rtw.c revision 1.5 1 /* $NetBSD: rtw.c,v 1.5 2004/12/19 08:19:25 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005 David Young. All rights reserved.
4 *
5 * Programmed for NetBSD by David Young.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of David Young may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
23 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30 * OF SUCH DAMAGE.
31 */
32 /*
33 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.5 2004/12/19 08:19:25 dyoung Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/sysctl.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #if 0
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #endif
54 #include <sys/time.h>
55 #include <sys/types.h>
56
57 #include <machine/endian.h>
58 #include <machine/bus.h>
59 #include <machine/intr.h> /* splnet */
60
61 #include <uvm/uvm_extern.h>
62
63 #include <net/if.h>
64 #include <net/if_media.h>
65 #include <net/if_ether.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_compat.h>
69 #include <net80211/ieee80211_radiotap.h>
70
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 #include <dev/ic/rtwreg.h>
76 #include <dev/ic/rtwvar.h>
77 #include <dev/ic/rtwphyio.h>
78 #include <dev/ic/rtwphy.h>
79
80 #include <dev/ic/smc93cx6var.h>
81
82 #define KASSERT2(__cond, __msg) \
83 do { \
84 if (!(__cond)) \
85 panic __msg ; \
86 } while (0)
87
88 int rtw_rfprog_fallback = 0;
89 int rtw_host_rfio = 0;
90 int rtw_flush_rfio = 1;
91 int rtw_rfio_delay = 0;
92
93 #ifdef RTW_DEBUG
94 int rtw_debug = 2;
95 #endif /* RTW_DEBUG */
96
97 #define NEXT_ATTACH_STATE(sc, state) do { \
98 DPRINTF(sc, ("%s: attach state %s\n", __func__, #state)); \
99 sc->sc_attach_state = state; \
100 } while (0)
101
102 int rtw_dwelltime = 1000; /* milliseconds */
103
104 static void rtw_start(struct ifnet *);
105
106 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
107 static int rtw_sysctl_verify_rfio_delay(SYSCTLFN_PROTO);
108 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
109 #ifdef RTW_DEBUG
110 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
111 #endif /* RTW_DEBUG */
112
113 /*
114 * Setup sysctl(3) MIB, hw.rtw.*
115 *
116 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
117 */
118 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
119 {
120 int rc;
121 struct sysctlnode *cnode, *rnode;
122
123 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
124 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
125 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
126 goto err;
127
128 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
129 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
130 "Realtek RTL818x 802.11 controls",
131 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
132 goto err;
133
134 #ifdef RTW_DEBUG
135 /* control debugging printfs */
136 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
137 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
138 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
139 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
140 CTL_CREATE, CTL_EOL)) != 0)
141 goto err;
142 #endif /* RTW_DEBUG */
143 /* set fallback RF programming method */
144 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
145 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
146 "rfprog_fallback",
147 SYSCTL_DESCR("Set fallback RF programming method"),
148 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
149 CTL_CREATE, CTL_EOL)) != 0)
150 goto err;
151
152 /* force host to flush I/O by reading RTW_PHYADDR */
153 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
154 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
155 "flush_rfio", SYSCTL_DESCR("Enable RF I/O flushing"),
156 rtw_sysctl_verify_rfio, 0, &rtw_flush_rfio, 0,
157 CTL_CREATE, CTL_EOL)) != 0)
158 goto err;
159
160 /* force host to control RF I/O bus */
161 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
162 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
163 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
164 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
165 CTL_CREATE, CTL_EOL)) != 0)
166 goto err;
167
168 /* control RF I/O delay */
169 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
170 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
171 "rfio_delay", SYSCTL_DESCR("Set RF I/O delay"),
172 rtw_sysctl_verify_rfio_delay, 0, &rtw_rfio_delay, 0,
173 CTL_CREATE, CTL_EOL)) != 0)
174 goto err;
175
176 return;
177 err:
178 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
179 }
180
181 static int
182 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
183 {
184 int error, t;
185 struct sysctlnode node;
186
187 node = *rnode;
188 t = *(int*)rnode->sysctl_data;
189 node.sysctl_data = &t;
190 error = sysctl_lookup(SYSCTLFN_CALL(&node));
191 if (error || newp == NULL)
192 return (error);
193
194 if (t < lower || t > upper)
195 return (EINVAL);
196
197 *(int*)rnode->sysctl_data = t;
198
199 return (0);
200 }
201
202 static int
203 rtw_sysctl_verify_rfio_delay(SYSCTLFN_ARGS)
204 {
205 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 1000000);
206 }
207
208 static int
209 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
210 {
211 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0,
212 MASK_AND_RSHIFT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
213 }
214
215 static int
216 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
217 {
218 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 1);
219 }
220
221 #ifdef RTW_DEBUG
222 static int
223 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
224 {
225 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 2);
226 }
227
228 static void
229 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
230 {
231 #define PRINTREG32(sc, reg) \
232 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
233 dvname, reg, RTW_READ(regs, reg)))
234
235 #define PRINTREG16(sc, reg) \
236 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %04x\n", \
237 dvname, reg, RTW_READ16(regs, reg)))
238
239 #define PRINTREG8(sc, reg) \
240 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %02x\n", \
241 dvname, reg, RTW_READ8(regs, reg)))
242
243 RTW_DPRINTF2(("%s: %s\n", dvname, where));
244
245 PRINTREG32(regs, RTW_IDR0);
246 PRINTREG32(regs, RTW_IDR1);
247 PRINTREG32(regs, RTW_MAR0);
248 PRINTREG32(regs, RTW_MAR1);
249 PRINTREG32(regs, RTW_TSFTRL);
250 PRINTREG32(regs, RTW_TSFTRH);
251 PRINTREG32(regs, RTW_TLPDA);
252 PRINTREG32(regs, RTW_TNPDA);
253 PRINTREG32(regs, RTW_THPDA);
254 PRINTREG32(regs, RTW_TCR);
255 PRINTREG32(regs, RTW_RCR);
256 PRINTREG32(regs, RTW_TINT);
257 PRINTREG32(regs, RTW_TBDA);
258 PRINTREG32(regs, RTW_ANAPARM);
259 PRINTREG32(regs, RTW_BB);
260 PRINTREG32(regs, RTW_PHYCFG);
261 PRINTREG32(regs, RTW_WAKEUP0L);
262 PRINTREG32(regs, RTW_WAKEUP0H);
263 PRINTREG32(regs, RTW_WAKEUP1L);
264 PRINTREG32(regs, RTW_WAKEUP1H);
265 PRINTREG32(regs, RTW_WAKEUP2LL);
266 PRINTREG32(regs, RTW_WAKEUP2LH);
267 PRINTREG32(regs, RTW_WAKEUP2HL);
268 PRINTREG32(regs, RTW_WAKEUP2HH);
269 PRINTREG32(regs, RTW_WAKEUP3LL);
270 PRINTREG32(regs, RTW_WAKEUP3LH);
271 PRINTREG32(regs, RTW_WAKEUP3HL);
272 PRINTREG32(regs, RTW_WAKEUP3HH);
273 PRINTREG32(regs, RTW_WAKEUP4LL);
274 PRINTREG32(regs, RTW_WAKEUP4LH);
275 PRINTREG32(regs, RTW_WAKEUP4HL);
276 PRINTREG32(regs, RTW_WAKEUP4HH);
277 PRINTREG32(regs, RTW_DK0);
278 PRINTREG32(regs, RTW_DK1);
279 PRINTREG32(regs, RTW_DK2);
280 PRINTREG32(regs, RTW_DK3);
281 PRINTREG32(regs, RTW_RETRYCTR);
282 PRINTREG32(regs, RTW_RDSAR);
283 PRINTREG32(regs, RTW_FER);
284 PRINTREG32(regs, RTW_FEMR);
285 PRINTREG32(regs, RTW_FPSR);
286 PRINTREG32(regs, RTW_FFER);
287
288 /* 16-bit registers */
289 PRINTREG16(regs, RTW_BRSR);
290 PRINTREG16(regs, RTW_IMR);
291 PRINTREG16(regs, RTW_ISR);
292 PRINTREG16(regs, RTW_BCNITV);
293 PRINTREG16(regs, RTW_ATIMWND);
294 PRINTREG16(regs, RTW_BINTRITV);
295 PRINTREG16(regs, RTW_ATIMTRITV);
296 PRINTREG16(regs, RTW_CRC16ERR);
297 PRINTREG16(regs, RTW_CRC0);
298 PRINTREG16(regs, RTW_CRC1);
299 PRINTREG16(regs, RTW_CRC2);
300 PRINTREG16(regs, RTW_CRC3);
301 PRINTREG16(regs, RTW_CRC4);
302 PRINTREG16(regs, RTW_CWR);
303
304 /* 8-bit registers */
305 PRINTREG8(regs, RTW_CR);
306 PRINTREG8(regs, RTW_9346CR);
307 PRINTREG8(regs, RTW_CONFIG0);
308 PRINTREG8(regs, RTW_CONFIG1);
309 PRINTREG8(regs, RTW_CONFIG2);
310 PRINTREG8(regs, RTW_MSR);
311 PRINTREG8(regs, RTW_CONFIG3);
312 PRINTREG8(regs, RTW_CONFIG4);
313 PRINTREG8(regs, RTW_TESTR);
314 PRINTREG8(regs, RTW_PSR);
315 PRINTREG8(regs, RTW_SCR);
316 PRINTREG8(regs, RTW_PHYDELAY);
317 PRINTREG8(regs, RTW_CRCOUNT);
318 PRINTREG8(regs, RTW_PHYADDR);
319 PRINTREG8(regs, RTW_PHYDATAW);
320 PRINTREG8(regs, RTW_PHYDATAR);
321 PRINTREG8(regs, RTW_CONFIG5);
322 PRINTREG8(regs, RTW_TPPOLL);
323
324 PRINTREG16(regs, RTW_BSSID16);
325 PRINTREG32(regs, RTW_BSSID32);
326 #undef PRINTREG32
327 #undef PRINTREG16
328 #undef PRINTREG8
329 }
330 #endif /* RTW_DEBUG */
331
332 void
333 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
334 {
335 struct rtw_regs *regs = &sc->sc_regs;
336
337 u_int32_t tcr;
338 tcr = RTW_READ(regs, RTW_TCR);
339 tcr &= ~RTW_TCR_LBK_MASK;
340 if (enable)
341 tcr |= RTW_TCR_LBK_CONT;
342 else
343 tcr |= RTW_TCR_LBK_NORMAL;
344 RTW_WRITE(regs, RTW_TCR, tcr);
345 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
346 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
347 rtw_txdac_enable(sc, !enable);
348 rtw_set_access(sc, RTW_ACCESS_ANAPARM); /* XXX Voodoo from Linux. */
349 rtw_set_access(sc, RTW_ACCESS_NONE);
350 }
351
352 static const char *
353 rtw_access_string(enum rtw_access access)
354 {
355 switch (access) {
356 case RTW_ACCESS_NONE:
357 return "none";
358 case RTW_ACCESS_CONFIG:
359 return "config";
360 case RTW_ACCESS_ANAPARM:
361 return "anaparm";
362 default:
363 return "unknown";
364 }
365 }
366
367 static void
368 rtw_set_access1(struct rtw_regs *regs,
369 enum rtw_access oaccess, enum rtw_access naccess)
370 {
371 KASSERT(naccess >= RTW_ACCESS_NONE && naccess <= RTW_ACCESS_ANAPARM);
372 KASSERT(oaccess >= RTW_ACCESS_NONE && oaccess <= RTW_ACCESS_ANAPARM);
373
374 if (naccess == oaccess)
375 return;
376
377 switch (naccess) {
378 case RTW_ACCESS_NONE:
379 switch (oaccess) {
380 case RTW_ACCESS_ANAPARM:
381 rtw_anaparm_enable(regs, 0);
382 /*FALLTHROUGH*/
383 case RTW_ACCESS_CONFIG:
384 rtw_config0123_enable(regs, 0);
385 /*FALLTHROUGH*/
386 case RTW_ACCESS_NONE:
387 break;
388 }
389 break;
390 case RTW_ACCESS_CONFIG:
391 switch (oaccess) {
392 case RTW_ACCESS_NONE:
393 rtw_config0123_enable(regs, 1);
394 /*FALLTHROUGH*/
395 case RTW_ACCESS_CONFIG:
396 break;
397 case RTW_ACCESS_ANAPARM:
398 rtw_anaparm_enable(regs, 0);
399 break;
400 }
401 break;
402 case RTW_ACCESS_ANAPARM:
403 switch (oaccess) {
404 case RTW_ACCESS_NONE:
405 rtw_config0123_enable(regs, 1);
406 /*FALLTHROUGH*/
407 case RTW_ACCESS_CONFIG:
408 rtw_anaparm_enable(regs, 1);
409 /*FALLTHROUGH*/
410 case RTW_ACCESS_ANAPARM:
411 break;
412 }
413 break;
414 }
415 }
416
417 void
418 rtw_set_access(struct rtw_softc *sc, enum rtw_access access)
419 {
420 rtw_set_access1(&sc->sc_regs, sc->sc_access, access);
421 RTW_DPRINTF(("%s: access %s -> %s\n", sc->sc_dev.dv_xname,
422 rtw_access_string(sc->sc_access),
423 rtw_access_string(access)));
424 sc->sc_access = access;
425 }
426
427 /*
428 * Enable registers, switch register banks.
429 */
430 void
431 rtw_config0123_enable(struct rtw_regs *regs, int enable)
432 {
433 u_int8_t ecr;
434 ecr = RTW_READ8(regs, RTW_9346CR);
435 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
436 if (enable)
437 ecr |= RTW_9346CR_EEM_CONFIG;
438 else
439 ecr |= RTW_9346CR_EEM_NORMAL;
440 RTW_WRITE8(regs, RTW_9346CR, ecr);
441 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
442 }
443
444 /* requires rtw_config0123_enable(, 1) */
445 void
446 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
447 {
448 u_int8_t cfg3;
449
450 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
451 cfg3 |= RTW_CONFIG3_CLKRUNEN;
452 if (enable)
453 cfg3 |= RTW_CONFIG3_PARMEN;
454 else
455 cfg3 &= ~RTW_CONFIG3_PARMEN;
456 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
457 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
458 }
459
460 /* requires rtw_anaparm_enable(, 1) */
461 void
462 rtw_txdac_enable(struct rtw_softc *sc, int enable)
463 {
464 u_int32_t anaparm;
465 struct rtw_regs *regs = &sc->sc_regs;
466
467 anaparm = RTW_READ(regs, RTW_ANAPARM);
468 if (enable)
469 anaparm &= ~RTW_ANAPARM_TXDACOFF;
470 else
471 anaparm |= RTW_ANAPARM_TXDACOFF;
472 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
473 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
474 }
475
476 static __inline int
477 rtw_chip_reset1(struct rtw_regs *regs, char (*dvname)[IFNAMSIZ])
478 {
479 u_int8_t cr;
480 int i;
481
482 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
483
484 RTW_WBR(regs, RTW_CR, RTW_CR);
485
486 for (i = 0; i < 10000; i++) {
487 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
488 RTW_DPRINTF(("%s: reset in %dus\n", *dvname, i));
489 return 0;
490 }
491 RTW_RBR(regs, RTW_CR, RTW_CR);
492 DELAY(1); /* 1us */
493 }
494
495 printf("%s: reset failed\n", *dvname);
496 return ETIMEDOUT;
497 }
498
499 static __inline int
500 rtw_chip_reset(struct rtw_regs *regs, char (*dvname)[IFNAMSIZ])
501 {
502 uint32_t tcr;
503
504 /* from Linux driver */
505 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
506 LSHIFT(7, RTW_TCR_SRL_MASK) | LSHIFT(7, RTW_TCR_LRL_MASK);
507
508 RTW_WRITE(regs, RTW_TCR, tcr);
509
510 RTW_WBW(regs, RTW_CR, RTW_TCR);
511
512 return rtw_chip_reset1(regs, dvname);
513 }
514
515 static __inline int
516 rtw_recall_eeprom(struct rtw_regs *regs, char (*dvname)[IFNAMSIZ])
517 {
518 int i;
519 u_int8_t ecr;
520
521 ecr = RTW_READ8(regs, RTW_9346CR);
522 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
523 RTW_WRITE8(regs, RTW_9346CR, ecr);
524
525 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
526
527 /* wait 2.5ms for completion */
528 for (i = 0; i < 25; i++) {
529 ecr = RTW_READ8(regs, RTW_9346CR);
530 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
531 RTW_DPRINTF(("%s: recall EEPROM in %dus\n", *dvname,
532 i * 100));
533 return 0;
534 }
535 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
536 DELAY(100);
537 }
538 printf("%s: recall EEPROM failed\n", *dvname);
539 return ETIMEDOUT;
540 }
541
542 static __inline int
543 rtw_reset(struct rtw_softc *sc)
544 {
545 int rc;
546 uint8_t config1;
547
548 if ((rc = rtw_chip_reset(&sc->sc_regs, &sc->sc_dev.dv_xname)) != 0)
549 return rc;
550
551 if ((rc = rtw_recall_eeprom(&sc->sc_regs, &sc->sc_dev.dv_xname)) != 0)
552 ;
553
554 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
555 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
556 /* TBD turn off maximum power saving? */
557
558 return 0;
559 }
560
561 static __inline int
562 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txctl *descs,
563 u_int ndescs)
564 {
565 int i, rc = 0;
566 for (i = 0; i < ndescs; i++) {
567 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
568 0, 0, &descs[i].stx_dmamap);
569 if (rc != 0)
570 break;
571 }
572 return rc;
573 }
574
575 static __inline int
576 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
577 u_int ndescs)
578 {
579 int i, rc = 0;
580 for (i = 0; i < ndescs; i++) {
581 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
582 &descs[i].srx_dmamap);
583 if (rc != 0)
584 break;
585 }
586 return rc;
587 }
588
589 static __inline void
590 rtw_rxctls_setup(struct rtw_rxctl *descs)
591 {
592 int i;
593 for (i = 0; i < RTW_RXQLEN; i++)
594 descs[i].srx_mbuf = NULL;
595 }
596
597 static __inline void
598 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
599 u_int ndescs)
600 {
601 int i;
602 for (i = 0; i < ndescs; i++) {
603 if (descs[i].srx_dmamap != NULL)
604 bus_dmamap_destroy(dmat, descs[i].srx_dmamap);
605 }
606 }
607
608 static __inline void
609 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txctl *descs,
610 u_int ndescs)
611 {
612 int i;
613 for (i = 0; i < ndescs; i++) {
614 if (descs[i].stx_dmamap != NULL)
615 bus_dmamap_destroy(dmat, descs[i].stx_dmamap);
616 }
617 }
618
619 static __inline void
620 rtw_srom_free(struct rtw_srom *sr)
621 {
622 sr->sr_size = 0;
623 if (sr->sr_content == NULL)
624 return;
625 free(sr->sr_content, M_DEVBUF);
626 sr->sr_content = NULL;
627 }
628
629 static void
630 rtw_srom_defaults(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
631 enum rtw_rfchipid *rfchipid, u_int32_t *rcr, char (*dvname)[IFNAMSIZ])
632 {
633 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
634 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
635 *rcr |= RTW_RCR_ENCS1;
636 *rfchipid = RTW_RFCHIPID_PHILIPS;
637 }
638
639 static int
640 rtw_srom_parse(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
641 enum rtw_rfchipid *rfchipid, u_int32_t *rcr, enum rtw_locale *locale,
642 char (*dvname)[IFNAMSIZ])
643 {
644 int i;
645 const char *rfname, *paname;
646 char scratch[sizeof("unknown 0xXX")];
647 u_int16_t version;
648 u_int8_t mac[IEEE80211_ADDR_LEN];
649
650 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
651 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
652
653 version = RTW_SR_GET16(sr, RTW_SR_VERSION);
654 printf("%s: SROM version %d.%d", *dvname, version >> 8, version & 0xff);
655
656 if (version <= 0x0101) {
657 printf(" is not understood, limping along with defaults\n");
658 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr,
659 dvname);
660 return 0;
661 }
662 printf("\n");
663
664 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
665 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
666
667 RTW_DPRINTF(("%s: EEPROM MAC %s\n", *dvname, ether_sprintf(mac)));
668
669 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
670
671 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
672 *flags |= RTW_F_ANTDIV;
673
674 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) != 0)
675 *flags |= RTW_F_DIGPHY;
676 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
677 *flags |= RTW_F_DFLANTB;
678
679 *rcr |= LSHIFT(MASK_AND_RSHIFT(RTW_SR_GET(sr, RTW_SR_RFPARM),
680 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
681
682 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
683 switch (*rfchipid) {
684 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
685 rfname = "GCT GRF5101";
686 paname = "Winspring WS9901";
687 break;
688 case RTW_RFCHIPID_MAXIM:
689 rfname = "Maxim MAX2820"; /* guess */
690 paname = "Maxim MAX2422"; /* guess */
691 break;
692 case RTW_RFCHIPID_INTERSIL:
693 rfname = "Intersil HFA3873"; /* guess */
694 paname = "Intersil <unknown>";
695 break;
696 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
697 rfname = "Philips SA2400A";
698 paname = "Philips SA2411";
699 break;
700 case RTW_RFCHIPID_RFMD:
701 /* this is the same front-end as an atw(4)! */
702 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
703 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
704 "SYN: Silicon Labs Si4126"; /* inferred from
705 * reference driver
706 */
707 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
708 break;
709 case RTW_RFCHIPID_RESERVED:
710 rfname = paname = "reserved";
711 break;
712 default:
713 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
714 rfname = paname = scratch;
715 }
716 printf("%s: RF: %s, PA: %s\n", *dvname, rfname, paname);
717
718 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
719 case RTW_CONFIG0_GL_USA:
720 *locale = RTW_LOCALE_USA;
721 break;
722 case RTW_CONFIG0_GL_EUROPE:
723 *locale = RTW_LOCALE_EUROPE;
724 break;
725 case RTW_CONFIG0_GL_JAPAN:
726 *locale = RTW_LOCALE_JAPAN;
727 break;
728 default:
729 *locale = RTW_LOCALE_UNKNOWN;
730 break;
731 }
732 return 0;
733 }
734
735 /* Returns -1 on failure. */
736 static int
737 rtw_srom_read(struct rtw_regs *regs, u_int32_t flags, struct rtw_srom *sr,
738 char (*dvname)[IFNAMSIZ])
739 {
740 int rc;
741 struct seeprom_descriptor sd;
742 u_int8_t ecr;
743
744 (void)memset(&sd, 0, sizeof(sd));
745
746 ecr = RTW_READ8(regs, RTW_9346CR);
747
748 if ((flags & RTW_F_9356SROM) != 0) {
749 RTW_DPRINTF(("%s: 93c56 SROM\n", *dvname));
750 sr->sr_size = 256;
751 sd.sd_chip = C56_66;
752 } else {
753 RTW_DPRINTF(("%s: 93c46 SROM\n", *dvname));
754 sr->sr_size = 128;
755 sd.sd_chip = C46;
756 }
757
758 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
759 RTW_9346CR_EEM_MASK);
760 ecr |= RTW_9346CR_EEM_PROGRAM;
761
762 RTW_WRITE8(regs, RTW_9346CR, ecr);
763
764 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
765
766 if (sr->sr_content == NULL) {
767 printf("%s: unable to allocate SROM buffer\n", *dvname);
768 return ENOMEM;
769 }
770
771 (void)memset(sr->sr_content, 0, sr->sr_size);
772
773 /* RTL8180 has a single 8-bit register for controlling the
774 * 93cx6 SROM. There is no "ready" bit. The RTL8180
775 * input/output sense is the reverse of read_seeprom's.
776 */
777 sd.sd_tag = regs->r_bt;
778 sd.sd_bsh = regs->r_bh;
779 sd.sd_regsize = 1;
780 sd.sd_control_offset = RTW_9346CR;
781 sd.sd_status_offset = RTW_9346CR;
782 sd.sd_dataout_offset = RTW_9346CR;
783 sd.sd_CK = RTW_9346CR_EESK;
784 sd.sd_CS = RTW_9346CR_EECS;
785 sd.sd_DI = RTW_9346CR_EEDO;
786 sd.sd_DO = RTW_9346CR_EEDI;
787 /* make read_seeprom enter EEPROM read/write mode */
788 sd.sd_MS = ecr;
789 sd.sd_RDY = 0;
790 #if 0
791 sd.sd_clkdelay = 50;
792 #endif
793
794 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
795 printf("%s: could not read SROM\n", *dvname);
796 free(sr->sr_content, M_DEVBUF);
797 sr->sr_content = NULL;
798 return -1; /* XXX */
799 }
800
801 /* end EEPROM read/write mode */
802 RTW_WRITE8(regs, RTW_9346CR,
803 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
804 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
805
806 if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
807 return rc;
808
809 #ifdef RTW_DEBUG
810 {
811 int i;
812 RTW_DPRINTF(("\n%s: serial ROM:\n\t", *dvname));
813 for (i = 0; i < sr->sr_size/2; i++) {
814 if (((i % 8) == 0) && (i != 0))
815 RTW_DPRINTF(("\n\t"));
816 RTW_DPRINTF((" %04x", sr->sr_content[i]));
817 }
818 RTW_DPRINTF(("\n"));
819 }
820 #endif /* RTW_DEBUG */
821 return 0;
822 }
823
824 static void
825 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
826 const char *dvname)
827 {
828 u_int8_t cfg4;
829 const char *method;
830
831 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
832
833 switch (rfchipid) {
834 default:
835 cfg4 |= LSHIFT(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
836 method = "fallback";
837 break;
838 case RTW_RFCHIPID_INTERSIL:
839 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
840 method = "Intersil";
841 break;
842 case RTW_RFCHIPID_PHILIPS:
843 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
844 method = "Philips";
845 break;
846 case RTW_RFCHIPID_RFMD:
847 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
848 method = "RFMD";
849 break;
850 }
851
852 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
853
854 printf("%s: %s RF programming method, %#02x\n", dvname, method,
855 RTW_READ8(regs, RTW_CONFIG4));
856 }
857
858 #if 0
859 static __inline int
860 rtw_identify_rf(struct rtw_regs *regs, enum rtw_rftype *rftype,
861 char (*dvname)[IFNAMSIZ])
862 {
863 u_int8_t cfg4;
864 const char *name;
865
866 cfg4 = RTW_READ8(regs, RTW_CONFIG4);
867
868 switch (cfg4 & RTW_CONFIG4_RFTYPE_MASK) {
869 case RTW_CONFIG4_RFTYPE_PHILIPS:
870 *rftype = RTW_RFTYPE_PHILIPS;
871 name = "Philips";
872 break;
873 case RTW_CONFIG4_RFTYPE_INTERSIL:
874 *rftype = RTW_RFTYPE_INTERSIL;
875 name = "Intersil";
876 break;
877 case RTW_CONFIG4_RFTYPE_RFMD:
878 *rftype = RTW_RFTYPE_RFMD;
879 name = "RFMD";
880 break;
881 default:
882 name = "<unknown>";
883 return ENXIO;
884 }
885
886 printf("%s: RF prog type %s\n", *dvname, name);
887 return 0;
888 }
889 #endif
890
891 static __inline void
892 rtw_init_channels(enum rtw_locale locale,
893 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
894 char (*dvname)[IFNAMSIZ])
895 {
896 int i;
897 const char *name = NULL;
898 #define ADD_CHANNEL(_chans, _chan) do { \
899 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
900 (*_chans)[_chan].ic_freq = \
901 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
902 } while (0)
903
904 switch (locale) {
905 case RTW_LOCALE_USA: /* 1-11 */
906 name = "USA";
907 for (i = 1; i <= 11; i++)
908 ADD_CHANNEL(chans, i);
909 break;
910 case RTW_LOCALE_JAPAN: /* 1-14 */
911 name = "Japan";
912 ADD_CHANNEL(chans, 14);
913 for (i = 1; i <= 14; i++)
914 ADD_CHANNEL(chans, i);
915 break;
916 case RTW_LOCALE_EUROPE: /* 1-13 */
917 name = "Europe";
918 for (i = 1; i <= 13; i++)
919 ADD_CHANNEL(chans, i);
920 break;
921 default: /* 10-11 allowed by most countries */
922 name = "<unknown>";
923 for (i = 10; i <= 11; i++)
924 ADD_CHANNEL(chans, i);
925 break;
926 }
927 printf("%s: Geographic Location %s\n", *dvname, name);
928 #undef ADD_CHANNEL
929 }
930
931 static __inline void
932 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale,
933 char (*dvname)[IFNAMSIZ])
934 {
935 u_int8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
936
937 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
938 case RTW_CONFIG0_GL_USA:
939 *locale = RTW_LOCALE_USA;
940 break;
941 case RTW_CONFIG0_GL_JAPAN:
942 *locale = RTW_LOCALE_JAPAN;
943 break;
944 case RTW_CONFIG0_GL_EUROPE:
945 *locale = RTW_LOCALE_EUROPE;
946 break;
947 default:
948 *locale = RTW_LOCALE_UNKNOWN;
949 break;
950 }
951 }
952
953 static __inline int
954 rtw_identify_sta(struct rtw_regs *regs, u_int8_t (*addr)[IEEE80211_ADDR_LEN],
955 char (*dvname)[IFNAMSIZ])
956 {
957 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
958 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
959 };
960 u_int32_t idr0 = RTW_READ(regs, RTW_IDR0),
961 idr1 = RTW_READ(regs, RTW_IDR1);
962
963 (*addr)[0] = MASK_AND_RSHIFT(idr0, BITS(0, 7));
964 (*addr)[1] = MASK_AND_RSHIFT(idr0, BITS(8, 15));
965 (*addr)[2] = MASK_AND_RSHIFT(idr0, BITS(16, 23));
966 (*addr)[3] = MASK_AND_RSHIFT(idr0, BITS(24 ,31));
967
968 (*addr)[4] = MASK_AND_RSHIFT(idr1, BITS(0, 7));
969 (*addr)[5] = MASK_AND_RSHIFT(idr1, BITS(8, 15));
970
971 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
972 printf("%s: could not get mac address, attach failed\n",
973 *dvname);
974 return ENXIO;
975 }
976
977 printf("%s: 802.11 address %s\n", *dvname, ether_sprintf(*addr));
978
979 return 0;
980 }
981
982 static u_int8_t
983 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
984 struct ieee80211_channel *chan)
985 {
986 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
987 KASSERT2(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14,
988 ("%s: channel %d out of range", __func__,
989 idx - RTW_SR_TXPOWER1 + 1));
990 return RTW_SR_GET(sr, idx);
991 }
992
993 static void
994 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *htcs)
995 {
996 int pri;
997 u_int ndesc[RTW_NTXPRI] =
998 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI, RTW_NTXDESCBCN};
999
1000 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1001 htcs[pri].htc_nfree = ndesc[pri];
1002 htcs[pri].htc_next = 0;
1003 }
1004 }
1005
1006 static int
1007 rtw_txctl_blk_init(struct rtw_txctl_blk *stc)
1008 {
1009 int i;
1010 struct rtw_txctl *stx;
1011
1012 SIMPLEQ_INIT(&stc->stc_dirtyq);
1013 SIMPLEQ_INIT(&stc->stc_freeq);
1014 for (i = 0; i < stc->stc_ndesc; i++) {
1015 stx = &stc->stc_desc[i];
1016 stx->stx_mbuf = NULL;
1017 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1018 }
1019 return 0;
1020 }
1021
1022 static void
1023 rtw_txctl_blk_init_all(struct rtw_txctl_blk *stcs)
1024 {
1025 int pri;
1026 for (pri = 0; pri < RTW_NTXPRI; pri++)
1027 rtw_txctl_blk_init(&stcs[pri]);
1028 }
1029
1030 static __inline void
1031 rtw_rxdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap, u_int desc0, u_int
1032 nsync, int ops)
1033 {
1034 /* sync to end of ring */
1035 if (desc0 + nsync > RTW_NRXDESC) {
1036 bus_dmamap_sync(dmat, dmap,
1037 offsetof(struct rtw_descs, hd_rx[desc0]),
1038 sizeof(struct rtw_rxdesc) * (RTW_NRXDESC - desc0), ops);
1039 nsync -= (RTW_NRXDESC - desc0);
1040 desc0 = 0;
1041 }
1042
1043 /* sync what remains */
1044 bus_dmamap_sync(dmat, dmap,
1045 offsetof(struct rtw_descs, hd_rx[desc0]),
1046 sizeof(struct rtw_rxdesc) * nsync, ops);
1047 }
1048
1049 static void
1050 rtw_txdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap,
1051 struct rtw_txdesc_blk *htc, u_int desc0, u_int nsync, int ops)
1052 {
1053 /* sync to end of ring */
1054 if (desc0 + nsync > htc->htc_ndesc) {
1055 bus_dmamap_sync(dmat, dmap,
1056 htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
1057 sizeof(struct rtw_txdesc) * (htc->htc_ndesc - desc0),
1058 ops);
1059 nsync -= (htc->htc_ndesc - desc0);
1060 desc0 = 0;
1061 }
1062
1063 /* sync what remains */
1064 bus_dmamap_sync(dmat, dmap,
1065 htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
1066 sizeof(struct rtw_txdesc) * nsync, ops);
1067 }
1068
1069 static void
1070 rtw_txdescs_sync_all(bus_dma_tag_t dmat, bus_dmamap_t dmap,
1071 struct rtw_txdesc_blk *htcs)
1072 {
1073 int pri;
1074 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1075 rtw_txdescs_sync(dmat, dmap,
1076 &htcs[pri], 0, htcs[pri].htc_ndesc,
1077 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1078 }
1079 }
1080
1081 static void
1082 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxctl *desc)
1083 {
1084 int i;
1085 struct rtw_rxctl *srx;
1086
1087 for (i = 0; i < RTW_NRXDESC; i++) {
1088 srx = &desc[i];
1089 bus_dmamap_sync(dmat, srx->srx_dmamap, 0,
1090 srx->srx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1091 bus_dmamap_unload(dmat, srx->srx_dmamap);
1092 m_freem(srx->srx_mbuf);
1093 srx->srx_mbuf = NULL;
1094 }
1095 }
1096
1097 static __inline int
1098 rtw_rxbuf_alloc(bus_dma_tag_t dmat, struct rtw_rxctl *srx)
1099 {
1100 int rc;
1101 struct mbuf *m;
1102
1103 MGETHDR(m, M_DONTWAIT, MT_DATA);
1104 if (m == NULL)
1105 return ENOMEM;
1106
1107 MCLGET(m, M_DONTWAIT);
1108 if (m == NULL)
1109 return ENOMEM;
1110
1111 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1112
1113 rc = bus_dmamap_load_mbuf(dmat, srx->srx_dmamap, m, BUS_DMA_NOWAIT);
1114 if (rc != 0)
1115 return rc;
1116
1117 srx->srx_mbuf = m;
1118
1119 return 0;
1120 }
1121
1122 static int
1123 rtw_rxctl_init_all(bus_dma_tag_t dmat, struct rtw_rxctl *desc,
1124 u_int *next, char (*dvname)[IFNAMSIZ])
1125 {
1126 int i, rc;
1127 struct rtw_rxctl *srx;
1128
1129 for (i = 0; i < RTW_NRXDESC; i++) {
1130 srx = &desc[i];
1131 if ((rc = rtw_rxbuf_alloc(dmat, srx)) == 0)
1132 continue;
1133 printf("%s: failed rtw_rxbuf_alloc after %d buffers, rc = %d\n",
1134 *dvname, i, rc);
1135 if (i == 0) {
1136 rtw_rxbufs_release(dmat, desc);
1137 return rc;
1138 }
1139 }
1140 *next = 0;
1141 return 0;
1142 }
1143
1144 static __inline void
1145 rtw_rxdesc_init(bus_dma_tag_t dmat, bus_dmamap_t dmam,
1146 struct rtw_rxdesc *hrx, struct rtw_rxctl *srx, int idx)
1147 {
1148 int is_last = (idx == RTW_NRXDESC - 1);
1149 uint32_t ctl;
1150
1151 hrx->hrx_buf = htole32(srx->srx_dmamap->dm_segs[0].ds_addr);
1152
1153 ctl = LSHIFT(srx->srx_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1154 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1155
1156 if (is_last)
1157 ctl |= RTW_RXCTL_EOR;
1158
1159 hrx->hrx_ctl = htole32(ctl);
1160
1161 /* sync the mbuf */
1162 bus_dmamap_sync(dmat, srx->srx_dmamap, 0, srx->srx_dmamap->dm_mapsize,
1163 BUS_DMASYNC_PREREAD);
1164
1165 /* sync the descriptor */
1166 bus_dmamap_sync(dmat, dmam, RTW_DESC_OFFSET(hd_rx, idx),
1167 sizeof(struct rtw_rxdesc),
1168 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1169 }
1170
1171 static void
1172 rtw_rxdesc_init_all(bus_dma_tag_t dmat, bus_dmamap_t dmam,
1173 struct rtw_rxdesc *desc, struct rtw_rxctl *ctl)
1174 {
1175 int i;
1176 struct rtw_rxdesc *hrx;
1177 struct rtw_rxctl *srx;
1178
1179 for (i = 0; i < RTW_NRXDESC; i++) {
1180 hrx = &desc[i];
1181 srx = &ctl[i];
1182 rtw_rxdesc_init(dmat, dmam, hrx, srx, i);
1183 }
1184 }
1185
1186 static void
1187 rtw_io_enable(struct rtw_regs *regs, u_int8_t flags, int enable)
1188 {
1189 u_int8_t cr;
1190
1191 RTW_DPRINTF(("%s: %s 0x%02x\n", __func__,
1192 enable ? "enable" : "disable", flags));
1193
1194 cr = RTW_READ8(regs, RTW_CR);
1195
1196 /* XXX reference source does not enable MULRW */
1197 #if 0
1198 /* enable PCI Read/Write Multiple */
1199 cr |= RTW_CR_MULRW;
1200 #endif
1201
1202 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1203 if (enable)
1204 cr |= flags;
1205 else
1206 cr &= ~flags;
1207 RTW_WRITE8(regs, RTW_CR, cr);
1208 RTW_SYNC(regs, RTW_CR, RTW_CR);
1209 }
1210
1211 static void
1212 rtw_intr_rx(struct rtw_softc *sc, u_int16_t isr)
1213 {
1214 u_int next;
1215 int rate, rssi;
1216 u_int32_t hrssi, hstat, htsfth, htsftl;
1217 struct rtw_rxdesc *hrx;
1218 struct rtw_rxctl *srx;
1219 struct mbuf *m;
1220
1221 struct ieee80211_node *ni;
1222 struct ieee80211_frame *wh;
1223
1224 for (next = sc->sc_rxnext; ; next = (next + 1) % RTW_RXQLEN) {
1225 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1226 next, 1, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1227 hrx = &sc->sc_rxdesc[next];
1228 srx = &sc->sc_rxctl[next];
1229
1230 hstat = le32toh(hrx->hrx_stat);
1231 hrssi = le32toh(hrx->hrx_rssi);
1232 htsfth = le32toh(hrx->hrx_tsfth);
1233 htsftl = le32toh(hrx->hrx_tsftl);
1234
1235 RTW_DPRINTF2(("%s: rxdesc[%d] hstat %#08x hrssi %#08x "
1236 "htsft %#08x%08x\n", __func__, next,
1237 hstat, hrssi, htsfth, htsftl));
1238
1239 if ((hstat & RTW_RXSTAT_OWN) != 0) /* belongs to NIC */
1240 break;
1241
1242 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1243 printf("%s: DMA error/FIFO overflow %08x, "
1244 "rx descriptor %d\n", sc->sc_dev.dv_xname,
1245 hstat & RTW_RXSTAT_IOERROR, next);
1246 goto next;
1247 }
1248
1249 switch (hstat & RTW_RXSTAT_RATE_MASK) {
1250 case RTW_RXSTAT_RATE_1MBPS:
1251 rate = 10;
1252 break;
1253 case RTW_RXSTAT_RATE_2MBPS:
1254 rate = 20;
1255 break;
1256 case RTW_RXSTAT_RATE_5MBPS:
1257 rate = 55;
1258 break;
1259 default:
1260 #ifdef RTW_DEBUG
1261 if (rtw_debug > 1)
1262 printf("%s: interpreting rate #%d as 11 MB/s\n",
1263 sc->sc_dev.dv_xname,
1264 MASK_AND_RSHIFT(hstat,
1265 RTW_RXSTAT_RATE_MASK));
1266 #endif /* RTW_DEBUG */
1267 /*FALLTHROUGH*/
1268 case RTW_RXSTAT_RATE_11MBPS:
1269 rate = 110;
1270 break;
1271 }
1272
1273 RTW_DPRINTF2(("%s: rate %d\n", __func__, rate));
1274
1275 #ifdef RTW_DEBUG
1276 #define PRINTSTAT(flag) do { \
1277 if ((hstat & flag) != 0) { \
1278 printf("%s" #flag, delim); \
1279 delim = ","; \
1280 } \
1281 } while (0)
1282 if (rtw_debug > 1) {
1283 const char *delim = "<";
1284 printf("%s: ", sc->sc_dev.dv_xname);
1285 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1286 printf("status %08x<", hstat);
1287 PRINTSTAT(RTW_RXSTAT_SPLCP);
1288 PRINTSTAT(RTW_RXSTAT_MAR);
1289 PRINTSTAT(RTW_RXSTAT_PAR);
1290 PRINTSTAT(RTW_RXSTAT_BAR);
1291 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1292 PRINTSTAT(RTW_RXSTAT_CRC32);
1293 PRINTSTAT(RTW_RXSTAT_ICV);
1294 printf(">, ");
1295 }
1296 printf("rate %d.%d Mb/s, time %08x%08x\n",
1297 rate / 10, rate % 10, htsfth, htsftl);
1298 }
1299 #endif /* RTW_DEBUG */
1300
1301 if ((hstat & RTW_RXSTAT_RES) != 0 &&
1302 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
1303 goto next;
1304
1305 /* if bad flags, skip descriptor */
1306 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1307 printf("%s: too many rx segments\n",
1308 sc->sc_dev.dv_xname);
1309 goto next;
1310 }
1311
1312 m = srx->srx_mbuf;
1313
1314 /* if temporarily out of memory, re-use mbuf */
1315 if (rtw_rxbuf_alloc(sc->sc_dmat, srx) != 0) {
1316 printf("%s: rtw_rxbuf_alloc(, %d) failed, "
1317 "dropping this packet\n", sc->sc_dev.dv_xname,
1318 next);
1319 goto next;
1320 }
1321
1322 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1323 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_RSSI);
1324 else {
1325 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_IMR_RSSI);
1326 /* TBD find out each front-end's LNA gain in the
1327 * front-end's units
1328 */
1329 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1330 rssi |= 0x80;
1331 }
1332
1333 m->m_pkthdr.len = m->m_len =
1334 MASK_AND_RSHIFT(hstat, RTW_RXSTAT_LENGTH_MASK);
1335 m->m_flags |= M_HASFCS;
1336
1337 if (m->m_pkthdr.len < IEEE80211_MIN_LEN) {
1338 sc->sc_ic.ic_stats.is_rx_tooshort++;
1339 goto next;
1340 }
1341 wh = mtod(m, struct ieee80211_frame *);
1342 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1343 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1344
1345 sc->sc_tsfth = htsfth;
1346
1347 ieee80211_input(&sc->sc_if, m, ni, rssi, htsftl);
1348 ieee80211_release_node(&sc->sc_ic, ni);
1349 next:
1350 rtw_rxdesc_init(sc->sc_dmat, sc->sc_desc_dmamap,
1351 hrx, srx, next);
1352 }
1353 sc->sc_rxnext = next;
1354
1355 return;
1356 }
1357
1358 static void
1359 rtw_txbuf_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1360 struct rtw_txctl *stx)
1361 {
1362 struct mbuf *m;
1363 struct ieee80211_node *ni;
1364 bus_dmamap_t dmamap;
1365
1366 dmamap = stx->stx_dmamap;
1367 m = stx->stx_mbuf;
1368 ni = stx->stx_ni;
1369 stx->stx_dmamap = NULL;
1370 stx->stx_mbuf = NULL;
1371 stx->stx_ni = NULL;
1372
1373 bus_dmamap_sync(dmat, dmamap, 0, dmamap->dm_mapsize,
1374 BUS_DMASYNC_POSTWRITE);
1375 bus_dmamap_unload(dmat, dmamap);
1376 m_freem(m);
1377 ieee80211_release_node(ic, ni);
1378 }
1379
1380 static void
1381 rtw_txbufs_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1382 struct rtw_txctl_blk *stc)
1383 {
1384 struct rtw_txctl *stx;
1385
1386 while ((stx = SIMPLEQ_FIRST(&stc->stc_dirtyq)) != NULL) {
1387 rtw_txbuf_release(dmat, ic, stx);
1388 SIMPLEQ_REMOVE_HEAD(&stc->stc_dirtyq, stx_q);
1389 SIMPLEQ_INSERT_HEAD(&stc->stc_dirtyq, stx, stx_q);
1390 }
1391 }
1392
1393 static __inline void
1394 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *htc,
1395 struct rtw_txctl *stx, int ndesc)
1396 {
1397 int data_retry, rts_retry;
1398 struct rtw_txdesc *htx0, *htxn;
1399 const char *condstring;
1400
1401 rtw_txbuf_release(sc->sc_dmat, &sc->sc_ic, stx);
1402
1403 htc->htc_nfree += ndesc;
1404
1405 htx0 = &htc->htc_desc[stx->stx_first];
1406 htxn = &htc->htc_desc[stx->stx_last];
1407
1408 rts_retry = MASK_AND_RSHIFT(le32toh(htx0->htx_stat),
1409 RTW_TXSTAT_RTSRETRY_MASK);
1410 data_retry = MASK_AND_RSHIFT(le32toh(htx0->htx_stat),
1411 RTW_TXSTAT_DRC_MASK);
1412
1413 sc->sc_if.if_collisions += rts_retry + data_retry;
1414
1415 if ((htx0->htx_stat & htole32(RTW_TXSTAT_TOK)) != 0)
1416 condstring = "ok";
1417 else {
1418 sc->sc_if.if_oerrors++;
1419 condstring = "error";
1420 }
1421
1422 DPRINTF2(sc, ("%s: stx %p txdesc[%d, %d] %s tries rts %u data %u\n",
1423 sc->sc_dev.dv_xname, stx, stx->stx_first, stx->stx_last,
1424 condstring, rts_retry, data_retry));
1425 }
1426
1427 /* Collect transmitted packets. */
1428 static __inline void
1429 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txctl_blk *stc,
1430 struct rtw_txdesc_blk *htc)
1431 {
1432 int ndesc;
1433 struct rtw_txctl *stx;
1434
1435 while ((stx = SIMPLEQ_FIRST(&stc->stc_dirtyq)) != NULL) {
1436 ndesc = 1 + stx->stx_last - stx->stx_first;
1437 if (stx->stx_last < stx->stx_first)
1438 ndesc += htc->htc_ndesc;
1439
1440 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap, htc,
1441 stx->stx_first, ndesc,
1442 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1443
1444 if ((htc->htc_desc[stx->stx_first].htx_stat &
1445 htole32(RTW_TXSTAT_OWN)) != 0)
1446 break;
1447
1448 rtw_collect_txpkt(sc, htc, stx, ndesc);
1449 SIMPLEQ_REMOVE_HEAD(&stc->stc_dirtyq, stx_q);
1450 SIMPLEQ_INSERT_HEAD(&stc->stc_freeq, stx, stx_q);
1451 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1452 }
1453 if (stx == NULL)
1454 stc->stc_tx_timer = 0;
1455 }
1456
1457 static void
1458 rtw_intr_tx(struct rtw_softc *sc, u_int16_t isr)
1459 {
1460 int pri;
1461 struct rtw_txctl_blk *stc;
1462 struct rtw_txdesc_blk *htc;
1463
1464 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1465 stc = &sc->sc_txctl_blk[pri];
1466 htc = &sc->sc_txdesc_blk[pri];
1467
1468 rtw_collect_txring(sc, stc, htc);
1469
1470 rtw_start(&sc->sc_if);
1471 }
1472
1473 /* TBD */
1474 return;
1475 }
1476
1477 static void
1478 rtw_intr_beacon(struct rtw_softc *sc, u_int16_t isr)
1479 {
1480 /* TBD */
1481 return;
1482 }
1483
1484 static void
1485 rtw_intr_atim(struct rtw_softc *sc)
1486 {
1487 /* TBD */
1488 return;
1489 }
1490
1491 static void
1492 rtw_hwring_setup(struct rtw_softc *sc)
1493 {
1494 struct rtw_regs *regs = &sc->sc_regs;
1495 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1496 RTW_WRITE(regs, RTW_TLPDA, RTW_RING_BASE(sc, hd_txlo));
1497 RTW_WRITE(regs, RTW_TNPDA, RTW_RING_BASE(sc, hd_txmd));
1498 RTW_WRITE(regs, RTW_THPDA, RTW_RING_BASE(sc, hd_txhi));
1499 RTW_WRITE(regs, RTW_TBDA, RTW_RING_BASE(sc, hd_bcn));
1500 }
1501
1502 static void
1503 rtw_swring_setup(struct rtw_softc *sc)
1504 {
1505 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1506
1507 rtw_txctl_blk_init_all(&sc->sc_txctl_blk[0]);
1508
1509 rtw_rxctl_init_all(sc->sc_dmat, sc->sc_rxctl, &sc->sc_rxnext,
1510 &sc->sc_dev.dv_xname);
1511 rtw_rxdesc_init_all(sc->sc_dmat, sc->sc_desc_dmamap,
1512 sc->sc_rxdesc, sc->sc_rxctl);
1513
1514 rtw_txdescs_sync_all(sc->sc_dmat, sc->sc_desc_dmamap,
1515 &sc->sc_txdesc_blk[0]);
1516 #if 0 /* redundant with rtw_rxdesc_init_all */
1517 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1518 0, RTW_NRXDESC, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1519 #endif
1520 }
1521
1522 static void
1523 rtw_kick(struct rtw_softc *sc)
1524 {
1525 int pri;
1526 struct rtw_regs *regs = &sc->sc_regs;
1527
1528 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 0);
1529 RTW_WRITE16(regs, RTW_IMR, 0);
1530 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1531 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1532 rtw_txbufs_release(sc->sc_dmat, &sc->sc_ic,
1533 &sc->sc_txctl_blk[pri]);
1534 }
1535 rtw_swring_setup(sc);
1536 rtw_hwring_setup(sc);
1537 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
1538 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 1);
1539 }
1540
1541 static void
1542 rtw_intr_ioerror(struct rtw_softc *sc, u_int16_t isr)
1543 {
1544 if ((isr & (RTW_INTR_RDU|RTW_INTR_RXFOVW)) != 0) {
1545 rtw_kick(sc);
1546 }
1547 if ((isr & RTW_INTR_TXFOVW) != 0)
1548 ; /* TBD restart transmit engine */
1549 return;
1550 }
1551
1552 static __inline void
1553 rtw_suspend_ticks(struct rtw_softc *sc)
1554 {
1555 printf("%s: suspending ticks\n", sc->sc_dev.dv_xname);
1556 sc->sc_do_tick = 0;
1557 }
1558
1559 static __inline void
1560 rtw_resume_ticks(struct rtw_softc *sc)
1561 {
1562 u_int32_t tsftrl0, tsftrl1, next_tick;
1563
1564 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1565
1566 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1567 next_tick = tsftrl1 + 1000000;
1568 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
1569
1570 sc->sc_do_tick = 1;
1571
1572 printf("%s: resume ticks delta %#08x now %#08x next %#08x\n",
1573 sc->sc_dev.dv_xname, tsftrl1 - tsftrl0, tsftrl1, next_tick);
1574 }
1575
1576 static void
1577 rtw_intr_timeout(struct rtw_softc *sc)
1578 {
1579 printf("%s: timeout\n", sc->sc_dev.dv_xname);
1580 if (sc->sc_do_tick)
1581 rtw_resume_ticks(sc);
1582 return;
1583 }
1584
1585 int
1586 rtw_intr(void *arg)
1587 {
1588 int i;
1589 struct rtw_softc *sc = arg;
1590 struct rtw_regs *regs = &sc->sc_regs;
1591 u_int16_t isr;
1592
1593 /*
1594 * If the interface isn't running, the interrupt couldn't
1595 * possibly have come from us.
1596 */
1597 if ((sc->sc_flags & RTW_F_ENABLED) == 0 ||
1598 (sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
1599 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) {
1600 RTW_DPRINTF2(("%s: stray interrupt\n", sc->sc_dev.dv_xname));
1601 return (0);
1602 }
1603
1604 for (i = 0; i < 10; i++) {
1605 isr = RTW_READ16(regs, RTW_ISR);
1606
1607 RTW_WRITE16(regs, RTW_ISR, isr);
1608
1609 if (sc->sc_intr_ack != NULL)
1610 (*sc->sc_intr_ack)(regs);
1611
1612 if (isr == 0)
1613 break;
1614
1615 #ifdef RTW_DEBUG
1616 #define PRINTINTR(flag) do { \
1617 if ((isr & flag) != 0) { \
1618 printf("%s" #flag, delim); \
1619 delim = ","; \
1620 } \
1621 } while (0)
1622
1623 if (rtw_debug > 1 && isr != 0) {
1624 const char *delim = "<";
1625
1626 printf("%s: reg[ISR] = %x", sc->sc_dev.dv_xname, isr);
1627
1628 PRINTINTR(RTW_INTR_TXFOVW);
1629 PRINTINTR(RTW_INTR_TIMEOUT);
1630 PRINTINTR(RTW_INTR_BCNINT);
1631 PRINTINTR(RTW_INTR_ATIMINT);
1632 PRINTINTR(RTW_INTR_TBDER);
1633 PRINTINTR(RTW_INTR_TBDOK);
1634 PRINTINTR(RTW_INTR_THPDER);
1635 PRINTINTR(RTW_INTR_THPDOK);
1636 PRINTINTR(RTW_INTR_TNPDER);
1637 PRINTINTR(RTW_INTR_TNPDOK);
1638 PRINTINTR(RTW_INTR_RXFOVW);
1639 PRINTINTR(RTW_INTR_RDU);
1640 PRINTINTR(RTW_INTR_TLPDER);
1641 PRINTINTR(RTW_INTR_TLPDOK);
1642 PRINTINTR(RTW_INTR_RER);
1643 PRINTINTR(RTW_INTR_ROK);
1644
1645 printf(">\n");
1646 }
1647 #undef PRINTINTR
1648 #endif /* RTW_DEBUG */
1649
1650 if ((isr & RTW_INTR_RX) != 0)
1651 rtw_intr_rx(sc, isr & RTW_INTR_RX);
1652 if ((isr & RTW_INTR_TX) != 0)
1653 rtw_intr_tx(sc, isr & RTW_INTR_TX);
1654 if ((isr & RTW_INTR_BEACON) != 0)
1655 rtw_intr_beacon(sc, isr & RTW_INTR_BEACON);
1656 if ((isr & RTW_INTR_ATIMINT) != 0)
1657 rtw_intr_atim(sc);
1658 if ((isr & RTW_INTR_IOERROR) != 0)
1659 rtw_intr_ioerror(sc, isr & RTW_INTR_IOERROR);
1660 if ((isr & RTW_INTR_TIMEOUT) != 0)
1661 rtw_intr_timeout(sc);
1662 }
1663
1664 return 1;
1665 }
1666
1667 static void
1668 rtw_stop(struct ifnet *ifp, int disable)
1669 {
1670 int pri, s;
1671 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
1672 struct ieee80211com *ic = &sc->sc_ic;
1673 struct rtw_regs *regs = &sc->sc_regs;
1674
1675 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1676 return;
1677
1678 rtw_suspend_ticks(sc);
1679
1680 s = splnet();
1681
1682 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1683
1684 if ((sc->sc_flags & RTW_F_INVALID) == 0) {
1685 /* Disable interrupts. */
1686 RTW_WRITE16(regs, RTW_IMR, 0);
1687
1688 /* Stop the transmit and receive processes. First stop DMA,
1689 * then disable receiver and transmitter.
1690 */
1691 RTW_WRITE8(regs, RTW_TPPOLL,
1692 RTW_TPPOLL_SBQ|RTW_TPPOLL_SHPQ|RTW_TPPOLL_SNPQ|
1693 RTW_TPPOLL_SLPQ);
1694
1695 rtw_io_enable(&sc->sc_regs, RTW_CR_RE|RTW_CR_TE, 0);
1696 }
1697
1698 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1699 rtw_txbufs_release(sc->sc_dmat, &sc->sc_ic,
1700 &sc->sc_txctl_blk[pri]);
1701 }
1702
1703 if (disable) {
1704 rtw_disable(sc);
1705 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1706 }
1707
1708 /* Mark the interface as not running. Cancel the watchdog timer. */
1709 ifp->if_flags &= ~IFF_RUNNING;
1710 ifp->if_timer = 0;
1711
1712 splx(s);
1713
1714 return;
1715 }
1716
1717 const char *
1718 rtw_pwrstate_string(enum rtw_pwrstate power)
1719 {
1720 switch (power) {
1721 case RTW_ON:
1722 return "on";
1723 case RTW_SLEEP:
1724 return "sleep";
1725 case RTW_OFF:
1726 return "off";
1727 default:
1728 return "unknown";
1729 }
1730 }
1731
1732 /* XXX I am using the RFMD settings gleaned from the reference
1733 * driver.
1734 */
1735 static void
1736 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1737 int before_rf)
1738 {
1739 u_int32_t anaparm;
1740
1741 RTW_DPRINTF(("%s: power state %s, %s RF\n", __func__,
1742 rtw_pwrstate_string(power), (before_rf) ? "before" : "after"));
1743
1744 anaparm = RTW_READ(regs, RTW_ANAPARM);
1745 anaparm &= ~(RTW_ANAPARM_RFPOW0_MASK|RTW_ANAPARM_RFPOW1_MASK);
1746 anaparm &= ~RTW_ANAPARM_TXDACOFF;
1747
1748 switch (power) {
1749 case RTW_OFF:
1750 if (before_rf)
1751 return;
1752 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_OFF;
1753 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_OFF;
1754 anaparm |= RTW_ANAPARM_TXDACOFF;
1755 break;
1756 case RTW_SLEEP:
1757 if (!before_rf)
1758 return;
1759 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_SLEEP;
1760 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_SLEEP;
1761 anaparm |= RTW_ANAPARM_TXDACOFF;
1762 break;
1763 case RTW_ON:
1764 if (!before_rf)
1765 return;
1766 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_ON;
1767 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_ON;
1768 break;
1769 }
1770 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1771 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1772 }
1773
1774 static void
1775 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1776 int before_rf)
1777 {
1778 u_int32_t anaparm;
1779
1780 RTW_DPRINTF(("%s: power state %s, %s RF\n", __func__,
1781 rtw_pwrstate_string(power), (before_rf) ? "before" : "after"));
1782
1783 anaparm = RTW_READ(regs, RTW_ANAPARM);
1784 anaparm &= ~(RTW_ANAPARM_RFPOW0_MASK|RTW_ANAPARM_RFPOW1_MASK);
1785 anaparm &= ~RTW_ANAPARM_TXDACOFF;
1786
1787 switch (power) {
1788 case RTW_OFF:
1789 if (before_rf)
1790 return;
1791 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_OFF;
1792 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_OFF;
1793 anaparm |= RTW_ANAPARM_TXDACOFF;
1794 break;
1795 case RTW_SLEEP:
1796 if (!before_rf)
1797 return;
1798 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_SLEEP;
1799 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_SLEEP;
1800 anaparm |= RTW_ANAPARM_TXDACOFF;
1801 break;
1802 case RTW_ON:
1803 if (!before_rf)
1804 return;
1805 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_ON;
1806 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_ON;
1807 break;
1808 }
1809 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1810 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1811 }
1812
1813 static void
1814 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf)
1815 {
1816 struct rtw_regs *regs = &sc->sc_regs;
1817
1818 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
1819
1820 (*sc->sc_pwrstate_cb)(regs, power, before_rf);
1821
1822 rtw_set_access(sc, RTW_ACCESS_NONE);
1823
1824 return;
1825 }
1826
1827 static int
1828 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
1829 {
1830 int rc;
1831
1832 RTW_DPRINTF2(("%s: %s->%s\n", __func__,
1833 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
1834
1835 if (sc->sc_pwrstate == power)
1836 return 0;
1837
1838 rtw_pwrstate0(sc, power, 1);
1839 rc = rtw_rf_pwrstate(sc->sc_rf, power);
1840 rtw_pwrstate0(sc, power, 0);
1841
1842 switch (power) {
1843 case RTW_ON:
1844 /* TBD set LEDs */
1845 break;
1846 case RTW_SLEEP:
1847 /* TBD */
1848 break;
1849 case RTW_OFF:
1850 /* TBD */
1851 break;
1852 }
1853 if (rc == 0)
1854 sc->sc_pwrstate = power;
1855 else
1856 sc->sc_pwrstate = RTW_OFF;
1857 return rc;
1858 }
1859
1860 static int
1861 rtw_tune(struct rtw_softc *sc)
1862 {
1863 struct ieee80211com *ic = &sc->sc_ic;
1864 u_int chan;
1865 int rc;
1866 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
1867 dflantb = sc->sc_flags & RTW_F_DFLANTB;
1868
1869 KASSERT(ic->ic_bss->ni_chan != NULL);
1870
1871 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1872 if (chan == IEEE80211_CHAN_ANY)
1873 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1874
1875 if (chan == sc->sc_cur_chan) {
1876 RTW_DPRINTF(("%s: already tuned chan #%d\n", __func__, chan));
1877 return 0;
1878 }
1879
1880 rtw_suspend_ticks(sc);
1881
1882 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 0);
1883
1884 /* TBD wait for Tx to complete */
1885
1886 KASSERT((sc->sc_flags & RTW_F_ENABLED) != 0);
1887
1888 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
1889 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_bss->ni_chan),
1890 sc->sc_csthr, ic->ic_bss->ni_chan->ic_freq, antdiv,
1891 dflantb, RTW_ON)) != 0) {
1892 /* XXX condition on powersaving */
1893 printf("%s: phy init failed\n", sc->sc_dev.dv_xname);
1894 }
1895
1896 sc->sc_cur_chan = chan;
1897
1898 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 1);
1899
1900 rtw_resume_ticks(sc);
1901
1902 return rc;
1903 }
1904
1905 void
1906 rtw_disable(struct rtw_softc *sc)
1907 {
1908 int rc;
1909
1910 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1911 return;
1912
1913 /* turn off PHY */
1914 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
1915 printf("%s: failed to turn off PHY (%d)\n",
1916 sc->sc_dev.dv_xname, rc);
1917
1918 if (sc->sc_disable != NULL)
1919 (*sc->sc_disable)(sc);
1920
1921 sc->sc_flags &= ~RTW_F_ENABLED;
1922 }
1923
1924 int
1925 rtw_enable(struct rtw_softc *sc)
1926 {
1927 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
1928 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
1929 printf("%s: device enable failed\n",
1930 sc->sc_dev.dv_xname);
1931 return (EIO);
1932 }
1933 sc->sc_flags |= RTW_F_ENABLED;
1934 }
1935 return (0);
1936 }
1937
1938 static void
1939 rtw_transmit_config(struct rtw_regs *regs)
1940 {
1941 u_int32_t tcr;
1942
1943 tcr = RTW_READ(regs, RTW_TCR);
1944
1945 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
1946 tcr &= ~RTW_TCR_LBK_MASK;
1947 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
1948
1949 /* set short/long retry limits */
1950 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
1951 tcr |= LSHIFT(7, RTW_TCR_SRL_MASK) | LSHIFT(7, RTW_TCR_LRL_MASK);
1952
1953 tcr |= RTW_TCR_CRC; /* NIC appends CRC32 */
1954
1955 RTW_WRITE(regs, RTW_TCR, tcr);
1956 }
1957
1958 static __inline void
1959 rtw_enable_interrupts(struct rtw_softc *sc)
1960 {
1961 struct rtw_regs *regs = &sc->sc_regs;
1962
1963 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
1964 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
1965
1966 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
1967 RTW_WRITE16(regs, RTW_ISR, 0xffff);
1968
1969 /* XXX necessary? */
1970 if (sc->sc_intr_ack != NULL)
1971 (*sc->sc_intr_ack)(regs);
1972 }
1973
1974 /* XXX is the endianness correct? test. */
1975 #define rtw_calchash(addr) \
1976 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1977
1978 static void
1979 rtw_pktfilt_load(struct rtw_softc *sc)
1980 {
1981 struct rtw_regs *regs = &sc->sc_regs;
1982 struct ieee80211com *ic = &sc->sc_ic;
1983 struct ethercom *ec = &ic->ic_ec;
1984 struct ifnet *ifp = &sc->sc_ic.ic_if;
1985 int hash;
1986 u_int32_t hashes[2] = { 0, 0 };
1987 struct ether_multi *enm;
1988 struct ether_multistep step;
1989
1990 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
1991
1992 #define RTW_RCR_MONITOR (RTW_RCR_ACRC32|RTW_RCR_APM|RTW_RCR_AAP|RTW_RCR_AB)
1993
1994 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1995 sc->sc_rcr |= RTW_RCR_MONITOR;
1996 else
1997 sc->sc_rcr &= ~RTW_RCR_MONITOR;
1998
1999 /* XXX reference sources BEGIN */
2000 sc->sc_rcr |= RTW_RCR_ENMARP | RTW_RCR_AICV | RTW_RCR_ACRC32;
2001 sc->sc_rcr |= RTW_RCR_AB | RTW_RCR_AM | RTW_RCR_APM;
2002 #if 0
2003 /* receive broadcasts in our BSS */
2004 sc->sc_rcr |= RTW_RCR_ADD3;
2005 #endif
2006 /* XXX reference sources END */
2007
2008 /* receive pwrmgmt frames. */
2009 sc->sc_rcr |= RTW_RCR_APWRMGT;
2010 /* receive mgmt/ctrl/data frames. */
2011 sc->sc_rcr |= RTW_RCR_AMF | RTW_RCR_ACF | RTW_RCR_ADF;
2012 /* initialize Rx DMA threshold, Tx DMA burst size */
2013 sc->sc_rcr |= RTW_RCR_RXFTH_WHOLE | RTW_RCR_MXDMA_1024;
2014
2015 ifp->if_flags &= ~IFF_ALLMULTI;
2016
2017 if (ifp->if_flags & IFF_PROMISC) {
2018 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2019 allmulti:
2020 ifp->if_flags |= IFF_ALLMULTI;
2021 goto setit;
2022 }
2023
2024 /*
2025 * Program the 64-bit multicast hash filter.
2026 */
2027 ETHER_FIRST_MULTI(step, ec, enm);
2028 while (enm != NULL) {
2029 /* XXX */
2030 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2031 ETHER_ADDR_LEN) != 0)
2032 goto allmulti;
2033
2034 hash = rtw_calchash(enm->enm_addrlo);
2035 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2036 ETHER_NEXT_MULTI(step, enm);
2037 }
2038
2039 if (ifp->if_flags & IFF_BROADCAST) {
2040 hash = rtw_calchash(etherbroadcastaddr);
2041 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2042 }
2043
2044 /* all bits set => hash is useless */
2045 if (~(hashes[0] & hashes[1]) == 0)
2046 goto allmulti;
2047
2048 setit:
2049 if (ifp->if_flags & IFF_ALLMULTI)
2050 sc->sc_rcr |= RTW_RCR_AM; /* accept all multicast */
2051
2052 if (ic->ic_state == IEEE80211_S_SCAN)
2053 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2054
2055 hashes[0] = hashes[1] = 0xffffffff;
2056
2057 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2058 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2059 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2060 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2061
2062 DPRINTF(sc, ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2063 sc->sc_dev.dv_xname, RTW_READ(regs, RTW_MAR0),
2064 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2065
2066 return;
2067 }
2068
2069 static int
2070 rtw_init(struct ifnet *ifp)
2071 {
2072 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2073 struct ieee80211com *ic = &sc->sc_ic;
2074 struct rtw_regs *regs = &sc->sc_regs;
2075 int rc = 0;
2076
2077 if ((rc = rtw_enable(sc)) != 0)
2078 goto out;
2079
2080 /* Cancel pending I/O and reset. */
2081 rtw_stop(ifp, 0);
2082
2083 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2084 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
2085 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
2086 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
2087
2088 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2089 goto out;
2090
2091 rtw_swring_setup(sc);
2092
2093 rtw_transmit_config(regs);
2094
2095 rtw_set_access(sc, RTW_ACCESS_CONFIG);
2096
2097 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2098
2099 /* long PLCP header, 1Mbps basic rate */
2100 RTW_WRITE16(regs, RTW_BRSR, 0x0);
2101
2102 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
2103 rtw_set_access(sc, RTW_ACCESS_NONE);
2104
2105 #if 0
2106 RTW_WRITE(regs, RTW_FEMR, RTW_FEMR_GWAKE|RTW_FEMR_WKUP|RTW_FEMR_INTR);
2107 #endif
2108 /* XXX from reference sources */
2109 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2110
2111 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev.dv_xname);
2112
2113 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2114 /* from Linux driver */
2115 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2116
2117 rtw_enable_interrupts(sc);
2118
2119 rtw_pktfilt_load(sc);
2120
2121 rtw_hwring_setup(sc);
2122
2123 rtw_io_enable(regs, RTW_CR_RE|RTW_CR_TE, 1);
2124
2125 ifp->if_flags |= IFF_RUNNING;
2126 ic->ic_state = IEEE80211_S_INIT;
2127
2128 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2129 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2130
2131 rtw_resume_ticks(sc);
2132
2133 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2134 rtw_set_access(sc, RTW_ACCESS_CONFIG);
2135
2136 switch (ic->ic_opmode) {
2137 case IEEE80211_M_AHDEMO:
2138 case IEEE80211_M_IBSS:
2139 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_ADHOC_OK);
2140 break;
2141 case IEEE80211_M_HOSTAP:
2142 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_AP_OK);
2143 break;
2144 case IEEE80211_M_MONITOR:
2145 /* XXX */
2146 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_NOLINK);
2147 break;
2148 case IEEE80211_M_STA:
2149 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_INFRA_OK);
2150 break;
2151 }
2152
2153 rtw_set_access(sc, RTW_ACCESS_NONE);
2154
2155 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2156 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2157 else
2158 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2159
2160 out:
2161 return rc;
2162 }
2163
2164 static int
2165 rtw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2166 {
2167 int rc = 0;
2168 struct rtw_softc *sc = ifp->if_softc;
2169 struct ifreq *ifr = (struct ifreq *)data;
2170
2171 switch (cmd) {
2172 case SIOCSIFFLAGS:
2173 if ((ifp->if_flags & IFF_UP) != 0) {
2174 if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2175 rtw_pktfilt_load(sc);
2176 } else
2177 rc = rtw_init(ifp);
2178 #ifdef RTW_DEBUG
2179 rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
2180 #endif /* RTW_DEBUG */
2181 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2182 #ifdef RTW_DEBUG
2183 rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
2184 #endif /* RTW_DEBUG */
2185 rtw_stop(ifp, 1);
2186 }
2187 break;
2188 case SIOCADDMULTI:
2189 case SIOCDELMULTI:
2190 if (cmd == SIOCADDMULTI)
2191 rc = ether_addmulti(ifr, &sc->sc_ic.ic_ec);
2192 else
2193 rc = ether_delmulti(ifr, &sc->sc_ic.ic_ec);
2194 if (rc == ENETRESET) {
2195 if (ifp->if_flags & IFF_RUNNING)
2196 rtw_pktfilt_load(sc);
2197 rc = 0;
2198 }
2199 break;
2200 default:
2201 if ((rc = ieee80211_ioctl(ifp, cmd, data)) == ENETRESET) {
2202 if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2203 rc = rtw_init(ifp);
2204 else
2205 rc = 0;
2206 }
2207 break;
2208 }
2209 return rc;
2210 }
2211
2212 /* Point *mp at the next 802.11 frame to transmit. Point *stcp
2213 * at the driver's selection of transmit control block for the packet.
2214 */
2215 static __inline int
2216 rtw_dequeue(struct ifnet *ifp, struct rtw_txctl_blk **stcp,
2217 struct rtw_txdesc_blk **htcp, struct mbuf **mp,
2218 struct ieee80211_node **nip)
2219 {
2220 struct rtw_txctl_blk *stc;
2221 struct rtw_txdesc_blk *htc;
2222 struct mbuf *m0;
2223 struct rtw_softc *sc;
2224 struct ieee80211com *ic;
2225
2226 sc = (struct rtw_softc *)ifp->if_softc;
2227
2228 DPRINTF2(sc, ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
2229 *mp = NULL;
2230
2231 stc = &sc->sc_txctl_blk[RTW_TXPRIMD];
2232 htc = &sc->sc_txdesc_blk[RTW_TXPRIMD];
2233
2234 if (SIMPLEQ_EMPTY(&stc->stc_freeq) || htc->htc_nfree == 0) {
2235 DPRINTF2(sc, ("%s: out of descriptors\n", __func__));
2236 ifp->if_flags |= IFF_OACTIVE;
2237 return 0;
2238 }
2239
2240 ic = &sc->sc_ic;
2241
2242 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
2243 IF_DEQUEUE(&ic->ic_mgtq, m0);
2244 *nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2245 m0->m_pkthdr.rcvif = NULL;
2246 DPRINTF2(sc, ("%s: dequeue mgt frame\n", __func__));
2247 } else if (ic->ic_state != IEEE80211_S_RUN) {
2248 DPRINTF2(sc, ("%s: not running\n", __func__));
2249 return 0;
2250 } else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
2251 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
2252 *nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2253 m0->m_pkthdr.rcvif = NULL;
2254 DPRINTF2(sc, ("%s: dequeue pwrsave frame\n", __func__));
2255 } else {
2256 IFQ_POLL(&ifp->if_snd, m0);
2257 if (m0 == NULL) {
2258 DPRINTF2(sc, ("%s: no frame\n", __func__));
2259 return 0;
2260 }
2261 DPRINTF2(sc, ("%s: dequeue data frame\n", __func__));
2262 IFQ_DEQUEUE(&ifp->if_snd, m0);
2263 ifp->if_opackets++;
2264 #if NBPFILTER > 0
2265 if (ifp->if_bpf)
2266 bpf_mtap(ifp->if_bpf, m0);
2267 #endif
2268 if ((m0 = ieee80211_encap(ifp, m0, nip)) == NULL) {
2269 DPRINTF2(sc, ("%s: encap error\n", __func__));
2270 ifp->if_oerrors++;
2271 return -1;
2272 }
2273 }
2274 DPRINTF2(sc, ("%s: leave\n", __func__));
2275 *stcp = stc;
2276 *htcp = htc;
2277 *mp = m0;
2278 return 0;
2279 }
2280
2281 /* TBD factor with atw_start */
2282 static struct mbuf *
2283 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
2284 u_int ndescfree, short *ifflagsp, const char *dvname)
2285 {
2286 int first, rc;
2287 struct mbuf *m, *m0;
2288
2289 m0 = chain;
2290
2291 /*
2292 * Load the DMA map. Copy and try (once) again if the packet
2293 * didn't fit in the alloted number of segments.
2294 */
2295 for (first = 1;
2296 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
2297 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
2298 dmam->dm_nsegs > ndescfree) && first;
2299 first = 0) {
2300 if (rc == 0)
2301 bus_dmamap_unload(dmat, dmam);
2302 MGETHDR(m, M_DONTWAIT, MT_DATA);
2303 if (m == NULL) {
2304 printf("%s: unable to allocate Tx mbuf\n",
2305 dvname);
2306 break;
2307 }
2308 if (m0->m_pkthdr.len > MHLEN) {
2309 MCLGET(m, M_DONTWAIT);
2310 if ((m->m_flags & M_EXT) == 0) {
2311 printf("%s: cannot allocate Tx cluster\n",
2312 dvname);
2313 m_freem(m);
2314 break;
2315 }
2316 }
2317 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2318 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
2319 m_freem(m0);
2320 m0 = m;
2321 m = NULL;
2322 }
2323 if (rc != 0) {
2324 printf("%s: cannot load Tx buffer, rc = %d\n", dvname, rc);
2325 m_freem(m0);
2326 return NULL;
2327 } else if (dmam->dm_nsegs > ndescfree) {
2328 *ifflagsp |= IFF_OACTIVE;
2329 bus_dmamap_unload(dmat, dmam);
2330 m_freem(m0);
2331 return NULL;
2332 }
2333 return m0;
2334 }
2335
2336 static void
2337 rtw_start(struct ifnet *ifp)
2338 {
2339 int desc, i, lastdesc, npkt, rate;
2340 uint32_t proto_txctl0, txctl0, txctl1;
2341 bus_dmamap_t dmamap;
2342 struct ieee80211com *ic;
2343 struct ieee80211_duration *d0;
2344 struct ieee80211_frame *wh;
2345 struct ieee80211_node *ni;
2346 struct mbuf *m0;
2347 struct rtw_softc *sc;
2348 struct rtw_txctl_blk *stc;
2349 struct rtw_txdesc_blk *htc;
2350 struct rtw_txctl *stx;
2351 struct rtw_txdesc *htx;
2352
2353 sc = (struct rtw_softc *)ifp->if_softc;
2354 ic = &sc->sc_ic;
2355
2356 DPRINTF2(sc, ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
2357
2358 /* XXX do real rate control */
2359 proto_txctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
2360
2361 switch (rate = MAX(2, ieee80211_get_rate(ic))) {
2362 case 2:
2363 proto_txctl0 |= RTW_TXCTL0_RATE_1MBPS;
2364 break;
2365 case 4:
2366 proto_txctl0 |= RTW_TXCTL0_RATE_2MBPS;
2367 break;
2368 case 11:
2369 proto_txctl0 |= RTW_TXCTL0_RATE_5MBPS;
2370 break;
2371 case 22:
2372 proto_txctl0 |= RTW_TXCTL0_RATE_11MBPS;
2373 break;
2374 }
2375
2376 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
2377 proto_txctl0 |= RTW_TXCTL0_SPLCP;
2378
2379 for (;;) {
2380 if (rtw_dequeue(ifp, &stc, &htc, &m0, &ni) == -1)
2381 continue;
2382 if (m0 == NULL)
2383 break;
2384 stx = SIMPLEQ_FIRST(&stc->stc_freeq);
2385
2386 dmamap = stx->stx_dmamap;
2387
2388 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
2389 htc->htc_nfree, &ifp->if_flags, sc->sc_dev.dv_xname);
2390
2391 if (m0 == NULL || dmamap->dm_nsegs == 0) {
2392 DPRINTF2(sc, ("%s: fail dmamap load\n", __func__));
2393 goto post_dequeue_err;
2394 }
2395
2396 txctl0 = proto_txctl0 |
2397 LSHIFT(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
2398
2399 wh = mtod(m0, struct ieee80211_frame *);
2400
2401 if (ieee80211_compute_duration(wh,
2402 m0->m_pkthdr.len - sizeof(wh),
2403 ic->ic_flags, ic->ic_fragthreshold,
2404 rate, &stx->stx_d0, &stx->stx_dn, &npkt) == -1) {
2405 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
2406 goto post_load_err;
2407 }
2408
2409 /* XXX >= ? */
2410 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
2411 txctl0 |= RTW_TXCTL0_RTSEN;
2412
2413 d0 = &stx->stx_d0;
2414
2415 txctl1 = LSHIFT(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
2416 LSHIFT(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
2417
2418 if ((d0->d_plcp_svc & IEEE80211_PLCP_SERVICE_LENEXT) != 0)
2419 txctl1 |= RTW_TXCTL1_LENGEXT;
2420
2421 /* TBD fragmentation */
2422
2423 stx->stx_first = htc->htc_next;
2424
2425 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2426 htc, stx->stx_first, dmamap->dm_nsegs,
2427 BUS_DMASYNC_PREWRITE);
2428
2429 for (i = 0, lastdesc = desc = stx->stx_first;
2430 i < dmamap->dm_nsegs;
2431 i++, desc = RTW_NEXT_IDX(htc, desc)) {
2432 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
2433 DPRINTF2(sc, ("%s: seg too long\n", __func__));
2434 goto post_load_err;
2435 }
2436 htx = &htc->htc_desc[desc];
2437 htx->htx_ctl0 = htole32(txctl0);
2438 if (i != 0)
2439 htx->htx_ctl0 |= htole32(RTW_TXCTL0_OWN);
2440 htx->htx_ctl1 = htole32(txctl1);
2441 htx->htx_buf = htole32(dmamap->dm_segs[i].ds_addr);
2442 htx->htx_len = htole32(dmamap->dm_segs[i].ds_len);
2443 lastdesc = desc;
2444 DPRINTF2(sc, ("%s: stx %p txdesc[%d] ctl0 %#08x "
2445 "ctl1 %#08x buf %#08x len %#08x\n",
2446 sc->sc_dev.dv_xname, stx, desc, htx->htx_ctl0,
2447 htx->htx_ctl1, htx->htx_buf, htx->htx_len));
2448 }
2449
2450 htc->htc_desc[lastdesc].htx_ctl0 |= htole32(RTW_TXCTL0_LS);
2451 htc->htc_desc[stx->stx_first].htx_ctl0 |=
2452 htole32(RTW_TXCTL0_FS);
2453
2454 DPRINTF2(sc, ("%s: stx %p FS on txdesc[%d], LS on txdesc[%d]\n",
2455 sc->sc_dev.dv_xname, stx, lastdesc, stx->stx_first));
2456
2457 stx->stx_ni = ni;
2458 stx->stx_mbuf = m0;
2459 stx->stx_last = lastdesc;
2460
2461 htc->htc_nfree -= dmamap->dm_nsegs;
2462 htc->htc_next = desc;
2463
2464 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2465 htc, stx->stx_first, dmamap->dm_nsegs,
2466 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2467
2468 htc->htc_desc[stx->stx_first].htx_ctl0 |=
2469 htole32(RTW_TXCTL0_OWN);
2470
2471 DPRINTF2(sc, ("%s: stx %p OWN on txdesc[%d]\n",
2472 sc->sc_dev.dv_xname, stx, stx->stx_first));
2473
2474 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2475 htc, stx->stx_first, 1,
2476 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2477
2478 SIMPLEQ_REMOVE_HEAD(&stc->stc_freeq, stx_q);
2479 SIMPLEQ_INSERT_TAIL(&stc->stc_dirtyq, stx, stx_q);
2480
2481 /* TBD poke just one txmtr? */
2482 RTW_WRITE8(&sc->sc_regs, RTW_TPPOLL,
2483 RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ | RTW_TPPOLL_HPQ |
2484 RTW_TPPOLL_BQ);
2485 }
2486 DPRINTF2(sc, ("%s: leave\n", __func__));
2487 return;
2488 post_load_err:
2489 bus_dmamap_unload(sc->sc_dmat, dmamap);
2490 m_freem(m0);
2491 post_dequeue_err:
2492 ieee80211_release_node(&sc->sc_ic, ni);
2493 return;
2494 }
2495
2496 static void
2497 rtw_watchdog(struct ifnet *ifp)
2498 {
2499 int pri;
2500 struct rtw_softc *sc;
2501 struct rtw_txctl_blk *stc;
2502
2503 sc = ifp->if_softc;
2504
2505 ifp->if_timer = 0;
2506
2507 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2508 return;
2509
2510 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2511 stc = &sc->sc_txctl_blk[pri];
2512
2513 if (stc->stc_tx_timer == 0)
2514 continue;
2515
2516 if (--stc->stc_tx_timer == 0) {
2517 if (SIMPLEQ_EMPTY(&stc->stc_dirtyq))
2518 continue;
2519 printf("%s: transmit timeout, priority %d\n",
2520 ifp->if_xname, pri);
2521 ifp->if_oerrors++;
2522 /* XXX be gentle */
2523 (void)rtw_init(ifp);
2524 rtw_start(ifp);
2525 } else
2526 ifp->if_timer = 1;
2527 }
2528 /* TBD */
2529 return;
2530 }
2531
2532 static void
2533 rtw_start_beacon(struct rtw_softc *sc, int enable)
2534 {
2535 /* TBD */
2536 return;
2537 }
2538
2539 static void
2540 rtw_next_scan(void *arg)
2541 {
2542 struct ieee80211com *ic = arg;
2543 int s;
2544
2545 /* don't call rtw_start w/o network interrupts blocked */
2546 s = splnet();
2547 if (ic->ic_state == IEEE80211_S_SCAN)
2548 ieee80211_next_scan(ic);
2549 splx(s);
2550 }
2551
2552 /* Synchronize the hardware state with the software state. */
2553 static int
2554 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2555 {
2556 struct ifnet *ifp = &ic->ic_if;
2557 struct rtw_softc *sc = ifp->if_softc;
2558 enum ieee80211_state ostate;
2559 int error;
2560
2561 ostate = ic->ic_state;
2562
2563 if (nstate == IEEE80211_S_INIT) {
2564 callout_stop(&sc->sc_scan_ch);
2565 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2566 rtw_start_beacon(sc, 0);
2567 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
2568 }
2569
2570 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
2571 rtw_pwrstate(sc, RTW_ON);
2572
2573 if ((error = rtw_tune(sc)) != 0)
2574 return error;
2575
2576 switch (nstate) {
2577 case IEEE80211_S_ASSOC:
2578 break;
2579 case IEEE80211_S_INIT:
2580 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2581 break;
2582 case IEEE80211_S_SCAN:
2583 #if 0
2584 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2585 rtw_write_bssid(sc);
2586 #endif
2587
2588 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
2589 rtw_next_scan, ic);
2590
2591 break;
2592 case IEEE80211_S_RUN:
2593 if (ic->ic_opmode == IEEE80211_M_STA)
2594 break;
2595 /*FALLTHROUGH*/
2596 case IEEE80211_S_AUTH:
2597 #if 0
2598 rtw_write_bssid(sc);
2599 rtw_write_bcn_thresh(sc);
2600 rtw_write_ssid(sc);
2601 rtw_write_sup_rates(sc);
2602 #endif
2603 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2604 ic->ic_opmode == IEEE80211_M_MONITOR)
2605 break;
2606
2607 /* TBD set listen interval, beacon interval */
2608
2609 #if 0
2610 rtw_tsf(sc);
2611 #endif
2612 break;
2613 }
2614
2615 if (nstate != IEEE80211_S_SCAN)
2616 callout_stop(&sc->sc_scan_ch);
2617
2618 if (nstate == IEEE80211_S_RUN &&
2619 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2620 ic->ic_opmode == IEEE80211_M_IBSS))
2621 rtw_start_beacon(sc, 1);
2622 else
2623 rtw_start_beacon(sc, 0);
2624
2625 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
2626 }
2627
2628 static void
2629 rtw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2630 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2631 {
2632 /* TBD */
2633 return;
2634 }
2635
2636 static void
2637 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2638 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2639 {
2640 struct rtw_softc *sc = (struct rtw_softc*)ic->ic_softc;
2641
2642 switch (subtype) {
2643 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2644 /* do nothing: hardware answers probe request XXX */
2645 break;
2646 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2647 case IEEE80211_FC0_SUBTYPE_BEACON:
2648 rtw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2649 break;
2650 default:
2651 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2652 break;
2653 }
2654 return;
2655 }
2656
2657 static struct ieee80211_node *
2658 rtw_node_alloc(struct ieee80211com *ic)
2659 {
2660 struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2661 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(ic);
2662
2663 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
2664 return ni;
2665 }
2666
2667 static void
2668 rtw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2669 {
2670 struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2671
2672 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
2673 ether_sprintf(ni->ni_bssid)));
2674 (*sc->sc_mtbl.mt_node_free)(ic, ni);
2675 }
2676
2677 static int
2678 rtw_media_change(struct ifnet *ifp)
2679 {
2680 int error;
2681
2682 error = ieee80211_media_change(ifp);
2683 if (error == ENETRESET) {
2684 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
2685 (IFF_RUNNING|IFF_UP))
2686 rtw_init(ifp); /* XXX lose error */
2687 error = 0;
2688 }
2689 return error;
2690 }
2691
2692 static void
2693 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2694 {
2695 struct rtw_softc *sc = ifp->if_softc;
2696
2697 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2698 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
2699 imr->ifm_status = 0;
2700 return;
2701 }
2702 ieee80211_media_status(ifp, imr);
2703 }
2704
2705 void
2706 rtw_power(int why, void *arg)
2707 {
2708 struct rtw_softc *sc = arg;
2709 struct ifnet *ifp = &sc->sc_ic.ic_if;
2710 int s;
2711
2712 DPRINTF(sc, ("%s: rtw_power(%d,)\n", sc->sc_dev.dv_xname, why));
2713
2714 s = splnet();
2715 switch (why) {
2716 case PWR_STANDBY:
2717 /* XXX do nothing. */
2718 break;
2719 case PWR_SUSPEND:
2720 rtw_stop(ifp, 0);
2721 if (sc->sc_power != NULL)
2722 (*sc->sc_power)(sc, why);
2723 break;
2724 case PWR_RESUME:
2725 if (ifp->if_flags & IFF_UP) {
2726 if (sc->sc_power != NULL)
2727 (*sc->sc_power)(sc, why);
2728 rtw_init(ifp);
2729 }
2730 break;
2731 case PWR_SOFTSUSPEND:
2732 case PWR_SOFTSTANDBY:
2733 case PWR_SOFTRESUME:
2734 break;
2735 }
2736 splx(s);
2737 }
2738
2739 /* rtw_shutdown: make sure the interface is stopped at reboot time. */
2740 void
2741 rtw_shutdown(void *arg)
2742 {
2743 struct rtw_softc *sc = arg;
2744
2745 rtw_stop(&sc->sc_ic.ic_if, 1);
2746 }
2747
2748 static __inline void
2749 rtw_setifprops(struct ifnet *ifp, char (*dvname)[IFNAMSIZ], void *softc)
2750 {
2751 (void)memcpy(ifp->if_xname, *dvname, IFNAMSIZ);
2752 ifp->if_softc = softc;
2753 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
2754 IFF_NOTRAILERS;
2755 ifp->if_ioctl = rtw_ioctl;
2756 ifp->if_start = rtw_start;
2757 ifp->if_watchdog = rtw_watchdog;
2758 ifp->if_init = rtw_init;
2759 ifp->if_stop = rtw_stop;
2760 }
2761
2762 static __inline void
2763 rtw_set80211props(struct ieee80211com *ic)
2764 {
2765 int nrate;
2766 ic->ic_phytype = IEEE80211_T_DS;
2767 ic->ic_opmode = IEEE80211_M_STA;
2768 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
2769 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
2770
2771 nrate = 0;
2772 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
2773 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
2774 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
2775 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
2776 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
2777 }
2778
2779 static __inline void
2780 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
2781 {
2782 mtbl->mt_newstate = ic->ic_newstate;
2783 ic->ic_newstate = rtw_newstate;
2784
2785 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
2786 ic->ic_recv_mgmt = rtw_recv_mgmt;
2787
2788 mtbl->mt_node_free = ic->ic_node_free;
2789 ic->ic_node_free = rtw_node_free;
2790
2791 mtbl->mt_node_alloc = ic->ic_node_alloc;
2792 ic->ic_node_alloc = rtw_node_alloc;
2793 }
2794
2795 static __inline void
2796 rtw_establish_hooks(struct rtw_hooks *hooks, char (*dvname)[IFNAMSIZ],
2797 void *arg)
2798 {
2799 /*
2800 * Make sure the interface is shutdown during reboot.
2801 */
2802 hooks->rh_shutdown = shutdownhook_establish(rtw_shutdown, arg);
2803 if (hooks->rh_shutdown == NULL)
2804 printf("%s: WARNING: unable to establish shutdown hook\n",
2805 *dvname);
2806
2807 /*
2808 * Add a suspend hook to make sure we come back up after a
2809 * resume.
2810 */
2811 hooks->rh_power = powerhook_establish(rtw_power, arg);
2812 if (hooks->rh_power == NULL)
2813 printf("%s: WARNING: unable to establish power hook\n",
2814 *dvname);
2815 }
2816
2817 static __inline void
2818 rtw_disestablish_hooks(struct rtw_hooks *hooks, char (*dvname)[IFNAMSIZ],
2819 void *arg)
2820 {
2821 if (hooks->rh_shutdown != NULL)
2822 shutdownhook_disestablish(hooks->rh_shutdown);
2823
2824 if (hooks->rh_power != NULL)
2825 powerhook_disestablish(hooks->rh_power);
2826 }
2827
2828 static __inline void
2829 rtw_init_radiotap(struct rtw_softc *sc)
2830 {
2831 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
2832 sc->sc_rxtap.rr_ihdr.it_len = sizeof(sc->sc_rxtapu);
2833 sc->sc_rxtap.rr_ihdr.it_present = RTW_RX_RADIOTAP_PRESENT;
2834
2835 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
2836 sc->sc_txtap.rt_ihdr.it_len = sizeof(sc->sc_txtapu);
2837 sc->sc_txtap.rt_ihdr.it_present = RTW_TX_RADIOTAP_PRESENT;
2838 }
2839
2840 static int
2841 rtw_txctl_blk_setup(struct rtw_txctl_blk *stc, u_int qlen)
2842 {
2843 SIMPLEQ_INIT(&stc->stc_dirtyq);
2844 SIMPLEQ_INIT(&stc->stc_freeq);
2845 stc->stc_ndesc = qlen;
2846 stc->stc_desc = malloc(qlen * sizeof(*stc->stc_desc), M_DEVBUF,
2847 M_NOWAIT);
2848 if (stc->stc_desc == NULL)
2849 return ENOMEM;
2850 return 0;
2851 }
2852
2853 static void
2854 rtw_txctl_blk_cleanup_all(struct rtw_softc *sc)
2855 {
2856 struct rtw_txctl_blk *stc;
2857 int qlen[RTW_NTXPRI] =
2858 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
2859 int pri;
2860
2861 for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
2862 stc = &sc->sc_txctl_blk[pri];
2863 free(stc->stc_desc, M_DEVBUF);
2864 stc->stc_desc = NULL;
2865 }
2866 }
2867
2868 static int
2869 rtw_txctl_blk_setup_all(struct rtw_softc *sc)
2870 {
2871 int pri, rc = 0;
2872 int qlen[RTW_NTXPRI] =
2873 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
2874
2875 for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
2876 rc = rtw_txctl_blk_setup(&sc->sc_txctl_blk[pri], qlen[pri]);
2877 if (rc != 0)
2878 break;
2879 }
2880 return rc;
2881 }
2882
2883 static void
2884 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *htc, struct rtw_txdesc *desc,
2885 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
2886 {
2887 int i;
2888
2889 htc->htc_ndesc = ndesc;
2890 htc->htc_desc = desc;
2891 htc->htc_physbase = physbase;
2892 htc->htc_ofs = ofs;
2893
2894 (void)memset(htc->htc_desc, 0,
2895 sizeof(htc->htc_desc[0]) * htc->htc_ndesc);
2896
2897 for (i = 0; i < htc->htc_ndesc; i++) {
2898 htc->htc_desc[i].htx_next = htole32(RTW_NEXT_DESC(htc, i));
2899 }
2900 }
2901
2902 static void
2903 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
2904 {
2905 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
2906 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
2907 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
2908
2909 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
2910 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
2911 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
2912
2913 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
2914 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
2915 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
2916
2917 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
2918 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
2919 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
2920 }
2921
2922 static struct rtw_rf *
2923 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid,
2924 rtw_rf_write_t rf_write, int digphy)
2925 {
2926 struct rtw_rf *rf;
2927
2928 switch (rfchipid) {
2929 case RTW_RFCHIPID_MAXIM:
2930 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
2931 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
2932 break;
2933 case RTW_RFCHIPID_PHILIPS:
2934 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
2935 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
2936 break;
2937 default:
2938 return NULL;
2939 }
2940 rf->rf_continuous_tx_cb =
2941 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
2942 rf->rf_continuous_tx_arg = (void *)sc;
2943 return rf;
2944 }
2945
2946 /* Revision C and later use a different PHY delay setting than
2947 * revisions A and B.
2948 */
2949 static u_int8_t
2950 rtw_check_phydelay(struct rtw_regs *regs, u_int32_t rcr0)
2951 {
2952 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
2953 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
2954
2955 u_int8_t phydelay = LSHIFT(0x6, RTW_PHYDELAY_PHYDELAY);
2956
2957 RTW_WRITE(regs, RTW_RCR, REVAB);
2958 RTW_WRITE(regs, RTW_RCR, REVC);
2959
2960 RTW_WBR(regs, RTW_RCR, RTW_RCR);
2961 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
2962 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
2963
2964 RTW_WRITE(regs, RTW_RCR, rcr0); /* restore RCR */
2965
2966 return phydelay;
2967 #undef REVC
2968 }
2969
2970 void
2971 rtw_attach(struct rtw_softc *sc)
2972 {
2973 rtw_rf_write_t rf_write;
2974 struct rtw_txctl_blk *stc;
2975 int pri, rc, vers;
2976
2977 #if 0
2978 CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_txdesc) == 0,
2979 "RTW_DESC_ALIGNMENT is not a multiple of "
2980 "sizeof(struct rtw_txdesc)");
2981
2982 CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_rxdesc) == 0,
2983 "RTW_DESC_ALIGNMENT is not a multiple of "
2984 "sizeof(struct rtw_rxdesc)");
2985
2986 CASSERT(RTW_DESC_ALIGNMENT % RTW_MAXPKTSEGS == 0,
2987 "RTW_DESC_ALIGNMENT is not a multiple of RTW_MAXPKTSEGS");
2988 #endif
2989
2990 NEXT_ATTACH_STATE(sc, DETACHED);
2991
2992 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
2993 case RTW_TCR_HWVERID_F:
2994 vers = 'F';
2995 rf_write = rtw_rf_hostwrite;
2996 break;
2997 case RTW_TCR_HWVERID_D:
2998 vers = 'D';
2999 if (rtw_host_rfio)
3000 rf_write = rtw_rf_hostwrite;
3001 else
3002 rf_write = rtw_rf_macwrite;
3003 break;
3004 default:
3005 vers = '?';
3006 rf_write = rtw_rf_macwrite;
3007 break;
3008 }
3009 printf("%s: hardware version %c\n", sc->sc_dev.dv_xname, vers);
3010
3011 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
3012 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
3013 0);
3014
3015 if (rc != 0) {
3016 printf("%s: could not allocate hw descriptors, error %d\n",
3017 sc->sc_dev.dv_xname, rc);
3018 goto err;
3019 }
3020
3021 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
3022
3023 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
3024 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
3025 (caddr_t*)&sc->sc_descs, BUS_DMA_COHERENT);
3026
3027 if (rc != 0) {
3028 printf("%s: could not map hw descriptors, error %d\n",
3029 sc->sc_dev.dv_xname, rc);
3030 goto err;
3031 }
3032 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
3033
3034 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
3035 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
3036
3037 if (rc != 0) {
3038 printf("%s: could not create DMA map for hw descriptors, "
3039 "error %d\n", sc->sc_dev.dv_xname, rc);
3040 goto err;
3041 }
3042 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
3043
3044 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
3045 sizeof(struct rtw_descs), NULL, 0);
3046
3047 if (rc != 0) {
3048 printf("%s: could not load DMA map for hw descriptors, "
3049 "error %d\n", sc->sc_dev.dv_xname, rc);
3050 goto err;
3051 }
3052 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
3053
3054 if (rtw_txctl_blk_setup_all(sc) != 0)
3055 goto err;
3056 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
3057
3058 rtw_txdesc_blk_setup_all(sc);
3059
3060 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
3061
3062 sc->sc_rxdesc = &sc->sc_descs->hd_rx[0];
3063
3064 rtw_rxctls_setup(&sc->sc_rxctl[0]);
3065
3066 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3067 stc = &sc->sc_txctl_blk[pri];
3068
3069 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
3070 &stc->stc_desc[0], stc->stc_ndesc)) != 0) {
3071 printf("%s: could not load DMA map for "
3072 "hw tx descriptors, error %d\n",
3073 sc->sc_dev.dv_xname, rc);
3074 goto err;
3075 }
3076 }
3077
3078 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
3079 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxctl[0],
3080 RTW_RXQLEN)) != 0) {
3081 printf("%s: could not load DMA map for hw rx descriptors, "
3082 "error %d\n", sc->sc_dev.dv_xname, rc);
3083 goto err;
3084 }
3085 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
3086
3087 /* Reset the chip to a known state. */
3088 if (rtw_reset(sc) != 0)
3089 goto err;
3090 NEXT_ATTACH_STATE(sc, FINISH_RESET);
3091
3092 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
3093
3094 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
3095 sc->sc_flags |= RTW_F_9356SROM;
3096
3097 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
3098 &sc->sc_dev.dv_xname) != 0)
3099 goto err;
3100
3101 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
3102
3103 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
3104 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
3105 &sc->sc_dev.dv_xname) != 0) {
3106 printf("%s: attach failed, malformed serial ROM\n",
3107 sc->sc_dev.dv_xname);
3108 goto err;
3109 }
3110
3111 RTW_DPRINTF(("%s: CS threshold %u\n", sc->sc_dev.dv_xname,
3112 sc->sc_csthr));
3113
3114 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
3115
3116 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid, rf_write,
3117 sc->sc_flags & RTW_F_DIGPHY);
3118
3119 if (sc->sc_rf == NULL) {
3120 printf("%s: attach failed, could not attach RF\n",
3121 sc->sc_dev.dv_xname);
3122 goto err;
3123 }
3124
3125 #if 0
3126 if (rtw_identify_rf(&sc->sc_regs, &sc->sc_rftype,
3127 &sc->sc_dev.dv_xname) != 0) {
3128 printf("%s: attach failed, unknown RF unidentified\n",
3129 sc->sc_dev.dv_xname);
3130 goto err;
3131 }
3132 #endif
3133
3134 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
3135
3136 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
3137
3138 RTW_DPRINTF(("%s: PHY delay %d\n", sc->sc_dev.dv_xname,
3139 sc->sc_phydelay));
3140
3141 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
3142 rtw_identify_country(&sc->sc_regs, &sc->sc_locale,
3143 &sc->sc_dev.dv_xname);
3144
3145 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels,
3146 &sc->sc_dev.dv_xname);
3147
3148 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
3149 &sc->sc_dev.dv_xname) != 0)
3150 goto err;
3151 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
3152
3153 rtw_setifprops(&sc->sc_if, &sc->sc_dev.dv_xname, (void*)sc);
3154
3155 IFQ_SET_READY(&sc->sc_if.if_snd);
3156
3157 rtw_set80211props(&sc->sc_ic);
3158
3159 /*
3160 * Call MI attach routines.
3161 */
3162 if_attach(&sc->sc_if);
3163 ieee80211_ifattach(&sc->sc_if);
3164
3165 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
3166
3167 /* possibly we should fill in our own sc_send_prresp, since
3168 * the RTL8180 is probably sending probe responses in ad hoc
3169 * mode.
3170 */
3171
3172 /* complete initialization */
3173 ieee80211_media_init(&sc->sc_if, rtw_media_change, rtw_media_status);
3174 callout_init(&sc->sc_scan_ch);
3175
3176 #if NBPFILTER > 0
3177 bpfattach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
3178 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
3179 #endif
3180
3181 rtw_establish_hooks(&sc->sc_hooks, &sc->sc_dev.dv_xname, (void*)sc);
3182
3183 rtw_init_radiotap(sc);
3184
3185 NEXT_ATTACH_STATE(sc, FINISHED);
3186
3187 return;
3188 err:
3189 rtw_detach(sc);
3190 return;
3191 }
3192
3193 int
3194 rtw_detach(struct rtw_softc *sc)
3195 {
3196 int pri;
3197
3198 switch (sc->sc_attach_state) {
3199 case FINISHED:
3200 rtw_stop(&sc->sc_if, 1);
3201
3202 rtw_disestablish_hooks(&sc->sc_hooks, &sc->sc_dev.dv_xname,
3203 (void*)sc);
3204 callout_stop(&sc->sc_scan_ch);
3205 ieee80211_ifdetach(&sc->sc_if);
3206 if_detach(&sc->sc_if);
3207 break;
3208 case FINISH_ID_STA:
3209 case FINISH_RF_ATTACH:
3210 rtw_rf_destroy(sc->sc_rf);
3211 sc->sc_rf = NULL;
3212 /*FALLTHROUGH*/
3213 case FINISH_PARSE_SROM:
3214 case FINISH_READ_SROM:
3215 rtw_srom_free(&sc->sc_srom);
3216 /*FALLTHROUGH*/
3217 case FINISH_RESET:
3218 case FINISH_RXMAPS_CREATE:
3219 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxctl[0],
3220 RTW_RXQLEN);
3221 /*FALLTHROUGH*/
3222 case FINISH_TXMAPS_CREATE:
3223 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3224 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
3225 sc->sc_txctl_blk[pri].stc_desc,
3226 sc->sc_txctl_blk[pri].stc_ndesc);
3227 }
3228 /*FALLTHROUGH*/
3229 case FINISH_TXDESCBLK_SETUP:
3230 case FINISH_TXCTLBLK_SETUP:
3231 rtw_txctl_blk_cleanup_all(sc);
3232 /*FALLTHROUGH*/
3233 case FINISH_DESCMAP_LOAD:
3234 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
3235 /*FALLTHROUGH*/
3236 case FINISH_DESCMAP_CREATE:
3237 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
3238 /*FALLTHROUGH*/
3239 case FINISH_DESC_MAP:
3240 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_descs,
3241 sizeof(struct rtw_descs));
3242 /*FALLTHROUGH*/
3243 case FINISH_DESC_ALLOC:
3244 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
3245 sc->sc_desc_nsegs);
3246 /*FALLTHROUGH*/
3247 case DETACHED:
3248 NEXT_ATTACH_STATE(sc, DETACHED);
3249 break;
3250 }
3251 return 0;
3252 }
3253
3254 int
3255 rtw_activate(struct device *self, enum devact act)
3256 {
3257 struct rtw_softc *sc = (struct rtw_softc *)self;
3258 int rc = 0, s;
3259
3260 s = splnet();
3261 switch (act) {
3262 case DVACT_ACTIVATE:
3263 rc = EOPNOTSUPP;
3264 break;
3265
3266 case DVACT_DEACTIVATE:
3267 if_deactivate(&sc->sc_ic.ic_if);
3268 break;
3269 }
3270 splx(s);
3271 return rc;
3272 }
3273