rtw.c revision 1.3 1 /* $NetBSD: rtw.c,v 1.3 2004/12/12 06:37:59 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005 David Young. All rights reserved.
4 *
5 * Programmed for NetBSD by David Young.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of David Young may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
23 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30 * OF SUCH DAMAGE.
31 */
32 /*
33 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.3 2004/12/12 06:37:59 dyoung Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #if 0
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 #endif
53 #include <sys/time.h>
54 #include <sys/types.h>
55
56 #include <machine/endian.h>
57 #include <machine/bus.h>
58 #include <machine/intr.h> /* splnet */
59
60 #include <uvm/uvm_extern.h>
61
62 #include <net/if.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_compat.h>
68 #include <net80211/ieee80211_radiotap.h>
69
70 #if NBPFILTER > 0
71 #include <net/bpf.h>
72 #endif
73
74 #include <dev/ic/rtwreg.h>
75 #include <dev/ic/rtwvar.h>
76 #include <dev/ic/rtwphyio.h>
77 #include <dev/ic/rtwphy.h>
78
79 #include <dev/ic/smc93cx6var.h>
80
81 #define KASSERT2(__cond, __msg) \
82 do { \
83 if (!(__cond)) \
84 panic __msg ; \
85 } while (0)
86
87 #ifdef RTW_DEBUG
88 int rtw_debug = 2;
89 #endif /* RTW_DEBUG */
90
91 #define NEXT_ATTACH_STATE(sc, state) do { \
92 DPRINTF(sc, ("%s: attach state %s\n", __func__, #state)); \
93 sc->sc_attach_state = state; \
94 } while (0)
95
96 int rtw_dwelltime = 1000; /* milliseconds */
97
98 #ifdef RTW_DEBUG
99 static void
100 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
101 {
102 #define PRINTREG32(sc, reg) \
103 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
104 dvname, reg, RTW_READ(regs, reg)))
105
106 #define PRINTREG16(sc, reg) \
107 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %04x\n", \
108 dvname, reg, RTW_READ16(regs, reg)))
109
110 #define PRINTREG8(sc, reg) \
111 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %02x\n", \
112 dvname, reg, RTW_READ8(regs, reg)))
113
114 RTW_DPRINTF2(("%s: %s\n", dvname, where));
115
116 PRINTREG32(regs, RTW_IDR0);
117 PRINTREG32(regs, RTW_IDR1);
118 PRINTREG32(regs, RTW_MAR0);
119 PRINTREG32(regs, RTW_MAR1);
120 PRINTREG32(regs, RTW_TSFTRL);
121 PRINTREG32(regs, RTW_TSFTRH);
122 PRINTREG32(regs, RTW_TLPDA);
123 PRINTREG32(regs, RTW_TNPDA);
124 PRINTREG32(regs, RTW_THPDA);
125 PRINTREG32(regs, RTW_TCR);
126 PRINTREG32(regs, RTW_RCR);
127 PRINTREG32(regs, RTW_TINT);
128 PRINTREG32(regs, RTW_TBDA);
129 PRINTREG32(regs, RTW_ANAPARM);
130 PRINTREG32(regs, RTW_BB);
131 PRINTREG32(regs, RTW_PHYCFG);
132 PRINTREG32(regs, RTW_WAKEUP0L);
133 PRINTREG32(regs, RTW_WAKEUP0H);
134 PRINTREG32(regs, RTW_WAKEUP1L);
135 PRINTREG32(regs, RTW_WAKEUP1H);
136 PRINTREG32(regs, RTW_WAKEUP2LL);
137 PRINTREG32(regs, RTW_WAKEUP2LH);
138 PRINTREG32(regs, RTW_WAKEUP2HL);
139 PRINTREG32(regs, RTW_WAKEUP2HH);
140 PRINTREG32(regs, RTW_WAKEUP3LL);
141 PRINTREG32(regs, RTW_WAKEUP3LH);
142 PRINTREG32(regs, RTW_WAKEUP3HL);
143 PRINTREG32(regs, RTW_WAKEUP3HH);
144 PRINTREG32(regs, RTW_WAKEUP4LL);
145 PRINTREG32(regs, RTW_WAKEUP4LH);
146 PRINTREG32(regs, RTW_WAKEUP4HL);
147 PRINTREG32(regs, RTW_WAKEUP4HH);
148 PRINTREG32(regs, RTW_DK0);
149 PRINTREG32(regs, RTW_DK1);
150 PRINTREG32(regs, RTW_DK2);
151 PRINTREG32(regs, RTW_DK3);
152 PRINTREG32(regs, RTW_RETRYCTR);
153 PRINTREG32(regs, RTW_RDSAR);
154 PRINTREG32(regs, RTW_FER);
155 PRINTREG32(regs, RTW_FEMR);
156 PRINTREG32(regs, RTW_FPSR);
157 PRINTREG32(regs, RTW_FFER);
158
159 /* 16-bit registers */
160 PRINTREG16(regs, RTW_BRSR);
161 PRINTREG16(regs, RTW_IMR);
162 PRINTREG16(regs, RTW_ISR);
163 PRINTREG16(regs, RTW_BCNITV);
164 PRINTREG16(regs, RTW_ATIMWND);
165 PRINTREG16(regs, RTW_BINTRITV);
166 PRINTREG16(regs, RTW_ATIMTRITV);
167 PRINTREG16(regs, RTW_CRC16ERR);
168 PRINTREG16(regs, RTW_CRC0);
169 PRINTREG16(regs, RTW_CRC1);
170 PRINTREG16(regs, RTW_CRC2);
171 PRINTREG16(regs, RTW_CRC3);
172 PRINTREG16(regs, RTW_CRC4);
173 PRINTREG16(regs, RTW_CWR);
174
175 /* 8-bit registers */
176 PRINTREG8(regs, RTW_CR);
177 PRINTREG8(regs, RTW_9346CR);
178 PRINTREG8(regs, RTW_CONFIG0);
179 PRINTREG8(regs, RTW_CONFIG1);
180 PRINTREG8(regs, RTW_CONFIG2);
181 PRINTREG8(regs, RTW_MSR);
182 PRINTREG8(regs, RTW_CONFIG3);
183 PRINTREG8(regs, RTW_CONFIG4);
184 PRINTREG8(regs, RTW_TESTR);
185 PRINTREG8(regs, RTW_PSR);
186 PRINTREG8(regs, RTW_SCR);
187 PRINTREG8(regs, RTW_PHYDELAY);
188 PRINTREG8(regs, RTW_CRCOUNT);
189 PRINTREG8(regs, RTW_PHYADDR);
190 PRINTREG8(regs, RTW_PHYDATAW);
191 PRINTREG8(regs, RTW_PHYDATAR);
192 PRINTREG8(regs, RTW_CONFIG5);
193 PRINTREG8(regs, RTW_TPPOLL);
194
195 PRINTREG16(regs, RTW_BSSID16);
196 PRINTREG32(regs, RTW_BSSID32);
197 #undef PRINTREG32
198 #undef PRINTREG16
199 #undef PRINTREG8
200 }
201 #endif /* RTW_DEBUG */
202
203 void
204 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
205 {
206 struct rtw_regs *regs = &sc->sc_regs;
207
208 u_int32_t tcr;
209 tcr = RTW_READ(regs, RTW_TCR);
210 tcr &= ~RTW_TCR_LBK_MASK;
211 if (enable)
212 tcr |= RTW_TCR_LBK_CONT;
213 else
214 tcr |= RTW_TCR_LBK_NORMAL;
215 RTW_WRITE(regs, RTW_TCR, tcr);
216 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
217 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
218 rtw_txdac_enable(regs, !enable);
219 #if 0
220 /* XXX voodoo. from linux. */
221 rtw_anaparm_enable(regs, 1);
222 rtw_anaparm_enable(regs, 0);
223 #endif
224 rtw_set_access(sc, RTW_ACCESS_NONE);
225 }
226
227 static const char *
228 rtw_access_string(enum rtw_access access)
229 {
230 switch (access) {
231 case RTW_ACCESS_NONE:
232 return "none";
233 case RTW_ACCESS_CONFIG:
234 return "config";
235 case RTW_ACCESS_ANAPARM:
236 return "anaparm";
237 default:
238 return "unknown";
239 }
240 }
241
242 static void
243 rtw_set_access1(struct rtw_regs *regs,
244 enum rtw_access oaccess, enum rtw_access naccess)
245 {
246 KASSERT(naccess >= RTW_ACCESS_NONE && naccess <= RTW_ACCESS_ANAPARM);
247 KASSERT(oaccess >= RTW_ACCESS_NONE && oaccess <= RTW_ACCESS_ANAPARM);
248
249 if (naccess == oaccess)
250 return;
251
252 switch (naccess) {
253 case RTW_ACCESS_NONE:
254 switch (oaccess) {
255 case RTW_ACCESS_ANAPARM:
256 rtw_anaparm_enable(regs, 0);
257 /*FALLTHROUGH*/
258 case RTW_ACCESS_CONFIG:
259 rtw_config0123_enable(regs, 0);
260 /*FALLTHROUGH*/
261 case RTW_ACCESS_NONE:
262 break;
263 }
264 break;
265 case RTW_ACCESS_CONFIG:
266 switch (oaccess) {
267 case RTW_ACCESS_NONE:
268 rtw_config0123_enable(regs, 1);
269 /*FALLTHROUGH*/
270 case RTW_ACCESS_CONFIG:
271 break;
272 case RTW_ACCESS_ANAPARM:
273 rtw_anaparm_enable(regs, 0);
274 break;
275 }
276 break;
277 case RTW_ACCESS_ANAPARM:
278 switch (oaccess) {
279 case RTW_ACCESS_NONE:
280 rtw_config0123_enable(regs, 1);
281 /*FALLTHROUGH*/
282 case RTW_ACCESS_CONFIG:
283 rtw_anaparm_enable(regs, 1);
284 /*FALLTHROUGH*/
285 case RTW_ACCESS_ANAPARM:
286 break;
287 }
288 break;
289 }
290 }
291
292 void
293 rtw_set_access(struct rtw_softc *sc, enum rtw_access access)
294 {
295 rtw_set_access1(&sc->sc_regs, sc->sc_access, access);
296 RTW_DPRINTF(("%s: access %s -> %s\n", sc->sc_dev.dv_xname,
297 rtw_access_string(sc->sc_access),
298 rtw_access_string(access)));
299 sc->sc_access = access;
300 }
301
302 /*
303 * Enable registers, switch register banks.
304 */
305 void
306 rtw_config0123_enable(struct rtw_regs *regs, int enable)
307 {
308 u_int8_t ecr;
309 ecr = RTW_READ8(regs, RTW_9346CR);
310 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
311 if (enable)
312 ecr |= RTW_9346CR_EEM_CONFIG;
313 else
314 ecr |= RTW_9346CR_EEM_NORMAL;
315 RTW_WRITE8(regs, RTW_9346CR, ecr);
316 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
317 }
318
319 /* requires rtw_config0123_enable(, 1) */
320 void
321 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
322 {
323 u_int8_t cfg3;
324
325 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
326 cfg3 |= RTW_CONFIG3_CLKRUNEN;
327 if (enable)
328 cfg3 |= RTW_CONFIG3_PARMEN;
329 else
330 cfg3 &= ~RTW_CONFIG3_PARMEN;
331 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
332 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
333 }
334
335 /* requires rtw_anaparm_enable(, 1) */
336 void
337 rtw_txdac_enable(struct rtw_regs *regs, int enable)
338 {
339 u_int32_t anaparm;
340
341 anaparm = RTW_READ(regs, RTW_ANAPARM);
342 if (enable)
343 anaparm &= ~RTW_ANAPARM_TXDACOFF;
344 else
345 anaparm |= RTW_ANAPARM_TXDACOFF;
346 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
347 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
348 }
349
350 static __inline int
351 rtw_chip_reset1(struct rtw_regs *regs, char (*dvname)[IFNAMSIZ])
352 {
353 u_int8_t cr;
354 int i;
355
356 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
357
358 RTW_WBR(regs, RTW_CR, RTW_CR);
359
360 for (i = 0; i < 10000; i++) {
361 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
362 RTW_DPRINTF(("%s: reset in %dus\n", *dvname, i));
363 return 0;
364 }
365 RTW_RBR(regs, RTW_CR, RTW_CR);
366 DELAY(1); /* 1us */
367 }
368
369 printf("%s: reset failed\n", *dvname);
370 return ETIMEDOUT;
371 }
372
373 static __inline int
374 rtw_chip_reset(struct rtw_regs *regs, char (*dvname)[IFNAMSIZ])
375 {
376 uint32_t tcr;
377
378 /* from Linux driver */
379 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
380 LSHIFT(7, RTW_TCR_SRL_MASK) | LSHIFT(7, RTW_TCR_LRL_MASK);
381
382 RTW_WRITE(regs, RTW_TCR, tcr);
383
384 RTW_WBW(regs, RTW_CR, RTW_TCR);
385
386 return rtw_chip_reset1(regs, dvname);
387 }
388
389 static __inline int
390 rtw_recall_eeprom(struct rtw_regs *regs, char (*dvname)[IFNAMSIZ])
391 {
392 int i;
393 u_int8_t ecr;
394
395 ecr = RTW_READ8(regs, RTW_9346CR);
396 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
397 RTW_WRITE8(regs, RTW_9346CR, ecr);
398
399 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
400
401 /* wait 2.5ms for completion */
402 for (i = 0; i < 25; i++) {
403 ecr = RTW_READ8(regs, RTW_9346CR);
404 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
405 RTW_DPRINTF(("%s: recall EEPROM in %dus\n", *dvname,
406 i * 100));
407 return 0;
408 }
409 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
410 DELAY(100);
411 }
412 printf("%s: recall EEPROM failed\n", *dvname);
413 return ETIMEDOUT;
414 }
415
416 static __inline int
417 rtw_reset(struct rtw_softc *sc)
418 {
419 int rc;
420 uint32_t config1;
421
422 if ((rc = rtw_chip_reset(&sc->sc_regs, &sc->sc_dev.dv_xname)) != 0)
423 return rc;
424
425 if ((rc = rtw_recall_eeprom(&sc->sc_regs, &sc->sc_dev.dv_xname)) != 0)
426 ;
427
428 config1 = RTW_READ(&sc->sc_regs, RTW_CONFIG1);
429 RTW_WRITE(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
430 /* TBD turn off maximum power saving? */
431
432 return 0;
433 }
434
435 static __inline int
436 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txctl *descs,
437 u_int ndescs)
438 {
439 int i, rc = 0;
440 for (i = 0; i < ndescs; i++) {
441 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
442 0, 0, &descs[i].stx_dmamap);
443 if (rc != 0)
444 break;
445 }
446 return rc;
447 }
448
449 static __inline int
450 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
451 u_int ndescs)
452 {
453 int i, rc = 0;
454 for (i = 0; i < ndescs; i++) {
455 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
456 &descs[i].srx_dmamap);
457 if (rc != 0)
458 break;
459 }
460 return rc;
461 }
462
463 static __inline void
464 rtw_rxctls_setup(struct rtw_rxctl *descs)
465 {
466 int i;
467 for (i = 0; i < RTW_RXQLEN; i++)
468 descs[i].srx_mbuf = NULL;
469 }
470
471 static __inline void
472 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
473 u_int ndescs)
474 {
475 int i;
476 for (i = 0; i < ndescs; i++) {
477 if (descs[i].srx_dmamap != NULL)
478 bus_dmamap_destroy(dmat, descs[i].srx_dmamap);
479 }
480 }
481
482 static __inline void
483 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txctl *descs,
484 u_int ndescs)
485 {
486 int i;
487 for (i = 0; i < ndescs; i++) {
488 if (descs[i].stx_dmamap != NULL)
489 bus_dmamap_destroy(dmat, descs[i].stx_dmamap);
490 }
491 }
492
493 static __inline void
494 rtw_srom_free(struct rtw_srom *sr)
495 {
496 sr->sr_size = 0;
497 if (sr->sr_content == NULL)
498 return;
499 free(sr->sr_content, M_DEVBUF);
500 sr->sr_content = NULL;
501 }
502
503 static void
504 rtw_srom_defaults(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
505 enum rtw_rfchipid *rfchipid, u_int32_t *rcr, char (*dvname)[IFNAMSIZ])
506 {
507 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
508 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
509 *rcr |= RTW_RCR_ENCS1;
510 *rfchipid = RTW_RFCHIPID_PHILIPS;
511 }
512
513 static int
514 rtw_srom_parse(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
515 enum rtw_rfchipid *rfchipid, u_int32_t *rcr, enum rtw_locale *locale,
516 char (*dvname)[IFNAMSIZ])
517 {
518 int i;
519 const char *rfname, *paname;
520 char scratch[sizeof("unknown 0xXX")];
521 u_int16_t version;
522 u_int8_t mac[IEEE80211_ADDR_LEN];
523
524 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
525 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
526
527 version = RTW_SR_GET16(sr, RTW_SR_VERSION);
528 printf("%s: SROM version %d.%d", *dvname, version >> 8, version & 0xff);
529
530 if (version <= 0x0101) {
531 printf(" is not understood, limping along with defaults\n");
532 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr,
533 dvname);
534 return 0;
535 }
536 printf("\n");
537
538 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
539 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
540
541 RTW_DPRINTF(("%s: EEPROM MAC %s\n", *dvname, ether_sprintf(mac)));
542
543 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
544
545 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
546 *flags |= RTW_F_ANTDIV;
547
548 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) != 0)
549 *flags |= RTW_F_DIGPHY;
550 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
551 *flags |= RTW_F_DFLANTB;
552
553 *rcr |= LSHIFT(MASK_AND_RSHIFT(RTW_SR_GET(sr, RTW_SR_RFPARM),
554 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
555
556 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
557 switch (*rfchipid) {
558 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
559 rfname = "GCT GRF5101";
560 paname = "Winspring WS9901";
561 break;
562 case RTW_RFCHIPID_MAXIM:
563 rfname = "Maxim MAX2820"; /* guess */
564 paname = "Maxim MAX2422"; /* guess */
565 break;
566 case RTW_RFCHIPID_INTERSIL:
567 rfname = "Intersil HFA3873"; /* guess */
568 paname = "Intersil <unknown>";
569 break;
570 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
571 rfname = "Philips SA2400A";
572 paname = "Philips SA2411";
573 break;
574 case RTW_RFCHIPID_RFMD:
575 /* this is the same front-end as an atw(4)! */
576 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
577 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
578 "SYN: Silicon Labs Si4126"; /* inferred from
579 * reference driver
580 */
581 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
582 break;
583 case RTW_RFCHIPID_RESERVED:
584 rfname = paname = "reserved";
585 break;
586 default:
587 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
588 rfname = paname = scratch;
589 }
590 printf("%s: RF: %s, PA: %s\n", *dvname, rfname, paname);
591
592 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
593 case RTW_CONFIG0_GL_USA:
594 *locale = RTW_LOCALE_USA;
595 break;
596 case RTW_CONFIG0_GL_EUROPE:
597 *locale = RTW_LOCALE_EUROPE;
598 break;
599 case RTW_CONFIG0_GL_JAPAN:
600 *locale = RTW_LOCALE_JAPAN;
601 break;
602 default:
603 *locale = RTW_LOCALE_UNKNOWN;
604 break;
605 }
606 return 0;
607 }
608
609 /* Returns -1 on failure. */
610 static int
611 rtw_srom_read(struct rtw_regs *regs, u_int32_t flags, struct rtw_srom *sr,
612 char (*dvname)[IFNAMSIZ])
613 {
614 int rc;
615 struct seeprom_descriptor sd;
616 u_int8_t ecr;
617
618 (void)memset(&sd, 0, sizeof(sd));
619
620 ecr = RTW_READ8(regs, RTW_9346CR);
621
622 if ((flags & RTW_F_9356SROM) != 0) {
623 RTW_DPRINTF(("%s: 93c56 SROM\n", *dvname));
624 sr->sr_size = 256;
625 sd.sd_chip = C56_66;
626 } else {
627 RTW_DPRINTF(("%s: 93c46 SROM\n", *dvname));
628 sr->sr_size = 128;
629 sd.sd_chip = C46;
630 }
631
632 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
633 RTW_9346CR_EEM_MASK);
634 ecr |= RTW_9346CR_EEM_PROGRAM;
635
636 RTW_WRITE8(regs, RTW_9346CR, ecr);
637
638 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
639
640 if (sr->sr_content == NULL) {
641 printf("%s: unable to allocate SROM buffer\n", *dvname);
642 return ENOMEM;
643 }
644
645 (void)memset(sr->sr_content, 0, sr->sr_size);
646
647 /* RTL8180 has a single 8-bit register for controlling the
648 * 93cx6 SROM. There is no "ready" bit. The RTL8180
649 * input/output sense is the reverse of read_seeprom's.
650 */
651 sd.sd_tag = regs->r_bt;
652 sd.sd_bsh = regs->r_bh;
653 sd.sd_regsize = 1;
654 sd.sd_control_offset = RTW_9346CR;
655 sd.sd_status_offset = RTW_9346CR;
656 sd.sd_dataout_offset = RTW_9346CR;
657 sd.sd_CK = RTW_9346CR_EESK;
658 sd.sd_CS = RTW_9346CR_EECS;
659 sd.sd_DI = RTW_9346CR_EEDO;
660 sd.sd_DO = RTW_9346CR_EEDI;
661 /* make read_seeprom enter EEPROM read/write mode */
662 sd.sd_MS = ecr;
663 sd.sd_RDY = 0;
664 #if 0
665 sd.sd_clkdelay = 50;
666 #endif
667
668 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
669 printf("%s: could not read SROM\n", *dvname);
670 free(sr->sr_content, M_DEVBUF);
671 sr->sr_content = NULL;
672 return -1; /* XXX */
673 }
674
675 /* end EEPROM read/write mode */
676 RTW_WRITE8(regs, RTW_9346CR,
677 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
678 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
679
680 if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
681 return rc;
682
683 #ifdef RTW_DEBUG
684 {
685 int i;
686 RTW_DPRINTF(("\n%s: serial ROM:\n\t", *dvname));
687 for (i = 0; i < sr->sr_size/2; i++) {
688 if (((i % 8) == 0) && (i != 0))
689 RTW_DPRINTF(("\n\t"));
690 RTW_DPRINTF((" %04x", sr->sr_content[i]));
691 }
692 RTW_DPRINTF(("\n"));
693 }
694 #endif /* RTW_DEBUG */
695 return 0;
696 }
697
698 #if 0
699 static __inline int
700 rtw_identify_rf(struct rtw_regs *regs, enum rtw_rftype *rftype,
701 char (*dvname)[IFNAMSIZ])
702 {
703 u_int8_t cfg4;
704 const char *name;
705
706 cfg4 = RTW_READ8(regs, RTW_CONFIG4);
707
708 switch (cfg4 & RTW_CONFIG4_RFTYPE_MASK) {
709 case RTW_CONFIG4_RFTYPE_PHILIPS:
710 *rftype = RTW_RFTYPE_PHILIPS;
711 name = "Philips";
712 break;
713 case RTW_CONFIG4_RFTYPE_INTERSIL:
714 *rftype = RTW_RFTYPE_INTERSIL;
715 name = "Intersil";
716 break;
717 case RTW_CONFIG4_RFTYPE_RFMD:
718 *rftype = RTW_RFTYPE_RFMD;
719 name = "RFMD";
720 break;
721 default:
722 name = "<unknown>";
723 return ENXIO;
724 }
725
726 printf("%s: RF prog type %s\n", *dvname, name);
727 return 0;
728 }
729 #endif
730
731 static __inline void
732 rtw_init_channels(enum rtw_locale locale,
733 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
734 char (*dvname)[IFNAMSIZ])
735 {
736 int i;
737 const char *name = NULL;
738 #define ADD_CHANNEL(_chans, _chan) do { \
739 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
740 (*_chans)[_chan].ic_freq = \
741 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
742 } while (0)
743
744 switch (locale) {
745 case RTW_LOCALE_USA: /* 1-11 */
746 name = "USA";
747 for (i = 1; i <= 11; i++)
748 ADD_CHANNEL(chans, i);
749 break;
750 case RTW_LOCALE_JAPAN: /* 1-14 */
751 name = "Japan";
752 ADD_CHANNEL(chans, 14);
753 for (i = 1; i <= 14; i++)
754 ADD_CHANNEL(chans, i);
755 break;
756 case RTW_LOCALE_EUROPE: /* 1-13 */
757 name = "Europe";
758 for (i = 1; i <= 13; i++)
759 ADD_CHANNEL(chans, i);
760 break;
761 default: /* 10-11 allowed by most countries */
762 name = "<unknown>";
763 for (i = 10; i <= 11; i++)
764 ADD_CHANNEL(chans, i);
765 break;
766 }
767 printf("%s: Geographic Location %s\n", *dvname, name);
768 #undef ADD_CHANNEL
769 }
770
771 static __inline void
772 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale,
773 char (*dvname)[IFNAMSIZ])
774 {
775 u_int8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
776
777 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
778 case RTW_CONFIG0_GL_USA:
779 *locale = RTW_LOCALE_USA;
780 break;
781 case RTW_CONFIG0_GL_JAPAN:
782 *locale = RTW_LOCALE_JAPAN;
783 break;
784 case RTW_CONFIG0_GL_EUROPE:
785 *locale = RTW_LOCALE_EUROPE;
786 break;
787 default:
788 *locale = RTW_LOCALE_UNKNOWN;
789 break;
790 }
791 }
792
793 static __inline int
794 rtw_identify_sta(struct rtw_regs *regs, u_int8_t (*addr)[IEEE80211_ADDR_LEN],
795 char (*dvname)[IFNAMSIZ])
796 {
797 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
798 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
799 };
800 u_int32_t idr0 = RTW_READ(regs, RTW_IDR0),
801 idr1 = RTW_READ(regs, RTW_IDR1);
802
803 (*addr)[0] = MASK_AND_RSHIFT(idr0, BITS(0, 7));
804 (*addr)[1] = MASK_AND_RSHIFT(idr0, BITS(8, 15));
805 (*addr)[2] = MASK_AND_RSHIFT(idr0, BITS(16, 23));
806 (*addr)[3] = MASK_AND_RSHIFT(idr0, BITS(24 ,31));
807
808 (*addr)[4] = MASK_AND_RSHIFT(idr1, BITS(0, 7));
809 (*addr)[5] = MASK_AND_RSHIFT(idr1, BITS(8, 15));
810
811 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
812 printf("%s: could not get mac address, attach failed\n",
813 *dvname);
814 return ENXIO;
815 }
816
817 printf("%s: 802.11 address %s\n", *dvname, ether_sprintf(*addr));
818
819 return 0;
820 }
821
822 static u_int8_t
823 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
824 struct ieee80211_channel *chan)
825 {
826 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
827 KASSERT2(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14,
828 ("%s: channel %d out of range", __func__,
829 idx - RTW_SR_TXPOWER1 + 1));
830 return RTW_SR_GET(sr, idx);
831 }
832
833 static void
834 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *htcs)
835 {
836 int pri;
837 u_int ndesc[RTW_NTXPRI] =
838 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI, RTW_NTXDESCBCN};
839
840 for (pri = 0; pri < RTW_NTXPRI; pri++) {
841 htcs[pri].htc_nfree = ndesc[pri];
842 htcs[pri].htc_next = 0;
843 }
844 }
845
846 static int
847 rtw_txctl_blk_init(struct rtw_txctl_blk *stc)
848 {
849 int i;
850 struct rtw_txctl *stx;
851
852 SIMPLEQ_INIT(&stc->stc_dirtyq);
853 SIMPLEQ_INIT(&stc->stc_freeq);
854 for (i = 0; i < stc->stc_ndesc; i++) {
855 stx = &stc->stc_desc[i];
856 stx->stx_mbuf = NULL;
857 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
858 }
859 return 0;
860 }
861
862 static void
863 rtw_txctl_blk_init_all(struct rtw_txctl_blk *stcs)
864 {
865 int pri;
866 for (pri = 0; pri < RTW_NTXPRI; pri++)
867 rtw_txctl_blk_init(&stcs[pri]);
868 }
869
870 static __inline void
871 rtw_rxdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap, u_int desc0, u_int
872 nsync, int ops)
873 {
874 /* sync to end of ring */
875 if (desc0 + nsync > RTW_NRXDESC) {
876 bus_dmamap_sync(dmat, dmap,
877 offsetof(struct rtw_descs, hd_rx[desc0]),
878 sizeof(struct rtw_rxdesc) * (RTW_NRXDESC - desc0), ops);
879 nsync -= (RTW_NRXDESC - desc0);
880 desc0 = 0;
881 }
882
883 /* sync what remains */
884 bus_dmamap_sync(dmat, dmap,
885 offsetof(struct rtw_descs, hd_rx[desc0]),
886 sizeof(struct rtw_rxdesc) * nsync, ops);
887 }
888
889 static void
890 rtw_txdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap,
891 struct rtw_txdesc_blk *htc, u_int desc0, u_int nsync, int ops)
892 {
893 /* sync to end of ring */
894 if (desc0 + nsync > htc->htc_ndesc) {
895 bus_dmamap_sync(dmat, dmap,
896 htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
897 sizeof(struct rtw_txdesc) * (htc->htc_ndesc - desc0),
898 ops);
899 nsync -= (htc->htc_ndesc - desc0);
900 desc0 = 0;
901 }
902
903 /* sync what remains */
904 bus_dmamap_sync(dmat, dmap,
905 htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
906 sizeof(struct rtw_txdesc) * nsync, ops);
907 }
908
909 static void
910 rtw_txdescs_sync_all(bus_dma_tag_t dmat, bus_dmamap_t dmap,
911 struct rtw_txdesc_blk *htcs)
912 {
913 int pri;
914 for (pri = 0; pri < RTW_NTXPRI; pri++) {
915 rtw_txdescs_sync(dmat, dmap,
916 &htcs[pri], 0, htcs[pri].htc_ndesc,
917 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
918 }
919 }
920
921 static void
922 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxctl *desc)
923 {
924 int i;
925 struct rtw_rxctl *srx;
926
927 for (i = 0; i < RTW_NRXDESC; i++) {
928 srx = &desc[i];
929 bus_dmamap_unload(dmat, srx->srx_dmamap);
930 m_freem(srx->srx_mbuf);
931 srx->srx_mbuf = NULL;
932 }
933 }
934
935 static __inline int
936 rtw_rxbuf_alloc(bus_dma_tag_t dmat, struct rtw_rxctl *srx)
937 {
938 int rc;
939 struct mbuf *m;
940
941 MGETHDR(m, M_DONTWAIT, MT_DATA);
942 if (m == NULL)
943 return ENOMEM;
944
945 MCLGET(m, M_DONTWAIT);
946 if (m == NULL)
947 return ENOMEM;
948
949 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
950
951 rc = bus_dmamap_load_mbuf(dmat, srx->srx_dmamap, m, BUS_DMA_NOWAIT);
952 if (rc != 0)
953 return rc;
954
955 srx->srx_mbuf = m;
956
957 return 0;
958 }
959
960 static int
961 rtw_rxctl_init_all(bus_dma_tag_t dmat, struct rtw_rxctl *desc,
962 u_int *next, char (*dvname)[IFNAMSIZ])
963 {
964 int i, rc;
965 struct rtw_rxctl *srx;
966
967 for (i = 0; i < RTW_NRXDESC; i++) {
968 srx = &desc[i];
969 if ((rc = rtw_rxbuf_alloc(dmat, srx)) == 0)
970 continue;
971 printf("%s: failed rtw_rxbuf_alloc after %d buffers, rc = %d\n",
972 *dvname, i, rc);
973 if (i == 0) {
974 rtw_rxbufs_release(dmat, desc);
975 return rc;
976 }
977 }
978 *next = 0;
979 return 0;
980 }
981
982 static __inline void
983 rtw_rxdesc_init(bus_dma_tag_t dmat, bus_dmamap_t dmam,
984 struct rtw_rxdesc *hrx, struct rtw_rxctl *srx, int idx)
985 {
986 int is_last = (idx == RTW_NRXDESC - 1);
987 uint32_t ctl;
988
989 hrx->hrx_buf = htole32(srx->srx_dmamap->dm_segs[0].ds_addr);
990
991 ctl = LSHIFT(srx->srx_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
992 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
993
994 if (is_last)
995 ctl |= RTW_RXCTL_EOR;
996
997 hrx->hrx_ctl = htole32(ctl);
998
999 /* sync the mbuf */
1000 bus_dmamap_sync(dmat, srx->srx_dmamap, 0, srx->srx_dmamap->dm_mapsize,
1001 BUS_DMASYNC_PREREAD);
1002
1003 /* sync the descriptor */
1004 bus_dmamap_sync(dmat, dmam, RTW_DESC_OFFSET(hd_rx, idx),
1005 sizeof(struct rtw_rxdesc),
1006 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1007 }
1008
1009 static void
1010 rtw_rxdesc_init_all(bus_dma_tag_t dmat, bus_dmamap_t dmam,
1011 struct rtw_rxdesc *desc, struct rtw_rxctl *ctl)
1012 {
1013 int i;
1014 struct rtw_rxdesc *hrx;
1015 struct rtw_rxctl *srx;
1016
1017 for (i = 0; i < RTW_NRXDESC; i++) {
1018 hrx = &desc[i];
1019 srx = &ctl[i];
1020 rtw_rxdesc_init(dmat, dmam, hrx, srx, i);
1021 }
1022 }
1023
1024 static void
1025 rtw_io_enable(struct rtw_regs *regs, u_int8_t flags, int enable)
1026 {
1027 u_int8_t cr;
1028
1029 RTW_DPRINTF(("%s: %s 0x%02x\n", __func__,
1030 enable ? "enable" : "disable", flags));
1031
1032 cr = RTW_READ8(regs, RTW_CR);
1033
1034 /* XXX reference source does not enable MULRW */
1035 #if 0
1036 /* enable PCI Read/Write Multiple */
1037 cr |= RTW_CR_MULRW;
1038 #endif
1039
1040 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1041 if (enable)
1042 cr |= flags;
1043 else
1044 cr &= ~flags;
1045 RTW_WRITE8(regs, RTW_CR, cr);
1046 RTW_SYNC(regs, RTW_CR, RTW_CR);
1047 }
1048
1049 static void
1050 rtw_intr_rx(struct rtw_softc *sc, u_int16_t isr)
1051 {
1052 u_int next;
1053 int rate, rssi;
1054 u_int32_t hrssi, hstat, htsfth, htsftl;
1055 struct rtw_rxdesc *hrx;
1056 struct rtw_rxctl *srx;
1057 struct mbuf *m;
1058
1059 struct ieee80211_node *ni;
1060 struct ieee80211_frame *wh;
1061
1062 for (next = sc->sc_rxnext; ; next = (next + 1) % RTW_RXQLEN) {
1063 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1064 next, 1, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1065 hrx = &sc->sc_rxdesc[next];
1066 srx = &sc->sc_rxctl[next];
1067
1068 hstat = le32toh(hrx->hrx_stat);
1069 hrssi = le32toh(hrx->hrx_rssi);
1070 htsfth = le32toh(hrx->hrx_tsfth);
1071 htsftl = le32toh(hrx->hrx_tsftl);
1072
1073 RTW_DPRINTF2(("%s: rxdesc[%d] hstat %#08x hrssi %#08x "
1074 "htsft %#08x%08x\n", __func__, next,
1075 hstat, hrssi, htsfth, htsftl));
1076
1077 if ((hstat & RTW_RXSTAT_OWN) != 0) /* belongs to NIC */
1078 break;
1079
1080 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1081 printf("%s: DMA error/FIFO overflow %08x, "
1082 "rx descriptor %d\n", sc->sc_dev.dv_xname,
1083 hstat & RTW_RXSTAT_IOERROR, next);
1084 goto next;
1085 }
1086
1087 switch (hstat & RTW_RXSTAT_RATE_MASK) {
1088 case RTW_RXSTAT_RATE_1MBPS:
1089 rate = 10;
1090 break;
1091 case RTW_RXSTAT_RATE_2MBPS:
1092 rate = 20;
1093 break;
1094 case RTW_RXSTAT_RATE_5MBPS:
1095 rate = 55;
1096 break;
1097 default:
1098 #ifdef RTW_DEBUG
1099 if (rtw_debug > 1)
1100 printf("%s: interpreting rate #%d as 11 MB/s\n",
1101 sc->sc_dev.dv_xname,
1102 MASK_AND_RSHIFT(hstat,
1103 RTW_RXSTAT_RATE_MASK));
1104 #endif /* RTW_DEBUG */
1105 /*FALLTHROUGH*/
1106 case RTW_RXSTAT_RATE_11MBPS:
1107 rate = 110;
1108 break;
1109 }
1110
1111 RTW_DPRINTF2(("%s: rate %d\n", __func__, rate));
1112
1113 #ifdef RTW_DEBUG
1114 #define PRINTSTAT(flag) do { \
1115 if ((hstat & flag) != 0) { \
1116 printf("%s" #flag, delim); \
1117 delim = ","; \
1118 } \
1119 } while (0)
1120 if (rtw_debug > 1) {
1121 const char *delim = "<";
1122 printf("%s: ", sc->sc_dev.dv_xname);
1123 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1124 printf("status %08x<", hstat);
1125 PRINTSTAT(RTW_RXSTAT_SPLCP);
1126 PRINTSTAT(RTW_RXSTAT_MAR);
1127 PRINTSTAT(RTW_RXSTAT_PAR);
1128 PRINTSTAT(RTW_RXSTAT_BAR);
1129 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1130 PRINTSTAT(RTW_RXSTAT_CRC32);
1131 PRINTSTAT(RTW_RXSTAT_ICV);
1132 printf(">, ");
1133 }
1134 printf("rate %d.%d Mb/s, time %08x%08x\n",
1135 rate / 10, rate % 10, htsfth, htsftl);
1136 }
1137 #endif /* RTW_DEBUG */
1138
1139 if ((hstat & RTW_RXSTAT_RES) != 0 &&
1140 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
1141 goto next;
1142
1143 /* if bad flags, skip descriptor */
1144 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1145 printf("%s: too many rx segments\n",
1146 sc->sc_dev.dv_xname);
1147 goto next;
1148 }
1149
1150 m = srx->srx_mbuf;
1151
1152 /* if temporarily out of memory, re-use mbuf */
1153 if (rtw_rxbuf_alloc(sc->sc_dmat, srx) != 0) {
1154 printf("%s: rtw_rxbuf_alloc(, %d) failed, "
1155 "dropping this packet\n", sc->sc_dev.dv_xname,
1156 next);
1157 goto next;
1158 }
1159
1160 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1161 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_RSSI);
1162 else {
1163 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_IMR_RSSI);
1164 /* TBD find out each front-end's LNA gain in the
1165 * front-end's units
1166 */
1167 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1168 rssi |= 0x80;
1169 }
1170
1171 m->m_pkthdr.len = m->m_len =
1172 MASK_AND_RSHIFT(hstat, RTW_RXSTAT_LENGTH_MASK);
1173 m->m_flags |= M_HASFCS;
1174
1175 if (m->m_pkthdr.len < IEEE80211_MIN_LEN) {
1176 sc->sc_ic.ic_stats.is_rx_tooshort++;
1177 goto next;
1178 }
1179 wh = mtod(m, struct ieee80211_frame *);
1180 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1181 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1182
1183 sc->sc_tsfth = htsfth;
1184
1185 ieee80211_input(&sc->sc_if, m, ni, rssi, htsftl);
1186 ieee80211_release_node(&sc->sc_ic, ni);
1187 next:
1188 rtw_rxdesc_init(sc->sc_dmat, sc->sc_desc_dmamap,
1189 hrx, srx, next);
1190 }
1191 sc->sc_rxnext = next;
1192
1193 return;
1194 }
1195
1196 static void
1197 rtw_intr_tx(struct rtw_softc *sc, u_int16_t isr)
1198 {
1199 /* TBD */
1200 return;
1201 }
1202
1203 static void
1204 rtw_intr_beacon(struct rtw_softc *sc, u_int16_t isr)
1205 {
1206 /* TBD */
1207 return;
1208 }
1209
1210 static void
1211 rtw_intr_atim(struct rtw_softc *sc)
1212 {
1213 /* TBD */
1214 return;
1215 }
1216
1217 static void
1218 rtw_hwring_setup(struct rtw_softc *sc)
1219 {
1220 struct rtw_regs *regs = &sc->sc_regs;
1221 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1222 RTW_WRITE(regs, RTW_TLPDA, RTW_RING_BASE(sc, hd_txlo));
1223 RTW_WRITE(regs, RTW_TNPDA, RTW_RING_BASE(sc, hd_txmd));
1224 RTW_WRITE(regs, RTW_THPDA, RTW_RING_BASE(sc, hd_txhi));
1225 RTW_WRITE(regs, RTW_TBDA, RTW_RING_BASE(sc, hd_bcn));
1226 }
1227
1228 static void
1229 rtw_swring_setup(struct rtw_softc *sc)
1230 {
1231 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1232
1233 rtw_txctl_blk_init_all(&sc->sc_txctl_blk[0]);
1234
1235 rtw_rxctl_init_all(sc->sc_dmat, sc->sc_rxctl, &sc->sc_rxnext,
1236 &sc->sc_dev.dv_xname);
1237 rtw_rxdesc_init_all(sc->sc_dmat, sc->sc_desc_dmamap,
1238 sc->sc_rxdesc, sc->sc_rxctl);
1239
1240 rtw_txdescs_sync_all(sc->sc_dmat, sc->sc_desc_dmamap,
1241 &sc->sc_txdesc_blk[0]);
1242 #if 0 /* redundant with rtw_rxdesc_init_all */
1243 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1244 0, RTW_NRXDESC, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1245 #endif
1246 }
1247
1248 static void
1249 rtw_kick(struct rtw_softc *sc)
1250 {
1251 struct rtw_regs *regs = &sc->sc_regs;
1252 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 0);
1253 RTW_WRITE16(regs, RTW_IMR, 0);
1254 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1255 /* TBD free tx bufs */
1256 rtw_swring_setup(sc);
1257 rtw_hwring_setup(sc);
1258 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
1259 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 1);
1260 }
1261
1262 static void
1263 rtw_intr_ioerror(struct rtw_softc *sc, u_int16_t isr)
1264 {
1265 if ((isr & (RTW_INTR_RDU|RTW_INTR_RXFOVW)) != 0) {
1266 rtw_kick(sc);
1267 }
1268 if ((isr & RTW_INTR_TXFOVW) != 0)
1269 ; /* TBD restart transmit engine */
1270 return;
1271 }
1272
1273 static __inline void
1274 rtw_suspend_ticks(struct rtw_softc *sc)
1275 {
1276 printf("%s: suspending ticks\n", sc->sc_dev.dv_xname);
1277 sc->sc_do_tick = 0;
1278 }
1279
1280 static __inline void
1281 rtw_resume_ticks(struct rtw_softc *sc)
1282 {
1283 int s;
1284 struct timeval tv;
1285 u_int32_t tsftrl0, tsftrl1, next_tick;
1286
1287 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1288
1289 s = splclock();
1290 timersub(&mono_time, &sc->sc_tick0, &tv);
1291 splx(s);
1292
1293 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1294 next_tick = tsftrl1 + 1000000 * (1 + tv.tv_sec) - tv.tv_usec;
1295 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
1296
1297 sc->sc_do_tick = 1;
1298
1299 printf("%s: resume ticks delta %#08x now %#08x next %#08x\n",
1300 sc->sc_dev.dv_xname, tsftrl1 - tsftrl0, tsftrl1, next_tick);
1301 }
1302
1303 static void
1304 rtw_intr_timeout(struct rtw_softc *sc)
1305 {
1306 printf("%s: timeout\n", sc->sc_dev.dv_xname);
1307 if (sc->sc_do_tick)
1308 rtw_resume_ticks(sc);
1309 return;
1310 }
1311
1312 int
1313 rtw_intr(void *arg)
1314 {
1315 int i;
1316 struct rtw_softc *sc = arg;
1317 struct rtw_regs *regs = &sc->sc_regs;
1318 u_int16_t isr;
1319
1320 /*
1321 * If the interface isn't running, the interrupt couldn't
1322 * possibly have come from us.
1323 */
1324 if ((sc->sc_flags & RTW_F_ENABLED) == 0 ||
1325 (sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
1326 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) {
1327 RTW_DPRINTF2(("%s: stray interrupt\n", sc->sc_dev.dv_xname));
1328 return (0);
1329 }
1330
1331 for (i = 0; i < 10; i++) {
1332 isr = RTW_READ16(regs, RTW_ISR);
1333
1334 RTW_WRITE16(regs, RTW_ISR, isr);
1335
1336 if (sc->sc_intr_ack != NULL)
1337 (*sc->sc_intr_ack)(regs);
1338
1339 if (isr == 0)
1340 break;
1341
1342 #ifdef RTW_DEBUG
1343 #define PRINTINTR(flag) do { \
1344 if ((isr & flag) != 0) { \
1345 printf("%s" #flag, delim); \
1346 delim = ","; \
1347 } \
1348 } while (0)
1349
1350 if (rtw_debug > 1 && isr != 0) {
1351 const char *delim = "<";
1352
1353 printf("%s: reg[ISR] = %x", sc->sc_dev.dv_xname, isr);
1354
1355 PRINTINTR(RTW_INTR_TXFOVW);
1356 PRINTINTR(RTW_INTR_TIMEOUT);
1357 PRINTINTR(RTW_INTR_BCNINT);
1358 PRINTINTR(RTW_INTR_ATIMINT);
1359 PRINTINTR(RTW_INTR_TBDER);
1360 PRINTINTR(RTW_INTR_TBDOK);
1361 PRINTINTR(RTW_INTR_THPDER);
1362 PRINTINTR(RTW_INTR_THPDOK);
1363 PRINTINTR(RTW_INTR_TNPDER);
1364 PRINTINTR(RTW_INTR_TNPDOK);
1365 PRINTINTR(RTW_INTR_RXFOVW);
1366 PRINTINTR(RTW_INTR_RDU);
1367 PRINTINTR(RTW_INTR_TLPDER);
1368 PRINTINTR(RTW_INTR_TLPDOK);
1369 PRINTINTR(RTW_INTR_RER);
1370 PRINTINTR(RTW_INTR_ROK);
1371
1372 printf(">\n");
1373 }
1374 #undef PRINTINTR
1375 #endif /* RTW_DEBUG */
1376
1377 if ((isr & RTW_INTR_RX) != 0)
1378 rtw_intr_rx(sc, isr & RTW_INTR_RX);
1379 if ((isr & RTW_INTR_TX) != 0)
1380 rtw_intr_tx(sc, isr & RTW_INTR_TX);
1381 if ((isr & RTW_INTR_BEACON) != 0)
1382 rtw_intr_beacon(sc, isr & RTW_INTR_BEACON);
1383 if ((isr & RTW_INTR_ATIMINT) != 0)
1384 rtw_intr_atim(sc);
1385 if ((isr & RTW_INTR_IOERROR) != 0)
1386 rtw_intr_ioerror(sc, isr & RTW_INTR_IOERROR);
1387 if ((isr & RTW_INTR_TIMEOUT) != 0)
1388 rtw_intr_timeout(sc);
1389 }
1390
1391 return 1;
1392 }
1393
1394 static void
1395 rtw_stop(struct ifnet *ifp, int disable)
1396 {
1397 int s;
1398 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
1399 struct ieee80211com *ic = &sc->sc_ic;
1400 struct rtw_regs *regs = &sc->sc_regs;
1401
1402 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1403 return;
1404
1405 rtw_suspend_ticks(sc);
1406
1407 s = splnet();
1408
1409 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1410
1411 if ((sc->sc_flags & RTW_F_INVALID) == 0) {
1412 /* Disable interrupts. */
1413 RTW_WRITE16(regs, RTW_IMR, 0);
1414
1415 /* Stop the transmit and receive processes. First stop DMA,
1416 * then disable receiver and transmitter.
1417 */
1418 RTW_WRITE8(regs, RTW_TPPOLL,
1419 RTW_TPPOLL_SBQ|RTW_TPPOLL_SHPQ|RTW_TPPOLL_SNPQ|
1420 RTW_TPPOLL_SLPQ);
1421
1422 rtw_io_enable(&sc->sc_regs, RTW_CR_RE|RTW_CR_TE, 0);
1423 }
1424
1425 /* TBD Release transmit buffers. */
1426
1427 if (disable) {
1428 rtw_disable(sc);
1429 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1430 }
1431
1432 /* Mark the interface as not running. Cancel the watchdog timer. */
1433 ifp->if_flags &= ~IFF_RUNNING;
1434 ifp->if_timer = 0;
1435
1436 splx(s);
1437
1438 return;
1439 }
1440
1441 const char *
1442 rtw_pwrstate_string(enum rtw_pwrstate power)
1443 {
1444 switch (power) {
1445 case RTW_ON:
1446 return "on";
1447 case RTW_SLEEP:
1448 return "sleep";
1449 case RTW_OFF:
1450 return "off";
1451 default:
1452 return "unknown";
1453 }
1454 }
1455
1456 /* XXX I am using the RFMD settings gleaned from the reference
1457 * driver.
1458 */
1459 static void
1460 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1461 int before_rf)
1462 {
1463 u_int32_t anaparm;
1464
1465 RTW_DPRINTF(("%s: power state %s, %s RF\n", __func__,
1466 rtw_pwrstate_string(power), (before_rf) ? "before" : "after"));
1467
1468 anaparm = RTW_READ(regs, RTW_ANAPARM);
1469 anaparm &= ~(RTW_ANAPARM_RFPOW0_MASK|RTW_ANAPARM_RFPOW1_MASK);
1470 anaparm &= ~RTW_ANAPARM_TXDACOFF;
1471
1472 switch (power) {
1473 case RTW_OFF:
1474 if (before_rf)
1475 return;
1476 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_OFF;
1477 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_OFF;
1478 anaparm |= RTW_ANAPARM_TXDACOFF;
1479 break;
1480 case RTW_SLEEP:
1481 if (!before_rf)
1482 return;
1483 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_SLEEP;
1484 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_SLEEP;
1485 anaparm |= RTW_ANAPARM_TXDACOFF;
1486 break;
1487 case RTW_ON:
1488 if (!before_rf)
1489 return;
1490 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_ON;
1491 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_ON;
1492 break;
1493 }
1494 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1495 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1496 }
1497
1498 static void
1499 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1500 int before_rf)
1501 {
1502 u_int32_t anaparm;
1503
1504 RTW_DPRINTF(("%s: power state %s, %s RF\n", __func__,
1505 rtw_pwrstate_string(power), (before_rf) ? "before" : "after"));
1506
1507 anaparm = RTW_READ(regs, RTW_ANAPARM);
1508 anaparm &= ~(RTW_ANAPARM_RFPOW0_MASK|RTW_ANAPARM_RFPOW1_MASK);
1509 anaparm &= ~RTW_ANAPARM_TXDACOFF;
1510
1511 switch (power) {
1512 case RTW_OFF:
1513 if (before_rf)
1514 return;
1515 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_OFF;
1516 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_OFF;
1517 anaparm |= RTW_ANAPARM_TXDACOFF;
1518 break;
1519 case RTW_SLEEP:
1520 if (!before_rf)
1521 return;
1522 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_SLEEP;
1523 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_SLEEP;
1524 anaparm |= RTW_ANAPARM_TXDACOFF;
1525 break;
1526 case RTW_ON:
1527 if (!before_rf)
1528 return;
1529 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_ON;
1530 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_ON;
1531 break;
1532 }
1533 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1534 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1535 }
1536
1537 static void
1538 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf)
1539 {
1540 struct rtw_regs *regs = &sc->sc_regs;
1541
1542 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
1543
1544 (*sc->sc_pwrstate_cb)(regs, power, before_rf);
1545
1546 rtw_set_access(sc, RTW_ACCESS_NONE);
1547
1548 return;
1549 }
1550
1551 static int
1552 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
1553 {
1554 int rc;
1555
1556 RTW_DPRINTF2(("%s: %s->%s\n", __func__,
1557 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
1558
1559 if (sc->sc_pwrstate == power)
1560 return 0;
1561
1562 rtw_pwrstate0(sc, power, 1);
1563 rc = rtw_rf_pwrstate(sc->sc_rf, power);
1564 rtw_pwrstate0(sc, power, 0);
1565
1566 switch (power) {
1567 case RTW_ON:
1568 /* TBD */
1569 break;
1570 case RTW_SLEEP:
1571 /* TBD */
1572 break;
1573 case RTW_OFF:
1574 /* TBD */
1575 break;
1576 }
1577 if (rc == 0)
1578 sc->sc_pwrstate = power;
1579 else
1580 sc->sc_pwrstate = RTW_OFF;
1581 return rc;
1582 }
1583
1584 static int
1585 rtw_tune(struct rtw_softc *sc)
1586 {
1587 struct ieee80211com *ic = &sc->sc_ic;
1588 u_int chan;
1589 int rc;
1590 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
1591 dflantb = sc->sc_flags & RTW_F_DFLANTB;
1592
1593 KASSERT(ic->ic_bss->ni_chan != NULL);
1594
1595 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1596 if (chan == IEEE80211_CHAN_ANY)
1597 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1598
1599 if (chan == sc->sc_cur_chan) {
1600 RTW_DPRINTF(("%s: already tuned chan #%d\n", __func__, chan));
1601 return 0;
1602 }
1603
1604 rtw_suspend_ticks(sc);
1605
1606 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 0);
1607
1608 /* TBD wait for Tx to complete */
1609
1610 KASSERT((sc->sc_flags & RTW_F_ENABLED) != 0);
1611
1612 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
1613 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_bss->ni_chan),
1614 sc->sc_csthr, ic->ic_bss->ni_chan->ic_freq, antdiv,
1615 dflantb, RTW_ON)) != 0) {
1616 /* XXX condition on powersaving */
1617 printf("%s: phy init failed\n", sc->sc_dev.dv_xname);
1618 }
1619
1620 sc->sc_cur_chan = chan;
1621
1622 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 1);
1623
1624 rtw_resume_ticks(sc);
1625
1626 return rc;
1627 }
1628
1629 void
1630 rtw_disable(struct rtw_softc *sc)
1631 {
1632 int rc;
1633
1634 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1635 return;
1636
1637 /* turn off PHY */
1638 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
1639 printf("%s: failed to turn off PHY (%d)\n",
1640 sc->sc_dev.dv_xname, rc);
1641
1642 if (sc->sc_disable != NULL)
1643 (*sc->sc_disable)(sc);
1644
1645 sc->sc_flags &= ~RTW_F_ENABLED;
1646 }
1647
1648 int
1649 rtw_enable(struct rtw_softc *sc)
1650 {
1651 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
1652 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
1653 printf("%s: device enable failed\n",
1654 sc->sc_dev.dv_xname);
1655 return (EIO);
1656 }
1657 sc->sc_flags |= RTW_F_ENABLED;
1658 }
1659 return (0);
1660 }
1661
1662 static void
1663 rtw_transmit_config(struct rtw_regs *regs)
1664 {
1665 u_int32_t tcr;
1666
1667 tcr = RTW_READ(regs, RTW_TCR);
1668
1669 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
1670 tcr &= ~RTW_TCR_LBK_MASK;
1671 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
1672
1673 /* set short/long retry limits */
1674 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
1675 tcr |= LSHIFT(7, RTW_TCR_SRL_MASK) | LSHIFT(7, RTW_TCR_LRL_MASK);
1676
1677 tcr |= RTW_TCR_CRC; /* NIC appends CRC32 */
1678
1679 RTW_WRITE(regs, RTW_TCR, tcr);
1680 }
1681
1682 static __inline void
1683 rtw_enable_interrupts(struct rtw_softc *sc)
1684 {
1685 struct rtw_regs *regs = &sc->sc_regs;
1686
1687 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
1688 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
1689
1690 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
1691 RTW_WRITE16(regs, RTW_ISR, 0xffff);
1692
1693 /* XXX necessary? */
1694 if (sc->sc_intr_ack != NULL)
1695 (*sc->sc_intr_ack)(regs);
1696 }
1697
1698 /* XXX is the endianness correct? test. */
1699 #define rtw_calchash(addr) \
1700 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1701
1702 static void
1703 rtw_pktfilt_load(struct rtw_softc *sc)
1704 {
1705 struct rtw_regs *regs = &sc->sc_regs;
1706 struct ieee80211com *ic = &sc->sc_ic;
1707 struct ethercom *ec = &ic->ic_ec;
1708 struct ifnet *ifp = &sc->sc_ic.ic_if;
1709 int hash;
1710 u_int32_t hashes[2] = { 0, 0 };
1711 struct ether_multi *enm;
1712 struct ether_multistep step;
1713
1714 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
1715
1716 #define RTW_RCR_MONITOR (RTW_RCR_ACRC32|RTW_RCR_APM|RTW_RCR_AAP|RTW_RCR_AB)
1717
1718 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1719 sc->sc_rcr |= RTW_RCR_MONITOR;
1720 else
1721 sc->sc_rcr &= ~RTW_RCR_MONITOR;
1722
1723 /* XXX reference sources BEGIN */
1724 sc->sc_rcr |= RTW_RCR_ENMARP | RTW_RCR_AICV | RTW_RCR_ACRC32;
1725 sc->sc_rcr |= RTW_RCR_AB | RTW_RCR_AM | RTW_RCR_APM;
1726 #if 0
1727 /* receive broadcasts in our BSS */
1728 sc->sc_rcr |= RTW_RCR_ADD3;
1729 #endif
1730 /* XXX reference sources END */
1731
1732 /* receive pwrmgmt frames. */
1733 sc->sc_rcr |= RTW_RCR_APWRMGT;
1734 /* receive mgmt/ctrl/data frames. */
1735 sc->sc_rcr |= RTW_RCR_AMF | RTW_RCR_ACF | RTW_RCR_ADF;
1736 /* initialize Rx DMA threshold, Tx DMA burst size */
1737 sc->sc_rcr |= RTW_RCR_RXFTH_WHOLE | RTW_RCR_MXDMA_1024;
1738
1739 ifp->if_flags &= ~IFF_ALLMULTI;
1740
1741 if (ifp->if_flags & IFF_PROMISC) {
1742 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
1743 allmulti:
1744 ifp->if_flags |= IFF_ALLMULTI;
1745 goto setit;
1746 }
1747
1748 /*
1749 * Program the 64-bit multicast hash filter.
1750 */
1751 ETHER_FIRST_MULTI(step, ec, enm);
1752 while (enm != NULL) {
1753 /* XXX */
1754 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1755 ETHER_ADDR_LEN) != 0)
1756 goto allmulti;
1757
1758 hash = rtw_calchash(enm->enm_addrlo);
1759 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1760 ETHER_NEXT_MULTI(step, enm);
1761 }
1762
1763 if (ifp->if_flags & IFF_BROADCAST) {
1764 hash = rtw_calchash(etherbroadcastaddr);
1765 hashes[hash >> 5] |= 1 << (hash & 0x1f);
1766 }
1767
1768 /* all bits set => hash is useless */
1769 if (~(hashes[0] & hashes[1]) == 0)
1770 goto allmulti;
1771
1772 setit:
1773 if (ifp->if_flags & IFF_ALLMULTI)
1774 sc->sc_rcr |= RTW_RCR_AM; /* accept all multicast */
1775
1776 if (ic->ic_state == IEEE80211_S_SCAN)
1777 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
1778
1779 hashes[0] = hashes[1] = 0xffffffff;
1780
1781 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
1782 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
1783 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
1784 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
1785
1786 DPRINTF(sc, ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
1787 sc->sc_dev.dv_xname, RTW_READ(regs, RTW_MAR0),
1788 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
1789
1790 return;
1791 }
1792
1793 static int
1794 rtw_init(struct ifnet *ifp)
1795 {
1796 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
1797 struct ieee80211com *ic = &sc->sc_ic;
1798 struct rtw_regs *regs = &sc->sc_regs;
1799 int rc = 0, s;
1800
1801 if ((rc = rtw_enable(sc)) != 0)
1802 goto out;
1803
1804 /* Cancel pending I/O and reset. */
1805 rtw_stop(ifp, 0);
1806
1807 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1808 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1809 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1810 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1811
1812 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
1813 goto out;
1814
1815 rtw_swring_setup(sc);
1816
1817 rtw_transmit_config(regs);
1818
1819 rtw_set_access(sc, RTW_ACCESS_CONFIG);
1820
1821 RTW_WRITE(regs, RTW_MSR, 0x0); /* no link */
1822
1823 RTW_WRITE(regs, RTW_BRSR, 0x0); /* long PLCP header, 1Mbps basic rate */
1824
1825 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
1826 rtw_set_access(sc, RTW_ACCESS_NONE);
1827
1828 #if 0
1829 RTW_WRITE(regs, RTW_FEMR, RTW_FEMR_GWAKE|RTW_FEMR_WKUP|RTW_FEMR_INTR);
1830 #endif
1831 /* XXX from reference sources */
1832 RTW_WRITE(regs, RTW_FEMR, 0xffff);
1833
1834 RTW_WRITE(regs, RTW_PHYDELAY, sc->sc_phydelay);
1835 /* from Linux driver */
1836 RTW_WRITE(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
1837
1838 rtw_enable_interrupts(sc);
1839
1840 rtw_pktfilt_load(sc);
1841
1842 rtw_hwring_setup(sc);
1843
1844 rtw_io_enable(regs, RTW_CR_RE|RTW_CR_TE, 1);
1845
1846 ifp->if_flags |= IFF_RUNNING;
1847 ic->ic_state = IEEE80211_S_INIT;
1848
1849 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
1850 RTW_WRITE(regs, RTW_BSSID32, 0x0);
1851
1852 s = splclock();
1853 sc->sc_tick0 = mono_time;
1854 splx(s);
1855
1856 rtw_resume_ticks(sc);
1857
1858 switch (ic->ic_opmode) {
1859 case IEEE80211_M_AHDEMO:
1860 case IEEE80211_M_IBSS:
1861 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_ADHOC_OK);
1862 break;
1863 case IEEE80211_M_HOSTAP:
1864 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_AP_OK);
1865 case IEEE80211_M_MONITOR:
1866 /* XXX */
1867 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_NOLINK);
1868 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1869 case IEEE80211_M_STA:
1870 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_INFRA_OK);
1871 break;
1872 }
1873 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1874 out:
1875 return rc;
1876 }
1877
1878 static int
1879 rtw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1880 {
1881 int rc = 0;
1882 struct rtw_softc *sc = ifp->if_softc;
1883 struct ifreq *ifr = (struct ifreq *)data;
1884
1885 switch (cmd) {
1886 case SIOCSIFFLAGS:
1887 if ((ifp->if_flags & IFF_UP) != 0) {
1888 if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
1889 rtw_pktfilt_load(sc);
1890 } else
1891 rc = rtw_init(ifp);
1892 #ifdef RTW_DEBUG
1893 rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
1894 #endif /* RTW_DEBUG */
1895 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
1896 #ifdef RTW_DEBUG
1897 rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
1898 #endif /* RTW_DEBUG */
1899 rtw_stop(ifp, 1);
1900 }
1901 break;
1902 case SIOCADDMULTI:
1903 case SIOCDELMULTI:
1904 if (cmd == SIOCADDMULTI)
1905 rc = ether_addmulti(ifr, &sc->sc_ic.ic_ec);
1906 else
1907 rc = ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1908 if (rc == ENETRESET) {
1909 if (ifp->if_flags & IFF_RUNNING)
1910 rtw_pktfilt_load(sc);
1911 rc = 0;
1912 }
1913 break;
1914 default:
1915 if ((rc = ieee80211_ioctl(ifp, cmd, data)) == ENETRESET) {
1916 if ((sc->sc_flags & RTW_F_ENABLED) != 0)
1917 rc = rtw_init(ifp);
1918 else
1919 rc = 0;
1920 }
1921 break;
1922 }
1923 return rc;
1924 }
1925
1926 /* Point *mp at the next 802.11 frame to transmit. Point *stcp
1927 * at the driver's selection of transmit control block for the packet.
1928 */
1929 static __inline int
1930 rtw_dequeue(struct ifnet *ifp, struct rtw_txctl_blk **stcp, struct mbuf **mp,
1931 struct ieee80211_node **nip)
1932 {
1933 struct mbuf *m0;
1934 struct rtw_softc *sc;
1935 struct ieee80211com *ic;
1936
1937 sc = (struct rtw_softc *)ifp->if_softc;
1938 ic = &sc->sc_ic;
1939
1940 *mp = NULL;
1941
1942 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
1943 IF_DEQUEUE(&ic->ic_mgtq, m0);
1944 *nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1945 m0->m_pkthdr.rcvif = NULL;
1946 } else if (ic->ic_state != IEEE80211_S_RUN)
1947 return 0;
1948 else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
1949 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
1950 *nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1951 m0->m_pkthdr.rcvif = NULL;
1952 } else {
1953 IFQ_POLL(&ifp->if_snd, m0);
1954 if (m0 == NULL)
1955 return 0;
1956 IFQ_DEQUEUE(&ifp->if_snd, m0);
1957 ifp->if_opackets++;
1958 #if NBPFILTER > 0
1959 if (ifp->if_bpf)
1960 bpf_mtap(ifp->if_bpf, m0);
1961 #endif
1962 if ((m0 = ieee80211_encap(ifp, m0, nip)) == NULL) {
1963 ifp->if_oerrors++;
1964 return -1;
1965 }
1966 }
1967 *stcp = &sc->sc_txctl_blk[RTW_TXPRIMD];
1968 *mp = m0;
1969 return 0;
1970 }
1971
1972 static void
1973 rtw_start(struct ifnet *ifp)
1974 {
1975 struct mbuf *m0;
1976 struct rtw_softc *sc;
1977 struct rtw_txctl_blk *stc;
1978 struct ieee80211_node *ni;
1979
1980 sc = (struct rtw_softc *)ifp->if_softc;
1981
1982 #if 0
1983 struct ifqueue ic_mgtq;
1984 struct ifqueue ic_pwrsaveq;
1985 struct rtw_txctl_blk {
1986 /* dirty/free s/w descriptors */
1987 struct rtw_txq stc_dirtyq;
1988 struct rtw_txq stc_freeq;
1989 u_int stc_ndesc;
1990 struct rtw_txctl *stc_desc;
1991 };
1992 #endif
1993 while (!SIMPLEQ_EMPTY(&stc->stc_freeq)) {
1994 if (rtw_dequeue(ifp, &stc, &m0, &ni) == -1)
1995 continue;
1996 if (m0 == NULL)
1997 break;
1998 ieee80211_release_node(&sc->sc_ic, ni);
1999 }
2000 return;
2001 }
2002
2003 static void
2004 rtw_watchdog(struct ifnet *ifp)
2005 {
2006 /* TBD */
2007 return;
2008 }
2009
2010 static void
2011 rtw_start_beacon(struct rtw_softc *sc, int enable)
2012 {
2013 /* TBD */
2014 return;
2015 }
2016
2017 static void
2018 rtw_next_scan(void *arg)
2019 {
2020 struct ieee80211com *ic = arg;
2021 int s;
2022
2023 /* don't call rtw_start w/o network interrupts blocked */
2024 s = splnet();
2025 if (ic->ic_state == IEEE80211_S_SCAN)
2026 ieee80211_next_scan(ic);
2027 splx(s);
2028 }
2029
2030 /* Synchronize the hardware state with the software state. */
2031 static int
2032 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2033 {
2034 struct ifnet *ifp = &ic->ic_if;
2035 struct rtw_softc *sc = ifp->if_softc;
2036 enum ieee80211_state ostate;
2037 int error;
2038
2039 ostate = ic->ic_state;
2040
2041 if (nstate == IEEE80211_S_INIT) {
2042 callout_stop(&sc->sc_scan_ch);
2043 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2044 rtw_start_beacon(sc, 0);
2045 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
2046 }
2047
2048 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
2049 rtw_pwrstate(sc, RTW_ON);
2050
2051 if ((error = rtw_tune(sc)) != 0)
2052 return error;
2053
2054 switch (nstate) {
2055 case IEEE80211_S_ASSOC:
2056 break;
2057 case IEEE80211_S_INIT:
2058 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2059 break;
2060 case IEEE80211_S_SCAN:
2061 #if 0
2062 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2063 rtw_write_bssid(sc);
2064 #endif
2065
2066 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
2067 rtw_next_scan, ic);
2068
2069 break;
2070 case IEEE80211_S_RUN:
2071 if (ic->ic_opmode == IEEE80211_M_STA)
2072 break;
2073 /*FALLTHROUGH*/
2074 case IEEE80211_S_AUTH:
2075 #if 0
2076 rtw_write_bssid(sc);
2077 rtw_write_bcn_thresh(sc);
2078 rtw_write_ssid(sc);
2079 rtw_write_sup_rates(sc);
2080 #endif
2081 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2082 ic->ic_opmode == IEEE80211_M_MONITOR)
2083 break;
2084
2085 /* TBD set listen interval, beacon interval */
2086
2087 #if 0
2088 rtw_tsf(sc);
2089 #endif
2090 break;
2091 }
2092
2093 if (nstate != IEEE80211_S_SCAN)
2094 callout_stop(&sc->sc_scan_ch);
2095
2096 if (nstate == IEEE80211_S_RUN &&
2097 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2098 ic->ic_opmode == IEEE80211_M_IBSS))
2099 rtw_start_beacon(sc, 1);
2100 else
2101 rtw_start_beacon(sc, 0);
2102
2103 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
2104 }
2105
2106 static void
2107 rtw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2108 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2109 {
2110 /* TBD */
2111 return;
2112 }
2113
2114 static void
2115 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2116 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2117 {
2118 struct rtw_softc *sc = (struct rtw_softc*)ic->ic_softc;
2119
2120 switch (subtype) {
2121 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2122 /* do nothing: hardware answers probe request XXX */
2123 break;
2124 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2125 case IEEE80211_FC0_SUBTYPE_BEACON:
2126 rtw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2127 break;
2128 default:
2129 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2130 break;
2131 }
2132 return;
2133 }
2134
2135 static struct ieee80211_node *
2136 rtw_node_alloc(struct ieee80211com *ic)
2137 {
2138 struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2139 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(ic);
2140
2141 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
2142 return ni;
2143 }
2144
2145 static void
2146 rtw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2147 {
2148 struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2149
2150 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
2151 ether_sprintf(ni->ni_bssid)));
2152 (*sc->sc_mtbl.mt_node_free)(ic, ni);
2153 }
2154
2155 static int
2156 rtw_media_change(struct ifnet *ifp)
2157 {
2158 int error;
2159
2160 error = ieee80211_media_change(ifp);
2161 if (error == ENETRESET) {
2162 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
2163 (IFF_RUNNING|IFF_UP))
2164 rtw_init(ifp); /* XXX lose error */
2165 error = 0;
2166 }
2167 return error;
2168 }
2169
2170 static void
2171 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2172 {
2173 struct rtw_softc *sc = ifp->if_softc;
2174
2175 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2176 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
2177 imr->ifm_status = 0;
2178 return;
2179 }
2180 ieee80211_media_status(ifp, imr);
2181 }
2182
2183 void
2184 rtw_power(int why, void *arg)
2185 {
2186 struct rtw_softc *sc = arg;
2187 struct ifnet *ifp = &sc->sc_ic.ic_if;
2188 int s;
2189
2190 DPRINTF(sc, ("%s: rtw_power(%d,)\n", sc->sc_dev.dv_xname, why));
2191
2192 s = splnet();
2193 switch (why) {
2194 case PWR_STANDBY:
2195 /* XXX do nothing. */
2196 break;
2197 case PWR_SUSPEND:
2198 rtw_stop(ifp, 0);
2199 if (sc->sc_power != NULL)
2200 (*sc->sc_power)(sc, why);
2201 break;
2202 case PWR_RESUME:
2203 if (ifp->if_flags & IFF_UP) {
2204 if (sc->sc_power != NULL)
2205 (*sc->sc_power)(sc, why);
2206 rtw_init(ifp);
2207 }
2208 break;
2209 case PWR_SOFTSUSPEND:
2210 case PWR_SOFTSTANDBY:
2211 case PWR_SOFTRESUME:
2212 break;
2213 }
2214 splx(s);
2215 }
2216
2217 /* rtw_shutdown: make sure the interface is stopped at reboot time. */
2218 void
2219 rtw_shutdown(void *arg)
2220 {
2221 struct rtw_softc *sc = arg;
2222
2223 rtw_stop(&sc->sc_ic.ic_if, 1);
2224 }
2225
2226 static __inline void
2227 rtw_setifprops(struct ifnet *ifp, char (*dvname)[IFNAMSIZ], void *softc)
2228 {
2229 (void)memcpy(ifp->if_xname, *dvname, IFNAMSIZ);
2230 ifp->if_softc = softc;
2231 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
2232 IFF_NOTRAILERS;
2233 ifp->if_ioctl = rtw_ioctl;
2234 ifp->if_start = rtw_start;
2235 ifp->if_watchdog = rtw_watchdog;
2236 ifp->if_init = rtw_init;
2237 ifp->if_stop = rtw_stop;
2238 }
2239
2240 static __inline void
2241 rtw_set80211props(struct ieee80211com *ic)
2242 {
2243 int nrate;
2244 ic->ic_phytype = IEEE80211_T_DS;
2245 ic->ic_opmode = IEEE80211_M_STA;
2246 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
2247 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
2248
2249 nrate = 0;
2250 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
2251 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
2252 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
2253 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
2254 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
2255 }
2256
2257 static __inline void
2258 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
2259 {
2260 mtbl->mt_newstate = ic->ic_newstate;
2261 ic->ic_newstate = rtw_newstate;
2262
2263 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
2264 ic->ic_recv_mgmt = rtw_recv_mgmt;
2265
2266 mtbl->mt_node_free = ic->ic_node_free;
2267 ic->ic_node_free = rtw_node_free;
2268
2269 mtbl->mt_node_alloc = ic->ic_node_alloc;
2270 ic->ic_node_alloc = rtw_node_alloc;
2271 }
2272
2273 static __inline void
2274 rtw_establish_hooks(struct rtw_hooks *hooks, char (*dvname)[IFNAMSIZ],
2275 void *arg)
2276 {
2277 /*
2278 * Make sure the interface is shutdown during reboot.
2279 */
2280 hooks->rh_shutdown = shutdownhook_establish(rtw_shutdown, arg);
2281 if (hooks->rh_shutdown == NULL)
2282 printf("%s: WARNING: unable to establish shutdown hook\n",
2283 *dvname);
2284
2285 /*
2286 * Add a suspend hook to make sure we come back up after a
2287 * resume.
2288 */
2289 hooks->rh_power = powerhook_establish(rtw_power, arg);
2290 if (hooks->rh_power == NULL)
2291 printf("%s: WARNING: unable to establish power hook\n",
2292 *dvname);
2293 }
2294
2295 static __inline void
2296 rtw_disestablish_hooks(struct rtw_hooks *hooks, char (*dvname)[IFNAMSIZ],
2297 void *arg)
2298 {
2299 if (hooks->rh_shutdown != NULL)
2300 shutdownhook_disestablish(hooks->rh_shutdown);
2301
2302 if (hooks->rh_power != NULL)
2303 powerhook_disestablish(hooks->rh_power);
2304 }
2305
2306 static __inline void
2307 rtw_init_radiotap(struct rtw_softc *sc)
2308 {
2309 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
2310 sc->sc_rxtap.rr_ihdr.it_len = sizeof(sc->sc_rxtapu);
2311 sc->sc_rxtap.rr_ihdr.it_present = RTW_RX_RADIOTAP_PRESENT;
2312
2313 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
2314 sc->sc_txtap.rt_ihdr.it_len = sizeof(sc->sc_txtapu);
2315 sc->sc_txtap.rt_ihdr.it_present = RTW_TX_RADIOTAP_PRESENT;
2316 }
2317
2318 static int
2319 rtw_txctl_blk_setup(struct rtw_txctl_blk *stc, u_int qlen)
2320 {
2321 SIMPLEQ_INIT(&stc->stc_dirtyq);
2322 SIMPLEQ_INIT(&stc->stc_freeq);
2323 stc->stc_ndesc = qlen;
2324 stc->stc_desc = malloc(qlen * sizeof(*stc->stc_desc), M_DEVBUF,
2325 M_NOWAIT);
2326 if (stc->stc_desc == NULL)
2327 return ENOMEM;
2328 return 0;
2329 }
2330
2331 static void
2332 rtw_txctl_blk_cleanup_all(struct rtw_softc *sc)
2333 {
2334 struct rtw_txctl_blk *stc;
2335 int qlen[RTW_NTXPRI] =
2336 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
2337 int pri;
2338
2339 for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
2340 stc = &sc->sc_txctl_blk[pri];
2341 free(stc->stc_desc, M_DEVBUF);
2342 stc->stc_desc = NULL;
2343 }
2344 }
2345
2346 static int
2347 rtw_txctl_blk_setup_all(struct rtw_softc *sc)
2348 {
2349 int pri, rc = 0;
2350 int qlen[RTW_NTXPRI] =
2351 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
2352
2353 for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
2354 rc = rtw_txctl_blk_setup(&sc->sc_txctl_blk[pri], qlen[pri]);
2355 if (rc != 0)
2356 break;
2357 }
2358 return rc;
2359 }
2360
2361 static void
2362 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *htc, struct rtw_txdesc *desc,
2363 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
2364 {
2365 int i;
2366
2367 htc->htc_ndesc = ndesc;
2368 htc->htc_desc = desc;
2369 htc->htc_physbase = physbase;
2370 htc->htc_ofs = ofs;
2371
2372 (void)memset(htc->htc_desc, 0,
2373 sizeof(htc->htc_desc[0]) * htc->htc_ndesc);
2374
2375 for (i = 0; i < htc->htc_ndesc; i++) {
2376 htc->htc_desc[i].htx_next = htole32(RTW_NEXT_DESC(htc, i));
2377 }
2378 }
2379
2380 static void
2381 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
2382 {
2383 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
2384 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
2385 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
2386
2387 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
2388 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
2389 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
2390
2391 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
2392 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
2393 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
2394
2395 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
2396 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
2397 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
2398 }
2399
2400 static struct rtw_rf *
2401 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid,
2402 rtw_rf_write_t rf_write, int digphy)
2403 {
2404 struct rtw_rf *rf;
2405
2406 switch (rfchipid) {
2407 case RTW_RFCHIPID_MAXIM:
2408 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
2409 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
2410 break;
2411 case RTW_RFCHIPID_PHILIPS:
2412 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
2413 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
2414 break;
2415 default:
2416 return NULL;
2417 }
2418 rf->rf_continuous_tx_cb =
2419 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
2420 rf->rf_continuous_tx_arg = (void *)sc;
2421 return rf;
2422 }
2423
2424 /* Revision C and later use a different PHY delay setting than
2425 * revisions A and B.
2426 */
2427 static u_int8_t
2428 rtw_check_phydelay(struct rtw_regs *regs, u_int32_t rcr0)
2429 {
2430 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
2431 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
2432
2433 u_int8_t phydelay = LSHIFT(0x6, RTW_PHYDELAY_PHYDELAY);
2434
2435 RTW_WRITE(regs, RTW_RCR, REVAB);
2436 RTW_WRITE(regs, RTW_RCR, REVC);
2437
2438 RTW_WBR(regs, RTW_RCR, RTW_RCR);
2439 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
2440 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
2441
2442 RTW_WRITE(regs, RTW_RCR, rcr0); /* restore RCR */
2443
2444 return phydelay;
2445 #undef REVC
2446 }
2447
2448 void
2449 rtw_attach(struct rtw_softc *sc)
2450 {
2451 rtw_rf_write_t rf_write;
2452 struct rtw_txctl_blk *stc;
2453 int pri, rc, vers;
2454
2455 #if 0
2456 CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_txdesc) == 0,
2457 "RTW_DESC_ALIGNMENT is not a multiple of "
2458 "sizeof(struct rtw_txdesc)");
2459
2460 CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_rxdesc) == 0,
2461 "RTW_DESC_ALIGNMENT is not a multiple of "
2462 "sizeof(struct rtw_rxdesc)");
2463
2464 CASSERT(RTW_DESC_ALIGNMENT % RTW_MAXPKTSEGS == 0,
2465 "RTW_DESC_ALIGNMENT is not a multiple of RTW_MAXPKTSEGS");
2466 #endif
2467
2468 NEXT_ATTACH_STATE(sc, DETACHED);
2469
2470 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
2471 case RTW_TCR_HWVERID_F:
2472 vers = 'F';
2473 rf_write = rtw_rf_hostwrite;
2474 break;
2475 case RTW_TCR_HWVERID_D:
2476 vers = 'D';
2477 rf_write = rtw_rf_macwrite;
2478 break;
2479 default:
2480 vers = '?';
2481 rf_write = rtw_rf_macwrite;
2482 break;
2483 }
2484 printf("%s: hardware version %c\n", sc->sc_dev.dv_xname, vers);
2485
2486 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
2487 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
2488 0);
2489
2490 if (rc != 0) {
2491 printf("%s: could not allocate hw descriptors, error %d\n",
2492 sc->sc_dev.dv_xname, rc);
2493 goto err;
2494 }
2495
2496 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
2497
2498 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
2499 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
2500 (caddr_t*)&sc->sc_descs, BUS_DMA_COHERENT);
2501
2502 if (rc != 0) {
2503 printf("%s: could not map hw descriptors, error %d\n",
2504 sc->sc_dev.dv_xname, rc);
2505 goto err;
2506 }
2507 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
2508
2509 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
2510 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
2511
2512 if (rc != 0) {
2513 printf("%s: could not create DMA map for hw descriptors, "
2514 "error %d\n", sc->sc_dev.dv_xname, rc);
2515 goto err;
2516 }
2517 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
2518
2519 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
2520 sizeof(struct rtw_descs), NULL, 0);
2521
2522 if (rc != 0) {
2523 printf("%s: could not load DMA map for hw descriptors, "
2524 "error %d\n", sc->sc_dev.dv_xname, rc);
2525 goto err;
2526 }
2527 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
2528
2529 if (rtw_txctl_blk_setup_all(sc) != 0)
2530 goto err;
2531 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
2532
2533 rtw_txdesc_blk_setup_all(sc);
2534
2535 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
2536
2537 sc->sc_rxdesc = &sc->sc_descs->hd_rx[0];
2538
2539 rtw_rxctls_setup(&sc->sc_rxctl[0]);
2540
2541 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2542 stc = &sc->sc_txctl_blk[pri];
2543
2544 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
2545 &stc->stc_desc[0], stc->stc_ndesc)) != 0) {
2546 printf("%s: could not load DMA map for "
2547 "hw tx descriptors, error %d\n",
2548 sc->sc_dev.dv_xname, rc);
2549 goto err;
2550 }
2551 }
2552
2553 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
2554 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxctl[0],
2555 RTW_RXQLEN)) != 0) {
2556 printf("%s: could not load DMA map for hw rx descriptors, "
2557 "error %d\n", sc->sc_dev.dv_xname, rc);
2558 goto err;
2559 }
2560 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
2561
2562 /* Reset the chip to a known state. */
2563 if (rtw_reset(sc) != 0)
2564 goto err;
2565 NEXT_ATTACH_STATE(sc, FINISH_RESET);
2566
2567 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
2568
2569 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
2570 sc->sc_flags |= RTW_F_9356SROM;
2571
2572 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
2573 &sc->sc_dev.dv_xname) != 0)
2574 goto err;
2575
2576 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
2577
2578 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
2579 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
2580 &sc->sc_dev.dv_xname) != 0) {
2581 printf("%s: attach failed, malformed serial ROM\n",
2582 sc->sc_dev.dv_xname);
2583 goto err;
2584 }
2585
2586 RTW_DPRINTF(("%s: CS threshold %u\n", sc->sc_dev.dv_xname,
2587 sc->sc_csthr));
2588
2589 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
2590
2591 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid, rf_write,
2592 sc->sc_flags & RTW_F_DIGPHY);
2593
2594 if (sc->sc_rf == NULL) {
2595 printf("%s: attach failed, could not attach RF\n",
2596 sc->sc_dev.dv_xname);
2597 goto err;
2598 }
2599
2600 #if 0
2601 if (rtw_identify_rf(&sc->sc_regs, &sc->sc_rftype,
2602 &sc->sc_dev.dv_xname) != 0) {
2603 printf("%s: attach failed, unknown RF unidentified\n",
2604 sc->sc_dev.dv_xname);
2605 goto err;
2606 }
2607 #endif
2608
2609 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
2610
2611 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
2612
2613 RTW_DPRINTF(("%s: PHY delay %d\n", sc->sc_dev.dv_xname,
2614 sc->sc_phydelay));
2615
2616 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
2617 rtw_identify_country(&sc->sc_regs, &sc->sc_locale,
2618 &sc->sc_dev.dv_xname);
2619
2620 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels,
2621 &sc->sc_dev.dv_xname);
2622
2623 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
2624 &sc->sc_dev.dv_xname) != 0)
2625 goto err;
2626 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
2627
2628 rtw_setifprops(&sc->sc_if, &sc->sc_dev.dv_xname, (void*)sc);
2629
2630 IFQ_SET_READY(&sc->sc_if.if_snd);
2631
2632 rtw_set80211props(&sc->sc_ic);
2633
2634 /*
2635 * Call MI attach routines.
2636 */
2637 if_attach(&sc->sc_if);
2638 ieee80211_ifattach(&sc->sc_if);
2639
2640 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
2641
2642 /* possibly we should fill in our own sc_send_prresp, since
2643 * the RTL8180 is probably sending probe responses in ad hoc
2644 * mode.
2645 */
2646
2647 /* complete initialization */
2648 ieee80211_media_init(&sc->sc_if, rtw_media_change, rtw_media_status);
2649 callout_init(&sc->sc_scan_ch);
2650
2651 #if NBPFILTER > 0
2652 bpfattach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
2653 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
2654 #endif
2655
2656 rtw_establish_hooks(&sc->sc_hooks, &sc->sc_dev.dv_xname, (void*)sc);
2657
2658 rtw_init_radiotap(sc);
2659
2660 NEXT_ATTACH_STATE(sc, FINISHED);
2661
2662 return;
2663 err:
2664 rtw_detach(sc);
2665 return;
2666 }
2667
2668 int
2669 rtw_detach(struct rtw_softc *sc)
2670 {
2671 int pri;
2672
2673 switch (sc->sc_attach_state) {
2674 case FINISHED:
2675 rtw_stop(&sc->sc_if, 1);
2676
2677 rtw_disestablish_hooks(&sc->sc_hooks, &sc->sc_dev.dv_xname,
2678 (void*)sc);
2679 callout_stop(&sc->sc_scan_ch);
2680 ieee80211_ifdetach(&sc->sc_if);
2681 if_detach(&sc->sc_if);
2682 break;
2683 case FINISH_ID_STA:
2684 case FINISH_RF_ATTACH:
2685 rtw_rf_destroy(sc->sc_rf);
2686 sc->sc_rf = NULL;
2687 /*FALLTHROUGH*/
2688 case FINISH_PARSE_SROM:
2689 case FINISH_READ_SROM:
2690 rtw_srom_free(&sc->sc_srom);
2691 /*FALLTHROUGH*/
2692 case FINISH_RESET:
2693 case FINISH_RXMAPS_CREATE:
2694 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxctl[0],
2695 RTW_RXQLEN);
2696 /*FALLTHROUGH*/
2697 case FINISH_TXMAPS_CREATE:
2698 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2699 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
2700 sc->sc_txctl_blk[pri].stc_desc,
2701 sc->sc_txctl_blk[pri].stc_ndesc);
2702 }
2703 /*FALLTHROUGH*/
2704 case FINISH_TXDESCBLK_SETUP:
2705 case FINISH_TXCTLBLK_SETUP:
2706 rtw_txctl_blk_cleanup_all(sc);
2707 /*FALLTHROUGH*/
2708 case FINISH_DESCMAP_LOAD:
2709 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
2710 /*FALLTHROUGH*/
2711 case FINISH_DESCMAP_CREATE:
2712 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
2713 /*FALLTHROUGH*/
2714 case FINISH_DESC_MAP:
2715 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_descs,
2716 sizeof(struct rtw_descs));
2717 /*FALLTHROUGH*/
2718 case FINISH_DESC_ALLOC:
2719 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
2720 sc->sc_desc_nsegs);
2721 /*FALLTHROUGH*/
2722 case DETACHED:
2723 NEXT_ATTACH_STATE(sc, DETACHED);
2724 break;
2725 }
2726 return 0;
2727 }
2728
2729 int
2730 rtw_activate(struct device *self, enum devact act)
2731 {
2732 struct rtw_softc *sc = (struct rtw_softc *)self;
2733 int rc = 0, s;
2734
2735 s = splnet();
2736 switch (act) {
2737 case DVACT_ACTIVATE:
2738 rc = EOPNOTSUPP;
2739 break;
2740
2741 case DVACT_DEACTIVATE:
2742 if_deactivate(&sc->sc_ic.ic_if);
2743 break;
2744 }
2745 splx(s);
2746 return rc;
2747 }
2748