rtw.c revision 1.68 1 /* $NetBSD: rtw.c,v 1.68 2006/03/08 00:24:06 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005 David Young. All rights reserved.
4 *
5 * Programmed for NetBSD by David Young.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of David Young may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
23 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30 * OF SUCH DAMAGE.
31 */
32 /*
33 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.68 2006/03/08 00:24:06 dyoung Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/sysctl.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/time.h>
49 #include <sys/types.h>
50
51 #include <machine/endian.h>
52 #include <machine/bus.h>
53 #include <machine/intr.h> /* splnet */
54
55 #include <uvm/uvm_extern.h>
56
57 #include <net/if.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68
69 #include <dev/ic/rtwreg.h>
70 #include <dev/ic/rtwvar.h>
71 #include <dev/ic/rtwphyio.h>
72 #include <dev/ic/rtwphy.h>
73
74 #include <dev/ic/smc93cx6var.h>
75
76 #define KASSERT2(__cond, __msg) \
77 do { \
78 if (!(__cond)) \
79 panic __msg ; \
80 } while (0)
81
82 static int rtw_rfprog_fallback = 0;
83 static int rtw_host_rfio = 0;
84
85 #ifdef RTW_DEBUG
86 int rtw_debug = 0;
87 static int rtw_rxbufs_limit = RTW_RXQLEN;
88 #endif /* RTW_DEBUG */
89
90 #define NEXT_ATTACH_STATE(sc, state) do { \
91 DPRINTF(sc, RTW_DEBUG_ATTACH, \
92 ("%s: attach state %s\n", __func__, #state)); \
93 sc->sc_attach_state = state; \
94 } while (0)
95
96 static int rtw_xmtr_restart = 0;
97 static int rtw_do_chip_reset = 0;
98 static int rtw_ring_reset = 0;
99
100 int rtw_dwelltime = 200; /* milliseconds */
101 static struct ieee80211_cipher rtw_cipher_wep;
102
103 static void rtw_start(struct ifnet *);
104 static void rtw_reset_oactive(struct rtw_softc *);
105 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
106 struct ieee80211_node *);
107 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
108
109 static void rtw_io_enable(struct rtw_regs *, uint8_t, int);
110 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
111 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
112 const u_int8_t[IEEE80211_ADDR_LEN]);
113 static void rtw_key_update_end(struct ieee80211com *);
114 static void rtw_key_update_begin(struct ieee80211com *);
115 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
116 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
117
118 static void rtw_led_attach(struct rtw_led_state *, void *);
119 static void rtw_led_init(struct rtw_regs *);
120 static void rtw_led_slowblink(void *);
121 static void rtw_led_fastblink(void *);
122 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
123
124 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
125 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
126 #ifdef RTW_DEBUG
127 static void rtw_print_txdesc(struct rtw_softc *, const char *,
128 struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
129 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
130 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
131 #endif /* RTW_DEBUG */
132
133 /*
134 * Setup sysctl(3) MIB, hw.rtw.*
135 *
136 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
137 */
138 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
139 {
140 int rc;
141 const struct sysctlnode *cnode, *rnode;
142
143 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
144 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
145 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
146 goto err;
147
148 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
149 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
150 "Realtek RTL818x 802.11 controls",
151 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
152 goto err;
153
154 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
155 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
156 "chip_reset", SYSCTL_DESCR("Gratuitously reset chip on rcvr error"),
157 NULL, 0, &rtw_do_chip_reset, 0,
158 CTL_CREATE, CTL_EOL)) != 0)
159 goto err;
160
161 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
162 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
163 "ring_reset", SYSCTL_DESCR("Reset ring pointers on rcvr error"),
164 NULL, 0, &rtw_ring_reset, 0,
165 CTL_CREATE, CTL_EOL)) != 0)
166 goto err;
167
168 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
169 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
170 "xmtr_restart",
171 SYSCTL_DESCR("Gratuitously reset xmtr on rcvr error"),
172 NULL, 0, &rtw_xmtr_restart, 0,
173 CTL_CREATE, CTL_EOL)) != 0)
174 goto err;
175
176 #ifdef RTW_DEBUG
177 /* control debugging printfs */
178 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
179 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
180 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
181 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
182 CTL_CREATE, CTL_EOL)) != 0)
183 goto err;
184
185 /* Limit rx buffers, for simulating resource exhaustion. */
186 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
187 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
188 "rxbufs_limit",
189 SYSCTL_DESCR("Set rx buffers limit"),
190 rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
191 CTL_CREATE, CTL_EOL)) != 0)
192 goto err;
193
194 #endif /* RTW_DEBUG */
195 /* set fallback RF programming method */
196 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
197 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
198 "rfprog_fallback",
199 SYSCTL_DESCR("Set fallback RF programming method"),
200 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
201 CTL_CREATE, CTL_EOL)) != 0)
202 goto err;
203
204 /* force host to control RF I/O bus */
205 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
206 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
207 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
208 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
209 CTL_CREATE, CTL_EOL)) != 0)
210 goto err;
211
212 return;
213 err:
214 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
215 }
216
217 static int
218 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
219 {
220 int error, t;
221 struct sysctlnode node;
222
223 node = *rnode;
224 t = *(int*)rnode->sysctl_data;
225 node.sysctl_data = &t;
226 error = sysctl_lookup(SYSCTLFN_CALL(&node));
227 if (error || newp == NULL)
228 return (error);
229
230 if (t < lower || t > upper)
231 return (EINVAL);
232
233 *(int*)rnode->sysctl_data = t;
234
235 return (0);
236 }
237
238 static int
239 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
240 {
241 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
242 SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
243 }
244
245 static int
246 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
247 {
248 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
249 }
250
251 #ifdef RTW_DEBUG
252 static int
253 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
254 {
255 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
256 0, RTW_DEBUG_MAX);
257 }
258
259 static int
260 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
261 {
262 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
263 0, RTW_RXQLEN);
264 }
265
266 static void
267 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
268 {
269 #define PRINTREG32(sc, reg) \
270 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
271 ("%s: reg[ " #reg " / %03x ] = %08x\n", \
272 dvname, reg, RTW_READ(regs, reg)))
273
274 #define PRINTREG16(sc, reg) \
275 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
276 ("%s: reg[ " #reg " / %03x ] = %04x\n", \
277 dvname, reg, RTW_READ16(regs, reg)))
278
279 #define PRINTREG8(sc, reg) \
280 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
281 ("%s: reg[ " #reg " / %03x ] = %02x\n", \
282 dvname, reg, RTW_READ8(regs, reg)))
283
284 RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
285
286 PRINTREG32(regs, RTW_IDR0);
287 PRINTREG32(regs, RTW_IDR1);
288 PRINTREG32(regs, RTW_MAR0);
289 PRINTREG32(regs, RTW_MAR1);
290 PRINTREG32(regs, RTW_TSFTRL);
291 PRINTREG32(regs, RTW_TSFTRH);
292 PRINTREG32(regs, RTW_TLPDA);
293 PRINTREG32(regs, RTW_TNPDA);
294 PRINTREG32(regs, RTW_THPDA);
295 PRINTREG32(regs, RTW_TCR);
296 PRINTREG32(regs, RTW_RCR);
297 PRINTREG32(regs, RTW_TINT);
298 PRINTREG32(regs, RTW_TBDA);
299 PRINTREG32(regs, RTW_ANAPARM);
300 PRINTREG32(regs, RTW_BB);
301 PRINTREG32(regs, RTW_PHYCFG);
302 PRINTREG32(regs, RTW_WAKEUP0L);
303 PRINTREG32(regs, RTW_WAKEUP0H);
304 PRINTREG32(regs, RTW_WAKEUP1L);
305 PRINTREG32(regs, RTW_WAKEUP1H);
306 PRINTREG32(regs, RTW_WAKEUP2LL);
307 PRINTREG32(regs, RTW_WAKEUP2LH);
308 PRINTREG32(regs, RTW_WAKEUP2HL);
309 PRINTREG32(regs, RTW_WAKEUP2HH);
310 PRINTREG32(regs, RTW_WAKEUP3LL);
311 PRINTREG32(regs, RTW_WAKEUP3LH);
312 PRINTREG32(regs, RTW_WAKEUP3HL);
313 PRINTREG32(regs, RTW_WAKEUP3HH);
314 PRINTREG32(regs, RTW_WAKEUP4LL);
315 PRINTREG32(regs, RTW_WAKEUP4LH);
316 PRINTREG32(regs, RTW_WAKEUP4HL);
317 PRINTREG32(regs, RTW_WAKEUP4HH);
318 PRINTREG32(regs, RTW_DK0);
319 PRINTREG32(regs, RTW_DK1);
320 PRINTREG32(regs, RTW_DK2);
321 PRINTREG32(regs, RTW_DK3);
322 PRINTREG32(regs, RTW_RETRYCTR);
323 PRINTREG32(regs, RTW_RDSAR);
324 PRINTREG32(regs, RTW_FER);
325 PRINTREG32(regs, RTW_FEMR);
326 PRINTREG32(regs, RTW_FPSR);
327 PRINTREG32(regs, RTW_FFER);
328
329 /* 16-bit registers */
330 PRINTREG16(regs, RTW_BRSR);
331 PRINTREG16(regs, RTW_IMR);
332 PRINTREG16(regs, RTW_ISR);
333 PRINTREG16(regs, RTW_BCNITV);
334 PRINTREG16(regs, RTW_ATIMWND);
335 PRINTREG16(regs, RTW_BINTRITV);
336 PRINTREG16(regs, RTW_ATIMTRITV);
337 PRINTREG16(regs, RTW_CRC16ERR);
338 PRINTREG16(regs, RTW_CRC0);
339 PRINTREG16(regs, RTW_CRC1);
340 PRINTREG16(regs, RTW_CRC2);
341 PRINTREG16(regs, RTW_CRC3);
342 PRINTREG16(regs, RTW_CRC4);
343 PRINTREG16(regs, RTW_CWR);
344
345 /* 8-bit registers */
346 PRINTREG8(regs, RTW_CR);
347 PRINTREG8(regs, RTW_9346CR);
348 PRINTREG8(regs, RTW_CONFIG0);
349 PRINTREG8(regs, RTW_CONFIG1);
350 PRINTREG8(regs, RTW_CONFIG2);
351 PRINTREG8(regs, RTW_MSR);
352 PRINTREG8(regs, RTW_CONFIG3);
353 PRINTREG8(regs, RTW_CONFIG4);
354 PRINTREG8(regs, RTW_TESTR);
355 PRINTREG8(regs, RTW_PSR);
356 PRINTREG8(regs, RTW_SCR);
357 PRINTREG8(regs, RTW_PHYDELAY);
358 PRINTREG8(regs, RTW_CRCOUNT);
359 PRINTREG8(regs, RTW_PHYADDR);
360 PRINTREG8(regs, RTW_PHYDATAW);
361 PRINTREG8(regs, RTW_PHYDATAR);
362 PRINTREG8(regs, RTW_CONFIG5);
363 PRINTREG8(regs, RTW_TPPOLL);
364
365 PRINTREG16(regs, RTW_BSSID16);
366 PRINTREG32(regs, RTW_BSSID32);
367 #undef PRINTREG32
368 #undef PRINTREG16
369 #undef PRINTREG8
370 }
371 #endif /* RTW_DEBUG */
372
373 void
374 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
375 {
376 struct rtw_regs *regs = &sc->sc_regs;
377
378 uint32_t tcr;
379 tcr = RTW_READ(regs, RTW_TCR);
380 tcr &= ~RTW_TCR_LBK_MASK;
381 if (enable)
382 tcr |= RTW_TCR_LBK_CONT;
383 else
384 tcr |= RTW_TCR_LBK_NORMAL;
385 RTW_WRITE(regs, RTW_TCR, tcr);
386 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
387 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
388 rtw_txdac_enable(sc, !enable);
389 rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
390 rtw_set_access(regs, RTW_ACCESS_NONE);
391 }
392
393 #ifdef RTW_DEBUG
394 static const char *
395 rtw_access_string(enum rtw_access access)
396 {
397 switch (access) {
398 case RTW_ACCESS_NONE:
399 return "none";
400 case RTW_ACCESS_CONFIG:
401 return "config";
402 case RTW_ACCESS_ANAPARM:
403 return "anaparm";
404 default:
405 return "unknown";
406 }
407 }
408 #endif /* RTW_DEBUG */
409
410 static void
411 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
412 {
413 KASSERT(naccess >= RTW_ACCESS_NONE && naccess <= RTW_ACCESS_ANAPARM);
414 KASSERT(regs->r_access >= RTW_ACCESS_NONE &&
415 regs->r_access <= RTW_ACCESS_ANAPARM);
416
417 if (naccess == regs->r_access)
418 return;
419
420 switch (naccess) {
421 case RTW_ACCESS_NONE:
422 switch (regs->r_access) {
423 case RTW_ACCESS_ANAPARM:
424 rtw_anaparm_enable(regs, 0);
425 /*FALLTHROUGH*/
426 case RTW_ACCESS_CONFIG:
427 rtw_config0123_enable(regs, 0);
428 /*FALLTHROUGH*/
429 case RTW_ACCESS_NONE:
430 break;
431 }
432 break;
433 case RTW_ACCESS_CONFIG:
434 switch (regs->r_access) {
435 case RTW_ACCESS_NONE:
436 rtw_config0123_enable(regs, 1);
437 /*FALLTHROUGH*/
438 case RTW_ACCESS_CONFIG:
439 break;
440 case RTW_ACCESS_ANAPARM:
441 rtw_anaparm_enable(regs, 0);
442 break;
443 }
444 break;
445 case RTW_ACCESS_ANAPARM:
446 switch (regs->r_access) {
447 case RTW_ACCESS_NONE:
448 rtw_config0123_enable(regs, 1);
449 /*FALLTHROUGH*/
450 case RTW_ACCESS_CONFIG:
451 rtw_anaparm_enable(regs, 1);
452 /*FALLTHROUGH*/
453 case RTW_ACCESS_ANAPARM:
454 break;
455 }
456 break;
457 }
458 }
459
460 void
461 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
462 {
463 rtw_set_access1(regs, access);
464 RTW_DPRINTF(RTW_DEBUG_ACCESS,
465 ("%s: access %s -> %s\n", __func__,
466 rtw_access_string(regs->r_access),
467 rtw_access_string(access)));
468 regs->r_access = access;
469 }
470
471 /*
472 * Enable registers, switch register banks.
473 */
474 void
475 rtw_config0123_enable(struct rtw_regs *regs, int enable)
476 {
477 uint8_t ecr;
478 ecr = RTW_READ8(regs, RTW_9346CR);
479 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
480 if (enable)
481 ecr |= RTW_9346CR_EEM_CONFIG;
482 else {
483 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
484 ecr |= RTW_9346CR_EEM_NORMAL;
485 }
486 RTW_WRITE8(regs, RTW_9346CR, ecr);
487 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
488 }
489
490 /* requires rtw_config0123_enable(, 1) */
491 void
492 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
493 {
494 uint8_t cfg3;
495
496 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
497 cfg3 |= RTW_CONFIG3_CLKRUNEN;
498 if (enable)
499 cfg3 |= RTW_CONFIG3_PARMEN;
500 else
501 cfg3 &= ~RTW_CONFIG3_PARMEN;
502 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
503 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
504 }
505
506 /* requires rtw_anaparm_enable(, 1) */
507 void
508 rtw_txdac_enable(struct rtw_softc *sc, int enable)
509 {
510 uint32_t anaparm;
511 struct rtw_regs *regs = &sc->sc_regs;
512
513 anaparm = RTW_READ(regs, RTW_ANAPARM);
514 if (enable)
515 anaparm &= ~RTW_ANAPARM_TXDACOFF;
516 else
517 anaparm |= RTW_ANAPARM_TXDACOFF;
518 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
519 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
520 }
521
522 static inline int
523 rtw_chip_reset1(struct rtw_regs *regs, const char *dvname)
524 {
525 uint8_t cr;
526 int i;
527
528 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
529
530 RTW_WBR(regs, RTW_CR, RTW_CR);
531
532 for (i = 0; i < 1000; i++) {
533 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
534 RTW_DPRINTF(RTW_DEBUG_RESET,
535 ("%s: reset in %dus\n", dvname, i));
536 return 0;
537 }
538 RTW_RBR(regs, RTW_CR, RTW_CR);
539 DELAY(10); /* 10us */
540 }
541
542 printf("%s: reset failed\n", dvname);
543 return ETIMEDOUT;
544 }
545
546 static inline int
547 rtw_chip_reset(struct rtw_regs *regs, const char *dvname)
548 {
549 uint32_t tcr;
550
551 /* from Linux driver */
552 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
553 SHIFTIN(7, RTW_TCR_SRL_MASK) | SHIFTIN(7, RTW_TCR_LRL_MASK);
554
555 RTW_WRITE(regs, RTW_TCR, tcr);
556
557 RTW_WBW(regs, RTW_CR, RTW_TCR);
558
559 return rtw_chip_reset1(regs, dvname);
560 }
561
562 static int
563 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
564 {
565 struct ieee80211_key keycopy;
566
567 RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
568
569 keycopy = *k;
570 keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
571
572 return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
573 }
574
575 static int
576 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
577 {
578 struct rtw_softc *sc = ic->ic_ifp->if_softc;
579 u_int keyix = k->wk_keyix;
580
581 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__, keyix));
582
583 if (keyix >= IEEE80211_WEP_NKID)
584 return 0;
585 if (k->wk_keylen != 0)
586 sc->sc_flags &= ~RTW_F_DK_VALID;
587
588 return 1;
589 }
590
591 static int
592 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
593 const u_int8_t mac[IEEE80211_ADDR_LEN])
594 {
595 struct rtw_softc *sc = ic->ic_ifp->if_softc;
596
597 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
598
599 if (k->wk_keyix >= IEEE80211_WEP_NKID)
600 return 0;
601
602 sc->sc_flags &= ~RTW_F_DK_VALID;
603
604 return 1;
605 }
606
607 static void
608 rtw_key_update_begin(struct ieee80211com *ic)
609 {
610 #ifdef RTW_DEBUG
611 struct ifnet *ifp = ic->ic_ifp;
612 struct rtw_softc *sc = ifp->if_softc;
613 #endif
614
615 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
616 }
617
618 static void
619 rtw_key_update_end(struct ieee80211com *ic)
620 {
621 struct ifnet *ifp = ic->ic_ifp;
622 struct rtw_softc *sc = ifp->if_softc;
623
624 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
625
626 if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
627 (sc->sc_flags & RTW_F_ENABLED) == 0 ||
628 (sc->sc_flags & RTW_F_INVALID) != 0)
629 return;
630
631 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 0);
632 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
633 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE,
634 (ifp->if_flags & IFF_RUNNING) != 0);
635 }
636
637 static inline int
638 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
639 {
640 if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
641 return 0;
642
643 return ((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
644 ((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
645 }
646
647 static void
648 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
649 {
650 uint8_t psr, scr;
651 int i, keylen;
652 struct rtw_regs *regs;
653 union rtw_keys *rk;
654
655 regs = &sc->sc_regs;
656 rk = &sc->sc_keys;
657
658 (void)memset(rk->rk_keys, 0, sizeof(rk->rk_keys));
659
660 /* Temporarily use software crypto for all keys. */
661 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
662 if (wk[i].wk_cipher == &rtw_cipher_wep)
663 wk[i].wk_cipher = &ieee80211_cipher_wep;
664 }
665
666 rtw_set_access(regs, RTW_ACCESS_CONFIG);
667
668 psr = RTW_READ8(regs, RTW_PSR);
669 scr = RTW_READ8(regs, RTW_SCR);
670 scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
671
672 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
673 goto out;
674
675 for (keylen = i = 0; i < IEEE80211_WEP_NKID; i++) {
676 if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
677 continue;
678 if (i == txkey) {
679 keylen = wk[i].wk_keylen;
680 break;
681 }
682 keylen = MAX(keylen, wk[i].wk_keylen);
683 }
684
685 if (keylen == 5)
686 scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
687 else if (keylen == 13)
688 scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
689
690 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
691 if (wk[i].wk_keylen != keylen ||
692 wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
693 continue;
694 /* h/w will decrypt, s/w still strips headers */
695 wk[i].wk_cipher = &rtw_cipher_wep;
696 (void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
697 }
698
699 out:
700 RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
701
702 bus_space_write_region_4(regs->r_bt, regs->r_bh,
703 RTW_DK0, rk->rk_words,
704 sizeof(rk->rk_words) / sizeof(rk->rk_words[0]));
705
706 bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
707 BUS_SPACE_BARRIER_SYNC);
708
709 RTW_WBW(regs, RTW_DK0, RTW_PSR);
710 RTW_WRITE8(regs, RTW_PSR, psr);
711 RTW_WBW(regs, RTW_PSR, RTW_SCR);
712 RTW_WRITE8(regs, RTW_SCR, scr);
713 RTW_SYNC(regs, RTW_SCR, RTW_SCR);
714 rtw_set_access(regs, RTW_ACCESS_NONE);
715 sc->sc_flags |= RTW_F_DK_VALID;
716 }
717
718 static inline int
719 rtw_recall_eeprom(struct rtw_regs *regs, const char *dvname)
720 {
721 int i;
722 uint8_t ecr;
723
724 ecr = RTW_READ8(regs, RTW_9346CR);
725 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
726 RTW_WRITE8(regs, RTW_9346CR, ecr);
727
728 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
729
730 /* wait 25ms for completion */
731 for (i = 0; i < 250; i++) {
732 ecr = RTW_READ8(regs, RTW_9346CR);
733 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
734 RTW_DPRINTF(RTW_DEBUG_RESET,
735 ("%s: recall EEPROM in %dus\n", dvname, i * 100));
736 return 0;
737 }
738 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
739 DELAY(100);
740 }
741 printf("%s: recall EEPROM failed\n", dvname);
742 return ETIMEDOUT;
743 }
744
745 static inline int
746 rtw_reset(struct rtw_softc *sc)
747 {
748 int rc;
749 uint8_t config1;
750
751 sc->sc_flags &= ~RTW_F_DK_VALID;
752
753 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev.dv_xname)) != 0)
754 return rc;
755
756 if ((rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev.dv_xname)) != 0)
757 ;
758
759 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
760 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
761 /* TBD turn off maximum power saving? */
762
763 return 0;
764 }
765
766 static inline int
767 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
768 u_int ndescs)
769 {
770 int i, rc = 0;
771 for (i = 0; i < ndescs; i++) {
772 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
773 0, 0, &descs[i].ts_dmamap);
774 if (rc != 0)
775 break;
776 }
777 return rc;
778 }
779
780 static inline int
781 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
782 u_int ndescs)
783 {
784 int i, rc = 0;
785 for (i = 0; i < ndescs; i++) {
786 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
787 &descs[i].rs_dmamap);
788 if (rc != 0)
789 break;
790 }
791 return rc;
792 }
793
794 static inline void
795 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
796 u_int ndescs)
797 {
798 int i;
799 for (i = 0; i < ndescs; i++) {
800 if (descs[i].rs_dmamap != NULL)
801 bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
802 }
803 }
804
805 static inline void
806 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
807 u_int ndescs)
808 {
809 int i;
810 for (i = 0; i < ndescs; i++) {
811 if (descs[i].ts_dmamap != NULL)
812 bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
813 }
814 }
815
816 static inline void
817 rtw_srom_free(struct rtw_srom *sr)
818 {
819 sr->sr_size = 0;
820 if (sr->sr_content == NULL)
821 return;
822 free(sr->sr_content, M_DEVBUF);
823 sr->sr_content = NULL;
824 }
825
826 static void
827 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
828 enum rtw_rfchipid *rfchipid, uint32_t *rcr)
829 {
830 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
831 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
832 *rcr |= RTW_RCR_ENCS1;
833 *rfchipid = RTW_RFCHIPID_PHILIPS;
834 }
835
836 static int
837 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
838 enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
839 const char *dvname)
840 {
841 int i;
842 const char *rfname, *paname;
843 char scratch[sizeof("unknown 0xXX")];
844 uint16_t srom_version;
845 uint8_t mac[IEEE80211_ADDR_LEN];
846
847 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
848 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
849
850 srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
851 printf("%s: SROM version %d.%d", dvname,
852 srom_version >> 8, srom_version & 0xff);
853
854 if (srom_version <= 0x0101) {
855 printf(" is not understood, limping along with defaults\n");
856 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
857 return 0;
858 }
859 printf("\n");
860
861 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
862 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
863
864 RTW_DPRINTF(RTW_DEBUG_ATTACH,
865 ("%s: EEPROM MAC %s\n", dvname, ether_sprintf(mac)));
866
867 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
868
869 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
870 *flags |= RTW_F_ANTDIV;
871
872 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
873 * to be reversed.
874 */
875 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
876 *flags |= RTW_F_DIGPHY;
877 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
878 *flags |= RTW_F_DFLANTB;
879
880 *rcr |= SHIFTIN(SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
881 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
882
883 if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
884 *flags |= RTW_C_RXWEP_104;
885
886 *flags |= RTW_C_RXWEP_40; /* XXX */
887
888 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
889 switch (*rfchipid) {
890 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
891 rfname = "GCT GRF5101";
892 paname = "Winspring WS9901";
893 break;
894 case RTW_RFCHIPID_MAXIM:
895 rfname = "Maxim MAX2820"; /* guess */
896 paname = "Maxim MAX2422"; /* guess */
897 break;
898 case RTW_RFCHIPID_INTERSIL:
899 rfname = "Intersil HFA3873"; /* guess */
900 paname = "Intersil <unknown>";
901 break;
902 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
903 rfname = "Philips SA2400A";
904 paname = "Philips SA2411";
905 break;
906 case RTW_RFCHIPID_RFMD:
907 /* this is the same front-end as an atw(4)! */
908 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
909 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
910 "SYN: Silicon Labs Si4126"; /* inferred from
911 * reference driver
912 */
913 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
914 break;
915 case RTW_RFCHIPID_RESERVED:
916 rfname = paname = "reserved";
917 break;
918 default:
919 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
920 rfname = paname = scratch;
921 }
922 printf("%s: RF: %s, PA: %s\n", dvname, rfname, paname);
923
924 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
925 case RTW_CONFIG0_GL_USA:
926 case _RTW_CONFIG0_GL_USA:
927 *locale = RTW_LOCALE_USA;
928 break;
929 case RTW_CONFIG0_GL_EUROPE:
930 *locale = RTW_LOCALE_EUROPE;
931 break;
932 case RTW_CONFIG0_GL_JAPAN:
933 *locale = RTW_LOCALE_JAPAN;
934 break;
935 default:
936 *locale = RTW_LOCALE_UNKNOWN;
937 break;
938 }
939 return 0;
940 }
941
942 /* Returns -1 on failure. */
943 static int
944 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
945 const char *dvname)
946 {
947 int rc;
948 struct seeprom_descriptor sd;
949 uint8_t ecr;
950
951 (void)memset(&sd, 0, sizeof(sd));
952
953 ecr = RTW_READ8(regs, RTW_9346CR);
954
955 if ((flags & RTW_F_9356SROM) != 0) {
956 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n", dvname));
957 sr->sr_size = 256;
958 sd.sd_chip = C56_66;
959 } else {
960 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n", dvname));
961 sr->sr_size = 128;
962 sd.sd_chip = C46;
963 }
964
965 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
966 RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
967 ecr |= RTW_9346CR_EEM_PROGRAM;
968
969 RTW_WRITE8(regs, RTW_9346CR, ecr);
970
971 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
972
973 if (sr->sr_content == NULL) {
974 printf("%s: unable to allocate SROM buffer\n", dvname);
975 return ENOMEM;
976 }
977
978 (void)memset(sr->sr_content, 0, sr->sr_size);
979
980 /* RTL8180 has a single 8-bit register for controlling the
981 * 93cx6 SROM. There is no "ready" bit. The RTL8180
982 * input/output sense is the reverse of read_seeprom's.
983 */
984 sd.sd_tag = regs->r_bt;
985 sd.sd_bsh = regs->r_bh;
986 sd.sd_regsize = 1;
987 sd.sd_control_offset = RTW_9346CR;
988 sd.sd_status_offset = RTW_9346CR;
989 sd.sd_dataout_offset = RTW_9346CR;
990 sd.sd_CK = RTW_9346CR_EESK;
991 sd.sd_CS = RTW_9346CR_EECS;
992 sd.sd_DI = RTW_9346CR_EEDO;
993 sd.sd_DO = RTW_9346CR_EEDI;
994 /* make read_seeprom enter EEPROM read/write mode */
995 sd.sd_MS = ecr;
996 sd.sd_RDY = 0;
997
998 /* TBD bus barriers */
999 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
1000 printf("%s: could not read SROM\n", dvname);
1001 free(sr->sr_content, M_DEVBUF);
1002 sr->sr_content = NULL;
1003 return -1; /* XXX */
1004 }
1005
1006 /* end EEPROM read/write mode */
1007 RTW_WRITE8(regs, RTW_9346CR,
1008 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
1009 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
1010
1011 if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
1012 return rc;
1013
1014 #ifdef RTW_DEBUG
1015 {
1016 int i;
1017 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1018 ("\n%s: serial ROM:\n\t", dvname));
1019 for (i = 0; i < sr->sr_size/2; i++) {
1020 if (((i % 8) == 0) && (i != 0))
1021 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
1022 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1023 (" %04x", sr->sr_content[i]));
1024 }
1025 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
1026 }
1027 #endif /* RTW_DEBUG */
1028 return 0;
1029 }
1030
1031 static void
1032 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1033 const char *dvname)
1034 {
1035 uint8_t cfg4;
1036 const char *method;
1037
1038 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1039
1040 switch (rfchipid) {
1041 default:
1042 cfg4 |= SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1043 method = "fallback";
1044 break;
1045 case RTW_RFCHIPID_INTERSIL:
1046 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1047 method = "Intersil";
1048 break;
1049 case RTW_RFCHIPID_PHILIPS:
1050 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1051 method = "Philips";
1052 break;
1053 case RTW_RFCHIPID_GCT: /* XXX a guess */
1054 case RTW_RFCHIPID_RFMD:
1055 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1056 method = "RFMD";
1057 break;
1058 }
1059
1060 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1061
1062 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1063
1064 RTW_DPRINTF(RTW_DEBUG_INIT,
1065 ("%s: %s RF programming method, %#02x\n", dvname, method,
1066 RTW_READ8(regs, RTW_CONFIG4)));
1067 }
1068
1069 static inline void
1070 rtw_init_channels(enum rtw_locale locale,
1071 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
1072 const char *dvname)
1073 {
1074 int i;
1075 const char *name = NULL;
1076 #define ADD_CHANNEL(_chans, _chan) do { \
1077 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
1078 (*_chans)[_chan].ic_freq = \
1079 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1080 } while (0)
1081
1082 switch (locale) {
1083 case RTW_LOCALE_USA: /* 1-11 */
1084 name = "USA";
1085 for (i = 1; i <= 11; i++)
1086 ADD_CHANNEL(chans, i);
1087 break;
1088 case RTW_LOCALE_JAPAN: /* 1-14 */
1089 name = "Japan";
1090 ADD_CHANNEL(chans, 14);
1091 for (i = 1; i <= 14; i++)
1092 ADD_CHANNEL(chans, i);
1093 break;
1094 case RTW_LOCALE_EUROPE: /* 1-13 */
1095 name = "Europe";
1096 for (i = 1; i <= 13; i++)
1097 ADD_CHANNEL(chans, i);
1098 break;
1099 default: /* 10-11 allowed by most countries */
1100 name = "<unknown>";
1101 for (i = 10; i <= 11; i++)
1102 ADD_CHANNEL(chans, i);
1103 break;
1104 }
1105 printf("%s: Geographic Location %s\n", dvname, name);
1106 #undef ADD_CHANNEL
1107 }
1108
1109
1110 static inline void
1111 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1112 {
1113 uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1114
1115 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1116 case RTW_CONFIG0_GL_USA:
1117 case _RTW_CONFIG0_GL_USA:
1118 *locale = RTW_LOCALE_USA;
1119 break;
1120 case RTW_CONFIG0_GL_JAPAN:
1121 *locale = RTW_LOCALE_JAPAN;
1122 break;
1123 case RTW_CONFIG0_GL_EUROPE:
1124 *locale = RTW_LOCALE_EUROPE;
1125 break;
1126 default:
1127 *locale = RTW_LOCALE_UNKNOWN;
1128 break;
1129 }
1130 }
1131
1132 static inline int
1133 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1134 const char *dvname)
1135 {
1136 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1137 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1138 };
1139 uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1140 idr1 = RTW_READ(regs, RTW_IDR1);
1141
1142 (*addr)[0] = SHIFTOUT(idr0, BITS(0, 7));
1143 (*addr)[1] = SHIFTOUT(idr0, BITS(8, 15));
1144 (*addr)[2] = SHIFTOUT(idr0, BITS(16, 23));
1145 (*addr)[3] = SHIFTOUT(idr0, BITS(24 ,31));
1146
1147 (*addr)[4] = SHIFTOUT(idr1, BITS(0, 7));
1148 (*addr)[5] = SHIFTOUT(idr1, BITS(8, 15));
1149
1150 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1151 printf("%s: could not get mac address, attach failed\n",
1152 dvname);
1153 return ENXIO;
1154 }
1155
1156 printf("%s: 802.11 address %s\n", dvname, ether_sprintf(*addr));
1157
1158 return 0;
1159 }
1160
1161 static uint8_t
1162 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1163 struct ieee80211_channel *chan)
1164 {
1165 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1166 KASSERT2(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14,
1167 ("%s: channel %d out of range", __func__,
1168 idx - RTW_SR_TXPOWER1 + 1));
1169 return RTW_SR_GET(sr, idx);
1170 }
1171
1172 static void
1173 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1174 {
1175 int pri;
1176 /* nfree: the number of free descriptors in each ring.
1177 * The beacon ring is a special case: I do not let the
1178 * driver use all of the descriptors on the beacon ring.
1179 * The reasons are two-fold:
1180 *
1181 * (1) A BEACON descriptor's OWN bit is (apparently) not
1182 * updated, so the driver cannot easily know if the descriptor
1183 * belongs to it, or if it is racing the NIC. If the NIC
1184 * does not OWN every descriptor, then the driver can safely
1185 * update the descriptors when RTW_TBDA points at tdb_next.
1186 *
1187 * (2) I hope that the NIC will process more than one BEACON
1188 * descriptor in a single beacon interval, since that will
1189 * enable multiple-BSS support. Since the NIC does not
1190 * clear the OWN bit, there is no natural place for it to
1191 * stop processing BEACON desciptors. Maybe it will *not*
1192 * stop processing them! I do not want to chance the NIC
1193 * looping around and around a saturated beacon ring, so
1194 * I will leave one descriptor unOWNed at all times.
1195 */
1196 u_int nfree[RTW_NTXPRI] =
1197 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1198 RTW_NTXDESCBCN - 1};
1199
1200 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1201 tdb[pri].tdb_nfree = nfree[pri];
1202 tdb[pri].tdb_next = 0;
1203 }
1204 }
1205
1206 static int
1207 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1208 {
1209 int i;
1210 struct rtw_txsoft *ts;
1211
1212 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1213 SIMPLEQ_INIT(&tsb->tsb_freeq);
1214 for (i = 0; i < tsb->tsb_ndesc; i++) {
1215 ts = &tsb->tsb_desc[i];
1216 ts->ts_mbuf = NULL;
1217 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1218 }
1219 tsb->tsb_tx_timer = 0;
1220 return 0;
1221 }
1222
1223 static void
1224 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1225 {
1226 int pri;
1227 for (pri = 0; pri < RTW_NTXPRI; pri++)
1228 rtw_txsoft_blk_init(&tsb[pri]);
1229 }
1230
1231 static inline void
1232 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1233 {
1234 KASSERT(nsync <= rdb->rdb_ndesc);
1235 /* sync to end of ring */
1236 if (desc0 + nsync > rdb->rdb_ndesc) {
1237 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1238 offsetof(struct rtw_descs, hd_rx[desc0]),
1239 sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1240 nsync -= (rdb->rdb_ndesc - desc0);
1241 desc0 = 0;
1242 }
1243
1244 KASSERT(desc0 < rdb->rdb_ndesc);
1245 KASSERT(nsync <= rdb->rdb_ndesc);
1246 KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1247
1248 /* sync what remains */
1249 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1250 offsetof(struct rtw_descs, hd_rx[desc0]),
1251 sizeof(struct rtw_rxdesc) * nsync, ops);
1252 }
1253
1254 static void
1255 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1256 {
1257 /* sync to end of ring */
1258 if (desc0 + nsync > tdb->tdb_ndesc) {
1259 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1260 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1261 sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1262 ops);
1263 nsync -= (tdb->tdb_ndesc - desc0);
1264 desc0 = 0;
1265 }
1266
1267 /* sync what remains */
1268 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1269 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1270 sizeof(struct rtw_txdesc) * nsync, ops);
1271 }
1272
1273 static void
1274 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1275 {
1276 int pri;
1277 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1278 rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1279 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1280 }
1281 }
1282
1283 static void
1284 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1285 {
1286 int i;
1287 struct rtw_rxsoft *rs;
1288
1289 for (i = 0; i < RTW_RXQLEN; i++) {
1290 rs = &desc[i];
1291 if (rs->rs_mbuf == NULL)
1292 continue;
1293 bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1294 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1295 bus_dmamap_unload(dmat, rs->rs_dmamap);
1296 m_freem(rs->rs_mbuf);
1297 rs->rs_mbuf = NULL;
1298 }
1299 }
1300
1301 static inline int
1302 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1303 {
1304 int rc;
1305 struct mbuf *m;
1306
1307 MGETHDR(m, M_DONTWAIT, MT_DATA);
1308 if (m == NULL)
1309 return ENOBUFS;
1310
1311 MCLGET(m, M_DONTWAIT);
1312 if ((m->m_flags & M_EXT) == 0) {
1313 m_freem(m);
1314 return ENOBUFS;
1315 }
1316
1317 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1318
1319 if (rs->rs_mbuf != NULL)
1320 bus_dmamap_unload(dmat, rs->rs_dmamap);
1321
1322 rs->rs_mbuf = NULL;
1323
1324 rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1325 if (rc != 0) {
1326 m_freem(m);
1327 return -1;
1328 }
1329
1330 rs->rs_mbuf = m;
1331
1332 return 0;
1333 }
1334
1335 static int
1336 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1337 int *ndesc, const char *dvname)
1338 {
1339 int i, rc = 0;
1340 struct rtw_rxsoft *rs;
1341
1342 for (i = 0; i < RTW_RXQLEN; i++) {
1343 rs = &desc[i];
1344 /* we're in rtw_init, so there should be no mbufs allocated */
1345 KASSERT(rs->rs_mbuf == NULL);
1346 #ifdef RTW_DEBUG
1347 if (i == rtw_rxbufs_limit) {
1348 printf("%s: TEST hit %d-buffer limit\n", dvname, i);
1349 rc = ENOBUFS;
1350 break;
1351 }
1352 #endif /* RTW_DEBUG */
1353 if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1354 printf("%s: rtw_rxsoft_alloc failed, %d buffers, "
1355 "rc %d\n", dvname, i, rc);
1356 break;
1357 }
1358 }
1359 *ndesc = i;
1360 return rc;
1361 }
1362
1363 static inline void
1364 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1365 int idx, int kick)
1366 {
1367 int is_last = (idx == rdb->rdb_ndesc - 1);
1368 uint32_t ctl, octl, obuf;
1369 struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1370
1371 obuf = rd->rd_buf;
1372 rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1373
1374 ctl = SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1375 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1376
1377 if (is_last)
1378 ctl |= RTW_RXCTL_EOR;
1379
1380 octl = rd->rd_ctl;
1381 rd->rd_ctl = htole32(ctl);
1382
1383 RTW_DPRINTF(
1384 kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1385 : RTW_DEBUG_RECV_DESC,
1386 ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1387 le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1388 le32toh(rd->rd_ctl)));
1389
1390 /* sync the mbuf */
1391 bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1392 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1393
1394 /* sync the descriptor */
1395 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1396 RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1397 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1398 }
1399
1400 static void
1401 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1402 {
1403 int i;
1404 struct rtw_rxdesc *rd;
1405 struct rtw_rxsoft *rs;
1406
1407 for (i = 0; i < rdb->rdb_ndesc; i++) {
1408 rd = &rdb->rdb_desc[i];
1409 rs = &ctl[i];
1410 rtw_rxdesc_init(rdb, rs, i, kick);
1411 }
1412 }
1413
1414 static void
1415 rtw_io_enable(struct rtw_regs *regs, uint8_t flags, int enable)
1416 {
1417 uint8_t cr;
1418
1419 RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1420 enable ? "enable" : "disable", flags));
1421
1422 cr = RTW_READ8(regs, RTW_CR);
1423
1424 /* XXX reference source does not enable MULRW */
1425 #if 0
1426 /* enable PCI Read/Write Multiple */
1427 cr |= RTW_CR_MULRW;
1428 #endif
1429
1430 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1431 if (enable)
1432 cr |= flags;
1433 else
1434 cr &= ~flags;
1435 RTW_WRITE8(regs, RTW_CR, cr);
1436 RTW_SYNC(regs, RTW_CR, RTW_CR);
1437 }
1438
1439 static void
1440 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1441 {
1442 #define IS_BEACON(__fc0) \
1443 ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1444 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1445
1446 static const int ratetbl[4] = {2, 4, 11, 22}; /* convert rates:
1447 * hardware -> net80211
1448 */
1449 u_int next, nproc = 0;
1450 int hwrate, len, rate, rssi, sq;
1451 uint32_t hrssi, hstat, htsfth, htsftl;
1452 struct rtw_rxdesc *rd;
1453 struct rtw_rxsoft *rs;
1454 struct rtw_rxdesc_blk *rdb;
1455 struct mbuf *m;
1456 struct ifnet *ifp = &sc->sc_if;
1457
1458 struct ieee80211_node *ni;
1459 struct ieee80211_frame_min *wh;
1460
1461 rdb = &sc->sc_rxdesc_blk;
1462
1463 KASSERT(rdb->rdb_next < rdb->rdb_ndesc);
1464
1465 for (next = rdb->rdb_next; ; next = (next + 1) % rdb->rdb_ndesc) {
1466 rtw_rxdescs_sync(rdb, next, 1,
1467 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1468 rd = &rdb->rdb_desc[next];
1469 rs = &sc->sc_rxsoft[next];
1470
1471 hstat = le32toh(rd->rd_stat);
1472 hrssi = le32toh(rd->rd_rssi);
1473 htsfth = le32toh(rd->rd_tsfth);
1474 htsftl = le32toh(rd->rd_tsftl);
1475
1476 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1477 ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1478 __func__, next, hstat, hrssi, htsfth, htsftl));
1479
1480 ++nproc;
1481
1482 /* still belongs to NIC */
1483 if ((hstat & RTW_RXSTAT_OWN) != 0) {
1484 if (nproc > 1)
1485 break;
1486
1487 /* sometimes the NIC skips to the 0th descriptor */
1488 rtw_rxdescs_sync(rdb, 0, 1,
1489 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1490 rd = &rdb->rdb_desc[0];
1491 if ((rd->rd_stat & htole32(RTW_RXSTAT_OWN)) != 0)
1492 break;
1493 RTW_DPRINTF(RTW_DEBUG_BUGS,
1494 ("%s: NIC skipped from rxdesc[%u] to rxdesc[0]\n",
1495 sc->sc_dev.dv_xname, next));
1496 next = rdb->rdb_ndesc - 1;
1497 continue;
1498 }
1499
1500 #ifdef RTW_DEBUG
1501 #define PRINTSTAT(flag) do { \
1502 if ((hstat & flag) != 0) { \
1503 printf("%s" #flag, delim); \
1504 delim = ","; \
1505 } \
1506 } while (0)
1507 if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1508 const char *delim = "<";
1509 printf("%s: ", sc->sc_dev.dv_xname);
1510 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1511 printf("status %08x", hstat);
1512 PRINTSTAT(RTW_RXSTAT_SPLCP);
1513 PRINTSTAT(RTW_RXSTAT_MAR);
1514 PRINTSTAT(RTW_RXSTAT_PAR);
1515 PRINTSTAT(RTW_RXSTAT_BAR);
1516 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1517 PRINTSTAT(RTW_RXSTAT_CRC32);
1518 PRINTSTAT(RTW_RXSTAT_ICV);
1519 printf(">, ");
1520 }
1521 }
1522 #endif /* RTW_DEBUG */
1523
1524 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1525 printf("%s: DMA error/FIFO overflow %08x, "
1526 "rx descriptor %d\n", sc->sc_dev.dv_xname,
1527 hstat & RTW_RXSTAT_IOERROR, next);
1528 ifp->if_ierrors++;
1529 goto next;
1530 }
1531
1532 len = SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1533 if (len < IEEE80211_MIN_LEN) {
1534 sc->sc_ic.ic_stats.is_rx_tooshort++;
1535 goto next;
1536 }
1537
1538 /* CRC is included with the packet; trim it off. */
1539 len -= IEEE80211_CRC_LEN;
1540
1541 hwrate = SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1542 if (hwrate >= sizeof(ratetbl) / sizeof(ratetbl[0])) {
1543 printf("%s: unknown rate #%d\n", sc->sc_dev.dv_xname,
1544 SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1545 ifp->if_ierrors++;
1546 goto next;
1547 }
1548 rate = ratetbl[hwrate];
1549
1550 #ifdef RTW_DEBUG
1551 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1552 ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1553 (rate * 5) % 10, htsfth, htsftl));
1554 #endif /* RTW_DEBUG */
1555
1556 if ((hstat & RTW_RXSTAT_RES) != 0 &&
1557 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
1558 goto next;
1559
1560 /* if bad flags, skip descriptor */
1561 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1562 printf("%s: too many rx segments\n",
1563 sc->sc_dev.dv_xname);
1564 goto next;
1565 }
1566
1567 bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1568 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1569
1570 m = rs->rs_mbuf;
1571
1572 /* if temporarily out of memory, re-use mbuf */
1573 switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1574 case 0:
1575 break;
1576 case ENOBUFS:
1577 printf("%s: rtw_rxsoft_alloc(, %d) failed, "
1578 "dropping packet\n", sc->sc_dev.dv_xname, next);
1579 goto next;
1580 default:
1581 /* XXX shorten rx ring, instead? */
1582 panic("%s: could not load DMA map\n",
1583 sc->sc_dev.dv_xname);
1584 }
1585
1586 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1587 rssi = SHIFTOUT(hrssi, RTW_RXRSSI_RSSI);
1588 else {
1589 rssi = SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1590 /* TBD find out each front-end's LNA gain in the
1591 * front-end's units
1592 */
1593 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1594 rssi |= 0x80;
1595 }
1596 sq = SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1597
1598 /* Note well: now we cannot recycle the rs_mbuf unless
1599 * we restore its original length.
1600 */
1601 m->m_pkthdr.rcvif = ifp;
1602 m->m_pkthdr.len = m->m_len = len;
1603
1604 wh = mtod(m, struct ieee80211_frame_min *);
1605
1606 if (!IS_BEACON(wh->i_fc[0]))
1607 sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1608 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1609 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1610
1611 sc->sc_tsfth = htsfth;
1612
1613 #ifdef RTW_DEBUG
1614 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1615 (IFF_DEBUG|IFF_LINK2)) {
1616 ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1617 rate, rssi);
1618 }
1619 #endif /* RTW_DEBUG */
1620
1621 #if NBPFILTER > 0
1622 if (sc->sc_radiobpf != NULL) {
1623 struct ieee80211com *ic = &sc->sc_ic;
1624 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1625
1626 rr->rr_tsft =
1627 htole64(((uint64_t)htsfth << 32) | htsftl);
1628
1629 if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1630 rr->rr_flags = IEEE80211_RADIOTAP_F_SHORTPRE;
1631
1632 rr->rr_flags = 0;
1633 rr->rr_rate = rate;
1634 rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1635 rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1636 rr->rr_antsignal = rssi;
1637 rr->rr_barker_lock = htole16(sq);
1638
1639 bpf_mtap2(sc->sc_radiobpf, (caddr_t)rr,
1640 sizeof(sc->sc_rxtapu), m);
1641 }
1642 #endif /* NPBFILTER > 0 */
1643
1644 ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1645 ieee80211_free_node(ni);
1646 next:
1647 rtw_rxdesc_init(rdb, rs, next, 0);
1648 }
1649 rdb->rdb_next = next;
1650
1651 KASSERT(rdb->rdb_next < rdb->rdb_ndesc);
1652
1653 return;
1654 #undef IS_BEACON
1655 }
1656
1657 static void
1658 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1659 struct rtw_txsoft *ts)
1660 {
1661 struct mbuf *m;
1662 struct ieee80211_node *ni;
1663
1664 m = ts->ts_mbuf;
1665 ni = ts->ts_ni;
1666 KASSERT(m != NULL);
1667 KASSERT(ni != NULL);
1668 ts->ts_mbuf = NULL;
1669 ts->ts_ni = NULL;
1670
1671 bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1672 BUS_DMASYNC_POSTWRITE);
1673 bus_dmamap_unload(dmat, ts->ts_dmamap);
1674 m_freem(m);
1675 ieee80211_free_node(ni);
1676 }
1677
1678 static void
1679 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1680 struct rtw_txsoft_blk *tsb)
1681 {
1682 struct rtw_txsoft *ts;
1683
1684 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1685 rtw_txsoft_release(dmat, ic, ts);
1686 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1687 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1688 }
1689 tsb->tsb_tx_timer = 0;
1690 }
1691
1692 static inline void
1693 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1694 struct rtw_txsoft *ts, int ndesc)
1695 {
1696 uint32_t hstat;
1697 int data_retry, rts_retry;
1698 struct rtw_txdesc *tdn;
1699 const char *condstring;
1700 struct ifnet *ifp = &sc->sc_if;
1701
1702 rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1703
1704 tdb->tdb_nfree += ndesc;
1705
1706 tdn = &tdb->tdb_desc[ts->ts_last];
1707
1708 hstat = le32toh(tdn->td_stat);
1709 rts_retry = SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1710 data_retry = SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1711
1712 ifp->if_collisions += rts_retry + data_retry;
1713
1714 if ((hstat & RTW_TXSTAT_TOK) != 0)
1715 condstring = "ok";
1716 else {
1717 ifp->if_oerrors++;
1718 condstring = "error";
1719 }
1720
1721 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1722 ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1723 sc->sc_dev.dv_xname, ts, ts->ts_first, ts->ts_last,
1724 condstring, rts_retry, data_retry));
1725 }
1726
1727 static void
1728 rtw_reset_oactive(struct rtw_softc *sc)
1729 {
1730 short oflags;
1731 int pri;
1732 struct rtw_txsoft_blk *tsb;
1733 struct rtw_txdesc_blk *tdb;
1734 oflags = sc->sc_if.if_flags;
1735 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1736 tsb = &sc->sc_txsoft_blk[pri];
1737 tdb = &sc->sc_txdesc_blk[pri];
1738 if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1739 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1740 }
1741 if (oflags != sc->sc_if.if_flags) {
1742 DPRINTF(sc, RTW_DEBUG_OACTIVE,
1743 ("%s: reset OACTIVE\n", __func__));
1744 }
1745 }
1746
1747 /* Collect transmitted packets. */
1748 static inline void
1749 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1750 struct rtw_txdesc_blk *tdb, int force)
1751 {
1752 int ndesc;
1753 struct rtw_txsoft *ts;
1754
1755 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1756 ndesc = 1 + ts->ts_last - ts->ts_first;
1757 if (ts->ts_last < ts->ts_first)
1758 ndesc += tdb->tdb_ndesc;
1759
1760 KASSERT(ndesc > 0);
1761
1762 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1763 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1764
1765 if (force) {
1766 int i;
1767 for (i = ts->ts_first; ; i = RTW_NEXT_IDX(tdb, i)) {
1768 tdb->tdb_desc[i].td_stat &=
1769 ~htole32(RTW_TXSTAT_OWN);
1770 if (i == ts->ts_last)
1771 break;
1772 }
1773 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1774 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1775 } else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1776 htole32(RTW_TXSTAT_OWN)) != 0)
1777 break;
1778
1779 rtw_collect_txpkt(sc, tdb, ts, ndesc);
1780 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1781 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1782 }
1783 /* no more pending transmissions, cancel watchdog */
1784 if (ts == NULL)
1785 tsb->tsb_tx_timer = 0;
1786 rtw_reset_oactive(sc);
1787 }
1788
1789 static void
1790 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1791 {
1792 int pri;
1793 struct rtw_txsoft_blk *tsb;
1794 struct rtw_txdesc_blk *tdb;
1795 struct ifnet *ifp = &sc->sc_if;
1796
1797 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1798 tsb = &sc->sc_txsoft_blk[pri];
1799 tdb = &sc->sc_txdesc_blk[pri];
1800
1801 rtw_collect_txring(sc, tsb, tdb, 0);
1802 }
1803
1804 if ((isr & RTW_INTR_TX) != 0)
1805 rtw_start(ifp);
1806
1807 return;
1808 }
1809
1810 static void
1811 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1812 {
1813 u_int next;
1814 uint32_t tsfth, tsftl;
1815 struct ieee80211com *ic;
1816 struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1817 struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1818 struct mbuf *m;
1819
1820 tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1821 tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1822
1823 if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) {
1824 next = rtw_txring_next(&sc->sc_regs, tdb);
1825 RTW_DPRINTF(RTW_DEBUG_BEACON,
1826 ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1827 ", next %u expected %u, %" PRIu64 "\n", __func__,
1828 (next == tdb->tdb_next) ? "" : "un", isr, next,
1829 tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1830 if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0){
1831 rtw_collect_txring(sc, tsb, tdb, 1);
1832 tdb->tdb_next = 0;
1833 }
1834 }
1835 /* Start beacon transmission. */
1836
1837 if ((isr & RTW_INTR_BCNINT) != 0 &&
1838 sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1839 SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1840 RTW_DPRINTF(RTW_DEBUG_BEACON,
1841 ("%s: beacon prep. time, isr = %#04" PRIx16
1842 ", %16" PRIu64 "\n", __func__, isr,
1843 (uint64_t)tsfth << 32 | tsftl));
1844 ic = &sc->sc_ic;
1845 m = rtw_beacon_alloc(sc, ic->ic_bss);
1846
1847 if (m == NULL) {
1848 printf("%s: could not allocate beacon\n",
1849 sc->sc_dev.dv_xname);
1850 return;
1851 }
1852 m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss);
1853 IF_ENQUEUE(&sc->sc_beaconq, m);
1854 rtw_start(&sc->sc_if);
1855 }
1856 }
1857
1858 static void
1859 rtw_intr_atim(struct rtw_softc *sc)
1860 {
1861 /* TBD */
1862 return;
1863 }
1864
1865 #ifdef RTW_DEBUG
1866 static void
1867 rtw_dump_rings(struct rtw_softc *sc)
1868 {
1869 struct rtw_txdesc_blk *tdb;
1870 struct rtw_rxdesc *rd;
1871 struct rtw_rxdesc_blk *rdb;
1872 int desc, pri;
1873
1874 if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1875 return;
1876
1877 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1878 tdb = &sc->sc_txdesc_blk[pri];
1879 printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1880 tdb->tdb_ndesc, tdb->tdb_nfree);
1881 for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1882 rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1883 }
1884
1885 rdb = &sc->sc_rxdesc_blk;
1886
1887 for (desc = 0; desc < RTW_RXQLEN; desc++) {
1888 rd = &rdb->rdb_desc[desc];
1889 printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1890 "rsvd1/tsfth %08x\n", __func__,
1891 (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1892 le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1893 le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1894 }
1895 }
1896 #endif /* RTW_DEBUG */
1897
1898 static void
1899 rtw_hwring_setup(struct rtw_softc *sc)
1900 {
1901 int pri;
1902 struct rtw_regs *regs = &sc->sc_regs;
1903 struct rtw_txdesc_blk *tdb;
1904
1905 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1906 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1907 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1908 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1909 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1910 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1911 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1912 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1913
1914 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1915 tdb = &sc->sc_txdesc_blk[pri];
1916 RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1917 RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1918 ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1919 (uintptr_t)tdb->tdb_base));
1920 }
1921
1922 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1923
1924 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1925 ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1926 (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1927
1928 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1929
1930 }
1931
1932 static int
1933 rtw_swring_setup(struct rtw_softc *sc)
1934 {
1935 int rc;
1936 struct rtw_rxdesc_blk *rdb;
1937
1938 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1939
1940 rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
1941
1942 rdb = &sc->sc_rxdesc_blk;
1943 if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
1944 sc->sc_dev.dv_xname)) != 0 && rdb->rdb_ndesc == 0) {
1945 printf("%s: could not allocate rx buffers\n",
1946 sc->sc_dev.dv_xname);
1947 return rc;
1948 }
1949
1950 rdb = &sc->sc_rxdesc_blk;
1951 rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
1952 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1953 rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
1954 rdb->rdb_next = 0;
1955
1956 rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
1957 return 0;
1958 }
1959
1960 static void
1961 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
1962 {
1963 int i;
1964
1965 (void)memset(tdb->tdb_desc, 0,
1966 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
1967 for (i = 0; i < tdb->tdb_ndesc; i++)
1968 tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
1969 }
1970
1971 static u_int
1972 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
1973 {
1974 return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
1975 sizeof(struct rtw_txdesc);
1976 }
1977
1978 static void
1979 rtw_txring_fixup(struct rtw_softc *sc)
1980 {
1981 int pri;
1982 u_int next;
1983 struct rtw_txdesc_blk *tdb;
1984 struct rtw_regs *regs = &sc->sc_regs;
1985
1986 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1987 tdb = &sc->sc_txdesc_blk[pri];
1988 next = rtw_txring_next(regs, tdb);
1989 if (tdb->tdb_next == next)
1990 continue;
1991 printf("%s: tx-ring %d expected next %u, read %u\n", __func__,
1992 pri, tdb->tdb_next, next);
1993 tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
1994 }
1995 }
1996
1997 static void
1998 rtw_rxring_fixup(struct rtw_softc *sc)
1999 {
2000 u_int next;
2001 uint32_t rdsar;
2002 struct rtw_rxdesc_blk *rdb;
2003
2004 rdsar = le32toh(RTW_READ(&sc->sc_regs, RTW_RDSAR));
2005 next = (rdsar - RTW_RING_BASE(sc, hd_rx)) / sizeof(struct rtw_rxdesc);
2006
2007 rdb = &sc->sc_rxdesc_blk;
2008 if (rdb->rdb_next != next) {
2009 printf("%s: rx-ring expected next %u, read %u\n", __func__,
2010 rdb->rdb_next, next);
2011 rdb->rdb_next = MIN(next, rdb->rdb_ndesc - 1);
2012 }
2013 }
2014
2015 static void
2016 rtw_txdescs_reset(struct rtw_softc *sc)
2017 {
2018 int pri;
2019
2020 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2021 rtw_collect_txring(sc, &sc->sc_txsoft_blk[pri],
2022 &sc->sc_txdesc_blk[pri], 1);
2023 }
2024 }
2025
2026 static void
2027 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2028 {
2029 uint8_t cr = 0;
2030 int xmtr = 0, rcvr = 0;
2031 struct rtw_regs *regs = &sc->sc_regs;
2032
2033 if ((isr & RTW_INTR_TXFOVW) != 0) {
2034 printf("%s: tx fifo underflow\n", sc->sc_dev.dv_xname);
2035 rcvr = xmtr = 1;
2036 cr |= RTW_CR_TE | RTW_CR_RE;
2037 }
2038
2039 if ((isr & (RTW_INTR_RDU|RTW_INTR_RXFOVW)) != 0) {
2040 cr |= RTW_CR_RE;
2041 rcvr = 1;
2042 }
2043
2044 RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: restarting xmit/recv, isr %" PRIx16
2045 "\n", sc->sc_dev.dv_xname, isr));
2046
2047 #ifdef RTW_DEBUG
2048 rtw_dump_rings(sc);
2049 #endif /* RTW_DEBUG */
2050
2051 rtw_io_enable(regs, cr, 0);
2052
2053 /* Collect rx'd packets. Refresh rx buffers. */
2054 if (rcvr)
2055 rtw_intr_rx(sc, 0);
2056 /* Collect tx'd packets. XXX let's hope this stops the transmit
2057 * timeouts.
2058 */
2059 if (xmtr)
2060 rtw_txdescs_reset(sc);
2061
2062 RTW_WRITE16(regs, RTW_IMR, 0);
2063 RTW_SYNC(regs, RTW_IMR, RTW_IMR);
2064
2065 if (rtw_do_chip_reset) {
2066 rtw_chip_reset1(regs, sc->sc_dev.dv_xname);
2067 rtw_wep_setkeys(sc, sc->sc_ic.ic_nw_keys,
2068 sc->sc_ic.ic_def_txkey);
2069 }
2070
2071 rtw_rxdesc_init_all(&sc->sc_rxdesc_blk, &sc->sc_rxsoft[0], 1);
2072
2073 #ifdef RTW_DEBUG
2074 rtw_dump_rings(sc);
2075 #endif /* RTW_DEBUG */
2076
2077 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2078 RTW_SYNC(regs, RTW_IMR, RTW_IMR);
2079 if (rcvr)
2080 rtw_rxring_fixup(sc);
2081 rtw_io_enable(regs, cr, 1);
2082 if (xmtr)
2083 rtw_txring_fixup(sc);
2084 }
2085
2086 static inline void
2087 rtw_suspend_ticks(struct rtw_softc *sc)
2088 {
2089 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2090 ("%s: suspending ticks\n", sc->sc_dev.dv_xname));
2091 sc->sc_do_tick = 0;
2092 }
2093
2094 static inline void
2095 rtw_resume_ticks(struct rtw_softc *sc)
2096 {
2097 uint32_t tsftrl0, tsftrl1, next_tick;
2098
2099 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2100
2101 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2102 next_tick = tsftrl1 + 1000000;
2103 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
2104
2105 sc->sc_do_tick = 1;
2106
2107 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2108 ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2109 sc->sc_dev.dv_xname, tsftrl1 - tsftrl0, tsftrl1, next_tick));
2110 }
2111
2112 static void
2113 rtw_intr_timeout(struct rtw_softc *sc)
2114 {
2115 RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", sc->sc_dev.dv_xname));
2116 if (sc->sc_do_tick)
2117 rtw_resume_ticks(sc);
2118 return;
2119 }
2120
2121 int
2122 rtw_intr(void *arg)
2123 {
2124 int i;
2125 struct rtw_softc *sc = arg;
2126 struct rtw_regs *regs = &sc->sc_regs;
2127 uint16_t isr;
2128 struct ifnet *ifp = &sc->sc_if;
2129
2130 /*
2131 * If the interface isn't running, the interrupt couldn't
2132 * possibly have come from us.
2133 */
2134 if ((sc->sc_flags & RTW_F_ENABLED) == 0 ||
2135 (ifp->if_flags & IFF_RUNNING) == 0 ||
2136 !device_is_active(&sc->sc_dev)) {
2137 RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n", sc->sc_dev.dv_xname));
2138 return (0);
2139 }
2140
2141 for (i = 0; i < 10; i++) {
2142 isr = RTW_READ16(regs, RTW_ISR);
2143
2144 RTW_WRITE16(regs, RTW_ISR, isr);
2145 RTW_WBR(regs, RTW_ISR, RTW_ISR);
2146
2147 if (sc->sc_intr_ack != NULL)
2148 (*sc->sc_intr_ack)(regs);
2149
2150 if (isr == 0)
2151 break;
2152
2153 #ifdef RTW_DEBUG
2154 #define PRINTINTR(flag) do { \
2155 if ((isr & flag) != 0) { \
2156 printf("%s" #flag, delim); \
2157 delim = ","; \
2158 } \
2159 } while (0)
2160
2161 if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2162 const char *delim = "<";
2163
2164 printf("%s: reg[ISR] = %x", sc->sc_dev.dv_xname, isr);
2165
2166 PRINTINTR(RTW_INTR_TXFOVW);
2167 PRINTINTR(RTW_INTR_TIMEOUT);
2168 PRINTINTR(RTW_INTR_BCNINT);
2169 PRINTINTR(RTW_INTR_ATIMINT);
2170 PRINTINTR(RTW_INTR_TBDER);
2171 PRINTINTR(RTW_INTR_TBDOK);
2172 PRINTINTR(RTW_INTR_THPDER);
2173 PRINTINTR(RTW_INTR_THPDOK);
2174 PRINTINTR(RTW_INTR_TNPDER);
2175 PRINTINTR(RTW_INTR_TNPDOK);
2176 PRINTINTR(RTW_INTR_RXFOVW);
2177 PRINTINTR(RTW_INTR_RDU);
2178 PRINTINTR(RTW_INTR_TLPDER);
2179 PRINTINTR(RTW_INTR_TLPDOK);
2180 PRINTINTR(RTW_INTR_RER);
2181 PRINTINTR(RTW_INTR_ROK);
2182
2183 printf(">\n");
2184 }
2185 #undef PRINTINTR
2186 #endif /* RTW_DEBUG */
2187
2188 if ((isr & RTW_INTR_RX) != 0)
2189 rtw_intr_rx(sc, isr & RTW_INTR_RX);
2190 if ((isr & RTW_INTR_TX) != 0)
2191 rtw_intr_tx(sc, isr & RTW_INTR_TX);
2192 if ((isr & RTW_INTR_BEACON) != 0)
2193 rtw_intr_beacon(sc, isr & RTW_INTR_BEACON);
2194 if ((isr & RTW_INTR_ATIMINT) != 0)
2195 rtw_intr_atim(sc);
2196 if ((isr & RTW_INTR_IOERROR) != 0)
2197 rtw_intr_ioerror(sc, isr & RTW_INTR_IOERROR);
2198 if ((isr & RTW_INTR_TIMEOUT) != 0)
2199 rtw_intr_timeout(sc);
2200 }
2201
2202 return 1;
2203 }
2204
2205 /* Must be called at splnet. */
2206 static void
2207 rtw_stop(struct ifnet *ifp, int disable)
2208 {
2209 int pri;
2210 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2211 struct ieee80211com *ic = &sc->sc_ic;
2212 struct rtw_regs *regs = &sc->sc_regs;
2213
2214 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2215 return;
2216
2217 rtw_suspend_ticks(sc);
2218
2219 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2220
2221 if ((sc->sc_flags & RTW_F_INVALID) == 0) {
2222 /* Disable interrupts. */
2223 RTW_WRITE16(regs, RTW_IMR, 0);
2224
2225 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2226
2227 /* Stop the transmit and receive processes. First stop DMA,
2228 * then disable receiver and transmitter.
2229 */
2230 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2231
2232 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2233
2234 rtw_io_enable(&sc->sc_regs, RTW_CR_RE|RTW_CR_TE, 0);
2235 }
2236
2237 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2238 rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2239 &sc->sc_txsoft_blk[pri]);
2240 }
2241
2242 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2243
2244 if (disable)
2245 rtw_disable(sc);
2246
2247 /* Mark the interface as not running. Cancel the watchdog timer. */
2248 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2249 ifp->if_timer = 0;
2250
2251 return;
2252 }
2253
2254 const char *
2255 rtw_pwrstate_string(enum rtw_pwrstate power)
2256 {
2257 switch (power) {
2258 case RTW_ON:
2259 return "on";
2260 case RTW_SLEEP:
2261 return "sleep";
2262 case RTW_OFF:
2263 return "off";
2264 default:
2265 return "unknown";
2266 }
2267 }
2268
2269 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2270 * reference driver, plus a magic Maxim "ON" value that comes from
2271 * the Realtek document "Windows PG for Rtl8180."
2272 */
2273 static void
2274 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2275 int before_rf, int digphy)
2276 {
2277 uint32_t anaparm;
2278
2279 anaparm = RTW_READ(regs, RTW_ANAPARM);
2280 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2281
2282 switch (power) {
2283 case RTW_OFF:
2284 if (before_rf)
2285 return;
2286 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2287 anaparm |= RTW_ANAPARM_TXDACOFF;
2288 break;
2289 case RTW_SLEEP:
2290 if (!before_rf)
2291 return;
2292 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2293 anaparm |= RTW_ANAPARM_TXDACOFF;
2294 break;
2295 case RTW_ON:
2296 if (!before_rf)
2297 return;
2298 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2299 break;
2300 }
2301 RTW_DPRINTF(RTW_DEBUG_PWR,
2302 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2303 __func__, rtw_pwrstate_string(power),
2304 (before_rf) ? "before" : "after", anaparm));
2305
2306 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2307 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2308 }
2309
2310 /* XXX I am using the RFMD settings gleaned from the reference
2311 * driver. They agree
2312 */
2313 static void
2314 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2315 int before_rf, int digphy)
2316 {
2317 uint32_t anaparm;
2318
2319 anaparm = RTW_READ(regs, RTW_ANAPARM);
2320 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2321
2322 switch (power) {
2323 case RTW_OFF:
2324 if (before_rf)
2325 return;
2326 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2327 anaparm |= RTW_ANAPARM_TXDACOFF;
2328 break;
2329 case RTW_SLEEP:
2330 if (!before_rf)
2331 return;
2332 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2333 anaparm |= RTW_ANAPARM_TXDACOFF;
2334 break;
2335 case RTW_ON:
2336 if (!before_rf)
2337 return;
2338 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2339 break;
2340 }
2341 RTW_DPRINTF(RTW_DEBUG_PWR,
2342 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2343 __func__, rtw_pwrstate_string(power),
2344 (before_rf) ? "before" : "after", anaparm));
2345
2346 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2347 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2348 }
2349
2350 static void
2351 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2352 int before_rf, int digphy)
2353 {
2354 uint32_t anaparm;
2355
2356 anaparm = RTW_READ(regs, RTW_ANAPARM);
2357 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2358
2359 switch (power) {
2360 case RTW_OFF:
2361 if (before_rf)
2362 return;
2363 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2364 anaparm |= RTW_ANAPARM_TXDACOFF;
2365 break;
2366 case RTW_SLEEP:
2367 if (!before_rf)
2368 return;
2369 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2370 anaparm |= RTW_ANAPARM_TXDACOFF;
2371 break;
2372 case RTW_ON:
2373 if (!before_rf)
2374 return;
2375 if (digphy) {
2376 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2377 /* XXX guess */
2378 anaparm |= RTW_ANAPARM_TXDACOFF;
2379 } else
2380 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2381 break;
2382 }
2383 RTW_DPRINTF(RTW_DEBUG_PWR,
2384 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2385 __func__, rtw_pwrstate_string(power),
2386 (before_rf) ? "before" : "after", anaparm));
2387
2388 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2389 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2390 }
2391
2392 static void
2393 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2394 int digphy)
2395 {
2396 struct rtw_regs *regs = &sc->sc_regs;
2397
2398 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2399
2400 (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2401
2402 rtw_set_access(regs, RTW_ACCESS_NONE);
2403
2404 return;
2405 }
2406
2407 static int
2408 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2409 {
2410 int rc;
2411
2412 RTW_DPRINTF(RTW_DEBUG_PWR,
2413 ("%s: %s->%s\n", __func__,
2414 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2415
2416 if (sc->sc_pwrstate == power)
2417 return 0;
2418
2419 rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2420 rc = rtw_rf_pwrstate(sc->sc_rf, power);
2421 rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2422
2423 switch (power) {
2424 case RTW_ON:
2425 /* TBD set LEDs */
2426 break;
2427 case RTW_SLEEP:
2428 /* TBD */
2429 break;
2430 case RTW_OFF:
2431 /* TBD */
2432 break;
2433 }
2434 if (rc == 0)
2435 sc->sc_pwrstate = power;
2436 else
2437 sc->sc_pwrstate = RTW_OFF;
2438 return rc;
2439 }
2440
2441 static int
2442 rtw_tune(struct rtw_softc *sc)
2443 {
2444 struct ieee80211com *ic = &sc->sc_ic;
2445 u_int chan;
2446 int rc;
2447 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2448 dflantb = sc->sc_flags & RTW_F_DFLANTB;
2449
2450 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2451 if (chan == IEEE80211_CHAN_ANY)
2452 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
2453
2454 if (chan == sc->sc_cur_chan) {
2455 RTW_DPRINTF(RTW_DEBUG_TUNE,
2456 ("%s: already tuned chan #%d\n", __func__, chan));
2457 return 0;
2458 }
2459
2460 rtw_suspend_ticks(sc);
2461
2462 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 0);
2463
2464 /* TBD wait for Tx to complete */
2465
2466 KASSERT((sc->sc_flags & RTW_F_ENABLED) != 0);
2467
2468 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2469 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2470 ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2471 /* XXX condition on powersaving */
2472 printf("%s: phy init failed\n", sc->sc_dev.dv_xname);
2473 }
2474
2475 sc->sc_cur_chan = chan;
2476
2477 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 1);
2478
2479 rtw_resume_ticks(sc);
2480
2481 return rc;
2482 }
2483
2484 void
2485 rtw_disable(struct rtw_softc *sc)
2486 {
2487 int rc;
2488
2489 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2490 return;
2491
2492 /* turn off PHY */
2493 if ((sc->sc_flags & RTW_F_INVALID) == 0 &&
2494 (rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2495 printf("%s: failed to turn off PHY (%d)\n",
2496 sc->sc_dev.dv_xname, rc);
2497 }
2498
2499 if (sc->sc_disable != NULL)
2500 (*sc->sc_disable)(sc);
2501
2502 sc->sc_flags &= ~RTW_F_ENABLED;
2503 }
2504
2505 int
2506 rtw_enable(struct rtw_softc *sc)
2507 {
2508 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2509 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2510 printf("%s: device enable failed\n",
2511 sc->sc_dev.dv_xname);
2512 return (EIO);
2513 }
2514 sc->sc_flags |= RTW_F_ENABLED;
2515 /* Power may have been removed, and WEP keys thus
2516 * reset.
2517 */
2518 sc->sc_flags &= ~RTW_F_DK_VALID;
2519 }
2520 return (0);
2521 }
2522
2523 static void
2524 rtw_transmit_config(struct rtw_regs *regs)
2525 {
2526 uint32_t tcr;
2527
2528 tcr = RTW_READ(regs, RTW_TCR);
2529
2530 tcr |= RTW_TCR_CWMIN;
2531 tcr &= ~RTW_TCR_MXDMA_MASK;
2532 tcr |= RTW_TCR_MXDMA_256;
2533 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
2534 tcr &= ~RTW_TCR_LBK_MASK;
2535 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
2536
2537 /* set short/long retry limits */
2538 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2539 tcr |= SHIFTIN(4, RTW_TCR_SRL_MASK) | SHIFTIN(4, RTW_TCR_LRL_MASK);
2540
2541 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
2542
2543 RTW_WRITE(regs, RTW_TCR, tcr);
2544 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2545 }
2546
2547 static inline void
2548 rtw_enable_interrupts(struct rtw_softc *sc)
2549 {
2550 struct rtw_regs *regs = &sc->sc_regs;
2551
2552 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2553 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2554
2555 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2556 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2557 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2558 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2559
2560 /* XXX necessary? */
2561 if (sc->sc_intr_ack != NULL)
2562 (*sc->sc_intr_ack)(regs);
2563 }
2564
2565 static void
2566 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2567 {
2568 uint8_t msr;
2569
2570 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2571 rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2572
2573 msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2574
2575 switch (opmode) {
2576 case IEEE80211_M_AHDEMO:
2577 case IEEE80211_M_IBSS:
2578 msr |= RTW_MSR_NETYPE_ADHOC_OK;
2579 break;
2580 case IEEE80211_M_HOSTAP:
2581 msr |= RTW_MSR_NETYPE_AP_OK;
2582 break;
2583 case IEEE80211_M_MONITOR:
2584 /* XXX */
2585 msr |= RTW_MSR_NETYPE_NOLINK;
2586 break;
2587 case IEEE80211_M_STA:
2588 msr |= RTW_MSR_NETYPE_INFRA_OK;
2589 break;
2590 }
2591 RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2592
2593 rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2594 }
2595
2596 #define rtw_calchash(addr) \
2597 (ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2598
2599 static void
2600 rtw_pktfilt_load(struct rtw_softc *sc)
2601 {
2602 struct rtw_regs *regs = &sc->sc_regs;
2603 struct ieee80211com *ic = &sc->sc_ic;
2604 struct ethercom *ec = &sc->sc_ec;
2605 struct ifnet *ifp = &sc->sc_if;
2606 int hash;
2607 uint32_t hashes[2] = { 0, 0 };
2608 struct ether_multi *enm;
2609 struct ether_multistep step;
2610
2611 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2612
2613 sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2614 sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2615
2616 sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2617 /* MAC auto-reset PHY (huh?) */
2618 sc->sc_rcr |= RTW_RCR_ENMARP;
2619 /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
2620 sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2621
2622 switch (ic->ic_opmode) {
2623 case IEEE80211_M_MONITOR:
2624 sc->sc_rcr |= RTW_RCR_MONITOR;
2625 break;
2626 case IEEE80211_M_AHDEMO:
2627 case IEEE80211_M_IBSS:
2628 /* receive broadcasts in our BSS */
2629 sc->sc_rcr |= RTW_RCR_ADD3;
2630 break;
2631 default:
2632 break;
2633 }
2634
2635 ifp->if_flags &= ~IFF_ALLMULTI;
2636
2637 /* XXX accept all broadcast if scanning */
2638 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2639 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2640
2641 if (ifp->if_flags & IFF_PROMISC) {
2642 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2643 allmulti:
2644 ifp->if_flags |= IFF_ALLMULTI;
2645 goto setit;
2646 }
2647
2648 /*
2649 * Program the 64-bit multicast hash filter.
2650 */
2651 ETHER_FIRST_MULTI(step, ec, enm);
2652 while (enm != NULL) {
2653 /* XXX */
2654 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2655 ETHER_ADDR_LEN) != 0)
2656 goto allmulti;
2657
2658 hash = rtw_calchash(enm->enm_addrlo);
2659 hashes[hash >> 5] |= (1 << (hash & 0x1f));
2660 sc->sc_rcr |= RTW_RCR_AM;
2661 ETHER_NEXT_MULTI(step, enm);
2662 }
2663
2664 /* all bits set => hash is useless */
2665 if (~(hashes[0] & hashes[1]) == 0)
2666 goto allmulti;
2667
2668 setit:
2669 if (ifp->if_flags & IFF_ALLMULTI) {
2670 sc->sc_rcr |= RTW_RCR_AM; /* accept all multicast */
2671 hashes[0] = hashes[1] = 0xffffffff;
2672 }
2673
2674 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2675 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2676 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2677 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2678
2679 DPRINTF(sc, RTW_DEBUG_PKTFILT,
2680 ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2681 sc->sc_dev.dv_xname, RTW_READ(regs, RTW_MAR0),
2682 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2683
2684 return;
2685 }
2686
2687 static struct mbuf *
2688 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2689 {
2690 struct ieee80211com *ic = &sc->sc_ic;
2691 struct mbuf *m;
2692 struct ieee80211_beacon_offsets boff;
2693
2694 if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2695 RTW_DPRINTF(RTW_DEBUG_BEACON,
2696 ("%s: m %p len %u\n", __func__, m, m->m_len));
2697 }
2698 return m;
2699 }
2700
2701 /* Must be called at splnet. */
2702 static int
2703 rtw_init(struct ifnet *ifp)
2704 {
2705 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2706 struct ieee80211com *ic = &sc->sc_ic;
2707 struct rtw_regs *regs = &sc->sc_regs;
2708 int rc = 0;
2709
2710 if ((rc = rtw_enable(sc)) != 0)
2711 goto out;
2712
2713 /* Cancel pending I/O and reset. */
2714 rtw_stop(ifp, 0);
2715
2716 DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2717 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2718 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2719
2720 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2721 goto out;
2722
2723 if ((rc = rtw_swring_setup(sc)) != 0)
2724 goto out;
2725
2726 rtw_transmit_config(regs);
2727
2728 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2729
2730 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2731 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2732
2733 /* long PLCP header, 1Mb/2Mb basic rate */
2734 RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2735 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2736
2737 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2738 rtw_set_access(regs, RTW_ACCESS_NONE);
2739
2740 /* XXX from reference sources */
2741 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2742 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2743
2744 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev.dv_xname);
2745
2746 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2747 /* from Linux driver */
2748 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2749
2750 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2751
2752 rtw_enable_interrupts(sc);
2753
2754 rtw_pktfilt_load(sc);
2755
2756 rtw_hwring_setup(sc);
2757
2758 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2759
2760 rtw_io_enable(regs, RTW_CR_RE|RTW_CR_TE, 1);
2761
2762 ifp->if_flags |= IFF_RUNNING;
2763 ic->ic_state = IEEE80211_S_INIT;
2764
2765 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2766 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2767
2768 rtw_resume_ticks(sc);
2769
2770 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2771
2772 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2773 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2774 else
2775 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2776
2777 out:
2778 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2779 return rc;
2780 }
2781
2782 static inline void
2783 rtw_led_init(struct rtw_regs *regs)
2784 {
2785 uint8_t cfg0, cfg1;
2786
2787 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2788
2789 cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2790 cfg0 |= RTW_CONFIG0_LEDGPOEN;
2791 RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2792
2793 cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2794 RTW_DPRINTF(RTW_DEBUG_LED,
2795 ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2796
2797 cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2798 cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2799 RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2800
2801 rtw_set_access(regs, RTW_ACCESS_NONE);
2802 }
2803
2804 /*
2805 * IEEE80211_S_INIT: LED1 off
2806 *
2807 * IEEE80211_S_AUTH,
2808 * IEEE80211_S_ASSOC,
2809 * IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2810 *
2811 * IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx
2812 */
2813 static void
2814 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2815 {
2816 struct rtw_led_state *ls;
2817
2818 ls = &sc->sc_led_state;
2819
2820 switch (nstate) {
2821 case IEEE80211_S_INIT:
2822 rtw_led_init(&sc->sc_regs);
2823 callout_stop(&ls->ls_slow_ch);
2824 callout_stop(&ls->ls_fast_ch);
2825 ls->ls_slowblink = 0;
2826 ls->ls_actblink = 0;
2827 ls->ls_default = 0;
2828 break;
2829 case IEEE80211_S_SCAN:
2830 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2831 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2832 /*FALLTHROUGH*/
2833 case IEEE80211_S_AUTH:
2834 case IEEE80211_S_ASSOC:
2835 ls->ls_default = RTW_LED1;
2836 ls->ls_actblink = RTW_LED1;
2837 ls->ls_slowblink = RTW_LED1;
2838 break;
2839 case IEEE80211_S_RUN:
2840 ls->ls_slowblink = 0;
2841 break;
2842 }
2843 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2844 }
2845
2846 static void
2847 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2848 {
2849 uint8_t led_condition;
2850 bus_size_t ofs;
2851 uint8_t mask, newval, val;
2852
2853 led_condition = ls->ls_default;
2854
2855 if (ls->ls_state & RTW_LED_S_SLOW)
2856 led_condition ^= ls->ls_slowblink;
2857 if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX))
2858 led_condition ^= ls->ls_actblink;
2859
2860 RTW_DPRINTF(RTW_DEBUG_LED,
2861 ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2862
2863 switch (hwverid) {
2864 default:
2865 case 'F':
2866 ofs = RTW_PSR;
2867 newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2868 if (led_condition & RTW_LED0)
2869 newval &= ~RTW_PSR_LEDGPO0;
2870 if (led_condition & RTW_LED1)
2871 newval &= ~RTW_PSR_LEDGPO1;
2872 break;
2873 case 'D':
2874 ofs = RTW_9346CR;
2875 mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2876 newval = RTW_9346CR_EEM_PROGRAM;
2877 if (led_condition & RTW_LED0)
2878 newval |= RTW_9346CR_EEDI;
2879 if (led_condition & RTW_LED1)
2880 newval |= RTW_9346CR_EECS;
2881 break;
2882 }
2883 val = RTW_READ8(regs, ofs);
2884 RTW_DPRINTF(RTW_DEBUG_LED,
2885 ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2886 (uintptr_t)ofs));
2887 val &= ~mask;
2888 val |= newval;
2889 RTW_WRITE8(regs, ofs, val);
2890 RTW_DPRINTF(RTW_DEBUG_LED,
2891 ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2892 (uintptr_t)ofs));
2893 RTW_SYNC(regs, ofs, ofs);
2894 }
2895
2896 static void
2897 rtw_led_fastblink(void *arg)
2898 {
2899 int ostate, s;
2900 struct rtw_softc *sc = (struct rtw_softc *)arg;
2901 struct rtw_led_state *ls = &sc->sc_led_state;
2902
2903 s = splnet();
2904 ostate = ls->ls_state;
2905 ls->ls_state ^= ls->ls_event;
2906
2907 if ((ls->ls_event & RTW_LED_S_TX) == 0)
2908 ls->ls_state &= ~RTW_LED_S_TX;
2909
2910 if ((ls->ls_event & RTW_LED_S_RX) == 0)
2911 ls->ls_state &= ~RTW_LED_S_RX;
2912
2913 ls->ls_event = 0;
2914
2915 if (ostate != ls->ls_state)
2916 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2917 splx(s);
2918
2919 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2920 }
2921
2922 static void
2923 rtw_led_slowblink(void *arg)
2924 {
2925 int s;
2926 struct rtw_softc *sc = (struct rtw_softc *)arg;
2927 struct rtw_led_state *ls = &sc->sc_led_state;
2928
2929 s = splnet();
2930 ls->ls_state ^= RTW_LED_S_SLOW;
2931 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2932 splx(s);
2933 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2934 }
2935
2936 static inline void
2937 rtw_led_attach(struct rtw_led_state *ls, void *arg)
2938 {
2939 callout_init(&ls->ls_fast_ch);
2940 callout_init(&ls->ls_slow_ch);
2941 callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
2942 callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
2943 }
2944
2945 static int
2946 rtw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2947 {
2948 int rc = 0, s;
2949 struct rtw_softc *sc = ifp->if_softc;
2950 struct ifreq *ifr = (struct ifreq *)data;
2951
2952 s = splnet();
2953 switch (cmd) {
2954 case SIOCSIFFLAGS:
2955 if ((ifp->if_flags & IFF_UP) != 0) {
2956 if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2957 rtw_pktfilt_load(sc);
2958 } else
2959 rc = rtw_init(ifp);
2960 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2961 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2962 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2963 rtw_stop(ifp, 1);
2964 }
2965 break;
2966 case SIOCADDMULTI:
2967 case SIOCDELMULTI:
2968 if (cmd == SIOCADDMULTI)
2969 rc = ether_addmulti(ifr, &sc->sc_ec);
2970 else
2971 rc = ether_delmulti(ifr, &sc->sc_ec);
2972 if (rc != ENETRESET)
2973 break;
2974 if (ifp->if_flags & IFF_RUNNING)
2975 rtw_pktfilt_load(sc);
2976 rc = 0;
2977 break;
2978 default:
2979 if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
2980 break;
2981 if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2982 rc = rtw_init(ifp);
2983 else
2984 rc = 0;
2985 break;
2986 }
2987 splx(s);
2988 return rc;
2989 }
2990
2991 /* Select a transmit ring with at least one h/w and s/w descriptor free.
2992 * Return 0 on success, -1 on failure.
2993 */
2994 static inline int
2995 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
2996 struct rtw_txdesc_blk **tdbp, int pri)
2997 {
2998 struct rtw_txsoft_blk *tsb;
2999 struct rtw_txdesc_blk *tdb;
3000
3001 KASSERT(pri >= 0 && pri < RTW_NTXPRI);
3002
3003 tsb = &sc->sc_txsoft_blk[pri];
3004 tdb = &sc->sc_txdesc_blk[pri];
3005
3006 if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
3007 if (tsb->tsb_tx_timer == 0)
3008 tsb->tsb_tx_timer = 5;
3009 *tsbp = NULL;
3010 *tdbp = NULL;
3011 return -1;
3012 }
3013 *tsbp = tsb;
3014 *tdbp = tdb;
3015 return 0;
3016 }
3017
3018 static inline struct mbuf *
3019 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
3020 struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
3021 struct ieee80211_node **nip, short *if_flagsp)
3022 {
3023 struct mbuf *m;
3024
3025 if (IF_IS_EMPTY(ifq))
3026 return NULL;
3027 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3028 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3029 __func__, pri));
3030 *if_flagsp |= IFF_OACTIVE;
3031 sc->sc_if.if_timer = 1;
3032 return NULL;
3033 }
3034 IF_DEQUEUE(ifq, m);
3035 *nip = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3036 m->m_pkthdr.rcvif = NULL;
3037 KASSERT(*nip != NULL);
3038 return m;
3039 }
3040
3041 /* Point *mp at the next 802.11 frame to transmit. Point *tsbp
3042 * at the driver's selection of transmit control block for the packet.
3043 */
3044 static inline int
3045 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
3046 struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
3047 struct ieee80211_node **nip)
3048 {
3049 int pri;
3050 struct ether_header *eh;
3051 struct mbuf *m0;
3052 struct rtw_softc *sc;
3053 short *if_flagsp;
3054
3055 sc = (struct rtw_softc *)ifp->if_softc;
3056
3057 DPRINTF(sc, RTW_DEBUG_XMIT,
3058 ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
3059
3060 if_flagsp = &ifp->if_flags;
3061
3062 if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3063 (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3064 tdbp, nip, if_flagsp)) != NULL) {
3065 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3066 __func__));
3067 return 0;
3068 }
3069
3070 if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3071 tdbp, nip, if_flagsp)) != NULL) {
3072 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3073 __func__));
3074 return 0;
3075 }
3076
3077 if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3078 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3079 return 0;
3080 }
3081
3082 *mp = NULL;
3083
3084 IFQ_POLL(&ifp->if_snd, m0);
3085 if (m0 == NULL) {
3086 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3087 __func__));
3088 return 0;
3089 }
3090
3091 pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3092
3093 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3094 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3095 __func__, pri));
3096 *if_flagsp |= IFF_OACTIVE;
3097 sc->sc_if.if_timer = 1;
3098 return 0;
3099 }
3100
3101 IFQ_DEQUEUE(&ifp->if_snd, m0);
3102 if (m0 == NULL) {
3103 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3104 __func__));
3105 return 0;
3106 }
3107 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3108 ifp->if_opackets++;
3109 #if NBPFILTER > 0
3110 if (ifp->if_bpf)
3111 bpf_mtap(ifp->if_bpf, m0);
3112 #endif
3113 eh = mtod(m0, struct ether_header *);
3114 *nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3115 if (*nip == NULL) {
3116 /* NB: ieee80211_find_txnode does stat+msg */
3117 m_freem(m0);
3118 return -1;
3119 }
3120 if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3121 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3122 ifp->if_oerrors++;
3123 return -1;
3124 }
3125 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3126 *mp = m0;
3127 return 0;
3128 }
3129
3130 static int
3131 rtw_seg_too_short(bus_dmamap_t dmamap)
3132 {
3133 int i;
3134 for (i = 0; i < dmamap->dm_nsegs; i++) {
3135 if (dmamap->dm_segs[i].ds_len < 4) {
3136 printf("%s: segment too short\n", __func__);
3137 return 1;
3138 }
3139 }
3140 return 0;
3141 }
3142
3143 /* TBD factor with atw_start */
3144 static struct mbuf *
3145 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3146 u_int ndescfree, short *ifflagsp, const char *dvname)
3147 {
3148 int first, rc;
3149 struct mbuf *m, *m0;
3150
3151 m0 = chain;
3152
3153 /*
3154 * Load the DMA map. Copy and try (once) again if the packet
3155 * didn't fit in the alloted number of segments.
3156 */
3157 for (first = 1;
3158 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3159 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
3160 dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3161 first = 0) {
3162 if (rc == 0)
3163 bus_dmamap_unload(dmat, dmam);
3164 MGETHDR(m, M_DONTWAIT, MT_DATA);
3165 if (m == NULL) {
3166 printf("%s: unable to allocate Tx mbuf\n",
3167 dvname);
3168 break;
3169 }
3170 if (m0->m_pkthdr.len > MHLEN) {
3171 MCLGET(m, M_DONTWAIT);
3172 if ((m->m_flags & M_EXT) == 0) {
3173 printf("%s: cannot allocate Tx cluster\n",
3174 dvname);
3175 m_freem(m);
3176 break;
3177 }
3178 }
3179 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3180 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3181 m_freem(m0);
3182 m0 = m;
3183 m = NULL;
3184 }
3185 if (rc != 0) {
3186 printf("%s: cannot load Tx buffer, rc = %d\n", dvname, rc);
3187 m_freem(m0);
3188 return NULL;
3189 } else if (rtw_seg_too_short(dmam)) {
3190 printf("%s: cannot load Tx buffer, segment too short\n",
3191 dvname);
3192 bus_dmamap_unload(dmat, dmam);
3193 m_freem(m0);
3194 return NULL;
3195 } else if (dmam->dm_nsegs > ndescfree) {
3196 printf("%s: too many tx segments\n", dvname);
3197 bus_dmamap_unload(dmat, dmam);
3198 m_freem(m0);
3199 return NULL;
3200 }
3201 return m0;
3202 }
3203
3204 #ifdef RTW_DEBUG
3205 static void
3206 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3207 struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3208 {
3209 struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3210 DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3211 "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3212 sc->sc_dev.dv_xname, ts, action, desc,
3213 le32toh(td->td_buf), le32toh(td->td_next),
3214 le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3215 le32toh(td->td_len)));
3216 }
3217 #endif /* RTW_DEBUG */
3218
3219 static void
3220 rtw_start(struct ifnet *ifp)
3221 {
3222 uint8_t tppoll;
3223 int desc, i, lastdesc, npkt, rate;
3224 uint32_t proto_ctl0, ctl0, ctl1;
3225 bus_dmamap_t dmamap;
3226 struct ieee80211com *ic;
3227 struct ieee80211_duration *d0;
3228 struct ieee80211_frame_min *wh;
3229 struct ieee80211_node *ni;
3230 struct mbuf *m0;
3231 struct rtw_softc *sc;
3232 struct rtw_txsoft_blk *tsb;
3233 struct rtw_txdesc_blk *tdb;
3234 struct rtw_txsoft *ts;
3235 struct rtw_txdesc *td;
3236 struct ieee80211_key *k;
3237
3238 sc = (struct rtw_softc *)ifp->if_softc;
3239 ic = &sc->sc_ic;
3240
3241 DPRINTF(sc, RTW_DEBUG_XMIT,
3242 ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
3243
3244 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3245 goto out;
3246
3247 /* XXX do real rate control */
3248 proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3249
3250 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3251 proto_ctl0 |= RTW_TXCTL0_SPLCP;
3252
3253 for (;;) {
3254 if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3255 continue;
3256 if (m0 == NULL)
3257 break;
3258
3259 wh = mtod(m0, struct ieee80211_frame_min *);
3260
3261 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3262 (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3263 m_freem(m0);
3264 break;
3265 } else
3266 k = NULL;
3267
3268 ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3269
3270 dmamap = ts->ts_dmamap;
3271
3272 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3273 tdb->tdb_nfree, &ifp->if_flags, sc->sc_dev.dv_xname);
3274
3275 if (m0 == NULL || dmamap->dm_nsegs == 0) {
3276 DPRINTF(sc, RTW_DEBUG_XMIT,
3277 ("%s: fail dmamap load\n", __func__));
3278 goto post_dequeue_err;
3279 }
3280
3281 /* Note well: rtw_dmamap_load_txbuf may have created
3282 * a new chain, so we must find the header once
3283 * more.
3284 */
3285 wh = mtod(m0, struct ieee80211_frame_min *);
3286
3287 /* XXX do real rate control */
3288 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3289 IEEE80211_FC0_TYPE_MGT)
3290 rate = 2;
3291 else
3292 rate = MAX(2, ieee80211_get_rate(ic));
3293
3294 #ifdef RTW_DEBUG
3295 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3296 (IFF_DEBUG|IFF_LINK2)) {
3297 ieee80211_dump_pkt(mtod(m0, uint8_t *),
3298 (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3299 : sizeof(wh),
3300 rate, 0);
3301 }
3302 #endif /* RTW_DEBUG */
3303 ctl0 = proto_ctl0 |
3304 SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3305
3306 switch (rate) {
3307 default:
3308 case 2:
3309 ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3310 break;
3311 case 4:
3312 ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3313 break;
3314 case 11:
3315 ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3316 break;
3317 case 22:
3318 ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3319 break;
3320 }
3321 /* XXX >= ? Compare after fragmentation? */
3322 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3323 ctl0 |= RTW_TXCTL0_RTSEN;
3324
3325 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3326 * seem to care, since we don't activate h/w Tx
3327 * encryption.
3328 */
3329 if (k != NULL) {
3330 ctl0 |= SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3331 RTW_TXCTL0_KEYID_MASK;
3332 }
3333
3334 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3335 IEEE80211_FC0_TYPE_MGT) {
3336 ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3337 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3338 IEEE80211_FC0_SUBTYPE_BEACON)
3339 ctl0 |= RTW_TXCTL0_BEACON;
3340 }
3341
3342 if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3343 ic->ic_flags, ic->ic_fragthreshold,
3344 rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3345 (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3346 (IFF_DEBUG|IFF_LINK2)) == -1) {
3347 DPRINTF(sc, RTW_DEBUG_XMIT,
3348 ("%s: fail compute duration\n", __func__));
3349 goto post_load_err;
3350 }
3351
3352 d0 = &ts->ts_d0;
3353
3354 *(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3355
3356 ctl1 = SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3357 SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3358
3359 if (d0->d_residue)
3360 ctl1 |= RTW_TXCTL1_LENGEXT;
3361
3362 /* TBD fragmentation */
3363
3364 ts->ts_first = tdb->tdb_next;
3365
3366 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3367 BUS_DMASYNC_PREWRITE);
3368
3369 KASSERT(ts->ts_first < tdb->tdb_ndesc);
3370
3371 #if NBPFILTER > 0
3372 if (ic->ic_rawbpf != NULL)
3373 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3374
3375 if (sc->sc_radiobpf != NULL) {
3376 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3377
3378 rt->rt_flags = 0;
3379 rt->rt_rate = rate;
3380 rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
3381 rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
3382
3383 bpf_mtap2(sc->sc_radiobpf, (caddr_t)rt,
3384 sizeof(sc->sc_txtapu), m0);
3385 }
3386 #endif /* NPBFILTER > 0 */
3387
3388 for (i = 0, lastdesc = desc = ts->ts_first;
3389 i < dmamap->dm_nsegs;
3390 i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3391 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3392 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3393 ("%s: seg too long\n", __func__));
3394 goto post_load_err;
3395 }
3396 td = &tdb->tdb_desc[desc];
3397 td->td_ctl0 = htole32(ctl0);
3398 if (i != 0)
3399 td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3400 td->td_ctl1 = htole32(ctl1);
3401 td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3402 td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3403 lastdesc = desc;
3404 #ifdef RTW_DEBUG
3405 rtw_print_txdesc(sc, "load", ts, tdb, desc);
3406 #endif /* RTW_DEBUG */
3407 }
3408
3409 KASSERT(desc < tdb->tdb_ndesc);
3410
3411 ts->ts_ni = ni;
3412 KASSERT(ni != NULL);
3413 ts->ts_mbuf = m0;
3414 ts->ts_last = lastdesc;
3415 tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3416 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3417 htole32(RTW_TXCTL0_FS);
3418
3419 #ifdef RTW_DEBUG
3420 rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3421 rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3422 #endif /* RTW_DEBUG */
3423
3424 tdb->tdb_nfree -= dmamap->dm_nsegs;
3425 tdb->tdb_next = desc;
3426
3427 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3428 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3429
3430 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3431 htole32(RTW_TXCTL0_OWN);
3432
3433 #ifdef RTW_DEBUG
3434 rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3435 #endif /* RTW_DEBUG */
3436
3437 rtw_txdescs_sync(tdb, ts->ts_first, 1,
3438 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3439
3440 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3441 SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3442
3443 if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3444 sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3445 tsb->tsb_tx_timer = 5;
3446 ifp->if_timer = 1;
3447 tppoll = RTW_READ8(&sc->sc_regs, RTW_TPPOLL);
3448 tppoll &= ~RTW_TPPOLL_SALL;
3449 tppoll |= tsb->tsb_poll & RTW_TPPOLL_ALL;
3450 RTW_WRITE8(&sc->sc_regs, RTW_TPPOLL, tppoll);
3451 RTW_SYNC(&sc->sc_regs, RTW_TPPOLL, RTW_TPPOLL);
3452 }
3453 out:
3454 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3455 return;
3456 post_load_err:
3457 bus_dmamap_unload(sc->sc_dmat, dmamap);
3458 m_freem(m0);
3459 post_dequeue_err:
3460 ieee80211_free_node(ni);
3461 return;
3462 }
3463
3464 static void
3465 rtw_idle(struct rtw_regs *regs)
3466 {
3467 int active;
3468
3469 /* request stop DMA; wait for packets to stop transmitting. */
3470
3471 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3472 RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3473
3474 for (active = 0; active < 300 &&
3475 (RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0; active++)
3476 DELAY(10);
3477 printf("%s: transmit DMA idle in %dus\n", __func__, active * 10);
3478 }
3479
3480 static void
3481 rtw_watchdog(struct ifnet *ifp)
3482 {
3483 int pri, tx_timeouts = 0;
3484 struct rtw_softc *sc;
3485 struct rtw_txsoft_blk *tsb;
3486
3487 sc = ifp->if_softc;
3488
3489 ifp->if_timer = 0;
3490
3491 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
3492 return;
3493
3494 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3495 tsb = &sc->sc_txsoft_blk[pri];
3496
3497 if (tsb->tsb_tx_timer == 0)
3498 continue;
3499 else if (--tsb->tsb_tx_timer == 0) {
3500 if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3501 continue;
3502 printf("%s: transmit timeout, priority %d\n",
3503 ifp->if_xname, pri);
3504 ifp->if_oerrors++;
3505 tx_timeouts++;
3506 } else
3507 ifp->if_timer = 1;
3508 }
3509
3510 if (tx_timeouts > 0) {
3511 /* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3512 * reset s/w tx-ring pointers, and start transmission.
3513 *
3514 * TBD Stop/restart just the broken rings?
3515 */
3516 rtw_idle(&sc->sc_regs);
3517 rtw_io_enable(&sc->sc_regs, RTW_CR_TE, 0);
3518 rtw_txdescs_reset(sc);
3519 rtw_io_enable(&sc->sc_regs, RTW_CR_TE, 1);
3520 rtw_txring_fixup(sc);
3521 rtw_start(ifp);
3522 }
3523 ieee80211_watchdog(&sc->sc_ic);
3524 return;
3525 }
3526
3527 static void
3528 rtw_next_scan(void *arg)
3529 {
3530 struct ieee80211com *ic = arg;
3531 int s;
3532
3533 /* don't call rtw_start w/o network interrupts blocked */
3534 s = splnet();
3535 if (ic->ic_state == IEEE80211_S_SCAN)
3536 ieee80211_next_scan(ic);
3537 splx(s);
3538 }
3539
3540 static void
3541 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3542 {
3543 uint16_t bcnitv, bintritv, intval;
3544 int i;
3545 struct rtw_regs *regs = &sc->sc_regs;
3546
3547 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3548 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3549
3550 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3551
3552 rtw_set_access(regs, RTW_ACCESS_CONFIG);
3553
3554 intval = MIN(intval0, SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3555
3556 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3557 bcnitv |= SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3558 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3559 /* interrupt host 1ms before the TBTT */
3560 bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3561 bintritv |= SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3562 RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3563 /* magic from Linux */
3564 RTW_WRITE16(regs, RTW_ATIMWND, SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3565 RTW_WRITE16(regs, RTW_ATIMTRITV, SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3566 rtw_set_access(regs, RTW_ACCESS_NONE);
3567
3568 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 1);
3569 }
3570
3571 /* Synchronize the hardware state with the software state. */
3572 static int
3573 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3574 {
3575 struct ifnet *ifp = ic->ic_ifp;
3576 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3577 enum ieee80211_state ostate;
3578 int error;
3579
3580 ostate = ic->ic_state;
3581
3582 rtw_led_newstate(sc, nstate);
3583
3584 if (nstate == IEEE80211_S_INIT) {
3585 callout_stop(&sc->sc_scan_ch);
3586 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3587 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3588 }
3589
3590 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3591 rtw_pwrstate(sc, RTW_ON);
3592
3593 if ((error = rtw_tune(sc)) != 0)
3594 return error;
3595
3596 switch (nstate) {
3597 case IEEE80211_S_INIT:
3598 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3599 break;
3600 case IEEE80211_S_SCAN:
3601 if (ostate != IEEE80211_S_SCAN) {
3602 (void)memset(ic->ic_bss->ni_bssid, 0,
3603 IEEE80211_ADDR_LEN);
3604 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3605 }
3606
3607 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3608 rtw_next_scan, ic);
3609
3610 break;
3611 case IEEE80211_S_RUN:
3612 switch (ic->ic_opmode) {
3613 case IEEE80211_M_HOSTAP:
3614 case IEEE80211_M_IBSS:
3615 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3616 /*FALLTHROUGH*/
3617 case IEEE80211_M_AHDEMO:
3618 case IEEE80211_M_STA:
3619 rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3620 ic->ic_bss->ni_intval);
3621 break;
3622 case IEEE80211_M_MONITOR:
3623 break;
3624 }
3625 rtw_set_nettype(sc, ic->ic_opmode);
3626 break;
3627 case IEEE80211_S_ASSOC:
3628 case IEEE80211_S_AUTH:
3629 break;
3630 }
3631
3632 if (nstate != IEEE80211_S_SCAN)
3633 callout_stop(&sc->sc_scan_ch);
3634
3635 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3636 }
3637
3638 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3639 static uint64_t
3640 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3641 {
3642 uint32_t tsftl, tsfth;
3643
3644 tsfth = RTW_READ(regs, RTW_TSFTRH);
3645 tsftl = RTW_READ(regs, RTW_TSFTRL);
3646 if (tsftl < rstamp) /* Compensate for rollover. */
3647 tsfth--;
3648 return ((uint64_t)tsfth << 32) | rstamp;
3649 }
3650
3651 static void
3652 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3653 struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3654 {
3655 struct ifnet *ifp = ic->ic_ifp;
3656 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3657
3658 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3659
3660 switch (subtype) {
3661 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3662 case IEEE80211_FC0_SUBTYPE_BEACON:
3663 if (ic->ic_opmode == IEEE80211_M_IBSS &&
3664 ic->ic_state == IEEE80211_S_RUN) {
3665 uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3666 if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3667 (void)ieee80211_ibss_merge(ni);
3668 }
3669 break;
3670 default:
3671 break;
3672 }
3673 return;
3674 }
3675
3676 static struct ieee80211_node *
3677 rtw_node_alloc(struct ieee80211_node_table *nt)
3678 {
3679 struct ifnet *ifp = nt->nt_ic->ic_ifp;
3680 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3681 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3682
3683 DPRINTF(sc, RTW_DEBUG_NODE,
3684 ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
3685 return ni;
3686 }
3687
3688 static void
3689 rtw_node_free(struct ieee80211_node *ni)
3690 {
3691 struct ieee80211com *ic = ni->ni_ic;
3692 struct ifnet *ifp = ic->ic_ifp;
3693 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3694
3695 DPRINTF(sc, RTW_DEBUG_NODE,
3696 ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
3697 ether_sprintf(ni->ni_bssid)));
3698 (*sc->sc_mtbl.mt_node_free)(ni);
3699 }
3700
3701 static int
3702 rtw_media_change(struct ifnet *ifp)
3703 {
3704 int error;
3705
3706 error = ieee80211_media_change(ifp);
3707 if (error == ENETRESET) {
3708 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3709 (IFF_RUNNING|IFF_UP))
3710 rtw_init(ifp); /* XXX lose error */
3711 error = 0;
3712 }
3713 return error;
3714 }
3715
3716 static void
3717 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3718 {
3719 struct rtw_softc *sc = ifp->if_softc;
3720
3721 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
3722 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3723 imr->ifm_status = 0;
3724 return;
3725 }
3726 ieee80211_media_status(ifp, imr);
3727 }
3728
3729 void
3730 rtw_power(int why, void *arg)
3731 {
3732 struct rtw_softc *sc = arg;
3733 struct ifnet *ifp = &sc->sc_if;
3734 int s;
3735
3736 DPRINTF(sc, RTW_DEBUG_PWR,
3737 ("%s: rtw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3738
3739 s = splnet();
3740 switch (why) {
3741 case PWR_STANDBY:
3742 /* XXX do nothing. */
3743 break;
3744 case PWR_SUSPEND:
3745 rtw_stop(ifp, 0);
3746 if (sc->sc_power != NULL)
3747 (*sc->sc_power)(sc, why);
3748 break;
3749 case PWR_RESUME:
3750 if (ifp->if_flags & IFF_UP) {
3751 if (sc->sc_power != NULL)
3752 (*sc->sc_power)(sc, why);
3753 rtw_init(ifp);
3754 }
3755 break;
3756 case PWR_SOFTSUSPEND:
3757 case PWR_SOFTSTANDBY:
3758 case PWR_SOFTRESUME:
3759 break;
3760 }
3761 splx(s);
3762 }
3763
3764 /* rtw_shutdown: make sure the interface is stopped at reboot time. */
3765 void
3766 rtw_shutdown(void *arg)
3767 {
3768 struct rtw_softc *sc = arg;
3769
3770 rtw_stop(&sc->sc_if, 1);
3771 }
3772
3773 static inline void
3774 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3775 {
3776 (void)memcpy(ifp->if_xname, dvname, IFNAMSIZ);
3777 ifp->if_softc = softc;
3778 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
3779 IFF_NOTRAILERS;
3780 ifp->if_ioctl = rtw_ioctl;
3781 ifp->if_start = rtw_start;
3782 ifp->if_watchdog = rtw_watchdog;
3783 ifp->if_init = rtw_init;
3784 ifp->if_stop = rtw_stop;
3785 }
3786
3787 static inline void
3788 rtw_set80211props(struct ieee80211com *ic)
3789 {
3790 int nrate;
3791 ic->ic_phytype = IEEE80211_T_DS;
3792 ic->ic_opmode = IEEE80211_M_STA;
3793 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3794 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
3795
3796 nrate = 0;
3797 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3798 IEEE80211_RATE_BASIC | 2;
3799 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3800 IEEE80211_RATE_BASIC | 4;
3801 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3802 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3803 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3804 }
3805
3806 static inline void
3807 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3808 {
3809 mtbl->mt_newstate = ic->ic_newstate;
3810 ic->ic_newstate = rtw_newstate;
3811
3812 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3813 ic->ic_recv_mgmt = rtw_recv_mgmt;
3814
3815 mtbl->mt_node_free = ic->ic_node_free;
3816 ic->ic_node_free = rtw_node_free;
3817
3818 mtbl->mt_node_alloc = ic->ic_node_alloc;
3819 ic->ic_node_alloc = rtw_node_alloc;
3820
3821 ic->ic_crypto.cs_key_delete = rtw_key_delete;
3822 ic->ic_crypto.cs_key_set = rtw_key_set;
3823 ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3824 ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3825 }
3826
3827 static inline void
3828 rtw_establish_hooks(struct rtw_hooks *hooks, const char *dvname,
3829 void *arg)
3830 {
3831 /*
3832 * Make sure the interface is shutdown during reboot.
3833 */
3834 hooks->rh_shutdown = shutdownhook_establish(rtw_shutdown, arg);
3835 if (hooks->rh_shutdown == NULL)
3836 printf("%s: WARNING: unable to establish shutdown hook\n",
3837 dvname);
3838
3839 /*
3840 * Add a suspend hook to make sure we come back up after a
3841 * resume.
3842 */
3843 hooks->rh_power = powerhook_establish(rtw_power, arg);
3844 if (hooks->rh_power == NULL)
3845 printf("%s: WARNING: unable to establish power hook\n",
3846 dvname);
3847 }
3848
3849 static inline void
3850 rtw_disestablish_hooks(struct rtw_hooks *hooks, const char *dvname,
3851 void *arg)
3852 {
3853 if (hooks->rh_shutdown != NULL)
3854 shutdownhook_disestablish(hooks->rh_shutdown);
3855
3856 if (hooks->rh_power != NULL)
3857 powerhook_disestablish(hooks->rh_power);
3858 }
3859
3860 static inline void
3861 rtw_init_radiotap(struct rtw_softc *sc)
3862 {
3863 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3864 sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3865 sc->sc_rxtap.rr_ihdr.it_present = htole32(RTW_RX_RADIOTAP_PRESENT);
3866
3867 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3868 sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3869 sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3870 }
3871
3872 static int
3873 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3874 {
3875 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3876 SIMPLEQ_INIT(&tsb->tsb_freeq);
3877 tsb->tsb_ndesc = qlen;
3878 tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3879 M_NOWAIT);
3880 if (tsb->tsb_desc == NULL)
3881 return ENOMEM;
3882 return 0;
3883 }
3884
3885 static void
3886 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3887 {
3888 int pri;
3889 struct rtw_txsoft_blk *tsb;
3890
3891 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3892 tsb = &sc->sc_txsoft_blk[pri];
3893 free(tsb->tsb_desc, M_DEVBUF);
3894 tsb->tsb_desc = NULL;
3895 }
3896 }
3897
3898 static int
3899 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3900 {
3901 int pri, rc = 0;
3902 int qlen[RTW_NTXPRI] =
3903 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3904 struct rtw_txsoft_blk *tsbs;
3905
3906 tsbs = sc->sc_txsoft_blk;
3907
3908 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3909 rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3910 if (rc != 0)
3911 break;
3912 }
3913 tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3914 tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3915 tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3916 tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3917 return rc;
3918 }
3919
3920 static void
3921 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3922 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3923 {
3924 tdb->tdb_ndesc = ndesc;
3925 tdb->tdb_desc = desc;
3926 tdb->tdb_physbase = physbase;
3927 tdb->tdb_ofs = ofs;
3928
3929 (void)memset(tdb->tdb_desc, 0,
3930 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3931
3932 rtw_txdesc_blk_init(tdb);
3933 tdb->tdb_next = 0;
3934 }
3935
3936 static void
3937 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3938 {
3939 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3940 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3941 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3942
3943 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3944 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3945 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3946
3947 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3948 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3949 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3950
3951 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3952 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3953 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3954 }
3955
3956 static struct rtw_rf *
3957 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3958 {
3959 rtw_rf_write_t rf_write;
3960 struct rtw_rf *rf;
3961
3962 switch (rfchipid) {
3963 default:
3964 rf_write = rtw_rf_hostwrite;
3965 break;
3966 case RTW_RFCHIPID_INTERSIL:
3967 case RTW_RFCHIPID_PHILIPS:
3968 case RTW_RFCHIPID_GCT: /* XXX a guess */
3969 case RTW_RFCHIPID_RFMD:
3970 rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3971 break;
3972 }
3973
3974 switch (rfchipid) {
3975 case RTW_RFCHIPID_GCT:
3976 rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3977 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3978 break;
3979 case RTW_RFCHIPID_MAXIM:
3980 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3981 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3982 break;
3983 case RTW_RFCHIPID_PHILIPS:
3984 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3985 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3986 break;
3987 case RTW_RFCHIPID_RFMD:
3988 /* XXX RFMD has no RF constructor */
3989 sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3990 /*FALLTHROUGH*/
3991 default:
3992 return NULL;
3993 }
3994 rf->rf_continuous_tx_cb =
3995 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3996 rf->rf_continuous_tx_arg = (void *)sc;
3997 return rf;
3998 }
3999
4000 /* Revision C and later use a different PHY delay setting than
4001 * revisions A and B.
4002 */
4003 static uint8_t
4004 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
4005 {
4006 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
4007 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
4008
4009 uint8_t phydelay = SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
4010
4011 RTW_WRITE(regs, RTW_RCR, REVAB);
4012 RTW_WBW(regs, RTW_RCR, RTW_RCR);
4013 RTW_WRITE(regs, RTW_RCR, REVC);
4014
4015 RTW_WBR(regs, RTW_RCR, RTW_RCR);
4016 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
4017 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
4018
4019 RTW_WRITE(regs, RTW_RCR, old_rcr); /* restore RCR */
4020 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
4021
4022 return phydelay;
4023 #undef REVC
4024 }
4025
4026 void
4027 rtw_attach(struct rtw_softc *sc)
4028 {
4029 struct ifnet *ifp = &sc->sc_if;
4030 struct ieee80211com *ic = &sc->sc_ic;
4031 struct rtw_txsoft_blk *tsb;
4032 int pri, rc;
4033
4034 rtw_cipher_wep = ieee80211_cipher_wep;
4035 rtw_cipher_wep.ic_decap = rtw_wep_decap;
4036
4037 NEXT_ATTACH_STATE(sc, DETACHED);
4038
4039 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
4040 case RTW_TCR_HWVERID_F:
4041 sc->sc_hwverid = 'F';
4042 break;
4043 case RTW_TCR_HWVERID_D:
4044 sc->sc_hwverid = 'D';
4045 break;
4046 default:
4047 sc->sc_hwverid = '?';
4048 break;
4049 }
4050 printf("%s: hardware version %c\n", sc->sc_dev.dv_xname,
4051 sc->sc_hwverid);
4052
4053 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
4054 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
4055 0);
4056
4057 if (rc != 0) {
4058 printf("%s: could not allocate hw descriptors, error %d\n",
4059 sc->sc_dev.dv_xname, rc);
4060 goto err;
4061 }
4062
4063 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
4064
4065 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
4066 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
4067 (caddr_t*)&sc->sc_descs, BUS_DMA_COHERENT);
4068
4069 if (rc != 0) {
4070 printf("%s: could not map hw descriptors, error %d\n",
4071 sc->sc_dev.dv_xname, rc);
4072 goto err;
4073 }
4074 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
4075
4076 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
4077 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
4078
4079 if (rc != 0) {
4080 printf("%s: could not create DMA map for hw descriptors, "
4081 "error %d\n", sc->sc_dev.dv_xname, rc);
4082 goto err;
4083 }
4084 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
4085
4086 sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
4087 sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
4088
4089 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4090 sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
4091 sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
4092 }
4093
4094 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
4095 sizeof(struct rtw_descs), NULL, 0);
4096
4097 if (rc != 0) {
4098 printf("%s: could not load DMA map for hw descriptors, "
4099 "error %d\n", sc->sc_dev.dv_xname, rc);
4100 goto err;
4101 }
4102 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
4103
4104 if (rtw_txsoft_blk_setup_all(sc) != 0)
4105 goto err;
4106 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
4107
4108 rtw_txdesc_blk_setup_all(sc);
4109
4110 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4111
4112 sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4113
4114 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4115 tsb = &sc->sc_txsoft_blk[pri];
4116
4117 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4118 &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4119 printf("%s: could not load DMA map for "
4120 "hw tx descriptors, error %d\n",
4121 sc->sc_dev.dv_xname, rc);
4122 goto err;
4123 }
4124 }
4125
4126 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4127 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4128 RTW_RXQLEN)) != 0) {
4129 printf("%s: could not load DMA map for hw rx descriptors, "
4130 "error %d\n", sc->sc_dev.dv_xname, rc);
4131 goto err;
4132 }
4133 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4134
4135 /* Reset the chip to a known state. */
4136 if (rtw_reset(sc) != 0)
4137 goto err;
4138 NEXT_ATTACH_STATE(sc, FINISH_RESET);
4139
4140 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4141
4142 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4143 sc->sc_flags |= RTW_F_9356SROM;
4144
4145 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4146 sc->sc_dev.dv_xname) != 0)
4147 goto err;
4148
4149 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4150
4151 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4152 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4153 sc->sc_dev.dv_xname) != 0) {
4154 printf("%s: attach failed, malformed serial ROM\n",
4155 sc->sc_dev.dv_xname);
4156 goto err;
4157 }
4158
4159 printf("%s: %s PHY\n", sc->sc_dev.dv_xname,
4160 ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4161
4162 printf("%s: CS threshold %u\n", sc->sc_dev.dv_xname, sc->sc_csthr);
4163
4164 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4165
4166 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4167 sc->sc_flags & RTW_F_DIGPHY);
4168
4169 if (sc->sc_rf == NULL) {
4170 printf("%s: attach failed, could not attach RF\n",
4171 sc->sc_dev.dv_xname);
4172 goto err;
4173 }
4174
4175 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4176
4177 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4178
4179 RTW_DPRINTF(RTW_DEBUG_ATTACH,
4180 ("%s: PHY delay %d\n", sc->sc_dev.dv_xname, sc->sc_phydelay));
4181
4182 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4183 rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4184
4185 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels,
4186 sc->sc_dev.dv_xname);
4187
4188 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4189 sc->sc_dev.dv_xname) != 0)
4190 goto err;
4191 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4192
4193 rtw_setifprops(ifp, sc->sc_dev.dv_xname, (void*)sc);
4194
4195 IFQ_SET_READY(&ifp->if_snd);
4196
4197 sc->sc_ic.ic_ifp = ifp;
4198 rtw_set80211props(&sc->sc_ic);
4199
4200 rtw_led_attach(&sc->sc_led_state, (void *)sc);
4201
4202 /*
4203 * Call MI attach routines.
4204 */
4205 if_attach(ifp);
4206 ieee80211_ifattach(&sc->sc_ic);
4207
4208 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4209
4210 /* possibly we should fill in our own sc_send_prresp, since
4211 * the RTL8180 is probably sending probe responses in ad hoc
4212 * mode.
4213 */
4214
4215 /* complete initialization */
4216 ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4217 callout_init(&sc->sc_scan_ch);
4218
4219 rtw_init_radiotap(sc);
4220
4221 #if NBPFILTER > 0
4222 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4223 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4224 #endif
4225
4226 rtw_establish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname, (void*)sc);
4227
4228 NEXT_ATTACH_STATE(sc, FINISHED);
4229
4230 ieee80211_announce(ic);
4231 return;
4232 err:
4233 rtw_detach(sc);
4234 return;
4235 }
4236
4237 int
4238 rtw_detach(struct rtw_softc *sc)
4239 {
4240 struct ifnet *ifp = &sc->sc_if;
4241 int pri;
4242
4243 sc->sc_flags |= RTW_F_INVALID;
4244
4245 switch (sc->sc_attach_state) {
4246 case FINISHED:
4247 rtw_stop(ifp, 1);
4248
4249 rtw_disestablish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname,
4250 (void*)sc);
4251 callout_stop(&sc->sc_scan_ch);
4252 ieee80211_ifdetach(&sc->sc_ic);
4253 if_detach(ifp);
4254 break;
4255 case FINISH_ID_STA:
4256 case FINISH_RF_ATTACH:
4257 rtw_rf_destroy(sc->sc_rf);
4258 sc->sc_rf = NULL;
4259 /*FALLTHROUGH*/
4260 case FINISH_PARSE_SROM:
4261 case FINISH_READ_SROM:
4262 rtw_srom_free(&sc->sc_srom);
4263 /*FALLTHROUGH*/
4264 case FINISH_RESET:
4265 case FINISH_RXMAPS_CREATE:
4266 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4267 RTW_RXQLEN);
4268 /*FALLTHROUGH*/
4269 case FINISH_TXMAPS_CREATE:
4270 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4271 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4272 sc->sc_txsoft_blk[pri].tsb_desc,
4273 sc->sc_txsoft_blk[pri].tsb_ndesc);
4274 }
4275 /*FALLTHROUGH*/
4276 case FINISH_TXDESCBLK_SETUP:
4277 case FINISH_TXCTLBLK_SETUP:
4278 rtw_txsoft_blk_cleanup_all(sc);
4279 /*FALLTHROUGH*/
4280 case FINISH_DESCMAP_LOAD:
4281 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4282 /*FALLTHROUGH*/
4283 case FINISH_DESCMAP_CREATE:
4284 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4285 /*FALLTHROUGH*/
4286 case FINISH_DESC_MAP:
4287 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_descs,
4288 sizeof(struct rtw_descs));
4289 /*FALLTHROUGH*/
4290 case FINISH_DESC_ALLOC:
4291 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4292 sc->sc_desc_nsegs);
4293 /*FALLTHROUGH*/
4294 case DETACHED:
4295 NEXT_ATTACH_STATE(sc, DETACHED);
4296 break;
4297 }
4298 return 0;
4299 }
4300
4301 int
4302 rtw_activate(struct device *self, enum devact act)
4303 {
4304 struct rtw_softc *sc = (struct rtw_softc *)self;
4305 int rc = 0, s;
4306
4307 s = splnet();
4308 switch (act) {
4309 case DVACT_ACTIVATE:
4310 rc = EOPNOTSUPP;
4311 break;
4312
4313 case DVACT_DEACTIVATE:
4314 if_deactivate(&sc->sc_if);
4315 break;
4316 }
4317 splx(s);
4318 return rc;
4319 }
4320