rtw.c revision 1.9 1 /* $NetBSD: rtw.c,v 1.9 2004/12/20 01:28:24 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005 David Young. All rights reserved.
4 *
5 * Programmed for NetBSD by David Young.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of David Young may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
23 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30 * OF SUCH DAMAGE.
31 */
32 /*
33 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.9 2004/12/20 01:28:24 dyoung Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/sysctl.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #if 0
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #endif
54 #include <sys/time.h>
55 #include <sys/types.h>
56
57 #include <machine/endian.h>
58 #include <machine/bus.h>
59 #include <machine/intr.h> /* splnet */
60
61 #include <uvm/uvm_extern.h>
62
63 #include <net/if.h>
64 #include <net/if_media.h>
65 #include <net/if_ether.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_compat.h>
69 #include <net80211/ieee80211_radiotap.h>
70
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74
75 #include <dev/ic/rtwreg.h>
76 #include <dev/ic/rtwvar.h>
77 #include <dev/ic/rtwphyio.h>
78 #include <dev/ic/rtwphy.h>
79
80 #include <dev/ic/smc93cx6var.h>
81
82 #define KASSERT2(__cond, __msg) \
83 do { \
84 if (!(__cond)) \
85 panic __msg ; \
86 } while (0)
87
88 int rtw_rfprog_fallback = 0;
89 int rtw_host_rfio = 0;
90 int rtw_flush_rfio = 1;
91 int rtw_rfio_delay = 0;
92
93 #ifdef RTW_DEBUG
94 int rtw_debug = 2;
95 #endif /* RTW_DEBUG */
96
97 #define NEXT_ATTACH_STATE(sc, state) do { \
98 DPRINTF(sc, ("%s: attach state %s\n", __func__, #state)); \
99 sc->sc_attach_state = state; \
100 } while (0)
101
102 int rtw_dwelltime = 1000; /* milliseconds */
103
104 static void rtw_start(struct ifnet *);
105
106 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
107 static int rtw_sysctl_verify_rfio_delay(SYSCTLFN_PROTO);
108 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
109 #ifdef RTW_DEBUG
110 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
111 #endif /* RTW_DEBUG */
112
113 /*
114 * Setup sysctl(3) MIB, hw.rtw.*
115 *
116 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
117 */
118 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
119 {
120 int rc;
121 struct sysctlnode *cnode, *rnode;
122
123 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
124 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
125 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
126 goto err;
127
128 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
129 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
130 "Realtek RTL818x 802.11 controls",
131 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
132 goto err;
133
134 #ifdef RTW_DEBUG
135 /* control debugging printfs */
136 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
137 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
138 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
139 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
140 CTL_CREATE, CTL_EOL)) != 0)
141 goto err;
142 #endif /* RTW_DEBUG */
143 /* set fallback RF programming method */
144 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
145 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
146 "rfprog_fallback",
147 SYSCTL_DESCR("Set fallback RF programming method"),
148 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
149 CTL_CREATE, CTL_EOL)) != 0)
150 goto err;
151
152 /* force host to flush I/O by reading RTW_PHYADDR */
153 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
154 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
155 "flush_rfio", SYSCTL_DESCR("Enable RF I/O flushing"),
156 rtw_sysctl_verify_rfio, 0, &rtw_flush_rfio, 0,
157 CTL_CREATE, CTL_EOL)) != 0)
158 goto err;
159
160 /* force host to control RF I/O bus */
161 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
162 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
163 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
164 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
165 CTL_CREATE, CTL_EOL)) != 0)
166 goto err;
167
168 /* control RF I/O delay */
169 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
170 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
171 "rfio_delay", SYSCTL_DESCR("Set RF I/O delay"),
172 rtw_sysctl_verify_rfio_delay, 0, &rtw_rfio_delay, 0,
173 CTL_CREATE, CTL_EOL)) != 0)
174 goto err;
175
176 return;
177 err:
178 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
179 }
180
181 static int
182 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
183 {
184 int error, t;
185 struct sysctlnode node;
186
187 node = *rnode;
188 t = *(int*)rnode->sysctl_data;
189 node.sysctl_data = &t;
190 error = sysctl_lookup(SYSCTLFN_CALL(&node));
191 if (error || newp == NULL)
192 return (error);
193
194 if (t < lower || t > upper)
195 return (EINVAL);
196
197 *(int*)rnode->sysctl_data = t;
198
199 return (0);
200 }
201
202 static int
203 rtw_sysctl_verify_rfio_delay(SYSCTLFN_ARGS)
204 {
205 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 1000000);
206 }
207
208 static int
209 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
210 {
211 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0,
212 MASK_AND_RSHIFT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
213 }
214
215 static int
216 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
217 {
218 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 1);
219 }
220
221 #ifdef RTW_DEBUG
222 static int
223 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
224 {
225 return rtw_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 2);
226 }
227
228 static void
229 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
230 {
231 #define PRINTREG32(sc, reg) \
232 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
233 dvname, reg, RTW_READ(regs, reg)))
234
235 #define PRINTREG16(sc, reg) \
236 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %04x\n", \
237 dvname, reg, RTW_READ16(regs, reg)))
238
239 #define PRINTREG8(sc, reg) \
240 RTW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %02x\n", \
241 dvname, reg, RTW_READ8(regs, reg)))
242
243 RTW_DPRINTF2(("%s: %s\n", dvname, where));
244
245 PRINTREG32(regs, RTW_IDR0);
246 PRINTREG32(regs, RTW_IDR1);
247 PRINTREG32(regs, RTW_MAR0);
248 PRINTREG32(regs, RTW_MAR1);
249 PRINTREG32(regs, RTW_TSFTRL);
250 PRINTREG32(regs, RTW_TSFTRH);
251 PRINTREG32(regs, RTW_TLPDA);
252 PRINTREG32(regs, RTW_TNPDA);
253 PRINTREG32(regs, RTW_THPDA);
254 PRINTREG32(regs, RTW_TCR);
255 PRINTREG32(regs, RTW_RCR);
256 PRINTREG32(regs, RTW_TINT);
257 PRINTREG32(regs, RTW_TBDA);
258 PRINTREG32(regs, RTW_ANAPARM);
259 PRINTREG32(regs, RTW_BB);
260 PRINTREG32(regs, RTW_PHYCFG);
261 PRINTREG32(regs, RTW_WAKEUP0L);
262 PRINTREG32(regs, RTW_WAKEUP0H);
263 PRINTREG32(regs, RTW_WAKEUP1L);
264 PRINTREG32(regs, RTW_WAKEUP1H);
265 PRINTREG32(regs, RTW_WAKEUP2LL);
266 PRINTREG32(regs, RTW_WAKEUP2LH);
267 PRINTREG32(regs, RTW_WAKEUP2HL);
268 PRINTREG32(regs, RTW_WAKEUP2HH);
269 PRINTREG32(regs, RTW_WAKEUP3LL);
270 PRINTREG32(regs, RTW_WAKEUP3LH);
271 PRINTREG32(regs, RTW_WAKEUP3HL);
272 PRINTREG32(regs, RTW_WAKEUP3HH);
273 PRINTREG32(regs, RTW_WAKEUP4LL);
274 PRINTREG32(regs, RTW_WAKEUP4LH);
275 PRINTREG32(regs, RTW_WAKEUP4HL);
276 PRINTREG32(regs, RTW_WAKEUP4HH);
277 PRINTREG32(regs, RTW_DK0);
278 PRINTREG32(regs, RTW_DK1);
279 PRINTREG32(regs, RTW_DK2);
280 PRINTREG32(regs, RTW_DK3);
281 PRINTREG32(regs, RTW_RETRYCTR);
282 PRINTREG32(regs, RTW_RDSAR);
283 PRINTREG32(regs, RTW_FER);
284 PRINTREG32(regs, RTW_FEMR);
285 PRINTREG32(regs, RTW_FPSR);
286 PRINTREG32(regs, RTW_FFER);
287
288 /* 16-bit registers */
289 PRINTREG16(regs, RTW_BRSR);
290 PRINTREG16(regs, RTW_IMR);
291 PRINTREG16(regs, RTW_ISR);
292 PRINTREG16(regs, RTW_BCNITV);
293 PRINTREG16(regs, RTW_ATIMWND);
294 PRINTREG16(regs, RTW_BINTRITV);
295 PRINTREG16(regs, RTW_ATIMTRITV);
296 PRINTREG16(regs, RTW_CRC16ERR);
297 PRINTREG16(regs, RTW_CRC0);
298 PRINTREG16(regs, RTW_CRC1);
299 PRINTREG16(regs, RTW_CRC2);
300 PRINTREG16(regs, RTW_CRC3);
301 PRINTREG16(regs, RTW_CRC4);
302 PRINTREG16(regs, RTW_CWR);
303
304 /* 8-bit registers */
305 PRINTREG8(regs, RTW_CR);
306 PRINTREG8(regs, RTW_9346CR);
307 PRINTREG8(regs, RTW_CONFIG0);
308 PRINTREG8(regs, RTW_CONFIG1);
309 PRINTREG8(regs, RTW_CONFIG2);
310 PRINTREG8(regs, RTW_MSR);
311 PRINTREG8(regs, RTW_CONFIG3);
312 PRINTREG8(regs, RTW_CONFIG4);
313 PRINTREG8(regs, RTW_TESTR);
314 PRINTREG8(regs, RTW_PSR);
315 PRINTREG8(regs, RTW_SCR);
316 PRINTREG8(regs, RTW_PHYDELAY);
317 PRINTREG8(regs, RTW_CRCOUNT);
318 PRINTREG8(regs, RTW_PHYADDR);
319 PRINTREG8(regs, RTW_PHYDATAW);
320 PRINTREG8(regs, RTW_PHYDATAR);
321 PRINTREG8(regs, RTW_CONFIG5);
322 PRINTREG8(regs, RTW_TPPOLL);
323
324 PRINTREG16(regs, RTW_BSSID16);
325 PRINTREG32(regs, RTW_BSSID32);
326 #undef PRINTREG32
327 #undef PRINTREG16
328 #undef PRINTREG8
329 }
330 #endif /* RTW_DEBUG */
331
332 void
333 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
334 {
335 struct rtw_regs *regs = &sc->sc_regs;
336
337 u_int32_t tcr;
338 tcr = RTW_READ(regs, RTW_TCR);
339 tcr &= ~RTW_TCR_LBK_MASK;
340 if (enable)
341 tcr |= RTW_TCR_LBK_CONT;
342 else
343 tcr |= RTW_TCR_LBK_NORMAL;
344 RTW_WRITE(regs, RTW_TCR, tcr);
345 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
346 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
347 rtw_txdac_enable(sc, !enable);
348 rtw_set_access(sc, RTW_ACCESS_ANAPARM); /* XXX Voodoo from Linux. */
349 rtw_set_access(sc, RTW_ACCESS_NONE);
350 }
351
352 static const char *
353 rtw_access_string(enum rtw_access access)
354 {
355 switch (access) {
356 case RTW_ACCESS_NONE:
357 return "none";
358 case RTW_ACCESS_CONFIG:
359 return "config";
360 case RTW_ACCESS_ANAPARM:
361 return "anaparm";
362 default:
363 return "unknown";
364 }
365 }
366
367 static void
368 rtw_set_access1(struct rtw_regs *regs,
369 enum rtw_access oaccess, enum rtw_access naccess)
370 {
371 KASSERT(naccess >= RTW_ACCESS_NONE && naccess <= RTW_ACCESS_ANAPARM);
372 KASSERT(oaccess >= RTW_ACCESS_NONE && oaccess <= RTW_ACCESS_ANAPARM);
373
374 if (naccess == oaccess)
375 return;
376
377 switch (naccess) {
378 case RTW_ACCESS_NONE:
379 switch (oaccess) {
380 case RTW_ACCESS_ANAPARM:
381 rtw_anaparm_enable(regs, 0);
382 /*FALLTHROUGH*/
383 case RTW_ACCESS_CONFIG:
384 rtw_config0123_enable(regs, 0);
385 /*FALLTHROUGH*/
386 case RTW_ACCESS_NONE:
387 break;
388 }
389 break;
390 case RTW_ACCESS_CONFIG:
391 switch (oaccess) {
392 case RTW_ACCESS_NONE:
393 rtw_config0123_enable(regs, 1);
394 /*FALLTHROUGH*/
395 case RTW_ACCESS_CONFIG:
396 break;
397 case RTW_ACCESS_ANAPARM:
398 rtw_anaparm_enable(regs, 0);
399 break;
400 }
401 break;
402 case RTW_ACCESS_ANAPARM:
403 switch (oaccess) {
404 case RTW_ACCESS_NONE:
405 rtw_config0123_enable(regs, 1);
406 /*FALLTHROUGH*/
407 case RTW_ACCESS_CONFIG:
408 rtw_anaparm_enable(regs, 1);
409 /*FALLTHROUGH*/
410 case RTW_ACCESS_ANAPARM:
411 break;
412 }
413 break;
414 }
415 }
416
417 void
418 rtw_set_access(struct rtw_softc *sc, enum rtw_access access)
419 {
420 rtw_set_access1(&sc->sc_regs, sc->sc_access, access);
421 RTW_DPRINTF(("%s: access %s -> %s\n", sc->sc_dev.dv_xname,
422 rtw_access_string(sc->sc_access),
423 rtw_access_string(access)));
424 sc->sc_access = access;
425 }
426
427 /*
428 * Enable registers, switch register banks.
429 */
430 void
431 rtw_config0123_enable(struct rtw_regs *regs, int enable)
432 {
433 u_int8_t ecr;
434 ecr = RTW_READ8(regs, RTW_9346CR);
435 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
436 if (enable)
437 ecr |= RTW_9346CR_EEM_CONFIG;
438 else {
439 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
440 ecr |= RTW_9346CR_EEM_NORMAL;
441 }
442 RTW_WRITE8(regs, RTW_9346CR, ecr);
443 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
444 }
445
446 /* requires rtw_config0123_enable(, 1) */
447 void
448 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
449 {
450 u_int8_t cfg3;
451
452 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
453 cfg3 |= RTW_CONFIG3_CLKRUNEN;
454 if (enable)
455 cfg3 |= RTW_CONFIG3_PARMEN;
456 else
457 cfg3 &= ~RTW_CONFIG3_PARMEN;
458 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
459 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
460 }
461
462 /* requires rtw_anaparm_enable(, 1) */
463 void
464 rtw_txdac_enable(struct rtw_softc *sc, int enable)
465 {
466 u_int32_t anaparm;
467 struct rtw_regs *regs = &sc->sc_regs;
468
469 anaparm = RTW_READ(regs, RTW_ANAPARM);
470 if (enable)
471 anaparm &= ~RTW_ANAPARM_TXDACOFF;
472 else
473 anaparm |= RTW_ANAPARM_TXDACOFF;
474 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
475 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
476 }
477
478 static __inline int
479 rtw_chip_reset1(struct rtw_regs *regs, const char *dvname)
480 {
481 u_int8_t cr;
482 int i;
483
484 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
485
486 RTW_WBR(regs, RTW_CR, RTW_CR);
487
488 for (i = 0; i < 10000; i++) {
489 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
490 RTW_DPRINTF(("%s: reset in %dus\n", dvname, i));
491 return 0;
492 }
493 RTW_RBR(regs, RTW_CR, RTW_CR);
494 DELAY(1); /* 1us */
495 }
496
497 printf("%s: reset failed\n", dvname);
498 return ETIMEDOUT;
499 }
500
501 static __inline int
502 rtw_chip_reset(struct rtw_regs *regs, const char *dvname)
503 {
504 uint32_t tcr;
505
506 /* from Linux driver */
507 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
508 LSHIFT(7, RTW_TCR_SRL_MASK) | LSHIFT(7, RTW_TCR_LRL_MASK);
509
510 RTW_WRITE(regs, RTW_TCR, tcr);
511
512 RTW_WBW(regs, RTW_CR, RTW_TCR);
513
514 return rtw_chip_reset1(regs, dvname);
515 }
516
517 static __inline int
518 rtw_recall_eeprom(struct rtw_regs *regs, const char *dvname)
519 {
520 int i;
521 u_int8_t ecr;
522
523 ecr = RTW_READ8(regs, RTW_9346CR);
524 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
525 RTW_WRITE8(regs, RTW_9346CR, ecr);
526
527 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
528
529 /* wait 2.5ms for completion */
530 for (i = 0; i < 25; i++) {
531 ecr = RTW_READ8(regs, RTW_9346CR);
532 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
533 RTW_DPRINTF(("%s: recall EEPROM in %dus\n", dvname,
534 i * 100));
535 return 0;
536 }
537 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
538 DELAY(100);
539 }
540 printf("%s: recall EEPROM failed\n", dvname);
541 return ETIMEDOUT;
542 }
543
544 static __inline int
545 rtw_reset(struct rtw_softc *sc)
546 {
547 int rc;
548 uint8_t config1;
549
550 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev.dv_xname)) != 0)
551 return rc;
552
553 if ((rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev.dv_xname)) != 0)
554 ;
555
556 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
557 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
558 /* TBD turn off maximum power saving? */
559
560 return 0;
561 }
562
563 static __inline int
564 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txctl *descs,
565 u_int ndescs)
566 {
567 int i, rc = 0;
568 for (i = 0; i < ndescs; i++) {
569 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
570 0, 0, &descs[i].stx_dmamap);
571 if (rc != 0)
572 break;
573 }
574 return rc;
575 }
576
577 static __inline int
578 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
579 u_int ndescs)
580 {
581 int i, rc = 0;
582 for (i = 0; i < ndescs; i++) {
583 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
584 &descs[i].srx_dmamap);
585 if (rc != 0)
586 break;
587 }
588 return rc;
589 }
590
591 static __inline void
592 rtw_rxctls_setup(struct rtw_rxctl *descs)
593 {
594 int i;
595 for (i = 0; i < RTW_RXQLEN; i++)
596 descs[i].srx_mbuf = NULL;
597 }
598
599 static __inline void
600 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxctl *descs,
601 u_int ndescs)
602 {
603 int i;
604 for (i = 0; i < ndescs; i++) {
605 if (descs[i].srx_dmamap != NULL)
606 bus_dmamap_destroy(dmat, descs[i].srx_dmamap);
607 }
608 }
609
610 static __inline void
611 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txctl *descs,
612 u_int ndescs)
613 {
614 int i;
615 for (i = 0; i < ndescs; i++) {
616 if (descs[i].stx_dmamap != NULL)
617 bus_dmamap_destroy(dmat, descs[i].stx_dmamap);
618 }
619 }
620
621 static __inline void
622 rtw_srom_free(struct rtw_srom *sr)
623 {
624 sr->sr_size = 0;
625 if (sr->sr_content == NULL)
626 return;
627 free(sr->sr_content, M_DEVBUF);
628 sr->sr_content = NULL;
629 }
630
631 static void
632 rtw_srom_defaults(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
633 enum rtw_rfchipid *rfchipid, u_int32_t *rcr)
634 {
635 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
636 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
637 *rcr |= RTW_RCR_ENCS1;
638 *rfchipid = RTW_RFCHIPID_PHILIPS;
639 }
640
641 static int
642 rtw_srom_parse(struct rtw_srom *sr, u_int32_t *flags, u_int8_t *cs_threshold,
643 enum rtw_rfchipid *rfchipid, u_int32_t *rcr, enum rtw_locale *locale,
644 const char *dvname)
645 {
646 int i;
647 const char *rfname, *paname;
648 char scratch[sizeof("unknown 0xXX")];
649 u_int16_t version;
650 u_int8_t mac[IEEE80211_ADDR_LEN];
651
652 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
653 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
654
655 version = RTW_SR_GET16(sr, RTW_SR_VERSION);
656 printf("%s: SROM version %d.%d", dvname, version >> 8, version & 0xff);
657
658 if (version <= 0x0101) {
659 printf(" is not understood, limping along with defaults\n");
660 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
661 return 0;
662 }
663 printf("\n");
664
665 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
666 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
667
668 RTW_DPRINTF(("%s: EEPROM MAC %s\n", dvname, ether_sprintf(mac)));
669
670 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
671
672 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
673 *flags |= RTW_F_ANTDIV;
674
675 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) != 0)
676 *flags |= RTW_F_DIGPHY;
677 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
678 *flags |= RTW_F_DFLANTB;
679
680 *rcr |= LSHIFT(MASK_AND_RSHIFT(RTW_SR_GET(sr, RTW_SR_RFPARM),
681 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
682
683 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
684 switch (*rfchipid) {
685 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
686 rfname = "GCT GRF5101";
687 paname = "Winspring WS9901";
688 break;
689 case RTW_RFCHIPID_MAXIM:
690 rfname = "Maxim MAX2820"; /* guess */
691 paname = "Maxim MAX2422"; /* guess */
692 break;
693 case RTW_RFCHIPID_INTERSIL:
694 rfname = "Intersil HFA3873"; /* guess */
695 paname = "Intersil <unknown>";
696 break;
697 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
698 rfname = "Philips SA2400A";
699 paname = "Philips SA2411";
700 break;
701 case RTW_RFCHIPID_RFMD:
702 /* this is the same front-end as an atw(4)! */
703 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
704 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
705 "SYN: Silicon Labs Si4126"; /* inferred from
706 * reference driver
707 */
708 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
709 break;
710 case RTW_RFCHIPID_RESERVED:
711 rfname = paname = "reserved";
712 break;
713 default:
714 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
715 rfname = paname = scratch;
716 }
717 printf("%s: RF: %s, PA: %s\n", dvname, rfname, paname);
718
719 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
720 case RTW_CONFIG0_GL_USA:
721 *locale = RTW_LOCALE_USA;
722 break;
723 case RTW_CONFIG0_GL_EUROPE:
724 *locale = RTW_LOCALE_EUROPE;
725 break;
726 case RTW_CONFIG0_GL_JAPAN:
727 *locale = RTW_LOCALE_JAPAN;
728 break;
729 default:
730 *locale = RTW_LOCALE_UNKNOWN;
731 break;
732 }
733 return 0;
734 }
735
736 /* Returns -1 on failure. */
737 static int
738 rtw_srom_read(struct rtw_regs *regs, u_int32_t flags, struct rtw_srom *sr,
739 const char *dvname)
740 {
741 int rc;
742 struct seeprom_descriptor sd;
743 u_int8_t ecr;
744
745 (void)memset(&sd, 0, sizeof(sd));
746
747 ecr = RTW_READ8(regs, RTW_9346CR);
748
749 if ((flags & RTW_F_9356SROM) != 0) {
750 RTW_DPRINTF(("%s: 93c56 SROM\n", dvname));
751 sr->sr_size = 256;
752 sd.sd_chip = C56_66;
753 } else {
754 RTW_DPRINTF(("%s: 93c46 SROM\n", dvname));
755 sr->sr_size = 128;
756 sd.sd_chip = C46;
757 }
758
759 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
760 RTW_9346CR_EEM_MASK);
761 ecr |= RTW_9346CR_EEM_PROGRAM;
762
763 RTW_WRITE8(regs, RTW_9346CR, ecr);
764
765 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
766
767 if (sr->sr_content == NULL) {
768 printf("%s: unable to allocate SROM buffer\n", dvname);
769 return ENOMEM;
770 }
771
772 (void)memset(sr->sr_content, 0, sr->sr_size);
773
774 /* RTL8180 has a single 8-bit register for controlling the
775 * 93cx6 SROM. There is no "ready" bit. The RTL8180
776 * input/output sense is the reverse of read_seeprom's.
777 */
778 sd.sd_tag = regs->r_bt;
779 sd.sd_bsh = regs->r_bh;
780 sd.sd_regsize = 1;
781 sd.sd_control_offset = RTW_9346CR;
782 sd.sd_status_offset = RTW_9346CR;
783 sd.sd_dataout_offset = RTW_9346CR;
784 sd.sd_CK = RTW_9346CR_EESK;
785 sd.sd_CS = RTW_9346CR_EECS;
786 sd.sd_DI = RTW_9346CR_EEDO;
787 sd.sd_DO = RTW_9346CR_EEDI;
788 /* make read_seeprom enter EEPROM read/write mode */
789 sd.sd_MS = ecr;
790 sd.sd_RDY = 0;
791 #if 0
792 sd.sd_clkdelay = 50;
793 #endif
794
795 /* TBD bus barriers */
796 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
797 printf("%s: could not read SROM\n", dvname);
798 free(sr->sr_content, M_DEVBUF);
799 sr->sr_content = NULL;
800 return -1; /* XXX */
801 }
802
803 /* end EEPROM read/write mode */
804 RTW_WRITE8(regs, RTW_9346CR,
805 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
806 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
807
808 if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
809 return rc;
810
811 #ifdef RTW_DEBUG
812 {
813 int i;
814 RTW_DPRINTF(("\n%s: serial ROM:\n\t", dvname));
815 for (i = 0; i < sr->sr_size/2; i++) {
816 if (((i % 8) == 0) && (i != 0))
817 RTW_DPRINTF(("\n\t"));
818 RTW_DPRINTF((" %04x", sr->sr_content[i]));
819 }
820 RTW_DPRINTF(("\n"));
821 }
822 #endif /* RTW_DEBUG */
823 return 0;
824 }
825
826 static void
827 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
828 const char *dvname)
829 {
830 u_int8_t cfg4;
831 const char *method;
832
833 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
834
835 switch (rfchipid) {
836 default:
837 cfg4 |= LSHIFT(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
838 method = "fallback";
839 break;
840 case RTW_RFCHIPID_INTERSIL:
841 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
842 method = "Intersil";
843 break;
844 case RTW_RFCHIPID_PHILIPS:
845 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
846 method = "Philips";
847 break;
848 case RTW_RFCHIPID_RFMD:
849 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
850 method = "RFMD";
851 break;
852 }
853
854 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
855
856 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
857
858 printf("%s: %s RF programming method, %#02x\n", dvname, method,
859 RTW_READ8(regs, RTW_CONFIG4));
860 }
861
862 #if 0
863 static __inline int
864 rtw_identify_rf(struct rtw_regs *regs, enum rtw_rftype *rftype,
865 const char *dvname)
866 {
867 u_int8_t cfg4;
868 const char *name;
869
870 cfg4 = RTW_READ8(regs, RTW_CONFIG4);
871
872 switch (cfg4 & RTW_CONFIG4_RFTYPE_MASK) {
873 case RTW_CONFIG4_RFTYPE_PHILIPS:
874 *rftype = RTW_RFTYPE_PHILIPS;
875 name = "Philips";
876 break;
877 case RTW_CONFIG4_RFTYPE_INTERSIL:
878 *rftype = RTW_RFTYPE_INTERSIL;
879 name = "Intersil";
880 break;
881 case RTW_CONFIG4_RFTYPE_RFMD:
882 *rftype = RTW_RFTYPE_RFMD;
883 name = "RFMD";
884 break;
885 default:
886 name = "<unknown>";
887 return ENXIO;
888 }
889
890 printf("%s: RF prog type %s\n", dvname, name);
891 return 0;
892 }
893 #endif
894
895 static __inline void
896 rtw_init_channels(enum rtw_locale locale,
897 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
898 const char *dvname)
899 {
900 int i;
901 const char *name = NULL;
902 #define ADD_CHANNEL(_chans, _chan) do { \
903 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
904 (*_chans)[_chan].ic_freq = \
905 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
906 } while (0)
907
908 switch (locale) {
909 case RTW_LOCALE_USA: /* 1-11 */
910 name = "USA";
911 for (i = 1; i <= 11; i++)
912 ADD_CHANNEL(chans, i);
913 break;
914 case RTW_LOCALE_JAPAN: /* 1-14 */
915 name = "Japan";
916 ADD_CHANNEL(chans, 14);
917 for (i = 1; i <= 14; i++)
918 ADD_CHANNEL(chans, i);
919 break;
920 case RTW_LOCALE_EUROPE: /* 1-13 */
921 name = "Europe";
922 for (i = 1; i <= 13; i++)
923 ADD_CHANNEL(chans, i);
924 break;
925 default: /* 10-11 allowed by most countries */
926 name = "<unknown>";
927 for (i = 10; i <= 11; i++)
928 ADD_CHANNEL(chans, i);
929 break;
930 }
931 printf("%s: Geographic Location %s\n", dvname, name);
932 #undef ADD_CHANNEL
933 }
934
935 static __inline void
936 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale,
937 const char *dvname)
938 {
939 u_int8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
940
941 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
942 case RTW_CONFIG0_GL_USA:
943 *locale = RTW_LOCALE_USA;
944 break;
945 case RTW_CONFIG0_GL_JAPAN:
946 *locale = RTW_LOCALE_JAPAN;
947 break;
948 case RTW_CONFIG0_GL_EUROPE:
949 *locale = RTW_LOCALE_EUROPE;
950 break;
951 default:
952 *locale = RTW_LOCALE_UNKNOWN;
953 break;
954 }
955 }
956
957 static __inline int
958 rtw_identify_sta(struct rtw_regs *regs, u_int8_t (*addr)[IEEE80211_ADDR_LEN],
959 const char *dvname)
960 {
961 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
962 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
963 };
964 u_int32_t idr0 = RTW_READ(regs, RTW_IDR0),
965 idr1 = RTW_READ(regs, RTW_IDR1);
966
967 (*addr)[0] = MASK_AND_RSHIFT(idr0, BITS(0, 7));
968 (*addr)[1] = MASK_AND_RSHIFT(idr0, BITS(8, 15));
969 (*addr)[2] = MASK_AND_RSHIFT(idr0, BITS(16, 23));
970 (*addr)[3] = MASK_AND_RSHIFT(idr0, BITS(24 ,31));
971
972 (*addr)[4] = MASK_AND_RSHIFT(idr1, BITS(0, 7));
973 (*addr)[5] = MASK_AND_RSHIFT(idr1, BITS(8, 15));
974
975 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
976 printf("%s: could not get mac address, attach failed\n",
977 dvname);
978 return ENXIO;
979 }
980
981 printf("%s: 802.11 address %s\n", dvname, ether_sprintf(*addr));
982
983 return 0;
984 }
985
986 static u_int8_t
987 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
988 struct ieee80211_channel *chan)
989 {
990 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
991 KASSERT2(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14,
992 ("%s: channel %d out of range", __func__,
993 idx - RTW_SR_TXPOWER1 + 1));
994 return RTW_SR_GET(sr, idx);
995 }
996
997 static void
998 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *htcs)
999 {
1000 int pri;
1001 u_int ndesc[RTW_NTXPRI] =
1002 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI, RTW_NTXDESCBCN};
1003
1004 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1005 htcs[pri].htc_nfree = ndesc[pri];
1006 htcs[pri].htc_next = 0;
1007 }
1008 }
1009
1010 static int
1011 rtw_txctl_blk_init(struct rtw_txctl_blk *stc)
1012 {
1013 int i;
1014 struct rtw_txctl *stx;
1015
1016 SIMPLEQ_INIT(&stc->stc_dirtyq);
1017 SIMPLEQ_INIT(&stc->stc_freeq);
1018 for (i = 0; i < stc->stc_ndesc; i++) {
1019 stx = &stc->stc_desc[i];
1020 stx->stx_mbuf = NULL;
1021 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1022 }
1023 return 0;
1024 }
1025
1026 static void
1027 rtw_txctl_blk_init_all(struct rtw_txctl_blk *stcs)
1028 {
1029 int pri;
1030 for (pri = 0; pri < RTW_NTXPRI; pri++)
1031 rtw_txctl_blk_init(&stcs[pri]);
1032 }
1033
1034 static __inline void
1035 rtw_rxdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap, u_int desc0, u_int
1036 nsync, int ops)
1037 {
1038 /* sync to end of ring */
1039 if (desc0 + nsync > RTW_NRXDESC) {
1040 bus_dmamap_sync(dmat, dmap,
1041 offsetof(struct rtw_descs, hd_rx[desc0]),
1042 sizeof(struct rtw_rxdesc) * (RTW_NRXDESC - desc0), ops);
1043 nsync -= (RTW_NRXDESC - desc0);
1044 desc0 = 0;
1045 }
1046
1047 /* sync what remains */
1048 bus_dmamap_sync(dmat, dmap,
1049 offsetof(struct rtw_descs, hd_rx[desc0]),
1050 sizeof(struct rtw_rxdesc) * nsync, ops);
1051 }
1052
1053 static void
1054 rtw_txdescs_sync(bus_dma_tag_t dmat, bus_dmamap_t dmap,
1055 struct rtw_txdesc_blk *htc, u_int desc0, u_int nsync, int ops)
1056 {
1057 /* sync to end of ring */
1058 if (desc0 + nsync > htc->htc_ndesc) {
1059 bus_dmamap_sync(dmat, dmap,
1060 htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
1061 sizeof(struct rtw_txdesc) * (htc->htc_ndesc - desc0),
1062 ops);
1063 nsync -= (htc->htc_ndesc - desc0);
1064 desc0 = 0;
1065 }
1066
1067 /* sync what remains */
1068 bus_dmamap_sync(dmat, dmap,
1069 htc->htc_ofs + sizeof(struct rtw_txdesc) * desc0,
1070 sizeof(struct rtw_txdesc) * nsync, ops);
1071 }
1072
1073 static void
1074 rtw_txdescs_sync_all(bus_dma_tag_t dmat, bus_dmamap_t dmap,
1075 struct rtw_txdesc_blk *htcs)
1076 {
1077 int pri;
1078 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1079 rtw_txdescs_sync(dmat, dmap,
1080 &htcs[pri], 0, htcs[pri].htc_ndesc,
1081 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1082 }
1083 }
1084
1085 static void
1086 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxctl *desc)
1087 {
1088 int i;
1089 struct rtw_rxctl *srx;
1090
1091 for (i = 0; i < RTW_NRXDESC; i++) {
1092 srx = &desc[i];
1093 bus_dmamap_sync(dmat, srx->srx_dmamap, 0,
1094 srx->srx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1095 bus_dmamap_unload(dmat, srx->srx_dmamap);
1096 m_freem(srx->srx_mbuf);
1097 srx->srx_mbuf = NULL;
1098 }
1099 }
1100
1101 static __inline int
1102 rtw_rxbuf_alloc(bus_dma_tag_t dmat, struct rtw_rxctl *srx)
1103 {
1104 int rc;
1105 struct mbuf *m;
1106
1107 MGETHDR(m, M_DONTWAIT, MT_DATA);
1108 if (m == NULL)
1109 return ENOMEM;
1110
1111 MCLGET(m, M_DONTWAIT);
1112 if (m == NULL)
1113 return ENOMEM;
1114
1115 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1116
1117 rc = bus_dmamap_load_mbuf(dmat, srx->srx_dmamap, m, BUS_DMA_NOWAIT);
1118 if (rc != 0)
1119 return rc;
1120
1121 srx->srx_mbuf = m;
1122
1123 return 0;
1124 }
1125
1126 static int
1127 rtw_rxctl_init_all(bus_dma_tag_t dmat, struct rtw_rxctl *desc,
1128 u_int *next, const char *dvname)
1129 {
1130 int i, rc;
1131 struct rtw_rxctl *srx;
1132
1133 for (i = 0; i < RTW_NRXDESC; i++) {
1134 srx = &desc[i];
1135 if ((rc = rtw_rxbuf_alloc(dmat, srx)) == 0)
1136 continue;
1137 printf("%s: failed rtw_rxbuf_alloc after %d buffers, rc = %d\n",
1138 dvname, i, rc);
1139 if (i == 0) {
1140 rtw_rxbufs_release(dmat, desc);
1141 return rc;
1142 }
1143 }
1144 *next = 0;
1145 return 0;
1146 }
1147
1148 static __inline void
1149 rtw_rxdesc_init(bus_dma_tag_t dmat, bus_dmamap_t dmam,
1150 struct rtw_rxdesc *hrx, struct rtw_rxctl *srx, int idx)
1151 {
1152 int is_last = (idx == RTW_NRXDESC - 1);
1153 uint32_t ctl;
1154
1155 hrx->hrx_buf = htole32(srx->srx_dmamap->dm_segs[0].ds_addr);
1156
1157 ctl = LSHIFT(srx->srx_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1158 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1159
1160 if (is_last)
1161 ctl |= RTW_RXCTL_EOR;
1162
1163 hrx->hrx_ctl = htole32(ctl);
1164
1165 /* sync the mbuf */
1166 bus_dmamap_sync(dmat, srx->srx_dmamap, 0, srx->srx_dmamap->dm_mapsize,
1167 BUS_DMASYNC_PREREAD);
1168
1169 /* sync the descriptor */
1170 bus_dmamap_sync(dmat, dmam, RTW_DESC_OFFSET(hd_rx, idx),
1171 sizeof(struct rtw_rxdesc),
1172 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1173 }
1174
1175 static void
1176 rtw_rxdesc_init_all(bus_dma_tag_t dmat, bus_dmamap_t dmam,
1177 struct rtw_rxdesc *desc, struct rtw_rxctl *ctl)
1178 {
1179 int i;
1180 struct rtw_rxdesc *hrx;
1181 struct rtw_rxctl *srx;
1182
1183 for (i = 0; i < RTW_NRXDESC; i++) {
1184 hrx = &desc[i];
1185 srx = &ctl[i];
1186 rtw_rxdesc_init(dmat, dmam, hrx, srx, i);
1187 }
1188 }
1189
1190 static void
1191 rtw_io_enable(struct rtw_regs *regs, u_int8_t flags, int enable)
1192 {
1193 u_int8_t cr;
1194
1195 RTW_DPRINTF(("%s: %s 0x%02x\n", __func__,
1196 enable ? "enable" : "disable", flags));
1197
1198 cr = RTW_READ8(regs, RTW_CR);
1199
1200 /* XXX reference source does not enable MULRW */
1201 #if 0
1202 /* enable PCI Read/Write Multiple */
1203 cr |= RTW_CR_MULRW;
1204 #endif
1205
1206 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1207 if (enable)
1208 cr |= flags;
1209 else
1210 cr &= ~flags;
1211 RTW_WRITE8(regs, RTW_CR, cr);
1212 RTW_SYNC(regs, RTW_CR, RTW_CR);
1213 }
1214
1215 static void
1216 rtw_intr_rx(struct rtw_softc *sc, u_int16_t isr)
1217 {
1218 u_int next;
1219 int rate, rssi;
1220 u_int32_t hrssi, hstat, htsfth, htsftl;
1221 struct rtw_rxdesc *hrx;
1222 struct rtw_rxctl *srx;
1223 struct mbuf *m;
1224
1225 struct ieee80211_node *ni;
1226 struct ieee80211_frame *wh;
1227
1228 for (next = sc->sc_rxnext; ; next = (next + 1) % RTW_RXQLEN) {
1229 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1230 next, 1, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1231 hrx = &sc->sc_rxdesc[next];
1232 srx = &sc->sc_rxctl[next];
1233
1234 hstat = le32toh(hrx->hrx_stat);
1235 hrssi = le32toh(hrx->hrx_rssi);
1236 htsfth = le32toh(hrx->hrx_tsfth);
1237 htsftl = le32toh(hrx->hrx_tsftl);
1238
1239 RTW_DPRINTF2(("%s: rxdesc[%d] hstat %#08x hrssi %#08x "
1240 "htsft %#08x%08x\n", __func__, next,
1241 hstat, hrssi, htsfth, htsftl));
1242
1243 if ((hstat & RTW_RXSTAT_OWN) != 0) /* belongs to NIC */
1244 break;
1245
1246 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1247 printf("%s: DMA error/FIFO overflow %08x, "
1248 "rx descriptor %d\n", sc->sc_dev.dv_xname,
1249 hstat & RTW_RXSTAT_IOERROR, next);
1250 goto next;
1251 }
1252
1253 switch (hstat & RTW_RXSTAT_RATE_MASK) {
1254 case RTW_RXSTAT_RATE_1MBPS:
1255 rate = 10;
1256 break;
1257 case RTW_RXSTAT_RATE_2MBPS:
1258 rate = 20;
1259 break;
1260 case RTW_RXSTAT_RATE_5MBPS:
1261 rate = 55;
1262 break;
1263 default:
1264 #ifdef RTW_DEBUG
1265 if (rtw_debug > 1)
1266 printf("%s: interpreting rate #%d as 11 MB/s\n",
1267 sc->sc_dev.dv_xname,
1268 MASK_AND_RSHIFT(hstat,
1269 RTW_RXSTAT_RATE_MASK));
1270 #endif /* RTW_DEBUG */
1271 /*FALLTHROUGH*/
1272 case RTW_RXSTAT_RATE_11MBPS:
1273 rate = 110;
1274 break;
1275 }
1276
1277 RTW_DPRINTF2(("%s: rate %d\n", __func__, rate));
1278
1279 #ifdef RTW_DEBUG
1280 #define PRINTSTAT(flag) do { \
1281 if ((hstat & flag) != 0) { \
1282 printf("%s" #flag, delim); \
1283 delim = ","; \
1284 } \
1285 } while (0)
1286 if (rtw_debug > 1) {
1287 const char *delim = "<";
1288 printf("%s: ", sc->sc_dev.dv_xname);
1289 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1290 printf("status %08x<", hstat);
1291 PRINTSTAT(RTW_RXSTAT_SPLCP);
1292 PRINTSTAT(RTW_RXSTAT_MAR);
1293 PRINTSTAT(RTW_RXSTAT_PAR);
1294 PRINTSTAT(RTW_RXSTAT_BAR);
1295 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1296 PRINTSTAT(RTW_RXSTAT_CRC32);
1297 PRINTSTAT(RTW_RXSTAT_ICV);
1298 printf(">, ");
1299 }
1300 printf("rate %d.%d Mb/s, time %08x%08x\n",
1301 rate / 10, rate % 10, htsfth, htsftl);
1302 }
1303 #endif /* RTW_DEBUG */
1304
1305 if ((hstat & RTW_RXSTAT_RES) != 0 &&
1306 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
1307 goto next;
1308
1309 /* if bad flags, skip descriptor */
1310 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1311 printf("%s: too many rx segments\n",
1312 sc->sc_dev.dv_xname);
1313 goto next;
1314 }
1315
1316 m = srx->srx_mbuf;
1317
1318 /* if temporarily out of memory, re-use mbuf */
1319 if (rtw_rxbuf_alloc(sc->sc_dmat, srx) != 0) {
1320 printf("%s: rtw_rxbuf_alloc(, %d) failed, "
1321 "dropping this packet\n", sc->sc_dev.dv_xname,
1322 next);
1323 goto next;
1324 }
1325
1326 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1327 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_RSSI);
1328 else {
1329 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_IMR_RSSI);
1330 /* TBD find out each front-end's LNA gain in the
1331 * front-end's units
1332 */
1333 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1334 rssi |= 0x80;
1335 }
1336
1337 m->m_pkthdr.len = m->m_len =
1338 MASK_AND_RSHIFT(hstat, RTW_RXSTAT_LENGTH_MASK);
1339 m->m_flags |= M_HASFCS;
1340
1341 if (m->m_pkthdr.len < IEEE80211_MIN_LEN) {
1342 sc->sc_ic.ic_stats.is_rx_tooshort++;
1343 goto next;
1344 }
1345 wh = mtod(m, struct ieee80211_frame *);
1346 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1347 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1348
1349 sc->sc_tsfth = htsfth;
1350
1351 ieee80211_input(&sc->sc_if, m, ni, rssi, htsftl);
1352 ieee80211_release_node(&sc->sc_ic, ni);
1353 next:
1354 rtw_rxdesc_init(sc->sc_dmat, sc->sc_desc_dmamap,
1355 hrx, srx, next);
1356 }
1357 sc->sc_rxnext = next;
1358
1359 return;
1360 }
1361
1362 static void
1363 rtw_txbuf_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1364 struct rtw_txctl *stx)
1365 {
1366 struct mbuf *m;
1367 struct ieee80211_node *ni;
1368 bus_dmamap_t dmamap;
1369
1370 dmamap = stx->stx_dmamap;
1371 m = stx->stx_mbuf;
1372 ni = stx->stx_ni;
1373 stx->stx_dmamap = NULL;
1374 stx->stx_mbuf = NULL;
1375 stx->stx_ni = NULL;
1376
1377 bus_dmamap_sync(dmat, dmamap, 0, dmamap->dm_mapsize,
1378 BUS_DMASYNC_POSTWRITE);
1379 bus_dmamap_unload(dmat, dmamap);
1380 m_freem(m);
1381 ieee80211_release_node(ic, ni);
1382 }
1383
1384 static void
1385 rtw_txbufs_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1386 struct rtw_txctl_blk *stc)
1387 {
1388 struct rtw_txctl *stx;
1389
1390 while ((stx = SIMPLEQ_FIRST(&stc->stc_dirtyq)) != NULL) {
1391 rtw_txbuf_release(dmat, ic, stx);
1392 SIMPLEQ_REMOVE_HEAD(&stc->stc_dirtyq, stx_q);
1393 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1394 }
1395 }
1396
1397 static __inline void
1398 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *htc,
1399 struct rtw_txctl *stx, int ndesc)
1400 {
1401 int data_retry, rts_retry;
1402 struct rtw_txdesc *htx0, *htxn;
1403 const char *condstring;
1404
1405 rtw_txbuf_release(sc->sc_dmat, &sc->sc_ic, stx);
1406
1407 htc->htc_nfree += ndesc;
1408
1409 htx0 = &htc->htc_desc[stx->stx_first];
1410 htxn = &htc->htc_desc[stx->stx_last];
1411
1412 rts_retry = MASK_AND_RSHIFT(le32toh(htx0->htx_stat),
1413 RTW_TXSTAT_RTSRETRY_MASK);
1414 data_retry = MASK_AND_RSHIFT(le32toh(htx0->htx_stat),
1415 RTW_TXSTAT_DRC_MASK);
1416
1417 sc->sc_if.if_collisions += rts_retry + data_retry;
1418
1419 if ((htx0->htx_stat & htole32(RTW_TXSTAT_TOK)) != 0)
1420 condstring = "ok";
1421 else {
1422 sc->sc_if.if_oerrors++;
1423 condstring = "error";
1424 }
1425
1426 DPRINTF2(sc, ("%s: stx %p txdesc[%d, %d] %s tries rts %u data %u\n",
1427 sc->sc_dev.dv_xname, stx, stx->stx_first, stx->stx_last,
1428 condstring, rts_retry, data_retry));
1429 }
1430
1431 /* Collect transmitted packets. */
1432 static __inline void
1433 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txctl_blk *stc,
1434 struct rtw_txdesc_blk *htc)
1435 {
1436 int ndesc;
1437 struct rtw_txctl *stx;
1438
1439 while ((stx = SIMPLEQ_FIRST(&stc->stc_dirtyq)) != NULL) {
1440 ndesc = 1 + stx->stx_last - stx->stx_first;
1441 if (stx->stx_last < stx->stx_first)
1442 ndesc += htc->htc_ndesc;
1443
1444 KASSERT(ndesc > 0);
1445
1446 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap, htc,
1447 stx->stx_first, ndesc,
1448 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1449
1450 if ((htc->htc_desc[stx->stx_first].htx_stat &
1451 htole32(RTW_TXSTAT_OWN)) != 0)
1452 break;
1453
1454 rtw_collect_txpkt(sc, htc, stx, ndesc);
1455 SIMPLEQ_REMOVE_HEAD(&stc->stc_dirtyq, stx_q);
1456 SIMPLEQ_INSERT_TAIL(&stc->stc_freeq, stx, stx_q);
1457 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1458 }
1459 if (stx == NULL)
1460 stc->stc_tx_timer = 0;
1461 }
1462
1463 static void
1464 rtw_intr_tx(struct rtw_softc *sc, u_int16_t isr)
1465 {
1466 int pri;
1467 struct rtw_txctl_blk *stc;
1468 struct rtw_txdesc_blk *htc;
1469
1470 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1471 stc = &sc->sc_txctl_blk[pri];
1472 htc = &sc->sc_txdesc_blk[pri];
1473
1474 rtw_collect_txring(sc, stc, htc);
1475
1476 rtw_start(&sc->sc_if);
1477 }
1478
1479 /* TBD */
1480 return;
1481 }
1482
1483 static void
1484 rtw_intr_beacon(struct rtw_softc *sc, u_int16_t isr)
1485 {
1486 /* TBD */
1487 return;
1488 }
1489
1490 static void
1491 rtw_intr_atim(struct rtw_softc *sc)
1492 {
1493 /* TBD */
1494 return;
1495 }
1496
1497 static void
1498 rtw_hwring_setup(struct rtw_softc *sc)
1499 {
1500 struct rtw_regs *regs = &sc->sc_regs;
1501 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1502 RTW_WRITE(regs, RTW_TLPDA, RTW_RING_BASE(sc, hd_txlo));
1503 RTW_WRITE(regs, RTW_TNPDA, RTW_RING_BASE(sc, hd_txmd));
1504 RTW_WRITE(regs, RTW_THPDA, RTW_RING_BASE(sc, hd_txhi));
1505 RTW_WRITE(regs, RTW_TBDA, RTW_RING_BASE(sc, hd_bcn));
1506 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1507 }
1508
1509 static void
1510 rtw_swring_setup(struct rtw_softc *sc)
1511 {
1512 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1513
1514 rtw_txctl_blk_init_all(&sc->sc_txctl_blk[0]);
1515
1516 rtw_rxctl_init_all(sc->sc_dmat, sc->sc_rxctl, &sc->sc_rxnext,
1517 sc->sc_dev.dv_xname);
1518 rtw_rxdesc_init_all(sc->sc_dmat, sc->sc_desc_dmamap,
1519 sc->sc_rxdesc, sc->sc_rxctl);
1520
1521 rtw_txdescs_sync_all(sc->sc_dmat, sc->sc_desc_dmamap,
1522 &sc->sc_txdesc_blk[0]);
1523 #if 0 /* redundant with rtw_rxdesc_init_all */
1524 rtw_rxdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
1525 0, RTW_NRXDESC, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1526 #endif
1527 }
1528
1529 static void
1530 rtw_kick(struct rtw_softc *sc)
1531 {
1532 int pri;
1533 struct rtw_regs *regs = &sc->sc_regs;
1534
1535 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 0);
1536 RTW_WRITE16(regs, RTW_IMR, 0);
1537 RTW_SYNC(regs, RTW_IMR, RTW_IMR);
1538 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1539 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1540 rtw_txbufs_release(sc->sc_dmat, &sc->sc_ic,
1541 &sc->sc_txctl_blk[pri]);
1542 }
1543 rtw_swring_setup(sc);
1544 rtw_hwring_setup(sc);
1545 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
1546 RTW_SYNC(regs, RTW_IMR, RTW_IMR);
1547 rtw_io_enable(regs, RTW_CR_RE | RTW_CR_TE, 1);
1548 }
1549
1550 static void
1551 rtw_intr_ioerror(struct rtw_softc *sc, u_int16_t isr)
1552 {
1553 if ((isr & (RTW_INTR_RDU|RTW_INTR_RXFOVW)) != 0)
1554 rtw_kick(sc);
1555 if ((isr & RTW_INTR_TXFOVW) != 0)
1556 ; /* TBD restart transmit engine */
1557 return;
1558 }
1559
1560 static __inline void
1561 rtw_suspend_ticks(struct rtw_softc *sc)
1562 {
1563 RTW_DPRINTF2(("%s: suspending ticks\n", sc->sc_dev.dv_xname));
1564 sc->sc_do_tick = 0;
1565 }
1566
1567 static __inline void
1568 rtw_resume_ticks(struct rtw_softc *sc)
1569 {
1570 u_int32_t tsftrl0, tsftrl1, next_tick;
1571
1572 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1573
1574 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1575 next_tick = tsftrl1 + 1000000;
1576 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
1577
1578 sc->sc_do_tick = 1;
1579
1580 RTW_DPRINTF2(("%s: resume ticks delta %#08x now %#08x next %#08x\n",
1581 sc->sc_dev.dv_xname, tsftrl1 - tsftrl0, tsftrl1, next_tick));
1582 }
1583
1584 static void
1585 rtw_intr_timeout(struct rtw_softc *sc)
1586 {
1587 RTW_DPRINTF2(("%s: timeout\n", sc->sc_dev.dv_xname));
1588 if (sc->sc_do_tick)
1589 rtw_resume_ticks(sc);
1590 return;
1591 }
1592
1593 int
1594 rtw_intr(void *arg)
1595 {
1596 int i;
1597 struct rtw_softc *sc = arg;
1598 struct rtw_regs *regs = &sc->sc_regs;
1599 u_int16_t isr;
1600
1601 /*
1602 * If the interface isn't running, the interrupt couldn't
1603 * possibly have come from us.
1604 */
1605 if ((sc->sc_flags & RTW_F_ENABLED) == 0 ||
1606 (sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
1607 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) {
1608 RTW_DPRINTF2(("%s: stray interrupt\n", sc->sc_dev.dv_xname));
1609 return (0);
1610 }
1611
1612 for (i = 0; i < 10; i++) {
1613 isr = RTW_READ16(regs, RTW_ISR);
1614
1615 RTW_WRITE16(regs, RTW_ISR, isr);
1616 RTW_WBR(regs, RTW_ISR, RTW_ISR);
1617
1618 if (sc->sc_intr_ack != NULL)
1619 (*sc->sc_intr_ack)(regs);
1620
1621 if (isr == 0)
1622 break;
1623
1624 #ifdef RTW_DEBUG
1625 #define PRINTINTR(flag) do { \
1626 if ((isr & flag) != 0) { \
1627 printf("%s" #flag, delim); \
1628 delim = ","; \
1629 } \
1630 } while (0)
1631
1632 if (rtw_debug > 1 && isr != 0) {
1633 const char *delim = "<";
1634
1635 printf("%s: reg[ISR] = %x", sc->sc_dev.dv_xname, isr);
1636
1637 PRINTINTR(RTW_INTR_TXFOVW);
1638 PRINTINTR(RTW_INTR_TIMEOUT);
1639 PRINTINTR(RTW_INTR_BCNINT);
1640 PRINTINTR(RTW_INTR_ATIMINT);
1641 PRINTINTR(RTW_INTR_TBDER);
1642 PRINTINTR(RTW_INTR_TBDOK);
1643 PRINTINTR(RTW_INTR_THPDER);
1644 PRINTINTR(RTW_INTR_THPDOK);
1645 PRINTINTR(RTW_INTR_TNPDER);
1646 PRINTINTR(RTW_INTR_TNPDOK);
1647 PRINTINTR(RTW_INTR_RXFOVW);
1648 PRINTINTR(RTW_INTR_RDU);
1649 PRINTINTR(RTW_INTR_TLPDER);
1650 PRINTINTR(RTW_INTR_TLPDOK);
1651 PRINTINTR(RTW_INTR_RER);
1652 PRINTINTR(RTW_INTR_ROK);
1653
1654 printf(">\n");
1655 }
1656 #undef PRINTINTR
1657 #endif /* RTW_DEBUG */
1658
1659 if ((isr & RTW_INTR_RX) != 0)
1660 rtw_intr_rx(sc, isr & RTW_INTR_RX);
1661 if ((isr & RTW_INTR_TX) != 0)
1662 rtw_intr_tx(sc, isr & RTW_INTR_TX);
1663 if ((isr & RTW_INTR_BEACON) != 0)
1664 rtw_intr_beacon(sc, isr & RTW_INTR_BEACON);
1665 if ((isr & RTW_INTR_ATIMINT) != 0)
1666 rtw_intr_atim(sc);
1667 if ((isr & RTW_INTR_IOERROR) != 0)
1668 rtw_intr_ioerror(sc, isr & RTW_INTR_IOERROR);
1669 if ((isr & RTW_INTR_TIMEOUT) != 0)
1670 rtw_intr_timeout(sc);
1671 }
1672
1673 return 1;
1674 }
1675
1676 static void
1677 rtw_stop(struct ifnet *ifp, int disable)
1678 {
1679 int pri, s;
1680 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
1681 struct ieee80211com *ic = &sc->sc_ic;
1682 struct rtw_regs *regs = &sc->sc_regs;
1683
1684 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1685 return;
1686
1687 rtw_suspend_ticks(sc);
1688
1689 s = splnet();
1690
1691 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1692
1693 if ((sc->sc_flags & RTW_F_INVALID) == 0) {
1694 /* Disable interrupts. */
1695 RTW_WRITE16(regs, RTW_IMR, 0);
1696
1697 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
1698
1699 /* Stop the transmit and receive processes. First stop DMA,
1700 * then disable receiver and transmitter.
1701 */
1702 RTW_WRITE8(regs, RTW_TPPOLL,
1703 RTW_TPPOLL_SBQ|RTW_TPPOLL_SHPQ|RTW_TPPOLL_SNPQ|
1704 RTW_TPPOLL_SLPQ);
1705
1706 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
1707
1708 rtw_io_enable(&sc->sc_regs, RTW_CR_RE|RTW_CR_TE, 0);
1709 }
1710
1711 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1712 rtw_txbufs_release(sc->sc_dmat, &sc->sc_ic,
1713 &sc->sc_txctl_blk[pri]);
1714 }
1715
1716 if (disable) {
1717 rtw_disable(sc);
1718 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxctl[0]);
1719 }
1720
1721 /* Mark the interface as not running. Cancel the watchdog timer. */
1722 ifp->if_flags &= ~IFF_RUNNING;
1723 ifp->if_timer = 0;
1724
1725 splx(s);
1726
1727 return;
1728 }
1729
1730 const char *
1731 rtw_pwrstate_string(enum rtw_pwrstate power)
1732 {
1733 switch (power) {
1734 case RTW_ON:
1735 return "on";
1736 case RTW_SLEEP:
1737 return "sleep";
1738 case RTW_OFF:
1739 return "off";
1740 default:
1741 return "unknown";
1742 }
1743 }
1744
1745 /* XXX I am using the RFMD settings gleaned from the reference
1746 * driver.
1747 */
1748 static void
1749 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1750 int before_rf)
1751 {
1752 u_int32_t anaparm;
1753
1754 RTW_DPRINTF(("%s: power state %s, %s RF\n", __func__,
1755 rtw_pwrstate_string(power), (before_rf) ? "before" : "after"));
1756
1757 anaparm = RTW_READ(regs, RTW_ANAPARM);
1758 anaparm &= ~(RTW_ANAPARM_RFPOW0_MASK|RTW_ANAPARM_RFPOW1_MASK);
1759 anaparm &= ~RTW_ANAPARM_TXDACOFF;
1760
1761 switch (power) {
1762 case RTW_OFF:
1763 if (before_rf)
1764 return;
1765 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_OFF;
1766 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_OFF;
1767 anaparm |= RTW_ANAPARM_TXDACOFF;
1768 break;
1769 case RTW_SLEEP:
1770 if (!before_rf)
1771 return;
1772 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_SLEEP;
1773 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_SLEEP;
1774 anaparm |= RTW_ANAPARM_TXDACOFF;
1775 break;
1776 case RTW_ON:
1777 if (!before_rf)
1778 return;
1779 anaparm |= RTW_ANAPARM_RFPOW0_RFMD_ON;
1780 anaparm |= RTW_ANAPARM_RFPOW1_RFMD_ON;
1781 break;
1782 }
1783 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1784 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1785 }
1786
1787 static void
1788 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1789 int before_rf)
1790 {
1791 u_int32_t anaparm;
1792
1793 RTW_DPRINTF(("%s: power state %s, %s RF\n", __func__,
1794 rtw_pwrstate_string(power), (before_rf) ? "before" : "after"));
1795
1796 anaparm = RTW_READ(regs, RTW_ANAPARM);
1797 anaparm &= ~(RTW_ANAPARM_RFPOW0_MASK|RTW_ANAPARM_RFPOW1_MASK);
1798 anaparm &= ~RTW_ANAPARM_TXDACOFF;
1799
1800 switch (power) {
1801 case RTW_OFF:
1802 if (before_rf)
1803 return;
1804 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_OFF;
1805 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_OFF;
1806 anaparm |= RTW_ANAPARM_TXDACOFF;
1807 break;
1808 case RTW_SLEEP:
1809 if (!before_rf)
1810 return;
1811 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_SLEEP;
1812 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_SLEEP;
1813 anaparm |= RTW_ANAPARM_TXDACOFF;
1814 break;
1815 case RTW_ON:
1816 if (!before_rf)
1817 return;
1818 anaparm |= RTW_ANAPARM_RFPOW0_PHILIPS_ON;
1819 anaparm |= RTW_ANAPARM_RFPOW1_PHILIPS_ON;
1820 break;
1821 }
1822 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1823 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1824 }
1825
1826 static void
1827 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf)
1828 {
1829 struct rtw_regs *regs = &sc->sc_regs;
1830
1831 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
1832
1833 (*sc->sc_pwrstate_cb)(regs, power, before_rf);
1834
1835 rtw_set_access(sc, RTW_ACCESS_NONE);
1836
1837 return;
1838 }
1839
1840 static int
1841 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
1842 {
1843 int rc;
1844
1845 RTW_DPRINTF2(("%s: %s->%s\n", __func__,
1846 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
1847
1848 if (sc->sc_pwrstate == power)
1849 return 0;
1850
1851 rtw_pwrstate0(sc, power, 1);
1852 rc = rtw_rf_pwrstate(sc->sc_rf, power);
1853 rtw_pwrstate0(sc, power, 0);
1854
1855 switch (power) {
1856 case RTW_ON:
1857 /* TBD set LEDs */
1858 break;
1859 case RTW_SLEEP:
1860 /* TBD */
1861 break;
1862 case RTW_OFF:
1863 /* TBD */
1864 break;
1865 }
1866 if (rc == 0)
1867 sc->sc_pwrstate = power;
1868 else
1869 sc->sc_pwrstate = RTW_OFF;
1870 return rc;
1871 }
1872
1873 static int
1874 rtw_tune(struct rtw_softc *sc)
1875 {
1876 struct ieee80211com *ic = &sc->sc_ic;
1877 u_int chan;
1878 int rc;
1879 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
1880 dflantb = sc->sc_flags & RTW_F_DFLANTB;
1881
1882 KASSERT(ic->ic_bss->ni_chan != NULL);
1883
1884 chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1885 if (chan == IEEE80211_CHAN_ANY)
1886 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1887
1888 if (chan == sc->sc_cur_chan) {
1889 RTW_DPRINTF(("%s: already tuned chan #%d\n", __func__, chan));
1890 return 0;
1891 }
1892
1893 rtw_suspend_ticks(sc);
1894
1895 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 0);
1896
1897 /* TBD wait for Tx to complete */
1898
1899 KASSERT((sc->sc_flags & RTW_F_ENABLED) != 0);
1900
1901 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
1902 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_bss->ni_chan),
1903 sc->sc_csthr, ic->ic_bss->ni_chan->ic_freq, antdiv,
1904 dflantb, RTW_ON)) != 0) {
1905 /* XXX condition on powersaving */
1906 printf("%s: phy init failed\n", sc->sc_dev.dv_xname);
1907 }
1908
1909 sc->sc_cur_chan = chan;
1910
1911 rtw_io_enable(&sc->sc_regs, RTW_CR_RE | RTW_CR_TE, 1);
1912
1913 rtw_resume_ticks(sc);
1914
1915 return rc;
1916 }
1917
1918 void
1919 rtw_disable(struct rtw_softc *sc)
1920 {
1921 int rc;
1922
1923 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
1924 return;
1925
1926 /* turn off PHY */
1927 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
1928 printf("%s: failed to turn off PHY (%d)\n",
1929 sc->sc_dev.dv_xname, rc);
1930
1931 if (sc->sc_disable != NULL)
1932 (*sc->sc_disable)(sc);
1933
1934 sc->sc_flags &= ~RTW_F_ENABLED;
1935 }
1936
1937 int
1938 rtw_enable(struct rtw_softc *sc)
1939 {
1940 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
1941 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
1942 printf("%s: device enable failed\n",
1943 sc->sc_dev.dv_xname);
1944 return (EIO);
1945 }
1946 sc->sc_flags |= RTW_F_ENABLED;
1947 }
1948 return (0);
1949 }
1950
1951 static void
1952 rtw_transmit_config(struct rtw_regs *regs)
1953 {
1954 u_int32_t tcr;
1955
1956 tcr = RTW_READ(regs, RTW_TCR);
1957
1958 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
1959 tcr &= ~RTW_TCR_LBK_MASK;
1960 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
1961
1962 /* set short/long retry limits */
1963 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
1964 tcr |= LSHIFT(7, RTW_TCR_SRL_MASK) | LSHIFT(7, RTW_TCR_LRL_MASK);
1965
1966 tcr |= RTW_TCR_CRC; /* NIC appends CRC32 */
1967
1968 RTW_WRITE(regs, RTW_TCR, tcr);
1969 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
1970 }
1971
1972 static __inline void
1973 rtw_enable_interrupts(struct rtw_softc *sc)
1974 {
1975 struct rtw_regs *regs = &sc->sc_regs;
1976
1977 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
1978 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
1979
1980 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
1981 RTW_WBW(regs, RTW_IMR, RTW_ISR);
1982 RTW_WRITE16(regs, RTW_ISR, 0xffff);
1983 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
1984
1985 /* XXX necessary? */
1986 if (sc->sc_intr_ack != NULL)
1987 (*sc->sc_intr_ack)(regs);
1988 }
1989
1990 /* XXX is the endianness correct? test. */
1991 #define rtw_calchash(addr) \
1992 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1993
1994 static void
1995 rtw_pktfilt_load(struct rtw_softc *sc)
1996 {
1997 struct rtw_regs *regs = &sc->sc_regs;
1998 struct ieee80211com *ic = &sc->sc_ic;
1999 struct ethercom *ec = &ic->ic_ec;
2000 struct ifnet *ifp = &sc->sc_ic.ic_if;
2001 int hash;
2002 u_int32_t hashes[2] = { 0, 0 };
2003 struct ether_multi *enm;
2004 struct ether_multistep step;
2005
2006 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2007
2008 #define RTW_RCR_MONITOR (RTW_RCR_ACRC32|RTW_RCR_APM|RTW_RCR_AAP|RTW_RCR_AB)
2009
2010 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2011 sc->sc_rcr |= RTW_RCR_MONITOR;
2012 else
2013 sc->sc_rcr &= ~RTW_RCR_MONITOR;
2014
2015 /* XXX reference sources BEGIN */
2016 sc->sc_rcr |= RTW_RCR_ENMARP | RTW_RCR_AICV | RTW_RCR_ACRC32;
2017 sc->sc_rcr |= RTW_RCR_AB | RTW_RCR_AM | RTW_RCR_APM;
2018 #if 0
2019 /* receive broadcasts in our BSS */
2020 sc->sc_rcr |= RTW_RCR_ADD3;
2021 #endif
2022 /* XXX reference sources END */
2023
2024 /* receive pwrmgmt frames. */
2025 sc->sc_rcr |= RTW_RCR_APWRMGT;
2026 /* receive mgmt/ctrl/data frames. */
2027 sc->sc_rcr |= RTW_RCR_AMF | RTW_RCR_ACF | RTW_RCR_ADF;
2028 /* initialize Rx DMA threshold, Tx DMA burst size */
2029 sc->sc_rcr |= RTW_RCR_RXFTH_WHOLE | RTW_RCR_MXDMA_1024;
2030
2031 ifp->if_flags &= ~IFF_ALLMULTI;
2032
2033 if (ifp->if_flags & IFF_PROMISC) {
2034 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2035 allmulti:
2036 ifp->if_flags |= IFF_ALLMULTI;
2037 goto setit;
2038 }
2039
2040 /*
2041 * Program the 64-bit multicast hash filter.
2042 */
2043 ETHER_FIRST_MULTI(step, ec, enm);
2044 while (enm != NULL) {
2045 /* XXX */
2046 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2047 ETHER_ADDR_LEN) != 0)
2048 goto allmulti;
2049
2050 hash = rtw_calchash(enm->enm_addrlo);
2051 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2052 ETHER_NEXT_MULTI(step, enm);
2053 }
2054
2055 if (ifp->if_flags & IFF_BROADCAST) {
2056 hash = rtw_calchash(etherbroadcastaddr);
2057 hashes[hash >> 5] |= 1 << (hash & 0x1f);
2058 }
2059
2060 /* all bits set => hash is useless */
2061 if (~(hashes[0] & hashes[1]) == 0)
2062 goto allmulti;
2063
2064 setit:
2065 if (ifp->if_flags & IFF_ALLMULTI)
2066 sc->sc_rcr |= RTW_RCR_AM; /* accept all multicast */
2067
2068 if (ic->ic_state == IEEE80211_S_SCAN)
2069 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2070
2071 hashes[0] = hashes[1] = 0xffffffff;
2072
2073 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2074 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2075 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2076 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2077
2078 DPRINTF(sc, ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2079 sc->sc_dev.dv_xname, RTW_READ(regs, RTW_MAR0),
2080 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2081
2082 return;
2083 }
2084
2085 static int
2086 rtw_init(struct ifnet *ifp)
2087 {
2088 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2089 struct ieee80211com *ic = &sc->sc_ic;
2090 struct rtw_regs *regs = &sc->sc_regs;
2091 int rc = 0;
2092
2093 if ((rc = rtw_enable(sc)) != 0)
2094 goto out;
2095
2096 /* Cancel pending I/O and reset. */
2097 rtw_stop(ifp, 0);
2098
2099 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2100 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
2101 __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
2102 ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
2103
2104 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2105 goto out;
2106
2107 rtw_swring_setup(sc);
2108
2109 rtw_transmit_config(regs);
2110
2111 rtw_set_access(sc, RTW_ACCESS_CONFIG);
2112
2113 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2114 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2115
2116 /* long PLCP header, 1Mbps basic rate */
2117 RTW_WRITE16(regs, RTW_BRSR, 0x0);
2118 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2119
2120 rtw_set_access(sc, RTW_ACCESS_ANAPARM);
2121 rtw_set_access(sc, RTW_ACCESS_NONE);
2122
2123 #if 0
2124 RTW_WRITE(regs, RTW_FEMR, RTW_FEMR_GWAKE|RTW_FEMR_WKUP|RTW_FEMR_INTR);
2125 #endif
2126 /* XXX from reference sources */
2127 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2128 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2129
2130 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev.dv_xname);
2131
2132 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2133 /* from Linux driver */
2134 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2135
2136 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2137
2138 rtw_enable_interrupts(sc);
2139
2140 rtw_pktfilt_load(sc);
2141
2142 rtw_hwring_setup(sc);
2143
2144 rtw_io_enable(regs, RTW_CR_RE|RTW_CR_TE, 1);
2145
2146 ifp->if_flags |= IFF_RUNNING;
2147 ic->ic_state = IEEE80211_S_INIT;
2148
2149 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2150 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2151
2152 rtw_resume_ticks(sc);
2153
2154 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2155 rtw_set_access(sc, RTW_ACCESS_CONFIG);
2156
2157 switch (ic->ic_opmode) {
2158 case IEEE80211_M_AHDEMO:
2159 case IEEE80211_M_IBSS:
2160 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_ADHOC_OK);
2161 break;
2162 case IEEE80211_M_HOSTAP:
2163 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_AP_OK);
2164 break;
2165 case IEEE80211_M_MONITOR:
2166 /* XXX */
2167 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_NOLINK);
2168 break;
2169 case IEEE80211_M_STA:
2170 RTW_WRITE8(regs, RTW_MSR, RTW_MSR_NETYPE_INFRA_OK);
2171 break;
2172 }
2173
2174 rtw_set_access(sc, RTW_ACCESS_NONE);
2175
2176 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2177 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2178 else
2179 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2180
2181 out:
2182 return rc;
2183 }
2184
2185 static int
2186 rtw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2187 {
2188 int rc = 0;
2189 struct rtw_softc *sc = ifp->if_softc;
2190 struct ifreq *ifr = (struct ifreq *)data;
2191
2192 switch (cmd) {
2193 case SIOCSIFFLAGS:
2194 if ((ifp->if_flags & IFF_UP) != 0) {
2195 if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2196 rtw_pktfilt_load(sc);
2197 } else
2198 rc = rtw_init(ifp);
2199 #ifdef RTW_DEBUG
2200 rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
2201 #endif /* RTW_DEBUG */
2202 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2203 #ifdef RTW_DEBUG
2204 rtw_print_regs(&sc->sc_regs, ifp->if_xname, __func__);
2205 #endif /* RTW_DEBUG */
2206 rtw_stop(ifp, 1);
2207 }
2208 break;
2209 case SIOCADDMULTI:
2210 case SIOCDELMULTI:
2211 if (cmd == SIOCADDMULTI)
2212 rc = ether_addmulti(ifr, &sc->sc_ic.ic_ec);
2213 else
2214 rc = ether_delmulti(ifr, &sc->sc_ic.ic_ec);
2215 if (rc == ENETRESET) {
2216 if (ifp->if_flags & IFF_RUNNING)
2217 rtw_pktfilt_load(sc);
2218 rc = 0;
2219 }
2220 break;
2221 default:
2222 if ((rc = ieee80211_ioctl(ifp, cmd, data)) == ENETRESET) {
2223 if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2224 rc = rtw_init(ifp);
2225 else
2226 rc = 0;
2227 }
2228 break;
2229 }
2230 return rc;
2231 }
2232
2233 /* Point *mp at the next 802.11 frame to transmit. Point *stcp
2234 * at the driver's selection of transmit control block for the packet.
2235 */
2236 static __inline int
2237 rtw_dequeue(struct ifnet *ifp, struct rtw_txctl_blk **stcp,
2238 struct rtw_txdesc_blk **htcp, struct mbuf **mp,
2239 struct ieee80211_node **nip)
2240 {
2241 struct rtw_txctl_blk *stc;
2242 struct rtw_txdesc_blk *htc;
2243 struct mbuf *m0;
2244 struct rtw_softc *sc;
2245 struct ieee80211com *ic;
2246
2247 sc = (struct rtw_softc *)ifp->if_softc;
2248
2249 DPRINTF2(sc, ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
2250 *mp = NULL;
2251
2252 stc = &sc->sc_txctl_blk[RTW_TXPRIMD];
2253 htc = &sc->sc_txdesc_blk[RTW_TXPRIMD];
2254
2255 if (SIMPLEQ_EMPTY(&stc->stc_freeq) || htc->htc_nfree == 0) {
2256 DPRINTF2(sc, ("%s: out of descriptors\n", __func__));
2257 ifp->if_flags |= IFF_OACTIVE;
2258 return 0;
2259 }
2260
2261 ic = &sc->sc_ic;
2262
2263 if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
2264 IF_DEQUEUE(&ic->ic_mgtq, m0);
2265 *nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2266 m0->m_pkthdr.rcvif = NULL;
2267 DPRINTF2(sc, ("%s: dequeue mgt frame\n", __func__));
2268 } else if (ic->ic_state != IEEE80211_S_RUN) {
2269 DPRINTF2(sc, ("%s: not running\n", __func__));
2270 return 0;
2271 } else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) {
2272 IF_DEQUEUE(&ic->ic_pwrsaveq, m0);
2273 *nip = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2274 m0->m_pkthdr.rcvif = NULL;
2275 DPRINTF2(sc, ("%s: dequeue pwrsave frame\n", __func__));
2276 } else {
2277 IFQ_POLL(&ifp->if_snd, m0);
2278 if (m0 == NULL) {
2279 DPRINTF2(sc, ("%s: no frame\n", __func__));
2280 return 0;
2281 }
2282 DPRINTF2(sc, ("%s: dequeue data frame\n", __func__));
2283 IFQ_DEQUEUE(&ifp->if_snd, m0);
2284 ifp->if_opackets++;
2285 #if NBPFILTER > 0
2286 if (ifp->if_bpf)
2287 bpf_mtap(ifp->if_bpf, m0);
2288 #endif
2289 if ((m0 = ieee80211_encap(ifp, m0, nip)) == NULL) {
2290 DPRINTF2(sc, ("%s: encap error\n", __func__));
2291 ifp->if_oerrors++;
2292 return -1;
2293 }
2294 }
2295 DPRINTF2(sc, ("%s: leave\n", __func__));
2296 *stcp = stc;
2297 *htcp = htc;
2298 *mp = m0;
2299 return 0;
2300 }
2301
2302 /* TBD factor with atw_start */
2303 static struct mbuf *
2304 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
2305 u_int ndescfree, short *ifflagsp, const char *dvname)
2306 {
2307 int first, rc;
2308 struct mbuf *m, *m0;
2309
2310 m0 = chain;
2311
2312 /*
2313 * Load the DMA map. Copy and try (once) again if the packet
2314 * didn't fit in the alloted number of segments.
2315 */
2316 for (first = 1;
2317 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
2318 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
2319 dmam->dm_nsegs > ndescfree) && first;
2320 first = 0) {
2321 if (rc == 0)
2322 bus_dmamap_unload(dmat, dmam);
2323 MGETHDR(m, M_DONTWAIT, MT_DATA);
2324 if (m == NULL) {
2325 printf("%s: unable to allocate Tx mbuf\n",
2326 dvname);
2327 break;
2328 }
2329 if (m0->m_pkthdr.len > MHLEN) {
2330 MCLGET(m, M_DONTWAIT);
2331 if ((m->m_flags & M_EXT) == 0) {
2332 printf("%s: cannot allocate Tx cluster\n",
2333 dvname);
2334 m_freem(m);
2335 break;
2336 }
2337 }
2338 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2339 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
2340 m_freem(m0);
2341 m0 = m;
2342 m = NULL;
2343 }
2344 if (rc != 0) {
2345 printf("%s: cannot load Tx buffer, rc = %d\n", dvname, rc);
2346 m_freem(m0);
2347 return NULL;
2348 } else if (dmam->dm_nsegs > ndescfree) {
2349 *ifflagsp |= IFF_OACTIVE;
2350 bus_dmamap_unload(dmat, dmam);
2351 m_freem(m0);
2352 return NULL;
2353 }
2354 return m0;
2355 }
2356
2357 static void
2358 rtw_start(struct ifnet *ifp)
2359 {
2360 int desc, i, lastdesc, npkt, rate;
2361 uint32_t proto_txctl0, txctl0, txctl1;
2362 bus_dmamap_t dmamap;
2363 struct ieee80211com *ic;
2364 struct ieee80211_duration *d0;
2365 struct ieee80211_frame *wh;
2366 struct ieee80211_node *ni;
2367 struct mbuf *m0;
2368 struct rtw_softc *sc;
2369 struct rtw_txctl_blk *stc;
2370 struct rtw_txdesc_blk *htc;
2371 struct rtw_txctl *stx;
2372 struct rtw_txdesc *htx;
2373
2374 sc = (struct rtw_softc *)ifp->if_softc;
2375 ic = &sc->sc_ic;
2376
2377 DPRINTF2(sc, ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
2378
2379 /* XXX do real rate control */
2380 proto_txctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
2381
2382 switch (rate = MAX(2, ieee80211_get_rate(ic))) {
2383 case 2:
2384 proto_txctl0 |= RTW_TXCTL0_RATE_1MBPS;
2385 break;
2386 case 4:
2387 proto_txctl0 |= RTW_TXCTL0_RATE_2MBPS;
2388 break;
2389 case 11:
2390 proto_txctl0 |= RTW_TXCTL0_RATE_5MBPS;
2391 break;
2392 case 22:
2393 proto_txctl0 |= RTW_TXCTL0_RATE_11MBPS;
2394 break;
2395 }
2396
2397 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
2398 proto_txctl0 |= RTW_TXCTL0_SPLCP;
2399
2400 for (;;) {
2401 if (rtw_dequeue(ifp, &stc, &htc, &m0, &ni) == -1)
2402 continue;
2403 if (m0 == NULL)
2404 break;
2405 stx = SIMPLEQ_FIRST(&stc->stc_freeq);
2406
2407 dmamap = stx->stx_dmamap;
2408
2409 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
2410 htc->htc_nfree, &ifp->if_flags, sc->sc_dev.dv_xname);
2411
2412 if (m0 == NULL || dmamap->dm_nsegs == 0) {
2413 DPRINTF2(sc, ("%s: fail dmamap load\n", __func__));
2414 goto post_dequeue_err;
2415 }
2416
2417 txctl0 = proto_txctl0 |
2418 LSHIFT(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
2419
2420 wh = mtod(m0, struct ieee80211_frame *);
2421
2422 if (ieee80211_compute_duration(wh,
2423 m0->m_pkthdr.len - sizeof(wh),
2424 ic->ic_flags, ic->ic_fragthreshold,
2425 rate, &stx->stx_d0, &stx->stx_dn, &npkt) == -1) {
2426 DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
2427 goto post_load_err;
2428 }
2429
2430 /* XXX >= ? */
2431 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
2432 txctl0 |= RTW_TXCTL0_RTSEN;
2433
2434 d0 = &stx->stx_d0;
2435
2436 txctl1 = LSHIFT(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
2437 LSHIFT(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
2438
2439 if ((d0->d_plcp_svc & IEEE80211_PLCP_SERVICE_LENEXT) != 0)
2440 txctl1 |= RTW_TXCTL1_LENGEXT;
2441
2442 /* TBD fragmentation */
2443
2444 stx->stx_first = htc->htc_next;
2445
2446 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2447 htc, stx->stx_first, dmamap->dm_nsegs,
2448 BUS_DMASYNC_PREWRITE);
2449
2450 for (i = 0, lastdesc = desc = stx->stx_first;
2451 i < dmamap->dm_nsegs;
2452 i++, desc = RTW_NEXT_IDX(htc, desc)) {
2453 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
2454 DPRINTF2(sc, ("%s: seg too long\n", __func__));
2455 goto post_load_err;
2456 }
2457 htx = &htc->htc_desc[desc];
2458 htx->htx_ctl0 = htole32(txctl0);
2459 if (i != 0)
2460 htx->htx_ctl0 |= htole32(RTW_TXCTL0_OWN);
2461 htx->htx_ctl1 = htole32(txctl1);
2462 htx->htx_buf = htole32(dmamap->dm_segs[i].ds_addr);
2463 htx->htx_len = htole32(dmamap->dm_segs[i].ds_len);
2464 lastdesc = desc;
2465 DPRINTF2(sc, ("%s: stx %p txdesc[%d] ctl0 %#08x "
2466 "ctl1 %#08x buf %#08x len %#08x\n",
2467 sc->sc_dev.dv_xname, stx, desc, htx->htx_ctl0,
2468 htx->htx_ctl1, htx->htx_buf, htx->htx_len));
2469 }
2470
2471 htc->htc_desc[lastdesc].htx_ctl0 |= htole32(RTW_TXCTL0_LS);
2472 htc->htc_desc[stx->stx_first].htx_ctl0 |=
2473 htole32(RTW_TXCTL0_FS);
2474
2475 DPRINTF2(sc, ("%s: stx %p FS on txdesc[%d], LS on txdesc[%d]\n",
2476 sc->sc_dev.dv_xname, stx, lastdesc, stx->stx_first));
2477
2478 stx->stx_ni = ni;
2479 stx->stx_mbuf = m0;
2480 stx->stx_last = lastdesc;
2481
2482 htc->htc_nfree -= dmamap->dm_nsegs;
2483 htc->htc_next = desc;
2484
2485 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2486 htc, stx->stx_first, dmamap->dm_nsegs,
2487 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2488
2489 htc->htc_desc[stx->stx_first].htx_ctl0 |=
2490 htole32(RTW_TXCTL0_OWN);
2491
2492 DPRINTF2(sc, ("%s: stx %p OWN on txdesc[%d]\n",
2493 sc->sc_dev.dv_xname, stx, stx->stx_first));
2494
2495 rtw_txdescs_sync(sc->sc_dmat, sc->sc_desc_dmamap,
2496 htc, stx->stx_first, 1,
2497 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2498
2499 SIMPLEQ_REMOVE_HEAD(&stc->stc_freeq, stx_q);
2500 SIMPLEQ_INSERT_TAIL(&stc->stc_dirtyq, stx, stx_q);
2501
2502 stc->stc_tx_timer = 5;
2503 ifp->if_timer = 1;
2504
2505 /* TBD poke just one txmtr? */
2506 RTW_WRITE8(&sc->sc_regs, RTW_TPPOLL,
2507 RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ | RTW_TPPOLL_HPQ |
2508 RTW_TPPOLL_BQ);
2509 RTW_SYNC(&sc->sc_regs, RTW_TPPOLL, RTW_TPPOLL);
2510 }
2511 DPRINTF2(sc, ("%s: leave\n", __func__));
2512 return;
2513 post_load_err:
2514 bus_dmamap_unload(sc->sc_dmat, dmamap);
2515 m_freem(m0);
2516 post_dequeue_err:
2517 ieee80211_release_node(&sc->sc_ic, ni);
2518 return;
2519 }
2520
2521 static void
2522 rtw_watchdog(struct ifnet *ifp)
2523 {
2524 int pri;
2525 struct rtw_softc *sc;
2526 struct rtw_txctl_blk *stc;
2527
2528 sc = ifp->if_softc;
2529
2530 ifp->if_timer = 0;
2531
2532 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2533 return;
2534
2535 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2536 stc = &sc->sc_txctl_blk[pri];
2537
2538 if (stc->stc_tx_timer == 0)
2539 continue;
2540
2541 if (--stc->stc_tx_timer == 0) {
2542 if (SIMPLEQ_EMPTY(&stc->stc_dirtyq))
2543 continue;
2544 printf("%s: transmit timeout, priority %d\n",
2545 ifp->if_xname, pri);
2546 ifp->if_oerrors++;
2547 /* XXX be gentle */
2548 (void)rtw_init(ifp);
2549 rtw_start(ifp);
2550 } else
2551 ifp->if_timer = 1;
2552 }
2553 /* TBD */
2554 return;
2555 }
2556
2557 static void
2558 rtw_start_beacon(struct rtw_softc *sc, int enable)
2559 {
2560 /* TBD */
2561 return;
2562 }
2563
2564 static void
2565 rtw_next_scan(void *arg)
2566 {
2567 struct ieee80211com *ic = arg;
2568 int s;
2569
2570 /* don't call rtw_start w/o network interrupts blocked */
2571 s = splnet();
2572 if (ic->ic_state == IEEE80211_S_SCAN)
2573 ieee80211_next_scan(ic);
2574 splx(s);
2575 }
2576
2577 /* Synchronize the hardware state with the software state. */
2578 static int
2579 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2580 {
2581 struct ifnet *ifp = &ic->ic_if;
2582 struct rtw_softc *sc = ifp->if_softc;
2583 enum ieee80211_state ostate;
2584 int error;
2585
2586 ostate = ic->ic_state;
2587
2588 if (nstate == IEEE80211_S_INIT) {
2589 callout_stop(&sc->sc_scan_ch);
2590 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2591 rtw_start_beacon(sc, 0);
2592 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
2593 }
2594
2595 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
2596 rtw_pwrstate(sc, RTW_ON);
2597
2598 if ((error = rtw_tune(sc)) != 0)
2599 return error;
2600
2601 switch (nstate) {
2602 case IEEE80211_S_ASSOC:
2603 break;
2604 case IEEE80211_S_INIT:
2605 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2606 break;
2607 case IEEE80211_S_SCAN:
2608 #if 0
2609 memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2610 rtw_write_bssid(sc);
2611 #endif
2612
2613 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
2614 rtw_next_scan, ic);
2615
2616 break;
2617 case IEEE80211_S_RUN:
2618 if (ic->ic_opmode == IEEE80211_M_STA)
2619 break;
2620 /*FALLTHROUGH*/
2621 case IEEE80211_S_AUTH:
2622 #if 0
2623 rtw_write_bssid(sc);
2624 rtw_write_bcn_thresh(sc);
2625 rtw_write_ssid(sc);
2626 rtw_write_sup_rates(sc);
2627 #endif
2628 if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2629 ic->ic_opmode == IEEE80211_M_MONITOR)
2630 break;
2631
2632 /* TBD set listen interval, beacon interval */
2633
2634 #if 0
2635 rtw_tsf(sc);
2636 #endif
2637 break;
2638 }
2639
2640 if (nstate != IEEE80211_S_SCAN)
2641 callout_stop(&sc->sc_scan_ch);
2642
2643 if (nstate == IEEE80211_S_RUN &&
2644 (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2645 ic->ic_opmode == IEEE80211_M_IBSS))
2646 rtw_start_beacon(sc, 1);
2647 else
2648 rtw_start_beacon(sc, 0);
2649
2650 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
2651 }
2652
2653 static void
2654 rtw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2655 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2656 {
2657 /* TBD */
2658 return;
2659 }
2660
2661 static void
2662 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2663 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2664 {
2665 struct rtw_softc *sc = (struct rtw_softc*)ic->ic_softc;
2666
2667 switch (subtype) {
2668 case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2669 /* do nothing: hardware answers probe request XXX */
2670 break;
2671 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2672 case IEEE80211_FC0_SUBTYPE_BEACON:
2673 rtw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2674 break;
2675 default:
2676 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2677 break;
2678 }
2679 return;
2680 }
2681
2682 static struct ieee80211_node *
2683 rtw_node_alloc(struct ieee80211com *ic)
2684 {
2685 struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2686 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(ic);
2687
2688 DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
2689 return ni;
2690 }
2691
2692 static void
2693 rtw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2694 {
2695 struct rtw_softc *sc = (struct rtw_softc *)ic->ic_if.if_softc;
2696
2697 DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
2698 ether_sprintf(ni->ni_bssid)));
2699 (*sc->sc_mtbl.mt_node_free)(ic, ni);
2700 }
2701
2702 static int
2703 rtw_media_change(struct ifnet *ifp)
2704 {
2705 int error;
2706
2707 error = ieee80211_media_change(ifp);
2708 if (error == ENETRESET) {
2709 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
2710 (IFF_RUNNING|IFF_UP))
2711 rtw_init(ifp); /* XXX lose error */
2712 error = 0;
2713 }
2714 return error;
2715 }
2716
2717 static void
2718 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2719 {
2720 struct rtw_softc *sc = ifp->if_softc;
2721
2722 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2723 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
2724 imr->ifm_status = 0;
2725 return;
2726 }
2727 ieee80211_media_status(ifp, imr);
2728 }
2729
2730 void
2731 rtw_power(int why, void *arg)
2732 {
2733 struct rtw_softc *sc = arg;
2734 struct ifnet *ifp = &sc->sc_ic.ic_if;
2735 int s;
2736
2737 DPRINTF(sc, ("%s: rtw_power(%d,)\n", sc->sc_dev.dv_xname, why));
2738
2739 s = splnet();
2740 switch (why) {
2741 case PWR_STANDBY:
2742 /* XXX do nothing. */
2743 break;
2744 case PWR_SUSPEND:
2745 rtw_stop(ifp, 0);
2746 if (sc->sc_power != NULL)
2747 (*sc->sc_power)(sc, why);
2748 break;
2749 case PWR_RESUME:
2750 if (ifp->if_flags & IFF_UP) {
2751 if (sc->sc_power != NULL)
2752 (*sc->sc_power)(sc, why);
2753 rtw_init(ifp);
2754 }
2755 break;
2756 case PWR_SOFTSUSPEND:
2757 case PWR_SOFTSTANDBY:
2758 case PWR_SOFTRESUME:
2759 break;
2760 }
2761 splx(s);
2762 }
2763
2764 /* rtw_shutdown: make sure the interface is stopped at reboot time. */
2765 void
2766 rtw_shutdown(void *arg)
2767 {
2768 struct rtw_softc *sc = arg;
2769
2770 rtw_stop(&sc->sc_ic.ic_if, 1);
2771 }
2772
2773 static __inline void
2774 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
2775 {
2776 (void)memcpy(ifp->if_xname, dvname, IFNAMSIZ);
2777 ifp->if_softc = softc;
2778 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
2779 IFF_NOTRAILERS;
2780 ifp->if_ioctl = rtw_ioctl;
2781 ifp->if_start = rtw_start;
2782 ifp->if_watchdog = rtw_watchdog;
2783 ifp->if_init = rtw_init;
2784 ifp->if_stop = rtw_stop;
2785 }
2786
2787 static __inline void
2788 rtw_set80211props(struct ieee80211com *ic)
2789 {
2790 int nrate;
2791 ic->ic_phytype = IEEE80211_T_DS;
2792 ic->ic_opmode = IEEE80211_M_STA;
2793 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
2794 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
2795
2796 nrate = 0;
2797 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
2798 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
2799 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
2800 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
2801 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
2802 }
2803
2804 static __inline void
2805 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
2806 {
2807 mtbl->mt_newstate = ic->ic_newstate;
2808 ic->ic_newstate = rtw_newstate;
2809
2810 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
2811 ic->ic_recv_mgmt = rtw_recv_mgmt;
2812
2813 mtbl->mt_node_free = ic->ic_node_free;
2814 ic->ic_node_free = rtw_node_free;
2815
2816 mtbl->mt_node_alloc = ic->ic_node_alloc;
2817 ic->ic_node_alloc = rtw_node_alloc;
2818 }
2819
2820 static __inline void
2821 rtw_establish_hooks(struct rtw_hooks *hooks, const char *dvname,
2822 void *arg)
2823 {
2824 /*
2825 * Make sure the interface is shutdown during reboot.
2826 */
2827 hooks->rh_shutdown = shutdownhook_establish(rtw_shutdown, arg);
2828 if (hooks->rh_shutdown == NULL)
2829 printf("%s: WARNING: unable to establish shutdown hook\n",
2830 dvname);
2831
2832 /*
2833 * Add a suspend hook to make sure we come back up after a
2834 * resume.
2835 */
2836 hooks->rh_power = powerhook_establish(rtw_power, arg);
2837 if (hooks->rh_power == NULL)
2838 printf("%s: WARNING: unable to establish power hook\n",
2839 dvname);
2840 }
2841
2842 static __inline void
2843 rtw_disestablish_hooks(struct rtw_hooks *hooks, const char *dvname,
2844 void *arg)
2845 {
2846 if (hooks->rh_shutdown != NULL)
2847 shutdownhook_disestablish(hooks->rh_shutdown);
2848
2849 if (hooks->rh_power != NULL)
2850 powerhook_disestablish(hooks->rh_power);
2851 }
2852
2853 static __inline void
2854 rtw_init_radiotap(struct rtw_softc *sc)
2855 {
2856 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
2857 sc->sc_rxtap.rr_ihdr.it_len = sizeof(sc->sc_rxtapu);
2858 sc->sc_rxtap.rr_ihdr.it_present = RTW_RX_RADIOTAP_PRESENT;
2859
2860 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
2861 sc->sc_txtap.rt_ihdr.it_len = sizeof(sc->sc_txtapu);
2862 sc->sc_txtap.rt_ihdr.it_present = RTW_TX_RADIOTAP_PRESENT;
2863 }
2864
2865 static int
2866 rtw_txctl_blk_setup(struct rtw_txctl_blk *stc, u_int qlen)
2867 {
2868 SIMPLEQ_INIT(&stc->stc_dirtyq);
2869 SIMPLEQ_INIT(&stc->stc_freeq);
2870 stc->stc_ndesc = qlen;
2871 stc->stc_desc = malloc(qlen * sizeof(*stc->stc_desc), M_DEVBUF,
2872 M_NOWAIT);
2873 if (stc->stc_desc == NULL)
2874 return ENOMEM;
2875 return 0;
2876 }
2877
2878 static void
2879 rtw_txctl_blk_cleanup_all(struct rtw_softc *sc)
2880 {
2881 struct rtw_txctl_blk *stc;
2882 int qlen[RTW_NTXPRI] =
2883 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
2884 int pri;
2885
2886 for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
2887 stc = &sc->sc_txctl_blk[pri];
2888 free(stc->stc_desc, M_DEVBUF);
2889 stc->stc_desc = NULL;
2890 }
2891 }
2892
2893 static int
2894 rtw_txctl_blk_setup_all(struct rtw_softc *sc)
2895 {
2896 int pri, rc = 0;
2897 int qlen[RTW_NTXPRI] =
2898 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
2899
2900 for (pri = 0; pri < sizeof(qlen)/sizeof(qlen[0]); pri++) {
2901 rc = rtw_txctl_blk_setup(&sc->sc_txctl_blk[pri], qlen[pri]);
2902 if (rc != 0)
2903 break;
2904 }
2905 return rc;
2906 }
2907
2908 static void
2909 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *htc, struct rtw_txdesc *desc,
2910 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
2911 {
2912 int i;
2913
2914 htc->htc_ndesc = ndesc;
2915 htc->htc_desc = desc;
2916 htc->htc_physbase = physbase;
2917 htc->htc_ofs = ofs;
2918
2919 (void)memset(htc->htc_desc, 0,
2920 sizeof(htc->htc_desc[0]) * htc->htc_ndesc);
2921
2922 for (i = 0; i < htc->htc_ndesc; i++) {
2923 htc->htc_desc[i].htx_next = htole32(RTW_NEXT_DESC(htc, i));
2924 }
2925 }
2926
2927 static void
2928 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
2929 {
2930 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
2931 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
2932 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
2933
2934 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
2935 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
2936 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
2937
2938 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
2939 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
2940 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
2941
2942 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
2943 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
2944 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
2945 }
2946
2947 static struct rtw_rf *
2948 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid,
2949 rtw_rf_write_t rf_write, int digphy)
2950 {
2951 struct rtw_rf *rf;
2952
2953 switch (rfchipid) {
2954 case RTW_RFCHIPID_MAXIM:
2955 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
2956 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
2957 break;
2958 case RTW_RFCHIPID_PHILIPS:
2959 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
2960 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
2961 break;
2962 default:
2963 return NULL;
2964 }
2965 rf->rf_continuous_tx_cb =
2966 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
2967 rf->rf_continuous_tx_arg = (void *)sc;
2968 return rf;
2969 }
2970
2971 /* Revision C and later use a different PHY delay setting than
2972 * revisions A and B.
2973 */
2974 static u_int8_t
2975 rtw_check_phydelay(struct rtw_regs *regs, u_int32_t rcr0)
2976 {
2977 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
2978 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
2979
2980 u_int8_t phydelay = LSHIFT(0x6, RTW_PHYDELAY_PHYDELAY);
2981
2982 RTW_WRITE(regs, RTW_RCR, REVAB);
2983 RTW_WBW(regs, RTW_RCR, RTW_RCR);
2984 RTW_WRITE(regs, RTW_RCR, REVC);
2985
2986 RTW_WBR(regs, RTW_RCR, RTW_RCR);
2987 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
2988 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
2989
2990 RTW_WRITE(regs, RTW_RCR, rcr0); /* restore RCR */
2991 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
2992
2993 return phydelay;
2994 #undef REVC
2995 }
2996
2997 void
2998 rtw_attach(struct rtw_softc *sc)
2999 {
3000 rtw_rf_write_t rf_write;
3001 struct rtw_txctl_blk *stc;
3002 int pri, rc, vers;
3003
3004 #if 0
3005 CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_txdesc) == 0,
3006 "RTW_DESC_ALIGNMENT is not a multiple of "
3007 "sizeof(struct rtw_txdesc)");
3008
3009 CASSERT(RTW_DESC_ALIGNMENT % sizeof(struct rtw_rxdesc) == 0,
3010 "RTW_DESC_ALIGNMENT is not a multiple of "
3011 "sizeof(struct rtw_rxdesc)");
3012
3013 CASSERT(RTW_DESC_ALIGNMENT % RTW_MAXPKTSEGS == 0,
3014 "RTW_DESC_ALIGNMENT is not a multiple of RTW_MAXPKTSEGS");
3015 #endif
3016
3017 NEXT_ATTACH_STATE(sc, DETACHED);
3018
3019 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
3020 case RTW_TCR_HWVERID_F:
3021 vers = 'F';
3022 rf_write = rtw_rf_hostwrite;
3023 break;
3024 case RTW_TCR_HWVERID_D:
3025 vers = 'D';
3026 if (rtw_host_rfio)
3027 rf_write = rtw_rf_hostwrite;
3028 else
3029 rf_write = rtw_rf_macwrite;
3030 break;
3031 default:
3032 vers = '?';
3033 rf_write = rtw_rf_macwrite;
3034 break;
3035 }
3036 printf("%s: hardware version %c\n", sc->sc_dev.dv_xname, vers);
3037
3038 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
3039 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
3040 0);
3041
3042 if (rc != 0) {
3043 printf("%s: could not allocate hw descriptors, error %d\n",
3044 sc->sc_dev.dv_xname, rc);
3045 goto err;
3046 }
3047
3048 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
3049
3050 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
3051 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
3052 (caddr_t*)&sc->sc_descs, BUS_DMA_COHERENT);
3053
3054 if (rc != 0) {
3055 printf("%s: could not map hw descriptors, error %d\n",
3056 sc->sc_dev.dv_xname, rc);
3057 goto err;
3058 }
3059 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
3060
3061 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
3062 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
3063
3064 if (rc != 0) {
3065 printf("%s: could not create DMA map for hw descriptors, "
3066 "error %d\n", sc->sc_dev.dv_xname, rc);
3067 goto err;
3068 }
3069 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
3070
3071 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
3072 sizeof(struct rtw_descs), NULL, 0);
3073
3074 if (rc != 0) {
3075 printf("%s: could not load DMA map for hw descriptors, "
3076 "error %d\n", sc->sc_dev.dv_xname, rc);
3077 goto err;
3078 }
3079 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
3080
3081 if (rtw_txctl_blk_setup_all(sc) != 0)
3082 goto err;
3083 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
3084
3085 rtw_txdesc_blk_setup_all(sc);
3086
3087 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
3088
3089 sc->sc_rxdesc = &sc->sc_descs->hd_rx[0];
3090
3091 rtw_rxctls_setup(&sc->sc_rxctl[0]);
3092
3093 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3094 stc = &sc->sc_txctl_blk[pri];
3095
3096 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
3097 &stc->stc_desc[0], stc->stc_ndesc)) != 0) {
3098 printf("%s: could not load DMA map for "
3099 "hw tx descriptors, error %d\n",
3100 sc->sc_dev.dv_xname, rc);
3101 goto err;
3102 }
3103 }
3104
3105 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
3106 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxctl[0],
3107 RTW_RXQLEN)) != 0) {
3108 printf("%s: could not load DMA map for hw rx descriptors, "
3109 "error %d\n", sc->sc_dev.dv_xname, rc);
3110 goto err;
3111 }
3112 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
3113
3114 /* Reset the chip to a known state. */
3115 if (rtw_reset(sc) != 0)
3116 goto err;
3117 NEXT_ATTACH_STATE(sc, FINISH_RESET);
3118
3119 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
3120
3121 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
3122 sc->sc_flags |= RTW_F_9356SROM;
3123
3124 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
3125 sc->sc_dev.dv_xname) != 0)
3126 goto err;
3127
3128 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
3129
3130 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
3131 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
3132 sc->sc_dev.dv_xname) != 0) {
3133 printf("%s: attach failed, malformed serial ROM\n",
3134 sc->sc_dev.dv_xname);
3135 goto err;
3136 }
3137
3138 RTW_DPRINTF(("%s: CS threshold %u\n", sc->sc_dev.dv_xname,
3139 sc->sc_csthr));
3140
3141 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
3142
3143 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid, rf_write,
3144 sc->sc_flags & RTW_F_DIGPHY);
3145
3146 if (sc->sc_rf == NULL) {
3147 printf("%s: attach failed, could not attach RF\n",
3148 sc->sc_dev.dv_xname);
3149 goto err;
3150 }
3151
3152 #if 0
3153 if (rtw_identify_rf(&sc->sc_regs, &sc->sc_rftype,
3154 sc->sc_dev.dv_xname) != 0) {
3155 printf("%s: attach failed, unknown RF unidentified\n",
3156 sc->sc_dev.dv_xname);
3157 goto err;
3158 }
3159 #endif
3160
3161 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
3162
3163 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
3164
3165 RTW_DPRINTF(("%s: PHY delay %d\n", sc->sc_dev.dv_xname,
3166 sc->sc_phydelay));
3167
3168 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
3169 rtw_identify_country(&sc->sc_regs, &sc->sc_locale,
3170 sc->sc_dev.dv_xname);
3171
3172 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels,
3173 sc->sc_dev.dv_xname);
3174
3175 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
3176 sc->sc_dev.dv_xname) != 0)
3177 goto err;
3178 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
3179
3180 rtw_setifprops(&sc->sc_if, sc->sc_dev.dv_xname, (void*)sc);
3181
3182 IFQ_SET_READY(&sc->sc_if.if_snd);
3183
3184 rtw_set80211props(&sc->sc_ic);
3185
3186 /*
3187 * Call MI attach routines.
3188 */
3189 if_attach(&sc->sc_if);
3190 ieee80211_ifattach(&sc->sc_if);
3191
3192 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
3193
3194 /* possibly we should fill in our own sc_send_prresp, since
3195 * the RTL8180 is probably sending probe responses in ad hoc
3196 * mode.
3197 */
3198
3199 /* complete initialization */
3200 ieee80211_media_init(&sc->sc_if, rtw_media_change, rtw_media_status);
3201 callout_init(&sc->sc_scan_ch);
3202
3203 #if NBPFILTER > 0
3204 bpfattach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
3205 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
3206 #endif
3207
3208 rtw_establish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname, (void*)sc);
3209
3210 rtw_init_radiotap(sc);
3211
3212 NEXT_ATTACH_STATE(sc, FINISHED);
3213
3214 return;
3215 err:
3216 rtw_detach(sc);
3217 return;
3218 }
3219
3220 int
3221 rtw_detach(struct rtw_softc *sc)
3222 {
3223 int pri;
3224
3225 switch (sc->sc_attach_state) {
3226 case FINISHED:
3227 rtw_stop(&sc->sc_if, 1);
3228
3229 rtw_disestablish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname,
3230 (void*)sc);
3231 callout_stop(&sc->sc_scan_ch);
3232 ieee80211_ifdetach(&sc->sc_if);
3233 if_detach(&sc->sc_if);
3234 break;
3235 case FINISH_ID_STA:
3236 case FINISH_RF_ATTACH:
3237 rtw_rf_destroy(sc->sc_rf);
3238 sc->sc_rf = NULL;
3239 /*FALLTHROUGH*/
3240 case FINISH_PARSE_SROM:
3241 case FINISH_READ_SROM:
3242 rtw_srom_free(&sc->sc_srom);
3243 /*FALLTHROUGH*/
3244 case FINISH_RESET:
3245 case FINISH_RXMAPS_CREATE:
3246 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxctl[0],
3247 RTW_RXQLEN);
3248 /*FALLTHROUGH*/
3249 case FINISH_TXMAPS_CREATE:
3250 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3251 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
3252 sc->sc_txctl_blk[pri].stc_desc,
3253 sc->sc_txctl_blk[pri].stc_ndesc);
3254 }
3255 /*FALLTHROUGH*/
3256 case FINISH_TXDESCBLK_SETUP:
3257 case FINISH_TXCTLBLK_SETUP:
3258 rtw_txctl_blk_cleanup_all(sc);
3259 /*FALLTHROUGH*/
3260 case FINISH_DESCMAP_LOAD:
3261 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
3262 /*FALLTHROUGH*/
3263 case FINISH_DESCMAP_CREATE:
3264 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
3265 /*FALLTHROUGH*/
3266 case FINISH_DESC_MAP:
3267 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_descs,
3268 sizeof(struct rtw_descs));
3269 /*FALLTHROUGH*/
3270 case FINISH_DESC_ALLOC:
3271 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
3272 sc->sc_desc_nsegs);
3273 /*FALLTHROUGH*/
3274 case DETACHED:
3275 NEXT_ATTACH_STATE(sc, DETACHED);
3276 break;
3277 }
3278 return 0;
3279 }
3280
3281 int
3282 rtw_activate(struct device *self, enum devact act)
3283 {
3284 struct rtw_softc *sc = (struct rtw_softc *)self;
3285 int rc = 0, s;
3286
3287 s = splnet();
3288 switch (act) {
3289 case DVACT_ACTIVATE:
3290 rc = EOPNOTSUPP;
3291 break;
3292
3293 case DVACT_DEACTIVATE:
3294 if_deactivate(&sc->sc_ic.ic_if);
3295 break;
3296 }
3297 splx(s);
3298 return rc;
3299 }
3300