rtw.c revision 1.7 1 /* $NetBSD: rtw.c,v 1.7 2004/12/20 00:28:02 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005 David Young. All rights reserved.
4 *
5 * Programmed for NetBSD by David Young.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of David Young may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
23 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30 * OF SUCH DAMAGE.
31 */
32 /*
33 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.7 2004/12/20 00:28:02 dyoung Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/sysctl.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #if 0
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #endif
54 #include <sys/time.h>
55 #include <sys/types.h>
56
57 #include <machine/endian.h>
58 #include <machine/bus.h>
59 #include <machine/intr.h> /* splnet */
60
61 #include <uvm/uvm_extern.h>
62
63 #include <net/if.h>
64 #include <net/if_media.h>
65 #include <net/if_ether.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_compat.h>
69 #include <net80211/ieee80211_radiotap.h>
70
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 #include <dev/ic/rtwreg.h>
76 #include <dev/ic/rtwvar.h>
77 #include <dev/ic/rtwphyio.h>
78 #include <dev/ic/rtwphy.h>
79
80 #include <dev/ic/smc93cx6var.h>
81
82 #define KASSERT2(__cond, __msg) \
83 do { \
84 if (!(__cond)) \
85 panic __msg ; \
86 } while (0)
87
88 int rtw_rfprog_fallback = 0;
89 int rtw_host_rfio = 0;
90 int rtw_flush_rfio = 1;
91 int rtw_rfio_delay = 0;
92
93 #ifdef RTW_DEBUG
94 int rtw_debug = 2;
95 #endif /* RTW_DEBUG */
96
97 #define NEXT_ATTACH_STATE(sc, state) do { \
98 DPRINTF(sc, ("%s: attach state %s\n", __func__, #state)); \
99 sc->sc_attach_state = state; \
100 } while (0)
101
102 int rtw_dwelltime = 1000; /* milliseconds */
103
104 static void rtw_start(struct ifnet *);
105
106 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
107 static int rtw_sysctl_verify_rfio_delay(SYSCTLFN_PROTO);
108 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
109 #ifdef RTW_DEBUG
110 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
111 #endif /* RTW_DEBUG */
112
113 /*
114 * Setup sysctl(3) MIB, hw.rtw.*
115 *
116 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
117 */
118 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
119 {
120 int rc;
121 struct sysctlnode *cnode, *rnode;
122
123 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
124 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
125 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
126 goto err;
127
128 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
129 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
130 "Realtek RTL818x 802.11 controls",
131 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
132 goto err;
133
134 #ifdef RTW_DEBUG
135 /* control debugging printfs */
136 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
137 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
138 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
139 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
140 CTL_CREATE, CTL_EOL)) != 0)
141 goto err;
142 #endif /* RTW_DEBUG */
143 /* set fallback RF programming method */
144 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
145 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
146 "rfprog_fallback",
147 SYSCTL_DESCR("Set fallback RF programming method"),
148 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
149 CTL_CREATE, CTL_EOL)) != 0)
150 goto err;
151
152 /* force host to flush I/O by reading RTW_PHYADDR */
153 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
154 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
155 "flush_rfio", SYSCTL_DESCR("Enable RF I/O flushing"),
156 rtw_sysctl_verify_rfio, 0, &rtw_flush_rfio, 0,
157 CTL_CREATE, CTL_EOL)) != 0)
158 goto err;
159
160 /* force host to control RF I/O bus */
161 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
162 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
163 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
164 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
165 CTL_CREATE, CTL_EOL)) != 0)
166 goto err;
167
168 /* control RF I/O delay */
169 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
170 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
171 "rfio_delay", SYSCTL_DESCR("Set RF I/O delay"),
172 rtw_sysctl_verify_rfio_delay, 0, &rtw_rfio_delay, 0,
173 CTL_CREATE, CTL_EOL)) != 0)
174 goto err;
175
176 return;
177 err:
178 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
179 }
180
181 static int
182 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
183 {
184 int error, t;
185 struct sysctlnode node;
186
187 node = *rnode;
188 t = *(int*)rnode->sysctl_data;
189 node.sysctl_data = &t;
190 error = sysctl_lookup(SYSCTLFN_CALL(&node));
191 if (error || newp == NULL)
192 return (error);
193
194 if (t < lower || t > upper)
195 return (EINVAL);
196
197 *(int*)rnode->sysctl_data = t;
198
199 return (0);
200 }
201
202 static int
203 rtw_sysctl_verify_rfio_delay(SYSCTLFN_ARGS)
204 {
205 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 1000000);
206 }
207
208 static int
209 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
210 {
211 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0,
212 MASK_AND_RSHIFT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
213 }
214
215 static int
216 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
217 {
218 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 1);
219 }
220
221 #ifdef RTW_DEBUG
222 static int
223 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
224 {
225 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 2);
226 }
227
228 static void
229 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
230 {
231 #define PRINTREG32(sc, reg) \
232 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
233 dvname, reg, RTW_READ(regs, reg)))
234
235 #define PRINTREG16(sc, reg) \
236 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %04x\n", \
237 dvname, reg, RTW_READ16(regs, reg)))
238
239 #define PRINTREG8(sc, reg) \
240 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %02x\n", \
241 dvname, reg, RTW_READ8(regs, reg)))
242
243 RTW_DPRINTF2(("%s: %s\n", dvname, where));
244
245 PRINTREG32(regs, RTW_IDR0);
246 PRINTREG32(regs, RTW_IDR1);
247 PRINTREG32(regs, RTW_MAR0);
248 PRINTREG32(regs, RTW_MAR1);
249 PRINTREG32(regs, RTW_TSFTRL);
250 PRINTREG32(regs, RTW_TSFTRH);
251 PRINTREG32(regs, RTW_TLPDA);
252 PRINTREG32(regs, RTW_TNPDA);
253 PRINTREG32(regs, RTW_THPDA);
254 PRINTREG32(regs, RTW_TCR);
255 PRINTREG32(regs, RTW_RCR);
256 PRINTREG32(regs, RTW_TINT);
257 PRINTREG32(regs, RTW_TBDA);
258 PRINTREG32(regs, RTW_ANAPARM);
259 PRINTREG32(regs, RTW_BB);
260 PRINTREG32(regs, RTW_PHYCFG);
261 PRINTREG32(regs, RTW_WAKEUP0L);
262 PRINTREG32(regs, RTW_WAKEUP0H);
263 PRINTREG32(regs, RTW_WAKEUP1L);
264 PRINTREG32(regs, RTW_WAKEUP1H);
265 PRINTREG32(regs, RTW_WAKEUP2LL);
266 PRINTREG32(regs, RTW_WAKEUP2LH);
267 PRINTREG32(regs, RTW_WAKEUP2HL);
268 PRINTREG32(regs, RTW_WAKEUP2HH);
269 PRINTREG32(regs, RTW_WAKEUP3LL);
270 PRINTREG32(regs, RTW_WAKEUP3LH);
271 PRINTREG32(regs, RTW_WAKEUP3HL);
272 PRINTREG32(regs, RTW_WAKEUP3HH);
273 PRINTREG32(regs, RTW_WAKEUP4LL);
274 PRINTREG32(regs, RTW_WAKEUP4LH);
275 PRINTREG32(regs, RTW_WAKEUP4HL);
276 PRINTREG32(regs, RTW_WAKEUP4HH);
277 PRINTREG32(regs, RTW_DK0);
278 PRINTREG32(regs, RTW_DK1);
279 PRINTREG32(regs, RTW_DK2);
280 PRINTREG32(regs, RTW_DK3);
281 PRINTREG32(regs, RTW_RETRYCTR);
282 PRINTREG32(regs, RTW_RDSAR);
283 PRINTREG32(regs, RTW_FER);
284 PRINTREG32(regs, RTW_FEMR);
285 PRINTREG32(regs, RTW_FPSR);
286 PRINTREG32(regs, RTW_FFER);
287
288 /* 16-bit registers */
289 PRINTREG16(regs, RTW_BRSR);
290 PRINTREG16(regs, RTW_IMR);
291 PRINTREG16(regs, RTW_ISR);
292 PRINTREG16(regs, RTW_BCNITV);
293 PRINTREG16(regs, RTW_ATIMWND);
294 PRINTREG16(regs, RTW_BINTRITV);
295 PRINTREG16(regs, RTW_ATIMTRITV);
296 PRINTREG16(regs, RTW_CRC16ERR);
297 PRINTREG16(regs, RTW_CRC0);
298 PRINTREG16(regs, RTW_CRC1);
299 PRINTREG16(regs, RTW_CRC2);
300 PRINTREG16(regs, RTW_CRC3);
301 PRINTREG16(regs, RTW_CRC4);
302 PRINTREG16(regs, RTW_CWR);
303
304 /* 8-bit registers */
305 PRINTREG8(regs, RTW_CR);
306 PRINTREG8(regs, RTW_9346CR);
307 PRINTREG8(regs, RTW_CONFIG0);
308 PRINTREG8(regs, RTW_CONFIG1);
309 PRINTREG8(regs, RTW_CONFIG2);
310 PRINTREG8(regs, RTW_MSR);
311 PRINTREG8(regs, RTW_CONFIG3);
312 PRINTREG8(regs, RTW_CONFIG4);
313 PRINTREG8(regs, RTW_TESTR);
314 PRINTREG8(regs, RTW_PSR);
315 PRINTREG8(regs, RTW_SCR);
316 PRINTREG8(regs, RTW_PHYDELAY);
317 PRINTREG8(regs, RTW_CRCOUNT);
318 PRINTREG8(regs, RTW_PHYADDR);
319 PRINTREG8(regs, RTW_PHYDATAW);
320 PRINTREG8(regs, RTW_PHYDATAR);
321 PRINTREG8(regs, RTW_CONFIG5);
322 PRINTREG8(regs, RTW_TPPOLL);
323
324 PRINTREG16(regs, RTW_BSSID16);
325 PRINTREG32(regs, RTW_BSSID32);
326 #undef PRINTREG32
327 #undef PRINTREG16
328 #undef PRINTREG8
329 }
330 #endif /* RTW_DEBUG */
331
332 void
333 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
334 {
335 struct rtw_regs *regs = &sc->sc_regs;
336
337 u_int32_t tcr;
338 tcr = RTW_READ(regs, RTW_TCR);
339 tcr &= ~RTW_TCR_LBK_MASK;
340 if (enable)
341 tcr |= RTW_TCR_LBK_CONT;
342 else
343 tcr |= RTW_TCR_LBK_NORMAL;
344 RTW_WRITE(regs, RTW_TCR, tcr);
345 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
346 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
347 rtw_txdac_enable(sc, !enable);
348 rtw_set_access(sc, RTW_ACCESS_ANAPARM); /* XXX Voodoo from Linux. */
349 rtw_set_access(sc, RTW_ACCESS_NONE);
350 }
351
352 static const char *
353 rtw_access_string(enum rtw_access access)
354 {
355 switch (access) {
356 case RTW_ACCESS_NONE:
357 return "none";
358 case RTW_ACCESS_CONFIG:
359 return "config";
360 case RTW_ACCESS_ANAPARM:
361 return "anaparm";
362 default:
363 return "unknown";
364 }
365 }
366
367 static void
368 rtw_set_access1(struct rtw_regs *regs,
369 enum rtw_access oaccess, enum rtw_access naccess)
370 {
371 KASSERT(naccess >= RTW_ACCESS_NONE && naccess <= RTW_ACCESS_ANAPARM);
372 KASSERT(oaccess >= RTW_ACCESS_NONE && oaccess <= RTW_ACCESS_ANAPARM);
373
374 if (naccess == oaccess)
375 return;
376
377 switch (naccess) {
378 case RTW_ACCESS_NONE:
379 switch (oaccess) {
380 case RTW_ACCESS_ANAPARM:
381 rtw_anaparm_enable(regs, 0);
382 /*FALLTHROUGH*/
383 case RTW_ACCESS_CONFIG:
384 rtw_config0123_enable(regs, 0);
385 /*FALLTHROUGH*/
386 case RTW_ACCESS_NONE:
387 break;
388 }
389 break;
390 case RTW_ACCESS_CONFIG:
391 switch (oaccess) {
392 case RTW_ACCESS_NONE:
393 rtw_config0123_enable(regs, 1);
394 /*FALLTHROUGH*/
395 case RTW_ACCESS_CONFIG:
396 break;
397 case RTW_ACCESS_ANAPARM:
398 rtw_anaparm_enable(regs, 0);
399 break;
400 }
401 break;
402 case RTW_ACCESS_ANAPARM:
403 switch (oaccess) {
404 case RTW_ACCESS_NONE:
405 rtw_config0123_enable(regs, 1);
406 /*FALLTHROUGH*/
407 case RTW_ACCESS_CONFIG:
408 rtw_anaparm_enable(regs, 1);
409 /*FALLTHROUGH*/
410 case RTW_ACCESS_ANAPARM:
411 break;
412 }
413 break;
414 }
415 }
416
417 void
418 rtw_set_access(struct rtw_softc *sc, enum rtw_access access)
419 {
420 rtw_set_access1(&sc->sc_regs, sc->sc_access, access);
421 RTW_DPRINTF(("%s: access %s -> %s\n", sc->sc_dev.dv_xname,
422 rtw_access_string(sc->sc_access),
423 rtw_access_string(access)));
424 sc->sc_access = access;
425 }
426
427 /*
428 * Enable registers, switch register banks.
429 */
430 void
431 rtw_config0123_enable(struct rtw_regs *regs, int enable)
432 {
433 u_int8_t ecr;
434 ecr = RTW_READ8(regs, RTW_9346CR);
435 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
436 if (enable)
437 ecr |= RTW_9346CR_EEM_CONFIG;
438 else
439 ecr |= RTW_9346CR_EEM_NORMAL;
440 RTW_WRITE8(regs, RTW_9346CR, ecr);
441 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
442 }
443
444 /* requires rtw_config0123_enable(, 1) */
445 void
446 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
447 {
448 u_int8_t cfg3;
449
450 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
451 cfg3 |= RTW_CONFIG3_CLKRUNEN;
452 if (enable)
453 cfg3 |= RTW_CONFIG3_PARMEN;
454 else
455 cfg3 &= ~RTW_CONFIG3_PARMEN;
456 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
457 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
458 }
459
460 /* requires rtw_anaparm_enable(, 1) */
461 void
462 rtw_txdac_enable(struct rtw_softc *sc, int enable)
463 {
464 u_int32_t anaparm;
465 struct rtw_regs *regs = &sc->sc_regs;
466
467 anaparm = RTW_READ(regs, RTW_ANAPARM);
468 if (enable)
469 anaparm &= ~RTW_ANAPARM_TXDACOFF;
470 else
471 anaparm |= RTW_ANAPARM_TXDACOFF;
472 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
473 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
474 }
475
476 static __inline int
477 rtw_chip_reset1(struct rtw_regs *regs, const char *dvname)
478 {
479 u_int8_t cr;
480 int i;
481
482 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
483
484 RTW_WBR(regs, RTW_CR, RTW_CR);
485
486 for (i = 0; i < 10000; i++) {
487 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
488 RTW_DPRINTF(("%s: reset in %dus\n", dvname, i));
489 return 0;
490 }
491 RTW_RBR(regs, RTW_CR, RTW_CR);
492 DELAY(1); /* 1us */
493 }
494
495 printf("%s: reset failed\n", dvname);
496 return ETIMEDOUT;
497 }
498
499 static __inline int
500 rtw_chip_reset(struct rtw_regs *regs, const char *dvname)
501 {
502 uint32_t tcr;
503
504 /* from Linux driver */
505 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
506 LSHIFT(7, RTW_TCR_SRL_MASK) | LSHIFT(7, RTW_TCR_LRL_MASK);
507
508 RTW_WRITE(regs, RTW_TCR, tcr);
509
510 RTW_WBW(regs, RTW_CR, RTW_TCR);
511
512 return rtw_chip_reset1(regs, dvname);
513 }
514
515 static __inline int
516 rtw_recall_eeprom(struct rtw_regs *regs, const char *dvname)
517 {
518 int i;
519 u_int8_t ecr;
520
521 ecr = RTW_READ8(regs, RTW_9346CR);
522 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
523 RTW_WRITE8(regs, RTW_9346CR, ecr);
524
525 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
526
527 /* wait 2.5ms for completion */
528 for (i = 0; i < 25; i++) {
529 ecr = RTW_READ8(regs, RTW_9346CR);
530 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
531 RTW_DPRINTF(("%s: recall EEPROM in %dus\n", dvname,
532 i * 100));
533 return 0;
534 }
535 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
536 DELAY(100);
537 }
538 printf("%s: recall EEPROM failed\n", dvname);
539 return ETIMEDOUT;
540 }
541
542 static __inline int
543 rtw_reset(struct rtw_softc *sc)
544 {
545 int rc;
546 uint8_t config1;
547
548 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev.dv_xname)) != 0)
549 return rc;
550
551 if ((rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev.dv_xname)) != 0)
552 ;
553
554 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
555 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
556 /* TBD turn off maximum power saving? */
557
558 return 0;
559 }
560
561 static __inline int
562 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txctl *descs,
563 u_int ndescs)
564 {
565 int i, rc = 0;
566 for (i = 0; i < ndescs; i++) {
567 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
568 0, 0, &descs[i].stx_dmamap);
569 if (rc != 0)
570 break;
571 }
572 return rc;
573 }
574
575 static __inline int
576 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
577 u_int ndescs)
578 {
579 int i, rc = 0;
580 for (i = 0; i < ndescs; i++) {
581 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
582 &descs[i].srx_dmamap);
583 if (rc != 0)
584 break;
585 }
586 return rc;
587 }
588
589 static __inline void
590 rtw_rxctls_setup(struct rtw_rxctl *descs)
591 {
592 int i;
593 for (i = 0; i < RTW_RXQLEN; i++)
594 descs[i].srx_mbuf = NULL;
595 }
596
597 static __inline void
598 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
599 u_int ndescs)
600 {
601 int i;
602 for (i = 0; i < ndescs; i++) {
603 if (descs[i].srx_dmamap != NULL)
604 bus_dmamap_destroy(dmat, descs[i].srx_dmamap);
605 }
606 }
607
608 static __inline void
609 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txctl *descs,
610 u_int ndescs)
611 {
612 int i;
613 for (i = 0; i < ndescs; i++) {
614 if (descs[i].stx_dmamap != NULL)
615 bus_dmamap_destroy(dmat, descs[i].stx_dmamap);
616 }
617 }
618
619 static __inline void
620 rtw_srom_free(struct rtw_srom *sr)
621 {
622 sr->sr_size = 0;
623 if (sr->sr_content == NULL)
624 return;
625 free(sr->sr_content, M_DEVBUF);
626 sr->sr_content = NULL;
627 }
628
629 static void
630 rtw_srom_defaults(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
631 enum rtw_rfchipid *rfchipid, u_int32_t *rcr)
632 {
633 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
634 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
635 *rcr |= RTW_RCR_ENCS1;
636 *rfchipid = RTW_RFCHIPID_PHILIPS;
637 }
638
639 static int
640 rtw_srom_parse(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
641 enum rtw_rfchipid *rfchipid, u_int32_t *rcr, enum rtw_locale *locale,
642 const char *dvname)
643 {
644 int i;
645 const char *rfname, *paname;
646 char scratch[sizeof("unknown 0xXX")];
647 u_int16_t version;
648 u_int8_t mac[IEEE80211_ADDR_LEN];
649
650 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
651 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
652
653 version = RTW_SR_GET16(sr, RTW_SR_VERSION);
654 printf("%s: SROM version %d.%d", dvname, version >> 8, version & 0xff);
655
656 if (version <= 0x0101) {
657 printf(" is not understood, limping along with defaults\n");
658 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
659 return 0;
660 }
661 printf("\n");
662
663 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
664 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
665
666 RTW_DPRINTF(("%s: EEPROM MAC %s\n", dvname, ether_sprintf(mac)));
667
668 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
669
670 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
671 *flags |= RTW_F_ANTDIV;
672
673 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) != 0)
674 *flags |= RTW_F_DIGPHY;
675 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
676 *flags |= RTW_F_DFLANTB;
677
678 *rcr |= LSHIFT(MASK_AND_RSHIFT(RTW_SR_GET(sr, RTW_SR_RFPARM),
679 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
680
681 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
682 switch (*rfchipid) {
683 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
684 rfname = "GCT GRF5101";
685 paname = "Winspring WS9901";
686 break;
687 case RTW_RFCHIPID_MAXIM:
688 rfname = "Maxim MAX2820"; /* guess */
689 paname = "Maxim MAX2422"; /* guess */
690 break;
691 case RTW_RFCHIPID_INTERSIL:
692 rfname = "Intersil HFA3873"; /* guess */
693 paname = "Intersil <unknown>";
694 break;
695 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
696 rfname = "Philips SA2400A";
697 paname = "Philips SA2411";
698 break;
699 case RTW_RFCHIPID_RFMD:
700 /* this is the same front-end as an atw(4)! */
701 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
702 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
703 "SYN: Silicon Labs Si4126"; /* inferred from
704 * reference driver
705 */
706 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
707 break;
708 case RTW_RFCHIPID_RESERVED:
709 rfname = paname = "reserved";
710 break;
711 default:
712 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
713 rfname = paname = scratch;
714 }
715 printf("%s: RF: %s, PA: %s\n", dvname, rfname, paname);
716
717 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
718 case RTW_CONFIG0_GL_USA:
719 *locale = RTW_LOCALE_USA;
720 break;
721 case RTW_CONFIG0_GL_EUROPE:
722 *locale = RTW_LOCALE_EUROPE;
723 break;
724 case RTW_CONFIG0_GL_JAPAN:
725 *locale = RTW_LOCALE_JAPAN;
726 break;
727 default:
728 *locale = RTW_LOCALE_UNKNOWN;
729 break;
730 }
731 return 0;
732 }
733
734 /* Returns -1 on failure. */
735 static int
736 rtw_srom_read(struct rtw_regs *regs, u_int32_t flags, struct rtw_srom *sr,
737 const char *dvname)
738 {
739 int rc;
740 struct seeprom_descriptor sd;
741 u_int8_t ecr;
742
743 (void)memset(&sd, 0, sizeof(sd));
744
745 ecr = RTW_READ8(regs, RTW_9346CR);
746
747 if ((flags & RTW_F_9356SROM) != 0) {
748 RTW_DPRINTF(("%s: 93c56 SROM\n", dvname));
749 sr->sr_size = 256;
750 sd.sd_chip = C56_66;
751 } else {
752 RTW_DPRINTF(("%s: 93c46 SROM\n", dvname));
753 sr->sr_size = 128;
754 sd.sd_chip = C46;
755 }
756
757 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
758 RTW_9346CR_EEM_MASK);
759 ecr |= RTW_9346CR_EEM_PROGRAM;
760
761 RTW_WRITE8(regs, RTW_9346CR, ecr);
762
763 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
764
765 if (sr->sr_content == NULL) {
766 printf("%s: unable to allocate SROM buffer\n", dvname);
767 return ENOMEM;
768 }
769
770 (void)memset(sr->sr_content, 0, sr->sr_size);
771
772 /* RTL8180 has a single 8-bit register for controlling the
773 * 93cx6 SROM. There is no "ready" bit. The RTL8180
774 * input/output sense is the reverse of read_seeprom's.
775 */
776 sd.sd_tag = regs->r_bt;
777 sd.sd_bsh = regs->r_bh;
778 sd.sd_regsize = 1;
779 sd.sd_control_offset = RTW_9346CR;
780 sd.sd_status_offset = RTW_9346CR;
781 sd.sd_dataout_offset = RTW_9346CR;
782 sd.sd_CK = RTW_9346CR_EESK;
783 sd.sd_CS = RTW_9346CR_EECS;
784 sd.sd_DI = RTW_9346CR_EEDO;
785 sd.sd_DO = RTW_9346CR_EEDI;
786 /* make read_seeprom enter EEPROM read/write mode */
787 sd.sd_MS = ecr;
788 sd.sd_RDY = 0;
789 #if 0
790 sd.sd_clkdelay = 50;
791 #endif
792
793 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
794 printf("%s: could not read SROM\n", dvname);
795 free(sr->sr_content, M_DEVBUF);
796 sr->sr_content = NULL;
797 return -1; /* XXX */
798 }
799
800 /* end EEPROM read/write mode */
801 RTW_WRITE8(regs, RTW_9346CR,
802 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
803 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
804
805 if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
806 return rc;
807
808 #ifdef RTW_DEBUG
809 {
810 int i;
811 RTW_DPRINTF(("\n%s: serial ROM:\n\t", dvname));
812 for (i = 0; i < sr->sr_size/2; i++) {
813 if (((i % 8) == 0) && (i != 0))
814 RTW_DPRINTF(("\n\t"));
815 RTW_DPRINTF((" %04x", sr->sr_content[i]));
816 }
817 RTW_DPRINTF(("\n"));
818 }
819 #endif /* RTW_DEBUG */
820 return 0;
821 }
822
823 static void
824 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
825 const char *dvname)
826 {
827 u_int8_t cfg4;
828 const char *method;
829
830 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
831
832 switch (rfchipid) {
833 default:
834 cfg4 |= LSHIFT(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
835 method = "fallback";
836 break;
837 case RTW_RFCHIPID_INTERSIL:
838 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
839 method = "Intersil";
840 break;
841 case RTW_RFCHIPID_PHILIPS:
842 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
843 method = "Philips";
844 break;
845 case RTW_RFCHIPID_RFMD:
846 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
847 method = "RFMD";
848 break;
849 }
850
851 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
852
853 printf("%s: %s RF programming method, %#02x\n", dvname, method,
854 RTW_READ8(regs, RTW_CONFIG4));
855 }
856
857 #if 0
858 static __inline int
859 rtw_identify_rf(struct rtw_regs *regs, enum rtw_rftype *rftype,
860 const char *dvname)
861 {
862 u_int8_t cfg4;
863 const char *name;
864
865 cfg4 = RTW_READ8(regs, RTW_CONFIG4);
866
867 switch (cfg4 & RTW_CONFIG4_RFTYPE_MASK) {
868 case RTW_CONFIG4_RFTYPE_PHILIPS:
869 *rftype = RTW_RFTYPE_PHILIPS;
870 name = "Philips";
871 break;
872 case RTW_CONFIG4_RFTYPE_INTERSIL:
873 *rftype = RTW_RFTYPE_INTERSIL;
874 name = "Intersil";
875 break;
876 case RTW_CONFIG4_RFTYPE_RFMD:
877 *rftype = RTW_RFTYPE_RFMD;
878 name = "RFMD";
879 break;
880 default:
881 name = "<unknown>";
882 return ENXIO;
883 }
884
885 printf("%s: RF prog type %s\n", dvname, name);
886 return 0;
887 }
888 #endif
889
890 static __inline void
891 rtw_init_channels(enum rtw_locale locale,
892 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
893 const char *dvname)
894 {
895 int i;
896 const char *name = NULL;
897 #define ADD_CHANNEL(_chans, _chan) do { \
898 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
899 (*_chans)[_chan].ic_freq = \
900 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
901 } while (0)
902
903 switch (locale) {
904 case RTW_LOCALE_USA: /* 1-11 */
905 name = "USA";
906 for (i = 1; i <= 11; i++)
907 ADD_CHANNEL(chans, i);
908 break;
909 case RTW_LOCALE_JAPAN: /* 1-14 */
910 name = "Japan";
911 ADD_CHANNEL(chans, 14);
912 for (i = 1; i <= 14; i++)
913 ADD_CHANNEL(chans, i);
914 break;
915 case RTW_LOCALE_EUROPE: /* 1-13 */
916 name = "Europe";
917 for (i = 1; i <= 13; i++)
918 ADD_CHANNEL(chans, i);
919 break;
920 default: /* 10-11 allowed by most countries */
921 name = "<unknown>";
922 for (i = 10; i <= 11; i++)
923 ADD_CHANNEL(chans, i);
924 break;
925 }
926 printf("%s: Geographic Location %s\n", dvname, name);
927 #undef ADD_CHANNEL
928 }
929
930 static __inline void
931 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale,
932 const char *dvname)
933 {
934 u_int8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
935
936 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
937 case RTW_CONFIG0_GL_USA:
938 *locale = RTW_LOCALE_USA;
939 break;
940 case RTW_CONFIG0_GL_JAPAN:
941 *locale = RTW_LOCALE_JAPAN;
942 break;
943 case RTW_CONFIG0_GL_EUROPE:
944 *locale = RTW_LOCALE_EUROPE;
945 break;
946 default:
947 *locale = RTW_LOCALE_UNKNOWN;
948 break;
949 }
950 }
951
952 static __inline int
953 rtw_identify_sta(struct rtw_regs *regs, u_int8_t (*addr)[IEEE80211_ADDR_LEN],
954 const char *dvname)
955 {
956 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
957 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
958 };
959 u_int32_t idr0 = RTW_READ(regs, RTW_IDR0),
960 idr1 = RTW_READ(regs, RTW_IDR1);
961
962 (*addr)[0] = MASK_AND_RSHIFT(idr0, BITS(0, 7));
963 (*addr)[1] = MASK_AND_RSHIFT(idr0, BITS(8, 15));
964 (*addr)[2] = MASK_AND_RSHIFT(idr0, BITS(16, 23));
965 (*addr)[3] = MASK_AND_RSHIFT(idr0, BITS(24 ,31));
966
967 (*addr)[4] = MASK_AND_RSHIFT(idr1, BITS(0, 7));
968 (*addr)[5] = MASK_AND_RSHIFT(idr1, BITS(8, 15));
969
970 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
971 printf("%s: could not get mac address, attach failed\n",
972 dvname);
973 return ENXIO;
974 }
975
976 printf("%s: 802.11 address %s\n", dvname, ether_sprintf(*addr));
977
978 return 0;
979 }
980
981 static u_int8_t
982 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
983 struct ieee80211_channel *chan)
984 {
985 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
986 KASSERT2(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14,
987 ("%s: channel %d out of range", __func__,
988 idx - RTW_SR_TXPOWER1 + 1));
989 return RTW_SR_GET(sr, idx);
990 }
991
992 static void
993 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *htcs)
994 {
995 int pri;
996 u_int ndesc[RTW_NTXPRI] =
997 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI, RTW_NTXDESCBCN};
998
999 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1000 htcs[pri].htc_nfree = ndesc[pri];
1001 htcs[pri].htc_next = 0;
1002 }
1003 }
1004
1005 static int
1006 rtw_txctl_blk_init(struct rtw_txctl_blk *stc)
1007 {
1008 int i;
1009 struct rtw_txctl *stx;
1010
1011 SIMPLEQ_INIT(&stc->stc_dirtyq);
1012 SIMPLEQ_INIT(&stc->stc_freeq);
1013 for (i = 0; i < stc->stc_ndesc; i++) {
1014 stx = &stc->stc_desc[i];
1015 stx->stx_mbuf = NULL;
1016 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1017 }
1018 return 0;
1019 }
1020
1021 static void
1022 rtw_txctl_blk_init_all(struct rtw_txctl_blk *stcs)
1023 {
1024 int pri;
1025 for (pri = 0; pri < RTW_NTXPRI; pri++)
1026 rtw_txctl_blk_init(&stcs[pri]);
1027 }
1028
1029 static __inline void
1030 rtw_rxdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap, u_int desc0, u_int
1031 nsync, int ops)
1032 {
1033 /* sync to end of ring */
1034 if (desc0 + nsync > RTW_NRXDESC) {
1035 bus_dmamap_sync(dmat, dmap,
1036 offsetof(struct rtw_descs, hd_rx[desc0]),
1037 sizeof(struct rtw_rxdesc) * (RTW_NRXDESC - desc0), ops);
1038 nsync -= (RTW_NRXDESC - desc0);
1039 desc0 = 0;
1040 }
1041
1042 /* sync what remains */
1043 bus_dmamap_sync(dmat, dmap,
1044 offsetof(struct rtw_descs, hd_rx[desc0]),
1045 sizeof(struct rtw_rxdesc) * nsync, ops);
1046 }
1047
1048 static void
1049 rtw_txdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap,
1050 struct rtw_txdesc_blk *htc, u_int desc0, u_int nsync, int ops)
1051 {
1052 /* sync to end of ring */
1053 if (desc0 + nsync > htc->htc_ndesc) {
1054 bus_dmamap_sync(dmat, dmap,
1055 htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
1056 sizeof(struct rtw_txdesc) * (htc->htc_ndesc - desc0),
1057 ops);
1058 nsync -= (htc->htc_ndesc - desc0);
1059 desc0 = 0;
1060 }
1061
1062 /* sync what remains */
1063 bus_dmamap_sync(dmat, dmap,
1064 htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
1065 sizeof(struct rtw_txdesc) * nsync, ops);
1066 }
1067
1068 static void
1069 rtw_txdescs_sync_all(bus_dma_tag_t dmat, bus_dmamap_t dmap,
1070 struct rtw_txdesc_blk *htcs)
1071 {
1072 int pri;
1073 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1074 rtw_txdescs_sync(dmat, dmap,
1075 &htcs[pri], 0, htcs[pri].htc_ndesc,
1076 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1077 }
1078 }
1079
1080 static void
1081 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxctl *desc)
1082 {
1083 int i;
1084 struct rtw_rxctl *srx;
1085
1086 for (i = 0; i < RTW_NRXDESC; i++) {
1087 srx = &desc[i];
1088 bus_dmamap_sync(dmat, srx->srx_dmamap, 0,
1089 srx->srx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1090 bus_dmamap_unload(dmat, srx->srx_dmamap);
1091 m_freem(srx->srx_mbuf);
1092 srx->srx_mbuf = NULL;
1093 }
1094 }
1095
1096 static __inline int
1097 rtw_rxbuf_alloc(bus_dma_tag_t dmat, struct rtw_rxctl *srx)
1098 {
1099 int rc;
1100 struct mbuf *m;
1101
1102 MGETHDR(m, M_DONTWAIT, MT_DATA);
1103 if (m == NULL)
1104 return ENOMEM;
1105
1106 MCLGET(m, M_DONTWAIT);
1107 if (m == NULL)
1108 return ENOMEM;
1109
1110 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1111
1112 rc = bus_dmamap_load_mbuf(dmat, srx->srx_dmamap, m, BUS_DMA_NOWAIT);
1113 if (rc != 0)
1114 return rc;
1115
1116 srx->srx_mbuf = m;
1117
1118 return 0;
1119 }
1120
1121 static int
1122 rtw_rxctl_init_all(bus_dma_tag_t dmat, struct rtw_rxctl *desc,
1123 u_int *next, const char *dvname)
1124 {
1125 int i, rc;
1126 struct rtw_rxctl *srx;
1127
1128 for (i = 0; i < RTW_NRXDESC; i++) {
1129 srx = &desc[i];
1130 if ((rc = rtw_rxbuf_alloc(dmat, srx)) == 0)
1131 continue;
1132 printf("%s: failed rtw_rxbuf_alloc after %d buffers, rc = %d\n",
1133 dvname, i, rc);
1134 if (i == 0) {
1135 rtw_rxbufs_release(dmat, desc);
1136 return rc;
1137 }
1138 }
1139 *next = 0;
1140 return 0;
1141 }
1142
1143 static __inline void
1144 rtw_rxdesc_init(bus_dma_tag_t dmat, bus_dmamap_t dmam,
1145 struct rtw_rxdesc *hrx, struct rtw_rxctl *srx, int idx)
1146 {
1147 int is_last = (idx == RTW_NRXDESC - 1);
1148 uint32_t ctl;
1149
1150 hrx->hrx_buf = htole32(srx->srx_dmamap->dm_segs[0].ds_addr);
1151
1152 ctl = LSHIFT(srx->srx_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1153 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1154
1155 if (is_last)
1156 ctl |= RTW_RXCTL_EOR;
1157
1158 hrx->hrx_ctl = htole32(ctl);
1159
1160 /* sync the mbuf */
1161 bus_dmamap_sync(dmat, srx->srx_dmamap, 0, srx->srx_dmamap->dm_mapsize,
1162 BUS_DMASYNC_PREREAD);
1163
1164 /* sync the descriptor */
1165 bus_dmamap_sync(dmat, dmam, RTW_DESC_OFFSET(hd_rx, idx),
1166 sizeof(struct rtw_rxdesc),
1167 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1168 }
1169
1170 static void
1171 rtw_rxdesc_init_all(bus_dma_tag_t dmat, bus_dmamap_t dmam,
1172 struct rtw_rxdesc *desc, struct rtw_rxctl *ctl)
1173 {
1174 int i;
1175 struct rtw_rxdesc *hrx;
1176 struct rtw_rxctl *srx;
1177
1178 for (i = 0; i < RTW_NRXDESC; i++) {
1179 hrx = &desc[i];
1180 srx = &ctl[i];
1181 rtw_rxdesc_init(dmat, dmam, hrx, srx, i);
1182 }
1183 }
1184
1185 static void
1186 rtw_io_enable(struct rtw_regs *regs, u_int8_t flags, int enable)
1187 {
1188 u_int8_t cr;
1189
1190 RTW_DPRINTF(("%s: %s 0x%02x\n", __func__,
1191 enable ? "enable" : "disable", flags));
1192
1193 cr = RTW_READ8(regs, RTW_CR);
1194
1195 /* XXX reference source does not enable MULRW */
1196 #if 0
1197 /* enable PCI Read/Write Multiple */
1198 cr |= RTW_CR_MULRW;
1199 #endif
1200
1201 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1202 if (enable)
1203 cr |= flags;
1204 else
1205 cr &= ~flags;
1206 RTW_WRITE8(regs, RTW_CR, cr);
1207 RTW_SYNC(regs, RTW_CR, RTW_CR);
1208 }
1209
1210 static void
1211 rtw_intr_rx(struct rtw_softc *sc, u_int16_t isr)
1212 {
1213 u_int next;
1214 int rate, rssi;
1215 u_int32_t hrssi, hstat, htsfth, htsftl;
1216 struct rtw_rxdesc *hrx;
1217 struct rtw_rxctl *srx;
1218 struct mbuf *m;
1219
1220 struct ieee80211_node *ni;
1221 struct ieee80211_frame *wh;
1222
1223 for (next = sc->sc_rxnext; ; next = (next + 1) % RTW_RXQLEN) {
1224 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1225 next, 1, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1226 hrx = &sc->sc_rxdesc[next];
1227 srx = &sc->sc_rxctl[next];
1228
1229 hstat = le32toh(hrx->hrx_stat);
1230 hrssi = le32toh(hrx->hrx_rssi);
1231 htsfth = le32toh(hrx->hrx_tsfth);
1232 htsftl = le32toh(hrx->hrx_tsftl);
1233
1234 RTW_DPRINTF2(("%s: rxdesc[%d] hstat %#08x hrssi %#08x "
1235 "htsft %#08x%08x\n", __func__, next,
1236 hstat, hrssi, htsfth, htsftl));
1237
1238 if ((hstat & RTW_RXSTAT_OWN) != 0) /* belongs to NIC */
1239 break;
1240
1241 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1242 printf("%s: DMA error/FIFO overflow %08x, "
1243 "rx descriptor %d\n", sc->sc_dev.dv_xname,
1244 hstat & RTW_RXSTAT_IOERROR, next);
1245 goto next;
1246 }
1247
1248 switch (hstat & RTW_RXSTAT_RATE_MASK) {
1249 case RTW_RXSTAT_RATE_1MBPS:
1250 rate = 10;
1251 break;
1252 case RTW_RXSTAT_RATE_2MBPS:
1253 rate = 20;
1254 break;
1255 case RTW_RXSTAT_RATE_5MBPS:
1256 rate = 55;
1257 break;
1258 default:
1259 #ifdef RTW_DEBUG
1260 if (rtw_debug > 1)
1261 printf("%s: interpreting rate #%d as 11 MB/s\n",
1262 sc->sc_dev.dv_xname,
1263 MASK_AND_RSHIFT(hstat,
1264 RTW_RXSTAT_RATE_MASK));
1265 #endif /* RTW_DEBUG */
1266 /*FALLTHROUGH*/
1267 case RTW_RXSTAT_RATE_11MBPS:
1268 rate = 110;
1269 break;
1270 }
1271
1272 RTW_DPRINTF2(("%s: rate %d\n", __func__, rate));
1273
1274 #ifdef RTW_DEBUG
1275 #define PRINTSTAT(flag) do { \
1276 if ((hstat & flag) != 0) { \
1277 printf("%s" #flag, delim); \
1278 delim = ","; \
1279 } \
1280 } while (0)
1281 if (rtw_debug > 1) {
1282 const char *delim = "<";
1283 printf("%s: ", sc->sc_dev.dv_xname);
1284 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1285 printf("status %08x<", hstat);
1286 PRINTSTAT(RTW_RXSTAT_SPLCP);
1287 PRINTSTAT(RTW_RXSTAT_MAR);
1288 PRINTSTAT(RTW_RXSTAT_PAR);
1289 PRINTSTAT(RTW_RXSTAT_BAR);
1290 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1291 PRINTSTAT(RTW_RXSTAT_CRC32);
1292 PRINTSTAT(RTW_RXSTAT_ICV);
1293 printf(">, ");
1294 }
1295 printf("rate %d.%d Mb/s, time %08x%08x\n",
1296 rate / 10, rate % 10, htsfth, htsftl);
1297 }
1298 #endif /* RTW_DEBUG */
1299
1300 if ((hstat & RTW_RXSTAT_RES) != 0 &&
1301 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
1302 goto next;
1303
1304 /* if bad flags, skip descriptor */
1305 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1306 printf("%s: too many rx segments\n",
1307 sc->sc_dev.dv_xname);
1308 goto next;
1309 }
1310
1311 m = srx->srx_mbuf;
1312
1313 /* if temporarily out of memory, re-use mbuf */
1314 if (rtw_rxbuf_alloc(sc->sc_dmat, srx) != 0) {
1315 printf("%s: rtw_rxbuf_alloc(, %d) failed, "
1316 "dropping this packet\n", sc->sc_dev.dv_xname,
1317 next);
1318 goto next;
1319 }
1320
1321 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1322 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_RSSI);
1323 else {
1324 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_IMR_RSSI);
1325 /* TBD find out each front-end's LNA gain in the
1326 * front-end's units
1327 */
1328 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1329 rssi |= 0x80;
1330 }
1331
1332 m->m_pkthdr.len = m->m_len =
1333 MASK_AND_RSHIFT(hstat, RTW_RXSTAT_LENGTH_MASK);
1334 m->m_flags |= M_HASFCS;
1335
1336 if (m->m_pkthdr.len < IEEE80211_MIN_LEN) {
1337 sc->sc_ic.ic_stats.is_rx_tooshort++;
1338 goto next;
1339 }
1340 wh = mtod(m, struct ieee80211_frame *);
1341 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1342 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1343
1344 sc->sc_tsfth = htsfth;
1345
1346 ieee80211_input(&sc->sc_if, m, ni, rssi, htsftl);
1347 ieee80211_release_node(&sc->sc_ic, ni);
1348 next:
1349 rtw_rxdesc_init(sc->sc_dmat, sc->sc_desc_dmamap,
1350 hrx, srx, next);
1351 }
1352 sc->sc_rxnext = next;
1353
1354 return;
1355 }
1356
1357 static void
1358 rtw_txbuf_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1359 struct rtw_txctl *stx)
1360 {
1361 struct mbuf *m;
1362 struct ieee80211_node *ni;
1363 bus_dmamap_t dmamap;
1364
1365 dmamap = stx->stx_dmamap;
1366 m = stx->stx_mbuf;
1367 ni = stx->stx_ni;
1368 stx->stx_dmamap = NULL;
1369 stx->stx_mbuf = NULL;
1370 stx->stx_ni = NULL;
1371
1372 bus_dmamap_sync(dmat, dmamap, 0, dmamap->dm_mapsize,
1373 BUS_DMASYNC_POSTWRITE);
1374 bus_dmamap_unload(dmat, dmamap);
1375 m_freem(m);
1376 ieee80211_release_node(ic, ni);
1377 }
1378
1379 static void
1380 rtw_txbufs_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1381 struct rtw_txctl_blk *stc)
1382 {
1383 struct rtw_txctl *stx;
1384
1385 while ((stx = SIMPLEQ_FIRST(&stc->stc_dirtyq)) != NULL) {
1386 rtw_txbuf_release(dmat, ic, stx);
1387 SIMPLEQ_REMOVE_HEAD(&stc->stc_dirtyq, stx_q);
1388 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1389 }
1390 }
1391
1392 static __inline void
1393 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *htc,
1394 struct rtw_txctl *stx, int ndesc)
1395 {
1396 int data_retry, rts_retry;
1397 struct rtw_txdesc *htx0, *htxn;
1398 const char *condstring;
1399
1400 rtw_txbuf_release(sc->sc_dmat, &sc->sc_ic, stx);
1401
1402 htc->htc_nfree += ndesc;
1403
1404 htx0 = &htc->htc_desc[stx->stx_first];
1405 htxn = &htc->htc_desc[stx->stx_last];
1406
1407 rts_retry = MASK_AND_RSHIFT(le32toh(htx0->htx_stat),
1408 RTW_TXSTAT_RTSRETRY_MASK);
1409 data_retry = MASK_AND_RSHIFT(le32toh(htx0->htx_stat),
1410 RTW_TXSTAT_DRC_MASK);
1411
1412 sc->sc_if.if_collisions += rts_retry + data_retry;
1413
1414 if ((htx0->htx_stat & htole32(RTW_TXSTAT_TOK)) != 0)
1415 condstring = "ok";
1416 else {
1417 sc->sc_if.if_oerrors++;
1418 condstring = "error";
1419 }
1420
1421 DPRINTF2(sc, ("%s: stx %p txdesc[%d, %d] %s tries rts %u data %u\n",
1422 sc->sc_dev.dv_xname, stx, stx->stx_first, stx->stx_last,
1423 condstring, rts_retry, data_retry));
1424 }
1425
1426 /* Collect transmitted packets. */
1427 static __inline void
1428 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txctl_blk *stc,
1429 struct rtw_txdesc_blk *htc)
1430 {
1431 int ndesc;
1432 struct rtw_txctl *stx;
1433
1434 while ((stx = SIMPLEQ_FIRST(&stc->stc_dirtyq)) != NULL) {
1435 ndesc = 1 + stx->stx_last - stx->stx_first;
1436 if (stx->stx_last < stx->stx_first)
1437 ndesc += htc->htc_ndesc;
1438
1439 KASSERT(ndesc > 0);
1440
1441 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap, htc,
1442 stx->stx_first, ndesc,
1443 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1444
1445 if ((htc->htc_desc[stx->stx_first].htx_stat &
1446 htole32(RTW_TXSTAT_OWN)) != 0)
1447 break;
1448
1449 rtw_collect_txpkt(sc, htc, stx, ndesc);
1450 SIMPLEQ_REMOVE_HEAD(&stc->stc_dirtyq, stx_q);
1451 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1452 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1453 }
1454 if (stx == NULL)
1455 stc->stc_tx_timer = 0;
1456 }
1457
1458 static void
1459 rtw_intr_tx(struct rtw_softc *sc, u_int16_t isr)
1460 {
1461 int pri;
1462 struct rtw_txctl_blk *stc;
1463 struct rtw_txdesc_blk *htc;
1464
1465 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1466 stc = &sc->sc_txctl_blk[pri];
1467 htc = &sc->sc_txdesc_blk[pri];
1468
1469 rtw_collect_txring(sc, stc, htc);
1470
1471 rtw_start(&sc->sc_if);
1472 }
1473
1474 /* TBD */
1475 return;
1476 }
1477
1478 static void
1479 rtw_intr_beacon(struct rtw_softc *sc, u_int16_t isr)
1480 {
1481 /* TBD */
1482 return;
1483 }
1484
1485 static void
1486 rtw_intr_atim(struct rtw_softc *sc)
1487 {
1488 /* TBD */
1489 return;
1490 }
1491
1492 static void
1493 rtw_hwring_setup(struct rtw_softc *sc)
1494 {
1495 struct rtw_regs *regs = &sc->sc_regs;
1496 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1497 RTW_WRITE(regs, RTW_TLPDA, RTW_RING_BASE(sc, hd_txlo));
1498 RTW_WRITE(regs, RTW_TNPDA, RTW_RING_BASE(sc, hd_txmd));
1499 RTW_WRITE(regs, RTW_THPDA, RTW_RING_BASE(sc, hd_txhi));
1500 RTW_WRITE(regs, RTW_TBDA, RTW_RING_BASE(sc, hd_bcn));
1501 }
1502
1503 static void
1504 rtw_swring_setup(struct rtw_softc *sc)
1505 {
1506 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1507
1508 rtw_txctl_blk_init_all(&sc->sc_txctl_blk[0]);
1509
1510 rtw_rxctl_init_all(sc->sc_dmat, sc->sc_rxctl, &sc->sc_rxnext,
1511 sc->sc_dev.dv_xname);
1512 rtw_rxdesc_init_all(sc->sc_dmat, sc->sc_desc_dmamap,
1513 sc->sc_rxdesc, sc->sc_rxctl);
1514
1515 rtw_txdescs_sync_all(sc->sc_dmat, sc->sc_desc_dmamap,
1516 &sc->sc_txdesc_blk[0]);
1517 #if 0 /* redundant with rtw_rxdesc_init_all */
1518 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1519 0, RTW_NRXDESC, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1520 #endif
1521 }
1522
1523 static void
1524 rtw_kick(struct rtw_softc *sc)
1525 {
1526 int pri;
1527 struct rtw_regs *regs = &sc->sc_regs;
1528
1529 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 0);
1530 RTW_WRITE16(regs, RTW_IMR, 0);
1531 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1532 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1533 rtw_txbufs_release(sc->sc_dmat, &sc->sc_ic,
1534 &sc->sc_txctl_blk[pri]);
1535 }
1536 rtw_swring_setup(sc);
1537 rtw_hwring_setup(sc);
1538 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
1539 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 1);
1540 }
1541
1542 static void
1543 rtw_intr_ioerror(struct rtw_softc *sc, u_int16_t isr)
1544 {
1545 if ((isr & (RTW_INTR_RDU|RTW_INTR_RXFOVW)) != 0) {
1546 rtw_kick(sc);
1547 }
1548 if ((isr & RTW_INTR_TXFOVW) != 0)
1549 ; /* TBD restart transmit engine */
1550 return;
1551 }
1552
1553 static __inline void
1554 rtw_suspend_ticks(struct rtw_softc *sc)
1555 {
1556 printf("%s: suspending ticks\n", sc->sc_dev.dv_xname);
1557 sc->sc_do_tick = 0;
1558 }
1559
1560 static __inline void
1561 rtw_resume_ticks(struct rtw_softc *sc)
1562 {
1563 u_int32_t tsftrl0, tsftrl1, next_tick;
1564
1565 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1566
1567 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1568 next_tick = tsftrl1 + 1000000;
1569 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
1570
1571 sc->sc_do_tick = 1;
1572
1573 printf("%s: resume ticks delta %#08x now %#08x next %#08x\n",
1574 sc->sc_dev.dv_xname, tsftrl1 - tsftrl0, tsftrl1, next_tick);
1575 }
1576
1577 static void
1578 rtw_intr_timeout(struct rtw_softc *sc)
1579 {
1580 printf("%s: timeout\n", sc->sc_dev.dv_xname);
1581 if (sc->sc_do_tick)
1582 rtw_resume_ticks(sc);
1583 return;
1584 }
1585
1586 int
1587 rtw_intr(void *arg)
1588 {
1589 int i;
1590 struct rtw_softc *sc = arg;
1591 struct rtw_regs *regs = &sc->sc_regs;
1592 u_int16_t isr;
1593
1594 /*
1595 * If the interface isn't running, the interrupt couldn't
1596 * possibly have come from us.
1597 */
1598 if ((sc->sc_flags & RTW_F_ENABLED) == 0 ||
1599 (sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
1600 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) {
1601 RTW_DPRINTF2(("%s: stray interrupt\n", sc->sc_dev.dv_xname));
1602 return (0);
1603 }
1604
1605 for (i = 0; i < 10; i++) {
1606 isr = RTW_READ16(regs, RTW_ISR);
1607
1608 RTW_WRITE16(regs, RTW_ISR, isr);
1609
1610 if (sc->sc_intr_ack != NULL)
1611 (*sc->sc_intr_ack)(regs);
1612
1613 if (isr == 0)
1614 break;
1615
1616 #ifdef RTW_DEBUG
1617 #define PRINTINTR(flag) do { \
1618 if ((isr & flag) != 0) { \
1619 printf("%s" #flag, delim); \
1620 delim = ","; \
1621 } \
1622 } while (0)
1623
1624 if (rtw_debug > 1 && isr != 0) {
1625 const char *delim = "<";
1626
1627 printf("%s: reg[ISR] = %x", sc->sc_dev.dv_xname, isr);
1628
1629 PRINTINTR(RTW_INTR_TXFOVW);
1630 PRINTINTR(RTW_INTR_TIMEOUT);
1631 PRINTINTR(RTW_INTR_BCNINT);
1632 PRINTINTR(RTW_INTR_ATIMINT);
1633 PRINTINTR(RTW_INTR_TBDER);
1634 PRINTINTR(RTW_INTR_TBDOK);
1635 PRINTINTR(RTW_INTR_THPDER);
1636 PRINTINTR(RTW_INTR_THPDOK);
1637 PRINTINTR(RTW_INTR_TNPDER);
1638 PRINTINTR(RTW_INTR_TNPDOK);
1639 PRINTINTR(RTW_INTR_RXFOVW);
1640 PRINTINTR(RTW_INTR_RDU);
1641 PRINTINTR(RTW_INTR_TLPDER);
1642 PRINTINTR(RTW_INTR_TLPDOK);
1643 PRINTINTR(RTW_INTR_RER);
1644 PRINTINTR(RTW_INTR_ROK);
1645
1646 printf(">\n");
1647 }
1648 #undef PRINTINTR
1649 #endif /* RTW_DEBUG */
1650
1651 if ((isr & RTW_INTR_RX) != 0)
1652 rtw_intr_rx(sc, isr & RTW_INTR_RX);
1653 if ((isr & RTW_INTR_TX) != 0)
1654 rtw_intr_tx(sc, isr & RTW_INTR_TX);
1655 if ((isr & RTW_INTR_BEACON) != 0)
1656 rtw_intr_beacon(sc, isr & RTW_INTR_BEACON);
1657 if ((isr & RTW_INTR_ATIMINT) != 0)
1658 rtw_intr_atim(sc);
1659 if ((isr & RTW_INTR_IOERROR) != 0)
1660 rtw_intr_ioerror(sc, isr & RTW_INTR_IOERROR);
1661 if ((isr & RTW_INTR_TIMEOUT) != 0)
1662 rtw_intr_timeout(sc);
1663 }
1664
1665 return 1;
1666 }
1667
1668 static void
1669 rtw_stop(struct ifnet *ifp, int disable)
1670 {
1671 int pri, s;
1672 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
1673 struct ieee80211com *ic = &sc->sc_ic;
1674 struct rtw_regs *regs = &sc->sc_regs;
1675
1676 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1677 return;
1678
1679 rtw_suspend_ticks(sc);
1680
1681 s = splnet();
1682
1683 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1684
1685 if ((sc->sc_flags & RTW_F_INVALID) == 0) {
1686 /* Disable interrupts. */
1687 RTW_WRITE16(regs, RTW_IMR, 0);
1688
1689 /* Stop the transmit and receive processes. First stop DMA,
1690 * then disable receiver and transmitter.
1691 */
1692 RTW_WRITE8(regs, RTW_TPPOLL,
1693 RTW_TPPOLL_SBQ|RTW_TPPOLL_SHPQ|RTW_TPPOLL_SNPQ|
1694 RTW_TPPOLL_SLPQ);
1695
1696 rtw_io_enable(&sc->sc_regs, RTW_CR_RE|RTW_CR_TE, 0);
1697 }
1698
1699 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1700 rtw_txbufs_release(sc->sc_dmat, &sc->sc_ic,
1701 &sc->sc_txctl_blk[pri]);
1702 }
1703
1704 if (disable) {
1705 rtw_disable(sc);
1706 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1707 }
1708
1709 /* Mark the interface as not running. Cancel the watchdog timer. */
1710 ifp->if_flags &= ~IFF_RUNNING;
1711 ifp->if_timer = 0;
1712
1713 splx(s);
1714
1715 return;
1716 }
1717
1718 const char *
1719 rtw_pwrstate_string(enum rtw_pwrstate power)
1720 {
1721 switch (power) {
1722 case RTW_ON:
1723 return "on";
1724 case RTW_SLEEP:
1725 return "sleep";
1726 case RTW_OFF:
1727 return "off";
1728 default:
1729 return "unknown";
1730 }
1731 }
1732
1733 /* XXX I am using the RFMD settings gleaned from the reference
1734 * driver.
1735 */
1736 static void
1737 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1738 int before_rf)
1739 {
1740 u_int32_t anaparm;
1741
1742 RTW_DPRINTF(("%s: power state %s, %s RF\n", __func__,
1743 rtw_pwrstate_string(power), (before_rf) ? "before" : "after"));
1744
1745 anaparm = RTW_READ(regs, RTW_ANAPARM);
1746 anaparm &= ~(RTW_ANAPARM_RFPOW0_MASK|RTW_ANAPARM_RFPOW1_MASK);
1747 anaparm &= ~RTW_ANAPARM_TXDACOFF;
1748
1749 switch (power) {
1750 case RTW_OFF:
1751 if (before_rf)
1752 return;
1753 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_OFF;
1754 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_OFF;
1755 anaparm |= RTW_ANAPARM_TXDACOFF;
1756 break;
1757 case RTW_SLEEP:
1758 if (!before_rf)
1759 return;
1760 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_SLEEP;
1761 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_SLEEP;
1762 anaparm |= RTW_ANAPARM_TXDACOFF;
1763 break;
1764 case RTW_ON:
1765 if (!before_rf)
1766 return;
1767 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_ON;
1768 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_ON;
1769 break;
1770 }
1771 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1772 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1773 }
1774
1775 static void
1776 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1777 int before_rf)
1778 {
1779 u_int32_t anaparm;
1780
1781 RTW_DPRINTF(("%s: power state %s, %s RF\n", __func__,
1782 rtw_pwrstate_string(power), (before_rf) ? "before" : "after"));
1783
1784 anaparm = RTW_READ(regs, RTW_ANAPARM);
1785 anaparm &= ~(RTW_ANAPARM_RFPOW0_MASK|RTW_ANAPARM_RFPOW1_MASK);
1786 anaparm &= ~RTW_ANAPARM_TXDACOFF;
1787
1788 switch (power) {
1789 case RTW_OFF:
1790 if (before_rf)
1791 return;
1792 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_OFF;
1793 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_OFF;
1794 anaparm |= RTW_ANAPARM_TXDACOFF;
1795 break;
1796 case RTW_SLEEP:
1797 if (!before_rf)
1798 return;
1799 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_SLEEP;
1800 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_SLEEP;
1801 anaparm |= RTW_ANAPARM_TXDACOFF;
1802 break;
1803 case RTW_ON:
1804 if (!before_rf)
1805 return;
1806 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_ON;
1807 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_ON;
1808 break;
1809 }
1810 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1811 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1812 }
1813
1814 static void
1815 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf)
1816 {
1817 struct rtw_regs *regs = &sc->sc_regs;
1818
1819 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
1820
1821 (*sc->sc_pwrstate_cb)(regs, power, before_rf);
1822
1823 rtw_set_access(sc, RTW_ACCESS_NONE);
1824
1825 return;
1826 }
1827
1828 static int
1829 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
1830 {
1831 int rc;
1832
1833 RTW_DPRINTF2(("%s: %s->%s\n", __func__,
1834 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
1835
1836 if (sc->sc_pwrstate == power)
1837 return 0;
1838
1839 rtw_pwrstate0(sc, power, 1);
1840 rc = rtw_rf_pwrstate(sc->sc_rf, power);
1841 rtw_pwrstate0(sc, power, 0);
1842
1843 switch (power) {
1844 case RTW_ON:
1845 /* TBD set LEDs */
1846 break;
1847 case RTW_SLEEP:
1848 /* TBD */
1849 break;
1850 case RTW_OFF:
1851 /* TBD */
1852 break;
1853 }
1854 if (rc == 0)
1855 sc->sc_pwrstate = power;
1856 else
1857 sc->sc_pwrstate = RTW_OFF;
1858 return rc;
1859 }
1860
1861 static int
1862 rtw_tune(struct rtw_softc *sc)
1863 {
1864 struct ieee80211com *ic = &sc->sc_ic;
1865 u_int chan;
1866 int rc;
1867 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
1868 dflantb = sc->sc_flags & RTW_F_DFLANTB;
1869
1870 KASSERT(ic->ic_bss->ni_chan != NULL);
1871
1872 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1873 if (chan == IEEE80211_CHAN_ANY)
1874 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1875
1876 if (chan == sc->sc_cur_chan) {
1877 RTW_DPRINTF(("%s: already tuned chan #%d\n", __func__, chan));
1878 return 0;
1879 }
1880
1881 rtw_suspend_ticks(sc);
1882
1883 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 0);
1884
1885 /* TBD wait for Tx to complete */
1886
1887 KASSERT((sc->sc_flags & RTW_F_ENABLED) != 0);
1888
1889 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
1890 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_bss->ni_chan),
1891 sc->sc_csthr, ic->ic_bss->ni_chan->ic_freq, antdiv,
1892 dflantb, RTW_ON)) != 0) {
1893 /* XXX condition on powersaving */
1894 printf("%s: phy init failed\n", sc->sc_dev.dv_xname);
1895 }
1896
1897 sc->sc_cur_chan = chan;
1898
1899 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 1);
1900
1901 rtw_resume_ticks(sc);
1902
1903 return rc;
1904 }
1905
1906 void
1907 rtw_disable(struct rtw_softc *sc)
1908 {
1909 int rc;
1910
1911 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1912 return;
1913
1914 /* turn off PHY */
1915 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
1916 printf("%s: failed to turn off PHY (%d)\n",
1917 sc->sc_dev.dv_xname, rc);
1918
1919 if (sc->sc_disable != NULL)
1920 (*sc->sc_disable)(sc);
1921
1922 sc->sc_flags &= ~RTW_F_ENABLED;
1923 }
1924
1925 int
1926 rtw_enable(struct rtw_softc *sc)
1927 {
1928 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
1929 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
1930 printf("%s: device enable failed\n",
1931 sc->sc_dev.dv_xname);
1932 return (EIO);
1933 }
1934 sc->sc_flags |= RTW_F_ENABLED;
1935 }
1936 return (0);
1937 }
1938
1939 static void
1940 rtw_transmit_config(struct rtw_regs *regs)
1941 {
1942 u_int32_t tcr;
1943
1944 tcr = RTW_READ(regs, RTW_TCR);
1945
1946 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
1947 tcr &= ~RTW_TCR_LBK_MASK;
1948 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
1949
1950 /* set short/long retry limits */
1951 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
1952 tcr |= LSHIFT(7, RTW_TCR_SRL_MASK) | LSHIFT(7, RTW_TCR_LRL_MASK);
1953
1954 tcr |= RTW_TCR_CRC; /* NIC appends CRC32 */
1955
1956 RTW_WRITE(regs, RTW_TCR, tcr);
1957 }
1958
1959 static __inline void
1960 rtw_enable_interrupts(struct rtw_softc *sc)
1961 {
1962 struct rtw_regs *regs = &sc->sc_regs;
1963
1964 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
1965 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
1966
1967 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
1968 RTW_WRITE16(regs, RTW_ISR, 0xffff);
1969
1970 /* XXX necessary? */
1971 if (sc->sc_intr_ack != NULL)
1972 (*sc->sc_intr_ack)(regs);
1973 }
1974
1975 /* XXX is the endianness correct? test. */
1976 #define rtw_calchash(addr) \
1977 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1978
1979 static void
1980 rtw_pktfilt_load(struct rtw_softc *sc)
1981 {
1982 struct rtw_regs *regs = &sc->sc_regs;
1983 struct ieee80211com *ic = &sc->sc_ic;
1984 struct ethercom *ec = &ic->ic_ec;
1985 struct ifnet *ifp = &sc->sc_ic.ic_if;
1986 int hash;
1987 u_int32_t hashes[2] = { 0, 0 };
1988 struct ether_multi *enm;
1989 struct ether_multistep step;
1990
1991 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
1992
1993 #define RTW_RCR_MONITOR (RTW_RCR_ACRC32|RTW_RCR_APM|RTW_RCR_AAP|RTW_RCR_AB)
1994
1995 if (ic->ic_opmode == IEEE80211_M_MONITOR)
1996 sc->sc_rcr |= RTW_RCR_MONITOR;
1997 else
1998 sc->sc_rcr &= ~RTW_RCR_MONITOR;
1999
2000 /* XXX reference sources BEGIN */
2001 sc->sc_rcr |= RTW_RCR_ENMARP | RTW_RCR_AICV | RTW_RCR_ACRC32;
2002 sc->sc_rcr |= RTW_RCR_AB | RTW_RCR_AM | RTW_RCR_APM;
2003 #if 0
2004 /* receive broadcasts in our BSS */
2005 sc->sc_rcr |= RTW_RCR_ADD3;
2006 #endif
2007 /* XXX reference sources END */
2008
2009 /* receive pwrmgmt frames. */
2010 sc->sc_rcr |= RTW_RCR_APWRMGT;
2011 /* receive mgmt/ctrl/data frames. */
2012 sc->sc_rcr |= RTW_RCR_AMF | RTW_RCR_ACF | RTW_RCR_ADF;
2013 /* initialize Rx DMA threshold, Tx DMA burst size */
2014 sc->sc_rcr |= RTW_RCR_RXFTH_WHOLE | RTW_RCR_MXDMA_1024;
2015
2016 ifp->if_flags &= ~IFF_ALLMULTI;
2017
2018 if (ifp->if_flags & IFF_PROMISC) {
2019 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2020 allmulti:
2021 ifp->if_flags |= IFF_ALLMULTI;
2022 goto setit;
2023 }
2024
2025 /*
2026 * Program the 64-bit multicast hash filter.
2027 */
2028 ETHER_FIRST_MULTI(step, ec, enm);
2029 while (enm != NULL) {
2030 /* XXX */
2031 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2032 ETHER_ADDR_LEN) != 0)
2033 goto allmulti;
2034
2035 hash = rtw_calchash(enm->enm_addrlo);
2036 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2037 ETHER_NEXT_MULTI(step, enm);
2038 }
2039
2040 if (ifp->if_flags & IFF_BROADCAST) {
2041 hash = rtw_calchash(etherbroadcastaddr);
2042 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2043 }
2044
2045 /* all bits set => hash is useless */
2046 if (~(hashes[0] & hashes[1]) == 0)
2047 goto allmulti;
2048
2049 setit:
2050 if (ifp->if_flags & IFF_ALLMULTI)
2051 sc->sc_rcr |= RTW_RCR_AM; /* accept all multicast */
2052
2053 if (ic->ic_state == IEEE80211_S_SCAN)
2054 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2055
2056 hashes[0] = hashes[1] = 0xffffffff;
2057
2058 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2059 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2060 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2061 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2062
2063 DPRINTF(sc, ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2064 sc->sc_dev.dv_xname, RTW_READ(regs, RTW_MAR0),
2065 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2066
2067 return;
2068 }
2069
2070 static int
2071 rtw_init(struct ifnet *ifp)
2072 {
2073 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2074 struct ieee80211com *ic = &sc->sc_ic;
2075 struct rtw_regs *regs = &sc->sc_regs;
2076 int rc = 0;
2077
2078 if ((rc = rtw_enable(sc)) != 0)
2079 goto out;
2080
2081 /* Cancel pending I/O and reset. */
2082 rtw_stop(ifp, 0);
2083
2084 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2085 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
2086 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
2087 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
2088
2089 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2090 goto out;
2091
2092 rtw_swring_setup(sc);
2093
2094 rtw_transmit_config(regs);
2095
2096 rtw_set_access(sc, RTW_ACCESS_CONFIG);
2097
2098 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2099
2100 /* long PLCP header, 1Mbps basic rate */
2101 RTW_WRITE16(regs, RTW_BRSR, 0x0);
2102
2103 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
2104 rtw_set_access(sc, RTW_ACCESS_NONE);
2105
2106 #if 0
2107 RTW_WRITE(regs, RTW_FEMR, RTW_FEMR_GWAKE|RTW_FEMR_WKUP|RTW_FEMR_INTR);
2108 #endif
2109 /* XXX from reference sources */
2110 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2111
2112 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev.dv_xname);
2113
2114 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2115 /* from Linux driver */
2116 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2117
2118 rtw_enable_interrupts(sc);
2119
2120 rtw_pktfilt_load(sc);
2121
2122 rtw_hwring_setup(sc);
2123
2124 rtw_io_enable(regs, RTW_CR_RE|RTW_CR_TE, 1);
2125
2126 ifp->if_flags |= IFF_RUNNING;
2127 ic->ic_state = IEEE80211_S_INIT;
2128
2129 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2130 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2131
2132 rtw_resume_ticks(sc);
2133
2134 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2135 rtw_set_access(sc, RTW_ACCESS_CONFIG);
2136
2137 switch (ic->ic_opmode) {
2138 case IEEE80211_M_AHDEMO:
2139 case IEEE80211_M_IBSS:
2140 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_ADHOC_OK);
2141 break;
2142 case IEEE80211_M_HOSTAP:
2143 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_AP_OK);
2144 break;
2145 case IEEE80211_M_MONITOR:
2146 /* XXX */
2147 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_NOLINK);
2148 break;
2149 case IEEE80211_M_STA:
2150 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_INFRA_OK);
2151 break;
2152 }
2153
2154 rtw_set_access(sc, RTW_ACCESS_NONE);
2155
2156 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2157 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2158 else
2159 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2160
2161 out:
2162 return rc;
2163 }
2164
2165 static int
2166 rtw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2167 {
2168 int rc = 0;
2169 struct rtw_softc *sc = ifp->if_softc;
2170 struct ifreq *ifr = (struct ifreq *)data;
2171
2172 switch (cmd) {
2173 case SIOCSIFFLAGS:
2174 if ((ifp->if_flags & IFF_UP) != 0) {
2175 if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2176 rtw_pktfilt_load(sc);
2177 } else
2178 rc = rtw_init(ifp);
2179 #ifdef RTW_DEBUG
2180 rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
2181 #endif /* RTW_DEBUG */
2182 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2183 #ifdef RTW_DEBUG
2184 rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
2185 #endif /* RTW_DEBUG */
2186 rtw_stop(ifp, 1);
2187 }
2188 break;
2189 case SIOCADDMULTI:
2190 case SIOCDELMULTI:
2191 if (cmd == SIOCADDMULTI)
2192 rc = ether_addmulti(ifr, &sc->sc_ic.ic_ec);
2193 else
2194 rc = ether_delmulti(ifr, &sc->sc_ic.ic_ec);
2195 if (rc == ENETRESET) {
2196 if (ifp->if_flags & IFF_RUNNING)
2197 rtw_pktfilt_load(sc);
2198 rc = 0;
2199 }
2200 break;
2201 default:
2202 if ((rc = ieee80211_ioctl(ifp, cmd, data)) == ENETRESET) {
2203 if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2204 rc = rtw_init(ifp);
2205 else
2206 rc = 0;
2207 }
2208 break;
2209 }
2210 return rc;
2211 }
2212
2213 /* Point *mp at the next 802.11 frame to transmit. Point *stcp
2214 * at the driver's selection of transmit control block for the packet.
2215 */
2216 static __inline int
2217 rtw_dequeue(struct ifnet *ifp, struct rtw_txctl_blk **stcp,
2218 struct rtw_txdesc_blk **htcp, struct mbuf **mp,
2219 struct ieee80211_node **nip)
2220 {
2221 struct rtw_txctl_blk *stc;
2222 struct rtw_txdesc_blk *htc;
2223 struct mbuf *m0;
2224 struct rtw_softc *sc;
2225 struct ieee80211com *ic;
2226
2227 sc = (struct rtw_softc *)ifp->if_softc;
2228
2229 DPRINTF2(sc, ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
2230 *mp = NULL;
2231
2232 stc = &sc->sc_txctl_blk[RTW_TXPRIMD];
2233 htc = &sc->sc_txdesc_blk[RTW_TXPRIMD];
2234
2235 if (SIMPLEQ_EMPTY(&stc->stc_freeq) || htc->htc_nfree == 0) {
2236 DPRINTF2(sc, ("%s: out of descriptors\n", __func__));
2237 ifp->if_flags |= IFF_OACTIVE;
2238 return 0;
2239 }
2240
2241 ic = &sc->sc_ic;
2242
2243 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
2244 IF_DEQUEUE(&ic->ic_mgtq, m0);
2245 *nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2246 m0->m_pkthdr.rcvif = NULL;
2247 DPRINTF2(sc, ("%s: dequeue mgt frame\n", __func__));
2248 } else if (ic->ic_state != IEEE80211_S_RUN) {
2249 DPRINTF2(sc, ("%s: not running\n", __func__));
2250 return 0;
2251 } else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
2252 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
2253 *nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2254 m0->m_pkthdr.rcvif = NULL;
2255 DPRINTF2(sc, ("%s: dequeue pwrsave frame\n", __func__));
2256 } else {
2257 IFQ_POLL(&ifp->if_snd, m0);
2258 if (m0 == NULL) {
2259 DPRINTF2(sc, ("%s: no frame\n", __func__));
2260 return 0;
2261 }
2262 DPRINTF2(sc, ("%s: dequeue data frame\n", __func__));
2263 IFQ_DEQUEUE(&ifp->if_snd, m0);
2264 ifp->if_opackets++;
2265 #if NBPFILTER > 0
2266 if (ifp->if_bpf)
2267 bpf_mtap(ifp->if_bpf, m0);
2268 #endif
2269 if ((m0 = ieee80211_encap(ifp, m0, nip)) == NULL) {
2270 DPRINTF2(sc, ("%s: encap error\n", __func__));
2271 ifp->if_oerrors++;
2272 return -1;
2273 }
2274 }
2275 DPRINTF2(sc, ("%s: leave\n", __func__));
2276 *stcp = stc;
2277 *htcp = htc;
2278 *mp = m0;
2279 return 0;
2280 }
2281
2282 /* TBD factor with atw_start */
2283 static struct mbuf *
2284 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
2285 u_int ndescfree, short *ifflagsp, const char *dvname)
2286 {
2287 int first, rc;
2288 struct mbuf *m, *m0;
2289
2290 m0 = chain;
2291
2292 /*
2293 * Load the DMA map. Copy and try (once) again if the packet
2294 * didn't fit in the alloted number of segments.
2295 */
2296 for (first = 1;
2297 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
2298 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
2299 dmam->dm_nsegs > ndescfree) && first;
2300 first = 0) {
2301 if (rc == 0)
2302 bus_dmamap_unload(dmat, dmam);
2303 MGETHDR(m, M_DONTWAIT, MT_DATA);
2304 if (m == NULL) {
2305 printf("%s: unable to allocate Tx mbuf\n",
2306 dvname);
2307 break;
2308 }
2309 if (m0->m_pkthdr.len > MHLEN) {
2310 MCLGET(m, M_DONTWAIT);
2311 if ((m->m_flags & M_EXT) == 0) {
2312 printf("%s: cannot allocate Tx cluster\n",
2313 dvname);
2314 m_freem(m);
2315 break;
2316 }
2317 }
2318 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2319 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
2320 m_freem(m0);
2321 m0 = m;
2322 m = NULL;
2323 }
2324 if (rc != 0) {
2325 printf("%s: cannot load Tx buffer, rc = %d\n", dvname, rc);
2326 m_freem(m0);
2327 return NULL;
2328 } else if (dmam->dm_nsegs > ndescfree) {
2329 *ifflagsp |= IFF_OACTIVE;
2330 bus_dmamap_unload(dmat, dmam);
2331 m_freem(m0);
2332 return NULL;
2333 }
2334 return m0;
2335 }
2336
2337 static void
2338 rtw_start(struct ifnet *ifp)
2339 {
2340 int desc, i, lastdesc, npkt, rate;
2341 uint32_t proto_txctl0, txctl0, txctl1;
2342 bus_dmamap_t dmamap;
2343 struct ieee80211com *ic;
2344 struct ieee80211_duration *d0;
2345 struct ieee80211_frame *wh;
2346 struct ieee80211_node *ni;
2347 struct mbuf *m0;
2348 struct rtw_softc *sc;
2349 struct rtw_txctl_blk *stc;
2350 struct rtw_txdesc_blk *htc;
2351 struct rtw_txctl *stx;
2352 struct rtw_txdesc *htx;
2353
2354 sc = (struct rtw_softc *)ifp->if_softc;
2355 ic = &sc->sc_ic;
2356
2357 DPRINTF2(sc, ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
2358
2359 /* XXX do real rate control */
2360 proto_txctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
2361
2362 switch (rate = MAX(2, ieee80211_get_rate(ic))) {
2363 case 2:
2364 proto_txctl0 |= RTW_TXCTL0_RATE_1MBPS;
2365 break;
2366 case 4:
2367 proto_txctl0 |= RTW_TXCTL0_RATE_2MBPS;
2368 break;
2369 case 11:
2370 proto_txctl0 |= RTW_TXCTL0_RATE_5MBPS;
2371 break;
2372 case 22:
2373 proto_txctl0 |= RTW_TXCTL0_RATE_11MBPS;
2374 break;
2375 }
2376
2377 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
2378 proto_txctl0 |= RTW_TXCTL0_SPLCP;
2379
2380 for (;;) {
2381 if (rtw_dequeue(ifp, &stc, &htc, &m0, &ni) == -1)
2382 continue;
2383 if (m0 == NULL)
2384 break;
2385 stx = SIMPLEQ_FIRST(&stc->stc_freeq);
2386
2387 dmamap = stx->stx_dmamap;
2388
2389 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
2390 htc->htc_nfree, &ifp->if_flags, sc->sc_dev.dv_xname);
2391
2392 if (m0 == NULL || dmamap->dm_nsegs == 0) {
2393 DPRINTF2(sc, ("%s: fail dmamap load\n", __func__));
2394 goto post_dequeue_err;
2395 }
2396
2397 txctl0 = proto_txctl0 |
2398 LSHIFT(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
2399
2400 wh = mtod(m0, struct ieee80211_frame *);
2401
2402 if (ieee80211_compute_duration(wh,
2403 m0->m_pkthdr.len - sizeof(wh),
2404 ic->ic_flags, ic->ic_fragthreshold,
2405 rate, &stx->stx_d0, &stx->stx_dn, &npkt) == -1) {
2406 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
2407 goto post_load_err;
2408 }
2409
2410 /* XXX >= ? */
2411 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
2412 txctl0 |= RTW_TXCTL0_RTSEN;
2413
2414 d0 = &stx->stx_d0;
2415
2416 txctl1 = LSHIFT(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
2417 LSHIFT(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
2418
2419 if ((d0->d_plcp_svc & IEEE80211_PLCP_SERVICE_LENEXT) != 0)
2420 txctl1 |= RTW_TXCTL1_LENGEXT;
2421
2422 /* TBD fragmentation */
2423
2424 stx->stx_first = htc->htc_next;
2425
2426 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2427 htc, stx->stx_first, dmamap->dm_nsegs,
2428 BUS_DMASYNC_PREWRITE);
2429
2430 for (i = 0, lastdesc = desc = stx->stx_first;
2431 i < dmamap->dm_nsegs;
2432 i++, desc = RTW_NEXT_IDX(htc, desc)) {
2433 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
2434 DPRINTF2(sc, ("%s: seg too long\n", __func__));
2435 goto post_load_err;
2436 }
2437 htx = &htc->htc_desc[desc];
2438 htx->htx_ctl0 = htole32(txctl0);
2439 if (i != 0)
2440 htx->htx_ctl0 |= htole32(RTW_TXCTL0_OWN);
2441 htx->htx_ctl1 = htole32(txctl1);
2442 htx->htx_buf = htole32(dmamap->dm_segs[i].ds_addr);
2443 htx->htx_len = htole32(dmamap->dm_segs[i].ds_len);
2444 lastdesc = desc;
2445 DPRINTF2(sc, ("%s: stx %p txdesc[%d] ctl0 %#08x "
2446 "ctl1 %#08x buf %#08x len %#08x\n",
2447 sc->sc_dev.dv_xname, stx, desc, htx->htx_ctl0,
2448 htx->htx_ctl1, htx->htx_buf, htx->htx_len));
2449 }
2450
2451 htc->htc_desc[lastdesc].htx_ctl0 |= htole32(RTW_TXCTL0_LS);
2452 htc->htc_desc[stx->stx_first].htx_ctl0 |=
2453 htole32(RTW_TXCTL0_FS);
2454
2455 DPRINTF2(sc, ("%s: stx %p FS on txdesc[%d], LS on txdesc[%d]\n",
2456 sc->sc_dev.dv_xname, stx, lastdesc, stx->stx_first));
2457
2458 stx->stx_ni = ni;
2459 stx->stx_mbuf = m0;
2460 stx->stx_last = lastdesc;
2461
2462 htc->htc_nfree -= dmamap->dm_nsegs;
2463 htc->htc_next = desc;
2464
2465 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2466 htc, stx->stx_first, dmamap->dm_nsegs,
2467 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2468
2469 htc->htc_desc[stx->stx_first].htx_ctl0 |=
2470 htole32(RTW_TXCTL0_OWN);
2471
2472 DPRINTF2(sc, ("%s: stx %p OWN on txdesc[%d]\n",
2473 sc->sc_dev.dv_xname, stx, stx->stx_first));
2474
2475 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2476 htc, stx->stx_first, 1,
2477 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2478
2479 SIMPLEQ_REMOVE_HEAD(&stc->stc_freeq, stx_q);
2480 SIMPLEQ_INSERT_TAIL(&stc->stc_dirtyq, stx, stx_q);
2481
2482 stc->stc_tx_timer = 5;
2483 ifp->if_timer = 1;
2484
2485 /* TBD poke just one txmtr? */
2486 RTW_WRITE8(&sc->sc_regs, RTW_TPPOLL,
2487 RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ | RTW_TPPOLL_HPQ |
2488 RTW_TPPOLL_BQ);
2489 }
2490 DPRINTF2(sc, ("%s: leave\n", __func__));
2491 return;
2492 post_load_err:
2493 bus_dmamap_unload(sc->sc_dmat, dmamap);
2494 m_freem(m0);
2495 post_dequeue_err:
2496 ieee80211_release_node(&sc->sc_ic, ni);
2497 return;
2498 }
2499
2500 static void
2501 rtw_watchdog(struct ifnet *ifp)
2502 {
2503 int pri;
2504 struct rtw_softc *sc;
2505 struct rtw_txctl_blk *stc;
2506
2507 sc = ifp->if_softc;
2508
2509 ifp->if_timer = 0;
2510
2511 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2512 return;
2513
2514 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2515 stc = &sc->sc_txctl_blk[pri];
2516
2517 if (stc->stc_tx_timer == 0)
2518 continue;
2519
2520 if (--stc->stc_tx_timer == 0) {
2521 if (SIMPLEQ_EMPTY(&stc->stc_dirtyq))
2522 continue;
2523 printf("%s: transmit timeout, priority %d\n",
2524 ifp->if_xname, pri);
2525 ifp->if_oerrors++;
2526 /* XXX be gentle */
2527 (void)rtw_init(ifp);
2528 rtw_start(ifp);
2529 } else
2530 ifp->if_timer = 1;
2531 }
2532 /* TBD */
2533 return;
2534 }
2535
2536 static void
2537 rtw_start_beacon(struct rtw_softc *sc, int enable)
2538 {
2539 /* TBD */
2540 return;
2541 }
2542
2543 static void
2544 rtw_next_scan(void *arg)
2545 {
2546 struct ieee80211com *ic = arg;
2547 int s;
2548
2549 /* don't call rtw_start w/o network interrupts blocked */
2550 s = splnet();
2551 if (ic->ic_state == IEEE80211_S_SCAN)
2552 ieee80211_next_scan(ic);
2553 splx(s);
2554 }
2555
2556 /* Synchronize the hardware state with the software state. */
2557 static int
2558 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2559 {
2560 struct ifnet *ifp = &ic->ic_if;
2561 struct rtw_softc *sc = ifp->if_softc;
2562 enum ieee80211_state ostate;
2563 int error;
2564
2565 ostate = ic->ic_state;
2566
2567 if (nstate == IEEE80211_S_INIT) {
2568 callout_stop(&sc->sc_scan_ch);
2569 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2570 rtw_start_beacon(sc, 0);
2571 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
2572 }
2573
2574 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
2575 rtw_pwrstate(sc, RTW_ON);
2576
2577 if ((error = rtw_tune(sc)) != 0)
2578 return error;
2579
2580 switch (nstate) {
2581 case IEEE80211_S_ASSOC:
2582 break;
2583 case IEEE80211_S_INIT:
2584 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2585 break;
2586 case IEEE80211_S_SCAN:
2587 #if 0
2588 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2589 rtw_write_bssid(sc);
2590 #endif
2591
2592 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
2593 rtw_next_scan, ic);
2594
2595 break;
2596 case IEEE80211_S_RUN:
2597 if (ic->ic_opmode == IEEE80211_M_STA)
2598 break;
2599 /*FALLTHROUGH*/
2600 case IEEE80211_S_AUTH:
2601 #if 0
2602 rtw_write_bssid(sc);
2603 rtw_write_bcn_thresh(sc);
2604 rtw_write_ssid(sc);
2605 rtw_write_sup_rates(sc);
2606 #endif
2607 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2608 ic->ic_opmode == IEEE80211_M_MONITOR)
2609 break;
2610
2611 /* TBD set listen interval, beacon interval */
2612
2613 #if 0
2614 rtw_tsf(sc);
2615 #endif
2616 break;
2617 }
2618
2619 if (nstate != IEEE80211_S_SCAN)
2620 callout_stop(&sc->sc_scan_ch);
2621
2622 if (nstate == IEEE80211_S_RUN &&
2623 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2624 ic->ic_opmode == IEEE80211_M_IBSS))
2625 rtw_start_beacon(sc, 1);
2626 else
2627 rtw_start_beacon(sc, 0);
2628
2629 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
2630 }
2631
2632 static void
2633 rtw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2634 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2635 {
2636 /* TBD */
2637 return;
2638 }
2639
2640 static void
2641 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2642 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2643 {
2644 struct rtw_softc *sc = (struct rtw_softc*)ic->ic_softc;
2645
2646 switch (subtype) {
2647 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2648 /* do nothing: hardware answers probe request XXX */
2649 break;
2650 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2651 case IEEE80211_FC0_SUBTYPE_BEACON:
2652 rtw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2653 break;
2654 default:
2655 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2656 break;
2657 }
2658 return;
2659 }
2660
2661 static struct ieee80211_node *
2662 rtw_node_alloc(struct ieee80211com *ic)
2663 {
2664 struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2665 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(ic);
2666
2667 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
2668 return ni;
2669 }
2670
2671 static void
2672 rtw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2673 {
2674 struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2675
2676 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
2677 ether_sprintf(ni->ni_bssid)));
2678 (*sc->sc_mtbl.mt_node_free)(ic, ni);
2679 }
2680
2681 static int
2682 rtw_media_change(struct ifnet *ifp)
2683 {
2684 int error;
2685
2686 error = ieee80211_media_change(ifp);
2687 if (error == ENETRESET) {
2688 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
2689 (IFF_RUNNING|IFF_UP))
2690 rtw_init(ifp); /* XXX lose error */
2691 error = 0;
2692 }
2693 return error;
2694 }
2695
2696 static void
2697 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2698 {
2699 struct rtw_softc *sc = ifp->if_softc;
2700
2701 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2702 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
2703 imr->ifm_status = 0;
2704 return;
2705 }
2706 ieee80211_media_status(ifp, imr);
2707 }
2708
2709 void
2710 rtw_power(int why, void *arg)
2711 {
2712 struct rtw_softc *sc = arg;
2713 struct ifnet *ifp = &sc->sc_ic.ic_if;
2714 int s;
2715
2716 DPRINTF(sc, ("%s: rtw_power(%d,)\n", sc->sc_dev.dv_xname, why));
2717
2718 s = splnet();
2719 switch (why) {
2720 case PWR_STANDBY:
2721 /* XXX do nothing. */
2722 break;
2723 case PWR_SUSPEND:
2724 rtw_stop(ifp, 0);
2725 if (sc->sc_power != NULL)
2726 (*sc->sc_power)(sc, why);
2727 break;
2728 case PWR_RESUME:
2729 if (ifp->if_flags & IFF_UP) {
2730 if (sc->sc_power != NULL)
2731 (*sc->sc_power)(sc, why);
2732 rtw_init(ifp);
2733 }
2734 break;
2735 case PWR_SOFTSUSPEND:
2736 case PWR_SOFTSTANDBY:
2737 case PWR_SOFTRESUME:
2738 break;
2739 }
2740 splx(s);
2741 }
2742
2743 /* rtw_shutdown: make sure the interface is stopped at reboot time. */
2744 void
2745 rtw_shutdown(void *arg)
2746 {
2747 struct rtw_softc *sc = arg;
2748
2749 rtw_stop(&sc->sc_ic.ic_if, 1);
2750 }
2751
2752 static __inline void
2753 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
2754 {
2755 (void)memcpy(ifp->if_xname, dvname, IFNAMSIZ);
2756 ifp->if_softc = softc;
2757 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
2758 IFF_NOTRAILERS;
2759 ifp->if_ioctl = rtw_ioctl;
2760 ifp->if_start = rtw_start;
2761 ifp->if_watchdog = rtw_watchdog;
2762 ifp->if_init = rtw_init;
2763 ifp->if_stop = rtw_stop;
2764 }
2765
2766 static __inline void
2767 rtw_set80211props(struct ieee80211com *ic)
2768 {
2769 int nrate;
2770 ic->ic_phytype = IEEE80211_T_DS;
2771 ic->ic_opmode = IEEE80211_M_STA;
2772 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
2773 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
2774
2775 nrate = 0;
2776 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
2777 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
2778 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
2779 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
2780 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
2781 }
2782
2783 static __inline void
2784 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
2785 {
2786 mtbl->mt_newstate = ic->ic_newstate;
2787 ic->ic_newstate = rtw_newstate;
2788
2789 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
2790 ic->ic_recv_mgmt = rtw_recv_mgmt;
2791
2792 mtbl->mt_node_free = ic->ic_node_free;
2793 ic->ic_node_free = rtw_node_free;
2794
2795 mtbl->mt_node_alloc = ic->ic_node_alloc;
2796 ic->ic_node_alloc = rtw_node_alloc;
2797 }
2798
2799 static __inline void
2800 rtw_establish_hooks(struct rtw_hooks *hooks, const char *dvname,
2801 void *arg)
2802 {
2803 /*
2804 * Make sure the interface is shutdown during reboot.
2805 */
2806 hooks->rh_shutdown = shutdownhook_establish(rtw_shutdown, arg);
2807 if (hooks->rh_shutdown == NULL)
2808 printf("%s: WARNING: unable to establish shutdown hook\n",
2809 dvname);
2810
2811 /*
2812 * Add a suspend hook to make sure we come back up after a
2813 * resume.
2814 */
2815 hooks->rh_power = powerhook_establish(rtw_power, arg);
2816 if (hooks->rh_power == NULL)
2817 printf("%s: WARNING: unable to establish power hook\n",
2818 dvname);
2819 }
2820
2821 static __inline void
2822 rtw_disestablish_hooks(struct rtw_hooks *hooks, const char *dvname,
2823 void *arg)
2824 {
2825 if (hooks->rh_shutdown != NULL)
2826 shutdownhook_disestablish(hooks->rh_shutdown);
2827
2828 if (hooks->rh_power != NULL)
2829 powerhook_disestablish(hooks->rh_power);
2830 }
2831
2832 static __inline void
2833 rtw_init_radiotap(struct rtw_softc *sc)
2834 {
2835 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
2836 sc->sc_rxtap.rr_ihdr.it_len = sizeof(sc->sc_rxtapu);
2837 sc->sc_rxtap.rr_ihdr.it_present = RTW_RX_RADIOTAP_PRESENT;
2838
2839 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
2840 sc->sc_txtap.rt_ihdr.it_len = sizeof(sc->sc_txtapu);
2841 sc->sc_txtap.rt_ihdr.it_present = RTW_TX_RADIOTAP_PRESENT;
2842 }
2843
2844 static int
2845 rtw_txctl_blk_setup(struct rtw_txctl_blk *stc, u_int qlen)
2846 {
2847 SIMPLEQ_INIT(&stc->stc_dirtyq);
2848 SIMPLEQ_INIT(&stc->stc_freeq);
2849 stc->stc_ndesc = qlen;
2850 stc->stc_desc = malloc(qlen * sizeof(*stc->stc_desc), M_DEVBUF,
2851 M_NOWAIT);
2852 if (stc->stc_desc == NULL)
2853 return ENOMEM;
2854 return 0;
2855 }
2856
2857 static void
2858 rtw_txctl_blk_cleanup_all(struct rtw_softc *sc)
2859 {
2860 struct rtw_txctl_blk *stc;
2861 int qlen[RTW_NTXPRI] =
2862 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
2863 int pri;
2864
2865 for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
2866 stc = &sc->sc_txctl_blk[pri];
2867 free(stc->stc_desc, M_DEVBUF);
2868 stc->stc_desc = NULL;
2869 }
2870 }
2871
2872 static int
2873 rtw_txctl_blk_setup_all(struct rtw_softc *sc)
2874 {
2875 int pri, rc = 0;
2876 int qlen[RTW_NTXPRI] =
2877 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
2878
2879 for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
2880 rc = rtw_txctl_blk_setup(&sc->sc_txctl_blk[pri], qlen[pri]);
2881 if (rc != 0)
2882 break;
2883 }
2884 return rc;
2885 }
2886
2887 static void
2888 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *htc, struct rtw_txdesc *desc,
2889 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
2890 {
2891 int i;
2892
2893 htc->htc_ndesc = ndesc;
2894 htc->htc_desc = desc;
2895 htc->htc_physbase = physbase;
2896 htc->htc_ofs = ofs;
2897
2898 (void)memset(htc->htc_desc, 0,
2899 sizeof(htc->htc_desc[0]) * htc->htc_ndesc);
2900
2901 for (i = 0; i < htc->htc_ndesc; i++) {
2902 htc->htc_desc[i].htx_next = htole32(RTW_NEXT_DESC(htc, i));
2903 }
2904 }
2905
2906 static void
2907 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
2908 {
2909 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
2910 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
2911 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
2912
2913 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
2914 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
2915 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
2916
2917 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
2918 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
2919 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
2920
2921 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
2922 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
2923 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
2924 }
2925
2926 static struct rtw_rf *
2927 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid,
2928 rtw_rf_write_t rf_write, int digphy)
2929 {
2930 struct rtw_rf *rf;
2931
2932 switch (rfchipid) {
2933 case RTW_RFCHIPID_MAXIM:
2934 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
2935 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
2936 break;
2937 case RTW_RFCHIPID_PHILIPS:
2938 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
2939 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
2940 break;
2941 default:
2942 return NULL;
2943 }
2944 rf->rf_continuous_tx_cb =
2945 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
2946 rf->rf_continuous_tx_arg = (void *)sc;
2947 return rf;
2948 }
2949
2950 /* Revision C and later use a different PHY delay setting than
2951 * revisions A and B.
2952 */
2953 static u_int8_t
2954 rtw_check_phydelay(struct rtw_regs *regs, u_int32_t rcr0)
2955 {
2956 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
2957 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
2958
2959 u_int8_t phydelay = LSHIFT(0x6, RTW_PHYDELAY_PHYDELAY);
2960
2961 RTW_WRITE(regs, RTW_RCR, REVAB);
2962 RTW_WRITE(regs, RTW_RCR, REVC);
2963
2964 RTW_WBR(regs, RTW_RCR, RTW_RCR);
2965 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
2966 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
2967
2968 RTW_WRITE(regs, RTW_RCR, rcr0); /* restore RCR */
2969
2970 return phydelay;
2971 #undef REVC
2972 }
2973
2974 void
2975 rtw_attach(struct rtw_softc *sc)
2976 {
2977 rtw_rf_write_t rf_write;
2978 struct rtw_txctl_blk *stc;
2979 int pri, rc, vers;
2980
2981 #if 0
2982 CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_txdesc) == 0,
2983 "RTW_DESC_ALIGNMENT is not a multiple of "
2984 "sizeof(struct rtw_txdesc)");
2985
2986 CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_rxdesc) == 0,
2987 "RTW_DESC_ALIGNMENT is not a multiple of "
2988 "sizeof(struct rtw_rxdesc)");
2989
2990 CASSERT(RTW_DESC_ALIGNMENT % RTW_MAXPKTSEGS == 0,
2991 "RTW_DESC_ALIGNMENT is not a multiple of RTW_MAXPKTSEGS");
2992 #endif
2993
2994 NEXT_ATTACH_STATE(sc, DETACHED);
2995
2996 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
2997 case RTW_TCR_HWVERID_F:
2998 vers = 'F';
2999 rf_write = rtw_rf_hostwrite;
3000 break;
3001 case RTW_TCR_HWVERID_D:
3002 vers = 'D';
3003 if (rtw_host_rfio)
3004 rf_write = rtw_rf_hostwrite;
3005 else
3006 rf_write = rtw_rf_macwrite;
3007 break;
3008 default:
3009 vers = '?';
3010 rf_write = rtw_rf_macwrite;
3011 break;
3012 }
3013 printf("%s: hardware version %c\n", sc->sc_dev.dv_xname, vers);
3014
3015 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
3016 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
3017 0);
3018
3019 if (rc != 0) {
3020 printf("%s: could not allocate hw descriptors, error %d\n",
3021 sc->sc_dev.dv_xname, rc);
3022 goto err;
3023 }
3024
3025 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
3026
3027 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
3028 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
3029 (caddr_t*)&sc->sc_descs, BUS_DMA_COHERENT);
3030
3031 if (rc != 0) {
3032 printf("%s: could not map hw descriptors, error %d\n",
3033 sc->sc_dev.dv_xname, rc);
3034 goto err;
3035 }
3036 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
3037
3038 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
3039 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
3040
3041 if (rc != 0) {
3042 printf("%s: could not create DMA map for hw descriptors, "
3043 "error %d\n", sc->sc_dev.dv_xname, rc);
3044 goto err;
3045 }
3046 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
3047
3048 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
3049 sizeof(struct rtw_descs), NULL, 0);
3050
3051 if (rc != 0) {
3052 printf("%s: could not load DMA map for hw descriptors, "
3053 "error %d\n", sc->sc_dev.dv_xname, rc);
3054 goto err;
3055 }
3056 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
3057
3058 if (rtw_txctl_blk_setup_all(sc) != 0)
3059 goto err;
3060 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
3061
3062 rtw_txdesc_blk_setup_all(sc);
3063
3064 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
3065
3066 sc->sc_rxdesc = &sc->sc_descs->hd_rx[0];
3067
3068 rtw_rxctls_setup(&sc->sc_rxctl[0]);
3069
3070 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3071 stc = &sc->sc_txctl_blk[pri];
3072
3073 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
3074 &stc->stc_desc[0], stc->stc_ndesc)) != 0) {
3075 printf("%s: could not load DMA map for "
3076 "hw tx descriptors, error %d\n",
3077 sc->sc_dev.dv_xname, rc);
3078 goto err;
3079 }
3080 }
3081
3082 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
3083 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxctl[0],
3084 RTW_RXQLEN)) != 0) {
3085 printf("%s: could not load DMA map for hw rx descriptors, "
3086 "error %d\n", sc->sc_dev.dv_xname, rc);
3087 goto err;
3088 }
3089 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
3090
3091 /* Reset the chip to a known state. */
3092 if (rtw_reset(sc) != 0)
3093 goto err;
3094 NEXT_ATTACH_STATE(sc, FINISH_RESET);
3095
3096 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
3097
3098 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
3099 sc->sc_flags |= RTW_F_9356SROM;
3100
3101 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
3102 sc->sc_dev.dv_xname) != 0)
3103 goto err;
3104
3105 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
3106
3107 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
3108 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
3109 sc->sc_dev.dv_xname) != 0) {
3110 printf("%s: attach failed, malformed serial ROM\n",
3111 sc->sc_dev.dv_xname);
3112 goto err;
3113 }
3114
3115 RTW_DPRINTF(("%s: CS threshold %u\n", sc->sc_dev.dv_xname,
3116 sc->sc_csthr));
3117
3118 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
3119
3120 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid, rf_write,
3121 sc->sc_flags & RTW_F_DIGPHY);
3122
3123 if (sc->sc_rf == NULL) {
3124 printf("%s: attach failed, could not attach RF\n",
3125 sc->sc_dev.dv_xname);
3126 goto err;
3127 }
3128
3129 #if 0
3130 if (rtw_identify_rf(&sc->sc_regs, &sc->sc_rftype,
3131 sc->sc_dev.dv_xname) != 0) {
3132 printf("%s: attach failed, unknown RF unidentified\n",
3133 sc->sc_dev.dv_xname);
3134 goto err;
3135 }
3136 #endif
3137
3138 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
3139
3140 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
3141
3142 RTW_DPRINTF(("%s: PHY delay %d\n", sc->sc_dev.dv_xname,
3143 sc->sc_phydelay));
3144
3145 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
3146 rtw_identify_country(&sc->sc_regs, &sc->sc_locale,
3147 sc->sc_dev.dv_xname);
3148
3149 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels,
3150 sc->sc_dev.dv_xname);
3151
3152 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
3153 sc->sc_dev.dv_xname) != 0)
3154 goto err;
3155 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
3156
3157 rtw_setifprops(&sc->sc_if, sc->sc_dev.dv_xname, (void*)sc);
3158
3159 IFQ_SET_READY(&sc->sc_if.if_snd);
3160
3161 rtw_set80211props(&sc->sc_ic);
3162
3163 /*
3164 * Call MI attach routines.
3165 */
3166 if_attach(&sc->sc_if);
3167 ieee80211_ifattach(&sc->sc_if);
3168
3169 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
3170
3171 /* possibly we should fill in our own sc_send_prresp, since
3172 * the RTL8180 is probably sending probe responses in ad hoc
3173 * mode.
3174 */
3175
3176 /* complete initialization */
3177 ieee80211_media_init(&sc->sc_if, rtw_media_change, rtw_media_status);
3178 callout_init(&sc->sc_scan_ch);
3179
3180 #if NBPFILTER > 0
3181 bpfattach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
3182 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
3183 #endif
3184
3185 rtw_establish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname, (void*)sc);
3186
3187 rtw_init_radiotap(sc);
3188
3189 NEXT_ATTACH_STATE(sc, FINISHED);
3190
3191 return;
3192 err:
3193 rtw_detach(sc);
3194 return;
3195 }
3196
3197 int
3198 rtw_detach(struct rtw_softc *sc)
3199 {
3200 int pri;
3201
3202 switch (sc->sc_attach_state) {
3203 case FINISHED:
3204 rtw_stop(&sc->sc_if, 1);
3205
3206 rtw_disestablish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname,
3207 (void*)sc);
3208 callout_stop(&sc->sc_scan_ch);
3209 ieee80211_ifdetach(&sc->sc_if);
3210 if_detach(&sc->sc_if);
3211 break;
3212 case FINISH_ID_STA:
3213 case FINISH_RF_ATTACH:
3214 rtw_rf_destroy(sc->sc_rf);
3215 sc->sc_rf = NULL;
3216 /*FALLTHROUGH*/
3217 case FINISH_PARSE_SROM:
3218 case FINISH_READ_SROM:
3219 rtw_srom_free(&sc->sc_srom);
3220 /*FALLTHROUGH*/
3221 case FINISH_RESET:
3222 case FINISH_RXMAPS_CREATE:
3223 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxctl[0],
3224 RTW_RXQLEN);
3225 /*FALLTHROUGH*/
3226 case FINISH_TXMAPS_CREATE:
3227 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3228 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
3229 sc->sc_txctl_blk[pri].stc_desc,
3230 sc->sc_txctl_blk[pri].stc_ndesc);
3231 }
3232 /*FALLTHROUGH*/
3233 case FINISH_TXDESCBLK_SETUP:
3234 case FINISH_TXCTLBLK_SETUP:
3235 rtw_txctl_blk_cleanup_all(sc);
3236 /*FALLTHROUGH*/
3237 case FINISH_DESCMAP_LOAD:
3238 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
3239 /*FALLTHROUGH*/
3240 case FINISH_DESCMAP_CREATE:
3241 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
3242 /*FALLTHROUGH*/
3243 case FINISH_DESC_MAP:
3244 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_descs,
3245 sizeof(struct rtw_descs));
3246 /*FALLTHROUGH*/
3247 case FINISH_DESC_ALLOC:
3248 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
3249 sc->sc_desc_nsegs);
3250 /*FALLTHROUGH*/
3251 case DETACHED:
3252 NEXT_ATTACH_STATE(sc, DETACHED);
3253 break;
3254 }
3255 return 0;
3256 }
3257
3258 int
3259 rtw_activate(struct device *self, enum devact act)
3260 {
3261 struct rtw_softc *sc = (struct rtw_softc *)self;
3262 int rc = 0, s;
3263
3264 s = splnet();
3265 switch (act) {
3266 case DVACT_ACTIVATE:
3267 rc = EOPNOTSUPP;
3268 break;
3269
3270 case DVACT_DEACTIVATE:
3271 if_deactivate(&sc->sc_ic.ic_if);
3272 break;
3273 }
3274 splx(s);
3275 return rc;
3276 }
3277