rtw.c revision 1.6 1 /* $NetBSD: rtw.c,v 1.6 2004/12/20 00:16:21 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005 David Young. All rights reserved.
4 *
5 * Programmed for NetBSD by David Young.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of David Young may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
23 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30 * OF SUCH DAMAGE.
31 */
32 /*
33 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.6 2004/12/20 00:16:21 dyoung Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/sysctl.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #if 0
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #endif
54 #include <sys/time.h>
55 #include <sys/types.h>
56
57 #include <machine/endian.h>
58 #include <machine/bus.h>
59 #include <machine/intr.h> /* splnet */
60
61 #include <uvm/uvm_extern.h>
62
63 #include <net/if.h>
64 #include <net/if_media.h>
65 #include <net/if_ether.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_compat.h>
69 #include <net80211/ieee80211_radiotap.h>
70
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 #include <dev/ic/rtwreg.h>
76 #include <dev/ic/rtwvar.h>
77 #include <dev/ic/rtwphyio.h>
78 #include <dev/ic/rtwphy.h>
79
80 #include <dev/ic/smc93cx6var.h>
81
82 #define KASSERT2(__cond, __msg) \
83 do { \
84 if (!(__cond)) \
85 panic __msg ; \
86 } while (0)
87
88 int rtw_rfprog_fallback = 0;
89 int rtw_host_rfio = 0;
90 int rtw_flush_rfio = 1;
91 int rtw_rfio_delay = 0;
92
93 #ifdef RTW_DEBUG
94 int rtw_debug = 2;
95 #endif /* RTW_DEBUG */
96
97 #define NEXT_ATTACH_STATE(sc, state) do { \
98 DPRINTF(sc, ("%s: attach state %s\n", __func__, #state)); \
99 sc->sc_attach_state = state; \
100 } while (0)
101
102 int rtw_dwelltime = 1000; /* milliseconds */
103
104 static void rtw_start(struct ifnet *);
105
106 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
107 static int rtw_sysctl_verify_rfio_delay(SYSCTLFN_PROTO);
108 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
109 #ifdef RTW_DEBUG
110 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
111 #endif /* RTW_DEBUG */
112
113 /*
114 * Setup sysctl(3) MIB, hw.rtw.*
115 *
116 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
117 */
118 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
119 {
120 int rc;
121 struct sysctlnode *cnode, *rnode;
122
123 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
124 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
125 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
126 goto err;
127
128 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
129 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
130 "Realtek RTL818x 802.11 controls",
131 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
132 goto err;
133
134 #ifdef RTW_DEBUG
135 /* control debugging printfs */
136 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
137 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
138 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
139 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
140 CTL_CREATE, CTL_EOL)) != 0)
141 goto err;
142 #endif /* RTW_DEBUG */
143 /* set fallback RF programming method */
144 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
145 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
146 "rfprog_fallback",
147 SYSCTL_DESCR("Set fallback RF programming method"),
148 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
149 CTL_CREATE, CTL_EOL)) != 0)
150 goto err;
151
152 /* force host to flush I/O by reading RTW_PHYADDR */
153 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
154 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
155 "flush_rfio", SYSCTL_DESCR("Enable RF I/O flushing"),
156 rtw_sysctl_verify_rfio, 0, &rtw_flush_rfio, 0,
157 CTL_CREATE, CTL_EOL)) != 0)
158 goto err;
159
160 /* force host to control RF I/O bus */
161 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
162 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
163 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
164 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
165 CTL_CREATE, CTL_EOL)) != 0)
166 goto err;
167
168 /* control RF I/O delay */
169 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
170 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
171 "rfio_delay", SYSCTL_DESCR("Set RF I/O delay"),
172 rtw_sysctl_verify_rfio_delay, 0, &rtw_rfio_delay, 0,
173 CTL_CREATE, CTL_EOL)) != 0)
174 goto err;
175
176 return;
177 err:
178 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
179 }
180
181 static int
182 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
183 {
184 int error, t;
185 struct sysctlnode node;
186
187 node = *rnode;
188 t = *(int*)rnode->sysctl_data;
189 node.sysctl_data = &t;
190 error = sysctl_lookup(SYSCTLFN_CALL(&node));
191 if (error || newp == NULL)
192 return (error);
193
194 if (t < lower || t > upper)
195 return (EINVAL);
196
197 *(int*)rnode->sysctl_data = t;
198
199 return (0);
200 }
201
202 static int
203 rtw_sysctl_verify_rfio_delay(SYSCTLFN_ARGS)
204 {
205 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 1000000);
206 }
207
208 static int
209 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
210 {
211 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0,
212 MASK_AND_RSHIFT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
213 }
214
215 static int
216 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
217 {
218 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 1);
219 }
220
221 #ifdef RTW_DEBUG
222 static int
223 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
224 {
225 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 2);
226 }
227
228 static void
229 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
230 {
231 #define PRINTREG32(sc, reg) \
232 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
233 dvname, reg, RTW_READ(regs, reg)))
234
235 #define PRINTREG16(sc, reg) \
236 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %04x\n", \
237 dvname, reg, RTW_READ16(regs, reg)))
238
239 #define PRINTREG8(sc, reg) \
240 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %02x\n", \
241 dvname, reg, RTW_READ8(regs, reg)))
242
243 RTW_DPRINTF2(("%s: %s\n", dvname, where));
244
245 PRINTREG32(regs, RTW_IDR0);
246 PRINTREG32(regs, RTW_IDR1);
247 PRINTREG32(regs, RTW_MAR0);
248 PRINTREG32(regs, RTW_MAR1);
249 PRINTREG32(regs, RTW_TSFTRL);
250 PRINTREG32(regs, RTW_TSFTRH);
251 PRINTREG32(regs, RTW_TLPDA);
252 PRINTREG32(regs, RTW_TNPDA);
253 PRINTREG32(regs, RTW_THPDA);
254 PRINTREG32(regs, RTW_TCR);
255 PRINTREG32(regs, RTW_RCR);
256 PRINTREG32(regs, RTW_TINT);
257 PRINTREG32(regs, RTW_TBDA);
258 PRINTREG32(regs, RTW_ANAPARM);
259 PRINTREG32(regs, RTW_BB);
260 PRINTREG32(regs, RTW_PHYCFG);
261 PRINTREG32(regs, RTW_WAKEUP0L);
262 PRINTREG32(regs, RTW_WAKEUP0H);
263 PRINTREG32(regs, RTW_WAKEUP1L);
264 PRINTREG32(regs, RTW_WAKEUP1H);
265 PRINTREG32(regs, RTW_WAKEUP2LL);
266 PRINTREG32(regs, RTW_WAKEUP2LH);
267 PRINTREG32(regs, RTW_WAKEUP2HL);
268 PRINTREG32(regs, RTW_WAKEUP2HH);
269 PRINTREG32(regs, RTW_WAKEUP3LL);
270 PRINTREG32(regs, RTW_WAKEUP3LH);
271 PRINTREG32(regs, RTW_WAKEUP3HL);
272 PRINTREG32(regs, RTW_WAKEUP3HH);
273 PRINTREG32(regs, RTW_WAKEUP4LL);
274 PRINTREG32(regs, RTW_WAKEUP4LH);
275 PRINTREG32(regs, RTW_WAKEUP4HL);
276 PRINTREG32(regs, RTW_WAKEUP4HH);
277 PRINTREG32(regs, RTW_DK0);
278 PRINTREG32(regs, RTW_DK1);
279 PRINTREG32(regs, RTW_DK2);
280 PRINTREG32(regs, RTW_DK3);
281 PRINTREG32(regs, RTW_RETRYCTR);
282 PRINTREG32(regs, RTW_RDSAR);
283 PRINTREG32(regs, RTW_FER);
284 PRINTREG32(regs, RTW_FEMR);
285 PRINTREG32(regs, RTW_FPSR);
286 PRINTREG32(regs, RTW_FFER);
287
288 /* 16-bit registers */
289 PRINTREG16(regs, RTW_BRSR);
290 PRINTREG16(regs, RTW_IMR);
291 PRINTREG16(regs, RTW_ISR);
292 PRINTREG16(regs, RTW_BCNITV);
293 PRINTREG16(regs, RTW_ATIMWND);
294 PRINTREG16(regs, RTW_BINTRITV);
295 PRINTREG16(regs, RTW_ATIMTRITV);
296 PRINTREG16(regs, RTW_CRC16ERR);
297 PRINTREG16(regs, RTW_CRC0);
298 PRINTREG16(regs, RTW_CRC1);
299 PRINTREG16(regs, RTW_CRC2);
300 PRINTREG16(regs, RTW_CRC3);
301 PRINTREG16(regs, RTW_CRC4);
302 PRINTREG16(regs, RTW_CWR);
303
304 /* 8-bit registers */
305 PRINTREG8(regs, RTW_CR);
306 PRINTREG8(regs, RTW_9346CR);
307 PRINTREG8(regs, RTW_CONFIG0);
308 PRINTREG8(regs, RTW_CONFIG1);
309 PRINTREG8(regs, RTW_CONFIG2);
310 PRINTREG8(regs, RTW_MSR);
311 PRINTREG8(regs, RTW_CONFIG3);
312 PRINTREG8(regs, RTW_CONFIG4);
313 PRINTREG8(regs, RTW_TESTR);
314 PRINTREG8(regs, RTW_PSR);
315 PRINTREG8(regs, RTW_SCR);
316 PRINTREG8(regs, RTW_PHYDELAY);
317 PRINTREG8(regs, RTW_CRCOUNT);
318 PRINTREG8(regs, RTW_PHYADDR);
319 PRINTREG8(regs, RTW_PHYDATAW);
320 PRINTREG8(regs, RTW_PHYDATAR);
321 PRINTREG8(regs, RTW_CONFIG5);
322 PRINTREG8(regs, RTW_TPPOLL);
323
324 PRINTREG16(regs, RTW_BSSID16);
325 PRINTREG32(regs, RTW_BSSID32);
326 #undef PRINTREG32
327 #undef PRINTREG16
328 #undef PRINTREG8
329 }
330 #endif /* RTW_DEBUG */
331
332 void
333 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
334 {
335 struct rtw_regs *regs = &sc->sc_regs;
336
337 u_int32_t tcr;
338 tcr = RTW_READ(regs, RTW_TCR);
339 tcr &= ~RTW_TCR_LBK_MASK;
340 if (enable)
341 tcr |= RTW_TCR_LBK_CONT;
342 else
343 tcr |= RTW_TCR_LBK_NORMAL;
344 RTW_WRITE(regs, RTW_TCR, tcr);
345 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
346 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
347 rtw_txdac_enable(sc, !enable);
348 rtw_set_access(sc, RTW_ACCESS_ANAPARM); /* XXX Voodoo from Linux. */
349 rtw_set_access(sc, RTW_ACCESS_NONE);
350 }
351
352 static const char *
353 rtw_access_string(enum rtw_access access)
354 {
355 switch (access) {
356 case RTW_ACCESS_NONE:
357 return "none";
358 case RTW_ACCESS_CONFIG:
359 return "config";
360 case RTW_ACCESS_ANAPARM:
361 return "anaparm";
362 default:
363 return "unknown";
364 }
365 }
366
367 static void
368 rtw_set_access1(struct rtw_regs *regs,
369 enum rtw_access oaccess, enum rtw_access naccess)
370 {
371 KASSERT(naccess >= RTW_ACCESS_NONE && naccess <= RTW_ACCESS_ANAPARM);
372 KASSERT(oaccess >= RTW_ACCESS_NONE && oaccess <= RTW_ACCESS_ANAPARM);
373
374 if (naccess == oaccess)
375 return;
376
377 switch (naccess) {
378 case RTW_ACCESS_NONE:
379 switch (oaccess) {
380 case RTW_ACCESS_ANAPARM:
381 rtw_anaparm_enable(regs, 0);
382 /*FALLTHROUGH*/
383 case RTW_ACCESS_CONFIG:
384 rtw_config0123_enable(regs, 0);
385 /*FALLTHROUGH*/
386 case RTW_ACCESS_NONE:
387 break;
388 }
389 break;
390 case RTW_ACCESS_CONFIG:
391 switch (oaccess) {
392 case RTW_ACCESS_NONE:
393 rtw_config0123_enable(regs, 1);
394 /*FALLTHROUGH*/
395 case RTW_ACCESS_CONFIG:
396 break;
397 case RTW_ACCESS_ANAPARM:
398 rtw_anaparm_enable(regs, 0);
399 break;
400 }
401 break;
402 case RTW_ACCESS_ANAPARM:
403 switch (oaccess) {
404 case RTW_ACCESS_NONE:
405 rtw_config0123_enable(regs, 1);
406 /*FALLTHROUGH*/
407 case RTW_ACCESS_CONFIG:
408 rtw_anaparm_enable(regs, 1);
409 /*FALLTHROUGH*/
410 case RTW_ACCESS_ANAPARM:
411 break;
412 }
413 break;
414 }
415 }
416
417 void
418 rtw_set_access(struct rtw_softc *sc, enum rtw_access access)
419 {
420 rtw_set_access1(&sc->sc_regs, sc->sc_access, access);
421 RTW_DPRINTF(("%s: access %s -> %s\n", sc->sc_dev.dv_xname,
422 rtw_access_string(sc->sc_access),
423 rtw_access_string(access)));
424 sc->sc_access = access;
425 }
426
427 /*
428 * Enable registers, switch register banks.
429 */
430 void
431 rtw_config0123_enable(struct rtw_regs *regs, int enable)
432 {
433 u_int8_t ecr;
434 ecr = RTW_READ8(regs, RTW_9346CR);
435 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
436 if (enable)
437 ecr |= RTW_9346CR_EEM_CONFIG;
438 else
439 ecr |= RTW_9346CR_EEM_NORMAL;
440 RTW_WRITE8(regs, RTW_9346CR, ecr);
441 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
442 }
443
444 /* requires rtw_config0123_enable(, 1) */
445 void
446 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
447 {
448 u_int8_t cfg3;
449
450 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
451 cfg3 |= RTW_CONFIG3_CLKRUNEN;
452 if (enable)
453 cfg3 |= RTW_CONFIG3_PARMEN;
454 else
455 cfg3 &= ~RTW_CONFIG3_PARMEN;
456 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
457 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
458 }
459
460 /* requires rtw_anaparm_enable(, 1) */
461 void
462 rtw_txdac_enable(struct rtw_softc *sc, int enable)
463 {
464 u_int32_t anaparm;
465 struct rtw_regs *regs = &sc->sc_regs;
466
467 anaparm = RTW_READ(regs, RTW_ANAPARM);
468 if (enable)
469 anaparm &= ~RTW_ANAPARM_TXDACOFF;
470 else
471 anaparm |= RTW_ANAPARM_TXDACOFF;
472 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
473 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
474 }
475
476 static __inline int
477 rtw_chip_reset1(struct rtw_regs *regs, char (*dvname)[IFNAMSIZ])
478 {
479 u_int8_t cr;
480 int i;
481
482 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
483
484 RTW_WBR(regs, RTW_CR, RTW_CR);
485
486 for (i = 0; i < 10000; i++) {
487 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
488 RTW_DPRINTF(("%s: reset in %dus\n", *dvname, i));
489 return 0;
490 }
491 RTW_RBR(regs, RTW_CR, RTW_CR);
492 DELAY(1); /* 1us */
493 }
494
495 printf("%s: reset failed\n", *dvname);
496 return ETIMEDOUT;
497 }
498
499 static __inline int
500 rtw_chip_reset(struct rtw_regs *regs, char (*dvname)[IFNAMSIZ])
501 {
502 uint32_t tcr;
503
504 /* from Linux driver */
505 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
506 LSHIFT(7, RTW_TCR_SRL_MASK) | LSHIFT(7, RTW_TCR_LRL_MASK);
507
508 RTW_WRITE(regs, RTW_TCR, tcr);
509
510 RTW_WBW(regs, RTW_CR, RTW_TCR);
511
512 return rtw_chip_reset1(regs, dvname);
513 }
514
515 static __inline int
516 rtw_recall_eeprom(struct rtw_regs *regs, char (*dvname)[IFNAMSIZ])
517 {
518 int i;
519 u_int8_t ecr;
520
521 ecr = RTW_READ8(regs, RTW_9346CR);
522 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
523 RTW_WRITE8(regs, RTW_9346CR, ecr);
524
525 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
526
527 /* wait 2.5ms for completion */
528 for (i = 0; i < 25; i++) {
529 ecr = RTW_READ8(regs, RTW_9346CR);
530 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
531 RTW_DPRINTF(("%s: recall EEPROM in %dus\n", *dvname,
532 i * 100));
533 return 0;
534 }
535 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
536 DELAY(100);
537 }
538 printf("%s: recall EEPROM failed\n", *dvname);
539 return ETIMEDOUT;
540 }
541
542 static __inline int
543 rtw_reset(struct rtw_softc *sc)
544 {
545 int rc;
546 uint8_t config1;
547
548 if ((rc = rtw_chip_reset(&sc->sc_regs, &sc->sc_dev.dv_xname)) != 0)
549 return rc;
550
551 if ((rc = rtw_recall_eeprom(&sc->sc_regs, &sc->sc_dev.dv_xname)) != 0)
552 ;
553
554 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
555 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
556 /* TBD turn off maximum power saving? */
557
558 return 0;
559 }
560
561 static __inline int
562 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txctl *descs,
563 u_int ndescs)
564 {
565 int i, rc = 0;
566 for (i = 0; i < ndescs; i++) {
567 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
568 0, 0, &descs[i].stx_dmamap);
569 if (rc != 0)
570 break;
571 }
572 return rc;
573 }
574
575 static __inline int
576 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
577 u_int ndescs)
578 {
579 int i, rc = 0;
580 for (i = 0; i < ndescs; i++) {
581 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
582 &descs[i].srx_dmamap);
583 if (rc != 0)
584 break;
585 }
586 return rc;
587 }
588
589 static __inline void
590 rtw_rxctls_setup(struct rtw_rxctl *descs)
591 {
592 int i;
593 for (i = 0; i < RTW_RXQLEN; i++)
594 descs[i].srx_mbuf = NULL;
595 }
596
597 static __inline void
598 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
599 u_int ndescs)
600 {
601 int i;
602 for (i = 0; i < ndescs; i++) {
603 if (descs[i].srx_dmamap != NULL)
604 bus_dmamap_destroy(dmat, descs[i].srx_dmamap);
605 }
606 }
607
608 static __inline void
609 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txctl *descs,
610 u_int ndescs)
611 {
612 int i;
613 for (i = 0; i < ndescs; i++) {
614 if (descs[i].stx_dmamap != NULL)
615 bus_dmamap_destroy(dmat, descs[i].stx_dmamap);
616 }
617 }
618
619 static __inline void
620 rtw_srom_free(struct rtw_srom *sr)
621 {
622 sr->sr_size = 0;
623 if (sr->sr_content == NULL)
624 return;
625 free(sr->sr_content, M_DEVBUF);
626 sr->sr_content = NULL;
627 }
628
629 static void
630 rtw_srom_defaults(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
631 enum rtw_rfchipid *rfchipid, u_int32_t *rcr, char (*dvname)[IFNAMSIZ])
632 {
633 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
634 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
635 *rcr |= RTW_RCR_ENCS1;
636 *rfchipid = RTW_RFCHIPID_PHILIPS;
637 }
638
639 static int
640 rtw_srom_parse(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
641 enum rtw_rfchipid *rfchipid, u_int32_t *rcr, enum rtw_locale *locale,
642 char (*dvname)[IFNAMSIZ])
643 {
644 int i;
645 const char *rfname, *paname;
646 char scratch[sizeof("unknown 0xXX")];
647 u_int16_t version;
648 u_int8_t mac[IEEE80211_ADDR_LEN];
649
650 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
651 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
652
653 version = RTW_SR_GET16(sr, RTW_SR_VERSION);
654 printf("%s: SROM version %d.%d", *dvname, version >> 8, version & 0xff);
655
656 if (version <= 0x0101) {
657 printf(" is not understood, limping along with defaults\n");
658 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr,
659 dvname);
660 return 0;
661 }
662 printf("\n");
663
664 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
665 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
666
667 RTW_DPRINTF(("%s: EEPROM MAC %s\n", *dvname, ether_sprintf(mac)));
668
669 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
670
671 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
672 *flags |= RTW_F_ANTDIV;
673
674 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) != 0)
675 *flags |= RTW_F_DIGPHY;
676 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
677 *flags |= RTW_F_DFLANTB;
678
679 *rcr |= LSHIFT(MASK_AND_RSHIFT(RTW_SR_GET(sr, RTW_SR_RFPARM),
680 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
681
682 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
683 switch (*rfchipid) {
684 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
685 rfname = "GCT GRF5101";
686 paname = "Winspring WS9901";
687 break;
688 case RTW_RFCHIPID_MAXIM:
689 rfname = "Maxim MAX2820"; /* guess */
690 paname = "Maxim MAX2422"; /* guess */
691 break;
692 case RTW_RFCHIPID_INTERSIL:
693 rfname = "Intersil HFA3873"; /* guess */
694 paname = "Intersil <unknown>";
695 break;
696 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
697 rfname = "Philips SA2400A";
698 paname = "Philips SA2411";
699 break;
700 case RTW_RFCHIPID_RFMD:
701 /* this is the same front-end as an atw(4)! */
702 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
703 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
704 "SYN: Silicon Labs Si4126"; /* inferred from
705 * reference driver
706 */
707 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
708 break;
709 case RTW_RFCHIPID_RESERVED:
710 rfname = paname = "reserved";
711 break;
712 default:
713 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
714 rfname = paname = scratch;
715 }
716 printf("%s: RF: %s, PA: %s\n", *dvname, rfname, paname);
717
718 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
719 case RTW_CONFIG0_GL_USA:
720 *locale = RTW_LOCALE_USA;
721 break;
722 case RTW_CONFIG0_GL_EUROPE:
723 *locale = RTW_LOCALE_EUROPE;
724 break;
725 case RTW_CONFIG0_GL_JAPAN:
726 *locale = RTW_LOCALE_JAPAN;
727 break;
728 default:
729 *locale = RTW_LOCALE_UNKNOWN;
730 break;
731 }
732 return 0;
733 }
734
735 /* Returns -1 on failure. */
736 static int
737 rtw_srom_read(struct rtw_regs *regs, u_int32_t flags, struct rtw_srom *sr,
738 char (*dvname)[IFNAMSIZ])
739 {
740 int rc;
741 struct seeprom_descriptor sd;
742 u_int8_t ecr;
743
744 (void)memset(&sd, 0, sizeof(sd));
745
746 ecr = RTW_READ8(regs, RTW_9346CR);
747
748 if ((flags & RTW_F_9356SROM) != 0) {
749 RTW_DPRINTF(("%s: 93c56 SROM\n", *dvname));
750 sr->sr_size = 256;
751 sd.sd_chip = C56_66;
752 } else {
753 RTW_DPRINTF(("%s: 93c46 SROM\n", *dvname));
754 sr->sr_size = 128;
755 sd.sd_chip = C46;
756 }
757
758 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
759 RTW_9346CR_EEM_MASK);
760 ecr |= RTW_9346CR_EEM_PROGRAM;
761
762 RTW_WRITE8(regs, RTW_9346CR, ecr);
763
764 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
765
766 if (sr->sr_content == NULL) {
767 printf("%s: unable to allocate SROM buffer\n", *dvname);
768 return ENOMEM;
769 }
770
771 (void)memset(sr->sr_content, 0, sr->sr_size);
772
773 /* RTL8180 has a single 8-bit register for controlling the
774 * 93cx6 SROM. There is no "ready" bit. The RTL8180
775 * input/output sense is the reverse of read_seeprom's.
776 */
777 sd.sd_tag = regs->r_bt;
778 sd.sd_bsh = regs->r_bh;
779 sd.sd_regsize = 1;
780 sd.sd_control_offset = RTW_9346CR;
781 sd.sd_status_offset = RTW_9346CR;
782 sd.sd_dataout_offset = RTW_9346CR;
783 sd.sd_CK = RTW_9346CR_EESK;
784 sd.sd_CS = RTW_9346CR_EECS;
785 sd.sd_DI = RTW_9346CR_EEDO;
786 sd.sd_DO = RTW_9346CR_EEDI;
787 /* make read_seeprom enter EEPROM read/write mode */
788 sd.sd_MS = ecr;
789 sd.sd_RDY = 0;
790 #if 0
791 sd.sd_clkdelay = 50;
792 #endif
793
794 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
795 printf("%s: could not read SROM\n", *dvname);
796 free(sr->sr_content, M_DEVBUF);
797 sr->sr_content = NULL;
798 return -1; /* XXX */
799 }
800
801 /* end EEPROM read/write mode */
802 RTW_WRITE8(regs, RTW_9346CR,
803 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
804 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
805
806 if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
807 return rc;
808
809 #ifdef RTW_DEBUG
810 {
811 int i;
812 RTW_DPRINTF(("\n%s: serial ROM:\n\t", *dvname));
813 for (i = 0; i < sr->sr_size/2; i++) {
814 if (((i % 8) == 0) && (i != 0))
815 RTW_DPRINTF(("\n\t"));
816 RTW_DPRINTF((" %04x", sr->sr_content[i]));
817 }
818 RTW_DPRINTF(("\n"));
819 }
820 #endif /* RTW_DEBUG */
821 return 0;
822 }
823
824 static void
825 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
826 const char *dvname)
827 {
828 u_int8_t cfg4;
829 const char *method;
830
831 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
832
833 switch (rfchipid) {
834 default:
835 cfg4 |= LSHIFT(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
836 method = "fallback";
837 break;
838 case RTW_RFCHIPID_INTERSIL:
839 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
840 method = "Intersil";
841 break;
842 case RTW_RFCHIPID_PHILIPS:
843 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
844 method = "Philips";
845 break;
846 case RTW_RFCHIPID_RFMD:
847 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
848 method = "RFMD";
849 break;
850 }
851
852 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
853
854 printf("%s: %s RF programming method, %#02x\n", dvname, method,
855 RTW_READ8(regs, RTW_CONFIG4));
856 }
857
858 #if 0
859 static __inline int
860 rtw_identify_rf(struct rtw_regs *regs, enum rtw_rftype *rftype,
861 char (*dvname)[IFNAMSIZ])
862 {
863 u_int8_t cfg4;
864 const char *name;
865
866 cfg4 = RTW_READ8(regs, RTW_CONFIG4);
867
868 switch (cfg4 & RTW_CONFIG4_RFTYPE_MASK) {
869 case RTW_CONFIG4_RFTYPE_PHILIPS:
870 *rftype = RTW_RFTYPE_PHILIPS;
871 name = "Philips";
872 break;
873 case RTW_CONFIG4_RFTYPE_INTERSIL:
874 *rftype = RTW_RFTYPE_INTERSIL;
875 name = "Intersil";
876 break;
877 case RTW_CONFIG4_RFTYPE_RFMD:
878 *rftype = RTW_RFTYPE_RFMD;
879 name = "RFMD";
880 break;
881 default:
882 name = "<unknown>";
883 return ENXIO;
884 }
885
886 printf("%s: RF prog type %s\n", *dvname, name);
887 return 0;
888 }
889 #endif
890
891 static __inline void
892 rtw_init_channels(enum rtw_locale locale,
893 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
894 char (*dvname)[IFNAMSIZ])
895 {
896 int i;
897 const char *name = NULL;
898 #define ADD_CHANNEL(_chans, _chan) do { \
899 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
900 (*_chans)[_chan].ic_freq = \
901 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
902 } while (0)
903
904 switch (locale) {
905 case RTW_LOCALE_USA: /* 1-11 */
906 name = "USA";
907 for (i = 1; i <= 11; i++)
908 ADD_CHANNEL(chans, i);
909 break;
910 case RTW_LOCALE_JAPAN: /* 1-14 */
911 name = "Japan";
912 ADD_CHANNEL(chans, 14);
913 for (i = 1; i <= 14; i++)
914 ADD_CHANNEL(chans, i);
915 break;
916 case RTW_LOCALE_EUROPE: /* 1-13 */
917 name = "Europe";
918 for (i = 1; i <= 13; i++)
919 ADD_CHANNEL(chans, i);
920 break;
921 default: /* 10-11 allowed by most countries */
922 name = "<unknown>";
923 for (i = 10; i <= 11; i++)
924 ADD_CHANNEL(chans, i);
925 break;
926 }
927 printf("%s: Geographic Location %s\n", *dvname, name);
928 #undef ADD_CHANNEL
929 }
930
931 static __inline void
932 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale,
933 char (*dvname)[IFNAMSIZ])
934 {
935 u_int8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
936
937 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
938 case RTW_CONFIG0_GL_USA:
939 *locale = RTW_LOCALE_USA;
940 break;
941 case RTW_CONFIG0_GL_JAPAN:
942 *locale = RTW_LOCALE_JAPAN;
943 break;
944 case RTW_CONFIG0_GL_EUROPE:
945 *locale = RTW_LOCALE_EUROPE;
946 break;
947 default:
948 *locale = RTW_LOCALE_UNKNOWN;
949 break;
950 }
951 }
952
953 static __inline int
954 rtw_identify_sta(struct rtw_regs *regs, u_int8_t (*addr)[IEEE80211_ADDR_LEN],
955 char (*dvname)[IFNAMSIZ])
956 {
957 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
958 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
959 };
960 u_int32_t idr0 = RTW_READ(regs, RTW_IDR0),
961 idr1 = RTW_READ(regs, RTW_IDR1);
962
963 (*addr)[0] = MASK_AND_RSHIFT(idr0, BITS(0, 7));
964 (*addr)[1] = MASK_AND_RSHIFT(idr0, BITS(8, 15));
965 (*addr)[2] = MASK_AND_RSHIFT(idr0, BITS(16, 23));
966 (*addr)[3] = MASK_AND_RSHIFT(idr0, BITS(24 ,31));
967
968 (*addr)[4] = MASK_AND_RSHIFT(idr1, BITS(0, 7));
969 (*addr)[5] = MASK_AND_RSHIFT(idr1, BITS(8, 15));
970
971 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
972 printf("%s: could not get mac address, attach failed\n",
973 *dvname);
974 return ENXIO;
975 }
976
977 printf("%s: 802.11 address %s\n", *dvname, ether_sprintf(*addr));
978
979 return 0;
980 }
981
982 static u_int8_t
983 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
984 struct ieee80211_channel *chan)
985 {
986 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
987 KASSERT2(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14,
988 ("%s: channel %d out of range", __func__,
989 idx - RTW_SR_TXPOWER1 + 1));
990 return RTW_SR_GET(sr, idx);
991 }
992
993 static void
994 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *htcs)
995 {
996 int pri;
997 u_int ndesc[RTW_NTXPRI] =
998 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI, RTW_NTXDESCBCN};
999
1000 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1001 htcs[pri].htc_nfree = ndesc[pri];
1002 htcs[pri].htc_next = 0;
1003 }
1004 }
1005
1006 static int
1007 rtw_txctl_blk_init(struct rtw_txctl_blk *stc)
1008 {
1009 int i;
1010 struct rtw_txctl *stx;
1011
1012 SIMPLEQ_INIT(&stc->stc_dirtyq);
1013 SIMPLEQ_INIT(&stc->stc_freeq);
1014 for (i = 0; i < stc->stc_ndesc; i++) {
1015 stx = &stc->stc_desc[i];
1016 stx->stx_mbuf = NULL;
1017 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1018 }
1019 return 0;
1020 }
1021
1022 static void
1023 rtw_txctl_blk_init_all(struct rtw_txctl_blk *stcs)
1024 {
1025 int pri;
1026 for (pri = 0; pri < RTW_NTXPRI; pri++)
1027 rtw_txctl_blk_init(&stcs[pri]);
1028 }
1029
1030 static __inline void
1031 rtw_rxdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap, u_int desc0, u_int
1032 nsync, int ops)
1033 {
1034 /* sync to end of ring */
1035 if (desc0 + nsync > RTW_NRXDESC) {
1036 bus_dmamap_sync(dmat, dmap,
1037 offsetof(struct rtw_descs, hd_rx[desc0]),
1038 sizeof(struct rtw_rxdesc) * (RTW_NRXDESC - desc0), ops);
1039 nsync -= (RTW_NRXDESC - desc0);
1040 desc0 = 0;
1041 }
1042
1043 /* sync what remains */
1044 bus_dmamap_sync(dmat, dmap,
1045 offsetof(struct rtw_descs, hd_rx[desc0]),
1046 sizeof(struct rtw_rxdesc) * nsync, ops);
1047 }
1048
1049 static void
1050 rtw_txdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap,
1051 struct rtw_txdesc_blk *htc, u_int desc0, u_int nsync, int ops)
1052 {
1053 /* sync to end of ring */
1054 if (desc0 + nsync > htc->htc_ndesc) {
1055 bus_dmamap_sync(dmat, dmap,
1056 htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
1057 sizeof(struct rtw_txdesc) * (htc->htc_ndesc - desc0),
1058 ops);
1059 nsync -= (htc->htc_ndesc - desc0);
1060 desc0 = 0;
1061 }
1062
1063 /* sync what remains */
1064 bus_dmamap_sync(dmat, dmap,
1065 htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
1066 sizeof(struct rtw_txdesc) * nsync, ops);
1067 }
1068
1069 static void
1070 rtw_txdescs_sync_all(bus_dma_tag_t dmat, bus_dmamap_t dmap,
1071 struct rtw_txdesc_blk *htcs)
1072 {
1073 int pri;
1074 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1075 rtw_txdescs_sync(dmat, dmap,
1076 &htcs[pri], 0, htcs[pri].htc_ndesc,
1077 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1078 }
1079 }
1080
1081 static void
1082 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxctl *desc)
1083 {
1084 int i;
1085 struct rtw_rxctl *srx;
1086
1087 for (i = 0; i < RTW_NRXDESC; i++) {
1088 srx = &desc[i];
1089 bus_dmamap_sync(dmat, srx->srx_dmamap, 0,
1090 srx->srx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1091 bus_dmamap_unload(dmat, srx->srx_dmamap);
1092 m_freem(srx->srx_mbuf);
1093 srx->srx_mbuf = NULL;
1094 }
1095 }
1096
1097 static __inline int
1098 rtw_rxbuf_alloc(bus_dma_tag_t dmat, struct rtw_rxctl *srx)
1099 {
1100 int rc;
1101 struct mbuf *m;
1102
1103 MGETHDR(m, M_DONTWAIT, MT_DATA);
1104 if (m == NULL)
1105 return ENOMEM;
1106
1107 MCLGET(m, M_DONTWAIT);
1108 if (m == NULL)
1109 return ENOMEM;
1110
1111 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1112
1113 rc = bus_dmamap_load_mbuf(dmat, srx->srx_dmamap, m, BUS_DMA_NOWAIT);
1114 if (rc != 0)
1115 return rc;
1116
1117 srx->srx_mbuf = m;
1118
1119 return 0;
1120 }
1121
1122 static int
1123 rtw_rxctl_init_all(bus_dma_tag_t dmat, struct rtw_rxctl *desc,
1124 u_int *next, char (*dvname)[IFNAMSIZ])
1125 {
1126 int i, rc;
1127 struct rtw_rxctl *srx;
1128
1129 for (i = 0; i < RTW_NRXDESC; i++) {
1130 srx = &desc[i];
1131 if ((rc = rtw_rxbuf_alloc(dmat, srx)) == 0)
1132 continue;
1133 printf("%s: failed rtw_rxbuf_alloc after %d buffers, rc = %d\n",
1134 *dvname, i, rc);
1135 if (i == 0) {
1136 rtw_rxbufs_release(dmat, desc);
1137 return rc;
1138 }
1139 }
1140 *next = 0;
1141 return 0;
1142 }
1143
1144 static __inline void
1145 rtw_rxdesc_init(bus_dma_tag_t dmat, bus_dmamap_t dmam,
1146 struct rtw_rxdesc *hrx, struct rtw_rxctl *srx, int idx)
1147 {
1148 int is_last = (idx == RTW_NRXDESC - 1);
1149 uint32_t ctl;
1150
1151 hrx->hrx_buf = htole32(srx->srx_dmamap->dm_segs[0].ds_addr);
1152
1153 ctl = LSHIFT(srx->srx_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1154 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1155
1156 if (is_last)
1157 ctl |= RTW_RXCTL_EOR;
1158
1159 hrx->hrx_ctl = htole32(ctl);
1160
1161 /* sync the mbuf */
1162 bus_dmamap_sync(dmat, srx->srx_dmamap, 0, srx->srx_dmamap->dm_mapsize,
1163 BUS_DMASYNC_PREREAD);
1164
1165 /* sync the descriptor */
1166 bus_dmamap_sync(dmat, dmam, RTW_DESC_OFFSET(hd_rx, idx),
1167 sizeof(struct rtw_rxdesc),
1168 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1169 }
1170
1171 static void
1172 rtw_rxdesc_init_all(bus_dma_tag_t dmat, bus_dmamap_t dmam,
1173 struct rtw_rxdesc *desc, struct rtw_rxctl *ctl)
1174 {
1175 int i;
1176 struct rtw_rxdesc *hrx;
1177 struct rtw_rxctl *srx;
1178
1179 for (i = 0; i < RTW_NRXDESC; i++) {
1180 hrx = &desc[i];
1181 srx = &ctl[i];
1182 rtw_rxdesc_init(dmat, dmam, hrx, srx, i);
1183 }
1184 }
1185
1186 static void
1187 rtw_io_enable(struct rtw_regs *regs, u_int8_t flags, int enable)
1188 {
1189 u_int8_t cr;
1190
1191 RTW_DPRINTF(("%s: %s 0x%02x\n", __func__,
1192 enable ? "enable" : "disable", flags));
1193
1194 cr = RTW_READ8(regs, RTW_CR);
1195
1196 /* XXX reference source does not enable MULRW */
1197 #if 0
1198 /* enable PCI Read/Write Multiple */
1199 cr |= RTW_CR_MULRW;
1200 #endif
1201
1202 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1203 if (enable)
1204 cr |= flags;
1205 else
1206 cr &= ~flags;
1207 RTW_WRITE8(regs, RTW_CR, cr);
1208 RTW_SYNC(regs, RTW_CR, RTW_CR);
1209 }
1210
1211 static void
1212 rtw_intr_rx(struct rtw_softc *sc, u_int16_t isr)
1213 {
1214 u_int next;
1215 int rate, rssi;
1216 u_int32_t hrssi, hstat, htsfth, htsftl;
1217 struct rtw_rxdesc *hrx;
1218 struct rtw_rxctl *srx;
1219 struct mbuf *m;
1220
1221 struct ieee80211_node *ni;
1222 struct ieee80211_frame *wh;
1223
1224 for (next = sc->sc_rxnext; ; next = (next + 1) % RTW_RXQLEN) {
1225 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1226 next, 1, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1227 hrx = &sc->sc_rxdesc[next];
1228 srx = &sc->sc_rxctl[next];
1229
1230 hstat = le32toh(hrx->hrx_stat);
1231 hrssi = le32toh(hrx->hrx_rssi);
1232 htsfth = le32toh(hrx->hrx_tsfth);
1233 htsftl = le32toh(hrx->hrx_tsftl);
1234
1235 RTW_DPRINTF2(("%s: rxdesc[%d] hstat %#08x hrssi %#08x "
1236 "htsft %#08x%08x\n", __func__, next,
1237 hstat, hrssi, htsfth, htsftl));
1238
1239 if ((hstat & RTW_RXSTAT_OWN) != 0) /* belongs to NIC */
1240 break;
1241
1242 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1243 printf("%s: DMA error/FIFO overflow %08x, "
1244 "rx descriptor %d\n", sc->sc_dev.dv_xname,
1245 hstat & RTW_RXSTAT_IOERROR, next);
1246 goto next;
1247 }
1248
1249 switch (hstat & RTW_RXSTAT_RATE_MASK) {
1250 case RTW_RXSTAT_RATE_1MBPS:
1251 rate = 10;
1252 break;
1253 case RTW_RXSTAT_RATE_2MBPS:
1254 rate = 20;
1255 break;
1256 case RTW_RXSTAT_RATE_5MBPS:
1257 rate = 55;
1258 break;
1259 default:
1260 #ifdef RTW_DEBUG
1261 if (rtw_debug > 1)
1262 printf("%s: interpreting rate #%d as 11 MB/s\n",
1263 sc->sc_dev.dv_xname,
1264 MASK_AND_RSHIFT(hstat,
1265 RTW_RXSTAT_RATE_MASK));
1266 #endif /* RTW_DEBUG */
1267 /*FALLTHROUGH*/
1268 case RTW_RXSTAT_RATE_11MBPS:
1269 rate = 110;
1270 break;
1271 }
1272
1273 RTW_DPRINTF2(("%s: rate %d\n", __func__, rate));
1274
1275 #ifdef RTW_DEBUG
1276 #define PRINTSTAT(flag) do { \
1277 if ((hstat & flag) != 0) { \
1278 printf("%s" #flag, delim); \
1279 delim = ","; \
1280 } \
1281 } while (0)
1282 if (rtw_debug > 1) {
1283 const char *delim = "<";
1284 printf("%s: ", sc->sc_dev.dv_xname);
1285 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1286 printf("status %08x<", hstat);
1287 PRINTSTAT(RTW_RXSTAT_SPLCP);
1288 PRINTSTAT(RTW_RXSTAT_MAR);
1289 PRINTSTAT(RTW_RXSTAT_PAR);
1290 PRINTSTAT(RTW_RXSTAT_BAR);
1291 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1292 PRINTSTAT(RTW_RXSTAT_CRC32);
1293 PRINTSTAT(RTW_RXSTAT_ICV);
1294 printf(">, ");
1295 }
1296 printf("rate %d.%d Mb/s, time %08x%08x\n",
1297 rate / 10, rate % 10, htsfth, htsftl);
1298 }
1299 #endif /* RTW_DEBUG */
1300
1301 if ((hstat & RTW_RXSTAT_RES) != 0 &&
1302 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
1303 goto next;
1304
1305 /* if bad flags, skip descriptor */
1306 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1307 printf("%s: too many rx segments\n",
1308 sc->sc_dev.dv_xname);
1309 goto next;
1310 }
1311
1312 m = srx->srx_mbuf;
1313
1314 /* if temporarily out of memory, re-use mbuf */
1315 if (rtw_rxbuf_alloc(sc->sc_dmat, srx) != 0) {
1316 printf("%s: rtw_rxbuf_alloc(, %d) failed, "
1317 "dropping this packet\n", sc->sc_dev.dv_xname,
1318 next);
1319 goto next;
1320 }
1321
1322 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1323 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_RSSI);
1324 else {
1325 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_IMR_RSSI);
1326 /* TBD find out each front-end's LNA gain in the
1327 * front-end's units
1328 */
1329 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1330 rssi |= 0x80;
1331 }
1332
1333 m->m_pkthdr.len = m->m_len =
1334 MASK_AND_RSHIFT(hstat, RTW_RXSTAT_LENGTH_MASK);
1335 m->m_flags |= M_HASFCS;
1336
1337 if (m->m_pkthdr.len < IEEE80211_MIN_LEN) {
1338 sc->sc_ic.ic_stats.is_rx_tooshort++;
1339 goto next;
1340 }
1341 wh = mtod(m, struct ieee80211_frame *);
1342 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1343 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1344
1345 sc->sc_tsfth = htsfth;
1346
1347 ieee80211_input(&sc->sc_if, m, ni, rssi, htsftl);
1348 ieee80211_release_node(&sc->sc_ic, ni);
1349 next:
1350 rtw_rxdesc_init(sc->sc_dmat, sc->sc_desc_dmamap,
1351 hrx, srx, next);
1352 }
1353 sc->sc_rxnext = next;
1354
1355 return;
1356 }
1357
1358 static void
1359 rtw_txbuf_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1360 struct rtw_txctl *stx)
1361 {
1362 struct mbuf *m;
1363 struct ieee80211_node *ni;
1364 bus_dmamap_t dmamap;
1365
1366 dmamap = stx->stx_dmamap;
1367 m = stx->stx_mbuf;
1368 ni = stx->stx_ni;
1369 stx->stx_dmamap = NULL;
1370 stx->stx_mbuf = NULL;
1371 stx->stx_ni = NULL;
1372
1373 bus_dmamap_sync(dmat, dmamap, 0, dmamap->dm_mapsize,
1374 BUS_DMASYNC_POSTWRITE);
1375 bus_dmamap_unload(dmat, dmamap);
1376 m_freem(m);
1377 ieee80211_release_node(ic, ni);
1378 }
1379
1380 static void
1381 rtw_txbufs_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1382 struct rtw_txctl_blk *stc)
1383 {
1384 struct rtw_txctl *stx;
1385
1386 while ((stx = SIMPLEQ_FIRST(&stc->stc_dirtyq)) != NULL) {
1387 rtw_txbuf_release(dmat, ic, stx);
1388 SIMPLEQ_REMOVE_HEAD(&stc->stc_dirtyq, stx_q);
1389 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1390 }
1391 }
1392
1393 static __inline void
1394 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *htc,
1395 struct rtw_txctl *stx, int ndesc)
1396 {
1397 int data_retry, rts_retry;
1398 struct rtw_txdesc *htx0, *htxn;
1399 const char *condstring;
1400
1401 rtw_txbuf_release(sc->sc_dmat, &sc->sc_ic, stx);
1402
1403 htc->htc_nfree += ndesc;
1404
1405 htx0 = &htc->htc_desc[stx->stx_first];
1406 htxn = &htc->htc_desc[stx->stx_last];
1407
1408 rts_retry = MASK_AND_RSHIFT(le32toh(htx0->htx_stat),
1409 RTW_TXSTAT_RTSRETRY_MASK);
1410 data_retry = MASK_AND_RSHIFT(le32toh(htx0->htx_stat),
1411 RTW_TXSTAT_DRC_MASK);
1412
1413 sc->sc_if.if_collisions += rts_retry + data_retry;
1414
1415 if ((htx0->htx_stat & htole32(RTW_TXSTAT_TOK)) != 0)
1416 condstring = "ok";
1417 else {
1418 sc->sc_if.if_oerrors++;
1419 condstring = "error";
1420 }
1421
1422 DPRINTF2(sc, ("%s: stx %p txdesc[%d, %d] %s tries rts %u data %u\n",
1423 sc->sc_dev.dv_xname, stx, stx->stx_first, stx->stx_last,
1424 condstring, rts_retry, data_retry));
1425 }
1426
1427 /* Collect transmitted packets. */
1428 static __inline void
1429 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txctl_blk *stc,
1430 struct rtw_txdesc_blk *htc)
1431 {
1432 int ndesc;
1433 struct rtw_txctl *stx;
1434
1435 while ((stx = SIMPLEQ_FIRST(&stc->stc_dirtyq)) != NULL) {
1436 ndesc = 1 + stx->stx_last - stx->stx_first;
1437 if (stx->stx_last < stx->stx_first)
1438 ndesc += htc->htc_ndesc;
1439
1440 KASSERT(ndesc > 0);
1441
1442 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap, htc,
1443 stx->stx_first, ndesc,
1444 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1445
1446 if ((htc->htc_desc[stx->stx_first].htx_stat &
1447 htole32(RTW_TXSTAT_OWN)) != 0)
1448 break;
1449
1450 rtw_collect_txpkt(sc, htc, stx, ndesc);
1451 SIMPLEQ_REMOVE_HEAD(&stc->stc_dirtyq, stx_q);
1452 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1453 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1454 }
1455 if (stx == NULL)
1456 stc->stc_tx_timer = 0;
1457 }
1458
1459 static void
1460 rtw_intr_tx(struct rtw_softc *sc, u_int16_t isr)
1461 {
1462 int pri;
1463 struct rtw_txctl_blk *stc;
1464 struct rtw_txdesc_blk *htc;
1465
1466 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1467 stc = &sc->sc_txctl_blk[pri];
1468 htc = &sc->sc_txdesc_blk[pri];
1469
1470 rtw_collect_txring(sc, stc, htc);
1471
1472 rtw_start(&sc->sc_if);
1473 }
1474
1475 /* TBD */
1476 return;
1477 }
1478
1479 static void
1480 rtw_intr_beacon(struct rtw_softc *sc, u_int16_t isr)
1481 {
1482 /* TBD */
1483 return;
1484 }
1485
1486 static void
1487 rtw_intr_atim(struct rtw_softc *sc)
1488 {
1489 /* TBD */
1490 return;
1491 }
1492
1493 static void
1494 rtw_hwring_setup(struct rtw_softc *sc)
1495 {
1496 struct rtw_regs *regs = &sc->sc_regs;
1497 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1498 RTW_WRITE(regs, RTW_TLPDA, RTW_RING_BASE(sc, hd_txlo));
1499 RTW_WRITE(regs, RTW_TNPDA, RTW_RING_BASE(sc, hd_txmd));
1500 RTW_WRITE(regs, RTW_THPDA, RTW_RING_BASE(sc, hd_txhi));
1501 RTW_WRITE(regs, RTW_TBDA, RTW_RING_BASE(sc, hd_bcn));
1502 }
1503
1504 static void
1505 rtw_swring_setup(struct rtw_softc *sc)
1506 {
1507 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1508
1509 rtw_txctl_blk_init_all(&sc->sc_txctl_blk[0]);
1510
1511 rtw_rxctl_init_all(sc->sc_dmat, sc->sc_rxctl, &sc->sc_rxnext,
1512 &sc->sc_dev.dv_xname);
1513 rtw_rxdesc_init_all(sc->sc_dmat, sc->sc_desc_dmamap,
1514 sc->sc_rxdesc, sc->sc_rxctl);
1515
1516 rtw_txdescs_sync_all(sc->sc_dmat, sc->sc_desc_dmamap,
1517 &sc->sc_txdesc_blk[0]);
1518 #if 0 /* redundant with rtw_rxdesc_init_all */
1519 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1520 0, RTW_NRXDESC, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1521 #endif
1522 }
1523
1524 static void
1525 rtw_kick(struct rtw_softc *sc)
1526 {
1527 int pri;
1528 struct rtw_regs *regs = &sc->sc_regs;
1529
1530 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 0);
1531 RTW_WRITE16(regs, RTW_IMR, 0);
1532 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1533 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1534 rtw_txbufs_release(sc->sc_dmat, &sc->sc_ic,
1535 &sc->sc_txctl_blk[pri]);
1536 }
1537 rtw_swring_setup(sc);
1538 rtw_hwring_setup(sc);
1539 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
1540 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 1);
1541 }
1542
1543 static void
1544 rtw_intr_ioerror(struct rtw_softc *sc, u_int16_t isr)
1545 {
1546 if ((isr & (RTW_INTR_RDU|RTW_INTR_RXFOVW)) != 0) {
1547 rtw_kick(sc);
1548 }
1549 if ((isr & RTW_INTR_TXFOVW) != 0)
1550 ; /* TBD restart transmit engine */
1551 return;
1552 }
1553
1554 static __inline void
1555 rtw_suspend_ticks(struct rtw_softc *sc)
1556 {
1557 printf("%s: suspending ticks\n", sc->sc_dev.dv_xname);
1558 sc->sc_do_tick = 0;
1559 }
1560
1561 static __inline void
1562 rtw_resume_ticks(struct rtw_softc *sc)
1563 {
1564 u_int32_t tsftrl0, tsftrl1, next_tick;
1565
1566 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1567
1568 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1569 next_tick = tsftrl1 + 1000000;
1570 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
1571
1572 sc->sc_do_tick = 1;
1573
1574 printf("%s: resume ticks delta %#08x now %#08x next %#08x\n",
1575 sc->sc_dev.dv_xname, tsftrl1 - tsftrl0, tsftrl1, next_tick);
1576 }
1577
1578 static void
1579 rtw_intr_timeout(struct rtw_softc *sc)
1580 {
1581 printf("%s: timeout\n", sc->sc_dev.dv_xname);
1582 if (sc->sc_do_tick)
1583 rtw_resume_ticks(sc);
1584 return;
1585 }
1586
1587 int
1588 rtw_intr(void *arg)
1589 {
1590 int i;
1591 struct rtw_softc *sc = arg;
1592 struct rtw_regs *regs = &sc->sc_regs;
1593 u_int16_t isr;
1594
1595 /*
1596 * If the interface isn't running, the interrupt couldn't
1597 * possibly have come from us.
1598 */
1599 if ((sc->sc_flags & RTW_F_ENABLED) == 0 ||
1600 (sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
1601 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) {
1602 RTW_DPRINTF2(("%s: stray interrupt\n", sc->sc_dev.dv_xname));
1603 return (0);
1604 }
1605
1606 for (i = 0; i < 10; i++) {
1607 isr = RTW_READ16(regs, RTW_ISR);
1608
1609 RTW_WRITE16(regs, RTW_ISR, isr);
1610
1611 if (sc->sc_intr_ack != NULL)
1612 (*sc->sc_intr_ack)(regs);
1613
1614 if (isr == 0)
1615 break;
1616
1617 #ifdef RTW_DEBUG
1618 #define PRINTINTR(flag) do { \
1619 if ((isr & flag) != 0) { \
1620 printf("%s" #flag, delim); \
1621 delim = ","; \
1622 } \
1623 } while (0)
1624
1625 if (rtw_debug > 1 && isr != 0) {
1626 const char *delim = "<";
1627
1628 printf("%s: reg[ISR] = %x", sc->sc_dev.dv_xname, isr);
1629
1630 PRINTINTR(RTW_INTR_TXFOVW);
1631 PRINTINTR(RTW_INTR_TIMEOUT);
1632 PRINTINTR(RTW_INTR_BCNINT);
1633 PRINTINTR(RTW_INTR_ATIMINT);
1634 PRINTINTR(RTW_INTR_TBDER);
1635 PRINTINTR(RTW_INTR_TBDOK);
1636 PRINTINTR(RTW_INTR_THPDER);
1637 PRINTINTR(RTW_INTR_THPDOK);
1638 PRINTINTR(RTW_INTR_TNPDER);
1639 PRINTINTR(RTW_INTR_TNPDOK);
1640 PRINTINTR(RTW_INTR_RXFOVW);
1641 PRINTINTR(RTW_INTR_RDU);
1642 PRINTINTR(RTW_INTR_TLPDER);
1643 PRINTINTR(RTW_INTR_TLPDOK);
1644 PRINTINTR(RTW_INTR_RER);
1645 PRINTINTR(RTW_INTR_ROK);
1646
1647 printf(">\n");
1648 }
1649 #undef PRINTINTR
1650 #endif /* RTW_DEBUG */
1651
1652 if ((isr & RTW_INTR_RX) != 0)
1653 rtw_intr_rx(sc, isr & RTW_INTR_RX);
1654 if ((isr & RTW_INTR_TX) != 0)
1655 rtw_intr_tx(sc, isr & RTW_INTR_TX);
1656 if ((isr & RTW_INTR_BEACON) != 0)
1657 rtw_intr_beacon(sc, isr & RTW_INTR_BEACON);
1658 if ((isr & RTW_INTR_ATIMINT) != 0)
1659 rtw_intr_atim(sc);
1660 if ((isr & RTW_INTR_IOERROR) != 0)
1661 rtw_intr_ioerror(sc, isr & RTW_INTR_IOERROR);
1662 if ((isr & RTW_INTR_TIMEOUT) != 0)
1663 rtw_intr_timeout(sc);
1664 }
1665
1666 return 1;
1667 }
1668
1669 static void
1670 rtw_stop(struct ifnet *ifp, int disable)
1671 {
1672 int pri, s;
1673 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
1674 struct ieee80211com *ic = &sc->sc_ic;
1675 struct rtw_regs *regs = &sc->sc_regs;
1676
1677 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1678 return;
1679
1680 rtw_suspend_ticks(sc);
1681
1682 s = splnet();
1683
1684 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1685
1686 if ((sc->sc_flags & RTW_F_INVALID) == 0) {
1687 /* Disable interrupts. */
1688 RTW_WRITE16(regs, RTW_IMR, 0);
1689
1690 /* Stop the transmit and receive processes. First stop DMA,
1691 * then disable receiver and transmitter.
1692 */
1693 RTW_WRITE8(regs, RTW_TPPOLL,
1694 RTW_TPPOLL_SBQ|RTW_TPPOLL_SHPQ|RTW_TPPOLL_SNPQ|
1695 RTW_TPPOLL_SLPQ);
1696
1697 rtw_io_enable(&sc->sc_regs, RTW_CR_RE|RTW_CR_TE, 0);
1698 }
1699
1700 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1701 rtw_txbufs_release(sc->sc_dmat, &sc->sc_ic,
1702 &sc->sc_txctl_blk[pri]);
1703 }
1704
1705 if (disable) {
1706 rtw_disable(sc);
1707 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1708 }
1709
1710 /* Mark the interface as not running. Cancel the watchdog timer. */
1711 ifp->if_flags &= ~IFF_RUNNING;
1712 ifp->if_timer = 0;
1713
1714 splx(s);
1715
1716 return;
1717 }
1718
1719 const char *
1720 rtw_pwrstate_string(enum rtw_pwrstate power)
1721 {
1722 switch (power) {
1723 case RTW_ON:
1724 return "on";
1725 case RTW_SLEEP:
1726 return "sleep";
1727 case RTW_OFF:
1728 return "off";
1729 default:
1730 return "unknown";
1731 }
1732 }
1733
1734 /* XXX I am using the RFMD settings gleaned from the reference
1735 * driver.
1736 */
1737 static void
1738 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1739 int before_rf)
1740 {
1741 u_int32_t anaparm;
1742
1743 RTW_DPRINTF(("%s: power state %s, %s RF\n", __func__,
1744 rtw_pwrstate_string(power), (before_rf) ? "before" : "after"));
1745
1746 anaparm = RTW_READ(regs, RTW_ANAPARM);
1747 anaparm &= ~(RTW_ANAPARM_RFPOW0_MASK|RTW_ANAPARM_RFPOW1_MASK);
1748 anaparm &= ~RTW_ANAPARM_TXDACOFF;
1749
1750 switch (power) {
1751 case RTW_OFF:
1752 if (before_rf)
1753 return;
1754 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_OFF;
1755 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_OFF;
1756 anaparm |= RTW_ANAPARM_TXDACOFF;
1757 break;
1758 case RTW_SLEEP:
1759 if (!before_rf)
1760 return;
1761 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_SLEEP;
1762 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_SLEEP;
1763 anaparm |= RTW_ANAPARM_TXDACOFF;
1764 break;
1765 case RTW_ON:
1766 if (!before_rf)
1767 return;
1768 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_ON;
1769 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_ON;
1770 break;
1771 }
1772 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1773 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1774 }
1775
1776 static void
1777 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1778 int before_rf)
1779 {
1780 u_int32_t anaparm;
1781
1782 RTW_DPRINTF(("%s: power state %s, %s RF\n", __func__,
1783 rtw_pwrstate_string(power), (before_rf) ? "before" : "after"));
1784
1785 anaparm = RTW_READ(regs, RTW_ANAPARM);
1786 anaparm &= ~(RTW_ANAPARM_RFPOW0_MASK|RTW_ANAPARM_RFPOW1_MASK);
1787 anaparm &= ~RTW_ANAPARM_TXDACOFF;
1788
1789 switch (power) {
1790 case RTW_OFF:
1791 if (before_rf)
1792 return;
1793 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_OFF;
1794 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_OFF;
1795 anaparm |= RTW_ANAPARM_TXDACOFF;
1796 break;
1797 case RTW_SLEEP:
1798 if (!before_rf)
1799 return;
1800 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_SLEEP;
1801 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_SLEEP;
1802 anaparm |= RTW_ANAPARM_TXDACOFF;
1803 break;
1804 case RTW_ON:
1805 if (!before_rf)
1806 return;
1807 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_ON;
1808 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_ON;
1809 break;
1810 }
1811 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1812 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1813 }
1814
1815 static void
1816 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf)
1817 {
1818 struct rtw_regs *regs = &sc->sc_regs;
1819
1820 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
1821
1822 (*sc->sc_pwrstate_cb)(regs, power, before_rf);
1823
1824 rtw_set_access(sc, RTW_ACCESS_NONE);
1825
1826 return;
1827 }
1828
1829 static int
1830 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
1831 {
1832 int rc;
1833
1834 RTW_DPRINTF2(("%s: %s->%s\n", __func__,
1835 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
1836
1837 if (sc->sc_pwrstate == power)
1838 return 0;
1839
1840 rtw_pwrstate0(sc, power, 1);
1841 rc = rtw_rf_pwrstate(sc->sc_rf, power);
1842 rtw_pwrstate0(sc, power, 0);
1843
1844 switch (power) {
1845 case RTW_ON:
1846 /* TBD set LEDs */
1847 break;
1848 case RTW_SLEEP:
1849 /* TBD */
1850 break;
1851 case RTW_OFF:
1852 /* TBD */
1853 break;
1854 }
1855 if (rc == 0)
1856 sc->sc_pwrstate = power;
1857 else
1858 sc->sc_pwrstate = RTW_OFF;
1859 return rc;
1860 }
1861
1862 static int
1863 rtw_tune(struct rtw_softc *sc)
1864 {
1865 struct ieee80211com *ic = &sc->sc_ic;
1866 u_int chan;
1867 int rc;
1868 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
1869 dflantb = sc->sc_flags & RTW_F_DFLANTB;
1870
1871 KASSERT(ic->ic_bss->ni_chan != NULL);
1872
1873 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1874 if (chan == IEEE80211_CHAN_ANY)
1875 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1876
1877 if (chan == sc->sc_cur_chan) {
1878 RTW_DPRINTF(("%s: already tuned chan #%d\n", __func__, chan));
1879 return 0;
1880 }
1881
1882 rtw_suspend_ticks(sc);
1883
1884 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 0);
1885
1886 /* TBD wait for Tx to complete */
1887
1888 KASSERT((sc->sc_flags & RTW_F_ENABLED) != 0);
1889
1890 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
1891 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_bss->ni_chan),
1892 sc->sc_csthr, ic->ic_bss->ni_chan->ic_freq, antdiv,
1893 dflantb, RTW_ON)) != 0) {
1894 /* XXX condition on powersaving */
1895 printf("%s: phy init failed\n", sc->sc_dev.dv_xname);
1896 }
1897
1898 sc->sc_cur_chan = chan;
1899
1900 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 1);
1901
1902 rtw_resume_ticks(sc);
1903
1904 return rc;
1905 }
1906
1907 void
1908 rtw_disable(struct rtw_softc *sc)
1909 {
1910 int rc;
1911
1912 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1913 return;
1914
1915 /* turn off PHY */
1916 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
1917 printf("%s: failed to turn off PHY (%d)\n",
1918 sc->sc_dev.dv_xname, rc);
1919
1920 if (sc->sc_disable != NULL)
1921 (*sc->sc_disable)(sc);
1922
1923 sc->sc_flags &= ~RTW_F_ENABLED;
1924 }
1925
1926 int
1927 rtw_enable(struct rtw_softc *sc)
1928 {
1929 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
1930 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
1931 printf("%s: device enable failed\n",
1932 sc->sc_dev.dv_xname);
1933 return (EIO);
1934 }
1935 sc->sc_flags |= RTW_F_ENABLED;
1936 }
1937 return (0);
1938 }
1939
1940 static void
1941 rtw_transmit_config(struct rtw_regs *regs)
1942 {
1943 u_int32_t tcr;
1944
1945 tcr = RTW_READ(regs, RTW_TCR);
1946
1947 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
1948 tcr &= ~RTW_TCR_LBK_MASK;
1949 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
1950
1951 /* set short/long retry limits */
1952 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
1953 tcr |= LSHIFT(7, RTW_TCR_SRL_MASK) | LSHIFT(7, RTW_TCR_LRL_MASK);
1954
1955 tcr |= RTW_TCR_CRC; /* NIC appends CRC32 */
1956
1957 RTW_WRITE(regs, RTW_TCR, tcr);
1958 }
1959
1960 static __inline void
1961 rtw_enable_interrupts(struct rtw_softc *sc)
1962 {
1963 struct rtw_regs *regs = &sc->sc_regs;
1964
1965 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
1966 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
1967
1968 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
1969 RTW_WRITE16(regs, RTW_ISR, 0xffff);
1970
1971 /* XXX necessary? */
1972 if (sc->sc_intr_ack != NULL)
1973 (*sc->sc_intr_ack)(regs);
1974 }
1975
1976 /* XXX is the endianness correct? test. */
1977 #define rtw_calchash(addr) \
1978 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1979
1980 static void
1981 rtw_pktfilt_load(struct rtw_softc *sc)
1982 {
1983 struct rtw_regs *regs = &sc->sc_regs;
1984 struct ieee80211com *ic = &sc->sc_ic;
1985 struct ethercom *ec = &ic->ic_ec;
1986 struct ifnet *ifp = &sc->sc_ic.ic_if;
1987 int hash;
1988 u_int32_t hashes[2] = { 0, 0 };
1989 struct ether_multi *enm;
1990 struct ether_multistep step;
1991
1992 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
1993
1994 #define RTW_RCR_MONITOR (RTW_RCR_ACRC32|RTW_RCR_APM|RTW_RCR_AAP|RTW_RCR_AB)
1995
1996 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1997 sc->sc_rcr |= RTW_RCR_MONITOR;
1998 else
1999 sc->sc_rcr &= ~RTW_RCR_MONITOR;
2000
2001 /* XXX reference sources BEGIN */
2002 sc->sc_rcr |= RTW_RCR_ENMARP | RTW_RCR_AICV | RTW_RCR_ACRC32;
2003 sc->sc_rcr |= RTW_RCR_AB | RTW_RCR_AM | RTW_RCR_APM;
2004 #if 0
2005 /* receive broadcasts in our BSS */
2006 sc->sc_rcr |= RTW_RCR_ADD3;
2007 #endif
2008 /* XXX reference sources END */
2009
2010 /* receive pwrmgmt frames. */
2011 sc->sc_rcr |= RTW_RCR_APWRMGT;
2012 /* receive mgmt/ctrl/data frames. */
2013 sc->sc_rcr |= RTW_RCR_AMF | RTW_RCR_ACF | RTW_RCR_ADF;
2014 /* initialize Rx DMA threshold, Tx DMA burst size */
2015 sc->sc_rcr |= RTW_RCR_RXFTH_WHOLE | RTW_RCR_MXDMA_1024;
2016
2017 ifp->if_flags &= ~IFF_ALLMULTI;
2018
2019 if (ifp->if_flags & IFF_PROMISC) {
2020 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2021 allmulti:
2022 ifp->if_flags |= IFF_ALLMULTI;
2023 goto setit;
2024 }
2025
2026 /*
2027 * Program the 64-bit multicast hash filter.
2028 */
2029 ETHER_FIRST_MULTI(step, ec, enm);
2030 while (enm != NULL) {
2031 /* XXX */
2032 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2033 ETHER_ADDR_LEN) != 0)
2034 goto allmulti;
2035
2036 hash = rtw_calchash(enm->enm_addrlo);
2037 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2038 ETHER_NEXT_MULTI(step, enm);
2039 }
2040
2041 if (ifp->if_flags & IFF_BROADCAST) {
2042 hash = rtw_calchash(etherbroadcastaddr);
2043 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2044 }
2045
2046 /* all bits set => hash is useless */
2047 if (~(hashes[0] & hashes[1]) == 0)
2048 goto allmulti;
2049
2050 setit:
2051 if (ifp->if_flags & IFF_ALLMULTI)
2052 sc->sc_rcr |= RTW_RCR_AM; /* accept all multicast */
2053
2054 if (ic->ic_state == IEEE80211_S_SCAN)
2055 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2056
2057 hashes[0] = hashes[1] = 0xffffffff;
2058
2059 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2060 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2061 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2062 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2063
2064 DPRINTF(sc, ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2065 sc->sc_dev.dv_xname, RTW_READ(regs, RTW_MAR0),
2066 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2067
2068 return;
2069 }
2070
2071 static int
2072 rtw_init(struct ifnet *ifp)
2073 {
2074 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2075 struct ieee80211com *ic = &sc->sc_ic;
2076 struct rtw_regs *regs = &sc->sc_regs;
2077 int rc = 0;
2078
2079 if ((rc = rtw_enable(sc)) != 0)
2080 goto out;
2081
2082 /* Cancel pending I/O and reset. */
2083 rtw_stop(ifp, 0);
2084
2085 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2086 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
2087 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
2088 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
2089
2090 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2091 goto out;
2092
2093 rtw_swring_setup(sc);
2094
2095 rtw_transmit_config(regs);
2096
2097 rtw_set_access(sc, RTW_ACCESS_CONFIG);
2098
2099 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2100
2101 /* long PLCP header, 1Mbps basic rate */
2102 RTW_WRITE16(regs, RTW_BRSR, 0x0);
2103
2104 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
2105 rtw_set_access(sc, RTW_ACCESS_NONE);
2106
2107 #if 0
2108 RTW_WRITE(regs, RTW_FEMR, RTW_FEMR_GWAKE|RTW_FEMR_WKUP|RTW_FEMR_INTR);
2109 #endif
2110 /* XXX from reference sources */
2111 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2112
2113 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev.dv_xname);
2114
2115 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2116 /* from Linux driver */
2117 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2118
2119 rtw_enable_interrupts(sc);
2120
2121 rtw_pktfilt_load(sc);
2122
2123 rtw_hwring_setup(sc);
2124
2125 rtw_io_enable(regs, RTW_CR_RE|RTW_CR_TE, 1);
2126
2127 ifp->if_flags |= IFF_RUNNING;
2128 ic->ic_state = IEEE80211_S_INIT;
2129
2130 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2131 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2132
2133 rtw_resume_ticks(sc);
2134
2135 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2136 rtw_set_access(sc, RTW_ACCESS_CONFIG);
2137
2138 switch (ic->ic_opmode) {
2139 case IEEE80211_M_AHDEMO:
2140 case IEEE80211_M_IBSS:
2141 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_ADHOC_OK);
2142 break;
2143 case IEEE80211_M_HOSTAP:
2144 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_AP_OK);
2145 break;
2146 case IEEE80211_M_MONITOR:
2147 /* XXX */
2148 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_NOLINK);
2149 break;
2150 case IEEE80211_M_STA:
2151 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_INFRA_OK);
2152 break;
2153 }
2154
2155 rtw_set_access(sc, RTW_ACCESS_NONE);
2156
2157 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2158 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2159 else
2160 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2161
2162 out:
2163 return rc;
2164 }
2165
2166 static int
2167 rtw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2168 {
2169 int rc = 0;
2170 struct rtw_softc *sc = ifp->if_softc;
2171 struct ifreq *ifr = (struct ifreq *)data;
2172
2173 switch (cmd) {
2174 case SIOCSIFFLAGS:
2175 if ((ifp->if_flags & IFF_UP) != 0) {
2176 if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2177 rtw_pktfilt_load(sc);
2178 } else
2179 rc = rtw_init(ifp);
2180 #ifdef RTW_DEBUG
2181 rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
2182 #endif /* RTW_DEBUG */
2183 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2184 #ifdef RTW_DEBUG
2185 rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
2186 #endif /* RTW_DEBUG */
2187 rtw_stop(ifp, 1);
2188 }
2189 break;
2190 case SIOCADDMULTI:
2191 case SIOCDELMULTI:
2192 if (cmd == SIOCADDMULTI)
2193 rc = ether_addmulti(ifr, &sc->sc_ic.ic_ec);
2194 else
2195 rc = ether_delmulti(ifr, &sc->sc_ic.ic_ec);
2196 if (rc == ENETRESET) {
2197 if (ifp->if_flags & IFF_RUNNING)
2198 rtw_pktfilt_load(sc);
2199 rc = 0;
2200 }
2201 break;
2202 default:
2203 if ((rc = ieee80211_ioctl(ifp, cmd, data)) == ENETRESET) {
2204 if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2205 rc = rtw_init(ifp);
2206 else
2207 rc = 0;
2208 }
2209 break;
2210 }
2211 return rc;
2212 }
2213
2214 /* Point *mp at the next 802.11 frame to transmit. Point *stcp
2215 * at the driver's selection of transmit control block for the packet.
2216 */
2217 static __inline int
2218 rtw_dequeue(struct ifnet *ifp, struct rtw_txctl_blk **stcp,
2219 struct rtw_txdesc_blk **htcp, struct mbuf **mp,
2220 struct ieee80211_node **nip)
2221 {
2222 struct rtw_txctl_blk *stc;
2223 struct rtw_txdesc_blk *htc;
2224 struct mbuf *m0;
2225 struct rtw_softc *sc;
2226 struct ieee80211com *ic;
2227
2228 sc = (struct rtw_softc *)ifp->if_softc;
2229
2230 DPRINTF2(sc, ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
2231 *mp = NULL;
2232
2233 stc = &sc->sc_txctl_blk[RTW_TXPRIMD];
2234 htc = &sc->sc_txdesc_blk[RTW_TXPRIMD];
2235
2236 if (SIMPLEQ_EMPTY(&stc->stc_freeq) || htc->htc_nfree == 0) {
2237 DPRINTF2(sc, ("%s: out of descriptors\n", __func__));
2238 ifp->if_flags |= IFF_OACTIVE;
2239 return 0;
2240 }
2241
2242 ic = &sc->sc_ic;
2243
2244 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
2245 IF_DEQUEUE(&ic->ic_mgtq, m0);
2246 *nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2247 m0->m_pkthdr.rcvif = NULL;
2248 DPRINTF2(sc, ("%s: dequeue mgt frame\n", __func__));
2249 } else if (ic->ic_state != IEEE80211_S_RUN) {
2250 DPRINTF2(sc, ("%s: not running\n", __func__));
2251 return 0;
2252 } else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
2253 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
2254 *nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2255 m0->m_pkthdr.rcvif = NULL;
2256 DPRINTF2(sc, ("%s: dequeue pwrsave frame\n", __func__));
2257 } else {
2258 IFQ_POLL(&ifp->if_snd, m0);
2259 if (m0 == NULL) {
2260 DPRINTF2(sc, ("%s: no frame\n", __func__));
2261 return 0;
2262 }
2263 DPRINTF2(sc, ("%s: dequeue data frame\n", __func__));
2264 IFQ_DEQUEUE(&ifp->if_snd, m0);
2265 ifp->if_opackets++;
2266 #if NBPFILTER > 0
2267 if (ifp->if_bpf)
2268 bpf_mtap(ifp->if_bpf, m0);
2269 #endif
2270 if ((m0 = ieee80211_encap(ifp, m0, nip)) == NULL) {
2271 DPRINTF2(sc, ("%s: encap error\n", __func__));
2272 ifp->if_oerrors++;
2273 return -1;
2274 }
2275 }
2276 DPRINTF2(sc, ("%s: leave\n", __func__));
2277 *stcp = stc;
2278 *htcp = htc;
2279 *mp = m0;
2280 return 0;
2281 }
2282
2283 /* TBD factor with atw_start */
2284 static struct mbuf *
2285 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
2286 u_int ndescfree, short *ifflagsp, const char *dvname)
2287 {
2288 int first, rc;
2289 struct mbuf *m, *m0;
2290
2291 m0 = chain;
2292
2293 /*
2294 * Load the DMA map. Copy and try (once) again if the packet
2295 * didn't fit in the alloted number of segments.
2296 */
2297 for (first = 1;
2298 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
2299 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
2300 dmam->dm_nsegs > ndescfree) && first;
2301 first = 0) {
2302 if (rc == 0)
2303 bus_dmamap_unload(dmat, dmam);
2304 MGETHDR(m, M_DONTWAIT, MT_DATA);
2305 if (m == NULL) {
2306 printf("%s: unable to allocate Tx mbuf\n",
2307 dvname);
2308 break;
2309 }
2310 if (m0->m_pkthdr.len > MHLEN) {
2311 MCLGET(m, M_DONTWAIT);
2312 if ((m->m_flags & M_EXT) == 0) {
2313 printf("%s: cannot allocate Tx cluster\n",
2314 dvname);
2315 m_freem(m);
2316 break;
2317 }
2318 }
2319 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2320 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
2321 m_freem(m0);
2322 m0 = m;
2323 m = NULL;
2324 }
2325 if (rc != 0) {
2326 printf("%s: cannot load Tx buffer, rc = %d\n", dvname, rc);
2327 m_freem(m0);
2328 return NULL;
2329 } else if (dmam->dm_nsegs > ndescfree) {
2330 *ifflagsp |= IFF_OACTIVE;
2331 bus_dmamap_unload(dmat, dmam);
2332 m_freem(m0);
2333 return NULL;
2334 }
2335 return m0;
2336 }
2337
2338 static void
2339 rtw_start(struct ifnet *ifp)
2340 {
2341 int desc, i, lastdesc, npkt, rate;
2342 uint32_t proto_txctl0, txctl0, txctl1;
2343 bus_dmamap_t dmamap;
2344 struct ieee80211com *ic;
2345 struct ieee80211_duration *d0;
2346 struct ieee80211_frame *wh;
2347 struct ieee80211_node *ni;
2348 struct mbuf *m0;
2349 struct rtw_softc *sc;
2350 struct rtw_txctl_blk *stc;
2351 struct rtw_txdesc_blk *htc;
2352 struct rtw_txctl *stx;
2353 struct rtw_txdesc *htx;
2354
2355 sc = (struct rtw_softc *)ifp->if_softc;
2356 ic = &sc->sc_ic;
2357
2358 DPRINTF2(sc, ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
2359
2360 /* XXX do real rate control */
2361 proto_txctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
2362
2363 switch (rate = MAX(2, ieee80211_get_rate(ic))) {
2364 case 2:
2365 proto_txctl0 |= RTW_TXCTL0_RATE_1MBPS;
2366 break;
2367 case 4:
2368 proto_txctl0 |= RTW_TXCTL0_RATE_2MBPS;
2369 break;
2370 case 11:
2371 proto_txctl0 |= RTW_TXCTL0_RATE_5MBPS;
2372 break;
2373 case 22:
2374 proto_txctl0 |= RTW_TXCTL0_RATE_11MBPS;
2375 break;
2376 }
2377
2378 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
2379 proto_txctl0 |= RTW_TXCTL0_SPLCP;
2380
2381 for (;;) {
2382 if (rtw_dequeue(ifp, &stc, &htc, &m0, &ni) == -1)
2383 continue;
2384 if (m0 == NULL)
2385 break;
2386 stx = SIMPLEQ_FIRST(&stc->stc_freeq);
2387
2388 dmamap = stx->stx_dmamap;
2389
2390 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
2391 htc->htc_nfree, &ifp->if_flags, sc->sc_dev.dv_xname);
2392
2393 if (m0 == NULL || dmamap->dm_nsegs == 0) {
2394 DPRINTF2(sc, ("%s: fail dmamap load\n", __func__));
2395 goto post_dequeue_err;
2396 }
2397
2398 txctl0 = proto_txctl0 |
2399 LSHIFT(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
2400
2401 wh = mtod(m0, struct ieee80211_frame *);
2402
2403 if (ieee80211_compute_duration(wh,
2404 m0->m_pkthdr.len - sizeof(wh),
2405 ic->ic_flags, ic->ic_fragthreshold,
2406 rate, &stx->stx_d0, &stx->stx_dn, &npkt) == -1) {
2407 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
2408 goto post_load_err;
2409 }
2410
2411 /* XXX >= ? */
2412 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
2413 txctl0 |= RTW_TXCTL0_RTSEN;
2414
2415 d0 = &stx->stx_d0;
2416
2417 txctl1 = LSHIFT(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
2418 LSHIFT(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
2419
2420 if ((d0->d_plcp_svc & IEEE80211_PLCP_SERVICE_LENEXT) != 0)
2421 txctl1 |= RTW_TXCTL1_LENGEXT;
2422
2423 /* TBD fragmentation */
2424
2425 stx->stx_first = htc->htc_next;
2426
2427 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2428 htc, stx->stx_first, dmamap->dm_nsegs,
2429 BUS_DMASYNC_PREWRITE);
2430
2431 for (i = 0, lastdesc = desc = stx->stx_first;
2432 i < dmamap->dm_nsegs;
2433 i++, desc = RTW_NEXT_IDX(htc, desc)) {
2434 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
2435 DPRINTF2(sc, ("%s: seg too long\n", __func__));
2436 goto post_load_err;
2437 }
2438 htx = &htc->htc_desc[desc];
2439 htx->htx_ctl0 = htole32(txctl0);
2440 if (i != 0)
2441 htx->htx_ctl0 |= htole32(RTW_TXCTL0_OWN);
2442 htx->htx_ctl1 = htole32(txctl1);
2443 htx->htx_buf = htole32(dmamap->dm_segs[i].ds_addr);
2444 htx->htx_len = htole32(dmamap->dm_segs[i].ds_len);
2445 lastdesc = desc;
2446 DPRINTF2(sc, ("%s: stx %p txdesc[%d] ctl0 %#08x "
2447 "ctl1 %#08x buf %#08x len %#08x\n",
2448 sc->sc_dev.dv_xname, stx, desc, htx->htx_ctl0,
2449 htx->htx_ctl1, htx->htx_buf, htx->htx_len));
2450 }
2451
2452 htc->htc_desc[lastdesc].htx_ctl0 |= htole32(RTW_TXCTL0_LS);
2453 htc->htc_desc[stx->stx_first].htx_ctl0 |=
2454 htole32(RTW_TXCTL0_FS);
2455
2456 DPRINTF2(sc, ("%s: stx %p FS on txdesc[%d], LS on txdesc[%d]\n",
2457 sc->sc_dev.dv_xname, stx, lastdesc, stx->stx_first));
2458
2459 stx->stx_ni = ni;
2460 stx->stx_mbuf = m0;
2461 stx->stx_last = lastdesc;
2462
2463 htc->htc_nfree -= dmamap->dm_nsegs;
2464 htc->htc_next = desc;
2465
2466 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2467 htc, stx->stx_first, dmamap->dm_nsegs,
2468 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2469
2470 htc->htc_desc[stx->stx_first].htx_ctl0 |=
2471 htole32(RTW_TXCTL0_OWN);
2472
2473 DPRINTF2(sc, ("%s: stx %p OWN on txdesc[%d]\n",
2474 sc->sc_dev.dv_xname, stx, stx->stx_first));
2475
2476 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2477 htc, stx->stx_first, 1,
2478 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2479
2480 SIMPLEQ_REMOVE_HEAD(&stc->stc_freeq, stx_q);
2481 SIMPLEQ_INSERT_TAIL(&stc->stc_dirtyq, stx, stx_q);
2482
2483 stc->stc_tx_timer = 5;
2484 ifp->if_timer = 1;
2485
2486 /* TBD poke just one txmtr? */
2487 RTW_WRITE8(&sc->sc_regs, RTW_TPPOLL,
2488 RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ | RTW_TPPOLL_HPQ |
2489 RTW_TPPOLL_BQ);
2490 }
2491 DPRINTF2(sc, ("%s: leave\n", __func__));
2492 return;
2493 post_load_err:
2494 bus_dmamap_unload(sc->sc_dmat, dmamap);
2495 m_freem(m0);
2496 post_dequeue_err:
2497 ieee80211_release_node(&sc->sc_ic, ni);
2498 return;
2499 }
2500
2501 static void
2502 rtw_watchdog(struct ifnet *ifp)
2503 {
2504 int pri;
2505 struct rtw_softc *sc;
2506 struct rtw_txctl_blk *stc;
2507
2508 sc = ifp->if_softc;
2509
2510 ifp->if_timer = 0;
2511
2512 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2513 return;
2514
2515 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2516 stc = &sc->sc_txctl_blk[pri];
2517
2518 if (stc->stc_tx_timer == 0)
2519 continue;
2520
2521 if (--stc->stc_tx_timer == 0) {
2522 if (SIMPLEQ_EMPTY(&stc->stc_dirtyq))
2523 continue;
2524 printf("%s: transmit timeout, priority %d\n",
2525 ifp->if_xname, pri);
2526 ifp->if_oerrors++;
2527 /* XXX be gentle */
2528 (void)rtw_init(ifp);
2529 rtw_start(ifp);
2530 } else
2531 ifp->if_timer = 1;
2532 }
2533 /* TBD */
2534 return;
2535 }
2536
2537 static void
2538 rtw_start_beacon(struct rtw_softc *sc, int enable)
2539 {
2540 /* TBD */
2541 return;
2542 }
2543
2544 static void
2545 rtw_next_scan(void *arg)
2546 {
2547 struct ieee80211com *ic = arg;
2548 int s;
2549
2550 /* don't call rtw_start w/o network interrupts blocked */
2551 s = splnet();
2552 if (ic->ic_state == IEEE80211_S_SCAN)
2553 ieee80211_next_scan(ic);
2554 splx(s);
2555 }
2556
2557 /* Synchronize the hardware state with the software state. */
2558 static int
2559 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2560 {
2561 struct ifnet *ifp = &ic->ic_if;
2562 struct rtw_softc *sc = ifp->if_softc;
2563 enum ieee80211_state ostate;
2564 int error;
2565
2566 ostate = ic->ic_state;
2567
2568 if (nstate == IEEE80211_S_INIT) {
2569 callout_stop(&sc->sc_scan_ch);
2570 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2571 rtw_start_beacon(sc, 0);
2572 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
2573 }
2574
2575 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
2576 rtw_pwrstate(sc, RTW_ON);
2577
2578 if ((error = rtw_tune(sc)) != 0)
2579 return error;
2580
2581 switch (nstate) {
2582 case IEEE80211_S_ASSOC:
2583 break;
2584 case IEEE80211_S_INIT:
2585 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2586 break;
2587 case IEEE80211_S_SCAN:
2588 #if 0
2589 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2590 rtw_write_bssid(sc);
2591 #endif
2592
2593 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
2594 rtw_next_scan, ic);
2595
2596 break;
2597 case IEEE80211_S_RUN:
2598 if (ic->ic_opmode == IEEE80211_M_STA)
2599 break;
2600 /*FALLTHROUGH*/
2601 case IEEE80211_S_AUTH:
2602 #if 0
2603 rtw_write_bssid(sc);
2604 rtw_write_bcn_thresh(sc);
2605 rtw_write_ssid(sc);
2606 rtw_write_sup_rates(sc);
2607 #endif
2608 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2609 ic->ic_opmode == IEEE80211_M_MONITOR)
2610 break;
2611
2612 /* TBD set listen interval, beacon interval */
2613
2614 #if 0
2615 rtw_tsf(sc);
2616 #endif
2617 break;
2618 }
2619
2620 if (nstate != IEEE80211_S_SCAN)
2621 callout_stop(&sc->sc_scan_ch);
2622
2623 if (nstate == IEEE80211_S_RUN &&
2624 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2625 ic->ic_opmode == IEEE80211_M_IBSS))
2626 rtw_start_beacon(sc, 1);
2627 else
2628 rtw_start_beacon(sc, 0);
2629
2630 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
2631 }
2632
2633 static void
2634 rtw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2635 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2636 {
2637 /* TBD */
2638 return;
2639 }
2640
2641 static void
2642 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2643 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2644 {
2645 struct rtw_softc *sc = (struct rtw_softc*)ic->ic_softc;
2646
2647 switch (subtype) {
2648 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2649 /* do nothing: hardware answers probe request XXX */
2650 break;
2651 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2652 case IEEE80211_FC0_SUBTYPE_BEACON:
2653 rtw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2654 break;
2655 default:
2656 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2657 break;
2658 }
2659 return;
2660 }
2661
2662 static struct ieee80211_node *
2663 rtw_node_alloc(struct ieee80211com *ic)
2664 {
2665 struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2666 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(ic);
2667
2668 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
2669 return ni;
2670 }
2671
2672 static void
2673 rtw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2674 {
2675 struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2676
2677 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
2678 ether_sprintf(ni->ni_bssid)));
2679 (*sc->sc_mtbl.mt_node_free)(ic, ni);
2680 }
2681
2682 static int
2683 rtw_media_change(struct ifnet *ifp)
2684 {
2685 int error;
2686
2687 error = ieee80211_media_change(ifp);
2688 if (error == ENETRESET) {
2689 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
2690 (IFF_RUNNING|IFF_UP))
2691 rtw_init(ifp); /* XXX lose error */
2692 error = 0;
2693 }
2694 return error;
2695 }
2696
2697 static void
2698 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2699 {
2700 struct rtw_softc *sc = ifp->if_softc;
2701
2702 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2703 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
2704 imr->ifm_status = 0;
2705 return;
2706 }
2707 ieee80211_media_status(ifp, imr);
2708 }
2709
2710 void
2711 rtw_power(int why, void *arg)
2712 {
2713 struct rtw_softc *sc = arg;
2714 struct ifnet *ifp = &sc->sc_ic.ic_if;
2715 int s;
2716
2717 DPRINTF(sc, ("%s: rtw_power(%d,)\n", sc->sc_dev.dv_xname, why));
2718
2719 s = splnet();
2720 switch (why) {
2721 case PWR_STANDBY:
2722 /* XXX do nothing. */
2723 break;
2724 case PWR_SUSPEND:
2725 rtw_stop(ifp, 0);
2726 if (sc->sc_power != NULL)
2727 (*sc->sc_power)(sc, why);
2728 break;
2729 case PWR_RESUME:
2730 if (ifp->if_flags & IFF_UP) {
2731 if (sc->sc_power != NULL)
2732 (*sc->sc_power)(sc, why);
2733 rtw_init(ifp);
2734 }
2735 break;
2736 case PWR_SOFTSUSPEND:
2737 case PWR_SOFTSTANDBY:
2738 case PWR_SOFTRESUME:
2739 break;
2740 }
2741 splx(s);
2742 }
2743
2744 /* rtw_shutdown: make sure the interface is stopped at reboot time. */
2745 void
2746 rtw_shutdown(void *arg)
2747 {
2748 struct rtw_softc *sc = arg;
2749
2750 rtw_stop(&sc->sc_ic.ic_if, 1);
2751 }
2752
2753 static __inline void
2754 rtw_setifprops(struct ifnet *ifp, char (*dvname)[IFNAMSIZ], void *softc)
2755 {
2756 (void)memcpy(ifp->if_xname, *dvname, IFNAMSIZ);
2757 ifp->if_softc = softc;
2758 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
2759 IFF_NOTRAILERS;
2760 ifp->if_ioctl = rtw_ioctl;
2761 ifp->if_start = rtw_start;
2762 ifp->if_watchdog = rtw_watchdog;
2763 ifp->if_init = rtw_init;
2764 ifp->if_stop = rtw_stop;
2765 }
2766
2767 static __inline void
2768 rtw_set80211props(struct ieee80211com *ic)
2769 {
2770 int nrate;
2771 ic->ic_phytype = IEEE80211_T_DS;
2772 ic->ic_opmode = IEEE80211_M_STA;
2773 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
2774 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
2775
2776 nrate = 0;
2777 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
2778 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
2779 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
2780 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
2781 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
2782 }
2783
2784 static __inline void
2785 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
2786 {
2787 mtbl->mt_newstate = ic->ic_newstate;
2788 ic->ic_newstate = rtw_newstate;
2789
2790 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
2791 ic->ic_recv_mgmt = rtw_recv_mgmt;
2792
2793 mtbl->mt_node_free = ic->ic_node_free;
2794 ic->ic_node_free = rtw_node_free;
2795
2796 mtbl->mt_node_alloc = ic->ic_node_alloc;
2797 ic->ic_node_alloc = rtw_node_alloc;
2798 }
2799
2800 static __inline void
2801 rtw_establish_hooks(struct rtw_hooks *hooks, char (*dvname)[IFNAMSIZ],
2802 void *arg)
2803 {
2804 /*
2805 * Make sure the interface is shutdown during reboot.
2806 */
2807 hooks->rh_shutdown = shutdownhook_establish(rtw_shutdown, arg);
2808 if (hooks->rh_shutdown == NULL)
2809 printf("%s: WARNING: unable to establish shutdown hook\n",
2810 *dvname);
2811
2812 /*
2813 * Add a suspend hook to make sure we come back up after a
2814 * resume.
2815 */
2816 hooks->rh_power = powerhook_establish(rtw_power, arg);
2817 if (hooks->rh_power == NULL)
2818 printf("%s: WARNING: unable to establish power hook\n",
2819 *dvname);
2820 }
2821
2822 static __inline void
2823 rtw_disestablish_hooks(struct rtw_hooks *hooks, char (*dvname)[IFNAMSIZ],
2824 void *arg)
2825 {
2826 if (hooks->rh_shutdown != NULL)
2827 shutdownhook_disestablish(hooks->rh_shutdown);
2828
2829 if (hooks->rh_power != NULL)
2830 powerhook_disestablish(hooks->rh_power);
2831 }
2832
2833 static __inline void
2834 rtw_init_radiotap(struct rtw_softc *sc)
2835 {
2836 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
2837 sc->sc_rxtap.rr_ihdr.it_len = sizeof(sc->sc_rxtapu);
2838 sc->sc_rxtap.rr_ihdr.it_present = RTW_RX_RADIOTAP_PRESENT;
2839
2840 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
2841 sc->sc_txtap.rt_ihdr.it_len = sizeof(sc->sc_txtapu);
2842 sc->sc_txtap.rt_ihdr.it_present = RTW_TX_RADIOTAP_PRESENT;
2843 }
2844
2845 static int
2846 rtw_txctl_blk_setup(struct rtw_txctl_blk *stc, u_int qlen)
2847 {
2848 SIMPLEQ_INIT(&stc->stc_dirtyq);
2849 SIMPLEQ_INIT(&stc->stc_freeq);
2850 stc->stc_ndesc = qlen;
2851 stc->stc_desc = malloc(qlen * sizeof(*stc->stc_desc), M_DEVBUF,
2852 M_NOWAIT);
2853 if (stc->stc_desc == NULL)
2854 return ENOMEM;
2855 return 0;
2856 }
2857
2858 static void
2859 rtw_txctl_blk_cleanup_all(struct rtw_softc *sc)
2860 {
2861 struct rtw_txctl_blk *stc;
2862 int qlen[RTW_NTXPRI] =
2863 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
2864 int pri;
2865
2866 for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
2867 stc = &sc->sc_txctl_blk[pri];
2868 free(stc->stc_desc, M_DEVBUF);
2869 stc->stc_desc = NULL;
2870 }
2871 }
2872
2873 static int
2874 rtw_txctl_blk_setup_all(struct rtw_softc *sc)
2875 {
2876 int pri, rc = 0;
2877 int qlen[RTW_NTXPRI] =
2878 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
2879
2880 for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
2881 rc = rtw_txctl_blk_setup(&sc->sc_txctl_blk[pri], qlen[pri]);
2882 if (rc != 0)
2883 break;
2884 }
2885 return rc;
2886 }
2887
2888 static void
2889 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *htc, struct rtw_txdesc *desc,
2890 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
2891 {
2892 int i;
2893
2894 htc->htc_ndesc = ndesc;
2895 htc->htc_desc = desc;
2896 htc->htc_physbase = physbase;
2897 htc->htc_ofs = ofs;
2898
2899 (void)memset(htc->htc_desc, 0,
2900 sizeof(htc->htc_desc[0]) * htc->htc_ndesc);
2901
2902 for (i = 0; i < htc->htc_ndesc; i++) {
2903 htc->htc_desc[i].htx_next = htole32(RTW_NEXT_DESC(htc, i));
2904 }
2905 }
2906
2907 static void
2908 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
2909 {
2910 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
2911 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
2912 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
2913
2914 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
2915 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
2916 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
2917
2918 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
2919 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
2920 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
2921
2922 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
2923 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
2924 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
2925 }
2926
2927 static struct rtw_rf *
2928 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid,
2929 rtw_rf_write_t rf_write, int digphy)
2930 {
2931 struct rtw_rf *rf;
2932
2933 switch (rfchipid) {
2934 case RTW_RFCHIPID_MAXIM:
2935 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
2936 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
2937 break;
2938 case RTW_RFCHIPID_PHILIPS:
2939 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
2940 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
2941 break;
2942 default:
2943 return NULL;
2944 }
2945 rf->rf_continuous_tx_cb =
2946 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
2947 rf->rf_continuous_tx_arg = (void *)sc;
2948 return rf;
2949 }
2950
2951 /* Revision C and later use a different PHY delay setting than
2952 * revisions A and B.
2953 */
2954 static u_int8_t
2955 rtw_check_phydelay(struct rtw_regs *regs, u_int32_t rcr0)
2956 {
2957 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
2958 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
2959
2960 u_int8_t phydelay = LSHIFT(0x6, RTW_PHYDELAY_PHYDELAY);
2961
2962 RTW_WRITE(regs, RTW_RCR, REVAB);
2963 RTW_WRITE(regs, RTW_RCR, REVC);
2964
2965 RTW_WBR(regs, RTW_RCR, RTW_RCR);
2966 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
2967 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
2968
2969 RTW_WRITE(regs, RTW_RCR, rcr0); /* restore RCR */
2970
2971 return phydelay;
2972 #undef REVC
2973 }
2974
2975 void
2976 rtw_attach(struct rtw_softc *sc)
2977 {
2978 rtw_rf_write_t rf_write;
2979 struct rtw_txctl_blk *stc;
2980 int pri, rc, vers;
2981
2982 #if 0
2983 CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_txdesc) == 0,
2984 "RTW_DESC_ALIGNMENT is not a multiple of "
2985 "sizeof(struct rtw_txdesc)");
2986
2987 CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_rxdesc) == 0,
2988 "RTW_DESC_ALIGNMENT is not a multiple of "
2989 "sizeof(struct rtw_rxdesc)");
2990
2991 CASSERT(RTW_DESC_ALIGNMENT % RTW_MAXPKTSEGS == 0,
2992 "RTW_DESC_ALIGNMENT is not a multiple of RTW_MAXPKTSEGS");
2993 #endif
2994
2995 NEXT_ATTACH_STATE(sc, DETACHED);
2996
2997 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
2998 case RTW_TCR_HWVERID_F:
2999 vers = 'F';
3000 rf_write = rtw_rf_hostwrite;
3001 break;
3002 case RTW_TCR_HWVERID_D:
3003 vers = 'D';
3004 if (rtw_host_rfio)
3005 rf_write = rtw_rf_hostwrite;
3006 else
3007 rf_write = rtw_rf_macwrite;
3008 break;
3009 default:
3010 vers = '?';
3011 rf_write = rtw_rf_macwrite;
3012 break;
3013 }
3014 printf("%s: hardware version %c\n", sc->sc_dev.dv_xname, vers);
3015
3016 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
3017 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
3018 0);
3019
3020 if (rc != 0) {
3021 printf("%s: could not allocate hw descriptors, error %d\n",
3022 sc->sc_dev.dv_xname, rc);
3023 goto err;
3024 }
3025
3026 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
3027
3028 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
3029 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
3030 (caddr_t*)&sc->sc_descs, BUS_DMA_COHERENT);
3031
3032 if (rc != 0) {
3033 printf("%s: could not map hw descriptors, error %d\n",
3034 sc->sc_dev.dv_xname, rc);
3035 goto err;
3036 }
3037 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
3038
3039 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
3040 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
3041
3042 if (rc != 0) {
3043 printf("%s: could not create DMA map for hw descriptors, "
3044 "error %d\n", sc->sc_dev.dv_xname, rc);
3045 goto err;
3046 }
3047 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
3048
3049 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
3050 sizeof(struct rtw_descs), NULL, 0);
3051
3052 if (rc != 0) {
3053 printf("%s: could not load DMA map for hw descriptors, "
3054 "error %d\n", sc->sc_dev.dv_xname, rc);
3055 goto err;
3056 }
3057 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
3058
3059 if (rtw_txctl_blk_setup_all(sc) != 0)
3060 goto err;
3061 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
3062
3063 rtw_txdesc_blk_setup_all(sc);
3064
3065 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
3066
3067 sc->sc_rxdesc = &sc->sc_descs->hd_rx[0];
3068
3069 rtw_rxctls_setup(&sc->sc_rxctl[0]);
3070
3071 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3072 stc = &sc->sc_txctl_blk[pri];
3073
3074 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
3075 &stc->stc_desc[0], stc->stc_ndesc)) != 0) {
3076 printf("%s: could not load DMA map for "
3077 "hw tx descriptors, error %d\n",
3078 sc->sc_dev.dv_xname, rc);
3079 goto err;
3080 }
3081 }
3082
3083 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
3084 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxctl[0],
3085 RTW_RXQLEN)) != 0) {
3086 printf("%s: could not load DMA map for hw rx descriptors, "
3087 "error %d\n", sc->sc_dev.dv_xname, rc);
3088 goto err;
3089 }
3090 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
3091
3092 /* Reset the chip to a known state. */
3093 if (rtw_reset(sc) != 0)
3094 goto err;
3095 NEXT_ATTACH_STATE(sc, FINISH_RESET);
3096
3097 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
3098
3099 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
3100 sc->sc_flags |= RTW_F_9356SROM;
3101
3102 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
3103 &sc->sc_dev.dv_xname) != 0)
3104 goto err;
3105
3106 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
3107
3108 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
3109 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
3110 &sc->sc_dev.dv_xname) != 0) {
3111 printf("%s: attach failed, malformed serial ROM\n",
3112 sc->sc_dev.dv_xname);
3113 goto err;
3114 }
3115
3116 RTW_DPRINTF(("%s: CS threshold %u\n", sc->sc_dev.dv_xname,
3117 sc->sc_csthr));
3118
3119 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
3120
3121 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid, rf_write,
3122 sc->sc_flags & RTW_F_DIGPHY);
3123
3124 if (sc->sc_rf == NULL) {
3125 printf("%s: attach failed, could not attach RF\n",
3126 sc->sc_dev.dv_xname);
3127 goto err;
3128 }
3129
3130 #if 0
3131 if (rtw_identify_rf(&sc->sc_regs, &sc->sc_rftype,
3132 &sc->sc_dev.dv_xname) != 0) {
3133 printf("%s: attach failed, unknown RF unidentified\n",
3134 sc->sc_dev.dv_xname);
3135 goto err;
3136 }
3137 #endif
3138
3139 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
3140
3141 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
3142
3143 RTW_DPRINTF(("%s: PHY delay %d\n", sc->sc_dev.dv_xname,
3144 sc->sc_phydelay));
3145
3146 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
3147 rtw_identify_country(&sc->sc_regs, &sc->sc_locale,
3148 &sc->sc_dev.dv_xname);
3149
3150 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels,
3151 &sc->sc_dev.dv_xname);
3152
3153 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
3154 &sc->sc_dev.dv_xname) != 0)
3155 goto err;
3156 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
3157
3158 rtw_setifprops(&sc->sc_if, &sc->sc_dev.dv_xname, (void*)sc);
3159
3160 IFQ_SET_READY(&sc->sc_if.if_snd);
3161
3162 rtw_set80211props(&sc->sc_ic);
3163
3164 /*
3165 * Call MI attach routines.
3166 */
3167 if_attach(&sc->sc_if);
3168 ieee80211_ifattach(&sc->sc_if);
3169
3170 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
3171
3172 /* possibly we should fill in our own sc_send_prresp, since
3173 * the RTL8180 is probably sending probe responses in ad hoc
3174 * mode.
3175 */
3176
3177 /* complete initialization */
3178 ieee80211_media_init(&sc->sc_if, rtw_media_change, rtw_media_status);
3179 callout_init(&sc->sc_scan_ch);
3180
3181 #if NBPFILTER > 0
3182 bpfattach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
3183 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
3184 #endif
3185
3186 rtw_establish_hooks(&sc->sc_hooks, &sc->sc_dev.dv_xname, (void*)sc);
3187
3188 rtw_init_radiotap(sc);
3189
3190 NEXT_ATTACH_STATE(sc, FINISHED);
3191
3192 return;
3193 err:
3194 rtw_detach(sc);
3195 return;
3196 }
3197
3198 int
3199 rtw_detach(struct rtw_softc *sc)
3200 {
3201 int pri;
3202
3203 switch (sc->sc_attach_state) {
3204 case FINISHED:
3205 rtw_stop(&sc->sc_if, 1);
3206
3207 rtw_disestablish_hooks(&sc->sc_hooks, &sc->sc_dev.dv_xname,
3208 (void*)sc);
3209 callout_stop(&sc->sc_scan_ch);
3210 ieee80211_ifdetach(&sc->sc_if);
3211 if_detach(&sc->sc_if);
3212 break;
3213 case FINISH_ID_STA:
3214 case FINISH_RF_ATTACH:
3215 rtw_rf_destroy(sc->sc_rf);
3216 sc->sc_rf = NULL;
3217 /*FALLTHROUGH*/
3218 case FINISH_PARSE_SROM:
3219 case FINISH_READ_SROM:
3220 rtw_srom_free(&sc->sc_srom);
3221 /*FALLTHROUGH*/
3222 case FINISH_RESET:
3223 case FINISH_RXMAPS_CREATE:
3224 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxctl[0],
3225 RTW_RXQLEN);
3226 /*FALLTHROUGH*/
3227 case FINISH_TXMAPS_CREATE:
3228 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3229 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
3230 sc->sc_txctl_blk[pri].stc_desc,
3231 sc->sc_txctl_blk[pri].stc_ndesc);
3232 }
3233 /*FALLTHROUGH*/
3234 case FINISH_TXDESCBLK_SETUP:
3235 case FINISH_TXCTLBLK_SETUP:
3236 rtw_txctl_blk_cleanup_all(sc);
3237 /*FALLTHROUGH*/
3238 case FINISH_DESCMAP_LOAD:
3239 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
3240 /*FALLTHROUGH*/
3241 case FINISH_DESCMAP_CREATE:
3242 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
3243 /*FALLTHROUGH*/
3244 case FINISH_DESC_MAP:
3245 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_descs,
3246 sizeof(struct rtw_descs));
3247 /*FALLTHROUGH*/
3248 case FINISH_DESC_ALLOC:
3249 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
3250 sc->sc_desc_nsegs);
3251 /*FALLTHROUGH*/
3252 case DETACHED:
3253 NEXT_ATTACH_STATE(sc, DETACHED);
3254 break;
3255 }
3256 return 0;
3257 }
3258
3259 int
3260 rtw_activate(struct device *self, enum devact act)
3261 {
3262 struct rtw_softc *sc = (struct rtw_softc *)self;
3263 int rc = 0, s;
3264
3265 s = splnet();
3266 switch (act) {
3267 case DVACT_ACTIVATE:
3268 rc = EOPNOTSUPP;
3269 break;
3270
3271 case DVACT_DEACTIVATE:
3272 if_deactivate(&sc->sc_ic.ic_if);
3273 break;
3274 }
3275 splx(s);
3276 return rc;
3277 }
3278