUP3LH);
271 PRINTREG32(regs, RTW_WAKEUP3HL);
272 PRINTREG32(regs, RTW_WAKEUP3HH);
273 PRINTREG32(regs, RTW_WAKEUP4LL);
274 PRINTREG32(regs, RTW_WAKEUP4LH);
275 PRINTREG32(regs, RTW_WAKEUP4HL);
276 PRINTREG32(regs, RTW_WAKEUP4HH);
277 PRINTREG32(regs, RTW_DK0);
278 PRINTREG32(regs, RTW_DK1);
279 PRINTREG32(regs, RTW_DK2);
280 PRINTREG32(regs, RTW_DK3);
281 PRINTREG32(regs, RTW_RETRYCTR);
282 PRINTREG32(regs, RTW_RDSAR);
283 PRINTREG32(regs, RTW_FER);
284 PRINTREG32(regs, RTW_FEMR);
285 PRINTREG32(regs, RTW_FPSR);
286 PRINTREG32(regs, RTW_FFER);
287
288 /* 16-bit registers */
289 PRINTREG16(regs, RTW_BRSR);
290 PRINTREG16(regs, RTW_IMR);
291 PRINTREG16(regs, RTW_ISR);
292 PRINTREG16(regs, RTW_BCNITV);
293 PRINTREG16(regs, RTW_ATIMWND);
294 PRINTREG16(regs, RTW_BINTRITV);
295 PRINTREG16(regs, RTW_ATIMTRITV);
296 PRINTREG16(regs, RTW_CRC16ERR);
297 PRINTREG16(regs, RTW_CRC0);
298 PRINTREG16(regs, RTW_CRC1);
299 PRINTREG16(regs, RTW_CRC2);
300 PRINTREG16(regs, RTW_CRC3);
301 PRINTREG16(regs, RTW_CRC4);
302 PRINTREG16(regs, RTW_CWR);
303
304 /* 8-bit registers */
305 PRINTREG8(regs, RTW_CR);
306 PRINTREG8(regs, RTW_9346CR);
307 PRINTREG8(regs, RTW_CONFIG0);
308 PRINTREG8(regs, RTW_CONFIG1);
309 PRINTREG8(regs, RTW_CONFIG2);
310 PRINTREG8(regs, RTW_MSR);
311 PRINTREG8(regs, RTW_CONFIG3);
312 PRINTREG8(regs, RTW_CONFIG4);
313 PRINTREG8(regs, RTW_TESTR);
314 PRINTREG8(regs, RTW_PSR);
315 PRINTREG8(regs, RTW_SCR);
316 PRINTREG8(regs, RTW_PHYDELAY);
317 PRINTREG8(regs, RTW_CRCOUNT);
318 PRINTREG8(regs, RTW_PHYADDR);
319 PRINTREG8(regs, RTW_PHYDATAW);
320 PRINTREG8(regs, RTW_PHYDATAR);
321 PRINTREG8(regs, RTW_CONFIG5);
322 PRINTREG8(regs, RTW_TPPOLL);
323
324 PRINTREG16(regs, RTW_BSSID16);
325 PRINTREG32(regs, RTW_BSSID32);
326 #undef PRINTREG32
327 #undef PRINTREG16
328 #undef PRINTREG8
329 }
330 #endif /* RTW_DEBUG */
331
332 void
333 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
334 {
335 struct rtw_regs *regs = &sc->sc_regs;
336
337 u_int32_t tcr;
338 tcr = RTW_READ(regs, RTW_TCR);
339 tcr &= ~RTW_TCR_LBK_MASK;
340 if (enable)
341 tcr |= RTW_TCR_LBK_CONT;
342 else
343 tcr |= RTW_TCR_LBK_NORMAL;
344 RTW_WRITE(regs, RTW_TCR, tcr);
345 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
346 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
347 rtw_txdac_enable(sc, !enable);
348 rtw_set_access(sc, RTW_ACCESS_ANAPARM); /* XXX Voodoo from Linux. */
349 rtw_set_access(sc, RTW_ACCESS_NONE);
350 }
351
352 static const char *
353 rtw_access_string(enum rtw_access access)
354 {
355 switch (access) {
356 case RTW_ACCESS_NONE:
357 return "none";
358 case RTW_ACCESS_CONFIG:
359 return "config";
360 case RTW_ACCESS_ANAPARM:
361 return "anaparm";
362 default:
363 return "unknown";
364 }
365 }
366
367 static void
368 rtw_set_access1(struct rtw_regs *regs,
369 enum rtw_access oaccess, enum rtw_access naccess)
370 {
371 KASSERT(naccess >= RTW_ACCESS_NONE && naccess <= RTW_ACCESS_ANAPARM);
372 KASSERT(oaccess >= RTW_ACCESS_NONE && oaccess <= RTW_ACCESS_ANAPARM);
373
374 if (naccess == oaccess)
375 return;
376
377 switch (naccess) {
378 case RTW_ACCESS_NONE:
379 switch (oaccess) {
380 case RTW_ACCESS_ANAPARM:
381 rtw_anaparm_enable(regs, 0);
382 /*FALLTHROUGH*/
383 case RTW_ACCESS_CONFIG:
384 rtw_config0123_enable(regs, 0);
385 /*FALLTHROUGH*/
386 case RTW_ACCESS_NONE:
387 break;
388 }
389 break;
390 case RTW_ACCESS_CONFIG:
391 switch (oaccess) {
392 case RTW_ACCESS_NONE:
393 rtw_config0123_enable(regs, 1);
394 /*FALLTHROUGH*/
395 case RTW_ACCESS_CONFIG:
396 break;
397 case RTW_ACCESS_ANAPARM:
398 rtw_anaparm_enable(regs, 0);
399 break;
400 }
401 break;
402 case RTW_ACCESS_ANAPARM:
403 switch (oaccess) {
404 case RTW_ACCESS_NONE:
405 rtw_config0123_enable(regs, 1);
406 /*FALLTHROUGH*/
407 case RTW_ACCESS_CONFIG:
408 rtw_anaparm_enable(regs, 1);
409 /*FALLTHROUGH*/
410 case RTW_ACCESS_ANAPARM:
411 break;
412 }
413 break;
414 }
415 }
416
417 void
418 rtw_set_access(struct rtw_softc *sc, enum rtw_access access)
419 {
420 rtw_set_access1(&sc->sc_regs, sc->sc_access, access);
421 RTW_DPRINTF(("%s: access %s -> %s\n", sc->sc_dev.dv_xname,
422 rtw_access_string(sc->sc_access),
423 rtw_access_string(access)));
424 sc->sc_access = access;
425 }
426
427 /*
428 * Enable registers, switch register banks.
429 */
430 void
431 rtw_config0123_enable(struct rtw_regs *regs, int enable)
432 {
433 u_int8_t ecr;
434 ecr = RTW_READ8(regs, RTW_9346CR);
435 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
436 if (enable)
437 ecr |= RTW_9346CR_EEM_CONFIG;
438 else {
439 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
440 ecr |= RTW_9346CR_EEM_NORMAL;
441 }
442 RTW_WRITE8(regs, RTW_9346CR, ecr);
443 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
444 }
445
446 /* requires rtw_config0123_enable(, 1) */
447 void
448 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
449 {
450 u_int8_t cfg3;
451
452 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
453 cfg3 |= RTW_CONFIG3_CLKRUNEN;
454 if (enable)
455 cfg3 |= RTW_CONFIG3_PARMEN;
456 else
457 cfg3 &= ~RTW_CONFIG3_PARMEN;
458 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
459 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
460 }
461
462 /* requires rtw_anaparm_enable(, 1) */
463 void
464 rtw_txdac_enable(struct rtw_softc *sc, int enable)
465 {
466 u_int32_t anaparm;
467 struct rtw_regs *regs = &sc->sc_regs;
468
469 anaparm = RTW_READ(regs, RTW_ANAPARM);
470 if (enable)
471 anaparm &= ~RTW_ANAPARM_TXDACOFF;
472 else
473 anaparm |= RTW_ANAPARM_TXDACOFF;
474 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
475 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
476 }
477
478 static __inline int
479 rtw_chip_reset1(struct rtw_regs *regs, const char *dvname)
480 {
481 u_int8_t cr;
482 int i;
483
484 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
485
486 RTW_WBR(regs, RTW_CR, RTW_CR);
487
488 for (i = 0; i < 10000; i++) {
489 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
490 RTW_DPRINTF(("%s: reset in %dus\n", dvname, i));
491 return 0;
492 }
493 RTW_RBR(regs, RTW_CR, RTW_CR);
494 DELAY(1); /* 1us */
495 }
496
497 printf("%s: reset failed\n", dvname);
498 return ETIMEDOUT;
499 }
500
501 static __inline int
502 rtw_chip_reset(struct rtw_regs *regs, const char *dvname)
503 {
504 uint32_t tcr;
505
506 /* from Linux driver */
507 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
508 LSHIFT(7, RTW_TCR_SRL_MASK) | LSHIFT(7, RTW_TCR_LRL_MASK);
509
510 RTW_WRITE(regs, RTW_TCR, tcr);
511
512 RTW_WBW(regs, RTW_CR, RTW_TCR);
513
514 return rtw_chip_reset1(regs, dvname);
515 }
516
517 static __inline int
518 rtw_recall_eeprom(struct rtw_regs *regs, const char *dvname)
519 {
520 int i;
521 u_int8_t ecr;
522
523 ecr = RTW_READ8(regs, RTW_9346CR);
524 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
525 RTW_WRITE8(regs, RTW_9346CR, ecr);
526
527 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
528
529 /* wait 2.5ms for completion */
530 for (i = 0; i < 25; i++) {
531 ecr = RTW_READ8(regs, RTW_9346CR);
532 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
533 RTW_DPRINTF(("%s: recall EEPROM in %dus\n", dvname,
534 i * 100));
535 return 0;
536 }
537 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
538 DELAY(100);
539 }
540 printf("%s: recall EEPROM failed\n", dvname);
541 return ETIMEDOUT;
542 }
543
544 static __inline int
545 rtw_reset(struct rtw_softc *sc)
546 {
547 int rc;
548 uint8_t config1;
549
550 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev.dv_xname)) != 0)
551 return rc;
552
553 if ((rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev.dv_xname)) != 0)
554 ;
555
556 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
557 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
558 /* TBD turn off maximum power saving? */
559
560 return 0;
561 }
562
563 static __inline int
564 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txctl *descs,
565 u_int ndescs)
566 {
567 int i, rc = 0;
568 for (i = 0; i < ndescs; i++) {
569 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
570 0, 0, &descs[i].stx_dmamap);
571 if (rc != 0)
572 break;
573 }
574 return rc;
575 }
576
577 static __inline int
578 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
579 u_int ndescs)
580 {
581 int i, rc = 0;
582 for (i = 0; i < ndescs; i++) {
583 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
584 &descs[i].srx_dmamap);
585 if (rc != 0)
586 break;
587 }
588 return rc;
589 }
590
591 static __inline void
592 rtw_rxctls_setup(struct rtw_rxctl *descs)
593 {
594 int i;
595 for (i = 0; i < RTW_RXQLEN; i++)
596 descs[i].srx_mbuf = NULL;
597 }
598
599 static __inline void
600 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
601 u_int ndescs)
602 {
603 int i;
604 for (i = 0; i < ndescs; i++) {
605 if (descs[i].srx_dmamap != NULL)
606 bus_dmamap_destroy(dmat, descs[i].srx_dmamap);
607 }
608 }
609
610 static __inline void
611 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txctl *descs,
612 u_int ndescs)
613 {
614 int i;
615 for (i = 0; i < ndescs; i++) {
616 if (descs[i].stx_dmamap != NULL)
617 bus_dmamap_destroy(dmat, descs[i].stx_dmamap);
618 }
619 }
620
621 static __inline void
622 rtw_srom_free(struct rtw_srom *sr)
623 {
624 sr->sr_size = 0;
625 if (sr->sr_content == NULL)
626 return;
627 free(sr->sr_content, M_DEVBUF);
628 sr->sr_content = NULL;
629 }
630
631 static void
632 rtw_srom_defaults(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
633 enum rtw_rfchipid *rfchipid, u_int32_t *rcr)
634 {
635 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
636 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
637 *rcr |= RTW_RCR_ENCS1;
638 *rfchipid = RTW_RFCHIPID_PHILIPS;
639 }
640
641 static int
642 rtw_srom_parse(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
643 enum rtw_rfchipid *rfchipid, u_int32_t *rcr, enum rtw_locale *locale,
644 const char *dvname)
645 {
646 int i;
647 const char *rfname, *paname;
648 char scratch[sizeof("unknown 0xXX")];
649 u_int16_t version;
650 u_int8_t mac[IEEE80211_ADDR_LEN];
651
652 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
653 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
654
655 version = RTW_SR_GET16(sr, RTW_SR_VERSION);
656 printf("%s: SROM version %d.%d", dvname, version >> 8, version & 0xff);
657
658 if (version <= 0x0101) {
659 printf(" is not understood, limping along with defaults\n");
660 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
661 return 0;
662 }
663 printf("\n");
664
665 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
666 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
667
668 RTW_DPRINTF(("%s: EEPROM MAC %s\n", dvname, ether_sprintf(mac)));
669
670 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
671
672 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
673 *flags |= RTW_F_ANTDIV;
674
675 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
676 * to be reversed.
677 */
678 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
679 *flags |= RTW_F_DIGPHY;
680 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
681 *flags |= RTW_F_DFLANTB;
682
683 *rcr |= LSHIFT(MASK_AND_RSHIFT(RTW_SR_GET(sr, RTW_SR_RFPARM),
684 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
685
686 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
687 switch (*rfchipid) {
688 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
689 rfname = "GCT GRF5101";
690 paname = "Winspring WS9901";
691 break;
692 case RTW_RFCHIPID_MAXIM:
693 rfname = "Maxim MAX2820"; /* guess */
694 paname = "Maxim MAX2422"; /* guess */
695 break;
696 case RTW_RFCHIPID_INTERSIL:
697 rfname = "Intersil HFA3873"; /* guess */
698 paname = "Intersil <unknown>";
699 break;
700 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
701 rfname = "Philips SA2400A";
702 paname = "Philips SA2411";
703 break;
704 case RTW_RFCHIPID_RFMD:
705 /* this is the same front-end as an atw(4)! */
706 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
707 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
708 "SYN: Silicon Labs Si4126"; /* inferred from
709 * reference driver
710 */
711 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
712 break;
713 case RTW_RFCHIPID_RESERVED:
714 rfname = paname = "reserved";
715 break;
716 default:
717 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
718 rfname = paname = scratch;
719 }
720 printf("%s: RF: %s, PA: %s\n", dvname, rfname, paname);
721
722 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
723 case RTW_CONFIG0_GL_USA:
724 *locale = RTW_LOCALE_USA;
725 break;
726 case RTW_CONFIG0_GL_EUROPE:
727 *locale = RTW_LOCALE_EUROPE;
728 break;
729 case RTW_CONFIG0_GL_JAPAN:
730 *locale = RTW_LOCALE_JAPAN;
731 break;
732 default:
733 *locale = RTW_LOCALE_UNKNOWN;
734 break;
735 }
736 return 0;
737 }
738
739 /* Returns -1 on failure. */
740 static int
741 rtw_srom_read(struct rtw_regs *regs, u_int32_t flags, struct rtw_srom *sr,
742 const char *dvname)
743 {
744 int rc;
745 struct seeprom_descriptor sd;
746 u_int8_t ecr;
747
748 (void)memset(&sd, 0, sizeof(sd));
749
750 ecr = RTW_READ8(regs, RTW_9346CR);
751
752 if ((flags & RTW_F_9356SROM) != 0) {
753 RTW_DPRINTF(("%s: 93c56 SROM\n", dvname));
754 sr->sr_size = 256;
755 sd.sd_chip = C56_66;
756 } else {
757 RTW_DPRINTF(("%s: 93c46 SROM\n", dvname));
758 sr->sr_size = 128;
759 sd.sd_chip = C46;
760 }
761
762 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
763 RTW_9346CR_EEM_MASK);
764 ecr |= RTW_9346CR_EEM_PROGRAM;
765
766 RTW_WRITE8(regs, RTW_9346CR, ecr);
767
768 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
769
770 if (sr->sr_content == NULL) {
771 printf("%s: unable to allocate SROM buffer\n", dvname);
772 return ENOMEM;
773 }
774
775 (void)memset(sr->sr_content, 0, sr->sr_size);
776
777 /* RTL8180 has a single 8-bit register for controlling the
778 * 93cx6 SROM. There is no "ready" bit. The RTL8180
779 * input/output sense is the reverse of read_seeprom's.
780 */
781 sd.sd_tag = regs->r_bt;
782 sd.sd_bsh = regs->r_bh;
783 sd.sd_regsize = 1;
784 sd.sd_control_offset = RTW_9346CR;
785 sd.sd_status_offset = RTW_9346CR;
786 sd.sd_dataout_offset = RTW_9346CR;
787 sd.sd_CK = RTW_9346CR_EESK;
788 sd.sd_CS = RTW_9346CR_EECS;
789 sd.sd_DI = RTW_9346CR_EEDO;
790 sd.sd_DO = RTW_9346CR_EEDI;
791 /* make read_seeprom enter EEPROM read/write mode */
792 sd.sd_MS = ecr;
793 sd.sd_RDY = 0;
794 #if 0
795 sd.sd_clkdelay = 50;
796 #endif
797
798 /* TBD bus barriers */
799 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
800 printf("%s: could not read SROM\n", dvname);
801 free(sr->sr_content, M_DEVBUF);
802 sr->sr_content = NULL;
803 return -1; /* XXX */
804 }
805
806 /* end EEPROM read/write mode */
807 RTW_WRITE8(regs, RTW_9346CR,
808 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
809 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
810
811 if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
812 return rc;
813
814 #ifdef RTW_DEBUG
815 {
816 int i;
817 RTW_DPRINTF(("\n%s: serial ROM:\n\t", dvname));
818 for (i = 0; i < sr->sr_size/2; i++) {
819 if (((i % 8) == 0) && (i != 0))
820 RTW_DPRINTF(("\n\t"));
821 RTW_DPRINTF((" %04x", sr->sr_content[i]));
822 }
823 RTW_DPRINTF(("\n"));
824 }
825 #endif /* RTW_DEBUG */
826 return 0;
827 }
828
829 static void
830 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
831 const char *dvname)
832 {
833 u_int8_t cfg4;
834 const char *method;
835
836 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
837
838 switch (rfchipid) {
839 default:
840 cfg4 |= LSHIFT(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
841 method = "fallback";
842 break;
843 case RTW_RFCHIPID_INTERSIL:
844 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
845 method = "Intersil";
846 break;
847 case RTW_RFCHIPID_PHILIPS:
848 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
849 method = "Philips";
850 break;
851 case RTW_RFCHIPID_RFMD:
852 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
853 method = "RFMD";
854 break;
855 }
856
857 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
858
859 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
860
861 RTW_DPRINTF(("%s: %s RF programming method, %#02x\n", dvname, method,
862 RTW_READ8(regs, RTW_CONFIG4)));
863 }
864
865 #if 0
866 static __inline int
867 rtw_identify_rf(struct rtw_regs *regs, enum rtw_rftype *rftype,
868 const char *dvname)
869 {
870 u_int8_t cfg4;
871 const char *name;
872
873 cfg4 = RTW_READ8(regs, RTW_CONFIG4);
874
875 switch (cfg4 & RTW_CONFIG4_RFTYPE_MASK) {
876 case RTW_CONFIG4_RFTYPE_PHILIPS:
877 *rftype = RTW_RFTYPE_PHILIPS;
878 name = "Philips";
879 break;
880 case RTW_CONFIG4_RFTYPE_INTERSIL:
881 *rftype = RTW_RFTYPE_INTERSIL;
882 name = "Intersil";
883 break;
884 case RTW_CONFIG4_RFTYPE_RFMD:
885 *rftype = RTW_RFTYPE_RFMD;
886 name = "RFMD";
887 break;
888 default:
889 name = "<unknown>";
890 return ENXIO;
891 }
892
893 printf("%s: RF prog type %s\n", dvname, name);
894 return 0;
895 }
896 #endif
897
898 static __inline void
899 rtw_init_channels(enum rtw_locale locale,
900 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
901 const char *dvname)
902 {
903 int i;
904 const char *name = NULL;
905 #define ADD_CHANNEL(_chans, _chan) do { \
906 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
907 (*_chans)[_chan].ic_freq = \
908 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
909 } while (0)
910
911 switch (locale) {
912 case RTW_LOCALE_USA: /* 1-11 */
913 name = "USA";
914 for (i = 1; i <= 11; i++)
915 ADD_CHANNEL(chans, i);
916 break;
917 case RTW_LOCALE_JAPAN: /* 1-14 */
918 name = "Japan";
919 ADD_CHANNEL(chans, 14);
920 for (i = 1; i <= 14; i++)
921 ADD_CHANNEL(chans, i);
922 break;
923 case RTW_LOCALE_EUROPE: /* 1-13 */
924 name = "Europe";
925 for (i = 1; i <= 13; i++)
926 ADD_CHANNEL(chans, i);
927 break;
928 default: /* 10-11 allowed by most countries */
929 name = "<unknown>";
930 for (i = 10; i <= 11; i++)
931 ADD_CHANNEL(chans, i);
932 break;
933 }
934 printf("%s: Geographic Location %s\n", dvname, name);
935 #undef ADD_CHANNEL
936 }
937
938 static __inline void
939 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale,
940 const char *dvname)
941 {
942 u_int8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
943
944 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
945 case RTW_CONFIG0_GL_USA:
946 *locale = RTW_LOCALE_USA;
947 break;
948 case RTW_CONFIG0_GL_JAPAN:
949 *locale = RTW_LOCALE_JAPAN;
950 break;
951 case RTW_CONFIG0_GL_EUROPE:
952 *locale = RTW_LOCALE_EUROPE;
953 break;
954 default:
955 *locale = RTW_LOCALE_UNKNOWN;
956 break;
957 }
958 }
959
960 static __inline int
961 rtw_identify_sta(struct rtw_regs *regs, u_int8_t (*addr)[IEEE80211_ADDR_LEN],
962 const char *dvname)
963 {
964 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
965 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
966 };
967 u_int32_t idr0 = RTW_READ(regs, RTW_IDR0),
968 idr1 = RTW_READ(regs, RTW_IDR1);
969
970 (*addr)[0] = MASK_AND_RSHIFT(idr0, BITS(0, 7));
971 (*addr)[1] = MASK_AND_RSHIFT(idr0, BITS(8, 15));
972 (*addr)[2] = MASK_AND_RSHIFT(idr0, BITS(16, 23));
973 (*addr)[3] = MASK_AND_RSHIFT(idr0, BITS(24 ,31));
974
975 (*addr)[4] = MASK_AND_RSHIFT(idr1, BITS(0, 7));
976 (*addr)[5] = MASK_AND_RSHIFT(idr1, BITS(8, 15));
977
978 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
979 printf("%s: could not get mac address, attach failed\n",
980 dvname);
981 return ENXIO;
982 }
983
984 printf("%s: 802.11 address %s\n", dvname, ether_sprintf(*addr));
985
986 return 0;
987 }
988
989 static u_int8_t
990 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
991 struct ieee80211_channel *chan)
992 {
993 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
994 KASSERT2(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14,
995 ("%s: channel %d out of range", __func__,
996 idx - RTW_SR_TXPOWER1 + 1));
997 return RTW_SR_GET(sr, idx);
998 }
999
1000 static void
1001 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *htcs)
1002 {
1003 int pri;
1004 u_int ndesc[RTW_NTXPRI] =
1005 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI, RTW_NTXDESCBCN};
1006
1007 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1008 htcs[pri].htc_nfree = ndesc[pri];
1009 htcs[pri].htc_next = 0;
1010 }
1011 }
1012
1013 static int
1014 rtw_txctl_blk_init(struct rtw_txctl_blk *stc)
1015 {
1016 int i;
1017 struct rtw_txctl *stx;
1018
1019 SIMPLEQ_INIT(&stc->stc_dirtyq);
1020 SIMPLEQ_INIT(&stc->stc_freeq);
1021 for (i = 0; i < stc->stc_ndesc; i++) {
1022 stx = &stc->stc_desc[i];
1023 stx->stx_mbuf = NULL;
1024 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1025 }
1026 return 0;
1027 }
1028
1029 static void
1030 rtw_txctl_blk_init_all(struct rtw_txctl_blk *stcs)
1031 {
1032 int pri;
1033 for (pri = 0; pri < RTW_NTXPRI; pri++)
1034 rtw_txctl_blk_init(&stcs[pri]);
1035 }
1036
1037 static __inline void
1038 rtw_rxdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap, u_int desc0, u_int
1039 nsync, int ops)
1040 {
1041 /* sync to end of ring */
1042 if (desc0 + nsync > RTW_NRXDESC) {
1043 bus_dmamap_sync(dmat, dmap,
1044 offsetof(struct rtw_descs, hd_rx[desc0]),
1045 sizeof(struct rtw_rxdesc) * (RTW_NRXDESC - desc0), ops);
1046 nsync -= (RTW_NRXDESC - desc0);
1047 desc0 = 0;
1048 }
1049
1050 /* sync what remains */
1051 bus_dmamap_sync(dmat, dmap,
1052 offsetof(struct rtw_descs, hd_rx[desc0]),
1053 sizeof(struct rtw_rxdesc) * nsync, ops);
1054 }
1055
1056 static void
1057 rtw_txdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap,
1058 struct rtw_txdesc_blk *htc, u_int desc0, u_int nsync, int ops)
1059 {
1060 /* sync to end of ring */
1061 if (desc0 + nsync > htc->htc_ndesc) {
1062 bus_dmamap_sync(dmat, dmap,
1063 htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
1064 sizeof(struct rtw_txdesc) * (htc->htc_ndesc - desc0),
1065 ops);
1066 nsync -= (htc->htc_ndesc - desc0);
1067 desc0 = 0;
1068 }
1069
1070 /* sync what remains */
1071 bus_dmamap_sync(dmat, dmap,
1072 htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
1073 sizeof(struct rtw_txdesc) * nsync, ops);
1074 }
1075
1076 static void
1077 rtw_txdescs_sync_all(bus_dma_tag_t dmat, bus_dmamap_t dmap,
1078 struct rtw_txdesc_blk *htcs)
1079 {
1080 int pri;
1081 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1082 rtw_txdescs_sync(dmat, dmap,
1083 &htcs[pri], 0, htcs[pri].htc_ndesc,
1084 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1085 }
1086 }
1087
1088 static void
1089 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxctl *desc)
1090 {
1091 int i;
1092 struct rtw_rxctl *srx;
1093
1094 for (i = 0; i < RTW_NRXDESC; i++) {
1095 srx = &desc[i];
1096 bus_dmamap_sync(dmat, srx->srx_dmamap, 0,
1097 srx->srx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1098 bus_dmamap_unload(dmat, srx->srx_dmamap);
1099 m_freem(srx->srx_mbuf);
1100 srx->srx_mbuf = NULL;
1101 }
1102 }
1103
1104 static __inline int
1105 rtw_rxbuf_alloc(bus_dma_tag_t dmat, struct rtw_rxctl *srx)
1106 {
1107 int rc;
1108 struct mbuf *m;
1109
1110 MGETHDR(m, M_DONTWAIT, MT_DATA);
1111 if (m == NULL)
1112 return ENOBUFS;
1113
1114 MCLGET(m, M_DONTWAIT);
1115 if (m == NULL)
1116 return ENOBUFS;
1117
1118 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1119
1120 if (srx->srx_mbuf != NULL)
1121 bus_dmamap_unload(dmat, srx->srx_dmamap);
1122
1123 srx->srx_mbuf = NULL;
1124
1125 rc = bus_dmamap_load_mbuf(dmat, srx->srx_dmamap, m, BUS_DMA_NOWAIT);
1126 if (rc != 0) {
1127 m_freem(m);
1128 return -1;
1129 }
1130
1131 srx->srx_mbuf = m;
1132
1133 return 0;
1134 }
1135
1136 static int
1137 rtw_rxctl_init_all(bus_dma_tag_t dmat, struct rtw_rxctl *desc,
1138 u_int *next, const char *dvname)
1139 {
1140 int i, rc;
1141 struct rtw_rxctl *srx;
1142
1143 for (i = 0; i < RTW_NRXDESC; i++) {
1144 srx = &desc[i];
1145 if ((rc = rtw_rxbuf_alloc(dmat, srx)) == 0)
1146 continue;
1147 printf("%s: failed rtw_rxbuf_alloc after %d buffers, rc = %d\n",
1148 dvname, i, rc);
1149 if (i == 0) {
1150 rtw_rxbufs_release(dmat, desc);
1151 return rc;
1152 }
1153 }
1154 *next = 0;
1155 return 0;
1156 }
1157
1158 static __inline void
1159 rtw_rxdesc_init(bus_dma_tag_t dmat, bus_dmamap_t dmam,
1160 struct rtw_rxdesc *hrx, struct rtw_rxctl *srx, int idx)
1161 {
1162 int is_last = (idx == RTW_NRXDESC - 1);
1163 uint32_t ctl;
1164
1165 hrx->hrx_buf = htole32(srx->srx_dmamap->dm_segs[0].ds_addr);
1166
1167 ctl = LSHIFT(srx->srx_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1168 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1169
1170 if (is_last)
1171 ctl |= RTW_RXCTL_EOR;
1172
1173 hrx->hrx_ctl = htole32(ctl);
1174
1175 /* sync the mbuf */
1176 bus_dmamap_sync(dmat, srx->srx_dmamap, 0, srx->srx_dmamap->dm_mapsize,
1177 BUS_DMASYNC_PREREAD);
1178
1179 /* sync the descriptor */
1180 bus_dmamap_sync(dmat, dmam, RTW_DESC_OFFSET(hd_rx, idx),
1181 sizeof(struct rtw_rxdesc),
1182 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1183 }
1184
1185 static void
1186 rtw_rxdesc_init_all(bus_dma_tag_t dmat, bus_dmamap_t dmam,
1187 struct rtw_rxdesc *desc, struct rtw_rxctl *ctl)
1188 {
1189 int i;
1190 struct rtw_rxdesc *hrx;
1191 struct rtw_rxctl *srx;
1192
1193 for (i = 0; i < RTW_NRXDESC; i++) {
1194 hrx = &desc[i];
1195 srx = &ctl[i];
1196 rtw_rxdesc_init(dmat, dmam, hrx, srx, i);
1197 }
1198 }
1199
1200 static void
1201 rtw_io_enable(struct rtw_regs *regs, u_int8_t flags, int enable)
1202 {
1203 u_int8_t cr;
1204
1205 RTW_DPRINTF(("%s: %s 0x%02x\n", __func__,
1206 enable ? "enable" : "disable", flags));
1207
1208 cr = RTW_READ8(regs, RTW_CR);
1209
1210 /* XXX reference source does not enable MULRW */
1211 #if 0
1212 /* enable PCI Read/Write Multiple */
1213 cr |= RTW_CR_MULRW;
1214 #endif
1215
1216 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1217 if (enable)
1218 cr |= flags;
1219 else
1220 cr &= ~flags;
1221 RTW_WRITE8(regs, RTW_CR, cr);
1222 RTW_SYNC(regs, RTW_CR, RTW_CR);
1223 }
1224
1225 static void
1226 rtw_intr_rx(struct rtw_softc *sc, u_int16_t isr)
1227 {
1228 u_int next;
1229 int rate, rssi;
1230 u_int32_t hrssi, hstat, htsfth, htsftl;
1231 struct rtw_rxdesc *hrx;
1232 struct rtw_rxctl *srx;
1233 struct mbuf *m;
1234
1235 struct ieee80211_node *ni;
1236 struct ieee80211_frame *wh;
1237
1238 for (next = sc->sc_rxnext; ; next = (next + 1) % RTW_RXQLEN) {
1239 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1240 next, 1, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1241 hrx = &sc->sc_rxdesc[next];
1242 srx = &sc->sc_rxctl[next];
1243
1244 hstat = le32toh(hrx->hrx_stat);
1245 hrssi = le32toh(hrx->hrx_rssi);
1246 htsfth = le32toh(hrx->hrx_tsfth);
1247 htsftl = le32toh(hrx->hrx_tsftl);
1248
1249 RTW_DPRINTF2(("%s: rxdesc[%d] hstat %08x hrssi %08x "
1250 "htsft %08x%08x\n", __func__, next,
1251 hstat, hrssi, htsfth, htsftl));
1252
1253 if ((hstat & RTW_RXSTAT_OWN) != 0) /* belongs to NIC */
1254 break;
1255
1256 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1257 printf("%s: DMA error/FIFO overflow %08x, "
1258 "rx descriptor %d\n", sc->sc_dev.dv_xname,
1259 hstat & RTW_RXSTAT_IOERROR, next);
1260 goto next;
1261 }
1262
1263 switch (hstat & RTW_RXSTAT_RATE_MASK) {
1264 case RTW_RXSTAT_RATE_1MBPS:
1265 rate = 2;
1266 break;
1267 case RTW_RXSTAT_RATE_2MBPS:
1268 rate = 4;
1269 break;
1270 case RTW_RXSTAT_RATE_5MBPS:
1271 rate = 11;
1272 break;
1273 default:
1274 #ifdef RTW_DEBUG
1275 if (rtw_debug > 1)
1276 printf("%s: interpreting rate #%d as 11 MB/s\n",
1277 sc->sc_dev.dv_xname,
1278 MASK_AND_RSHIFT(hstat,
1279 RTW_RXSTAT_RATE_MASK));
1280 #endif /* RTW_DEBUG */
1281 /*FALLTHROUGH*/
1282 case RTW_RXSTAT_RATE_11MBPS:
1283 rate = 22;
1284 break;
1285 }
1286
1287 #ifdef RTW_DEBUG
1288 #define PRINTSTAT(flag) do { \
1289 if ((hstat & flag) != 0) { \
1290 printf("%s" #flag, delim); \
1291 delim = ","; \
1292 } \
1293 } while (0)
1294 if (rtw_debug > 1) {
1295 const char *delim = "<";
1296 printf("%s: ", sc->sc_dev.dv_xname);
1297 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1298 printf("status %08x", hstat);
1299 PRINTSTAT(RTW_RXSTAT_SPLCP);
1300 PRINTSTAT(RTW_RXSTAT_MAR);
1301 PRINTSTAT(RTW_RXSTAT_PAR);
1302 PRINTSTAT(RTW_RXSTAT_BAR);
1303 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1304 PRINTSTAT(RTW_RXSTAT_CRC32);
1305 PRINTSTAT(RTW_RXSTAT_ICV);
1306 printf(">, ");
1307 }
1308 printf("rate %d.%d Mb/s, time %08x%08x\n",
1309 (rate * 5) / 10, (rate * 5) % 10, htsfth, htsftl);
1310 }
1311 #endif /* RTW_DEBUG */
1312
1313 if ((hstat & RTW_RXSTAT_RES) != 0 &&
1314 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
1315 goto next;
1316
1317 /* if bad flags, skip descriptor */
1318 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1319 printf("%s: too many rx segments\n",
1320 sc->sc_dev.dv_xname);
1321 goto next;
1322 }
1323
1324 bus_dmamap_sync(sc->sc_dmat, srx->srx_dmamap, 0,
1325 srx->srx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1326
1327 m = srx->srx_mbuf;
1328
1329 /* if temporarily out of memory, re-use mbuf */
1330 switch (rtw_rxbuf_alloc(sc->sc_dmat, srx)) {
1331 case 0:
1332 break;
1333 case ENOBUFS:
1334 printf("%s: rtw_rxbuf_alloc(, %d) failed, "
1335 "dropping this packet\n", sc->sc_dev.dv_xname,
1336 next);
1337 goto next;
1338 default:
1339 /* XXX shorten rx ring, instead? */
1340 panic("%s: could not load DMA map\n",
1341 sc->sc_dev.dv_xname);
1342 }
1343
1344 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1345 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_RSSI);
1346 else {
1347 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_IMR_RSSI);
1348 /* TBD find out each front-end's LNA gain in the
1349 * front-end's units
1350 */
1351 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1352 rssi |= 0x80;
1353 }
1354
1355 m->m_pkthdr.len = m->m_len =
1356 MASK_AND_RSHIFT(hstat, RTW_RXSTAT_LENGTH_MASK);
1357 m->m_flags |= M_HASFCS;
1358
1359 if (m->m_pkthdr.len < IEEE80211_MIN_LEN) {
1360 sc->sc_ic.ic_stats.is_rx_tooshort++;
1361 goto next;
1362 }
1363 wh = mtod(m, struct ieee80211_frame *);
1364 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1365 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1366
1367 sc->sc_tsfth = htsfth;
1368
1369 #ifdef RTW_DEBUG
1370 if ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1371 (IFF_DEBUG|IFF_LINK2)) {
1372 ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1373 rate, rssi);
1374 }
1375 #endif /* RTW_DEBUG */
1376 ieee80211_input(&sc->sc_if, m, ni, rssi, htsftl);
1377 ieee80211_release_node(&sc->sc_ic, ni);
1378 next:
1379 rtw_rxdesc_init(sc->sc_dmat, sc->sc_desc_dmamap,
1380 hrx, srx, next);
1381 }
1382 sc->sc_rxnext = next;
1383
1384 return;
1385 }
1386
1387 static void
1388 rtw_txbuf_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1389 struct rtw_txctl *stx)
1390 {
1391 struct mbuf *m;
1392 struct ieee80211_node *ni;
1393 bus_dmamap_t dmamap;
1394
1395 dmamap = stx->stx_dmamap;
1396 m = stx->stx_mbuf;
1397 ni = stx->stx_ni;
1398 stx->stx_dmamap = NULL;
1399 stx->stx_mbuf = NULL;
1400 stx->stx_ni = NULL;
1401
1402 bus_dmamap_sync(dmat, dmamap, 0, dmamap->dm_mapsize,
1403 BUS_DMASYNC_POSTWRITE);
1404 bus_dmamap_unload(dmat, dmamap);
1405 m_freem(m);
1406 ieee80211_release_node(ic, ni);
1407 }
1408
1409 static void
1410 rtw_txbufs_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1411 struct rtw_txctl_blk *stc)
1412 {
1413 struct rtw_txctl *stx;
1414
1415 while ((stx = SIMPLEQ_FIRST(&stc->stc_dirtyq)) != NULL) {
1416 rtw_txbuf_release(dmat, ic, stx);
1417 SIMPLEQ_REMOVE_HEAD(&stc->stc_dirtyq, stx_q);
1418 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1419 }
1420 }
1421
1422 static __inline void
1423 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *htc,
1424 struct rtw_txctl *stx, int ndesc)
1425 {
1426 uint32_t hstat;
1427 int data_retry, rts_retry;
1428 struct rtw_txdesc *htx0, *htxn;
1429 const char *condstring;
1430
1431 rtw_txbuf_release(sc->sc_dmat, &sc->sc_ic, stx);
1432
1433 htc->htc_nfree += ndesc;
1434
1435 htx0 = &htc->htc_desc[stx->stx_first];
1436 htxn = &htc->htc_desc[stx->stx_last];
1437
1438 hstat = le32toh(htx0->htx_stat);
1439 rts_retry = MASK_AND_RSHIFT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1440 data_retry = MASK_AND_RSHIFT(hstat, RTW_TXSTAT_DRC_MASK);
1441
1442 sc->sc_if.if_collisions += rts_retry + data_retry;
1443
1444 if ((hstat & RTW_TXSTAT_TOK) != 0)
1445 condstring = "ok";
1446 else {
1447 sc->sc_if.if_oerrors++;
1448 condstring = "error";
1449 }
1450
1451 DPRINTF2(sc, ("%s: stx %p txdesc[%d, %d] %s tries rts %u data %u\n",
1452 sc->sc_dev.dv_xname, stx, stx->stx_first, stx->stx_last,
1453 condstring, rts_retry, data_retry));
1454 }
1455
1456 /* Collect transmitted packets. */
1457 static __inline void
1458 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txctl_blk *stc,
1459 struct rtw_txdesc_blk *htc)
1460 {
1461 int ndesc;
1462 struct rtw_txctl *stx;
1463
1464 while ((stx = SIMPLEQ_FIRST(&stc->stc_dirtyq)) != NULL) {
1465 ndesc = 1 + stx->stx_last - stx->stx_first;
1466 if (stx->stx_last < stx->stx_first)
1467 ndesc += htc->htc_ndesc;
1468
1469 KASSERT(ndesc > 0);
1470
1471 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap, htc,
1472 stx->stx_first, ndesc,
1473 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1474
1475 if ((htc->htc_desc[stx->stx_first].htx_stat &
1476 htole32(RTW_TXSTAT_OWN)) != 0)
1477 break;
1478
1479 rtw_collect_txpkt(sc, htc, stx, ndesc);
1480 SIMPLEQ_REMOVE_HEAD(&stc->stc_dirtyq, stx_q);
1481 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1482 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1483 }
1484 if (stx == NULL)
1485 stc->stc_tx_timer = 0;
1486 }
1487
1488 static void
1489 rtw_intr_tx(struct rtw_softc *sc, u_int16_t isr)
1490 {
1491 int pri;
1492 struct rtw_txctl_blk *stc;
1493 struct rtw_txdesc_blk *htc;
1494
1495 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1496 stc = &sc->sc_txctl_blk[pri];
1497 htc = &sc->sc_txdesc_blk[pri];
1498
1499 rtw_collect_txring(sc, stc, htc);
1500
1501 rtw_start(&sc->sc_if);
1502 }
1503
1504 /* TBD */
1505 return;
1506 }
1507
1508 static void
1509 rtw_intr_beacon(struct rtw_softc *sc, u_int16_t isr)
1510 {
1511 /* TBD */
1512 return;
1513 }
1514
1515 static void
1516 rtw_intr_atim(struct rtw_softc *sc)
1517 {
1518 /* TBD */
1519 return;
1520 }
1521
1522 static void
1523 rtw_hwring_setup(struct rtw_softc *sc)
1524 {
1525 struct rtw_regs *regs = &sc->sc_regs;
1526 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1527 RTW_WRITE(regs, RTW_TLPDA, RTW_RING_BASE(sc, hd_txlo));
1528 RTW_WRITE(regs, RTW_TNPDA, RTW_RING_BASE(sc, hd_txmd));
1529 RTW_WRITE(regs, RTW_THPDA, RTW_RING_BASE(sc, hd_txhi));
1530 RTW_WRITE(regs, RTW_TBDA, RTW_RING_BASE(sc, hd_bcn));
1531 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1532 }
1533
1534 static void
1535 rtw_swring_setup(struct rtw_softc *sc)
1536 {
1537 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1538
1539 rtw_txctl_blk_init_all(&sc->sc_txctl_blk[0]);
1540
1541 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1542 0, RTW_NRXDESC, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1543 rtw_rxctl_init_all(sc->sc_dmat, sc->sc_rxctl, &sc->sc_rxnext,
1544 sc->sc_dev.dv_xname);
1545 rtw_rxdesc_init_all(sc->sc_dmat, sc->sc_desc_dmamap,
1546 sc->sc_rxdesc, sc->sc_rxctl);
1547
1548 rtw_txdescs_sync_all(sc->sc_dmat, sc->sc_desc_dmamap,
1549 &sc->sc_txdesc_blk[0]);
1550 #if 0 /* redundant with rtw_rxdesc_init_all */
1551 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1552 0, RTW_NRXDESC, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1553 #endif
1554 }
1555
1556 static void
1557 rtw_kick(struct rtw_softc *sc)
1558 {
1559 int pri;
1560 struct rtw_regs *regs = &sc->sc_regs;
1561
1562 RTW_WRITE16(regs, RTW_IMR, 0);
1563 RTW_WBW(regs, RTW_IMR, RTW_TPPOLL);
1564
1565 RTW_WRITE8(regs, RTW_TPPOLL,
1566 RTW_TPPOLL_SBQ|RTW_TPPOLL_SHPQ|RTW_TPPOLL_SNPQ|RTW_TPPOLL_SLPQ);
1567
1568 RTW_SYNC(regs, RTW_TPPOLL, RTW_TPPOLL);
1569
1570 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 0);
1571
1572 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1573 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1574 rtw_txbufs_release(sc->sc_dmat, &sc->sc_ic,
1575 &sc->sc_txctl_blk[pri]);
1576 }
1577 rtw_swring_setup(sc);
1578 rtw_hwring_setup(sc);
1579 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
1580 RTW_SYNC(regs, RTW_IMR, RTW_IMR);
1581 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 1);
1582 }
1583
1584 static void
1585 rtw_intr_ioerror(struct rtw_softc *sc, u_int16_t isr)
1586 {
1587 if ((isr & (RTW_INTR_RDU|RTW_INTR_RXFOVW)) != 0)
1588 rtw_kick(sc);
1589 if ((isr & RTW_INTR_TXFOVW) != 0)
1590 ; /* TBD restart transmit engine */
1591 return;
1592 }
1593
1594 static __inline void
1595 rtw_suspend_ticks(struct rtw_softc *sc)
1596 {
1597 RTW_DPRINTF2(("%s: suspending ticks\n", sc->sc_dev.dv_xname));
1598 sc->sc_do_tick = 0;
1599 }
1600
1601 static __inline void
1602 rtw_resume_ticks(struct rtw_softc *sc)
1603 {
1604 u_int32_t tsftrl0, tsftrl1, next_tick;
1605
1606 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1607
1608 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1609 next_tick = tsftrl1 + 1000000;
1610 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
1611
1612 sc->sc_do_tick = 1;
1613
1614 RTW_DPRINTF2(("%s: resume ticks delta %#08x now %#08x next %#08x\n",
1615 sc->sc_dev.dv_xname, tsftrl1 - tsftrl0, tsftrl1, next_tick));
1616 }
1617
1618 static void
1619 rtw_intr_timeout(struct rtw_softc *sc)
1620 {
1621 RTW_DPRINTF2(("%s: timeout\n", sc->sc_dev.dv_xname));
1622 if (sc->sc_do_tick)
1623 rtw_resume_ticks(sc);
1624 return;
1625 }
1626
1627 int
1628 rtw_intr(void *arg)
1629 {
1630 int i;
1631 struct rtw_softc *sc = arg;
1632 struct rtw_regs *regs = &sc->sc_regs;
1633 u_int16_t isr;
1634
1635 /*
1636 * If the interface isn't running, the interrupt couldn't
1637 * possibly have come from us.
1638 */
1639 if ((sc->sc_flags & RTW_F_ENABLED) == 0 ||
1640 (sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
1641 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) {
1642 RTW_DPRINTF2(("%s: stray interrupt\n", sc->sc_dev.dv_xname));
1643 return (0);
1644 }
1645
1646 for (i = 0; i < 10; i++) {
1647 isr = RTW_READ16(regs, RTW_ISR);
1648
1649 RTW_WRITE16(regs, RTW_ISR, isr);
1650 RTW_WBR(regs, RTW_ISR, RTW_ISR);
1651
1652 if (sc->sc_intr_ack != NULL)
1653 (*sc->sc_intr_ack)(regs);
1654
1655 if (isr == 0)
1656 break;
1657
1658 #ifdef RTW_DEBUG
1659 #define PRINTINTR(flag) do { \
1660 if ((isr & flag) != 0) { \
1661 printf("%s" #flag, delim); \
1662 delim = ","; \
1663 } \
1664 } while (0)
1665
1666 if (rtw_debug > 1 && isr != 0) {
1667 const char *delim = "<";
1668
1669 printf("%s: reg[ISR] = %x", sc->sc_dev.dv_xname, isr);
1670
1671 PRINTINTR(RTW_INTR_TXFOVW);
1672 PRINTINTR(RTW_INTR_TIMEOUT);
1673 PRINTINTR(RTW_INTR_BCNINT);
1674 PRINTINTR(RTW_INTR_ATIMINT);
1675 PRINTINTR(RTW_INTR_TBDER);
1676 PRINTINTR(RTW_INTR_TBDOK);
1677 PRINTINTR(RTW_INTR_THPDER);
1678 PRINTINTR(RTW_INTR_THPDOK);
1679 PRINTINTR(RTW_INTR_TNPDER);
1680 PRINTINTR(RTW_INTR_TNPDOK);
1681 PRINTINTR(RTW_INTR_RXFOVW);
1682 PRINTINTR(RTW_INTR_RDU);
1683 PRINTINTR(RTW_INTR_TLPDER);
1684 PRINTINTR(RTW_INTR_TLPDOK);
1685 PRINTINTR(RTW_INTR_RER);
1686 PRINTINTR(RTW_INTR_ROK);
1687
1688 printf(">\n");
1689 }
1690 #undef PRINTINTR
1691 #endif /* RTW_DEBUG */
1692
1693 if ((isr & RTW_INTR_RX) != 0)
1694 rtw_intr_rx(sc, isr & RTW_INTR_RX);
1695 if ((isr & RTW_INTR_TX) != 0)
1696 rtw_intr_tx(sc, isr & RTW_INTR_TX);
1697 if ((isr & RTW_INTR_BEACON) != 0)
1698 rtw_intr_beacon(sc, isr & RTW_INTR_BEACON);
1699 if ((isr & RTW_INTR_ATIMINT) != 0)
1700 rtw_intr_atim(sc);
1701 if ((isr & RTW_INTR_IOERROR) != 0)
1702 rtw_intr_ioerror(sc, isr & RTW_INTR_IOERROR);
1703 if ((isr & RTW_INTR_TIMEOUT) != 0)
1704 rtw_intr_timeout(sc);
1705 }
1706
1707 return 1;
1708 }
1709
1710 static void
1711 rtw_stop(struct ifnet *ifp, int disable)
1712 {
1713 int pri, s;
1714 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
1715 struct ieee80211com *ic = &sc->sc_ic;
1716 struct rtw_regs *regs = &sc->sc_regs;
1717
1718 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1719 return;
1720
1721 rtw_suspend_ticks(sc);
1722
1723 s = splnet();
1724
1725 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1726
1727 if ((sc->sc_flags & RTW_F_INVALID) == 0) {
1728 /* Disable interrupts. */
1729 RTW_WRITE16(regs, RTW_IMR, 0);
1730
1731 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
1732
1733 /* Stop the transmit and receive processes. First stop DMA,
1734 * then disable receiver and transmitter.
1735 */
1736 RTW_WRITE8(regs, RTW_TPPOLL,
1737 RTW_TPPOLL_SBQ|RTW_TPPOLL_SHPQ|RTW_TPPOLL_SNPQ|
1738 RTW_TPPOLL_SLPQ);
1739
1740 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
1741
1742 rtw_io_enable(&sc->sc_regs, RTW_CR_RE|RTW_CR_TE, 0);
1743 }
1744
1745 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1746 rtw_txbufs_release(sc->sc_dmat, &sc->sc_ic,
1747 &sc->sc_txctl_blk[pri]);
1748 }
1749
1750 if (disable) {
1751 rtw_disable(sc);
1752 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1753 }
1754
1755 /* Mark the interface as not running. Cancel the watchdog timer. */
1756 ifp->if_flags &= ~IFF_RUNNING;
1757 ifp->if_timer = 0;
1758
1759 splx(s);
1760
1761 return;
1762 }
1763
1764 const char *
1765 rtw_pwrstate_string(enum rtw_pwrstate power)
1766 {
1767 switch (power) {
1768 case RTW_ON:
1769 return "on";
1770 case RTW_SLEEP:
1771 return "sleep";
1772 case RTW_OFF:
1773 return "off";
1774 default:
1775 return "unknown";
1776 }
1777 }
1778
1779 /* XXX For Maxim, I am using the RFMD settings gleaned from the
1780 * reference driver, plus a magic Maxim "ON" value that comes from
1781 * the Realtek document "Windows PG for Rtl8180."
1782 */
1783 static void
1784 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1785 int before_rf, int digphy)
1786 {
1787 u_int32_t anaparm;
1788
1789 anaparm = RTW_READ(regs, RTW_ANAPARM);
1790 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
1791
1792 switch (power) {
1793 case RTW_OFF:
1794 if (before_rf)
1795 return;
1796 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
1797 anaparm |= RTW_ANAPARM_TXDACOFF;
1798 break;
1799 case RTW_SLEEP:
1800 if (!before_rf)
1801 return;
1802 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
1803 anaparm |= RTW_ANAPARM_TXDACOFF;
1804 break;
1805 case RTW_ON:
1806 if (!before_rf)
1807 return;
1808 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
1809 break;
1810 }
1811 RTW_DPRINTF(("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
1812 __func__, rtw_pwrstate_string(power),
1813 (before_rf) ? "before" : "after", anaparm));
1814
1815 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1816 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1817 }
1818
1819 /* XXX I am using the RFMD settings gleaned from the reference
1820 * driver. They agree
1821 */
1822 static void
1823 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1824 int before_rf, int digphy)
1825 {
1826 u_int32_t anaparm;
1827
1828 anaparm = RTW_READ(regs, RTW_ANAPARM);
1829 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
1830
1831 switch (power) {
1832 case RTW_OFF:
1833 if (before_rf)
1834 return;
1835 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
1836 anaparm |= RTW_ANAPARM_TXDACOFF;
1837 break;
1838 case RTW_SLEEP:
1839 if (!before_rf)
1840 return;
1841 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
1842 anaparm |= RTW_ANAPARM_TXDACOFF;
1843 break;
1844 case RTW_ON:
1845 if (!before_rf)
1846 return;
1847 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
1848 break;
1849 }
1850 RTW_DPRINTF(("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
1851 __func__, rtw_pwrstate_string(power),
1852 (before_rf) ? "before" : "after", anaparm));
1853
1854 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1855 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1856 }
1857
1858 static void
1859 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1860 int before_rf, int digphy)
1861 {
1862 u_int32_t anaparm;
1863
1864 anaparm = RTW_READ(regs, RTW_ANAPARM);
1865 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
1866
1867 switch (power) {
1868 case RTW_OFF:
1869 if (before_rf)
1870 return;
1871 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
1872 anaparm |= RTW_ANAPARM_TXDACOFF;
1873 break;
1874 case RTW_SLEEP:
1875 if (!before_rf)
1876 return;
1877 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
1878 anaparm |= RTW_ANAPARM_TXDACOFF;
1879 break;
1880 case RTW_ON:
1881 if (!before_rf)
1882 return;
1883 if (digphy) {
1884 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
1885 /* XXX guess */
1886 anaparm |= RTW_ANAPARM_TXDACOFF;
1887 } else
1888 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
1889 break;
1890 }
1891 RTW_DPRINTF(("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
1892 __func__, rtw_pwrstate_string(power),
1893 (before_rf) ? "before" : "after", anaparm));
1894
1895 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1896 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1897 }
1898
1899 static void
1900 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
1901 int digphy)
1902 {
1903 struct rtw_regs *regs = &sc->sc_regs;
1904
1905 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
1906
1907 (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
1908
1909 rtw_set_access(sc, RTW_ACCESS_NONE);
1910
1911 return;
1912 }
1913
1914 static int
1915 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
1916 {
1917 int rc;
1918
1919 RTW_DPRINTF2(("%s: %s->%s\n", __func__,
1920 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
1921
1922 if (sc->sc_pwrstate == power)
1923 return 0;
1924
1925 rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
1926 rc = rtw_rf_pwrstate(sc->sc_rf, power);
1927 rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
1928
1929 switch (power) {
1930 case RTW_ON:
1931 /* TBD set LEDs */
1932 break;
1933 case RTW_SLEEP:
1934 /* TBD */
1935 break;
1936 case RTW_OFF:
1937 /* TBD */
1938 break;
1939 }
1940 if (rc == 0)
1941 sc->sc_pwrstate = power;
1942 else
1943 sc->sc_pwrstate = RTW_OFF;
1944 return rc;
1945 }
1946
1947 static int
1948 rtw_tune(struct rtw_softc *sc)
1949 {
1950 struct ieee80211com *ic = &sc->sc_ic;
1951 u_int chan;
1952 int rc;
1953 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
1954 dflantb = sc->sc_flags & RTW_F_DFLANTB;
1955
1956 KASSERT(ic->ic_bss->ni_chan != NULL);
1957
1958 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1959 if (chan == IEEE80211_CHAN_ANY)
1960 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1961
1962 if (chan == sc->sc_cur_chan) {
1963 RTW_DPRINTF(("%s: already tuned chan #%d\n", __func__, chan));
1964 return 0;
1965 }
1966
1967 rtw_suspend_ticks(sc);
1968
1969 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 0);
1970
1971 /* TBD wait for Tx to complete */
1972
1973 KASSERT((sc->sc_flags & RTW_F_ENABLED) != 0);
1974
1975 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
1976 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_bss->ni_chan),
1977 sc->sc_csthr, ic->ic_bss->ni_chan->ic_freq, antdiv,
1978 dflantb, RTW_ON)) != 0) {
1979 /* XXX condition on powersaving */
1980 printf("%s: phy init failed\n", sc->sc_dev.dv_xname);
1981 }
1982
1983 sc->sc_cur_chan = chan;
1984
1985 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 1);
1986
1987 rtw_resume_ticks(sc);
1988
1989 return rc;
1990 }
1991
1992 void
1993 rtw_disable(struct rtw_softc *sc)
1994 {
1995 int rc;
1996
1997 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1998 return;
1999
2000 /* turn off PHY */
2001 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2002 printf("%s: failed to turn off PHY (%d)\n",
2003 sc->sc_dev.dv_xname, rc);
2004
2005 if (sc->sc_disable != NULL)
2006 (*sc->sc_disable)(sc);
2007
2008 sc->sc_flags &= ~RTW_F_ENABLED;
2009 }
2010
2011 int
2012 rtw_enable(struct rtw_softc *sc)
2013 {
2014 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2015 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2016 printf("%s: device enable failed\n",
2017 sc->sc_dev.dv_xname);
2018 return (EIO);
2019 }
2020 sc->sc_flags |= RTW_F_ENABLED;
2021 }
2022 return (0);
2023 }
2024
2025 static void
2026 rtw_transmit_config(struct rtw_regs *regs)
2027 {
2028 u_int32_t tcr;
2029
2030 tcr = RTW_READ(regs, RTW_TCR);
2031
2032 tcr |= RTW_TCR_CWMIN;
2033 tcr &= ~RTW_TCR_MXDMA_MASK;
2034 tcr |= RTW_TCR_MXDMA_256;
2035 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
2036 tcr &= ~RTW_TCR_LBK_MASK;
2037 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
2038
2039 /* set short/long retry limits */
2040 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2041 tcr |= LSHIFT(4, RTW_TCR_SRL_MASK) | LSHIFT(4, RTW_TCR_LRL_MASK);
2042
2043 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
2044
2045 RTW_WRITE(regs, RTW_TCR, tcr);
2046 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2047 }
2048
2049 static __inline void
2050 rtw_enable_interrupts(struct rtw_softc *sc)
2051 {
2052 struct rtw_regs *regs = &sc->sc_regs;
2053
2054 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2055 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2056
2057 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2058 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2059 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2060 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2061
2062 /* XXX necessary? */
2063 if (sc->sc_intr_ack != NULL)
2064 (*sc->sc_intr_ack)(regs);
2065 }
2066
2067 static void
2068 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2069 {
2070 uint8_t msr;
2071
2072 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2073 rtw_set_access(sc, RTW_ACCESS_CONFIG);
2074
2075 msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2076
2077 switch (opmode) {
2078 case IEEE80211_M_AHDEMO:
2079 case IEEE80211_M_IBSS:
2080 msr |= RTW_MSR_NETYPE_ADHOC_OK;
2081 break;
2082 case IEEE80211_M_HOSTAP:
2083 msr |= RTW_MSR_NETYPE_AP_OK;
2084 break;
2085 case IEEE80211_M_MONITOR:
2086 /* XXX */
2087 msr |= RTW_MSR_NETYPE_NOLINK;
2088 break;
2089 case IEEE80211_M_STA:
2090 msr |= RTW_MSR_NETYPE_INFRA_OK;
2091 break;
2092 }
2093 RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2094
2095 rtw_set_access(sc, RTW_ACCESS_NONE);
2096 }
2097
2098 /* XXX is the endianness correct? test. */
2099 #define rtw_calchash(addr) \
2100 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
2101
2102 static void
2103 rtw_pktfilt_load(struct rtw_softc *sc)
2104 {
2105 struct rtw_regs *regs = &sc->sc_regs;
2106 struct ieee80211com *ic = &sc->sc_ic;
2107 struct ethercom *ec = &ic->ic_ec;
2108 struct ifnet *ifp = &sc->sc_ic.ic_if;
2109 int hash;
2110 u_int32_t hashes[2] = { 0, 0 };
2111 struct ether_multi *enm;
2112 struct ether_multistep step;
2113
2114 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2115
2116 #define RTW_RCR_MONITOR (RTW_RCR_ACRC32|RTW_RCR_APM|RTW_RCR_AAP|RTW_RCR_AB|RTW_RCR_ACF | RTW_RCR_AICV | RTW_RCR_ACRC32)
2117
2118 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2119 sc->sc_rcr |= RTW_RCR_MONITOR;
2120 else
2121 sc->sc_rcr &= ~RTW_RCR_MONITOR;
2122
2123 /* XXX reference sources BEGIN */
2124 sc->sc_rcr |= RTW_RCR_ENMARP;
2125 sc->sc_rcr |= RTW_RCR_AB | RTW_RCR_AM | RTW_RCR_APM;
2126 #if 0
2127 /* receive broadcasts in our BSS */
2128 sc->sc_rcr |= RTW_RCR_ADD3;
2129 #endif
2130 /* XXX reference sources END */
2131
2132 /* receive pwrmgmt frames. */
2133 sc->sc_rcr |= RTW_RCR_APWRMGT;
2134 /* receive mgmt/ctrl/data frames. */
2135 sc->sc_rcr |= RTW_RCR_ADF | RTW_RCR_AMF;
2136 /* initialize Rx DMA threshold, Tx DMA burst size */
2137 sc->sc_rcr |= RTW_RCR_RXFTH_WHOLE | RTW_RCR_MXDMA_1024;
2138
2139 ifp->if_flags &= ~IFF_ALLMULTI;
2140
2141 if (ifp->if_flags & IFF_PROMISC) {
2142 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2143 allmulti:
2144 ifp->if_flags |= IFF_ALLMULTI;
2145 goto setit;
2146 }
2147
2148 /*
2149 * Program the 64-bit multicast hash filter.
2150 */
2151 ETHER_FIRST_MULTI(step, ec, enm);
2152 while (enm != NULL) {
2153 /* XXX */
2154 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2155 ETHER_ADDR_LEN) != 0)
2156 goto allmulti;
2157
2158 hash = rtw_calchash(enm->enm_addrlo);
2159 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2160 ETHER_NEXT_MULTI(step, enm);
2161 }
2162
2163 if (ifp->if_flags & IFF_BROADCAST) {
2164 hash = rtw_calchash(etherbroadcastaddr);
2165 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2166 }
2167
2168 /* all bits set => hash is useless */
2169 if (~(hashes[0] & hashes[1]) == 0)
2170 goto allmulti;
2171
2172 setit:
2173 if (ifp->if_flags & IFF_ALLMULTI)
2174 sc->sc_rcr |= RTW_RCR_AM; /* accept all multicast */
2175
2176 if (ic->ic_state == IEEE80211_S_SCAN)
2177 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2178
2179 hashes[0] = hashes[1] = 0xffffffff;
2180
2181 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2182 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2183 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2184 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2185
2186 DPRINTF(sc, ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2187 sc->sc_dev.dv_xname, RTW_READ(regs, RTW_MAR0),
2188 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2189
2190 return;
2191 }
2192
2193 static int
2194 rtw_init(struct ifnet *ifp)
2195 {
2196 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2197 struct ieee80211com *ic = &sc->sc_ic;
2198 struct rtw_regs *regs = &sc->sc_regs;
2199 int rc = 0;
2200
2201 if ((rc = rtw_enable(sc)) != 0)
2202 goto out;
2203
2204 /* Cancel pending I/O and reset. */
2205 rtw_stop(ifp, 0);
2206
2207 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2208 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
2209 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
2210 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
2211
2212 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2213 goto out;
2214
2215 rtw_swring_setup(sc);
2216
2217 rtw_transmit_config(regs);
2218
2219 rtw_set_access(sc, RTW_ACCESS_CONFIG);
2220
2221 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2222 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2223
2224 /* long PLCP header, 1Mbps basic rate */
2225 RTW_WRITE16(regs, RTW_BRSR, 0x0f);
2226 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2227
2228 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
2229 rtw_set_access(sc, RTW_ACCESS_NONE);
2230
2231 #if 0
2232 RTW_WRITE(regs, RTW_FEMR, RTW_FEMR_GWAKE|RTW_FEMR_WKUP|RTW_FEMR_INTR);
2233 #endif
2234 /* XXX from reference sources */
2235 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2236 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2237
2238 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev.dv_xname);
2239
2240 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2241 /* from Linux driver */
2242 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2243
2244 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2245
2246 rtw_enable_interrupts(sc);
2247
2248 rtw_pktfilt_load(sc);
2249
2250 rtw_hwring_setup(sc);
2251
2252 rtw_io_enable(regs, RTW_CR_RE|RTW_CR_TE, 1);
2253
2254 ifp->if_flags |= IFF_RUNNING;
2255 ic->ic_state = IEEE80211_S_INIT;
2256
2257 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2258 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2259
2260 rtw_resume_ticks(sc);
2261
2262 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2263
2264 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2265 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2266 else
2267 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2268
2269 out:
2270 return rc;
2271 }
2272
2273 static int
2274 rtw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2275 {
2276 int rc = 0;
2277 struct rtw_softc *sc = ifp->if_softc;
2278 struct ifreq *ifr = (struct ifreq *)data;
2279
2280 switch (cmd) {
2281 case SIOCSIFFLAGS:
2282 if ((ifp->if_flags & IFF_UP) != 0) {
2283 if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2284 rtw_pktfilt_load(sc);
2285 } else
2286 rc = rtw_init(ifp);
2287 #ifdef RTW_DEBUG
2288 rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
2289 #endif /* RTW_DEBUG */
2290 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2291 #ifdef RTW_DEBUG
2292 rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
2293 #endif /* RTW_DEBUG */
2294 rtw_stop(ifp, 1);
2295 }
2296 break;
2297 case SIOCADDMULTI:
2298 case SIOCDELMULTI:
2299 if (cmd == SIOCADDMULTI)
2300 rc = ether_addmulti(ifr, &sc->sc_ic.ic_ec);
2301 else
2302 rc = ether_delmulti(ifr, &sc->sc_ic.ic_ec);
2303 if (rc == ENETRESET) {
2304 if (ifp->if_flags & IFF_RUNNING)
2305 rtw_pktfilt_load(sc);
2306 rc = 0;
2307 }
2308 break;
2309 default:
2310 if ((rc = ieee80211_ioctl(ifp, cmd, data)) == ENETRESET) {
2311 if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2312 rc = rtw_init(ifp);
2313 else
2314 rc = 0;
2315 }
2316 break;
2317 }
2318 return rc;
2319 }
2320
2321 /* Point *mp at the next 802.11 frame to transmit. Point *stcp
2322 * at the driver's selection of transmit control block for the packet.
2323 */
2324 static __inline int
2325 rtw_dequeue(struct ifnet *ifp, struct rtw_txctl_blk **stcp,
2326 struct rtw_txdesc_blk **htcp, struct mbuf **mp,
2327 struct ieee80211_node **nip)
2328 {
2329 struct rtw_txctl_blk *stc;
2330 struct rtw_txdesc_blk *htc;
2331 struct mbuf *m0;
2332 struct rtw_softc *sc;
2333 struct ieee80211com *ic;
2334
2335 sc = (struct rtw_softc *)ifp->if_softc;
2336
2337 DPRINTF2(sc, ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
2338 *mp = NULL;
2339
2340 stc = &sc->sc_txctl_blk[RTW_TXPRIMD];
2341 htc = &sc->sc_txdesc_blk[RTW_TXPRIMD];
2342
2343 if (SIMPLEQ_EMPTY(&stc->stc_freeq) || htc->htc_nfree == 0) {
2344 DPRINTF2(sc, ("%s: out of descriptors\n", __func__));
2345 ifp->if_flags |= IFF_OACTIVE;
2346 return 0;
2347 }
2348
2349 ic = &sc->sc_ic;
2350
2351 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
2352 IF_DEQUEUE(&ic->ic_mgtq, m0);
2353 *nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2354 m0->m_pkthdr.rcvif = NULL;
2355 DPRINTF2(sc, ("%s: dequeue mgt frame\n", __func__));
2356 } else if (ic->ic_state != IEEE80211_S_RUN) {
2357 DPRINTF2(sc, ("%s: not running\n", __func__));
2358 return 0;
2359 } else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
2360 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
2361 *nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2362 m0->m_pkthdr.rcvif = NULL;
2363 DPRINTF2(sc, ("%s: dequeue pwrsave frame\n", __func__));
2364 } else {
2365 IFQ_POLL(&ifp->if_snd, m0);
2366 if (m0 == NULL) {
2367 DPRINTF2(sc, ("%s: no frame\n", __func__));
2368 return 0;
2369 }
2370 DPRINTF2(sc, ("%s: dequeue data frame\n", __func__));
2371 IFQ_DEQUEUE(&ifp->if_snd, m0);
2372 ifp->if_opackets++;
2373 #if NBPFILTER > 0
2374 if (ifp->if_bpf)
2375 bpf_mtap(ifp->if_bpf, m0);
2376 #endif
2377 if ((m0 = ieee80211_encap(ifp, m0, nip)) == NULL) {
2378 DPRINTF2(sc, ("%s: encap error\n", __func__));
2379 ifp->if_oerrors++;
2380 return -1;
2381 }
2382 }
2383 DPRINTF2(sc, ("%s: leave\n", __func__));
2384 *stcp = stc;
2385 *htcp = htc;
2386 *mp = m0;
2387 return 0;
2388 }
2389
2390 /* TBD factor with atw_start */
2391 static struct mbuf *
2392 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
2393 u_int ndescfree, short *ifflagsp, const char *dvname)
2394 {
2395 int first, rc;
2396 struct mbuf *m, *m0;
2397
2398 m0 = chain;
2399
2400 /*
2401 * Load the DMA map. Copy and try (once) again if the packet
2402 * didn't fit in the alloted number of segments.
2403 */
2404 for (first = 1;
2405 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
2406 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
2407 dmam->dm_nsegs > ndescfree) && first;
2408 first = 0) {
2409 if (rc == 0)
2410 bus_dmamap_unload(dmat, dmam);
2411 MGETHDR(m, M_DONTWAIT, MT_DATA);
2412 if (m == NULL) {
2413 printf("%s: unable to allocate Tx mbuf\n",
2414 dvname);
2415 break;
2416 }
2417 if (m0->m_pkthdr.len > MHLEN) {
2418 MCLGET(m, M_DONTWAIT);
2419 if ((m->m_flags & M_EXT) == 0) {
2420 printf("%s: cannot allocate Tx cluster\n",
2421 dvname);
2422 m_freem(m);
2423 break;
2424 }
2425 }
2426 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2427 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
2428 m_freem(m0);
2429 m0 = m;
2430 m = NULL;
2431 }
2432 if (rc != 0) {
2433 printf("%s: cannot load Tx buffer, rc = %d\n", dvname, rc);
2434 m_freem(m0);
2435 return NULL;
2436 } else if (dmam->dm_nsegs > ndescfree) {
2437 *ifflagsp |= IFF_OACTIVE;
2438 bus_dmamap_unload(dmat, dmam);
2439 m_freem(m0);
2440 return NULL;
2441 }
2442 return m0;
2443 }
2444
2445 static void
2446 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
2447 struct rtw_txctl *stx, struct rtw_txdesc_blk *htc, int desc)
2448 {
2449 struct rtw_txdesc *htx = &htc->htc_desc[desc];
2450 DPRINTF2(sc, ("%s: stx %p %s txdesc[%d] ctl0 %#08x "
2451 "ctl1 %#08x buf %#08x len %#08x\n",
2452 sc->sc_dev.dv_xname, stx, action, desc,
2453 le32toh(htx->htx_ctl0),
2454 le32toh(htx->htx_ctl1), le32toh(htx->htx_buf),
2455 le32toh(htx->htx_len)));
2456 }
2457
2458 static void
2459 rtw_start(struct ifnet *ifp)
2460 {
2461 uint8_t tppoll;
2462 int desc, i, lastdesc, npkt, rate;
2463 uint32_t proto_ctl0, ctl0, ctl1;
2464 bus_dmamap_t dmamap;
2465 struct ieee80211com *ic;
2466 struct ieee80211_duration *d0;
2467 struct ieee80211_frame *wh;
2468 struct ieee80211_node *ni;
2469 struct mbuf *m0;
2470 struct rtw_softc *sc;
2471 struct rtw_txctl_blk *stc;
2472 struct rtw_txdesc_blk *htc;
2473 struct rtw_txctl *stx;
2474 struct rtw_txdesc *htx;
2475
2476 sc = (struct rtw_softc *)ifp->if_softc;
2477 ic = &sc->sc_ic;
2478
2479 DPRINTF2(sc, ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
2480
2481 /* XXX do real rate control */
2482 proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
2483
2484 switch (rate = MAX(2, ieee80211_get_rate(ic))) {
2485 case 2:
2486 proto_ctl0 |= RTW_TXCTL0_RATE_1MBPS;
2487 break;
2488 case 4:
2489 proto_ctl0 |= RTW_TXCTL0_RATE_2MBPS;
2490 break;
2491 case 11:
2492 proto_ctl0 |= RTW_TXCTL0_RATE_5MBPS;
2493 break;
2494 case 22:
2495 proto_ctl0 |= RTW_TXCTL0_RATE_11MBPS;
2496 break;
2497 }
2498
2499 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
2500 proto_ctl0 |= RTW_TXCTL0_SPLCP;
2501
2502 for (;;) {
2503 if (rtw_dequeue(ifp, &stc, &htc, &m0, &ni) == -1)
2504 continue;
2505 if (m0 == NULL)
2506 break;
2507 stx = SIMPLEQ_FIRST(&stc->stc_freeq);
2508
2509 dmamap = stx->stx_dmamap;
2510
2511 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
2512 htc->htc_nfree, &ifp->if_flags, sc->sc_dev.dv_xname);
2513
2514 if (m0 == NULL || dmamap->dm_nsegs == 0) {
2515 DPRINTF2(sc, ("%s: fail dmamap load\n", __func__));
2516 goto post_dequeue_err;
2517 }
2518
2519 #ifdef RTW_DEBUG
2520 if ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) ==
2521 (IFF_DEBUG|IFF_LINK2)) {
2522 ieee80211_dump_pkt(mtod(m0, uint8_t *),
2523 (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
2524 : sizeof(wh),
2525 rate, 0);
2526 }
2527 #endif /* RTW_DEBUG */
2528 ctl0 = proto_ctl0 |
2529 LSHIFT(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
2530
2531 wh = mtod(m0, struct ieee80211_frame *);
2532
2533 if (ieee80211_compute_duration(wh, m0->m_pkthdr.len,
2534 ic->ic_flags, ic->ic_fragthreshold,
2535 rate, &stx->stx_d0, &stx->stx_dn, &npkt,
2536 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) ==
2537 (IFF_DEBUG|IFF_LINK2)) == -1) {
2538 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
2539 goto post_load_err;
2540 }
2541
2542 /* XXX >= ? */
2543 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
2544 ctl0 |= RTW_TXCTL0_RTSEN;
2545
2546 d0 = &stx->stx_d0;
2547
2548 *(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
2549
2550 ctl1 = LSHIFT(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
2551 LSHIFT(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
2552
2553 if ((d0->d_plcp_svc & IEEE80211_PLCP_SERVICE_LENEXT) != 0)
2554 ctl1 |= RTW_TXCTL1_LENGEXT;
2555
2556 /* TBD fragmentation */
2557
2558 stx->stx_first = htc->htc_next;
2559
2560 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2561 htc, stx->stx_first, dmamap->dm_nsegs,
2562 BUS_DMASYNC_PREWRITE);
2563
2564 for (i = 0, lastdesc = desc = stx->stx_first;
2565 i < dmamap->dm_nsegs;
2566 i++, desc = RTW_NEXT_IDX(htc, desc)) {
2567 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
2568 DPRINTF2(sc, ("%s: seg too long\n", __func__));
2569 goto post_load_err;
2570 }
2571 htx = &htc->htc_desc[desc];
2572 htx->htx_ctl0 = htole32(ctl0);
2573 if (i != 0)
2574 htx->htx_ctl0 |= htole32(RTW_TXCTL0_OWN);
2575 htx->htx_ctl1 = htole32(ctl1);
2576 htx->htx_buf = htole32(dmamap->dm_segs[i].ds_addr);
2577 htx->htx_len = htole32(dmamap->dm_segs[i].ds_len);
2578 lastdesc = desc;
2579 #ifdef RTW_DEBUG
2580 rtw_print_txdesc(sc, "load", stx, htc, desc);
2581 #endif /* RTW_DEBUG */
2582 }
2583
2584 stx->stx_ni = ni;
2585 stx->stx_mbuf = m0;
2586 stx->stx_last = lastdesc;
2587 htc->htc_desc[stx->stx_last].htx_ctl0 |= htole32(RTW_TXCTL0_LS);
2588 htc->htc_desc[stx->stx_first].htx_ctl0 |=
2589 htole32(RTW_TXCTL0_FS);
2590
2591 #ifdef RTW_DEBUG
2592 rtw_print_txdesc(sc, "FS on", stx, htc, stx->stx_first);
2593 #endif /* RTW_DEBUG */
2594 #ifdef RTW_DEBUG
2595 rtw_print_txdesc(sc, "LS on", stx, htc, stx->stx_last);
2596 #endif /* RTW_DEBUG */
2597
2598 htc->htc_nfree -= dmamap->dm_nsegs;
2599 htc->htc_next = desc;
2600
2601 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2602 htc, stx->stx_first, dmamap->dm_nsegs,
2603 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2604
2605 htc->htc_desc[stx->stx_first].htx_ctl0 |=
2606 htole32(RTW_TXCTL0_OWN);
2607
2608 #ifdef RTW_DEBUG
2609 rtw_print_txdesc(sc, "OWN on", stx, htc, stx->stx_first);
2610 #endif /* RTW_DEBUG */
2611
2612 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2613 htc, stx->stx_first, 1,
2614 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2615
2616 SIMPLEQ_REMOVE_HEAD(&stc->stc_freeq, stx_q);
2617 SIMPLEQ_INSERT_TAIL(&stc->stc_dirtyq, stx, stx_q);
2618
2619 stc->stc_tx_timer = 5;
2620 ifp->if_timer = 1;
2621
2622 tppoll = RTW_READ8(&sc->sc_regs, RTW_TPPOLL);
2623
2624 /* TBD poke other queues. */
2625 RTW_WRITE8(&sc->sc_regs, RTW_TPPOLL, tppoll | RTW_TPPOLL_NPQ);
2626 RTW_SYNC(&sc->sc_regs, RTW_TPPOLL, RTW_TPPOLL);
2627 }
2628 DPRINTF2(sc, ("%s: leave\n", __func__));
2629 return;
2630 post_load_err:
2631 bus_dmamap_unload(sc->sc_dmat, dmamap);
2632 m_freem(m0);
2633 post_dequeue_err:
2634 ieee80211_release_node(&sc->sc_ic, ni);
2635 return;
2636 }
2637
2638 static void
2639 rtw_watchdog(struct ifnet *ifp)
2640 {
2641 int pri;
2642 struct rtw_softc *sc;
2643 struct rtw_txctl_blk *stc;
2644
2645 sc = ifp->if_softc;
2646
2647 ifp->if_timer = 0;
2648
2649 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2650 return;
2651
2652 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2653 stc = &sc->sc_txctl_blk[pri];
2654
2655 if (stc->stc_tx_timer == 0)
2656 continue;
2657
2658 if (--stc->stc_tx_timer == 0) {
2659 if (SIMPLEQ_EMPTY(&stc->stc_dirtyq))
2660 continue;
2661 printf("%s: transmit timeout, priority %d\n",
2662 ifp->if_xname, pri);
2663 ifp->if_oerrors++;
2664 /* XXX be gentle */
2665 (void)rtw_init(ifp);
2666 rtw_start(ifp);
2667 } else
2668 ifp->if_timer = 1;
2669 }
2670 ieee80211_watchdog(ifp);
2671 return;
2672 }
2673
2674 static void
2675 rtw_start_beacon(struct rtw_softc *sc, int enable)
2676 {
2677 /* TBD */
2678 return;
2679 }
2680
2681 static void
2682 rtw_next_scan(void *arg)
2683 {
2684 struct ieee80211com *ic = arg;
2685 int s;
2686
2687 /* don't call rtw_start w/o network interrupts blocked */
2688 s = splnet();
2689 if (ic->ic_state == IEEE80211_S_SCAN)
2690 ieee80211_next_scan(ic);
2691 splx(s);
2692 }
2693
2694 static void
2695 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, enum ieee80211_opmode opmode,
2696 uint16_t intval0)
2697 {
2698 uint16_t bcnitv, intval;
2699 int i;
2700 struct rtw_regs *regs = &sc->sc_regs;
2701
2702 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
2703 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
2704
2705 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
2706
2707 rtw_set_access(sc, RTW_ACCESS_CONFIG);
2708
2709 intval = MIN(intval0, PRESHIFT(RTW_BCNITV_BCNITV_MASK));
2710
2711 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
2712 bcnitv |= LSHIFT(intval, RTW_BCNITV_BCNITV_MASK);
2713 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
2714 /* magic from Linux */
2715 RTW_WRITE16(regs, RTW_ATIMWND, LSHIFT(1, RTW_ATIMWND_ATIMWND));
2716 RTW_WRITE16(regs, RTW_ATIMTRITV, LSHIFT(2, RTW_ATIMTRITV_ATIMTRITV));
2717
2718 rtw_set_nettype(sc, opmode);
2719
2720 rtw_set_access(sc, RTW_ACCESS_NONE);
2721
2722 /* TBD WEP */
2723 RTW_WRITE8(regs, RTW_SCR, 0);
2724
2725 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 1);
2726 }
2727
2728 /* Synchronize the hardware state with the software state. */
2729 static int
2730 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2731 {
2732 struct ifnet *ifp = &ic->ic_if;
2733 struct rtw_softc *sc = ifp->if_softc;
2734 enum ieee80211_state ostate;
2735 int error;
2736
2737 ostate = ic->ic_state;
2738
2739 if (nstate == IEEE80211_S_INIT) {
2740 callout_stop(&sc->sc_scan_ch);
2741 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2742 rtw_start_beacon(sc, 0);
2743 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
2744 }
2745
2746 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
2747 rtw_pwrstate(sc, RTW_ON);
2748
2749 if ((error = rtw_tune(sc)) != 0)
2750 return error;
2751
2752 switch (nstate) {
2753 case IEEE80211_S_ASSOC:
2754 rtw_join_bss(sc, ic->ic_bss->ni_bssid, ic->ic_opmode,
2755 ic->ic_bss->ni_intval);
2756 break;
2757 case IEEE80211_S_INIT:
2758 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2759 break;
2760 case IEEE80211_S_SCAN:
2761 #if 0
2762 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2763 rtw_write_bssid(sc);
2764 #endif
2765
2766 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
2767 rtw_next_scan, ic);
2768
2769 break;
2770 case IEEE80211_S_RUN:
2771 if (ic->ic_opmode == IEEE80211_M_STA)
2772 break;
2773 /*FALLTHROUGH*/
2774 case IEEE80211_S_AUTH:
2775 #if 0
2776 rtw_write_bcn_thresh(sc);
2777 rtw_write_ssid(sc);
2778 rtw_write_sup_rates(sc);
2779 #endif
2780 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2781 ic->ic_opmode == IEEE80211_M_MONITOR)
2782 break;
2783
2784 /* TBD set listen interval */
2785
2786 #if 0
2787 rtw_tsf(sc);
2788 #endif
2789 break;
2790 }
2791
2792 if (nstate != IEEE80211_S_SCAN)
2793 callout_stop(&sc->sc_scan_ch);
2794
2795 if (nstate == IEEE80211_S_RUN &&
2796 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2797 ic->ic_opmode == IEEE80211_M_IBSS))
2798 rtw_start_beacon(sc, 1);
2799 else
2800 rtw_start_beacon(sc, 0);
2801
2802 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
2803 }
2804
2805 static void
2806 rtw_recv_beacon(struct rtw_softc *sc, struct mbuf *m,
2807 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2808 {
2809 (*sc->sc_mtbl.mt_recv_mgmt)(&sc->sc_ic, m, ni, subtype, rssi, rstamp);
2810 return;
2811 }
2812
2813 static void
2814 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2815 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2816 {
2817 struct rtw_softc *sc = (struct rtw_softc*)ic->ic_softc;
2818
2819 switch (subtype) {
2820 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2821 /* do nothing: hardware answers probe request XXX */
2822 break;
2823 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2824 case IEEE80211_FC0_SUBTYPE_BEACON:
2825 rtw_recv_beacon(sc, m, ni, subtype, rssi, rstamp);
2826 break;
2827 default:
2828 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2829 break;
2830 }
2831 return;
2832 }
2833
2834 static struct ieee80211_node *
2835 rtw_node_alloc(struct ieee80211com *ic)
2836 {
2837 struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2838 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(ic);
2839
2840 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
2841 return ni;
2842 }
2843
2844 static void
2845 rtw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2846 {
2847 struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2848
2849 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
2850 ether_sprintf(ni->ni_bssid)));
2851 (*sc->sc_mtbl.mt_node_free)(ic, ni);
2852 }
2853
2854 static int
2855 rtw_media_change(struct ifnet *ifp)
2856 {
2857 int error;
2858
2859 error = ieee80211_media_change(ifp);
2860 if (error == ENETRESET) {
2861 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
2862 (IFF_RUNNING|IFF_UP))
2863 rtw_init(ifp); /* XXX lose error */
2864 error = 0;
2865 }
2866 return error;
2867 }
2868
2869 static void
2870 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2871 {
2872 struct rtw_softc *sc = ifp->if_softc;
2873
2874 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2875 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
2876 imr->ifm_status = 0;
2877 return;
2878 }
2879 ieee80211_media_status(ifp, imr);
2880 }
2881
2882 void
2883 rtw_power(int why, void *arg)
2884 {
2885 struct rtw_softc *sc = arg;
2886 struct ifnet *ifp = &sc->sc_ic.ic_if;
2887 int s;
2888
2889 DPRINTF(sc, ("%s: rtw_power(%d,)\n", sc->sc_dev.dv_xname, why));
2890
2891 s = splnet();
2892 switch (why) {
2893 case PWR_STANDBY:
2894 /* XXX do nothing. */
2895 break;
2896 case PWR_SUSPEND:
2897 rtw_stop(ifp, 0);
2898 if (sc->sc_power != NULL)
2899 (*sc->sc_power)(sc, why);
2900 break;
2901 case PWR_RESUME:
2902 if (ifp->if_flags & IFF_UP) {
2903 if (sc->sc_power != NULL)
2904 (*sc->sc_power)(sc, why);
2905 rtw_init(ifp);
2906 }
2907 break;
2908 case PWR_SOFTSUSPEND:
2909 case PWR_SOFTSTANDBY:
2910 case PWR_SOFTRESUME:
2911 break;
2912 }
2913 splx(s);
2914 }
2915
2916 /* rtw_shutdown: make sure the interface is stopped at reboot time. */
2917 void
2918 rtw_shutdown(void *arg)
2919 {
2920 struct rtw_softc *sc = arg;
2921
2922 rtw_stop(&sc->sc_ic.ic_if, 1);
2923 }
2924
2925 static __inline void
2926 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
2927 {
2928 (void)memcpy(ifp->if_xname, dvname, IFNAMSIZ);
2929 ifp->if_softc = softc;
2930 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
2931 IFF_NOTRAILERS;
2932 ifp->if_ioctl = rtw_ioctl;
2933 ifp->if_start = rtw_start;
2934 ifp->if_watchdog = rtw_watchdog;
2935 ifp->if_init = rtw_init;
2936 ifp->if_stop = rtw_stop;
2937 }
2938
2939 static __inline void
2940 rtw_set80211props(struct ieee80211com *ic)
2941 {
2942 int nrate;
2943 ic->ic_phytype = IEEE80211_T_DS;
2944 ic->ic_opmode = IEEE80211_M_STA;
2945 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
2946 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
2947
2948 nrate = 0;
2949 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
2950 IEEE80211_RATE_BASIC | 2;
2951 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
2952 IEEE80211_RATE_BASIC | 4;
2953 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
2954 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
2955 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
2956 }
2957
2958 static __inline void
2959 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
2960 {
2961 mtbl->mt_newstate = ic->ic_newstate;
2962 ic->ic_newstate = rtw_newstate;
2963
2964 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
2965 ic->ic_recv_mgmt = rtw_recv_mgmt;
2966
2967 mtbl->mt_node_free = ic->ic_node_free;
2968 ic->ic_node_free = rtw_node_free;
2969
2970 mtbl->mt_node_alloc = ic->ic_node_alloc;
2971 ic->ic_node_alloc = rtw_node_alloc;
2972 }
2973
2974 static __inline void
2975 rtw_establish_hooks(struct rtw_hooks *hooks, const char *dvname,
2976 void *arg)
2977 {
2978 /*
2979 * Make sure the interface is shutdown during reboot.
2980 */
2981 hooks->rh_shutdown = shutdownhook_establish(rtw_shutdown, arg);
2982 if (hooks->rh_shutdown == NULL)
2983 printf("%s: WARNING: unable to establish shutdown hook\n",
2984 dvname);
2985
2986 /*
2987 * Add a suspend hook to make sure we come back up after a
2988 * resume.
2989 */
2990 hooks->rh_power = powerhook_establish(rtw_power, arg);
2991 if (hooks->rh_power == NULL)
2992 printf("%s: WARNING: unable to establish power hook\n",
2993 dvname);
2994 }
2995
2996 static __inline void
2997 rtw_disestablish_hooks(struct rtw_hooks *hooks, const char *dvname,
2998 void *arg)
2999 {
3000 if (hooks->rh_shutdown != NULL)
3001 shutdownhook_disestablish(hooks->rh_shutdown);
3002
3003 if (hooks->rh_power != NULL)
3004 powerhook_disestablish(hooks->rh_power);
3005 }
3006
3007 static __inline void
3008 rtw_init_radiotap(struct rtw_softc *sc)
3009 {
3010 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3011 sc->sc_rxtap.rr_ihdr.it_len = sizeof(sc->sc_rxtapu);
3012 sc->sc_rxtap.rr_ihdr.it_present = RTW_RX_RADIOTAP_PRESENT;
3013
3014 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3015 sc->sc_txtap.rt_ihdr.it_len = sizeof(sc->sc_txtapu);
3016 sc->sc_txtap.rt_ihdr.it_present = RTW_TX_RADIOTAP_PRESENT;
3017 }
3018
3019 static int
3020 rtw_txctl_blk_setup(struct rtw_txctl_blk *stc, u_int qlen)
3021 {
3022 SIMPLEQ_INIT(&stc->stc_dirtyq);
3023 SIMPLEQ_INIT(&stc->stc_freeq);
3024 stc->stc_ndesc = qlen;
3025 stc->stc_desc = malloc(qlen * sizeof(*stc->stc_desc), M_DEVBUF,
3026 M_NOWAIT);
3027 if (stc->stc_desc == NULL)
3028 return ENOMEM;
3029 return 0;
3030 }
3031
3032 static void
3033 rtw_txctl_blk_cleanup_all(struct rtw_softc *sc)
3034 {
3035 struct rtw_txctl_blk *stc;
3036 int qlen[RTW_NTXPRI] =
3037 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3038 int pri;
3039
3040 for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
3041 stc = &sc->sc_txctl_blk[pri];
3042 free(stc->stc_desc, M_DEVBUF);
3043 stc->stc_desc = NULL;
3044 }
3045 }
3046
3047 static int
3048 rtw_txctl_blk_setup_all(struct rtw_softc *sc)
3049 {
3050 int pri, rc = 0;
3051 int qlen[RTW_NTXPRI] =
3052 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3053
3054 for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
3055 rc = rtw_txctl_blk_setup(&sc->sc_txctl_blk[pri], qlen[pri]);
3056 if (rc != 0)
3057 break;
3058 }
3059 return rc;
3060 }
3061
3062 static void
3063 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *htc, struct rtw_txdesc *desc,
3064 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3065 {
3066 int i;
3067
3068 htc->htc_ndesc = ndesc;
3069 htc->htc_desc = desc;
3070 htc->htc_physbase = physbase;
3071 htc->htc_ofs = ofs;
3072
3073 (void)memset(htc->htc_desc, 0,
3074 sizeof(htc->htc_desc[0]) * htc->htc_ndesc);
3075
3076 for (i = 0; i < htc->htc_ndesc; i++) {
3077 htc->htc_desc[i].htx_next = htole32(RTW_NEXT_DESC(htc, i));
3078 }
3079 }
3080
3081 static void
3082 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3083 {
3084 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3085 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3086 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3087
3088 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3089 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3090 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3091
3092 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3093 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3094 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3095
3096 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3097 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3098 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3099 }
3100
3101 static struct rtw_rf *
3102 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid,
3103 rtw_rf_write_t rf_write, int digphy)
3104 {
3105 struct rtw_rf *rf;
3106
3107 switch (rfchipid) {
3108 case RTW_RFCHIPID_MAXIM:
3109 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3110 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3111 break;
3112 case RTW_RFCHIPID_PHILIPS:
3113 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3114 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3115 break;
3116 case RTW_RFCHIPID_RFMD:
3117 /* XXX RFMD has no RF constructor */
3118 sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3119 /*FALLTHROUGH*/
3120 default:
3121 return NULL;
3122 }
3123 rf->rf_continuous_tx_cb =
3124 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3125 rf->rf_continuous_tx_arg = (void *)sc;
3126 return rf;
3127 }
3128
3129 /* Revision C and later use a different PHY delay setting than
3130 * revisions A and B.
3131 */
3132 static u_int8_t
3133 rtw_check_phydelay(struct rtw_regs *regs, u_int32_t rcr0)
3134 {
3135 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3136 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3137
3138 u_int8_t phydelay = LSHIFT(0x6, RTW_PHYDELAY_PHYDELAY);
3139
3140 RTW_WRITE(regs, RTW_RCR, REVAB);
3141 RTW_WBW(regs, RTW_RCR, RTW_RCR);
3142 RTW_WRITE(regs, RTW_RCR, REVC);
3143
3144 RTW_WBR(regs, RTW_RCR, RTW_RCR);
3145 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3146 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3147
3148 RTW_WRITE(regs, RTW_RCR, rcr0); /* restore RCR */
3149 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3150
3151 return phydelay;
3152 #undef REVC
3153 }
3154
3155 void
3156 rtw_attach(struct rtw_softc *sc)
3157 {
3158 rtw_rf_write_t rf_write;
3159 struct rtw_txctl_blk *stc;
3160 int pri, rc, vers;
3161
3162 #if 0
3163 CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_txdesc) == 0,
3164 "RTW_DESC_ALIGNMENT is not a multiple of "
3165 "sizeof(struct rtw_txdesc)");
3166
3167 CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_rxdesc) == 0,
3168 "RTW_DESC_ALIGNMENT is not a multiple of "
3169 "sizeof(struct rtw_rxdesc)");
3170
3171 CASSERT(RTW_DESC_ALIGNMENT % RTW_MAXPKTSEGS == 0,
3172 "RTW_DESC_ALIGNMENT is not a multiple of RTW_MAXPKTSEGS");
3173 #endif
3174
3175 NEXT_ATTACH_STATE(sc, DETACHED);
3176
3177 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
3178 case RTW_TCR_HWVERID_F:
3179 vers = 'F';
3180 rf_write = rtw_rf_hostwrite;
3181 break;
3182 case RTW_TCR_HWVERID_D:
3183 vers = 'D';
3184 if (rtw_host_rfio)
3185 rf_write = rtw_rf_hostwrite;
3186 else
3187 rf_write = rtw_rf_macwrite;
3188 break;
3189 default:
3190 vers = '?';
3191 rf_write = rtw_rf_macwrite;
3192 break;
3193 }
3194 printf("%s: hardware version %c\n", sc->sc_dev.dv_xname, vers);
3195
3196 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
3197 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
3198 0);
3199
3200 if (rc != 0) {
3201 printf("%s: could not allocate hw descriptors, error %d\n",
3202 sc->sc_dev.dv_xname, rc);
3203 goto err;
3204 }
3205
3206 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
3207
3208 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
3209 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
3210 (caddr_t*)&sc->sc_descs, BUS_DMA_COHERENT);
3211
3212 if (rc != 0) {
3213 printf("%s: could not map hw descriptors, error %d\n",
3214 sc->sc_dev.dv_xname, rc);
3215 goto err;
3216 }
3217 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
3218
3219 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
3220 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
3221
3222 if (rc != 0) {
3223 printf("%s: could not create DMA map for hw descriptors, "
3224 "error %d\n", sc->sc_dev.dv_xname, rc);
3225 goto err;
3226 }
3227 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
3228
3229 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
3230 sizeof(struct rtw_descs), NULL, 0);
3231
3232 if (rc != 0) {
3233 printf("%s: could not load DMA map for hw descriptors, "
3234 "error %d\n", sc->sc_dev.dv_xname, rc);
3235 goto err;
3236 }
3237 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
3238
3239 if (rtw_txctl_blk_setup_all(sc) != 0)
3240 goto err;
3241 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
3242
3243 rtw_txdesc_blk_setup_all(sc);
3244
3245 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
3246
3247 sc->sc_rxdesc = &sc->sc_descs->hd_rx[0];
3248
3249 rtw_rxctls_setup(&sc->sc_rxctl[0]);
3250
3251 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3252 stc = &sc->sc_txctl_blk[pri];
3253
3254 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
3255 &stc->stc_desc[0], stc->stc_ndesc)) != 0) {
3256 printf("%s: could not load DMA map for "
3257 "hw tx descriptors, error %d\n",
3258 sc->sc_dev.dv_xname, rc);
3259 goto err;
3260 }
3261 }
3262
3263 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
3264 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxctl[0],
3265 RTW_RXQLEN)) != 0) {
3266 printf("%s: could not load DMA map for hw rx descriptors, "
3267 "error %d\n", sc->sc_dev.dv_xname, rc);
3268 goto err;
3269 }
3270 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
3271
3272 /* Reset the chip to a known state. */
3273 if (rtw_reset(sc) != 0)
3274 goto err;
3275 NEXT_ATTACH_STATE(sc, FINISH_RESET);
3276
3277 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
3278
3279 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
3280 sc->sc_flags |= RTW_F_9356SROM;
3281
3282 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
3283 sc->sc_dev.dv_xname) != 0)
3284 goto err;
3285
3286 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
3287
3288 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
3289 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
3290 sc->sc_dev.dv_xname) != 0) {
3291 printf("%s: attach failed, malformed serial ROM\n",
3292 sc->sc_dev.dv_xname);
3293 goto err;
3294 }
3295
3296 printf("%s: %s PHY\n", sc->sc_dev.dv_xname,
3297 ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
3298
3299 printf("%s: CS threshold %u\n", sc->sc_dev.dv_xname, sc->sc_csthr);
3300
3301 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
3302
3303 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid, rf_write,
3304 sc->sc_flags & RTW_F_DIGPHY);
3305
3306 if (sc->sc_rf == NULL) {
3307 printf("%s: attach failed, could not attach RF\n",
3308 sc->sc_dev.dv_xname);
3309 goto err;
3310 }
3311
3312 #if 0
3313 if (rtw_identify_rf(&sc->sc_regs, &sc->sc_rftype,
3314 sc->sc_dev.dv_xname) != 0) {
3315 printf("%s: attach failed, unknown RF unidentified\n",
3316 sc->sc_dev.dv_xname);
3317 goto err;
3318 }
3319 #endif
3320
3321 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
3322
3323 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
3324
3325 RTW_DPRINTF(("%s: PHY delay %d\n", sc->sc_dev.dv_xname,
3326 sc->sc_phydelay));
3327
3328 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
3329 rtw_identify_country(&sc->sc_regs, &sc->sc_locale,
3330 sc->sc_dev.dv_xname);
3331
3332 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels,
3333 sc->sc_dev.dv_xname);
3334
3335 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
3336 sc->sc_dev.dv_xname) != 0)
3337 goto err;
3338 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
3339
3340 rtw_setifprops(&sc->sc_if, sc->sc_dev.dv_xname, (void*)sc);
3341
3342 IFQ_SET_READY(&sc->sc_if.if_snd);
3343
3344 rtw_set80211props(&sc->sc_ic);
3345
3346 /*
3347 * Call MI attach routines.
3348 */
3349 if_attach(&sc->sc_if);
3350 ieee80211_ifattach(&sc->sc_if);
3351
3352 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
3353
3354 /* possibly we should fill in our own sc_send_prresp, since
3355 * the RTL8180 is probably sending probe responses in ad hoc
3356 * mode.
3357 */
3358
3359 /* complete initialization */
3360 ieee80211_media_init(&sc->sc_if, rtw_media_change, rtw_media_status);
3361 callout_init(&sc->sc_scan_ch);
3362
3363 #if NBPFILTER > 0
3364 bpfattach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
3365 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
3366 #endif
3367
3368 rtw_establish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname, (void*)sc);
3369
3370 rtw_init_radiotap(sc);
3371
3372 NEXT_ATTACH_STATE(sc, FINISHED);
3373
3374 return;
3375 err:
3376 rtw_detach(sc);
3377 return;
3378 }
3379
3380 int
3381 rtw_detach(struct rtw_softc *sc)
3382 {
3383 int pri;
3384
3385 switch (sc->sc_attach_state) {
3386 case FINISHED:
3387 rtw_stop(&sc->sc_if, 1);
3388
3389 rtw_disestablish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname,
3390 (void*)sc);
3391 callout_stop(&sc->sc_scan_ch);
3392 ieee80211_ifdetach(&sc->sc_if);
3393 if_detach(&sc->sc_if);
3394 break;
3395 case FINISH_ID_STA:
3396 case FINISH_RF_ATTACH:
3397 rtw_rf_destroy(sc->sc_rf);
3398 sc->sc_rf = NULL;
3399 /*FALLTHROUGH*/
3400 case FINISH_PARSE_SROM:
3401 case FINISH_READ_SROM:
3402 rtw_srom_free(&sc->sc_srom);
3403 /*FALLTHROUGH*/
3404 case FINISH_RESET:
3405 case FINISH_RXMAPS_CREATE:
3406 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxctl[0],
3407 RTW_RXQLEN);
3408 /*FALLTHROUGH*/
3409 case FINISH_TXMAPS_CREATE:
3410 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3411 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
3412 sc->sc_txctl_blk[pri].stc_desc,
3413 sc->sc_txctl_blk[pri].stc_ndesc);
3414 }
3415 /*FALLTHROUGH*/
3416 case FINISH_TXDESCBLK_SETUP:
3417 case FINISH_TXCTLBLK_SETUP:
3418 rtw_txctl_blk_cleanup_all(sc);
3419 /*FALLTHROUGH*/
3420 case FINISH_DESCMAP_LOAD:
3421 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
3422 /*FALLTHROUGH*/
3423 case FINISH_DESCMAP_CREATE:
3424 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
3425 /*FALLTHROUGH*/
3426 case FINISH_DESC_MAP:
3427 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_descs,
3428 sizeof(struct rtw_descs));
3429 /*FALLTHROUGH*/
3430 case FINISH_DESC_ALLOC:
3431 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
3432 sc->sc_desc_nsegs);
3433 /*FALLTHROUGH*/
3434 case DETACHED:
3435 NEXT_ATTACH_STATE(sc, DETACHED);
3436 break;
3437 }
3438 return 0;
3439 }
3440
3441 int
3442 rtw_activate(struct device *self, enum devact act)
3443 {
3444 struct rtw_softc *sc = (struct rtw_softc *)self;
3445 int rc = 0, s;
3446
3447 s = splnet();
3448 switch (act) {
3449 case DVACT_ACTIVATE:
3450 rc = EOPNOTSUPP;
3451 break;
3452
3453 case DVACT_DEACTIVATE:
3454 if_deactivate(&sc->sc_ic.ic_if);
3455 break;
3456 }
3457 splx(s);
3458 return rc;
3459 }
3460