rtw.c revision 1.84 1 /* $NetBSD: rtw.c,v 1.84 2007/01/29 07:08:09 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005 David Young. All rights reserved.
4 *
5 * Programmed for NetBSD by David Young.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of David Young may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
23 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30 * OF SUCH DAMAGE.
31 */
32 /*
33 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.84 2007/01/29 07:08:09 dyoung Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/sysctl.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/time.h>
49 #include <sys/types.h>
50
51 #include <machine/endian.h>
52 #include <machine/bus.h>
53 #include <machine/intr.h> /* splnet */
54
55 #include <uvm/uvm_extern.h>
56
57 #include <net/if.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68
69 #include <dev/ic/rtwreg.h>
70 #include <dev/ic/rtwvar.h>
71 #include <dev/ic/rtwphyio.h>
72 #include <dev/ic/rtwphy.h>
73
74 #include <dev/ic/smc93cx6var.h>
75
76 #define KASSERT2(__cond, __msg) \
77 do { \
78 if (!(__cond)) \
79 panic __msg ; \
80 } while (0)
81
82 static int rtw_rfprog_fallback = 0;
83 static int rtw_host_rfio = 0;
84
85 #ifdef RTW_DEBUG
86 int rtw_debug = 0;
87 static int rtw_rxbufs_limit = RTW_RXQLEN;
88 #endif /* RTW_DEBUG */
89
90 #define NEXT_ATTACH_STATE(sc, state) do { \
91 DPRINTF(sc, RTW_DEBUG_ATTACH, \
92 ("%s: attach state %s\n", __func__, #state)); \
93 sc->sc_attach_state = state; \
94 } while (0)
95
96 int rtw_dwelltime = 200; /* milliseconds */
97 static struct ieee80211_cipher rtw_cipher_wep;
98
99 static void rtw_start(struct ifnet *);
100 static void rtw_reset_oactive(struct rtw_softc *);
101 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
102 struct ieee80211_node *);
103 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
104
105 static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
106 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
107 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
108 const u_int8_t[IEEE80211_ADDR_LEN]);
109 static void rtw_key_update_end(struct ieee80211com *);
110 static void rtw_key_update_begin(struct ieee80211com *);
111 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
112 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
113
114 static void rtw_led_attach(struct rtw_led_state *, void *);
115 static void rtw_led_init(struct rtw_regs *);
116 static void rtw_led_slowblink(void *);
117 static void rtw_led_fastblink(void *);
118 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
119
120 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
121 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
122 #ifdef RTW_DEBUG
123 static void rtw_dump_rings(struct rtw_softc *sc);
124 static void rtw_print_txdesc(struct rtw_softc *, const char *,
125 struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
126 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
127 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
128 #endif /* RTW_DEBUG */
129 #ifdef RTW_DIAG
130 static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
131 #endif /* RTW_DIAG */
132
133 /*
134 * Setup sysctl(3) MIB, hw.rtw.*
135 *
136 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
137 */
138 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
139 {
140 int rc;
141 const struct sysctlnode *cnode, *rnode;
142
143 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
144 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
145 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
146 goto err;
147
148 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
149 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
150 "Realtek RTL818x 802.11 controls",
151 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
152 goto err;
153
154 #ifdef RTW_DEBUG
155 /* control debugging printfs */
156 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
157 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
158 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
159 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
160 CTL_CREATE, CTL_EOL)) != 0)
161 goto err;
162
163 /* Limit rx buffers, for simulating resource exhaustion. */
164 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
165 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
166 "rxbufs_limit",
167 SYSCTL_DESCR("Set rx buffers limit"),
168 rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
169 CTL_CREATE, CTL_EOL)) != 0)
170 goto err;
171
172 #endif /* RTW_DEBUG */
173 /* set fallback RF programming method */
174 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
175 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
176 "rfprog_fallback",
177 SYSCTL_DESCR("Set fallback RF programming method"),
178 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
179 CTL_CREATE, CTL_EOL)) != 0)
180 goto err;
181
182 /* force host to control RF I/O bus */
183 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
184 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
185 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
186 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
187 CTL_CREATE, CTL_EOL)) != 0)
188 goto err;
189
190 return;
191 err:
192 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
193 }
194
195 static int
196 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
197 {
198 int error, t;
199 struct sysctlnode node;
200
201 node = *rnode;
202 t = *(int*)rnode->sysctl_data;
203 node.sysctl_data = &t;
204 error = sysctl_lookup(SYSCTLFN_CALL(&node));
205 if (error || newp == NULL)
206 return (error);
207
208 if (t < lower || t > upper)
209 return (EINVAL);
210
211 *(int*)rnode->sysctl_data = t;
212
213 return (0);
214 }
215
216 static int
217 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
218 {
219 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
220 __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
221 }
222
223 static int
224 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
225 {
226 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
227 }
228
229 #ifdef RTW_DEBUG
230 static int
231 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
232 {
233 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
234 0, RTW_DEBUG_MAX);
235 }
236
237 static int
238 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
239 {
240 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
241 0, RTW_RXQLEN);
242 }
243
244 static void
245 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
246 {
247 #define PRINTREG32(sc, reg) \
248 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
249 ("%s: reg[ " #reg " / %03x ] = %08x\n", \
250 dvname, reg, RTW_READ(regs, reg)))
251
252 #define PRINTREG16(sc, reg) \
253 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
254 ("%s: reg[ " #reg " / %03x ] = %04x\n", \
255 dvname, reg, RTW_READ16(regs, reg)))
256
257 #define PRINTREG8(sc, reg) \
258 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
259 ("%s: reg[ " #reg " / %03x ] = %02x\n", \
260 dvname, reg, RTW_READ8(regs, reg)))
261
262 RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
263
264 PRINTREG32(regs, RTW_IDR0);
265 PRINTREG32(regs, RTW_IDR1);
266 PRINTREG32(regs, RTW_MAR0);
267 PRINTREG32(regs, RTW_MAR1);
268 PRINTREG32(regs, RTW_TSFTRL);
269 PRINTREG32(regs, RTW_TSFTRH);
270 PRINTREG32(regs, RTW_TLPDA);
271 PRINTREG32(regs, RTW_TNPDA);
272 PRINTREG32(regs, RTW_THPDA);
273 PRINTREG32(regs, RTW_TCR);
274 PRINTREG32(regs, RTW_RCR);
275 PRINTREG32(regs, RTW_TINT);
276 PRINTREG32(regs, RTW_TBDA);
277 PRINTREG32(regs, RTW_ANAPARM);
278 PRINTREG32(regs, RTW_BB);
279 PRINTREG32(regs, RTW_PHYCFG);
280 PRINTREG32(regs, RTW_WAKEUP0L);
281 PRINTREG32(regs, RTW_WAKEUP0H);
282 PRINTREG32(regs, RTW_WAKEUP1L);
283 PRINTREG32(regs, RTW_WAKEUP1H);
284 PRINTREG32(regs, RTW_WAKEUP2LL);
285 PRINTREG32(regs, RTW_WAKEUP2LH);
286 PRINTREG32(regs, RTW_WAKEUP2HL);
287 PRINTREG32(regs, RTW_WAKEUP2HH);
288 PRINTREG32(regs, RTW_WAKEUP3LL);
289 PRINTREG32(regs, RTW_WAKEUP3LH);
290 PRINTREG32(regs, RTW_WAKEUP3HL);
291 PRINTREG32(regs, RTW_WAKEUP3HH);
292 PRINTREG32(regs, RTW_WAKEUP4LL);
293 PRINTREG32(regs, RTW_WAKEUP4LH);
294 PRINTREG32(regs, RTW_WAKEUP4HL);
295 PRINTREG32(regs, RTW_WAKEUP4HH);
296 PRINTREG32(regs, RTW_DK0);
297 PRINTREG32(regs, RTW_DK1);
298 PRINTREG32(regs, RTW_DK2);
299 PRINTREG32(regs, RTW_DK3);
300 PRINTREG32(regs, RTW_RETRYCTR);
301 PRINTREG32(regs, RTW_RDSAR);
302 PRINTREG32(regs, RTW_FER);
303 PRINTREG32(regs, RTW_FEMR);
304 PRINTREG32(regs, RTW_FPSR);
305 PRINTREG32(regs, RTW_FFER);
306
307 /* 16-bit registers */
308 PRINTREG16(regs, RTW_BRSR);
309 PRINTREG16(regs, RTW_IMR);
310 PRINTREG16(regs, RTW_ISR);
311 PRINTREG16(regs, RTW_BCNITV);
312 PRINTREG16(regs, RTW_ATIMWND);
313 PRINTREG16(regs, RTW_BINTRITV);
314 PRINTREG16(regs, RTW_ATIMTRITV);
315 PRINTREG16(regs, RTW_CRC16ERR);
316 PRINTREG16(regs, RTW_CRC0);
317 PRINTREG16(regs, RTW_CRC1);
318 PRINTREG16(regs, RTW_CRC2);
319 PRINTREG16(regs, RTW_CRC3);
320 PRINTREG16(regs, RTW_CRC4);
321 PRINTREG16(regs, RTW_CWR);
322
323 /* 8-bit registers */
324 PRINTREG8(regs, RTW_CR);
325 PRINTREG8(regs, RTW_9346CR);
326 PRINTREG8(regs, RTW_CONFIG0);
327 PRINTREG8(regs, RTW_CONFIG1);
328 PRINTREG8(regs, RTW_CONFIG2);
329 PRINTREG8(regs, RTW_MSR);
330 PRINTREG8(regs, RTW_CONFIG3);
331 PRINTREG8(regs, RTW_CONFIG4);
332 PRINTREG8(regs, RTW_TESTR);
333 PRINTREG8(regs, RTW_PSR);
334 PRINTREG8(regs, RTW_SCR);
335 PRINTREG8(regs, RTW_PHYDELAY);
336 PRINTREG8(regs, RTW_CRCOUNT);
337 PRINTREG8(regs, RTW_PHYADDR);
338 PRINTREG8(regs, RTW_PHYDATAW);
339 PRINTREG8(regs, RTW_PHYDATAR);
340 PRINTREG8(regs, RTW_CONFIG5);
341 PRINTREG8(regs, RTW_TPPOLL);
342
343 PRINTREG16(regs, RTW_BSSID16);
344 PRINTREG32(regs, RTW_BSSID32);
345 #undef PRINTREG32
346 #undef PRINTREG16
347 #undef PRINTREG8
348 }
349 #endif /* RTW_DEBUG */
350
351 void
352 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
353 {
354 struct rtw_regs *regs = &sc->sc_regs;
355
356 uint32_t tcr;
357 tcr = RTW_READ(regs, RTW_TCR);
358 tcr &= ~RTW_TCR_LBK_MASK;
359 if (enable)
360 tcr |= RTW_TCR_LBK_CONT;
361 else
362 tcr |= RTW_TCR_LBK_NORMAL;
363 RTW_WRITE(regs, RTW_TCR, tcr);
364 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
365 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
366 rtw_txdac_enable(sc, !enable);
367 rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
368 rtw_set_access(regs, RTW_ACCESS_NONE);
369 }
370
371 #ifdef RTW_DEBUG
372 static const char *
373 rtw_access_string(enum rtw_access access)
374 {
375 switch (access) {
376 case RTW_ACCESS_NONE:
377 return "none";
378 case RTW_ACCESS_CONFIG:
379 return "config";
380 case RTW_ACCESS_ANAPARM:
381 return "anaparm";
382 default:
383 return "unknown";
384 }
385 }
386 #endif /* RTW_DEBUG */
387
388 static void
389 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
390 {
391 KASSERT(/* naccess >= RTW_ACCESS_NONE && */
392 naccess <= RTW_ACCESS_ANAPARM);
393 KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
394 regs->r_access <= RTW_ACCESS_ANAPARM);
395
396 if (naccess == regs->r_access)
397 return;
398
399 switch (naccess) {
400 case RTW_ACCESS_NONE:
401 switch (regs->r_access) {
402 case RTW_ACCESS_ANAPARM:
403 rtw_anaparm_enable(regs, 0);
404 /*FALLTHROUGH*/
405 case RTW_ACCESS_CONFIG:
406 rtw_config0123_enable(regs, 0);
407 /*FALLTHROUGH*/
408 case RTW_ACCESS_NONE:
409 break;
410 }
411 break;
412 case RTW_ACCESS_CONFIG:
413 switch (regs->r_access) {
414 case RTW_ACCESS_NONE:
415 rtw_config0123_enable(regs, 1);
416 /*FALLTHROUGH*/
417 case RTW_ACCESS_CONFIG:
418 break;
419 case RTW_ACCESS_ANAPARM:
420 rtw_anaparm_enable(regs, 0);
421 break;
422 }
423 break;
424 case RTW_ACCESS_ANAPARM:
425 switch (regs->r_access) {
426 case RTW_ACCESS_NONE:
427 rtw_config0123_enable(regs, 1);
428 /*FALLTHROUGH*/
429 case RTW_ACCESS_CONFIG:
430 rtw_anaparm_enable(regs, 1);
431 /*FALLTHROUGH*/
432 case RTW_ACCESS_ANAPARM:
433 break;
434 }
435 break;
436 }
437 }
438
439 void
440 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
441 {
442 rtw_set_access1(regs, access);
443 RTW_DPRINTF(RTW_DEBUG_ACCESS,
444 ("%s: access %s -> %s\n", __func__,
445 rtw_access_string(regs->r_access),
446 rtw_access_string(access)));
447 regs->r_access = access;
448 }
449
450 /*
451 * Enable registers, switch register banks.
452 */
453 void
454 rtw_config0123_enable(struct rtw_regs *regs, int enable)
455 {
456 uint8_t ecr;
457 ecr = RTW_READ8(regs, RTW_9346CR);
458 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
459 if (enable)
460 ecr |= RTW_9346CR_EEM_CONFIG;
461 else {
462 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
463 ecr |= RTW_9346CR_EEM_NORMAL;
464 }
465 RTW_WRITE8(regs, RTW_9346CR, ecr);
466 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
467 }
468
469 /* requires rtw_config0123_enable(, 1) */
470 void
471 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
472 {
473 uint8_t cfg3;
474
475 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
476 cfg3 |= RTW_CONFIG3_CLKRUNEN;
477 if (enable)
478 cfg3 |= RTW_CONFIG3_PARMEN;
479 else
480 cfg3 &= ~RTW_CONFIG3_PARMEN;
481 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
482 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
483 }
484
485 /* requires rtw_anaparm_enable(, 1) */
486 void
487 rtw_txdac_enable(struct rtw_softc *sc, int enable)
488 {
489 uint32_t anaparm;
490 struct rtw_regs *regs = &sc->sc_regs;
491
492 anaparm = RTW_READ(regs, RTW_ANAPARM);
493 if (enable)
494 anaparm &= ~RTW_ANAPARM_TXDACOFF;
495 else
496 anaparm |= RTW_ANAPARM_TXDACOFF;
497 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
498 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
499 }
500
501 static inline int
502 rtw_chip_reset1(struct rtw_regs *regs, const char *dvname)
503 {
504 uint8_t cr;
505 int i;
506
507 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
508
509 RTW_WBR(regs, RTW_CR, RTW_CR);
510
511 for (i = 0; i < 1000; i++) {
512 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
513 RTW_DPRINTF(RTW_DEBUG_RESET,
514 ("%s: reset in %dus\n", dvname, i));
515 return 0;
516 }
517 RTW_RBR(regs, RTW_CR, RTW_CR);
518 DELAY(10); /* 10us */
519 }
520
521 printf("%s: reset failed\n", dvname);
522 return ETIMEDOUT;
523 }
524
525 static inline int
526 rtw_chip_reset(struct rtw_regs *regs, const char *dvname)
527 {
528 uint32_t tcr;
529
530 /* from Linux driver */
531 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
532 __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
533
534 RTW_WRITE(regs, RTW_TCR, tcr);
535
536 RTW_WBW(regs, RTW_CR, RTW_TCR);
537
538 return rtw_chip_reset1(regs, dvname);
539 }
540
541 static int
542 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
543 {
544 struct ieee80211_key keycopy;
545
546 RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
547
548 keycopy = *k;
549 keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
550
551 return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
552 }
553
554 static int
555 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
556 {
557 struct rtw_softc *sc = ic->ic_ifp->if_softc;
558 u_int keyix = k->wk_keyix;
559
560 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__, keyix));
561
562 if (keyix >= IEEE80211_WEP_NKID)
563 return 0;
564 if (k->wk_keylen != 0)
565 sc->sc_flags &= ~RTW_F_DK_VALID;
566
567 return 1;
568 }
569
570 static int
571 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
572 const u_int8_t mac[IEEE80211_ADDR_LEN])
573 {
574 struct rtw_softc *sc = ic->ic_ifp->if_softc;
575
576 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
577
578 if (k->wk_keyix >= IEEE80211_WEP_NKID)
579 return 0;
580
581 sc->sc_flags &= ~RTW_F_DK_VALID;
582
583 return 1;
584 }
585
586 static void
587 rtw_key_update_begin(struct ieee80211com *ic)
588 {
589 #ifdef RTW_DEBUG
590 struct ifnet *ifp = ic->ic_ifp;
591 struct rtw_softc *sc = ifp->if_softc;
592 #endif
593
594 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
595 }
596
597 static void
598 rtw_key_update_end(struct ieee80211com *ic)
599 {
600 struct ifnet *ifp = ic->ic_ifp;
601 struct rtw_softc *sc = ifp->if_softc;
602
603 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
604
605 if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
606 (sc->sc_flags & RTW_F_ENABLED) == 0 ||
607 (sc->sc_flags & RTW_F_INVALID) != 0)
608 return;
609
610 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
611 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
612 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
613 (ifp->if_flags & IFF_RUNNING) != 0);
614 }
615
616 static inline int
617 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
618 {
619 if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
620 return 0;
621
622 return ((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
623 ((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
624 }
625
626 static void
627 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
628 {
629 uint8_t psr, scr;
630 int i, keylen;
631 struct rtw_regs *regs;
632 union rtw_keys *rk;
633
634 regs = &sc->sc_regs;
635 rk = &sc->sc_keys;
636
637 (void)memset(rk->rk_keys, 0, sizeof(rk->rk_keys));
638
639 /* Temporarily use software crypto for all keys. */
640 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
641 if (wk[i].wk_cipher == &rtw_cipher_wep)
642 wk[i].wk_cipher = &ieee80211_cipher_wep;
643 }
644
645 rtw_set_access(regs, RTW_ACCESS_CONFIG);
646
647 psr = RTW_READ8(regs, RTW_PSR);
648 scr = RTW_READ8(regs, RTW_SCR);
649 scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
650
651 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
652 goto out;
653
654 for (keylen = i = 0; i < IEEE80211_WEP_NKID; i++) {
655 if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
656 continue;
657 if (i == txkey) {
658 keylen = wk[i].wk_keylen;
659 break;
660 }
661 keylen = MAX(keylen, wk[i].wk_keylen);
662 }
663
664 if (keylen == 5)
665 scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
666 else if (keylen == 13)
667 scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
668
669 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
670 if (wk[i].wk_keylen != keylen ||
671 wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
672 continue;
673 /* h/w will decrypt, s/w still strips headers */
674 wk[i].wk_cipher = &rtw_cipher_wep;
675 (void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
676 }
677
678 out:
679 RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
680
681 bus_space_write_region_4(regs->r_bt, regs->r_bh,
682 RTW_DK0, rk->rk_words,
683 sizeof(rk->rk_words) / sizeof(rk->rk_words[0]));
684
685 bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
686 BUS_SPACE_BARRIER_SYNC);
687
688 RTW_WBW(regs, RTW_DK0, RTW_PSR);
689 RTW_WRITE8(regs, RTW_PSR, psr);
690 RTW_WBW(regs, RTW_PSR, RTW_SCR);
691 RTW_WRITE8(regs, RTW_SCR, scr);
692 RTW_SYNC(regs, RTW_SCR, RTW_SCR);
693 rtw_set_access(regs, RTW_ACCESS_NONE);
694 sc->sc_flags |= RTW_F_DK_VALID;
695 }
696
697 static inline int
698 rtw_recall_eeprom(struct rtw_regs *regs, const char *dvname)
699 {
700 int i;
701 uint8_t ecr;
702
703 ecr = RTW_READ8(regs, RTW_9346CR);
704 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
705 RTW_WRITE8(regs, RTW_9346CR, ecr);
706
707 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
708
709 /* wait 25ms for completion */
710 for (i = 0; i < 250; i++) {
711 ecr = RTW_READ8(regs, RTW_9346CR);
712 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
713 RTW_DPRINTF(RTW_DEBUG_RESET,
714 ("%s: recall EEPROM in %dus\n", dvname, i * 100));
715 return 0;
716 }
717 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
718 DELAY(100);
719 }
720 printf("%s: recall EEPROM failed\n", dvname);
721 return ETIMEDOUT;
722 }
723
724 static inline int
725 rtw_reset(struct rtw_softc *sc)
726 {
727 int rc;
728 uint8_t config1;
729
730 sc->sc_flags &= ~RTW_F_DK_VALID;
731
732 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev.dv_xname)) != 0)
733 return rc;
734
735 rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev.dv_xname);
736
737 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
738 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
739 /* TBD turn off maximum power saving? */
740
741 return 0;
742 }
743
744 static inline int
745 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
746 u_int ndescs)
747 {
748 int i, rc = 0;
749 for (i = 0; i < ndescs; i++) {
750 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
751 0, 0, &descs[i].ts_dmamap);
752 if (rc != 0)
753 break;
754 }
755 return rc;
756 }
757
758 static inline int
759 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
760 u_int ndescs)
761 {
762 int i, rc = 0;
763 for (i = 0; i < ndescs; i++) {
764 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
765 &descs[i].rs_dmamap);
766 if (rc != 0)
767 break;
768 }
769 return rc;
770 }
771
772 static inline void
773 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
774 u_int ndescs)
775 {
776 int i;
777 for (i = 0; i < ndescs; i++) {
778 if (descs[i].rs_dmamap != NULL)
779 bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
780 }
781 }
782
783 static inline void
784 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
785 u_int ndescs)
786 {
787 int i;
788 for (i = 0; i < ndescs; i++) {
789 if (descs[i].ts_dmamap != NULL)
790 bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
791 }
792 }
793
794 static inline void
795 rtw_srom_free(struct rtw_srom *sr)
796 {
797 sr->sr_size = 0;
798 if (sr->sr_content == NULL)
799 return;
800 free(sr->sr_content, M_DEVBUF);
801 sr->sr_content = NULL;
802 }
803
804 static void
805 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
806 uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
807 {
808 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
809 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
810 *rcr |= RTW_RCR_ENCS1;
811 *rfchipid = RTW_RFCHIPID_PHILIPS;
812 }
813
814 static int
815 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
816 enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
817 const char *dvname)
818 {
819 int i;
820 const char *rfname, *paname;
821 char scratch[sizeof("unknown 0xXX")];
822 uint16_t srom_version;
823 uint8_t mac[IEEE80211_ADDR_LEN];
824
825 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
826 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
827
828 srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
829 printf("%s: SROM version %d.%d", dvname,
830 srom_version >> 8, srom_version & 0xff);
831
832 if (srom_version <= 0x0101) {
833 printf(" is not understood, limping along with defaults\n");
834 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
835 return 0;
836 }
837 printf("\n");
838
839 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
840 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
841
842 RTW_DPRINTF(RTW_DEBUG_ATTACH,
843 ("%s: EEPROM MAC %s\n", dvname, ether_sprintf(mac)));
844
845 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
846
847 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
848 *flags |= RTW_F_ANTDIV;
849
850 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
851 * to be reversed.
852 */
853 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
854 *flags |= RTW_F_DIGPHY;
855 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
856 *flags |= RTW_F_DFLANTB;
857
858 *rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
859 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
860
861 if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
862 *flags |= RTW_C_RXWEP_104;
863
864 *flags |= RTW_C_RXWEP_40; /* XXX */
865
866 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
867 switch (*rfchipid) {
868 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
869 rfname = "GCT GRF5101";
870 paname = "Winspring WS9901";
871 break;
872 case RTW_RFCHIPID_MAXIM:
873 rfname = "Maxim MAX2820"; /* guess */
874 paname = "Maxim MAX2422"; /* guess */
875 break;
876 case RTW_RFCHIPID_INTERSIL:
877 rfname = "Intersil HFA3873"; /* guess */
878 paname = "Intersil <unknown>";
879 break;
880 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
881 rfname = "Philips SA2400A";
882 paname = "Philips SA2411";
883 break;
884 case RTW_RFCHIPID_RFMD:
885 /* this is the same front-end as an atw(4)! */
886 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
887 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
888 "SYN: Silicon Labs Si4126"; /* inferred from
889 * reference driver
890 */
891 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
892 break;
893 case RTW_RFCHIPID_RESERVED:
894 rfname = paname = "reserved";
895 break;
896 default:
897 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
898 rfname = paname = scratch;
899 }
900 printf("%s: RF: %s, PA: %s\n", dvname, rfname, paname);
901
902 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
903 case RTW_CONFIG0_GL_USA:
904 case _RTW_CONFIG0_GL_USA:
905 *locale = RTW_LOCALE_USA;
906 break;
907 case RTW_CONFIG0_GL_EUROPE:
908 *locale = RTW_LOCALE_EUROPE;
909 break;
910 case RTW_CONFIG0_GL_JAPAN:
911 *locale = RTW_LOCALE_JAPAN;
912 break;
913 default:
914 *locale = RTW_LOCALE_UNKNOWN;
915 break;
916 }
917 return 0;
918 }
919
920 /* Returns -1 on failure. */
921 static int
922 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
923 const char *dvname)
924 {
925 int rc;
926 struct seeprom_descriptor sd;
927 uint8_t ecr;
928
929 (void)memset(&sd, 0, sizeof(sd));
930
931 ecr = RTW_READ8(regs, RTW_9346CR);
932
933 if ((flags & RTW_F_9356SROM) != 0) {
934 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n", dvname));
935 sr->sr_size = 256;
936 sd.sd_chip = C56_66;
937 } else {
938 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n", dvname));
939 sr->sr_size = 128;
940 sd.sd_chip = C46;
941 }
942
943 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
944 RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
945 ecr |= RTW_9346CR_EEM_PROGRAM;
946
947 RTW_WRITE8(regs, RTW_9346CR, ecr);
948
949 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
950
951 if (sr->sr_content == NULL) {
952 printf("%s: unable to allocate SROM buffer\n", dvname);
953 return ENOMEM;
954 }
955
956 (void)memset(sr->sr_content, 0, sr->sr_size);
957
958 /* RTL8180 has a single 8-bit register for controlling the
959 * 93cx6 SROM. There is no "ready" bit. The RTL8180
960 * input/output sense is the reverse of read_seeprom's.
961 */
962 sd.sd_tag = regs->r_bt;
963 sd.sd_bsh = regs->r_bh;
964 sd.sd_regsize = 1;
965 sd.sd_control_offset = RTW_9346CR;
966 sd.sd_status_offset = RTW_9346CR;
967 sd.sd_dataout_offset = RTW_9346CR;
968 sd.sd_CK = RTW_9346CR_EESK;
969 sd.sd_CS = RTW_9346CR_EECS;
970 sd.sd_DI = RTW_9346CR_EEDO;
971 sd.sd_DO = RTW_9346CR_EEDI;
972 /* make read_seeprom enter EEPROM read/write mode */
973 sd.sd_MS = ecr;
974 sd.sd_RDY = 0;
975
976 /* TBD bus barriers */
977 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
978 printf("%s: could not read SROM\n", dvname);
979 free(sr->sr_content, M_DEVBUF);
980 sr->sr_content = NULL;
981 return -1; /* XXX */
982 }
983
984 /* end EEPROM read/write mode */
985 RTW_WRITE8(regs, RTW_9346CR,
986 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
987 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
988
989 if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
990 return rc;
991
992 #ifdef RTW_DEBUG
993 {
994 int i;
995 RTW_DPRINTF(RTW_DEBUG_ATTACH,
996 ("\n%s: serial ROM:\n\t", dvname));
997 for (i = 0; i < sr->sr_size/2; i++) {
998 if (((i % 8) == 0) && (i != 0))
999 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
1000 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1001 (" %04x", sr->sr_content[i]));
1002 }
1003 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
1004 }
1005 #endif /* RTW_DEBUG */
1006 return 0;
1007 }
1008
1009 static void
1010 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1011 const char *dvname)
1012 {
1013 uint8_t cfg4;
1014 const char *method;
1015
1016 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1017
1018 switch (rfchipid) {
1019 default:
1020 cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1021 method = "fallback";
1022 break;
1023 case RTW_RFCHIPID_INTERSIL:
1024 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1025 method = "Intersil";
1026 break;
1027 case RTW_RFCHIPID_PHILIPS:
1028 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1029 method = "Philips";
1030 break;
1031 case RTW_RFCHIPID_GCT: /* XXX a guess */
1032 case RTW_RFCHIPID_RFMD:
1033 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1034 method = "RFMD";
1035 break;
1036 }
1037
1038 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1039
1040 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1041
1042 RTW_DPRINTF(RTW_DEBUG_INIT,
1043 ("%s: %s RF programming method, %#02x\n", dvname, method,
1044 RTW_READ8(regs, RTW_CONFIG4)));
1045 }
1046
1047 static inline void
1048 rtw_init_channels(enum rtw_locale locale,
1049 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
1050 const char *dvname)
1051 {
1052 int i;
1053 const char *name = NULL;
1054 #define ADD_CHANNEL(_chans, _chan) do { \
1055 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
1056 (*_chans)[_chan].ic_freq = \
1057 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1058 } while (0)
1059
1060 switch (locale) {
1061 case RTW_LOCALE_USA: /* 1-11 */
1062 name = "USA";
1063 for (i = 1; i <= 11; i++)
1064 ADD_CHANNEL(chans, i);
1065 break;
1066 case RTW_LOCALE_JAPAN: /* 1-14 */
1067 name = "Japan";
1068 ADD_CHANNEL(chans, 14);
1069 for (i = 1; i <= 14; i++)
1070 ADD_CHANNEL(chans, i);
1071 break;
1072 case RTW_LOCALE_EUROPE: /* 1-13 */
1073 name = "Europe";
1074 for (i = 1; i <= 13; i++)
1075 ADD_CHANNEL(chans, i);
1076 break;
1077 default: /* 10-11 allowed by most countries */
1078 name = "<unknown>";
1079 for (i = 10; i <= 11; i++)
1080 ADD_CHANNEL(chans, i);
1081 break;
1082 }
1083 printf("%s: Geographic Location %s\n", dvname, name);
1084 #undef ADD_CHANNEL
1085 }
1086
1087
1088 static inline void
1089 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1090 {
1091 uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1092
1093 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1094 case RTW_CONFIG0_GL_USA:
1095 case _RTW_CONFIG0_GL_USA:
1096 *locale = RTW_LOCALE_USA;
1097 break;
1098 case RTW_CONFIG0_GL_JAPAN:
1099 *locale = RTW_LOCALE_JAPAN;
1100 break;
1101 case RTW_CONFIG0_GL_EUROPE:
1102 *locale = RTW_LOCALE_EUROPE;
1103 break;
1104 default:
1105 *locale = RTW_LOCALE_UNKNOWN;
1106 break;
1107 }
1108 }
1109
1110 static inline int
1111 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1112 const char *dvname)
1113 {
1114 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1115 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1116 };
1117 uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1118 idr1 = RTW_READ(regs, RTW_IDR1);
1119
1120 (*addr)[0] = __SHIFTOUT(idr0, __BITS(0, 7));
1121 (*addr)[1] = __SHIFTOUT(idr0, __BITS(8, 15));
1122 (*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
1123 (*addr)[3] = __SHIFTOUT(idr0, __BITS(24 ,31));
1124
1125 (*addr)[4] = __SHIFTOUT(idr1, __BITS(0, 7));
1126 (*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
1127
1128 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1129 printf("%s: could not get mac address, attach failed\n",
1130 dvname);
1131 return ENXIO;
1132 }
1133
1134 printf("%s: 802.11 address %s\n", dvname, ether_sprintf(*addr));
1135
1136 return 0;
1137 }
1138
1139 static uint8_t
1140 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1141 struct ieee80211_channel *chan)
1142 {
1143 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1144 KASSERT2(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14,
1145 ("%s: channel %d out of range", __func__,
1146 idx - RTW_SR_TXPOWER1 + 1));
1147 return RTW_SR_GET(sr, idx);
1148 }
1149
1150 static void
1151 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1152 {
1153 int pri;
1154 /* nfree: the number of free descriptors in each ring.
1155 * The beacon ring is a special case: I do not let the
1156 * driver use all of the descriptors on the beacon ring.
1157 * The reasons are two-fold:
1158 *
1159 * (1) A BEACON descriptor's OWN bit is (apparently) not
1160 * updated, so the driver cannot easily know if the descriptor
1161 * belongs to it, or if it is racing the NIC. If the NIC
1162 * does not OWN every descriptor, then the driver can safely
1163 * update the descriptors when RTW_TBDA points at tdb_next.
1164 *
1165 * (2) I hope that the NIC will process more than one BEACON
1166 * descriptor in a single beacon interval, since that will
1167 * enable multiple-BSS support. Since the NIC does not
1168 * clear the OWN bit, there is no natural place for it to
1169 * stop processing BEACON desciptors. Maybe it will *not*
1170 * stop processing them! I do not want to chance the NIC
1171 * looping around and around a saturated beacon ring, so
1172 * I will leave one descriptor unOWNed at all times.
1173 */
1174 u_int nfree[RTW_NTXPRI] =
1175 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1176 RTW_NTXDESCBCN - 1};
1177
1178 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1179 tdb[pri].tdb_nfree = nfree[pri];
1180 tdb[pri].tdb_next = 0;
1181 }
1182 }
1183
1184 static int
1185 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1186 {
1187 int i;
1188 struct rtw_txsoft *ts;
1189
1190 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1191 SIMPLEQ_INIT(&tsb->tsb_freeq);
1192 for (i = 0; i < tsb->tsb_ndesc; i++) {
1193 ts = &tsb->tsb_desc[i];
1194 ts->ts_mbuf = NULL;
1195 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1196 }
1197 tsb->tsb_tx_timer = 0;
1198 return 0;
1199 }
1200
1201 static void
1202 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1203 {
1204 int pri;
1205 for (pri = 0; pri < RTW_NTXPRI; pri++)
1206 rtw_txsoft_blk_init(&tsb[pri]);
1207 }
1208
1209 static inline void
1210 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1211 {
1212 KASSERT(nsync <= rdb->rdb_ndesc);
1213 /* sync to end of ring */
1214 if (desc0 + nsync > rdb->rdb_ndesc) {
1215 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1216 offsetof(struct rtw_descs, hd_rx[desc0]),
1217 sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1218 nsync -= (rdb->rdb_ndesc - desc0);
1219 desc0 = 0;
1220 }
1221
1222 KASSERT(desc0 < rdb->rdb_ndesc);
1223 KASSERT(nsync <= rdb->rdb_ndesc);
1224 KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1225
1226 /* sync what remains */
1227 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1228 offsetof(struct rtw_descs, hd_rx[desc0]),
1229 sizeof(struct rtw_rxdesc) * nsync, ops);
1230 }
1231
1232 static void
1233 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1234 {
1235 /* sync to end of ring */
1236 if (desc0 + nsync > tdb->tdb_ndesc) {
1237 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1238 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1239 sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1240 ops);
1241 nsync -= (tdb->tdb_ndesc - desc0);
1242 desc0 = 0;
1243 }
1244
1245 /* sync what remains */
1246 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1247 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1248 sizeof(struct rtw_txdesc) * nsync, ops);
1249 }
1250
1251 static void
1252 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1253 {
1254 int pri;
1255 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1256 rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1257 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1258 }
1259 }
1260
1261 static void
1262 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1263 {
1264 int i;
1265 struct rtw_rxsoft *rs;
1266
1267 for (i = 0; i < RTW_RXQLEN; i++) {
1268 rs = &desc[i];
1269 if (rs->rs_mbuf == NULL)
1270 continue;
1271 bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1272 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1273 bus_dmamap_unload(dmat, rs->rs_dmamap);
1274 m_freem(rs->rs_mbuf);
1275 rs->rs_mbuf = NULL;
1276 }
1277 }
1278
1279 static inline int
1280 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1281 {
1282 int rc;
1283 struct mbuf *m;
1284
1285 MGETHDR(m, M_DONTWAIT, MT_DATA);
1286 if (m == NULL)
1287 return ENOBUFS;
1288
1289 MCLGET(m, M_DONTWAIT);
1290 if ((m->m_flags & M_EXT) == 0) {
1291 m_freem(m);
1292 return ENOBUFS;
1293 }
1294
1295 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1296
1297 if (rs->rs_mbuf != NULL)
1298 bus_dmamap_unload(dmat, rs->rs_dmamap);
1299
1300 rs->rs_mbuf = NULL;
1301
1302 rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1303 if (rc != 0) {
1304 m_freem(m);
1305 return -1;
1306 }
1307
1308 rs->rs_mbuf = m;
1309
1310 return 0;
1311 }
1312
1313 static int
1314 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1315 int *ndesc, const char *dvname)
1316 {
1317 int i, rc = 0;
1318 struct rtw_rxsoft *rs;
1319
1320 for (i = 0; i < RTW_RXQLEN; i++) {
1321 rs = &desc[i];
1322 /* we're in rtw_init, so there should be no mbufs allocated */
1323 KASSERT(rs->rs_mbuf == NULL);
1324 #ifdef RTW_DEBUG
1325 if (i == rtw_rxbufs_limit) {
1326 printf("%s: TEST hit %d-buffer limit\n", dvname, i);
1327 rc = ENOBUFS;
1328 break;
1329 }
1330 #endif /* RTW_DEBUG */
1331 if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1332 printf("%s: rtw_rxsoft_alloc failed, %d buffers, "
1333 "rc %d\n", dvname, i, rc);
1334 break;
1335 }
1336 }
1337 *ndesc = i;
1338 return rc;
1339 }
1340
1341 static inline void
1342 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1343 int idx, int kick)
1344 {
1345 int is_last = (idx == rdb->rdb_ndesc - 1);
1346 uint32_t ctl, octl, obuf;
1347 struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1348
1349 obuf = rd->rd_buf;
1350 rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1351
1352 ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1353 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1354
1355 if (is_last)
1356 ctl |= RTW_RXCTL_EOR;
1357
1358 octl = rd->rd_ctl;
1359 rd->rd_ctl = htole32(ctl);
1360
1361 RTW_DPRINTF(
1362 kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1363 : RTW_DEBUG_RECV_DESC,
1364 ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1365 le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1366 le32toh(rd->rd_ctl)));
1367
1368 /* sync the mbuf */
1369 bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1370 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1371
1372 /* sync the descriptor */
1373 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1374 RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1375 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1376 }
1377
1378 static void
1379 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1380 {
1381 int i;
1382 struct rtw_rxdesc *rd;
1383 struct rtw_rxsoft *rs;
1384
1385 for (i = 0; i < rdb->rdb_ndesc; i++) {
1386 rd = &rdb->rdb_desc[i];
1387 rs = &ctl[i];
1388 rtw_rxdesc_init(rdb, rs, i, kick);
1389 }
1390 }
1391
1392 static void
1393 rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
1394 {
1395 struct rtw_regs *regs = &sc->sc_regs;
1396 uint8_t cr;
1397
1398 RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1399 enable ? "enable" : "disable", flags));
1400
1401 cr = RTW_READ8(regs, RTW_CR);
1402
1403 /* XXX reference source does not enable MULRW */
1404 /* enable PCI Read/Write Multiple */
1405 cr |= RTW_CR_MULRW;
1406
1407 /* The receive engine will always start at RDSAR. */
1408 if (enable && (flags & ~cr & RTW_CR_RE)) {
1409 struct rtw_rxdesc_blk *rdb;
1410 rdb = &sc->sc_rxdesc_blk;
1411 rdb->rdb_next = 0;
1412 }
1413
1414 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1415 if (enable)
1416 cr |= flags;
1417 else
1418 cr &= ~flags;
1419 RTW_WRITE8(regs, RTW_CR, cr);
1420 RTW_SYNC(regs, RTW_CR, RTW_CR);
1421
1422 #ifdef RTW_DIAG
1423 if (cr & RTW_CR_TE)
1424 rtw_txring_fixup(sc, __func__, __LINE__);
1425 #endif
1426 }
1427
1428 static void
1429 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1430 {
1431 #define IS_BEACON(__fc0) \
1432 ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1433 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1434
1435 static const int ratetbl[4] = {2, 4, 11, 22}; /* convert rates:
1436 * hardware -> net80211
1437 */
1438 u_int next, nproc = 0;
1439 int hwrate, len, rate, rssi, sq;
1440 uint32_t hrssi, hstat, htsfth, htsftl;
1441 struct rtw_rxdesc *rd;
1442 struct rtw_rxsoft *rs;
1443 struct rtw_rxdesc_blk *rdb;
1444 struct mbuf *m;
1445 struct ifnet *ifp = &sc->sc_if;
1446
1447 struct ieee80211_node *ni;
1448 struct ieee80211_frame_min *wh;
1449
1450 rdb = &sc->sc_rxdesc_blk;
1451
1452 for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
1453 KASSERT(next < rdb->rdb_ndesc);
1454
1455 rtw_rxdescs_sync(rdb, next, 1,
1456 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1457 rd = &rdb->rdb_desc[next];
1458 rs = &sc->sc_rxsoft[next];
1459
1460 hstat = le32toh(rd->rd_stat);
1461 hrssi = le32toh(rd->rd_rssi);
1462 htsfth = le32toh(rd->rd_tsfth);
1463 htsftl = le32toh(rd->rd_tsftl);
1464
1465 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1466 ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1467 __func__, next, hstat, hrssi, htsfth, htsftl));
1468
1469 ++nproc;
1470
1471 /* still belongs to NIC */
1472 if ((hstat & RTW_RXSTAT_OWN) != 0) {
1473 rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
1474 break;
1475 }
1476
1477 /* ieee80211_input() might reset the receive engine
1478 * (e.g. by indirectly calling rtw_tune()), so save
1479 * the next pointer here and retrieve it again on
1480 * the next round.
1481 */
1482 rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
1483
1484 #ifdef RTW_DEBUG
1485 #define PRINTSTAT(flag) do { \
1486 if ((hstat & flag) != 0) { \
1487 printf("%s" #flag, delim); \
1488 delim = ","; \
1489 } \
1490 } while (0)
1491 if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1492 const char *delim = "<";
1493 printf("%s: ", sc->sc_dev.dv_xname);
1494 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1495 printf("status %08x", hstat);
1496 PRINTSTAT(RTW_RXSTAT_SPLCP);
1497 PRINTSTAT(RTW_RXSTAT_MAR);
1498 PRINTSTAT(RTW_RXSTAT_PAR);
1499 PRINTSTAT(RTW_RXSTAT_BAR);
1500 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1501 PRINTSTAT(RTW_RXSTAT_CRC32);
1502 PRINTSTAT(RTW_RXSTAT_ICV);
1503 printf(">, ");
1504 }
1505 }
1506 #endif /* RTW_DEBUG */
1507
1508 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1509 printf("%s: DMA error/FIFO overflow %08" PRIx32 ", "
1510 "rx descriptor %d\n", sc->sc_dev.dv_xname,
1511 hstat, next);
1512 ifp->if_ierrors++;
1513 goto next;
1514 }
1515
1516 len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1517 if (len < IEEE80211_MIN_LEN) {
1518 sc->sc_ic.ic_stats.is_rx_tooshort++;
1519 goto next;
1520 }
1521
1522 /* CRC is included with the packet; trim it off. */
1523 len -= IEEE80211_CRC_LEN;
1524
1525 hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1526 if (hwrate >= sizeof(ratetbl) / sizeof(ratetbl[0])) {
1527 printf("%s: unknown rate #%" __PRIuBITS "\n",
1528 sc->sc_dev.dv_xname,
1529 __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1530 ifp->if_ierrors++;
1531 goto next;
1532 }
1533 rate = ratetbl[hwrate];
1534
1535 #ifdef RTW_DEBUG
1536 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1537 ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1538 (rate * 5) % 10, htsfth, htsftl));
1539 #endif /* RTW_DEBUG */
1540
1541 if ((hstat & RTW_RXSTAT_RES) != 0 &&
1542 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
1543 goto next;
1544
1545 /* if bad flags, skip descriptor */
1546 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1547 printf("%s: too many rx segments, "
1548 "next=%d, %08" PRIx32 "\n",
1549 sc->sc_dev.dv_xname, next, hstat);
1550 goto next;
1551 }
1552
1553 bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1554 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1555
1556 m = rs->rs_mbuf;
1557
1558 /* if temporarily out of memory, re-use mbuf */
1559 switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1560 case 0:
1561 break;
1562 case ENOBUFS:
1563 printf("%s: rtw_rxsoft_alloc(, %d) failed, "
1564 "dropping packet\n", sc->sc_dev.dv_xname, next);
1565 goto next;
1566 default:
1567 /* XXX shorten rx ring, instead? */
1568 panic("%s: could not load DMA map\n",
1569 sc->sc_dev.dv_xname);
1570 }
1571
1572 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1573 rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_RSSI);
1574 else {
1575 rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1576 /* TBD find out each front-end's LNA gain in the
1577 * front-end's units
1578 */
1579 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1580 rssi |= 0x80;
1581 }
1582 sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1583
1584 /* Note well: now we cannot recycle the rs_mbuf unless
1585 * we restore its original length.
1586 */
1587 m->m_pkthdr.rcvif = ifp;
1588 m->m_pkthdr.len = m->m_len = len;
1589
1590 wh = mtod(m, struct ieee80211_frame_min *);
1591
1592 if (!IS_BEACON(wh->i_fc[0]))
1593 sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1594 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1595 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1596
1597 sc->sc_tsfth = htsfth;
1598
1599 #ifdef RTW_DEBUG
1600 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1601 (IFF_DEBUG|IFF_LINK2)) {
1602 ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1603 rate, rssi);
1604 }
1605 #endif /* RTW_DEBUG */
1606
1607 #if NBPFILTER > 0
1608 if (sc->sc_radiobpf != NULL) {
1609 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1610
1611 rr->rr_tsft =
1612 htole64(((uint64_t)htsfth << 32) | htsftl);
1613
1614 if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1615 rr->rr_flags = IEEE80211_RADIOTAP_F_SHORTPRE;
1616
1617 rr->rr_flags = 0;
1618 rr->rr_rate = rate;
1619 rr->rr_antsignal = rssi;
1620 rr->rr_barker_lock = htole16(sq);
1621
1622 bpf_mtap2(sc->sc_radiobpf, (caddr_t)rr,
1623 sizeof(sc->sc_rxtapu), m);
1624 }
1625 #endif /* NPBFILTER > 0 */
1626
1627 ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1628 ieee80211_free_node(ni);
1629 next:
1630 rtw_rxdesc_init(rdb, rs, next, 0);
1631 }
1632 #undef IS_BEACON
1633 }
1634
1635 static void
1636 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1637 struct rtw_txsoft *ts)
1638 {
1639 struct mbuf *m;
1640 struct ieee80211_node *ni;
1641
1642 m = ts->ts_mbuf;
1643 ni = ts->ts_ni;
1644 KASSERT(m != NULL);
1645 KASSERT(ni != NULL);
1646 ts->ts_mbuf = NULL;
1647 ts->ts_ni = NULL;
1648
1649 bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1650 BUS_DMASYNC_POSTWRITE);
1651 bus_dmamap_unload(dmat, ts->ts_dmamap);
1652 m_freem(m);
1653 ieee80211_free_node(ni);
1654 }
1655
1656 static void
1657 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1658 struct rtw_txsoft_blk *tsb)
1659 {
1660 struct rtw_txsoft *ts;
1661
1662 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1663 rtw_txsoft_release(dmat, ic, ts);
1664 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1665 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1666 }
1667 tsb->tsb_tx_timer = 0;
1668 }
1669
1670 static inline void
1671 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1672 struct rtw_txsoft *ts, int ndesc)
1673 {
1674 uint32_t hstat;
1675 int data_retry, rts_retry;
1676 struct rtw_txdesc *tdn;
1677 const char *condstring;
1678 struct ifnet *ifp = &sc->sc_if;
1679
1680 rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1681
1682 tdb->tdb_nfree += ndesc;
1683
1684 tdn = &tdb->tdb_desc[ts->ts_last];
1685
1686 hstat = le32toh(tdn->td_stat);
1687 rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1688 data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1689
1690 ifp->if_collisions += rts_retry + data_retry;
1691
1692 if ((hstat & RTW_TXSTAT_TOK) != 0)
1693 condstring = "ok";
1694 else {
1695 ifp->if_oerrors++;
1696 condstring = "error";
1697 }
1698
1699 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1700 ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1701 sc->sc_dev.dv_xname, ts, ts->ts_first, ts->ts_last,
1702 condstring, rts_retry, data_retry));
1703 }
1704
1705 static void
1706 rtw_reset_oactive(struct rtw_softc *sc)
1707 {
1708 short oflags;
1709 int pri;
1710 struct rtw_txsoft_blk *tsb;
1711 struct rtw_txdesc_blk *tdb;
1712 oflags = sc->sc_if.if_flags;
1713 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1714 tsb = &sc->sc_txsoft_blk[pri];
1715 tdb = &sc->sc_txdesc_blk[pri];
1716 if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1717 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1718 }
1719 if (oflags != sc->sc_if.if_flags) {
1720 DPRINTF(sc, RTW_DEBUG_OACTIVE,
1721 ("%s: reset OACTIVE\n", __func__));
1722 }
1723 }
1724
1725 /* Collect transmitted packets. */
1726 static inline void
1727 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1728 struct rtw_txdesc_blk *tdb, int force)
1729 {
1730 int ndesc;
1731 struct rtw_txsoft *ts;
1732
1733 #ifdef RTW_DEBUG
1734 rtw_dump_rings(sc);
1735 #endif
1736
1737 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1738 /* If we're clearing a failed transmission, only clear
1739 up to the last packet the hardware has processed. */
1740 if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
1741 break;
1742
1743 ndesc = 1 + ts->ts_last - ts->ts_first;
1744 if (ts->ts_last < ts->ts_first)
1745 ndesc += tdb->tdb_ndesc;
1746
1747 KASSERT(ndesc > 0);
1748
1749 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1750 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1751
1752 if (force) {
1753 int next;
1754 #ifdef RTW_DIAG
1755 printf("%s: clearing packet, stats", __func__);
1756 #endif
1757 for (next = ts->ts_first; ;
1758 next = RTW_NEXT_IDX(tdb, next)) {
1759 #ifdef RTW_DIAG
1760 printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
1761 #endif
1762 tdb->tdb_desc[next].td_stat &=
1763 ~htole32(RTW_TXSTAT_OWN);
1764 if (next == ts->ts_last)
1765 break;
1766 }
1767 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1768 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1769 #ifdef RTW_DIAG
1770 next = RTW_NEXT_IDX(tdb, next);
1771 printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
1772 le32toh(tdb->tdb_desc[next].td_stat),
1773 rtw_txring_next(&sc->sc_regs, tdb));
1774 #endif
1775 } else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1776 htole32(RTW_TXSTAT_OWN)) != 0) {
1777 rtw_txdescs_sync(tdb, ts->ts_last, 1,
1778 BUS_DMASYNC_PREREAD);
1779 break;
1780 }
1781
1782 rtw_collect_txpkt(sc, tdb, ts, ndesc);
1783 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1784 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1785 }
1786
1787 /* no more pending transmissions, cancel watchdog */
1788 if (ts == NULL)
1789 tsb->tsb_tx_timer = 0;
1790 rtw_reset_oactive(sc);
1791 }
1792
1793 static void
1794 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1795 {
1796 int pri;
1797 struct rtw_txsoft_blk *tsb;
1798 struct rtw_txdesc_blk *tdb;
1799 struct ifnet *ifp = &sc->sc_if;
1800
1801 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1802 tsb = &sc->sc_txsoft_blk[pri];
1803 tdb = &sc->sc_txdesc_blk[pri];
1804 rtw_collect_txring(sc, tsb, tdb, 0);
1805 }
1806
1807 if ((isr & RTW_INTR_TX) != 0)
1808 rtw_start(ifp);
1809
1810 return;
1811 }
1812
1813 static void
1814 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1815 {
1816 u_int next;
1817 uint32_t tsfth, tsftl;
1818 struct ieee80211com *ic;
1819 struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1820 struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1821 struct mbuf *m;
1822
1823 tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1824 tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1825
1826 if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) {
1827 next = rtw_txring_next(&sc->sc_regs, tdb);
1828 RTW_DPRINTF(RTW_DEBUG_BEACON,
1829 ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1830 ", next %u expected %u, %" PRIu64 "\n", __func__,
1831 (next == tdb->tdb_next) ? "" : "un", isr, next,
1832 tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1833 if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
1834 rtw_collect_txring(sc, tsb, tdb, 1);
1835 }
1836 /* Start beacon transmission. */
1837
1838 if ((isr & RTW_INTR_BCNINT) != 0 &&
1839 sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1840 SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1841 RTW_DPRINTF(RTW_DEBUG_BEACON,
1842 ("%s: beacon prep. time, isr = %#04" PRIx16
1843 ", %16" PRIu64 "\n", __func__, isr,
1844 (uint64_t)tsfth << 32 | tsftl));
1845 ic = &sc->sc_ic;
1846 m = rtw_beacon_alloc(sc, ic->ic_bss);
1847
1848 if (m == NULL) {
1849 printf("%s: could not allocate beacon\n",
1850 sc->sc_dev.dv_xname);
1851 return;
1852 }
1853 m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss);
1854 IF_ENQUEUE(&sc->sc_beaconq, m);
1855 rtw_start(&sc->sc_if);
1856 }
1857 }
1858
1859 static void
1860 rtw_intr_atim(struct rtw_softc *sc)
1861 {
1862 /* TBD */
1863 return;
1864 }
1865
1866 #ifdef RTW_DEBUG
1867 static void
1868 rtw_dump_rings(struct rtw_softc *sc)
1869 {
1870 struct rtw_txdesc_blk *tdb;
1871 struct rtw_rxdesc *rd;
1872 struct rtw_rxdesc_blk *rdb;
1873 int desc, pri;
1874
1875 if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1876 return;
1877
1878 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1879 tdb = &sc->sc_txdesc_blk[pri];
1880 printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1881 tdb->tdb_ndesc, tdb->tdb_nfree);
1882 for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1883 rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1884 }
1885
1886 rdb = &sc->sc_rxdesc_blk;
1887
1888 for (desc = 0; desc < RTW_RXQLEN; desc++) {
1889 rd = &rdb->rdb_desc[desc];
1890 printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1891 "rsvd1/tsfth %08x\n", __func__,
1892 (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1893 le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1894 le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1895 }
1896 }
1897 #endif /* RTW_DEBUG */
1898
1899 static void
1900 rtw_hwring_setup(struct rtw_softc *sc)
1901 {
1902 int pri;
1903 struct rtw_regs *regs = &sc->sc_regs;
1904 struct rtw_txdesc_blk *tdb;
1905
1906 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1907 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1908 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1909 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1910 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1911 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1912 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1913 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1914
1915 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1916 tdb = &sc->sc_txdesc_blk[pri];
1917 RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1918 RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1919 ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1920 (uintptr_t)tdb->tdb_base));
1921 }
1922
1923 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1924
1925 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1926 ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1927 (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1928
1929 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1930
1931 }
1932
1933 static int
1934 rtw_swring_setup(struct rtw_softc *sc)
1935 {
1936 int rc;
1937 struct rtw_rxdesc_blk *rdb;
1938
1939 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1940
1941 rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
1942
1943 rdb = &sc->sc_rxdesc_blk;
1944 if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
1945 sc->sc_dev.dv_xname)) != 0 && rdb->rdb_ndesc == 0) {
1946 printf("%s: could not allocate rx buffers\n",
1947 sc->sc_dev.dv_xname);
1948 return rc;
1949 }
1950
1951 rdb = &sc->sc_rxdesc_blk;
1952 rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
1953 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1954 rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
1955 rdb->rdb_next = 0;
1956
1957 rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
1958 return 0;
1959 }
1960
1961 static void
1962 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
1963 {
1964 int i;
1965
1966 (void)memset(tdb->tdb_desc, 0,
1967 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
1968 for (i = 0; i < tdb->tdb_ndesc; i++)
1969 tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
1970 }
1971
1972 static u_int
1973 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
1974 {
1975 return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
1976 sizeof(struct rtw_txdesc);
1977 }
1978
1979 #ifdef RTW_DIAG
1980 static void
1981 rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
1982 {
1983 int pri;
1984 u_int next;
1985 struct rtw_txdesc_blk *tdb;
1986 struct rtw_regs *regs = &sc->sc_regs;
1987
1988 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1989 int i;
1990 tdb = &sc->sc_txdesc_blk[pri];
1991 next = rtw_txring_next(regs, tdb);
1992 if (tdb->tdb_next == next)
1993 continue;
1994 for (i = 0; next != tdb->tdb_next;
1995 next = RTW_NEXT_IDX(tdb, next), i++) {
1996 if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
1997 break;
1998 }
1999 printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
2000 ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
2001 if (tdb->tdb_next == next)
2002 continue;
2003 tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
2004 }
2005 }
2006 #endif
2007
2008 static void
2009 rtw_txdescs_reset(struct rtw_softc *sc)
2010 {
2011 int pri;
2012 struct rtw_txsoft_blk *tsb;
2013 struct rtw_txdesc_blk *tdb;
2014
2015 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2016 tsb = &sc->sc_txsoft_blk[pri];
2017 tdb = &sc->sc_txdesc_blk[pri];
2018 rtw_collect_txring(sc, tsb, tdb, 1);
2019 #ifdef RTW_DIAG
2020 if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
2021 printf("%s: packets left in ring %d\n", __func__, pri);
2022 #endif
2023 }
2024 }
2025
2026 static void
2027 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2028 {
2029 printf("%s: tx fifo underflow\n", sc->sc_dev.dv_xname);
2030
2031 RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
2032 "\n", sc->sc_dev.dv_xname, isr));
2033
2034 #ifdef RTW_DEBUG
2035 rtw_dump_rings(sc);
2036 #endif /* RTW_DEBUG */
2037
2038 /* Collect tx'd packets. XXX let's hope this stops the transmit
2039 * timeouts.
2040 */
2041 rtw_txdescs_reset(sc);
2042
2043 #ifdef RTW_DEBUG
2044 rtw_dump_rings(sc);
2045 #endif /* RTW_DEBUG */
2046 }
2047
2048 static inline void
2049 rtw_suspend_ticks(struct rtw_softc *sc)
2050 {
2051 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2052 ("%s: suspending ticks\n", sc->sc_dev.dv_xname));
2053 sc->sc_do_tick = 0;
2054 }
2055
2056 static inline void
2057 rtw_resume_ticks(struct rtw_softc *sc)
2058 {
2059 uint32_t tsftrl0, tsftrl1, next_tick;
2060
2061 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2062
2063 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2064 next_tick = tsftrl1 + 1000000;
2065 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
2066
2067 sc->sc_do_tick = 1;
2068
2069 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2070 ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2071 sc->sc_dev.dv_xname, tsftrl1 - tsftrl0, tsftrl1, next_tick));
2072 }
2073
2074 static void
2075 rtw_intr_timeout(struct rtw_softc *sc)
2076 {
2077 RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", sc->sc_dev.dv_xname));
2078 if (sc->sc_do_tick)
2079 rtw_resume_ticks(sc);
2080 return;
2081 }
2082
2083 int
2084 rtw_intr(void *arg)
2085 {
2086 int i;
2087 struct rtw_softc *sc = arg;
2088 struct rtw_regs *regs = &sc->sc_regs;
2089 uint16_t isr;
2090 struct ifnet *ifp = &sc->sc_if;
2091
2092 /*
2093 * If the interface isn't running, the interrupt couldn't
2094 * possibly have come from us.
2095 */
2096 if ((sc->sc_flags & RTW_F_ENABLED) == 0 ||
2097 (ifp->if_flags & IFF_RUNNING) == 0 ||
2098 !device_is_active(&sc->sc_dev)) {
2099 RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n", sc->sc_dev.dv_xname));
2100 return (0);
2101 }
2102
2103 for (i = 0; i < 10; i++) {
2104 isr = RTW_READ16(regs, RTW_ISR);
2105
2106 RTW_WRITE16(regs, RTW_ISR, isr);
2107 RTW_WBR(regs, RTW_ISR, RTW_ISR);
2108
2109 if (sc->sc_intr_ack != NULL)
2110 (*sc->sc_intr_ack)(regs);
2111
2112 if (isr == 0)
2113 break;
2114
2115 #ifdef RTW_DEBUG
2116 #define PRINTINTR(flag) do { \
2117 if ((isr & flag) != 0) { \
2118 printf("%s" #flag, delim); \
2119 delim = ","; \
2120 } \
2121 } while (0)
2122
2123 if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2124 const char *delim = "<";
2125
2126 printf("%s: reg[ISR] = %x", sc->sc_dev.dv_xname, isr);
2127
2128 PRINTINTR(RTW_INTR_TXFOVW);
2129 PRINTINTR(RTW_INTR_TIMEOUT);
2130 PRINTINTR(RTW_INTR_BCNINT);
2131 PRINTINTR(RTW_INTR_ATIMINT);
2132 PRINTINTR(RTW_INTR_TBDER);
2133 PRINTINTR(RTW_INTR_TBDOK);
2134 PRINTINTR(RTW_INTR_THPDER);
2135 PRINTINTR(RTW_INTR_THPDOK);
2136 PRINTINTR(RTW_INTR_TNPDER);
2137 PRINTINTR(RTW_INTR_TNPDOK);
2138 PRINTINTR(RTW_INTR_RXFOVW);
2139 PRINTINTR(RTW_INTR_RDU);
2140 PRINTINTR(RTW_INTR_TLPDER);
2141 PRINTINTR(RTW_INTR_TLPDOK);
2142 PRINTINTR(RTW_INTR_RER);
2143 PRINTINTR(RTW_INTR_ROK);
2144
2145 printf(">\n");
2146 }
2147 #undef PRINTINTR
2148 #endif /* RTW_DEBUG */
2149
2150 if ((isr & RTW_INTR_RX) != 0)
2151 rtw_intr_rx(sc, isr);
2152 if ((isr & RTW_INTR_TX) != 0)
2153 rtw_intr_tx(sc, isr);
2154 if ((isr & RTW_INTR_BEACON) != 0)
2155 rtw_intr_beacon(sc, isr);
2156 if ((isr & RTW_INTR_ATIMINT) != 0)
2157 rtw_intr_atim(sc);
2158 if ((isr & RTW_INTR_IOERROR) != 0)
2159 rtw_intr_ioerror(sc, isr);
2160 if ((isr & RTW_INTR_TIMEOUT) != 0)
2161 rtw_intr_timeout(sc);
2162 }
2163
2164 return 1;
2165 }
2166
2167 /* Must be called at splnet. */
2168 static void
2169 rtw_stop(struct ifnet *ifp, int disable)
2170 {
2171 int pri;
2172 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2173 struct ieee80211com *ic = &sc->sc_ic;
2174 struct rtw_regs *regs = &sc->sc_regs;
2175
2176 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2177 return;
2178
2179 rtw_suspend_ticks(sc);
2180
2181 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2182
2183 if ((sc->sc_flags & RTW_F_INVALID) == 0) {
2184 /* Disable interrupts. */
2185 RTW_WRITE16(regs, RTW_IMR, 0);
2186
2187 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2188
2189 /* Stop the transmit and receive processes. First stop DMA,
2190 * then disable receiver and transmitter.
2191 */
2192 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2193
2194 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2195
2196 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2197 }
2198
2199 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2200 rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2201 &sc->sc_txsoft_blk[pri]);
2202 }
2203
2204 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2205
2206 if (disable)
2207 rtw_disable(sc);
2208
2209 /* Mark the interface as not running. Cancel the watchdog timer. */
2210 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2211 ifp->if_timer = 0;
2212
2213 return;
2214 }
2215
2216 const char *
2217 rtw_pwrstate_string(enum rtw_pwrstate power)
2218 {
2219 switch (power) {
2220 case RTW_ON:
2221 return "on";
2222 case RTW_SLEEP:
2223 return "sleep";
2224 case RTW_OFF:
2225 return "off";
2226 default:
2227 return "unknown";
2228 }
2229 }
2230
2231 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2232 * reference driver, plus a magic Maxim "ON" value that comes from
2233 * the Realtek document "Windows PG for Rtl8180."
2234 */
2235 static void
2236 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2237 int before_rf, int digphy)
2238 {
2239 uint32_t anaparm;
2240
2241 anaparm = RTW_READ(regs, RTW_ANAPARM);
2242 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2243
2244 switch (power) {
2245 case RTW_OFF:
2246 if (before_rf)
2247 return;
2248 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2249 anaparm |= RTW_ANAPARM_TXDACOFF;
2250 break;
2251 case RTW_SLEEP:
2252 if (!before_rf)
2253 return;
2254 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2255 anaparm |= RTW_ANAPARM_TXDACOFF;
2256 break;
2257 case RTW_ON:
2258 if (!before_rf)
2259 return;
2260 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2261 break;
2262 }
2263 RTW_DPRINTF(RTW_DEBUG_PWR,
2264 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2265 __func__, rtw_pwrstate_string(power),
2266 (before_rf) ? "before" : "after", anaparm));
2267
2268 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2269 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2270 }
2271
2272 /* XXX I am using the RFMD settings gleaned from the reference
2273 * driver. They agree
2274 */
2275 static void
2276 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2277 int before_rf, int digphy)
2278 {
2279 uint32_t anaparm;
2280
2281 anaparm = RTW_READ(regs, RTW_ANAPARM);
2282 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2283
2284 switch (power) {
2285 case RTW_OFF:
2286 if (before_rf)
2287 return;
2288 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2289 anaparm |= RTW_ANAPARM_TXDACOFF;
2290 break;
2291 case RTW_SLEEP:
2292 if (!before_rf)
2293 return;
2294 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2295 anaparm |= RTW_ANAPARM_TXDACOFF;
2296 break;
2297 case RTW_ON:
2298 if (!before_rf)
2299 return;
2300 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2301 break;
2302 }
2303 RTW_DPRINTF(RTW_DEBUG_PWR,
2304 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2305 __func__, rtw_pwrstate_string(power),
2306 (before_rf) ? "before" : "after", anaparm));
2307
2308 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2309 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2310 }
2311
2312 static void
2313 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2314 int before_rf, int digphy)
2315 {
2316 uint32_t anaparm;
2317
2318 anaparm = RTW_READ(regs, RTW_ANAPARM);
2319 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2320
2321 switch (power) {
2322 case RTW_OFF:
2323 if (before_rf)
2324 return;
2325 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2326 anaparm |= RTW_ANAPARM_TXDACOFF;
2327 break;
2328 case RTW_SLEEP:
2329 if (!before_rf)
2330 return;
2331 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2332 anaparm |= RTW_ANAPARM_TXDACOFF;
2333 break;
2334 case RTW_ON:
2335 if (!before_rf)
2336 return;
2337 if (digphy) {
2338 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2339 /* XXX guess */
2340 anaparm |= RTW_ANAPARM_TXDACOFF;
2341 } else
2342 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2343 break;
2344 }
2345 RTW_DPRINTF(RTW_DEBUG_PWR,
2346 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2347 __func__, rtw_pwrstate_string(power),
2348 (before_rf) ? "before" : "after", anaparm));
2349
2350 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2351 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2352 }
2353
2354 static void
2355 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2356 int digphy)
2357 {
2358 struct rtw_regs *regs = &sc->sc_regs;
2359
2360 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2361
2362 (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2363
2364 rtw_set_access(regs, RTW_ACCESS_NONE);
2365
2366 return;
2367 }
2368
2369 static int
2370 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2371 {
2372 int rc;
2373
2374 RTW_DPRINTF(RTW_DEBUG_PWR,
2375 ("%s: %s->%s\n", __func__,
2376 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2377
2378 if (sc->sc_pwrstate == power)
2379 return 0;
2380
2381 rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2382 rc = rtw_rf_pwrstate(sc->sc_rf, power);
2383 rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2384
2385 switch (power) {
2386 case RTW_ON:
2387 /* TBD set LEDs */
2388 break;
2389 case RTW_SLEEP:
2390 /* TBD */
2391 break;
2392 case RTW_OFF:
2393 /* TBD */
2394 break;
2395 }
2396 if (rc == 0)
2397 sc->sc_pwrstate = power;
2398 else
2399 sc->sc_pwrstate = RTW_OFF;
2400 return rc;
2401 }
2402
2403 static int
2404 rtw_tune(struct rtw_softc *sc)
2405 {
2406 struct ieee80211com *ic = &sc->sc_ic;
2407 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
2408 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
2409 u_int chan;
2410 int rc;
2411 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2412 dflantb = sc->sc_flags & RTW_F_DFLANTB;
2413
2414 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2415 if (chan == IEEE80211_CHAN_ANY)
2416 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
2417
2418 rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2419 rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2420
2421 rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2422 rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2423
2424 if (chan == sc->sc_cur_chan) {
2425 RTW_DPRINTF(RTW_DEBUG_TUNE,
2426 ("%s: already tuned chan #%d\n", __func__, chan));
2427 return 0;
2428 }
2429
2430 rtw_suspend_ticks(sc);
2431
2432 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2433
2434 /* TBD wait for Tx to complete */
2435
2436 KASSERT((sc->sc_flags & RTW_F_ENABLED) != 0);
2437
2438 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2439 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2440 ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2441 /* XXX condition on powersaving */
2442 printf("%s: phy init failed\n", sc->sc_dev.dv_xname);
2443 }
2444
2445 sc->sc_cur_chan = chan;
2446
2447 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2448
2449 rtw_resume_ticks(sc);
2450
2451 return rc;
2452 }
2453
2454 void
2455 rtw_disable(struct rtw_softc *sc)
2456 {
2457 int rc;
2458
2459 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2460 return;
2461
2462 /* turn off PHY */
2463 if ((sc->sc_flags & RTW_F_INVALID) == 0 &&
2464 (rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2465 printf("%s: failed to turn off PHY (%d)\n",
2466 sc->sc_dev.dv_xname, rc);
2467 }
2468
2469 if (sc->sc_disable != NULL)
2470 (*sc->sc_disable)(sc);
2471
2472 sc->sc_flags &= ~RTW_F_ENABLED;
2473 }
2474
2475 int
2476 rtw_enable(struct rtw_softc *sc)
2477 {
2478 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2479 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2480 printf("%s: device enable failed\n",
2481 sc->sc_dev.dv_xname);
2482 return (EIO);
2483 }
2484 sc->sc_flags |= RTW_F_ENABLED;
2485 /* Power may have been removed, and WEP keys thus
2486 * reset.
2487 */
2488 sc->sc_flags &= ~RTW_F_DK_VALID;
2489 }
2490 return (0);
2491 }
2492
2493 static void
2494 rtw_transmit_config(struct rtw_regs *regs)
2495 {
2496 uint32_t tcr;
2497
2498 tcr = RTW_READ(regs, RTW_TCR);
2499
2500 tcr |= RTW_TCR_CWMIN;
2501 tcr &= ~RTW_TCR_MXDMA_MASK;
2502 tcr |= RTW_TCR_MXDMA_256;
2503 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
2504 tcr &= ~RTW_TCR_LBK_MASK;
2505 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
2506
2507 /* set short/long retry limits */
2508 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2509 tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
2510
2511 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
2512
2513 RTW_WRITE(regs, RTW_TCR, tcr);
2514 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2515 }
2516
2517 static inline void
2518 rtw_enable_interrupts(struct rtw_softc *sc)
2519 {
2520 struct rtw_regs *regs = &sc->sc_regs;
2521
2522 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2523 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2524
2525 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2526 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2527 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2528 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2529
2530 /* XXX necessary? */
2531 if (sc->sc_intr_ack != NULL)
2532 (*sc->sc_intr_ack)(regs);
2533 }
2534
2535 static void
2536 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2537 {
2538 uint8_t msr;
2539
2540 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2541 rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2542
2543 msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2544
2545 switch (opmode) {
2546 case IEEE80211_M_AHDEMO:
2547 case IEEE80211_M_IBSS:
2548 msr |= RTW_MSR_NETYPE_ADHOC_OK;
2549 break;
2550 case IEEE80211_M_HOSTAP:
2551 msr |= RTW_MSR_NETYPE_AP_OK;
2552 break;
2553 case IEEE80211_M_MONITOR:
2554 /* XXX */
2555 msr |= RTW_MSR_NETYPE_NOLINK;
2556 break;
2557 case IEEE80211_M_STA:
2558 msr |= RTW_MSR_NETYPE_INFRA_OK;
2559 break;
2560 }
2561 RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2562
2563 rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2564 }
2565
2566 #define rtw_calchash(addr) \
2567 (ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2568
2569 static void
2570 rtw_pktfilt_load(struct rtw_softc *sc)
2571 {
2572 struct rtw_regs *regs = &sc->sc_regs;
2573 struct ieee80211com *ic = &sc->sc_ic;
2574 struct ethercom *ec = &sc->sc_ec;
2575 struct ifnet *ifp = &sc->sc_if;
2576 int hash;
2577 uint32_t hashes[2] = { 0, 0 };
2578 struct ether_multi *enm;
2579 struct ether_multistep step;
2580
2581 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2582
2583 sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2584 sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2585
2586 sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2587 /* MAC auto-reset PHY (huh?) */
2588 sc->sc_rcr |= RTW_RCR_ENMARP;
2589 /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
2590 sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2591
2592 switch (ic->ic_opmode) {
2593 case IEEE80211_M_MONITOR:
2594 sc->sc_rcr |= RTW_RCR_MONITOR;
2595 break;
2596 case IEEE80211_M_AHDEMO:
2597 case IEEE80211_M_IBSS:
2598 /* receive broadcasts in our BSS */
2599 sc->sc_rcr |= RTW_RCR_ADD3;
2600 break;
2601 default:
2602 break;
2603 }
2604
2605 ifp->if_flags &= ~IFF_ALLMULTI;
2606
2607 /* XXX accept all broadcast if scanning */
2608 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2609 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2610
2611 if (ifp->if_flags & IFF_PROMISC) {
2612 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2613 allmulti:
2614 ifp->if_flags |= IFF_ALLMULTI;
2615 goto setit;
2616 }
2617
2618 /*
2619 * Program the 64-bit multicast hash filter.
2620 */
2621 ETHER_FIRST_MULTI(step, ec, enm);
2622 while (enm != NULL) {
2623 /* XXX */
2624 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2625 ETHER_ADDR_LEN) != 0)
2626 goto allmulti;
2627
2628 hash = rtw_calchash(enm->enm_addrlo);
2629 hashes[hash >> 5] |= (1 << (hash & 0x1f));
2630 sc->sc_rcr |= RTW_RCR_AM;
2631 ETHER_NEXT_MULTI(step, enm);
2632 }
2633
2634 /* all bits set => hash is useless */
2635 if (~(hashes[0] & hashes[1]) == 0)
2636 goto allmulti;
2637
2638 setit:
2639 if (ifp->if_flags & IFF_ALLMULTI) {
2640 sc->sc_rcr |= RTW_RCR_AM; /* accept all multicast */
2641 hashes[0] = hashes[1] = 0xffffffff;
2642 }
2643
2644 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2645 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2646 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2647 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2648
2649 DPRINTF(sc, RTW_DEBUG_PKTFILT,
2650 ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2651 sc->sc_dev.dv_xname, RTW_READ(regs, RTW_MAR0),
2652 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2653
2654 return;
2655 }
2656
2657 static struct mbuf *
2658 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2659 {
2660 struct ieee80211com *ic = &sc->sc_ic;
2661 struct mbuf *m;
2662 struct ieee80211_beacon_offsets boff;
2663
2664 if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2665 RTW_DPRINTF(RTW_DEBUG_BEACON,
2666 ("%s: m %p len %u\n", __func__, m, m->m_len));
2667 }
2668 return m;
2669 }
2670
2671 /* Must be called at splnet. */
2672 static int
2673 rtw_init(struct ifnet *ifp)
2674 {
2675 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2676 struct ieee80211com *ic = &sc->sc_ic;
2677 struct rtw_regs *regs = &sc->sc_regs;
2678 int rc = 0;
2679
2680 if ((rc = rtw_enable(sc)) != 0)
2681 goto out;
2682
2683 /* Cancel pending I/O and reset. */
2684 rtw_stop(ifp, 0);
2685
2686 DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2687 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2688 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2689
2690 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2691 goto out;
2692
2693 if ((rc = rtw_swring_setup(sc)) != 0)
2694 goto out;
2695
2696 rtw_transmit_config(regs);
2697
2698 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2699
2700 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2701 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2702
2703 /* long PLCP header, 1Mb/2Mb basic rate */
2704 RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2705 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2706
2707 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2708 rtw_set_access(regs, RTW_ACCESS_NONE);
2709
2710 /* XXX from reference sources */
2711 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2712 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2713
2714 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev.dv_xname);
2715
2716 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2717 /* from Linux driver */
2718 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2719
2720 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2721
2722 rtw_enable_interrupts(sc);
2723
2724 rtw_pktfilt_load(sc);
2725
2726 rtw_hwring_setup(sc);
2727
2728 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2729
2730 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2731
2732 ifp->if_flags |= IFF_RUNNING;
2733 ic->ic_state = IEEE80211_S_INIT;
2734
2735 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2736 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2737
2738 rtw_resume_ticks(sc);
2739
2740 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2741
2742 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2743 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2744 else
2745 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2746
2747 out:
2748 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2749 return rc;
2750 }
2751
2752 static inline void
2753 rtw_led_init(struct rtw_regs *regs)
2754 {
2755 uint8_t cfg0, cfg1;
2756
2757 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2758
2759 cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2760 cfg0 |= RTW_CONFIG0_LEDGPOEN;
2761 RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2762
2763 cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2764 RTW_DPRINTF(RTW_DEBUG_LED,
2765 ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2766
2767 cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2768 cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2769 RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2770
2771 rtw_set_access(regs, RTW_ACCESS_NONE);
2772 }
2773
2774 /*
2775 * IEEE80211_S_INIT: LED1 off
2776 *
2777 * IEEE80211_S_AUTH,
2778 * IEEE80211_S_ASSOC,
2779 * IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2780 *
2781 * IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx
2782 */
2783 static void
2784 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2785 {
2786 struct rtw_led_state *ls;
2787
2788 ls = &sc->sc_led_state;
2789
2790 switch (nstate) {
2791 case IEEE80211_S_INIT:
2792 rtw_led_init(&sc->sc_regs);
2793 callout_stop(&ls->ls_slow_ch);
2794 callout_stop(&ls->ls_fast_ch);
2795 ls->ls_slowblink = 0;
2796 ls->ls_actblink = 0;
2797 ls->ls_default = 0;
2798 break;
2799 case IEEE80211_S_SCAN:
2800 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2801 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2802 /*FALLTHROUGH*/
2803 case IEEE80211_S_AUTH:
2804 case IEEE80211_S_ASSOC:
2805 ls->ls_default = RTW_LED1;
2806 ls->ls_actblink = RTW_LED1;
2807 ls->ls_slowblink = RTW_LED1;
2808 break;
2809 case IEEE80211_S_RUN:
2810 ls->ls_slowblink = 0;
2811 break;
2812 }
2813 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2814 }
2815
2816 static void
2817 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2818 {
2819 uint8_t led_condition;
2820 bus_size_t ofs;
2821 uint8_t mask, newval, val;
2822
2823 led_condition = ls->ls_default;
2824
2825 if (ls->ls_state & RTW_LED_S_SLOW)
2826 led_condition ^= ls->ls_slowblink;
2827 if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX))
2828 led_condition ^= ls->ls_actblink;
2829
2830 RTW_DPRINTF(RTW_DEBUG_LED,
2831 ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2832
2833 switch (hwverid) {
2834 default:
2835 case 'F':
2836 ofs = RTW_PSR;
2837 newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2838 if (led_condition & RTW_LED0)
2839 newval &= ~RTW_PSR_LEDGPO0;
2840 if (led_condition & RTW_LED1)
2841 newval &= ~RTW_PSR_LEDGPO1;
2842 break;
2843 case 'D':
2844 ofs = RTW_9346CR;
2845 mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2846 newval = RTW_9346CR_EEM_PROGRAM;
2847 if (led_condition & RTW_LED0)
2848 newval |= RTW_9346CR_EEDI;
2849 if (led_condition & RTW_LED1)
2850 newval |= RTW_9346CR_EECS;
2851 break;
2852 }
2853 val = RTW_READ8(regs, ofs);
2854 RTW_DPRINTF(RTW_DEBUG_LED,
2855 ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2856 (uintptr_t)ofs));
2857 val &= ~mask;
2858 val |= newval;
2859 RTW_WRITE8(regs, ofs, val);
2860 RTW_DPRINTF(RTW_DEBUG_LED,
2861 ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2862 (uintptr_t)ofs));
2863 RTW_SYNC(regs, ofs, ofs);
2864 }
2865
2866 static void
2867 rtw_led_fastblink(void *arg)
2868 {
2869 int ostate, s;
2870 struct rtw_softc *sc = (struct rtw_softc *)arg;
2871 struct rtw_led_state *ls = &sc->sc_led_state;
2872
2873 s = splnet();
2874 ostate = ls->ls_state;
2875 ls->ls_state ^= ls->ls_event;
2876
2877 if ((ls->ls_event & RTW_LED_S_TX) == 0)
2878 ls->ls_state &= ~RTW_LED_S_TX;
2879
2880 if ((ls->ls_event & RTW_LED_S_RX) == 0)
2881 ls->ls_state &= ~RTW_LED_S_RX;
2882
2883 ls->ls_event = 0;
2884
2885 if (ostate != ls->ls_state)
2886 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2887 splx(s);
2888
2889 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2890 }
2891
2892 static void
2893 rtw_led_slowblink(void *arg)
2894 {
2895 int s;
2896 struct rtw_softc *sc = (struct rtw_softc *)arg;
2897 struct rtw_led_state *ls = &sc->sc_led_state;
2898
2899 s = splnet();
2900 ls->ls_state ^= RTW_LED_S_SLOW;
2901 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2902 splx(s);
2903 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2904 }
2905
2906 static inline void
2907 rtw_led_attach(struct rtw_led_state *ls, void *arg)
2908 {
2909 callout_init(&ls->ls_fast_ch);
2910 callout_init(&ls->ls_slow_ch);
2911 callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
2912 callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
2913 }
2914
2915 static int
2916 rtw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2917 {
2918 int rc = 0, s;
2919 struct rtw_softc *sc = ifp->if_softc;
2920 struct ifreq *ifr = (struct ifreq *)data;
2921
2922 s = splnet();
2923 switch (cmd) {
2924 case SIOCSIFFLAGS:
2925 if ((ifp->if_flags & IFF_UP) != 0) {
2926 if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2927 rtw_pktfilt_load(sc);
2928 } else
2929 rc = rtw_init(ifp);
2930 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2931 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2932 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2933 rtw_stop(ifp, 1);
2934 }
2935 break;
2936 case SIOCADDMULTI:
2937 case SIOCDELMULTI:
2938 if (cmd == SIOCADDMULTI)
2939 rc = ether_addmulti(ifr, &sc->sc_ec);
2940 else
2941 rc = ether_delmulti(ifr, &sc->sc_ec);
2942 if (rc != ENETRESET)
2943 break;
2944 if (ifp->if_flags & IFF_RUNNING)
2945 rtw_pktfilt_load(sc);
2946 rc = 0;
2947 break;
2948 default:
2949 if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
2950 break;
2951 if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2952 rc = rtw_init(ifp);
2953 else
2954 rc = 0;
2955 break;
2956 }
2957 splx(s);
2958 return rc;
2959 }
2960
2961 /* Select a transmit ring with at least one h/w and s/w descriptor free.
2962 * Return 0 on success, -1 on failure.
2963 */
2964 static inline int
2965 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
2966 struct rtw_txdesc_blk **tdbp, int pri)
2967 {
2968 struct rtw_txsoft_blk *tsb;
2969 struct rtw_txdesc_blk *tdb;
2970
2971 KASSERT(pri >= 0 && pri < RTW_NTXPRI);
2972
2973 tsb = &sc->sc_txsoft_blk[pri];
2974 tdb = &sc->sc_txdesc_blk[pri];
2975
2976 if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
2977 if (tsb->tsb_tx_timer == 0)
2978 tsb->tsb_tx_timer = 5;
2979 *tsbp = NULL;
2980 *tdbp = NULL;
2981 return -1;
2982 }
2983 *tsbp = tsb;
2984 *tdbp = tdb;
2985 return 0;
2986 }
2987
2988 static inline struct mbuf *
2989 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
2990 struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
2991 struct ieee80211_node **nip, short *if_flagsp)
2992 {
2993 struct mbuf *m;
2994
2995 if (IF_IS_EMPTY(ifq))
2996 return NULL;
2997 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
2998 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
2999 __func__, pri));
3000 *if_flagsp |= IFF_OACTIVE;
3001 sc->sc_if.if_timer = 1;
3002 return NULL;
3003 }
3004 IF_DEQUEUE(ifq, m);
3005 *nip = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3006 m->m_pkthdr.rcvif = NULL;
3007 KASSERT(*nip != NULL);
3008 return m;
3009 }
3010
3011 /* Point *mp at the next 802.11 frame to transmit. Point *tsbp
3012 * at the driver's selection of transmit control block for the packet.
3013 */
3014 static inline int
3015 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
3016 struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
3017 struct ieee80211_node **nip)
3018 {
3019 int pri;
3020 struct ether_header *eh;
3021 struct mbuf *m0;
3022 struct rtw_softc *sc;
3023 short *if_flagsp;
3024
3025 *mp = NULL;
3026
3027 sc = (struct rtw_softc *)ifp->if_softc;
3028
3029 DPRINTF(sc, RTW_DEBUG_XMIT,
3030 ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
3031
3032 if_flagsp = &ifp->if_flags;
3033
3034 if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3035 (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3036 tdbp, nip, if_flagsp)) != NULL) {
3037 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3038 __func__));
3039 return 0;
3040 }
3041
3042 if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3043 tdbp, nip, if_flagsp)) != NULL) {
3044 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3045 __func__));
3046 return 0;
3047 }
3048
3049 if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3050 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3051 return 0;
3052 }
3053
3054 IFQ_POLL(&ifp->if_snd, m0);
3055 if (m0 == NULL) {
3056 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3057 __func__));
3058 return 0;
3059 }
3060
3061 pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3062
3063 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3064 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3065 __func__, pri));
3066 *if_flagsp |= IFF_OACTIVE;
3067 sc->sc_if.if_timer = 1;
3068 return 0;
3069 }
3070
3071 IFQ_DEQUEUE(&ifp->if_snd, m0);
3072 if (m0 == NULL) {
3073 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3074 __func__));
3075 return 0;
3076 }
3077 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3078 ifp->if_opackets++;
3079 #if NBPFILTER > 0
3080 if (ifp->if_bpf)
3081 bpf_mtap(ifp->if_bpf, m0);
3082 #endif
3083 eh = mtod(m0, struct ether_header *);
3084 *nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3085 if (*nip == NULL) {
3086 /* NB: ieee80211_find_txnode does stat+msg */
3087 m_freem(m0);
3088 return -1;
3089 }
3090 if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3091 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3092 ifp->if_oerrors++;
3093 return -1;
3094 }
3095 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3096 *mp = m0;
3097 return 0;
3098 }
3099
3100 static int
3101 rtw_seg_too_short(bus_dmamap_t dmamap)
3102 {
3103 int i;
3104 for (i = 0; i < dmamap->dm_nsegs; i++) {
3105 if (dmamap->dm_segs[i].ds_len < 4)
3106 return 1;
3107 }
3108 return 0;
3109 }
3110
3111 /* TBD factor with atw_start */
3112 static struct mbuf *
3113 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3114 u_int ndescfree, const char *dvname)
3115 {
3116 int first, rc;
3117 struct mbuf *m, *m0;
3118
3119 m0 = chain;
3120
3121 /*
3122 * Load the DMA map. Copy and try (once) again if the packet
3123 * didn't fit in the alloted number of segments.
3124 */
3125 for (first = 1;
3126 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3127 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
3128 dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3129 first = 0) {
3130 if (rc == 0) {
3131 #ifdef RTW_DIAGxxx
3132 if (rtw_seg_too_short(dmam)) {
3133 printf("%s: short segment, mbuf lengths:", __func__);
3134 for (m = m0; m; m = m->m_next)
3135 printf(" %d", m->m_len);
3136 printf("\n");
3137 }
3138 #endif
3139 bus_dmamap_unload(dmat, dmam);
3140 }
3141 MGETHDR(m, M_DONTWAIT, MT_DATA);
3142 if (m == NULL) {
3143 printf("%s: unable to allocate Tx mbuf\n",
3144 dvname);
3145 break;
3146 }
3147 if (m0->m_pkthdr.len > MHLEN) {
3148 MCLGET(m, M_DONTWAIT);
3149 if ((m->m_flags & M_EXT) == 0) {
3150 printf("%s: cannot allocate Tx cluster\n",
3151 dvname);
3152 m_freem(m);
3153 break;
3154 }
3155 }
3156 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3157 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3158 m_freem(m0);
3159 m0 = m;
3160 m = NULL;
3161 }
3162 if (rc != 0) {
3163 printf("%s: cannot load Tx buffer, rc = %d\n", dvname, rc);
3164 m_freem(m0);
3165 return NULL;
3166 } else if (rtw_seg_too_short(dmam)) {
3167 printf("%s: cannot load Tx buffer, segment too short\n",
3168 dvname);
3169 bus_dmamap_unload(dmat, dmam);
3170 m_freem(m0);
3171 return NULL;
3172 } else if (dmam->dm_nsegs > ndescfree) {
3173 printf("%s: too many tx segments\n", dvname);
3174 bus_dmamap_unload(dmat, dmam);
3175 m_freem(m0);
3176 return NULL;
3177 }
3178 return m0;
3179 }
3180
3181 #ifdef RTW_DEBUG
3182 static void
3183 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3184 struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3185 {
3186 struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3187 DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3188 "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3189 sc->sc_dev.dv_xname, ts, action, desc,
3190 le32toh(td->td_buf), le32toh(td->td_next),
3191 le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3192 le32toh(td->td_len)));
3193 }
3194 #endif /* RTW_DEBUG */
3195
3196 static void
3197 rtw_start(struct ifnet *ifp)
3198 {
3199 uint8_t tppoll;
3200 int desc, i, lastdesc, npkt, rate;
3201 uint32_t proto_ctl0, ctl0, ctl1;
3202 bus_dmamap_t dmamap;
3203 struct ieee80211com *ic;
3204 struct ieee80211_duration *d0;
3205 struct ieee80211_frame_min *wh;
3206 struct ieee80211_node *ni = NULL; /* XXX: GCC */
3207 struct mbuf *m0;
3208 struct rtw_softc *sc;
3209 struct rtw_txsoft_blk *tsb = NULL; /* XXX: GCC */
3210 struct rtw_txdesc_blk *tdb = NULL; /* XXX: GCC */
3211 struct rtw_txsoft *ts;
3212 struct rtw_txdesc *td;
3213 struct ieee80211_key *k;
3214
3215 sc = (struct rtw_softc *)ifp->if_softc;
3216 ic = &sc->sc_ic;
3217
3218 DPRINTF(sc, RTW_DEBUG_XMIT,
3219 ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
3220
3221 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3222 goto out;
3223
3224 /* XXX do real rate control */
3225 proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3226
3227 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3228 proto_ctl0 |= RTW_TXCTL0_SPLCP;
3229
3230 for (;;) {
3231 if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3232 continue;
3233 if (m0 == NULL)
3234 break;
3235
3236 wh = mtod(m0, struct ieee80211_frame_min *);
3237
3238 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3239 (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3240 m_freem(m0);
3241 break;
3242 } else
3243 k = NULL;
3244
3245 ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3246
3247 dmamap = ts->ts_dmamap;
3248
3249 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3250 tdb->tdb_nfree, sc->sc_dev.dv_xname);
3251
3252 if (m0 == NULL || dmamap->dm_nsegs == 0) {
3253 DPRINTF(sc, RTW_DEBUG_XMIT,
3254 ("%s: fail dmamap load\n", __func__));
3255 goto post_dequeue_err;
3256 }
3257
3258 /* Note well: rtw_dmamap_load_txbuf may have created
3259 * a new chain, so we must find the header once
3260 * more.
3261 */
3262 wh = mtod(m0, struct ieee80211_frame_min *);
3263
3264 /* XXX do real rate control */
3265 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3266 IEEE80211_FC0_TYPE_MGT)
3267 rate = 2;
3268 else
3269 rate = MAX(2, ieee80211_get_rate(ni));
3270
3271 #ifdef RTW_DEBUG
3272 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3273 (IFF_DEBUG|IFF_LINK2)) {
3274 ieee80211_dump_pkt(mtod(m0, uint8_t *),
3275 (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3276 : sizeof(wh),
3277 rate, 0);
3278 }
3279 #endif /* RTW_DEBUG */
3280 ctl0 = proto_ctl0 |
3281 __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3282
3283 switch (rate) {
3284 default:
3285 case 2:
3286 ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3287 break;
3288 case 4:
3289 ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3290 break;
3291 case 11:
3292 ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3293 break;
3294 case 22:
3295 ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3296 break;
3297 }
3298 /* XXX >= ? Compare after fragmentation? */
3299 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3300 ctl0 |= RTW_TXCTL0_RTSEN;
3301
3302 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3303 * seem to care, since we don't activate h/w Tx
3304 * encryption.
3305 */
3306 if (k != NULL) {
3307 ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3308 RTW_TXCTL0_KEYID_MASK;
3309 }
3310
3311 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3312 IEEE80211_FC0_TYPE_MGT) {
3313 ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3314 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3315 IEEE80211_FC0_SUBTYPE_BEACON)
3316 ctl0 |= RTW_TXCTL0_BEACON;
3317 }
3318
3319 if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3320 ic->ic_flags, ic->ic_fragthreshold,
3321 rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3322 (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3323 (IFF_DEBUG|IFF_LINK2)) == -1) {
3324 DPRINTF(sc, RTW_DEBUG_XMIT,
3325 ("%s: fail compute duration\n", __func__));
3326 goto post_load_err;
3327 }
3328
3329 d0 = &ts->ts_d0;
3330
3331 *(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3332
3333 ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3334 __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3335
3336 if (d0->d_residue)
3337 ctl1 |= RTW_TXCTL1_LENGEXT;
3338
3339 /* TBD fragmentation */
3340
3341 ts->ts_first = tdb->tdb_next;
3342
3343 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3344 BUS_DMASYNC_PREWRITE);
3345
3346 KASSERT(ts->ts_first < tdb->tdb_ndesc);
3347
3348 #if NBPFILTER > 0
3349 if (ic->ic_rawbpf != NULL)
3350 bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3351
3352 if (sc->sc_radiobpf != NULL) {
3353 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3354
3355 rt->rt_flags = 0;
3356 rt->rt_rate = rate;
3357
3358 bpf_mtap2(sc->sc_radiobpf, (caddr_t)rt,
3359 sizeof(sc->sc_txtapu), m0);
3360 }
3361 #endif /* NPBFILTER > 0 */
3362
3363 for (i = 0, lastdesc = desc = ts->ts_first;
3364 i < dmamap->dm_nsegs;
3365 i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3366 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3367 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3368 ("%s: seg too long\n", __func__));
3369 goto post_load_err;
3370 }
3371 td = &tdb->tdb_desc[desc];
3372 td->td_ctl0 = htole32(ctl0);
3373 if (i != 0)
3374 td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3375 td->td_ctl1 = htole32(ctl1);
3376 td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3377 td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3378 lastdesc = desc;
3379 #ifdef RTW_DEBUG
3380 rtw_print_txdesc(sc, "load", ts, tdb, desc);
3381 #endif /* RTW_DEBUG */
3382 }
3383
3384 KASSERT(desc < tdb->tdb_ndesc);
3385
3386 ts->ts_ni = ni;
3387 KASSERT(ni != NULL);
3388 ts->ts_mbuf = m0;
3389 ts->ts_last = lastdesc;
3390 tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3391 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3392 htole32(RTW_TXCTL0_FS);
3393
3394 #ifdef RTW_DEBUG
3395 rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3396 rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3397 #endif /* RTW_DEBUG */
3398
3399 tdb->tdb_nfree -= dmamap->dm_nsegs;
3400 tdb->tdb_next = desc;
3401
3402 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3403 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3404
3405 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3406 htole32(RTW_TXCTL0_OWN);
3407
3408 #ifdef RTW_DEBUG
3409 rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3410 #endif /* RTW_DEBUG */
3411
3412 rtw_txdescs_sync(tdb, ts->ts_first, 1,
3413 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3414
3415 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3416 SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3417
3418 if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3419 sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3420 tsb->tsb_tx_timer = 5;
3421 ifp->if_timer = 1;
3422 tppoll = RTW_READ8(&sc->sc_regs, RTW_TPPOLL);
3423 tppoll &= ~RTW_TPPOLL_SALL;
3424 tppoll |= tsb->tsb_poll & RTW_TPPOLL_ALL;
3425 RTW_WRITE8(&sc->sc_regs, RTW_TPPOLL, tppoll);
3426 RTW_SYNC(&sc->sc_regs, RTW_TPPOLL, RTW_TPPOLL);
3427 }
3428 out:
3429 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3430 return;
3431 post_load_err:
3432 bus_dmamap_unload(sc->sc_dmat, dmamap);
3433 m_freem(m0);
3434 post_dequeue_err:
3435 ieee80211_free_node(ni);
3436 return;
3437 }
3438
3439 static void
3440 rtw_idle(struct rtw_regs *regs)
3441 {
3442 int active;
3443
3444 /* request stop DMA; wait for packets to stop transmitting. */
3445
3446 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3447 RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3448
3449 for (active = 0; active < 300 &&
3450 (RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0; active++)
3451 DELAY(10);
3452 printf("%s: transmit DMA idle in %dus\n", __func__, active * 10);
3453 }
3454
3455 static void
3456 rtw_watchdog(struct ifnet *ifp)
3457 {
3458 int pri, tx_timeouts = 0;
3459 struct rtw_softc *sc;
3460 struct rtw_txsoft_blk *tsb;
3461
3462 sc = ifp->if_softc;
3463
3464 ifp->if_timer = 0;
3465
3466 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
3467 return;
3468
3469 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3470 tsb = &sc->sc_txsoft_blk[pri];
3471
3472 if (tsb->tsb_tx_timer == 0)
3473 continue;
3474 else if (--tsb->tsb_tx_timer == 0) {
3475 if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3476 continue;
3477 printf("%s: transmit timeout, priority %d\n",
3478 ifp->if_xname, pri);
3479 ifp->if_oerrors++;
3480 if (pri != RTW_TXPRIBCN)
3481 tx_timeouts++;
3482 } else
3483 ifp->if_timer = 1;
3484 }
3485
3486 if (tx_timeouts > 0) {
3487 /* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3488 * reset s/w tx-ring pointers, and start transmission.
3489 *
3490 * TBD Stop/restart just the broken rings?
3491 */
3492 rtw_idle(&sc->sc_regs);
3493 rtw_io_enable(sc, RTW_CR_TE, 0);
3494 rtw_txdescs_reset(sc);
3495 rtw_io_enable(sc, RTW_CR_TE, 1);
3496 rtw_start(ifp);
3497 }
3498 ieee80211_watchdog(&sc->sc_ic);
3499 return;
3500 }
3501
3502 static void
3503 rtw_next_scan(void *arg)
3504 {
3505 struct ieee80211com *ic = arg;
3506 int s;
3507
3508 /* don't call rtw_start w/o network interrupts blocked */
3509 s = splnet();
3510 if (ic->ic_state == IEEE80211_S_SCAN)
3511 ieee80211_next_scan(ic);
3512 splx(s);
3513 }
3514
3515 static void
3516 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3517 {
3518 uint16_t bcnitv, bintritv, intval;
3519 int i;
3520 struct rtw_regs *regs = &sc->sc_regs;
3521
3522 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3523 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3524
3525 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3526
3527 rtw_set_access(regs, RTW_ACCESS_CONFIG);
3528
3529 intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3530
3531 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3532 bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3533 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3534 /* interrupt host 1ms before the TBTT */
3535 bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3536 bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3537 RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3538 /* magic from Linux */
3539 RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3540 RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3541 rtw_set_access(regs, RTW_ACCESS_NONE);
3542
3543 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3544 }
3545
3546 /* Synchronize the hardware state with the software state. */
3547 static int
3548 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3549 {
3550 struct ifnet *ifp = ic->ic_ifp;
3551 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3552 enum ieee80211_state ostate;
3553 int error;
3554
3555 ostate = ic->ic_state;
3556
3557 rtw_led_newstate(sc, nstate);
3558
3559 if (nstate == IEEE80211_S_INIT) {
3560 callout_stop(&sc->sc_scan_ch);
3561 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3562 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3563 }
3564
3565 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3566 rtw_pwrstate(sc, RTW_ON);
3567
3568 if ((error = rtw_tune(sc)) != 0)
3569 return error;
3570
3571 switch (nstate) {
3572 case IEEE80211_S_INIT:
3573 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3574 break;
3575 case IEEE80211_S_SCAN:
3576 if (ostate != IEEE80211_S_SCAN) {
3577 (void)memset(ic->ic_bss->ni_bssid, 0,
3578 IEEE80211_ADDR_LEN);
3579 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3580 }
3581
3582 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3583 rtw_next_scan, ic);
3584
3585 break;
3586 case IEEE80211_S_RUN:
3587 switch (ic->ic_opmode) {
3588 case IEEE80211_M_HOSTAP:
3589 case IEEE80211_M_IBSS:
3590 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3591 /*FALLTHROUGH*/
3592 case IEEE80211_M_AHDEMO:
3593 case IEEE80211_M_STA:
3594 rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3595 ic->ic_bss->ni_intval);
3596 break;
3597 case IEEE80211_M_MONITOR:
3598 break;
3599 }
3600 rtw_set_nettype(sc, ic->ic_opmode);
3601 break;
3602 case IEEE80211_S_ASSOC:
3603 case IEEE80211_S_AUTH:
3604 break;
3605 }
3606
3607 if (nstate != IEEE80211_S_SCAN)
3608 callout_stop(&sc->sc_scan_ch);
3609
3610 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3611 }
3612
3613 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3614 static uint64_t
3615 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3616 {
3617 uint32_t tsftl, tsfth;
3618
3619 tsfth = RTW_READ(regs, RTW_TSFTRH);
3620 tsftl = RTW_READ(regs, RTW_TSFTRL);
3621 if (tsftl < rstamp) /* Compensate for rollover. */
3622 tsfth--;
3623 return ((uint64_t)tsfth << 32) | rstamp;
3624 }
3625
3626 static void
3627 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3628 struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3629 {
3630 struct ifnet *ifp = ic->ic_ifp;
3631 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3632
3633 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3634
3635 switch (subtype) {
3636 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3637 case IEEE80211_FC0_SUBTYPE_BEACON:
3638 if (ic->ic_opmode == IEEE80211_M_IBSS &&
3639 ic->ic_state == IEEE80211_S_RUN) {
3640 uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3641 if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3642 (void)ieee80211_ibss_merge(ni);
3643 }
3644 break;
3645 default:
3646 break;
3647 }
3648 return;
3649 }
3650
3651 static struct ieee80211_node *
3652 rtw_node_alloc(struct ieee80211_node_table *nt)
3653 {
3654 struct ifnet *ifp = nt->nt_ic->ic_ifp;
3655 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3656 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3657
3658 DPRINTF(sc, RTW_DEBUG_NODE,
3659 ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
3660 return ni;
3661 }
3662
3663 static void
3664 rtw_node_free(struct ieee80211_node *ni)
3665 {
3666 struct ieee80211com *ic = ni->ni_ic;
3667 struct ifnet *ifp = ic->ic_ifp;
3668 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3669
3670 DPRINTF(sc, RTW_DEBUG_NODE,
3671 ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
3672 ether_sprintf(ni->ni_bssid)));
3673 (*sc->sc_mtbl.mt_node_free)(ni);
3674 }
3675
3676 static int
3677 rtw_media_change(struct ifnet *ifp)
3678 {
3679 int error;
3680
3681 error = ieee80211_media_change(ifp);
3682 if (error == ENETRESET) {
3683 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3684 (IFF_RUNNING|IFF_UP))
3685 rtw_init(ifp); /* XXX lose error */
3686 error = 0;
3687 }
3688 return error;
3689 }
3690
3691 static void
3692 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3693 {
3694 struct rtw_softc *sc = ifp->if_softc;
3695
3696 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
3697 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3698 imr->ifm_status = 0;
3699 return;
3700 }
3701 ieee80211_media_status(ifp, imr);
3702 }
3703
3704 void
3705 rtw_power(int why, void *arg)
3706 {
3707 struct rtw_softc *sc = arg;
3708 struct ifnet *ifp = &sc->sc_if;
3709 int s;
3710
3711 DPRINTF(sc, RTW_DEBUG_PWR,
3712 ("%s: rtw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3713
3714 s = splnet();
3715 switch (why) {
3716 case PWR_STANDBY:
3717 /* XXX do nothing. */
3718 break;
3719 case PWR_SUSPEND:
3720 rtw_stop(ifp, 0);
3721 if (sc->sc_power != NULL)
3722 (*sc->sc_power)(sc, why);
3723 break;
3724 case PWR_RESUME:
3725 if (ifp->if_flags & IFF_UP) {
3726 if (sc->sc_power != NULL)
3727 (*sc->sc_power)(sc, why);
3728 rtw_init(ifp);
3729 }
3730 break;
3731 case PWR_SOFTSUSPEND:
3732 case PWR_SOFTSTANDBY:
3733 case PWR_SOFTRESUME:
3734 break;
3735 }
3736 splx(s);
3737 }
3738
3739 /* rtw_shutdown: make sure the interface is stopped at reboot time. */
3740 void
3741 rtw_shutdown(void *arg)
3742 {
3743 struct rtw_softc *sc = arg;
3744
3745 rtw_stop(&sc->sc_if, 1);
3746 }
3747
3748 static inline void
3749 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3750 {
3751 (void)memcpy(ifp->if_xname, dvname, IFNAMSIZ);
3752 ifp->if_softc = softc;
3753 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
3754 IFF_NOTRAILERS;
3755 ifp->if_ioctl = rtw_ioctl;
3756 ifp->if_start = rtw_start;
3757 ifp->if_watchdog = rtw_watchdog;
3758 ifp->if_init = rtw_init;
3759 ifp->if_stop = rtw_stop;
3760 }
3761
3762 static inline void
3763 rtw_set80211props(struct ieee80211com *ic)
3764 {
3765 int nrate;
3766 ic->ic_phytype = IEEE80211_T_DS;
3767 ic->ic_opmode = IEEE80211_M_STA;
3768 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3769 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
3770
3771 nrate = 0;
3772 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3773 IEEE80211_RATE_BASIC | 2;
3774 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3775 IEEE80211_RATE_BASIC | 4;
3776 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3777 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3778 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3779 }
3780
3781 static inline void
3782 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3783 {
3784 mtbl->mt_newstate = ic->ic_newstate;
3785 ic->ic_newstate = rtw_newstate;
3786
3787 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3788 ic->ic_recv_mgmt = rtw_recv_mgmt;
3789
3790 mtbl->mt_node_free = ic->ic_node_free;
3791 ic->ic_node_free = rtw_node_free;
3792
3793 mtbl->mt_node_alloc = ic->ic_node_alloc;
3794 ic->ic_node_alloc = rtw_node_alloc;
3795
3796 ic->ic_crypto.cs_key_delete = rtw_key_delete;
3797 ic->ic_crypto.cs_key_set = rtw_key_set;
3798 ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3799 ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3800 }
3801
3802 static inline void
3803 rtw_establish_hooks(struct rtw_hooks *hooks, const char *dvname,
3804 void *arg)
3805 {
3806 /*
3807 * Make sure the interface is shutdown during reboot.
3808 */
3809 hooks->rh_shutdown = shutdownhook_establish(rtw_shutdown, arg);
3810 if (hooks->rh_shutdown == NULL)
3811 printf("%s: WARNING: unable to establish shutdown hook\n",
3812 dvname);
3813
3814 /*
3815 * Add a suspend hook to make sure we come back up after a
3816 * resume.
3817 */
3818 hooks->rh_power = powerhook_establish(dvname, rtw_power, arg);
3819 if (hooks->rh_power == NULL)
3820 printf("%s: WARNING: unable to establish power hook\n",
3821 dvname);
3822 }
3823
3824 static inline void
3825 rtw_disestablish_hooks(struct rtw_hooks *hooks, const char *dvname,
3826 void *arg)
3827 {
3828 if (hooks->rh_shutdown != NULL)
3829 shutdownhook_disestablish(hooks->rh_shutdown);
3830
3831 if (hooks->rh_power != NULL)
3832 powerhook_disestablish(hooks->rh_power);
3833 }
3834
3835 static inline void
3836 rtw_init_radiotap(struct rtw_softc *sc)
3837 {
3838 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3839 sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3840 sc->sc_rxtap.rr_ihdr.it_present = htole32(RTW_RX_RADIOTAP_PRESENT);
3841
3842 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3843 sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3844 sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3845 }
3846
3847 static int
3848 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3849 {
3850 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3851 SIMPLEQ_INIT(&tsb->tsb_freeq);
3852 tsb->tsb_ndesc = qlen;
3853 tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3854 M_NOWAIT);
3855 if (tsb->tsb_desc == NULL)
3856 return ENOMEM;
3857 return 0;
3858 }
3859
3860 static void
3861 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3862 {
3863 int pri;
3864 struct rtw_txsoft_blk *tsb;
3865
3866 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3867 tsb = &sc->sc_txsoft_blk[pri];
3868 free(tsb->tsb_desc, M_DEVBUF);
3869 tsb->tsb_desc = NULL;
3870 }
3871 }
3872
3873 static int
3874 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3875 {
3876 int pri, rc = 0;
3877 int qlen[RTW_NTXPRI] =
3878 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3879 struct rtw_txsoft_blk *tsbs;
3880
3881 tsbs = sc->sc_txsoft_blk;
3882
3883 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3884 rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3885 if (rc != 0)
3886 break;
3887 }
3888 tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3889 tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3890 tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3891 tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3892 return rc;
3893 }
3894
3895 static void
3896 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3897 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3898 {
3899 tdb->tdb_ndesc = ndesc;
3900 tdb->tdb_desc = desc;
3901 tdb->tdb_physbase = physbase;
3902 tdb->tdb_ofs = ofs;
3903
3904 (void)memset(tdb->tdb_desc, 0,
3905 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3906
3907 rtw_txdesc_blk_init(tdb);
3908 tdb->tdb_next = 0;
3909 }
3910
3911 static void
3912 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3913 {
3914 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3915 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3916 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3917
3918 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3919 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3920 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3921
3922 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3923 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3924 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3925
3926 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3927 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3928 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3929 }
3930
3931 static struct rtw_rf *
3932 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3933 {
3934 rtw_rf_write_t rf_write;
3935 struct rtw_rf *rf;
3936
3937 switch (rfchipid) {
3938 default:
3939 rf_write = rtw_rf_hostwrite;
3940 break;
3941 case RTW_RFCHIPID_INTERSIL:
3942 case RTW_RFCHIPID_PHILIPS:
3943 case RTW_RFCHIPID_GCT: /* XXX a guess */
3944 case RTW_RFCHIPID_RFMD:
3945 rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3946 break;
3947 }
3948
3949 switch (rfchipid) {
3950 case RTW_RFCHIPID_GCT:
3951 rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3952 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3953 break;
3954 case RTW_RFCHIPID_MAXIM:
3955 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3956 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3957 break;
3958 case RTW_RFCHIPID_PHILIPS:
3959 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3960 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3961 break;
3962 case RTW_RFCHIPID_RFMD:
3963 /* XXX RFMD has no RF constructor */
3964 sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3965 /*FALLTHROUGH*/
3966 default:
3967 return NULL;
3968 }
3969 rf->rf_continuous_tx_cb =
3970 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3971 rf->rf_continuous_tx_arg = (void *)sc;
3972 return rf;
3973 }
3974
3975 /* Revision C and later use a different PHY delay setting than
3976 * revisions A and B.
3977 */
3978 static uint8_t
3979 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
3980 {
3981 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3982 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3983
3984 uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
3985
3986 RTW_WRITE(regs, RTW_RCR, REVAB);
3987 RTW_WBW(regs, RTW_RCR, RTW_RCR);
3988 RTW_WRITE(regs, RTW_RCR, REVC);
3989
3990 RTW_WBR(regs, RTW_RCR, RTW_RCR);
3991 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3992 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3993
3994 RTW_WRITE(regs, RTW_RCR, old_rcr); /* restore RCR */
3995 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3996
3997 return phydelay;
3998 #undef REVC
3999 }
4000
4001 void
4002 rtw_attach(struct rtw_softc *sc)
4003 {
4004 struct ifnet *ifp = &sc->sc_if;
4005 struct ieee80211com *ic = &sc->sc_ic;
4006 struct rtw_txsoft_blk *tsb;
4007 int pri, rc;
4008
4009 rtw_cipher_wep = ieee80211_cipher_wep;
4010 rtw_cipher_wep.ic_decap = rtw_wep_decap;
4011
4012 NEXT_ATTACH_STATE(sc, DETACHED);
4013
4014 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
4015 case RTW_TCR_HWVERID_F:
4016 sc->sc_hwverid = 'F';
4017 break;
4018 case RTW_TCR_HWVERID_D:
4019 sc->sc_hwverid = 'D';
4020 break;
4021 default:
4022 sc->sc_hwverid = '?';
4023 break;
4024 }
4025 printf("%s: hardware version %c\n", sc->sc_dev.dv_xname,
4026 sc->sc_hwverid);
4027
4028 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
4029 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
4030 0);
4031
4032 if (rc != 0) {
4033 printf("%s: could not allocate hw descriptors, error %d\n",
4034 sc->sc_dev.dv_xname, rc);
4035 goto err;
4036 }
4037
4038 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
4039
4040 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
4041 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
4042 (caddr_t*)&sc->sc_descs, BUS_DMA_COHERENT);
4043
4044 if (rc != 0) {
4045 printf("%s: could not map hw descriptors, error %d\n",
4046 sc->sc_dev.dv_xname, rc);
4047 goto err;
4048 }
4049 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
4050
4051 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
4052 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
4053
4054 if (rc != 0) {
4055 printf("%s: could not create DMA map for hw descriptors, "
4056 "error %d\n", sc->sc_dev.dv_xname, rc);
4057 goto err;
4058 }
4059 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
4060
4061 sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
4062 sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
4063
4064 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4065 sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
4066 sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
4067 }
4068
4069 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
4070 sizeof(struct rtw_descs), NULL, 0);
4071
4072 if (rc != 0) {
4073 printf("%s: could not load DMA map for hw descriptors, "
4074 "error %d\n", sc->sc_dev.dv_xname, rc);
4075 goto err;
4076 }
4077 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
4078
4079 if (rtw_txsoft_blk_setup_all(sc) != 0)
4080 goto err;
4081 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
4082
4083 rtw_txdesc_blk_setup_all(sc);
4084
4085 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4086
4087 sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4088
4089 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4090 tsb = &sc->sc_txsoft_blk[pri];
4091
4092 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4093 &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4094 printf("%s: could not load DMA map for "
4095 "hw tx descriptors, error %d\n",
4096 sc->sc_dev.dv_xname, rc);
4097 goto err;
4098 }
4099 }
4100
4101 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4102 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4103 RTW_RXQLEN)) != 0) {
4104 printf("%s: could not load DMA map for hw rx descriptors, "
4105 "error %d\n", sc->sc_dev.dv_xname, rc);
4106 goto err;
4107 }
4108 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4109
4110 /* Reset the chip to a known state. */
4111 if (rtw_reset(sc) != 0)
4112 goto err;
4113 NEXT_ATTACH_STATE(sc, FINISH_RESET);
4114
4115 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4116
4117 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4118 sc->sc_flags |= RTW_F_9356SROM;
4119
4120 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4121 sc->sc_dev.dv_xname) != 0)
4122 goto err;
4123
4124 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4125
4126 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4127 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4128 sc->sc_dev.dv_xname) != 0) {
4129 printf("%s: attach failed, malformed serial ROM\n",
4130 sc->sc_dev.dv_xname);
4131 goto err;
4132 }
4133
4134 printf("%s: %s PHY\n", sc->sc_dev.dv_xname,
4135 ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4136
4137 printf("%s: CS threshold %u\n", sc->sc_dev.dv_xname, sc->sc_csthr);
4138
4139 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4140
4141 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4142 sc->sc_flags & RTW_F_DIGPHY);
4143
4144 if (sc->sc_rf == NULL) {
4145 printf("%s: attach failed, could not attach RF\n",
4146 sc->sc_dev.dv_xname);
4147 goto err;
4148 }
4149
4150 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4151
4152 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4153
4154 RTW_DPRINTF(RTW_DEBUG_ATTACH,
4155 ("%s: PHY delay %d\n", sc->sc_dev.dv_xname, sc->sc_phydelay));
4156
4157 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4158 rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4159
4160 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels,
4161 sc->sc_dev.dv_xname);
4162
4163 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4164 sc->sc_dev.dv_xname) != 0)
4165 goto err;
4166 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4167
4168 rtw_setifprops(ifp, sc->sc_dev.dv_xname, (void*)sc);
4169
4170 IFQ_SET_READY(&ifp->if_snd);
4171
4172 sc->sc_ic.ic_ifp = ifp;
4173 rtw_set80211props(&sc->sc_ic);
4174
4175 rtw_led_attach(&sc->sc_led_state, (void *)sc);
4176
4177 /*
4178 * Call MI attach routines.
4179 */
4180 if_attach(ifp);
4181 ieee80211_ifattach(&sc->sc_ic);
4182
4183 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4184
4185 /* possibly we should fill in our own sc_send_prresp, since
4186 * the RTL8180 is probably sending probe responses in ad hoc
4187 * mode.
4188 */
4189
4190 /* complete initialization */
4191 ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4192 callout_init(&sc->sc_scan_ch);
4193
4194 rtw_init_radiotap(sc);
4195
4196 #if NBPFILTER > 0
4197 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4198 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4199 #endif
4200
4201 rtw_establish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname, (void*)sc);
4202
4203 NEXT_ATTACH_STATE(sc, FINISHED);
4204
4205 ieee80211_announce(ic);
4206 return;
4207 err:
4208 rtw_detach(sc);
4209 return;
4210 }
4211
4212 int
4213 rtw_detach(struct rtw_softc *sc)
4214 {
4215 struct ifnet *ifp = &sc->sc_if;
4216 int pri;
4217
4218 sc->sc_flags |= RTW_F_INVALID;
4219
4220 switch (sc->sc_attach_state) {
4221 case FINISHED:
4222 rtw_stop(ifp, 1);
4223
4224 rtw_disestablish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname,
4225 (void*)sc);
4226 callout_stop(&sc->sc_scan_ch);
4227 ieee80211_ifdetach(&sc->sc_ic);
4228 if_detach(ifp);
4229 break;
4230 case FINISH_ID_STA:
4231 case FINISH_RF_ATTACH:
4232 rtw_rf_destroy(sc->sc_rf);
4233 sc->sc_rf = NULL;
4234 /*FALLTHROUGH*/
4235 case FINISH_PARSE_SROM:
4236 case FINISH_READ_SROM:
4237 rtw_srom_free(&sc->sc_srom);
4238 /*FALLTHROUGH*/
4239 case FINISH_RESET:
4240 case FINISH_RXMAPS_CREATE:
4241 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4242 RTW_RXQLEN);
4243 /*FALLTHROUGH*/
4244 case FINISH_TXMAPS_CREATE:
4245 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4246 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4247 sc->sc_txsoft_blk[pri].tsb_desc,
4248 sc->sc_txsoft_blk[pri].tsb_ndesc);
4249 }
4250 /*FALLTHROUGH*/
4251 case FINISH_TXDESCBLK_SETUP:
4252 case FINISH_TXCTLBLK_SETUP:
4253 rtw_txsoft_blk_cleanup_all(sc);
4254 /*FALLTHROUGH*/
4255 case FINISH_DESCMAP_LOAD:
4256 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4257 /*FALLTHROUGH*/
4258 case FINISH_DESCMAP_CREATE:
4259 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4260 /*FALLTHROUGH*/
4261 case FINISH_DESC_MAP:
4262 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_descs,
4263 sizeof(struct rtw_descs));
4264 /*FALLTHROUGH*/
4265 case FINISH_DESC_ALLOC:
4266 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4267 sc->sc_desc_nsegs);
4268 /*FALLTHROUGH*/
4269 case DETACHED:
4270 NEXT_ATTACH_STATE(sc, DETACHED);
4271 break;
4272 }
4273 return 0;
4274 }
4275
4276 int
4277 rtw_activate(struct device *self, enum devact act)
4278 {
4279 struct rtw_softc *sc = (struct rtw_softc *)self;
4280 int rc = 0, s;
4281
4282 s = splnet();
4283 switch (act) {
4284 case DVACT_ACTIVATE:
4285 rc = EOPNOTSUPP;
4286 break;
4287
4288 case DVACT_DEACTIVATE:
4289 if_deactivate(&sc->sc_if);
4290 break;
4291 }
4292 splx(s);
4293 return rc;
4294 }
4295