rtw.c revision 1.92 1 /* $NetBSD: rtw.c,v 1.92 2007/11/15 22:55:50 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005 David Young. All rights reserved.
4 *
5 * Programmed for NetBSD by David Young.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of David Young may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
23 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30 * OF SUCH DAMAGE.
31 */
32 /*
33 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.92 2007/11/15 22:55:50 dyoung Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/sysctl.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/time.h>
49 #include <sys/types.h>
50
51 #include <machine/endian.h>
52 #include <sys/bus.h>
53 #include <sys/intr.h> /* splnet */
54
55 #include <uvm/uvm_extern.h>
56
57 #include <net/if.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #include <net80211/ieee80211_netbsd.h>
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68
69 #include <dev/ic/rtwreg.h>
70 #include <dev/ic/rtwvar.h>
71 #include <dev/ic/rtwphyio.h>
72 #include <dev/ic/rtwphy.h>
73
74 #include <dev/ic/smc93cx6var.h>
75
76 #define KASSERT2(__cond, __msg) \
77 do { \
78 if (!(__cond)) \
79 panic __msg ; \
80 } while (0)
81
82 static int rtw_rfprog_fallback = 0;
83 static int rtw_host_rfio = 0;
84
85 #ifdef RTW_DEBUG
86 int rtw_debug = 0;
87 static int rtw_rxbufs_limit = RTW_RXQLEN;
88 #endif /* RTW_DEBUG */
89
90 #define NEXT_ATTACH_STATE(sc, state) do { \
91 DPRINTF(sc, RTW_DEBUG_ATTACH, \
92 ("%s: attach state %s\n", __func__, #state)); \
93 sc->sc_attach_state = state; \
94 } while (0)
95
96 int rtw_dwelltime = 200; /* milliseconds */
97 static struct ieee80211_cipher rtw_cipher_wep;
98
99 static void rtw_start(struct ifnet *);
100 static void rtw_reset_oactive(struct rtw_softc *);
101 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
102 struct ieee80211_node *);
103 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
104
105 static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
106 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
107 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
108 const u_int8_t[IEEE80211_ADDR_LEN]);
109 static void rtw_key_update_end(struct ieee80211com *);
110 static void rtw_key_update_begin(struct ieee80211com *);
111 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
112 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
113
114 static void rtw_led_attach(struct rtw_led_state *, void *);
115 static void rtw_led_init(struct rtw_regs *);
116 static void rtw_led_slowblink(void *);
117 static void rtw_led_fastblink(void *);
118 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
119
120 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
121 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
122 #ifdef RTW_DEBUG
123 static void rtw_dump_rings(struct rtw_softc *sc);
124 static void rtw_print_txdesc(struct rtw_softc *, const char *,
125 struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
126 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
127 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
128 #endif /* RTW_DEBUG */
129 #ifdef RTW_DIAG
130 static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
131 #endif /* RTW_DIAG */
132
133 /*
134 * Setup sysctl(3) MIB, hw.rtw.*
135 *
136 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
137 */
138 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
139 {
140 int rc;
141 const struct sysctlnode *cnode, *rnode;
142
143 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
144 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
145 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
146 goto err;
147
148 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
149 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
150 "Realtek RTL818x 802.11 controls",
151 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
152 goto err;
153
154 #ifdef RTW_DEBUG
155 /* control debugging printfs */
156 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
157 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
158 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
159 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
160 CTL_CREATE, CTL_EOL)) != 0)
161 goto err;
162
163 /* Limit rx buffers, for simulating resource exhaustion. */
164 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
165 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
166 "rxbufs_limit",
167 SYSCTL_DESCR("Set rx buffers limit"),
168 rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
169 CTL_CREATE, CTL_EOL)) != 0)
170 goto err;
171
172 #endif /* RTW_DEBUG */
173 /* set fallback RF programming method */
174 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
175 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
176 "rfprog_fallback",
177 SYSCTL_DESCR("Set fallback RF programming method"),
178 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
179 CTL_CREATE, CTL_EOL)) != 0)
180 goto err;
181
182 /* force host to control RF I/O bus */
183 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
184 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
185 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
186 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
187 CTL_CREATE, CTL_EOL)) != 0)
188 goto err;
189
190 return;
191 err:
192 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
193 }
194
195 static int
196 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
197 {
198 int error, t;
199 struct sysctlnode node;
200
201 node = *rnode;
202 t = *(int*)rnode->sysctl_data;
203 node.sysctl_data = &t;
204 error = sysctl_lookup(SYSCTLFN_CALL(&node));
205 if (error || newp == NULL)
206 return (error);
207
208 if (t < lower || t > upper)
209 return (EINVAL);
210
211 *(int*)rnode->sysctl_data = t;
212
213 return (0);
214 }
215
216 static int
217 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
218 {
219 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
220 __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
221 }
222
223 static int
224 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
225 {
226 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
227 }
228
229 #ifdef RTW_DEBUG
230 static int
231 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
232 {
233 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
234 0, RTW_DEBUG_MAX);
235 }
236
237 static int
238 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
239 {
240 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
241 0, RTW_RXQLEN);
242 }
243
244 static void
245 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
246 {
247 #define PRINTREG32(sc, reg) \
248 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
249 ("%s: reg[ " #reg " / %03x ] = %08x\n", \
250 dvname, reg, RTW_READ(regs, reg)))
251
252 #define PRINTREG16(sc, reg) \
253 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
254 ("%s: reg[ " #reg " / %03x ] = %04x\n", \
255 dvname, reg, RTW_READ16(regs, reg)))
256
257 #define PRINTREG8(sc, reg) \
258 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
259 ("%s: reg[ " #reg " / %03x ] = %02x\n", \
260 dvname, reg, RTW_READ8(regs, reg)))
261
262 RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
263
264 PRINTREG32(regs, RTW_IDR0);
265 PRINTREG32(regs, RTW_IDR1);
266 PRINTREG32(regs, RTW_MAR0);
267 PRINTREG32(regs, RTW_MAR1);
268 PRINTREG32(regs, RTW_TSFTRL);
269 PRINTREG32(regs, RTW_TSFTRH);
270 PRINTREG32(regs, RTW_TLPDA);
271 PRINTREG32(regs, RTW_TNPDA);
272 PRINTREG32(regs, RTW_THPDA);
273 PRINTREG32(regs, RTW_TCR);
274 PRINTREG32(regs, RTW_RCR);
275 PRINTREG32(regs, RTW_TINT);
276 PRINTREG32(regs, RTW_TBDA);
277 PRINTREG32(regs, RTW_ANAPARM);
278 PRINTREG32(regs, RTW_BB);
279 PRINTREG32(regs, RTW_PHYCFG);
280 PRINTREG32(regs, RTW_WAKEUP0L);
281 PRINTREG32(regs, RTW_WAKEUP0H);
282 PRINTREG32(regs, RTW_WAKEUP1L);
283 PRINTREG32(regs, RTW_WAKEUP1H);
284 PRINTREG32(regs, RTW_WAKEUP2LL);
285 PRINTREG32(regs, RTW_WAKEUP2LH);
286 PRINTREG32(regs, RTW_WAKEUP2HL);
287 PRINTREG32(regs, RTW_WAKEUP2HH);
288 PRINTREG32(regs, RTW_WAKEUP3LL);
289 PRINTREG32(regs, RTW_WAKEUP3LH);
290 PRINTREG32(regs, RTW_WAKEUP3HL);
291 PRINTREG32(regs, RTW_WAKEUP3HH);
292 PRINTREG32(regs, RTW_WAKEUP4LL);
293 PRINTREG32(regs, RTW_WAKEUP4LH);
294 PRINTREG32(regs, RTW_WAKEUP4HL);
295 PRINTREG32(regs, RTW_WAKEUP4HH);
296 PRINTREG32(regs, RTW_DK0);
297 PRINTREG32(regs, RTW_DK1);
298 PRINTREG32(regs, RTW_DK2);
299 PRINTREG32(regs, RTW_DK3);
300 PRINTREG32(regs, RTW_RETRYCTR);
301 PRINTREG32(regs, RTW_RDSAR);
302 PRINTREG32(regs, RTW_FER);
303 PRINTREG32(regs, RTW_FEMR);
304 PRINTREG32(regs, RTW_FPSR);
305 PRINTREG32(regs, RTW_FFER);
306
307 /* 16-bit registers */
308 PRINTREG16(regs, RTW_BRSR);
309 PRINTREG16(regs, RTW_IMR);
310 PRINTREG16(regs, RTW_ISR);
311 PRINTREG16(regs, RTW_BCNITV);
312 PRINTREG16(regs, RTW_ATIMWND);
313 PRINTREG16(regs, RTW_BINTRITV);
314 PRINTREG16(regs, RTW_ATIMTRITV);
315 PRINTREG16(regs, RTW_CRC16ERR);
316 PRINTREG16(regs, RTW_CRC0);
317 PRINTREG16(regs, RTW_CRC1);
318 PRINTREG16(regs, RTW_CRC2);
319 PRINTREG16(regs, RTW_CRC3);
320 PRINTREG16(regs, RTW_CRC4);
321 PRINTREG16(regs, RTW_CWR);
322
323 /* 8-bit registers */
324 PRINTREG8(regs, RTW_CR);
325 PRINTREG8(regs, RTW_9346CR);
326 PRINTREG8(regs, RTW_CONFIG0);
327 PRINTREG8(regs, RTW_CONFIG1);
328 PRINTREG8(regs, RTW_CONFIG2);
329 PRINTREG8(regs, RTW_MSR);
330 PRINTREG8(regs, RTW_CONFIG3);
331 PRINTREG8(regs, RTW_CONFIG4);
332 PRINTREG8(regs, RTW_TESTR);
333 PRINTREG8(regs, RTW_PSR);
334 PRINTREG8(regs, RTW_SCR);
335 PRINTREG8(regs, RTW_PHYDELAY);
336 PRINTREG8(regs, RTW_CRCOUNT);
337 PRINTREG8(regs, RTW_PHYADDR);
338 PRINTREG8(regs, RTW_PHYDATAW);
339 PRINTREG8(regs, RTW_PHYDATAR);
340 PRINTREG8(regs, RTW_CONFIG5);
341 PRINTREG8(regs, RTW_TPPOLL);
342
343 PRINTREG16(regs, RTW_BSSID16);
344 PRINTREG32(regs, RTW_BSSID32);
345 #undef PRINTREG32
346 #undef PRINTREG16
347 #undef PRINTREG8
348 }
349 #endif /* RTW_DEBUG */
350
351 void
352 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
353 {
354 struct rtw_regs *regs = &sc->sc_regs;
355
356 uint32_t tcr;
357 tcr = RTW_READ(regs, RTW_TCR);
358 tcr &= ~RTW_TCR_LBK_MASK;
359 if (enable)
360 tcr |= RTW_TCR_LBK_CONT;
361 else
362 tcr |= RTW_TCR_LBK_NORMAL;
363 RTW_WRITE(regs, RTW_TCR, tcr);
364 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
365 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
366 rtw_txdac_enable(sc, !enable);
367 rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
368 rtw_set_access(regs, RTW_ACCESS_NONE);
369 }
370
371 #ifdef RTW_DEBUG
372 static const char *
373 rtw_access_string(enum rtw_access access)
374 {
375 switch (access) {
376 case RTW_ACCESS_NONE:
377 return "none";
378 case RTW_ACCESS_CONFIG:
379 return "config";
380 case RTW_ACCESS_ANAPARM:
381 return "anaparm";
382 default:
383 return "unknown";
384 }
385 }
386 #endif /* RTW_DEBUG */
387
388 static void
389 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
390 {
391 KASSERT(/* naccess >= RTW_ACCESS_NONE && */
392 naccess <= RTW_ACCESS_ANAPARM);
393 KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
394 regs->r_access <= RTW_ACCESS_ANAPARM);
395
396 if (naccess == regs->r_access)
397 return;
398
399 switch (naccess) {
400 case RTW_ACCESS_NONE:
401 switch (regs->r_access) {
402 case RTW_ACCESS_ANAPARM:
403 rtw_anaparm_enable(regs, 0);
404 /*FALLTHROUGH*/
405 case RTW_ACCESS_CONFIG:
406 rtw_config0123_enable(regs, 0);
407 /*FALLTHROUGH*/
408 case RTW_ACCESS_NONE:
409 break;
410 }
411 break;
412 case RTW_ACCESS_CONFIG:
413 switch (regs->r_access) {
414 case RTW_ACCESS_NONE:
415 rtw_config0123_enable(regs, 1);
416 /*FALLTHROUGH*/
417 case RTW_ACCESS_CONFIG:
418 break;
419 case RTW_ACCESS_ANAPARM:
420 rtw_anaparm_enable(regs, 0);
421 break;
422 }
423 break;
424 case RTW_ACCESS_ANAPARM:
425 switch (regs->r_access) {
426 case RTW_ACCESS_NONE:
427 rtw_config0123_enable(regs, 1);
428 /*FALLTHROUGH*/
429 case RTW_ACCESS_CONFIG:
430 rtw_anaparm_enable(regs, 1);
431 /*FALLTHROUGH*/
432 case RTW_ACCESS_ANAPARM:
433 break;
434 }
435 break;
436 }
437 }
438
439 void
440 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
441 {
442 rtw_set_access1(regs, access);
443 RTW_DPRINTF(RTW_DEBUG_ACCESS,
444 ("%s: access %s -> %s\n", __func__,
445 rtw_access_string(regs->r_access),
446 rtw_access_string(access)));
447 regs->r_access = access;
448 }
449
450 /*
451 * Enable registers, switch register banks.
452 */
453 void
454 rtw_config0123_enable(struct rtw_regs *regs, int enable)
455 {
456 uint8_t ecr;
457 ecr = RTW_READ8(regs, RTW_9346CR);
458 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
459 if (enable)
460 ecr |= RTW_9346CR_EEM_CONFIG;
461 else {
462 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
463 ecr |= RTW_9346CR_EEM_NORMAL;
464 }
465 RTW_WRITE8(regs, RTW_9346CR, ecr);
466 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
467 }
468
469 /* requires rtw_config0123_enable(, 1) */
470 void
471 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
472 {
473 uint8_t cfg3;
474
475 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
476 cfg3 |= RTW_CONFIG3_CLKRUNEN;
477 if (enable)
478 cfg3 |= RTW_CONFIG3_PARMEN;
479 else
480 cfg3 &= ~RTW_CONFIG3_PARMEN;
481 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
482 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
483 }
484
485 /* requires rtw_anaparm_enable(, 1) */
486 void
487 rtw_txdac_enable(struct rtw_softc *sc, int enable)
488 {
489 uint32_t anaparm;
490 struct rtw_regs *regs = &sc->sc_regs;
491
492 anaparm = RTW_READ(regs, RTW_ANAPARM);
493 if (enable)
494 anaparm &= ~RTW_ANAPARM_TXDACOFF;
495 else
496 anaparm |= RTW_ANAPARM_TXDACOFF;
497 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
498 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
499 }
500
501 static inline int
502 rtw_chip_reset1(struct rtw_regs *regs, const char *dvname)
503 {
504 uint8_t cr;
505 int i;
506
507 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
508
509 RTW_WBR(regs, RTW_CR, RTW_CR);
510
511 for (i = 0; i < 1000; i++) {
512 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
513 RTW_DPRINTF(RTW_DEBUG_RESET,
514 ("%s: reset in %dus\n", dvname, i));
515 return 0;
516 }
517 RTW_RBR(regs, RTW_CR, RTW_CR);
518 DELAY(10); /* 10us */
519 }
520
521 printf("%s: reset failed\n", dvname);
522 return ETIMEDOUT;
523 }
524
525 static inline int
526 rtw_chip_reset(struct rtw_regs *regs, const char *dvname)
527 {
528 uint32_t tcr;
529
530 /* from Linux driver */
531 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
532 __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
533
534 RTW_WRITE(regs, RTW_TCR, tcr);
535
536 RTW_WBW(regs, RTW_CR, RTW_TCR);
537
538 return rtw_chip_reset1(regs, dvname);
539 }
540
541 static int
542 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
543 {
544 struct ieee80211_key keycopy;
545
546 RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
547
548 keycopy = *k;
549 keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
550
551 return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
552 }
553
554 static int
555 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
556 {
557 struct rtw_softc *sc = ic->ic_ifp->if_softc;
558 u_int keyix = k->wk_keyix;
559
560 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__, keyix));
561
562 if (keyix >= IEEE80211_WEP_NKID)
563 return 0;
564 if (k->wk_keylen != 0)
565 sc->sc_flags &= ~RTW_F_DK_VALID;
566
567 return 1;
568 }
569
570 static int
571 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
572 const u_int8_t mac[IEEE80211_ADDR_LEN])
573 {
574 struct rtw_softc *sc = ic->ic_ifp->if_softc;
575
576 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
577
578 if (k->wk_keyix >= IEEE80211_WEP_NKID)
579 return 0;
580
581 sc->sc_flags &= ~RTW_F_DK_VALID;
582
583 return 1;
584 }
585
586 static void
587 rtw_key_update_begin(struct ieee80211com *ic)
588 {
589 #ifdef RTW_DEBUG
590 struct ifnet *ifp = ic->ic_ifp;
591 struct rtw_softc *sc = ifp->if_softc;
592 #endif
593
594 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
595 }
596
597 static void
598 rtw_key_update_end(struct ieee80211com *ic)
599 {
600 struct ifnet *ifp = ic->ic_ifp;
601 struct rtw_softc *sc = ifp->if_softc;
602
603 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
604
605 if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
606 (sc->sc_flags & RTW_F_ENABLED) == 0 ||
607 (sc->sc_flags & RTW_F_INVALID) != 0)
608 return;
609
610 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
611 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
612 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
613 (ifp->if_flags & IFF_RUNNING) != 0);
614 }
615
616 static inline int
617 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
618 {
619 if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
620 return 0;
621
622 return ((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
623 ((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
624 }
625
626 static void
627 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
628 {
629 uint8_t psr, scr;
630 int i, keylen;
631 struct rtw_regs *regs;
632 union rtw_keys *rk;
633
634 regs = &sc->sc_regs;
635 rk = &sc->sc_keys;
636
637 (void)memset(rk, 0, sizeof(rk));
638
639 /* Temporarily use software crypto for all keys. */
640 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
641 if (wk[i].wk_cipher == &rtw_cipher_wep)
642 wk[i].wk_cipher = &ieee80211_cipher_wep;
643 }
644
645 rtw_set_access(regs, RTW_ACCESS_CONFIG);
646
647 psr = RTW_READ8(regs, RTW_PSR);
648 scr = RTW_READ8(regs, RTW_SCR);
649 scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
650
651 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
652 goto out;
653
654 for (keylen = i = 0; i < IEEE80211_WEP_NKID; i++) {
655 if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
656 continue;
657 if (i == txkey) {
658 keylen = wk[i].wk_keylen;
659 break;
660 }
661 keylen = MAX(keylen, wk[i].wk_keylen);
662 }
663
664 if (keylen == 5)
665 scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
666 else if (keylen == 13)
667 scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
668
669 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
670 if (wk[i].wk_keylen != keylen ||
671 wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
672 continue;
673 /* h/w will decrypt, s/w still strips headers */
674 wk[i].wk_cipher = &rtw_cipher_wep;
675 (void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
676 }
677
678 out:
679 RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
680
681 bus_space_write_region_stream_4(regs->r_bt, regs->r_bh,
682 RTW_DK0, rk->rk_words, __arraycount(rk->rk_words));
683
684 bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
685 BUS_SPACE_BARRIER_SYNC);
686
687 RTW_WBW(regs, RTW_DK0, RTW_PSR);
688 RTW_WRITE8(regs, RTW_PSR, psr);
689 RTW_WBW(regs, RTW_PSR, RTW_SCR);
690 RTW_WRITE8(regs, RTW_SCR, scr);
691 RTW_SYNC(regs, RTW_SCR, RTW_SCR);
692 rtw_set_access(regs, RTW_ACCESS_NONE);
693 sc->sc_flags |= RTW_F_DK_VALID;
694 }
695
696 static inline int
697 rtw_recall_eeprom(struct rtw_regs *regs, const char *dvname)
698 {
699 int i;
700 uint8_t ecr;
701
702 ecr = RTW_READ8(regs, RTW_9346CR);
703 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
704 RTW_WRITE8(regs, RTW_9346CR, ecr);
705
706 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
707
708 /* wait 25ms for completion */
709 for (i = 0; i < 250; i++) {
710 ecr = RTW_READ8(regs, RTW_9346CR);
711 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
712 RTW_DPRINTF(RTW_DEBUG_RESET,
713 ("%s: recall EEPROM in %dus\n", dvname, i * 100));
714 return 0;
715 }
716 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
717 DELAY(100);
718 }
719 printf("%s: recall EEPROM failed\n", dvname);
720 return ETIMEDOUT;
721 }
722
723 static inline int
724 rtw_reset(struct rtw_softc *sc)
725 {
726 int rc;
727 uint8_t config1;
728
729 sc->sc_flags &= ~RTW_F_DK_VALID;
730
731 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev.dv_xname)) != 0)
732 return rc;
733
734 rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev.dv_xname);
735
736 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
737 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
738 /* TBD turn off maximum power saving? */
739
740 return 0;
741 }
742
743 static inline int
744 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
745 u_int ndescs)
746 {
747 int i, rc = 0;
748 for (i = 0; i < ndescs; i++) {
749 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
750 0, 0, &descs[i].ts_dmamap);
751 if (rc != 0)
752 break;
753 }
754 return rc;
755 }
756
757 static inline int
758 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
759 u_int ndescs)
760 {
761 int i, rc = 0;
762 for (i = 0; i < ndescs; i++) {
763 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
764 &descs[i].rs_dmamap);
765 if (rc != 0)
766 break;
767 }
768 return rc;
769 }
770
771 static inline void
772 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
773 u_int ndescs)
774 {
775 int i;
776 for (i = 0; i < ndescs; i++) {
777 if (descs[i].rs_dmamap != NULL)
778 bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
779 }
780 }
781
782 static inline void
783 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
784 u_int ndescs)
785 {
786 int i;
787 for (i = 0; i < ndescs; i++) {
788 if (descs[i].ts_dmamap != NULL)
789 bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
790 }
791 }
792
793 static inline void
794 rtw_srom_free(struct rtw_srom *sr)
795 {
796 sr->sr_size = 0;
797 if (sr->sr_content == NULL)
798 return;
799 free(sr->sr_content, M_DEVBUF);
800 sr->sr_content = NULL;
801 }
802
803 static void
804 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
805 uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
806 {
807 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
808 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
809 *rcr |= RTW_RCR_ENCS1;
810 *rfchipid = RTW_RFCHIPID_PHILIPS;
811 }
812
813 static int
814 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
815 enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
816 const char *dvname)
817 {
818 int i;
819 const char *rfname, *paname;
820 char scratch[sizeof("unknown 0xXX")];
821 uint16_t srom_version;
822 uint8_t mac[IEEE80211_ADDR_LEN];
823
824 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
825 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
826
827 srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
828 printf("%s: SROM version %d.%d", dvname,
829 srom_version >> 8, srom_version & 0xff);
830
831 if (srom_version <= 0x0101) {
832 printf(" is not understood, limping along with defaults\n");
833 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
834 return 0;
835 }
836 printf("\n");
837
838 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
839 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
840
841 RTW_DPRINTF(RTW_DEBUG_ATTACH,
842 ("%s: EEPROM MAC %s\n", dvname, ether_sprintf(mac)));
843
844 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
845
846 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
847 *flags |= RTW_F_ANTDIV;
848
849 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
850 * to be reversed.
851 */
852 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
853 *flags |= RTW_F_DIGPHY;
854 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
855 *flags |= RTW_F_DFLANTB;
856
857 *rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
858 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
859
860 if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
861 *flags |= RTW_C_RXWEP_104;
862
863 *flags |= RTW_C_RXWEP_40; /* XXX */
864
865 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
866 switch (*rfchipid) {
867 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
868 rfname = "GCT GRF5101";
869 paname = "Winspring WS9901";
870 break;
871 case RTW_RFCHIPID_MAXIM:
872 rfname = "Maxim MAX2820"; /* guess */
873 paname = "Maxim MAX2422"; /* guess */
874 break;
875 case RTW_RFCHIPID_INTERSIL:
876 rfname = "Intersil HFA3873"; /* guess */
877 paname = "Intersil <unknown>";
878 break;
879 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
880 rfname = "Philips SA2400A";
881 paname = "Philips SA2411";
882 break;
883 case RTW_RFCHIPID_RFMD:
884 /* this is the same front-end as an atw(4)! */
885 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
886 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
887 "SYN: Silicon Labs Si4126"; /* inferred from
888 * reference driver
889 */
890 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
891 break;
892 case RTW_RFCHIPID_RESERVED:
893 rfname = paname = "reserved";
894 break;
895 default:
896 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
897 rfname = paname = scratch;
898 }
899 printf("%s: RF: %s, PA: %s\n", dvname, rfname, paname);
900
901 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
902 case RTW_CONFIG0_GL_USA:
903 case _RTW_CONFIG0_GL_USA:
904 *locale = RTW_LOCALE_USA;
905 break;
906 case RTW_CONFIG0_GL_EUROPE:
907 *locale = RTW_LOCALE_EUROPE;
908 break;
909 case RTW_CONFIG0_GL_JAPAN:
910 *locale = RTW_LOCALE_JAPAN;
911 break;
912 default:
913 *locale = RTW_LOCALE_UNKNOWN;
914 break;
915 }
916 return 0;
917 }
918
919 /* Returns -1 on failure. */
920 static int
921 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
922 const char *dvname)
923 {
924 int rc;
925 struct seeprom_descriptor sd;
926 uint8_t ecr;
927
928 (void)memset(&sd, 0, sizeof(sd));
929
930 ecr = RTW_READ8(regs, RTW_9346CR);
931
932 if ((flags & RTW_F_9356SROM) != 0) {
933 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n", dvname));
934 sr->sr_size = 256;
935 sd.sd_chip = C56_66;
936 } else {
937 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n", dvname));
938 sr->sr_size = 128;
939 sd.sd_chip = C46;
940 }
941
942 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
943 RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
944 ecr |= RTW_9346CR_EEM_PROGRAM;
945
946 RTW_WRITE8(regs, RTW_9346CR, ecr);
947
948 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
949
950 if (sr->sr_content == NULL) {
951 printf("%s: unable to allocate SROM buffer\n", dvname);
952 return ENOMEM;
953 }
954
955 (void)memset(sr->sr_content, 0, sr->sr_size);
956
957 /* RTL8180 has a single 8-bit register for controlling the
958 * 93cx6 SROM. There is no "ready" bit. The RTL8180
959 * input/output sense is the reverse of read_seeprom's.
960 */
961 sd.sd_tag = regs->r_bt;
962 sd.sd_bsh = regs->r_bh;
963 sd.sd_regsize = 1;
964 sd.sd_control_offset = RTW_9346CR;
965 sd.sd_status_offset = RTW_9346CR;
966 sd.sd_dataout_offset = RTW_9346CR;
967 sd.sd_CK = RTW_9346CR_EESK;
968 sd.sd_CS = RTW_9346CR_EECS;
969 sd.sd_DI = RTW_9346CR_EEDO;
970 sd.sd_DO = RTW_9346CR_EEDI;
971 /* make read_seeprom enter EEPROM read/write mode */
972 sd.sd_MS = ecr;
973 sd.sd_RDY = 0;
974
975 /* TBD bus barriers */
976 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
977 printf("%s: could not read SROM\n", dvname);
978 free(sr->sr_content, M_DEVBUF);
979 sr->sr_content = NULL;
980 return -1; /* XXX */
981 }
982
983 /* end EEPROM read/write mode */
984 RTW_WRITE8(regs, RTW_9346CR,
985 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
986 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
987
988 if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
989 return rc;
990
991 #ifdef RTW_DEBUG
992 {
993 int i;
994 RTW_DPRINTF(RTW_DEBUG_ATTACH,
995 ("\n%s: serial ROM:\n\t", dvname));
996 for (i = 0; i < sr->sr_size/2; i++) {
997 if (((i % 8) == 0) && (i != 0))
998 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
999 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1000 (" %04x", sr->sr_content[i]));
1001 }
1002 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
1003 }
1004 #endif /* RTW_DEBUG */
1005 return 0;
1006 }
1007
1008 static void
1009 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1010 const char *dvname)
1011 {
1012 uint8_t cfg4;
1013 const char *method;
1014
1015 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1016
1017 switch (rfchipid) {
1018 default:
1019 cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1020 method = "fallback";
1021 break;
1022 case RTW_RFCHIPID_INTERSIL:
1023 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1024 method = "Intersil";
1025 break;
1026 case RTW_RFCHIPID_PHILIPS:
1027 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1028 method = "Philips";
1029 break;
1030 case RTW_RFCHIPID_GCT: /* XXX a guess */
1031 case RTW_RFCHIPID_RFMD:
1032 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1033 method = "RFMD";
1034 break;
1035 }
1036
1037 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1038
1039 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1040
1041 RTW_DPRINTF(RTW_DEBUG_INIT,
1042 ("%s: %s RF programming method, %#02x\n", dvname, method,
1043 RTW_READ8(regs, RTW_CONFIG4)));
1044 }
1045
1046 static inline void
1047 rtw_init_channels(enum rtw_locale locale,
1048 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
1049 const char *dvname)
1050 {
1051 int i;
1052 const char *name = NULL;
1053 #define ADD_CHANNEL(_chans, _chan) do { \
1054 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
1055 (*_chans)[_chan].ic_freq = \
1056 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1057 } while (0)
1058
1059 switch (locale) {
1060 case RTW_LOCALE_USA: /* 1-11 */
1061 name = "USA";
1062 for (i = 1; i <= 11; i++)
1063 ADD_CHANNEL(chans, i);
1064 break;
1065 case RTW_LOCALE_JAPAN: /* 1-14 */
1066 name = "Japan";
1067 ADD_CHANNEL(chans, 14);
1068 for (i = 1; i <= 14; i++)
1069 ADD_CHANNEL(chans, i);
1070 break;
1071 case RTW_LOCALE_EUROPE: /* 1-13 */
1072 name = "Europe";
1073 for (i = 1; i <= 13; i++)
1074 ADD_CHANNEL(chans, i);
1075 break;
1076 default: /* 10-11 allowed by most countries */
1077 name = "<unknown>";
1078 for (i = 10; i <= 11; i++)
1079 ADD_CHANNEL(chans, i);
1080 break;
1081 }
1082 printf("%s: Geographic Location %s\n", dvname, name);
1083 #undef ADD_CHANNEL
1084 }
1085
1086
1087 static inline void
1088 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1089 {
1090 uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1091
1092 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1093 case RTW_CONFIG0_GL_USA:
1094 case _RTW_CONFIG0_GL_USA:
1095 *locale = RTW_LOCALE_USA;
1096 break;
1097 case RTW_CONFIG0_GL_JAPAN:
1098 *locale = RTW_LOCALE_JAPAN;
1099 break;
1100 case RTW_CONFIG0_GL_EUROPE:
1101 *locale = RTW_LOCALE_EUROPE;
1102 break;
1103 default:
1104 *locale = RTW_LOCALE_UNKNOWN;
1105 break;
1106 }
1107 }
1108
1109 static inline int
1110 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1111 const char *dvname)
1112 {
1113 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1114 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1115 };
1116 uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1117 idr1 = RTW_READ(regs, RTW_IDR1);
1118
1119 (*addr)[0] = __SHIFTOUT(idr0, __BITS(0, 7));
1120 (*addr)[1] = __SHIFTOUT(idr0, __BITS(8, 15));
1121 (*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
1122 (*addr)[3] = __SHIFTOUT(idr0, __BITS(24 ,31));
1123
1124 (*addr)[4] = __SHIFTOUT(idr1, __BITS(0, 7));
1125 (*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
1126
1127 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1128 printf("%s: could not get mac address, attach failed\n",
1129 dvname);
1130 return ENXIO;
1131 }
1132
1133 printf("%s: 802.11 address %s\n", dvname, ether_sprintf(*addr));
1134
1135 return 0;
1136 }
1137
1138 static uint8_t
1139 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1140 struct ieee80211_channel *chan)
1141 {
1142 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1143 KASSERT2(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14,
1144 ("%s: channel %d out of range", __func__,
1145 idx - RTW_SR_TXPOWER1 + 1));
1146 return RTW_SR_GET(sr, idx);
1147 }
1148
1149 static void
1150 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1151 {
1152 int pri;
1153 /* nfree: the number of free descriptors in each ring.
1154 * The beacon ring is a special case: I do not let the
1155 * driver use all of the descriptors on the beacon ring.
1156 * The reasons are two-fold:
1157 *
1158 * (1) A BEACON descriptor's OWN bit is (apparently) not
1159 * updated, so the driver cannot easily know if the descriptor
1160 * belongs to it, or if it is racing the NIC. If the NIC
1161 * does not OWN every descriptor, then the driver can safely
1162 * update the descriptors when RTW_TBDA points at tdb_next.
1163 *
1164 * (2) I hope that the NIC will process more than one BEACON
1165 * descriptor in a single beacon interval, since that will
1166 * enable multiple-BSS support. Since the NIC does not
1167 * clear the OWN bit, there is no natural place for it to
1168 * stop processing BEACON desciptors. Maybe it will *not*
1169 * stop processing them! I do not want to chance the NIC
1170 * looping around and around a saturated beacon ring, so
1171 * I will leave one descriptor unOWNed at all times.
1172 */
1173 u_int nfree[RTW_NTXPRI] =
1174 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1175 RTW_NTXDESCBCN - 1};
1176
1177 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1178 tdb[pri].tdb_nfree = nfree[pri];
1179 tdb[pri].tdb_next = 0;
1180 }
1181 }
1182
1183 static int
1184 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1185 {
1186 int i;
1187 struct rtw_txsoft *ts;
1188
1189 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1190 SIMPLEQ_INIT(&tsb->tsb_freeq);
1191 for (i = 0; i < tsb->tsb_ndesc; i++) {
1192 ts = &tsb->tsb_desc[i];
1193 ts->ts_mbuf = NULL;
1194 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1195 }
1196 tsb->tsb_tx_timer = 0;
1197 return 0;
1198 }
1199
1200 static void
1201 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1202 {
1203 int pri;
1204 for (pri = 0; pri < RTW_NTXPRI; pri++)
1205 rtw_txsoft_blk_init(&tsb[pri]);
1206 }
1207
1208 static inline void
1209 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1210 {
1211 KASSERT(nsync <= rdb->rdb_ndesc);
1212 /* sync to end of ring */
1213 if (desc0 + nsync > rdb->rdb_ndesc) {
1214 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1215 offsetof(struct rtw_descs, hd_rx[desc0]),
1216 sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1217 nsync -= (rdb->rdb_ndesc - desc0);
1218 desc0 = 0;
1219 }
1220
1221 KASSERT(desc0 < rdb->rdb_ndesc);
1222 KASSERT(nsync <= rdb->rdb_ndesc);
1223 KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1224
1225 /* sync what remains */
1226 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1227 offsetof(struct rtw_descs, hd_rx[desc0]),
1228 sizeof(struct rtw_rxdesc) * nsync, ops);
1229 }
1230
1231 static void
1232 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1233 {
1234 /* sync to end of ring */
1235 if (desc0 + nsync > tdb->tdb_ndesc) {
1236 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1237 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1238 sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1239 ops);
1240 nsync -= (tdb->tdb_ndesc - desc0);
1241 desc0 = 0;
1242 }
1243
1244 /* sync what remains */
1245 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1246 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1247 sizeof(struct rtw_txdesc) * nsync, ops);
1248 }
1249
1250 static void
1251 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1252 {
1253 int pri;
1254 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1255 rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1256 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1257 }
1258 }
1259
1260 static void
1261 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1262 {
1263 int i;
1264 struct rtw_rxsoft *rs;
1265
1266 for (i = 0; i < RTW_RXQLEN; i++) {
1267 rs = &desc[i];
1268 if (rs->rs_mbuf == NULL)
1269 continue;
1270 bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1271 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1272 bus_dmamap_unload(dmat, rs->rs_dmamap);
1273 m_freem(rs->rs_mbuf);
1274 rs->rs_mbuf = NULL;
1275 }
1276 }
1277
1278 static inline int
1279 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1280 {
1281 int rc;
1282 struct mbuf *m;
1283
1284 MGETHDR(m, M_DONTWAIT, MT_DATA);
1285 if (m == NULL)
1286 return ENOBUFS;
1287
1288 MCLGET(m, M_DONTWAIT);
1289 if ((m->m_flags & M_EXT) == 0) {
1290 m_freem(m);
1291 return ENOBUFS;
1292 }
1293
1294 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1295
1296 if (rs->rs_mbuf != NULL)
1297 bus_dmamap_unload(dmat, rs->rs_dmamap);
1298
1299 rs->rs_mbuf = NULL;
1300
1301 rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1302 if (rc != 0) {
1303 m_freem(m);
1304 return -1;
1305 }
1306
1307 rs->rs_mbuf = m;
1308
1309 return 0;
1310 }
1311
1312 static int
1313 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1314 int *ndesc, const char *dvname)
1315 {
1316 int i, rc = 0;
1317 struct rtw_rxsoft *rs;
1318
1319 for (i = 0; i < RTW_RXQLEN; i++) {
1320 rs = &desc[i];
1321 /* we're in rtw_init, so there should be no mbufs allocated */
1322 KASSERT(rs->rs_mbuf == NULL);
1323 #ifdef RTW_DEBUG
1324 if (i == rtw_rxbufs_limit) {
1325 printf("%s: TEST hit %d-buffer limit\n", dvname, i);
1326 rc = ENOBUFS;
1327 break;
1328 }
1329 #endif /* RTW_DEBUG */
1330 if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1331 printf("%s: rtw_rxsoft_alloc failed, %d buffers, "
1332 "rc %d\n", dvname, i, rc);
1333 break;
1334 }
1335 }
1336 *ndesc = i;
1337 return rc;
1338 }
1339
1340 static inline void
1341 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1342 int idx, int kick)
1343 {
1344 int is_last = (idx == rdb->rdb_ndesc - 1);
1345 uint32_t ctl, octl, obuf;
1346 struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1347
1348 /* sync the mbuf before the descriptor */
1349 bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1350 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1351
1352 obuf = rd->rd_buf;
1353 rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1354
1355 ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1356 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1357
1358 if (is_last)
1359 ctl |= RTW_RXCTL_EOR;
1360
1361 octl = rd->rd_ctl;
1362 rd->rd_ctl = htole32(ctl);
1363
1364 RTW_DPRINTF(
1365 kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1366 : RTW_DEBUG_RECV_DESC,
1367 ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1368 le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1369 le32toh(rd->rd_ctl)));
1370
1371 /* sync the descriptor */
1372 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1373 RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1374 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1375 }
1376
1377 static void
1378 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1379 {
1380 int i;
1381 struct rtw_rxdesc *rd;
1382 struct rtw_rxsoft *rs;
1383
1384 for (i = 0; i < rdb->rdb_ndesc; i++) {
1385 rd = &rdb->rdb_desc[i];
1386 rs = &ctl[i];
1387 rtw_rxdesc_init(rdb, rs, i, kick);
1388 }
1389 }
1390
1391 static void
1392 rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
1393 {
1394 struct rtw_regs *regs = &sc->sc_regs;
1395 uint8_t cr;
1396
1397 RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1398 enable ? "enable" : "disable", flags));
1399
1400 cr = RTW_READ8(regs, RTW_CR);
1401
1402 /* XXX reference source does not enable MULRW */
1403 /* enable PCI Read/Write Multiple */
1404 cr |= RTW_CR_MULRW;
1405
1406 /* The receive engine will always start at RDSAR. */
1407 if (enable && (flags & ~cr & RTW_CR_RE)) {
1408 struct rtw_rxdesc_blk *rdb;
1409 rdb = &sc->sc_rxdesc_blk;
1410 rdb->rdb_next = 0;
1411 }
1412
1413 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1414 if (enable)
1415 cr |= flags;
1416 else
1417 cr &= ~flags;
1418 RTW_WRITE8(regs, RTW_CR, cr);
1419 RTW_SYNC(regs, RTW_CR, RTW_CR);
1420
1421 #ifdef RTW_DIAG
1422 if (cr & RTW_CR_TE)
1423 rtw_txring_fixup(sc, __func__, __LINE__);
1424 #endif
1425 }
1426
1427 static void
1428 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1429 {
1430 #define IS_BEACON(__fc0) \
1431 ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1432 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1433
1434 static const int ratetbl[4] = {2, 4, 11, 22}; /* convert rates:
1435 * hardware -> net80211
1436 */
1437 u_int next, nproc = 0;
1438 int hwrate, len, rate, rssi, sq;
1439 uint32_t hrssi, hstat, htsfth, htsftl;
1440 struct rtw_rxdesc *rd;
1441 struct rtw_rxsoft *rs;
1442 struct rtw_rxdesc_blk *rdb;
1443 struct mbuf *m;
1444 struct ifnet *ifp = &sc->sc_if;
1445
1446 struct ieee80211_node *ni;
1447 struct ieee80211_frame_min *wh;
1448
1449 rdb = &sc->sc_rxdesc_blk;
1450
1451 for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
1452 KASSERT(next < rdb->rdb_ndesc);
1453
1454 rtw_rxdescs_sync(rdb, next, 1,
1455 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1456 rd = &rdb->rdb_desc[next];
1457 rs = &sc->sc_rxsoft[next];
1458
1459 hstat = le32toh(rd->rd_stat);
1460 hrssi = le32toh(rd->rd_rssi);
1461 htsfth = le32toh(rd->rd_tsfth);
1462 htsftl = le32toh(rd->rd_tsftl);
1463
1464 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1465 ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1466 __func__, next, hstat, hrssi, htsfth, htsftl));
1467
1468 ++nproc;
1469
1470 /* still belongs to NIC */
1471 if ((hstat & RTW_RXSTAT_OWN) != 0) {
1472 rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
1473 break;
1474 }
1475
1476 /* ieee80211_input() might reset the receive engine
1477 * (e.g. by indirectly calling rtw_tune()), so save
1478 * the next pointer here and retrieve it again on
1479 * the next round.
1480 */
1481 rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
1482
1483 #ifdef RTW_DEBUG
1484 #define PRINTSTAT(flag) do { \
1485 if ((hstat & flag) != 0) { \
1486 printf("%s" #flag, delim); \
1487 delim = ","; \
1488 } \
1489 } while (0)
1490 if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1491 const char *delim = "<";
1492 printf("%s: ", sc->sc_dev.dv_xname);
1493 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1494 printf("status %08x", hstat);
1495 PRINTSTAT(RTW_RXSTAT_SPLCP);
1496 PRINTSTAT(RTW_RXSTAT_MAR);
1497 PRINTSTAT(RTW_RXSTAT_PAR);
1498 PRINTSTAT(RTW_RXSTAT_BAR);
1499 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1500 PRINTSTAT(RTW_RXSTAT_CRC32);
1501 PRINTSTAT(RTW_RXSTAT_ICV);
1502 printf(">, ");
1503 }
1504 }
1505 #endif /* RTW_DEBUG */
1506
1507 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1508 printf("%s: DMA error/FIFO overflow %08" PRIx32 ", "
1509 "rx descriptor %d\n", sc->sc_dev.dv_xname,
1510 hstat, next);
1511 ifp->if_ierrors++;
1512 goto next;
1513 }
1514
1515 len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1516 if (len < IEEE80211_MIN_LEN) {
1517 sc->sc_ic.ic_stats.is_rx_tooshort++;
1518 goto next;
1519 }
1520
1521 /* CRC is included with the packet; trim it off. */
1522 len -= IEEE80211_CRC_LEN;
1523
1524 hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1525 if (hwrate >= __arraycount(ratetbl)) {
1526 printf("%s: unknown rate #%" __PRIuBITS "\n",
1527 sc->sc_dev.dv_xname,
1528 __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1529 ifp->if_ierrors++;
1530 goto next;
1531 }
1532 rate = ratetbl[hwrate];
1533
1534 #ifdef RTW_DEBUG
1535 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1536 ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1537 (rate * 5) % 10, htsfth, htsftl));
1538 #endif /* RTW_DEBUG */
1539
1540 if ((hstat & RTW_RXSTAT_RES) != 0 &&
1541 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
1542 goto next;
1543
1544 /* if bad flags, skip descriptor */
1545 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1546 printf("%s: too many rx segments, "
1547 "next=%d, %08" PRIx32 "\n",
1548 sc->sc_dev.dv_xname, next, hstat);
1549 goto next;
1550 }
1551
1552 bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1553 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1554
1555 m = rs->rs_mbuf;
1556
1557 /* if temporarily out of memory, re-use mbuf */
1558 switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1559 case 0:
1560 break;
1561 case ENOBUFS:
1562 printf("%s: rtw_rxsoft_alloc(, %d) failed, "
1563 "dropping packet\n", sc->sc_dev.dv_xname, next);
1564 goto next;
1565 default:
1566 /* XXX shorten rx ring, instead? */
1567 panic("%s: could not load DMA map\n",
1568 sc->sc_dev.dv_xname);
1569 }
1570
1571 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1572 rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_RSSI);
1573 else {
1574 rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1575 /* TBD find out each front-end's LNA gain in the
1576 * front-end's units
1577 */
1578 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1579 rssi |= 0x80;
1580 }
1581 sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1582
1583 /* Note well: now we cannot recycle the rs_mbuf unless
1584 * we restore its original length.
1585 */
1586 m->m_pkthdr.rcvif = ifp;
1587 m->m_pkthdr.len = m->m_len = len;
1588
1589 wh = mtod(m, struct ieee80211_frame_min *);
1590
1591 if (!IS_BEACON(wh->i_fc[0]))
1592 sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1593 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1594 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1595
1596 sc->sc_tsfth = htsfth;
1597
1598 #ifdef RTW_DEBUG
1599 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1600 (IFF_DEBUG|IFF_LINK2)) {
1601 ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1602 rate, rssi);
1603 }
1604 #endif /* RTW_DEBUG */
1605
1606 #if NBPFILTER > 0
1607 if (sc->sc_radiobpf != NULL) {
1608 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1609
1610 rr->rr_tsft =
1611 htole64(((uint64_t)htsfth << 32) | htsftl);
1612
1613 if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1614 rr->rr_flags = IEEE80211_RADIOTAP_F_SHORTPRE;
1615
1616 rr->rr_flags = 0;
1617 rr->rr_rate = rate;
1618 rr->rr_antsignal = rssi;
1619 rr->rr_barker_lock = htole16(sq);
1620
1621 bpf_mtap2(sc->sc_radiobpf, (void *)rr,
1622 sizeof(sc->sc_rxtapu), m);
1623 }
1624 #endif /* NBPFILTER > 0 */
1625
1626 ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1627 ieee80211_free_node(ni);
1628 next:
1629 rtw_rxdesc_init(rdb, rs, next, 0);
1630 }
1631 #undef IS_BEACON
1632 }
1633
1634 static void
1635 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1636 struct rtw_txsoft *ts)
1637 {
1638 struct mbuf *m;
1639 struct ieee80211_node *ni;
1640
1641 m = ts->ts_mbuf;
1642 ni = ts->ts_ni;
1643 KASSERT(m != NULL);
1644 KASSERT(ni != NULL);
1645 ts->ts_mbuf = NULL;
1646 ts->ts_ni = NULL;
1647
1648 bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1649 BUS_DMASYNC_POSTWRITE);
1650 bus_dmamap_unload(dmat, ts->ts_dmamap);
1651 m_freem(m);
1652 ieee80211_free_node(ni);
1653 }
1654
1655 static void
1656 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1657 struct rtw_txsoft_blk *tsb)
1658 {
1659 struct rtw_txsoft *ts;
1660
1661 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1662 rtw_txsoft_release(dmat, ic, ts);
1663 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1664 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1665 }
1666 tsb->tsb_tx_timer = 0;
1667 }
1668
1669 static inline void
1670 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1671 struct rtw_txsoft *ts, int ndesc)
1672 {
1673 uint32_t hstat;
1674 int data_retry, rts_retry;
1675 struct rtw_txdesc *tdn;
1676 const char *condstring;
1677 struct ifnet *ifp = &sc->sc_if;
1678
1679 rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1680
1681 tdb->tdb_nfree += ndesc;
1682
1683 tdn = &tdb->tdb_desc[ts->ts_last];
1684
1685 hstat = le32toh(tdn->td_stat);
1686 rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1687 data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1688
1689 ifp->if_collisions += rts_retry + data_retry;
1690
1691 if ((hstat & RTW_TXSTAT_TOK) != 0)
1692 condstring = "ok";
1693 else {
1694 ifp->if_oerrors++;
1695 condstring = "error";
1696 }
1697
1698 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1699 ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1700 sc->sc_dev.dv_xname, ts, ts->ts_first, ts->ts_last,
1701 condstring, rts_retry, data_retry));
1702 }
1703
1704 static void
1705 rtw_reset_oactive(struct rtw_softc *sc)
1706 {
1707 short oflags;
1708 int pri;
1709 struct rtw_txsoft_blk *tsb;
1710 struct rtw_txdesc_blk *tdb;
1711 oflags = sc->sc_if.if_flags;
1712 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1713 tsb = &sc->sc_txsoft_blk[pri];
1714 tdb = &sc->sc_txdesc_blk[pri];
1715 if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1716 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1717 }
1718 if (oflags != sc->sc_if.if_flags) {
1719 DPRINTF(sc, RTW_DEBUG_OACTIVE,
1720 ("%s: reset OACTIVE\n", __func__));
1721 }
1722 }
1723
1724 /* Collect transmitted packets. */
1725 static void
1726 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1727 struct rtw_txdesc_blk *tdb, int force)
1728 {
1729 int ndesc;
1730 struct rtw_txsoft *ts;
1731
1732 #ifdef RTW_DEBUG
1733 rtw_dump_rings(sc);
1734 #endif
1735
1736 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1737 /* If we're clearing a failed transmission, only clear
1738 up to the last packet the hardware has processed. */
1739 if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
1740 break;
1741
1742 ndesc = 1 + ts->ts_last - ts->ts_first;
1743 if (ts->ts_last < ts->ts_first)
1744 ndesc += tdb->tdb_ndesc;
1745
1746 KASSERT(ndesc > 0);
1747
1748 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1749 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1750
1751 if (force) {
1752 int next;
1753 #ifdef RTW_DIAG
1754 printf("%s: clearing packet, stats", __func__);
1755 #endif
1756 for (next = ts->ts_first; ;
1757 next = RTW_NEXT_IDX(tdb, next)) {
1758 #ifdef RTW_DIAG
1759 printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
1760 #endif
1761 tdb->tdb_desc[next].td_stat &=
1762 ~htole32(RTW_TXSTAT_OWN);
1763 if (next == ts->ts_last)
1764 break;
1765 }
1766 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1767 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1768 #ifdef RTW_DIAG
1769 next = RTW_NEXT_IDX(tdb, next);
1770 printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
1771 le32toh(tdb->tdb_desc[next].td_stat),
1772 rtw_txring_next(&sc->sc_regs, tdb));
1773 #endif
1774 } else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1775 htole32(RTW_TXSTAT_OWN)) != 0) {
1776 rtw_txdescs_sync(tdb, ts->ts_last, 1,
1777 BUS_DMASYNC_PREREAD);
1778 break;
1779 }
1780
1781 rtw_collect_txpkt(sc, tdb, ts, ndesc);
1782 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1783 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1784 }
1785
1786 /* no more pending transmissions, cancel watchdog */
1787 if (ts == NULL)
1788 tsb->tsb_tx_timer = 0;
1789 rtw_reset_oactive(sc);
1790 }
1791
1792 static void
1793 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1794 {
1795 int pri;
1796 struct rtw_txsoft_blk *tsb;
1797 struct rtw_txdesc_blk *tdb;
1798 struct ifnet *ifp = &sc->sc_if;
1799
1800 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1801 tsb = &sc->sc_txsoft_blk[pri];
1802 tdb = &sc->sc_txdesc_blk[pri];
1803 rtw_collect_txring(sc, tsb, tdb, 0);
1804 }
1805
1806 if ((isr & RTW_INTR_TX) != 0)
1807 rtw_start(ifp);
1808
1809 return;
1810 }
1811
1812 static void
1813 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1814 {
1815 u_int next;
1816 uint32_t tsfth, tsftl;
1817 struct ieee80211com *ic;
1818 struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1819 struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1820 struct mbuf *m;
1821
1822 tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1823 tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1824
1825 if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) {
1826 next = rtw_txring_next(&sc->sc_regs, tdb);
1827 RTW_DPRINTF(RTW_DEBUG_BEACON,
1828 ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1829 ", next %u expected %u, %" PRIu64 "\n", __func__,
1830 (next == tdb->tdb_next) ? "" : "un", isr, next,
1831 tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1832 if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
1833 rtw_collect_txring(sc, tsb, tdb, 1);
1834 }
1835 /* Start beacon transmission. */
1836
1837 if ((isr & RTW_INTR_BCNINT) != 0 &&
1838 sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1839 SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1840 RTW_DPRINTF(RTW_DEBUG_BEACON,
1841 ("%s: beacon prep. time, isr = %#04" PRIx16
1842 ", %16" PRIu64 "\n", __func__, isr,
1843 (uint64_t)tsfth << 32 | tsftl));
1844 ic = &sc->sc_ic;
1845 m = rtw_beacon_alloc(sc, ic->ic_bss);
1846
1847 if (m == NULL) {
1848 printf("%s: could not allocate beacon\n",
1849 sc->sc_dev.dv_xname);
1850 return;
1851 }
1852 m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss);
1853 IF_ENQUEUE(&sc->sc_beaconq, m);
1854 rtw_start(&sc->sc_if);
1855 }
1856 }
1857
1858 static void
1859 rtw_intr_atim(struct rtw_softc *sc)
1860 {
1861 /* TBD */
1862 return;
1863 }
1864
1865 #ifdef RTW_DEBUG
1866 static void
1867 rtw_dump_rings(struct rtw_softc *sc)
1868 {
1869 struct rtw_txdesc_blk *tdb;
1870 struct rtw_rxdesc *rd;
1871 struct rtw_rxdesc_blk *rdb;
1872 int desc, pri;
1873
1874 if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1875 return;
1876
1877 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1878 tdb = &sc->sc_txdesc_blk[pri];
1879 printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1880 tdb->tdb_ndesc, tdb->tdb_nfree);
1881 for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1882 rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1883 }
1884
1885 rdb = &sc->sc_rxdesc_blk;
1886
1887 for (desc = 0; desc < RTW_RXQLEN; desc++) {
1888 rd = &rdb->rdb_desc[desc];
1889 printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1890 "rsvd1/tsfth %08x\n", __func__,
1891 (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1892 le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1893 le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1894 }
1895 }
1896 #endif /* RTW_DEBUG */
1897
1898 static void
1899 rtw_hwring_setup(struct rtw_softc *sc)
1900 {
1901 int pri;
1902 struct rtw_regs *regs = &sc->sc_regs;
1903 struct rtw_txdesc_blk *tdb;
1904
1905 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1906 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1907 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1908 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1909 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1910 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1911 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1912 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1913
1914 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1915 tdb = &sc->sc_txdesc_blk[pri];
1916 RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1917 RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1918 ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1919 (uintptr_t)tdb->tdb_base));
1920 }
1921
1922 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1923
1924 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1925 ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1926 (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1927
1928 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1929
1930 }
1931
1932 static int
1933 rtw_swring_setup(struct rtw_softc *sc)
1934 {
1935 int rc;
1936 struct rtw_rxdesc_blk *rdb;
1937
1938 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1939
1940 rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
1941
1942 rdb = &sc->sc_rxdesc_blk;
1943 if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
1944 sc->sc_dev.dv_xname)) != 0 && rdb->rdb_ndesc == 0) {
1945 printf("%s: could not allocate rx buffers\n",
1946 sc->sc_dev.dv_xname);
1947 return rc;
1948 }
1949
1950 rdb = &sc->sc_rxdesc_blk;
1951 rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
1952 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1953 rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
1954 rdb->rdb_next = 0;
1955
1956 rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
1957 return 0;
1958 }
1959
1960 static void
1961 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
1962 {
1963 int i;
1964
1965 (void)memset(tdb->tdb_desc, 0,
1966 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
1967 for (i = 0; i < tdb->tdb_ndesc; i++)
1968 tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
1969 }
1970
1971 static u_int
1972 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
1973 {
1974 return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
1975 sizeof(struct rtw_txdesc);
1976 }
1977
1978 #ifdef RTW_DIAG
1979 static void
1980 rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
1981 {
1982 int pri;
1983 u_int next;
1984 struct rtw_txdesc_blk *tdb;
1985 struct rtw_regs *regs = &sc->sc_regs;
1986
1987 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1988 int i;
1989 tdb = &sc->sc_txdesc_blk[pri];
1990 next = rtw_txring_next(regs, tdb);
1991 if (tdb->tdb_next == next)
1992 continue;
1993 for (i = 0; next != tdb->tdb_next;
1994 next = RTW_NEXT_IDX(tdb, next), i++) {
1995 if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
1996 break;
1997 }
1998 printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
1999 ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
2000 if (tdb->tdb_next == next)
2001 continue;
2002 tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
2003 }
2004 }
2005 #endif
2006
2007 static void
2008 rtw_txdescs_reset(struct rtw_softc *sc)
2009 {
2010 int pri;
2011 struct rtw_txsoft_blk *tsb;
2012 struct rtw_txdesc_blk *tdb;
2013
2014 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2015 tsb = &sc->sc_txsoft_blk[pri];
2016 tdb = &sc->sc_txdesc_blk[pri];
2017 rtw_collect_txring(sc, tsb, tdb, 1);
2018 #ifdef RTW_DIAG
2019 if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
2020 printf("%s: packets left in ring %d\n", __func__, pri);
2021 #endif
2022 }
2023 }
2024
2025 static void
2026 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2027 {
2028 printf("%s: tx fifo underflow\n", sc->sc_dev.dv_xname);
2029
2030 RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
2031 "\n", sc->sc_dev.dv_xname, isr));
2032
2033 #ifdef RTW_DEBUG
2034 rtw_dump_rings(sc);
2035 #endif /* RTW_DEBUG */
2036
2037 /* Collect tx'd packets. XXX let's hope this stops the transmit
2038 * timeouts.
2039 */
2040 rtw_txdescs_reset(sc);
2041
2042 #ifdef RTW_DEBUG
2043 rtw_dump_rings(sc);
2044 #endif /* RTW_DEBUG */
2045 }
2046
2047 static inline void
2048 rtw_suspend_ticks(struct rtw_softc *sc)
2049 {
2050 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2051 ("%s: suspending ticks\n", sc->sc_dev.dv_xname));
2052 sc->sc_do_tick = 0;
2053 }
2054
2055 static inline void
2056 rtw_resume_ticks(struct rtw_softc *sc)
2057 {
2058 uint32_t tsftrl0, tsftrl1, next_tick;
2059
2060 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2061
2062 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2063 next_tick = tsftrl1 + 1000000;
2064 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
2065
2066 sc->sc_do_tick = 1;
2067
2068 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2069 ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2070 sc->sc_dev.dv_xname, tsftrl1 - tsftrl0, tsftrl1, next_tick));
2071 }
2072
2073 static void
2074 rtw_intr_timeout(struct rtw_softc *sc)
2075 {
2076 RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", sc->sc_dev.dv_xname));
2077 if (sc->sc_do_tick)
2078 rtw_resume_ticks(sc);
2079 return;
2080 }
2081
2082 int
2083 rtw_intr(void *arg)
2084 {
2085 int i;
2086 struct rtw_softc *sc = arg;
2087 struct rtw_regs *regs = &sc->sc_regs;
2088 uint16_t isr;
2089 struct ifnet *ifp = &sc->sc_if;
2090
2091 /*
2092 * If the interface isn't running, the interrupt couldn't
2093 * possibly have come from us.
2094 */
2095 if ((sc->sc_flags & RTW_F_ENABLED) == 0 ||
2096 (ifp->if_flags & IFF_RUNNING) == 0 ||
2097 !device_is_active(&sc->sc_dev)) {
2098 RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n", sc->sc_dev.dv_xname));
2099 return (0);
2100 }
2101
2102 for (i = 0; i < 10; i++) {
2103 isr = RTW_READ16(regs, RTW_ISR);
2104
2105 RTW_WRITE16(regs, RTW_ISR, isr);
2106 RTW_WBR(regs, RTW_ISR, RTW_ISR);
2107
2108 if (sc->sc_intr_ack != NULL)
2109 (*sc->sc_intr_ack)(regs);
2110
2111 if (isr == 0)
2112 break;
2113
2114 #ifdef RTW_DEBUG
2115 #define PRINTINTR(flag) do { \
2116 if ((isr & flag) != 0) { \
2117 printf("%s" #flag, delim); \
2118 delim = ","; \
2119 } \
2120 } while (0)
2121
2122 if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2123 const char *delim = "<";
2124
2125 printf("%s: reg[ISR] = %x", sc->sc_dev.dv_xname, isr);
2126
2127 PRINTINTR(RTW_INTR_TXFOVW);
2128 PRINTINTR(RTW_INTR_TIMEOUT);
2129 PRINTINTR(RTW_INTR_BCNINT);
2130 PRINTINTR(RTW_INTR_ATIMINT);
2131 PRINTINTR(RTW_INTR_TBDER);
2132 PRINTINTR(RTW_INTR_TBDOK);
2133 PRINTINTR(RTW_INTR_THPDER);
2134 PRINTINTR(RTW_INTR_THPDOK);
2135 PRINTINTR(RTW_INTR_TNPDER);
2136 PRINTINTR(RTW_INTR_TNPDOK);
2137 PRINTINTR(RTW_INTR_RXFOVW);
2138 PRINTINTR(RTW_INTR_RDU);
2139 PRINTINTR(RTW_INTR_TLPDER);
2140 PRINTINTR(RTW_INTR_TLPDOK);
2141 PRINTINTR(RTW_INTR_RER);
2142 PRINTINTR(RTW_INTR_ROK);
2143
2144 printf(">\n");
2145 }
2146 #undef PRINTINTR
2147 #endif /* RTW_DEBUG */
2148
2149 if ((isr & RTW_INTR_RX) != 0)
2150 rtw_intr_rx(sc, isr);
2151 if ((isr & RTW_INTR_TX) != 0)
2152 rtw_intr_tx(sc, isr);
2153 if ((isr & RTW_INTR_BEACON) != 0)
2154 rtw_intr_beacon(sc, isr);
2155 if ((isr & RTW_INTR_ATIMINT) != 0)
2156 rtw_intr_atim(sc);
2157 if ((isr & RTW_INTR_IOERROR) != 0)
2158 rtw_intr_ioerror(sc, isr);
2159 if ((isr & RTW_INTR_TIMEOUT) != 0)
2160 rtw_intr_timeout(sc);
2161 }
2162
2163 return 1;
2164 }
2165
2166 /* Must be called at splnet. */
2167 static void
2168 rtw_stop(struct ifnet *ifp, int disable)
2169 {
2170 int pri;
2171 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2172 struct ieee80211com *ic = &sc->sc_ic;
2173 struct rtw_regs *regs = &sc->sc_regs;
2174
2175 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2176 return;
2177
2178 rtw_suspend_ticks(sc);
2179
2180 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2181
2182 if ((sc->sc_flags & RTW_F_INVALID) == 0) {
2183 /* Disable interrupts. */
2184 RTW_WRITE16(regs, RTW_IMR, 0);
2185
2186 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2187
2188 /* Stop the transmit and receive processes. First stop DMA,
2189 * then disable receiver and transmitter.
2190 */
2191 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2192
2193 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2194
2195 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2196 }
2197
2198 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2199 rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2200 &sc->sc_txsoft_blk[pri]);
2201 }
2202
2203 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2204
2205 if (disable)
2206 rtw_disable(sc);
2207
2208 /* Mark the interface as not running. Cancel the watchdog timer. */
2209 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2210 ifp->if_timer = 0;
2211
2212 return;
2213 }
2214
2215 const char *
2216 rtw_pwrstate_string(enum rtw_pwrstate power)
2217 {
2218 switch (power) {
2219 case RTW_ON:
2220 return "on";
2221 case RTW_SLEEP:
2222 return "sleep";
2223 case RTW_OFF:
2224 return "off";
2225 default:
2226 return "unknown";
2227 }
2228 }
2229
2230 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2231 * reference driver, plus a magic Maxim "ON" value that comes from
2232 * the Realtek document "Windows PG for Rtl8180."
2233 */
2234 static void
2235 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2236 int before_rf, int digphy)
2237 {
2238 uint32_t anaparm;
2239
2240 anaparm = RTW_READ(regs, RTW_ANAPARM);
2241 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2242
2243 switch (power) {
2244 case RTW_OFF:
2245 if (before_rf)
2246 return;
2247 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2248 anaparm |= RTW_ANAPARM_TXDACOFF;
2249 break;
2250 case RTW_SLEEP:
2251 if (!before_rf)
2252 return;
2253 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2254 anaparm |= RTW_ANAPARM_TXDACOFF;
2255 break;
2256 case RTW_ON:
2257 if (!before_rf)
2258 return;
2259 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2260 break;
2261 }
2262 RTW_DPRINTF(RTW_DEBUG_PWR,
2263 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2264 __func__, rtw_pwrstate_string(power),
2265 (before_rf) ? "before" : "after", anaparm));
2266
2267 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2268 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2269 }
2270
2271 /* XXX I am using the RFMD settings gleaned from the reference
2272 * driver. They agree
2273 */
2274 static void
2275 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2276 int before_rf, int digphy)
2277 {
2278 uint32_t anaparm;
2279
2280 anaparm = RTW_READ(regs, RTW_ANAPARM);
2281 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2282
2283 switch (power) {
2284 case RTW_OFF:
2285 if (before_rf)
2286 return;
2287 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2288 anaparm |= RTW_ANAPARM_TXDACOFF;
2289 break;
2290 case RTW_SLEEP:
2291 if (!before_rf)
2292 return;
2293 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2294 anaparm |= RTW_ANAPARM_TXDACOFF;
2295 break;
2296 case RTW_ON:
2297 if (!before_rf)
2298 return;
2299 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2300 break;
2301 }
2302 RTW_DPRINTF(RTW_DEBUG_PWR,
2303 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2304 __func__, rtw_pwrstate_string(power),
2305 (before_rf) ? "before" : "after", anaparm));
2306
2307 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2308 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2309 }
2310
2311 static void
2312 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2313 int before_rf, int digphy)
2314 {
2315 uint32_t anaparm;
2316
2317 anaparm = RTW_READ(regs, RTW_ANAPARM);
2318 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2319
2320 switch (power) {
2321 case RTW_OFF:
2322 if (before_rf)
2323 return;
2324 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2325 anaparm |= RTW_ANAPARM_TXDACOFF;
2326 break;
2327 case RTW_SLEEP:
2328 if (!before_rf)
2329 return;
2330 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2331 anaparm |= RTW_ANAPARM_TXDACOFF;
2332 break;
2333 case RTW_ON:
2334 if (!before_rf)
2335 return;
2336 if (digphy) {
2337 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2338 /* XXX guess */
2339 anaparm |= RTW_ANAPARM_TXDACOFF;
2340 } else
2341 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2342 break;
2343 }
2344 RTW_DPRINTF(RTW_DEBUG_PWR,
2345 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2346 __func__, rtw_pwrstate_string(power),
2347 (before_rf) ? "before" : "after", anaparm));
2348
2349 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2350 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2351 }
2352
2353 static void
2354 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2355 int digphy)
2356 {
2357 struct rtw_regs *regs = &sc->sc_regs;
2358
2359 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2360
2361 (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2362
2363 rtw_set_access(regs, RTW_ACCESS_NONE);
2364
2365 return;
2366 }
2367
2368 static int
2369 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2370 {
2371 int rc;
2372
2373 RTW_DPRINTF(RTW_DEBUG_PWR,
2374 ("%s: %s->%s\n", __func__,
2375 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2376
2377 if (sc->sc_pwrstate == power)
2378 return 0;
2379
2380 rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2381 rc = rtw_rf_pwrstate(sc->sc_rf, power);
2382 rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2383
2384 switch (power) {
2385 case RTW_ON:
2386 /* TBD set LEDs */
2387 break;
2388 case RTW_SLEEP:
2389 /* TBD */
2390 break;
2391 case RTW_OFF:
2392 /* TBD */
2393 break;
2394 }
2395 if (rc == 0)
2396 sc->sc_pwrstate = power;
2397 else
2398 sc->sc_pwrstate = RTW_OFF;
2399 return rc;
2400 }
2401
2402 static int
2403 rtw_tune(struct rtw_softc *sc)
2404 {
2405 struct ieee80211com *ic = &sc->sc_ic;
2406 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
2407 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
2408 u_int chan;
2409 int rc;
2410 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2411 dflantb = sc->sc_flags & RTW_F_DFLANTB;
2412
2413 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2414 if (chan == IEEE80211_CHAN_ANY)
2415 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
2416
2417 rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2418 rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2419
2420 rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2421 rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2422
2423 if (chan == sc->sc_cur_chan) {
2424 RTW_DPRINTF(RTW_DEBUG_TUNE,
2425 ("%s: already tuned chan #%d\n", __func__, chan));
2426 return 0;
2427 }
2428
2429 rtw_suspend_ticks(sc);
2430
2431 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2432
2433 /* TBD wait for Tx to complete */
2434
2435 KASSERT((sc->sc_flags & RTW_F_ENABLED) != 0);
2436
2437 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2438 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2439 ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2440 /* XXX condition on powersaving */
2441 printf("%s: phy init failed\n", sc->sc_dev.dv_xname);
2442 }
2443
2444 sc->sc_cur_chan = chan;
2445
2446 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2447
2448 rtw_resume_ticks(sc);
2449
2450 return rc;
2451 }
2452
2453 void
2454 rtw_disable(struct rtw_softc *sc)
2455 {
2456 int rc;
2457
2458 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2459 return;
2460
2461 /* turn off PHY */
2462 if ((sc->sc_flags & RTW_F_INVALID) == 0 &&
2463 (rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2464 printf("%s: failed to turn off PHY (%d)\n",
2465 sc->sc_dev.dv_xname, rc);
2466 }
2467
2468 if (sc->sc_disable != NULL)
2469 (*sc->sc_disable)(sc);
2470
2471 sc->sc_flags &= ~RTW_F_ENABLED;
2472 }
2473
2474 int
2475 rtw_enable(struct rtw_softc *sc)
2476 {
2477 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2478 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2479 printf("%s: device enable failed\n",
2480 sc->sc_dev.dv_xname);
2481 return (EIO);
2482 }
2483 sc->sc_flags |= RTW_F_ENABLED;
2484 /* Power may have been removed, and WEP keys thus
2485 * reset.
2486 */
2487 sc->sc_flags &= ~RTW_F_DK_VALID;
2488 }
2489 return (0);
2490 }
2491
2492 static void
2493 rtw_transmit_config(struct rtw_regs *regs)
2494 {
2495 uint32_t tcr;
2496
2497 tcr = RTW_READ(regs, RTW_TCR);
2498
2499 tcr |= RTW_TCR_CWMIN;
2500 tcr &= ~RTW_TCR_MXDMA_MASK;
2501 tcr |= RTW_TCR_MXDMA_256;
2502 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
2503 tcr &= ~RTW_TCR_LBK_MASK;
2504 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
2505
2506 /* set short/long retry limits */
2507 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2508 tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
2509
2510 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
2511
2512 RTW_WRITE(regs, RTW_TCR, tcr);
2513 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2514 }
2515
2516 static inline void
2517 rtw_enable_interrupts(struct rtw_softc *sc)
2518 {
2519 struct rtw_regs *regs = &sc->sc_regs;
2520
2521 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2522 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2523
2524 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2525 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2526 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2527 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2528
2529 /* XXX necessary? */
2530 if (sc->sc_intr_ack != NULL)
2531 (*sc->sc_intr_ack)(regs);
2532 }
2533
2534 static void
2535 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2536 {
2537 uint8_t msr;
2538
2539 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2540 rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2541
2542 msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2543
2544 switch (opmode) {
2545 case IEEE80211_M_AHDEMO:
2546 case IEEE80211_M_IBSS:
2547 msr |= RTW_MSR_NETYPE_ADHOC_OK;
2548 break;
2549 case IEEE80211_M_HOSTAP:
2550 msr |= RTW_MSR_NETYPE_AP_OK;
2551 break;
2552 case IEEE80211_M_MONITOR:
2553 /* XXX */
2554 msr |= RTW_MSR_NETYPE_NOLINK;
2555 break;
2556 case IEEE80211_M_STA:
2557 msr |= RTW_MSR_NETYPE_INFRA_OK;
2558 break;
2559 }
2560 RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2561
2562 rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2563 }
2564
2565 #define rtw_calchash(addr) \
2566 (ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2567
2568 static void
2569 rtw_pktfilt_load(struct rtw_softc *sc)
2570 {
2571 struct rtw_regs *regs = &sc->sc_regs;
2572 struct ieee80211com *ic = &sc->sc_ic;
2573 struct ethercom *ec = &sc->sc_ec;
2574 struct ifnet *ifp = &sc->sc_if;
2575 int hash;
2576 uint32_t hashes[2] = { 0, 0 };
2577 struct ether_multi *enm;
2578 struct ether_multistep step;
2579
2580 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2581
2582 sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2583 sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2584
2585 sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2586 /* MAC auto-reset PHY (huh?) */
2587 sc->sc_rcr |= RTW_RCR_ENMARP;
2588 /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
2589 sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2590
2591 switch (ic->ic_opmode) {
2592 case IEEE80211_M_MONITOR:
2593 sc->sc_rcr |= RTW_RCR_MONITOR;
2594 break;
2595 case IEEE80211_M_AHDEMO:
2596 case IEEE80211_M_IBSS:
2597 /* receive broadcasts in our BSS */
2598 sc->sc_rcr |= RTW_RCR_ADD3;
2599 break;
2600 default:
2601 break;
2602 }
2603
2604 ifp->if_flags &= ~IFF_ALLMULTI;
2605
2606 /*
2607 * Program the 64-bit multicast hash filter.
2608 */
2609 ETHER_FIRST_MULTI(step, ec, enm);
2610 while (enm != NULL) {
2611 /* XXX */
2612 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2613 ETHER_ADDR_LEN) != 0) {
2614 ifp->if_flags |= IFF_ALLMULTI;
2615 break;
2616 }
2617
2618 hash = rtw_calchash(enm->enm_addrlo);
2619 hashes[hash >> 5] |= (1 << (hash & 0x1f));
2620 ETHER_NEXT_MULTI(step, enm);
2621 }
2622
2623 /* XXX accept all broadcast if scanning */
2624 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2625 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2626
2627 if (ifp->if_flags & IFF_PROMISC) {
2628 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2629 ifp->if_flags |= IFF_ALLMULTI;
2630 }
2631
2632 if (ifp->if_flags & IFF_ALLMULTI)
2633 hashes[0] = hashes[1] = 0xffffffff;
2634
2635 if ((hashes[0] | hashes[1]) != 0)
2636 sc->sc_rcr |= RTW_RCR_AM; /* accept multicast */
2637
2638 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2639 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2640 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2641 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2642
2643 DPRINTF(sc, RTW_DEBUG_PKTFILT,
2644 ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2645 sc->sc_dev.dv_xname, RTW_READ(regs, RTW_MAR0),
2646 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2647 }
2648
2649 static struct mbuf *
2650 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2651 {
2652 struct ieee80211com *ic = &sc->sc_ic;
2653 struct mbuf *m;
2654 struct ieee80211_beacon_offsets boff;
2655
2656 if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2657 RTW_DPRINTF(RTW_DEBUG_BEACON,
2658 ("%s: m %p len %u\n", __func__, m, m->m_len));
2659 }
2660 return m;
2661 }
2662
2663 /* Must be called at splnet. */
2664 static int
2665 rtw_init(struct ifnet *ifp)
2666 {
2667 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2668 struct ieee80211com *ic = &sc->sc_ic;
2669 struct rtw_regs *regs = &sc->sc_regs;
2670 int rc = 0;
2671
2672 if ((rc = rtw_enable(sc)) != 0)
2673 goto out;
2674
2675 /* Cancel pending I/O and reset. */
2676 rtw_stop(ifp, 0);
2677
2678 DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2679 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2680 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2681
2682 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2683 goto out;
2684
2685 if ((rc = rtw_swring_setup(sc)) != 0)
2686 goto out;
2687
2688 rtw_transmit_config(regs);
2689
2690 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2691
2692 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2693 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2694
2695 /* long PLCP header, 1Mb/2Mb basic rate */
2696 RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2697 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2698
2699 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2700 rtw_set_access(regs, RTW_ACCESS_NONE);
2701
2702 /* XXX from reference sources */
2703 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2704 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2705
2706 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev.dv_xname);
2707
2708 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2709 /* from Linux driver */
2710 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2711
2712 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2713
2714 rtw_enable_interrupts(sc);
2715
2716 rtw_pktfilt_load(sc);
2717
2718 rtw_hwring_setup(sc);
2719
2720 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2721
2722 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2723
2724 ifp->if_flags |= IFF_RUNNING;
2725 ic->ic_state = IEEE80211_S_INIT;
2726
2727 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2728 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2729
2730 rtw_resume_ticks(sc);
2731
2732 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2733
2734 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2735 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2736 else
2737 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2738
2739 out:
2740 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2741 return rc;
2742 }
2743
2744 static inline void
2745 rtw_led_init(struct rtw_regs *regs)
2746 {
2747 uint8_t cfg0, cfg1;
2748
2749 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2750
2751 cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2752 cfg0 |= RTW_CONFIG0_LEDGPOEN;
2753 RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2754
2755 cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2756 RTW_DPRINTF(RTW_DEBUG_LED,
2757 ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2758
2759 cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2760 cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2761 RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2762
2763 rtw_set_access(regs, RTW_ACCESS_NONE);
2764 }
2765
2766 /*
2767 * IEEE80211_S_INIT: LED1 off
2768 *
2769 * IEEE80211_S_AUTH,
2770 * IEEE80211_S_ASSOC,
2771 * IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2772 *
2773 * IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx
2774 */
2775 static void
2776 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2777 {
2778 struct rtw_led_state *ls;
2779
2780 ls = &sc->sc_led_state;
2781
2782 switch (nstate) {
2783 case IEEE80211_S_INIT:
2784 rtw_led_init(&sc->sc_regs);
2785 callout_stop(&ls->ls_slow_ch);
2786 callout_stop(&ls->ls_fast_ch);
2787 ls->ls_slowblink = 0;
2788 ls->ls_actblink = 0;
2789 ls->ls_default = 0;
2790 break;
2791 case IEEE80211_S_SCAN:
2792 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2793 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2794 /*FALLTHROUGH*/
2795 case IEEE80211_S_AUTH:
2796 case IEEE80211_S_ASSOC:
2797 ls->ls_default = RTW_LED1;
2798 ls->ls_actblink = RTW_LED1;
2799 ls->ls_slowblink = RTW_LED1;
2800 break;
2801 case IEEE80211_S_RUN:
2802 ls->ls_slowblink = 0;
2803 break;
2804 }
2805 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2806 }
2807
2808 static void
2809 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2810 {
2811 uint8_t led_condition;
2812 bus_size_t ofs;
2813 uint8_t mask, newval, val;
2814
2815 led_condition = ls->ls_default;
2816
2817 if (ls->ls_state & RTW_LED_S_SLOW)
2818 led_condition ^= ls->ls_slowblink;
2819 if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX))
2820 led_condition ^= ls->ls_actblink;
2821
2822 RTW_DPRINTF(RTW_DEBUG_LED,
2823 ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2824
2825 switch (hwverid) {
2826 default:
2827 case 'F':
2828 ofs = RTW_PSR;
2829 newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2830 if (led_condition & RTW_LED0)
2831 newval &= ~RTW_PSR_LEDGPO0;
2832 if (led_condition & RTW_LED1)
2833 newval &= ~RTW_PSR_LEDGPO1;
2834 break;
2835 case 'D':
2836 ofs = RTW_9346CR;
2837 mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2838 newval = RTW_9346CR_EEM_PROGRAM;
2839 if (led_condition & RTW_LED0)
2840 newval |= RTW_9346CR_EEDI;
2841 if (led_condition & RTW_LED1)
2842 newval |= RTW_9346CR_EECS;
2843 break;
2844 }
2845 val = RTW_READ8(regs, ofs);
2846 RTW_DPRINTF(RTW_DEBUG_LED,
2847 ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2848 (uintptr_t)ofs));
2849 val &= ~mask;
2850 val |= newval;
2851 RTW_WRITE8(regs, ofs, val);
2852 RTW_DPRINTF(RTW_DEBUG_LED,
2853 ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2854 (uintptr_t)ofs));
2855 RTW_SYNC(regs, ofs, ofs);
2856 }
2857
2858 static void
2859 rtw_led_fastblink(void *arg)
2860 {
2861 int ostate, s;
2862 struct rtw_softc *sc = (struct rtw_softc *)arg;
2863 struct rtw_led_state *ls = &sc->sc_led_state;
2864
2865 s = splnet();
2866 ostate = ls->ls_state;
2867 ls->ls_state ^= ls->ls_event;
2868
2869 if ((ls->ls_event & RTW_LED_S_TX) == 0)
2870 ls->ls_state &= ~RTW_LED_S_TX;
2871
2872 if ((ls->ls_event & RTW_LED_S_RX) == 0)
2873 ls->ls_state &= ~RTW_LED_S_RX;
2874
2875 ls->ls_event = 0;
2876
2877 if (ostate != ls->ls_state)
2878 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2879 splx(s);
2880
2881 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2882 }
2883
2884 static void
2885 rtw_led_slowblink(void *arg)
2886 {
2887 int s;
2888 struct rtw_softc *sc = (struct rtw_softc *)arg;
2889 struct rtw_led_state *ls = &sc->sc_led_state;
2890
2891 s = splnet();
2892 ls->ls_state ^= RTW_LED_S_SLOW;
2893 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2894 splx(s);
2895 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2896 }
2897
2898 static inline void
2899 rtw_led_attach(struct rtw_led_state *ls, void *arg)
2900 {
2901 callout_init(&ls->ls_fast_ch, 0);
2902 callout_init(&ls->ls_slow_ch, 0);
2903 callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
2904 callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
2905 }
2906
2907 static int
2908 rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2909 {
2910 int rc = 0, s;
2911 struct rtw_softc *sc = ifp->if_softc;
2912
2913 s = splnet();
2914 if (cmd == SIOCSIFFLAGS) {
2915 if ((ifp->if_flags & IFF_UP) != 0) {
2916 if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2917 rtw_pktfilt_load(sc);
2918 else
2919 rc = rtw_init(ifp);
2920 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2921 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2922 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2923 rtw_stop(ifp, 1);
2924 }
2925 } else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
2926 ; /* nothing to do */
2927 else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
2928 /* reload packet filter if running */
2929 if (ifp->if_flags & IFF_RUNNING)
2930 rtw_pktfilt_load(sc);
2931 rc = 0;
2932 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2933 /* reinitialize h/w if activated */
2934 rc = rtw_init(ifp);
2935 else
2936 rc = 0;
2937 splx(s);
2938 return rc;
2939 }
2940
2941 /* Select a transmit ring with at least one h/w and s/w descriptor free.
2942 * Return 0 on success, -1 on failure.
2943 */
2944 static inline int
2945 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
2946 struct rtw_txdesc_blk **tdbp, int pri)
2947 {
2948 struct rtw_txsoft_blk *tsb;
2949 struct rtw_txdesc_blk *tdb;
2950
2951 KASSERT(pri >= 0 && pri < RTW_NTXPRI);
2952
2953 tsb = &sc->sc_txsoft_blk[pri];
2954 tdb = &sc->sc_txdesc_blk[pri];
2955
2956 if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
2957 if (tsb->tsb_tx_timer == 0)
2958 tsb->tsb_tx_timer = 5;
2959 *tsbp = NULL;
2960 *tdbp = NULL;
2961 return -1;
2962 }
2963 *tsbp = tsb;
2964 *tdbp = tdb;
2965 return 0;
2966 }
2967
2968 static inline struct mbuf *
2969 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
2970 struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
2971 struct ieee80211_node **nip, short *if_flagsp)
2972 {
2973 struct mbuf *m;
2974
2975 if (IF_IS_EMPTY(ifq))
2976 return NULL;
2977 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
2978 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
2979 __func__, pri));
2980 *if_flagsp |= IFF_OACTIVE;
2981 sc->sc_if.if_timer = 1;
2982 return NULL;
2983 }
2984 IF_DEQUEUE(ifq, m);
2985 *nip = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2986 m->m_pkthdr.rcvif = NULL;
2987 KASSERT(*nip != NULL);
2988 return m;
2989 }
2990
2991 /* Point *mp at the next 802.11 frame to transmit. Point *tsbp
2992 * at the driver's selection of transmit control block for the packet.
2993 */
2994 static inline int
2995 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
2996 struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
2997 struct ieee80211_node **nip)
2998 {
2999 int pri;
3000 struct ether_header *eh;
3001 struct mbuf *m0;
3002 struct rtw_softc *sc;
3003 short *if_flagsp;
3004
3005 *mp = NULL;
3006
3007 sc = (struct rtw_softc *)ifp->if_softc;
3008
3009 DPRINTF(sc, RTW_DEBUG_XMIT,
3010 ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
3011
3012 if_flagsp = &ifp->if_flags;
3013
3014 if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3015 (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3016 tdbp, nip, if_flagsp)) != NULL) {
3017 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3018 __func__));
3019 return 0;
3020 }
3021
3022 if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3023 tdbp, nip, if_flagsp)) != NULL) {
3024 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3025 __func__));
3026 return 0;
3027 }
3028
3029 if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3030 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3031 return 0;
3032 }
3033
3034 IFQ_POLL(&ifp->if_snd, m0);
3035 if (m0 == NULL) {
3036 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3037 __func__));
3038 return 0;
3039 }
3040
3041 pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3042
3043 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3044 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3045 __func__, pri));
3046 *if_flagsp |= IFF_OACTIVE;
3047 sc->sc_if.if_timer = 1;
3048 return 0;
3049 }
3050
3051 IFQ_DEQUEUE(&ifp->if_snd, m0);
3052 if (m0 == NULL) {
3053 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3054 __func__));
3055 return 0;
3056 }
3057 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3058 ifp->if_opackets++;
3059 #if NBPFILTER > 0
3060 if (ifp->if_bpf)
3061 bpf_mtap(ifp->if_bpf, m0);
3062 #endif
3063 eh = mtod(m0, struct ether_header *);
3064 *nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3065 if (*nip == NULL) {
3066 /* NB: ieee80211_find_txnode does stat+msg */
3067 m_freem(m0);
3068 return -1;
3069 }
3070 if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3071 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3072 ifp->if_oerrors++;
3073 return -1;
3074 }
3075 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3076 *mp = m0;
3077 return 0;
3078 }
3079
3080 static int
3081 rtw_seg_too_short(bus_dmamap_t dmamap)
3082 {
3083 int i;
3084 for (i = 0; i < dmamap->dm_nsegs; i++) {
3085 if (dmamap->dm_segs[i].ds_len < 4)
3086 return 1;
3087 }
3088 return 0;
3089 }
3090
3091 /* TBD factor with atw_start */
3092 static struct mbuf *
3093 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3094 u_int ndescfree, const char *dvname)
3095 {
3096 int first, rc;
3097 struct mbuf *m, *m0;
3098
3099 m0 = chain;
3100
3101 /*
3102 * Load the DMA map. Copy and try (once) again if the packet
3103 * didn't fit in the alloted number of segments.
3104 */
3105 for (first = 1;
3106 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3107 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
3108 dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3109 first = 0) {
3110 if (rc == 0) {
3111 #ifdef RTW_DIAGxxx
3112 if (rtw_seg_too_short(dmam)) {
3113 printf("%s: short segment, mbuf lengths:", __func__);
3114 for (m = m0; m; m = m->m_next)
3115 printf(" %d", m->m_len);
3116 printf("\n");
3117 }
3118 #endif
3119 bus_dmamap_unload(dmat, dmam);
3120 }
3121 MGETHDR(m, M_DONTWAIT, MT_DATA);
3122 if (m == NULL) {
3123 printf("%s: unable to allocate Tx mbuf\n",
3124 dvname);
3125 break;
3126 }
3127 if (m0->m_pkthdr.len > MHLEN) {
3128 MCLGET(m, M_DONTWAIT);
3129 if ((m->m_flags & M_EXT) == 0) {
3130 printf("%s: cannot allocate Tx cluster\n",
3131 dvname);
3132 m_freem(m);
3133 break;
3134 }
3135 }
3136 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3137 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3138 m_freem(m0);
3139 m0 = m;
3140 m = NULL;
3141 }
3142 if (rc != 0) {
3143 printf("%s: cannot load Tx buffer, rc = %d\n", dvname, rc);
3144 m_freem(m0);
3145 return NULL;
3146 } else if (rtw_seg_too_short(dmam)) {
3147 printf("%s: cannot load Tx buffer, segment too short\n",
3148 dvname);
3149 bus_dmamap_unload(dmat, dmam);
3150 m_freem(m0);
3151 return NULL;
3152 } else if (dmam->dm_nsegs > ndescfree) {
3153 printf("%s: too many tx segments\n", dvname);
3154 bus_dmamap_unload(dmat, dmam);
3155 m_freem(m0);
3156 return NULL;
3157 }
3158 return m0;
3159 }
3160
3161 #ifdef RTW_DEBUG
3162 static void
3163 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3164 struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3165 {
3166 struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3167 DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3168 "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3169 sc->sc_dev.dv_xname, ts, action, desc,
3170 le32toh(td->td_buf), le32toh(td->td_next),
3171 le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3172 le32toh(td->td_len)));
3173 }
3174 #endif /* RTW_DEBUG */
3175
3176 static void
3177 rtw_start(struct ifnet *ifp)
3178 {
3179 uint8_t tppoll;
3180 int desc, i, lastdesc, npkt, rate;
3181 uint32_t proto_ctl0, ctl0, ctl1;
3182 bus_dmamap_t dmamap;
3183 struct ieee80211com *ic;
3184 struct ieee80211_duration *d0;
3185 struct ieee80211_frame_min *wh;
3186 struct ieee80211_node *ni = NULL; /* XXX: GCC */
3187 struct mbuf *m0;
3188 struct rtw_softc *sc;
3189 struct rtw_txsoft_blk *tsb = NULL; /* XXX: GCC */
3190 struct rtw_txdesc_blk *tdb = NULL; /* XXX: GCC */
3191 struct rtw_txsoft *ts;
3192 struct rtw_txdesc *td;
3193 struct ieee80211_key *k;
3194
3195 sc = (struct rtw_softc *)ifp->if_softc;
3196 ic = &sc->sc_ic;
3197
3198 DPRINTF(sc, RTW_DEBUG_XMIT,
3199 ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
3200
3201 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3202 goto out;
3203
3204 /* XXX do real rate control */
3205 proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3206
3207 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3208 proto_ctl0 |= RTW_TXCTL0_SPLCP;
3209
3210 for (;;) {
3211 if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3212 continue;
3213 if (m0 == NULL)
3214 break;
3215
3216 wh = mtod(m0, struct ieee80211_frame_min *);
3217
3218 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3219 (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3220 m_freem(m0);
3221 break;
3222 } else
3223 k = NULL;
3224
3225 ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3226
3227 dmamap = ts->ts_dmamap;
3228
3229 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3230 tdb->tdb_nfree, sc->sc_dev.dv_xname);
3231
3232 if (m0 == NULL || dmamap->dm_nsegs == 0) {
3233 DPRINTF(sc, RTW_DEBUG_XMIT,
3234 ("%s: fail dmamap load\n", __func__));
3235 goto post_dequeue_err;
3236 }
3237
3238 /* Note well: rtw_dmamap_load_txbuf may have created
3239 * a new chain, so we must find the header once
3240 * more.
3241 */
3242 wh = mtod(m0, struct ieee80211_frame_min *);
3243
3244 /* XXX do real rate control */
3245 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3246 IEEE80211_FC0_TYPE_MGT)
3247 rate = 2;
3248 else
3249 rate = MAX(2, ieee80211_get_rate(ni));
3250
3251 #ifdef RTW_DEBUG
3252 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3253 (IFF_DEBUG|IFF_LINK2)) {
3254 ieee80211_dump_pkt(mtod(m0, uint8_t *),
3255 (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3256 : sizeof(wh),
3257 rate, 0);
3258 }
3259 #endif /* RTW_DEBUG */
3260 ctl0 = proto_ctl0 |
3261 __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3262
3263 switch (rate) {
3264 default:
3265 case 2:
3266 ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3267 break;
3268 case 4:
3269 ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3270 break;
3271 case 11:
3272 ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3273 break;
3274 case 22:
3275 ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3276 break;
3277 }
3278 /* XXX >= ? Compare after fragmentation? */
3279 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3280 ctl0 |= RTW_TXCTL0_RTSEN;
3281
3282 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3283 * seem to care, since we don't activate h/w Tx
3284 * encryption.
3285 */
3286 if (k != NULL) {
3287 ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3288 RTW_TXCTL0_KEYID_MASK;
3289 }
3290
3291 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3292 IEEE80211_FC0_TYPE_MGT) {
3293 ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3294 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3295 IEEE80211_FC0_SUBTYPE_BEACON)
3296 ctl0 |= RTW_TXCTL0_BEACON;
3297 }
3298
3299 if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3300 ic->ic_flags, ic->ic_fragthreshold,
3301 rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3302 (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3303 (IFF_DEBUG|IFF_LINK2)) == -1) {
3304 DPRINTF(sc, RTW_DEBUG_XMIT,
3305 ("%s: fail compute duration\n", __func__));
3306 goto post_load_err;
3307 }
3308
3309 d0 = &ts->ts_d0;
3310
3311 *(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3312
3313 ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3314 __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3315
3316 if (d0->d_residue)
3317 ctl1 |= RTW_TXCTL1_LENGEXT;
3318
3319 /* TBD fragmentation */
3320
3321 ts->ts_first = tdb->tdb_next;
3322
3323 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3324 BUS_DMASYNC_PREWRITE);
3325
3326 KASSERT(ts->ts_first < tdb->tdb_ndesc);
3327
3328 #if NBPFILTER > 0
3329 if (ic->ic_rawbpf != NULL)
3330 bpf_mtap((void *)ic->ic_rawbpf, m0);
3331
3332 if (sc->sc_radiobpf != NULL) {
3333 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3334
3335 rt->rt_flags = 0;
3336 rt->rt_rate = rate;
3337
3338 bpf_mtap2(sc->sc_radiobpf, (void *)rt,
3339 sizeof(sc->sc_txtapu), m0);
3340 }
3341 #endif /* NBPFILTER > 0 */
3342
3343 for (i = 0, lastdesc = desc = ts->ts_first;
3344 i < dmamap->dm_nsegs;
3345 i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3346 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3347 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3348 ("%s: seg too long\n", __func__));
3349 goto post_load_err;
3350 }
3351 td = &tdb->tdb_desc[desc];
3352 td->td_ctl0 = htole32(ctl0);
3353 td->td_ctl1 = htole32(ctl1);
3354 td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3355 td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3356 td->td_next = htole32(RTW_NEXT_DESC(tdb, desc));
3357 if (i != 0)
3358 td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3359 lastdesc = desc;
3360 #ifdef RTW_DEBUG
3361 rtw_print_txdesc(sc, "load", ts, tdb, desc);
3362 #endif /* RTW_DEBUG */
3363 }
3364
3365 KASSERT(desc < tdb->tdb_ndesc);
3366
3367 ts->ts_ni = ni;
3368 KASSERT(ni != NULL);
3369 ts->ts_mbuf = m0;
3370 ts->ts_last = lastdesc;
3371 tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3372 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3373 htole32(RTW_TXCTL0_FS);
3374
3375 #ifdef RTW_DEBUG
3376 rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3377 rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3378 #endif /* RTW_DEBUG */
3379
3380 tdb->tdb_nfree -= dmamap->dm_nsegs;
3381 tdb->tdb_next = desc;
3382
3383 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3384 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3385
3386 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3387 htole32(RTW_TXCTL0_OWN);
3388
3389 #ifdef RTW_DEBUG
3390 rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3391 #endif /* RTW_DEBUG */
3392
3393 rtw_txdescs_sync(tdb, ts->ts_first, 1,
3394 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3395
3396 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3397 SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3398
3399 if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3400 sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3401 tsb->tsb_tx_timer = 5;
3402 ifp->if_timer = 1;
3403 tppoll = RTW_READ8(&sc->sc_regs, RTW_TPPOLL);
3404 tppoll &= ~RTW_TPPOLL_SALL;
3405 tppoll |= tsb->tsb_poll & RTW_TPPOLL_ALL;
3406 RTW_WRITE8(&sc->sc_regs, RTW_TPPOLL, tppoll);
3407 RTW_SYNC(&sc->sc_regs, RTW_TPPOLL, RTW_TPPOLL);
3408 }
3409 out:
3410 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3411 return;
3412 post_load_err:
3413 bus_dmamap_unload(sc->sc_dmat, dmamap);
3414 m_freem(m0);
3415 post_dequeue_err:
3416 ieee80211_free_node(ni);
3417 return;
3418 }
3419
3420 static void
3421 rtw_idle(struct rtw_regs *regs)
3422 {
3423 int active;
3424
3425 /* request stop DMA; wait for packets to stop transmitting. */
3426
3427 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3428 RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3429
3430 for (active = 0; active < 300 &&
3431 (RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0; active++)
3432 DELAY(10);
3433 printf("%s: transmit DMA idle in %dus\n", __func__, active * 10);
3434 }
3435
3436 static void
3437 rtw_watchdog(struct ifnet *ifp)
3438 {
3439 int pri, tx_timeouts = 0;
3440 struct rtw_softc *sc;
3441 struct rtw_txsoft_blk *tsb;
3442
3443 sc = ifp->if_softc;
3444
3445 ifp->if_timer = 0;
3446
3447 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
3448 return;
3449
3450 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3451 tsb = &sc->sc_txsoft_blk[pri];
3452
3453 if (tsb->tsb_tx_timer == 0)
3454 continue;
3455 else if (--tsb->tsb_tx_timer == 0) {
3456 if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3457 continue;
3458 printf("%s: transmit timeout, priority %d\n",
3459 ifp->if_xname, pri);
3460 ifp->if_oerrors++;
3461 if (pri != RTW_TXPRIBCN)
3462 tx_timeouts++;
3463 } else
3464 ifp->if_timer = 1;
3465 }
3466
3467 if (tx_timeouts > 0) {
3468 /* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3469 * reset s/w tx-ring pointers, and start transmission.
3470 *
3471 * TBD Stop/restart just the broken rings?
3472 */
3473 rtw_idle(&sc->sc_regs);
3474 rtw_io_enable(sc, RTW_CR_TE, 0);
3475 rtw_txdescs_reset(sc);
3476 rtw_io_enable(sc, RTW_CR_TE, 1);
3477 rtw_start(ifp);
3478 }
3479 ieee80211_watchdog(&sc->sc_ic);
3480 return;
3481 }
3482
3483 static void
3484 rtw_next_scan(void *arg)
3485 {
3486 struct ieee80211com *ic = arg;
3487 int s;
3488
3489 /* don't call rtw_start w/o network interrupts blocked */
3490 s = splnet();
3491 if (ic->ic_state == IEEE80211_S_SCAN)
3492 ieee80211_next_scan(ic);
3493 splx(s);
3494 }
3495
3496 static void
3497 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3498 {
3499 uint16_t bcnitv, bintritv, intval;
3500 int i;
3501 struct rtw_regs *regs = &sc->sc_regs;
3502
3503 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3504 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3505
3506 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3507
3508 rtw_set_access(regs, RTW_ACCESS_CONFIG);
3509
3510 intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3511
3512 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3513 bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3514 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3515 /* interrupt host 1ms before the TBTT */
3516 bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3517 bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3518 RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3519 /* magic from Linux */
3520 RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3521 RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3522 rtw_set_access(regs, RTW_ACCESS_NONE);
3523
3524 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3525 }
3526
3527 /* Synchronize the hardware state with the software state. */
3528 static int
3529 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3530 {
3531 struct ifnet *ifp = ic->ic_ifp;
3532 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3533 enum ieee80211_state ostate;
3534 int error;
3535
3536 ostate = ic->ic_state;
3537
3538 rtw_led_newstate(sc, nstate);
3539
3540 if (nstate == IEEE80211_S_INIT) {
3541 callout_stop(&sc->sc_scan_ch);
3542 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3543 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3544 }
3545
3546 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3547 rtw_pwrstate(sc, RTW_ON);
3548
3549 if ((error = rtw_tune(sc)) != 0)
3550 return error;
3551
3552 switch (nstate) {
3553 case IEEE80211_S_INIT:
3554 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3555 break;
3556 case IEEE80211_S_SCAN:
3557 if (ostate != IEEE80211_S_SCAN) {
3558 (void)memset(ic->ic_bss->ni_bssid, 0,
3559 IEEE80211_ADDR_LEN);
3560 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3561 }
3562
3563 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3564 rtw_next_scan, ic);
3565
3566 break;
3567 case IEEE80211_S_RUN:
3568 switch (ic->ic_opmode) {
3569 case IEEE80211_M_HOSTAP:
3570 case IEEE80211_M_IBSS:
3571 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3572 /*FALLTHROUGH*/
3573 case IEEE80211_M_AHDEMO:
3574 case IEEE80211_M_STA:
3575 rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3576 ic->ic_bss->ni_intval);
3577 break;
3578 case IEEE80211_M_MONITOR:
3579 break;
3580 }
3581 rtw_set_nettype(sc, ic->ic_opmode);
3582 break;
3583 case IEEE80211_S_ASSOC:
3584 case IEEE80211_S_AUTH:
3585 break;
3586 }
3587
3588 if (nstate != IEEE80211_S_SCAN)
3589 callout_stop(&sc->sc_scan_ch);
3590
3591 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3592 }
3593
3594 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3595 static uint64_t
3596 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3597 {
3598 uint32_t tsftl, tsfth;
3599
3600 tsfth = RTW_READ(regs, RTW_TSFTRH);
3601 tsftl = RTW_READ(regs, RTW_TSFTRL);
3602 if (tsftl < rstamp) /* Compensate for rollover. */
3603 tsfth--;
3604 return ((uint64_t)tsfth << 32) | rstamp;
3605 }
3606
3607 static void
3608 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3609 struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3610 {
3611 struct ifnet *ifp = ic->ic_ifp;
3612 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3613
3614 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3615
3616 switch (subtype) {
3617 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3618 case IEEE80211_FC0_SUBTYPE_BEACON:
3619 if (ic->ic_opmode == IEEE80211_M_IBSS &&
3620 ic->ic_state == IEEE80211_S_RUN) {
3621 uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3622 if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3623 (void)ieee80211_ibss_merge(ni);
3624 }
3625 break;
3626 default:
3627 break;
3628 }
3629 return;
3630 }
3631
3632 static struct ieee80211_node *
3633 rtw_node_alloc(struct ieee80211_node_table *nt)
3634 {
3635 struct ifnet *ifp = nt->nt_ic->ic_ifp;
3636 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3637 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3638
3639 DPRINTF(sc, RTW_DEBUG_NODE,
3640 ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
3641 return ni;
3642 }
3643
3644 static void
3645 rtw_node_free(struct ieee80211_node *ni)
3646 {
3647 struct ieee80211com *ic = ni->ni_ic;
3648 struct ifnet *ifp = ic->ic_ifp;
3649 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3650
3651 DPRINTF(sc, RTW_DEBUG_NODE,
3652 ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
3653 ether_sprintf(ni->ni_bssid)));
3654 (*sc->sc_mtbl.mt_node_free)(ni);
3655 }
3656
3657 static int
3658 rtw_media_change(struct ifnet *ifp)
3659 {
3660 int error;
3661
3662 error = ieee80211_media_change(ifp);
3663 if (error == ENETRESET) {
3664 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3665 (IFF_RUNNING|IFF_UP))
3666 rtw_init(ifp); /* XXX lose error */
3667 error = 0;
3668 }
3669 return error;
3670 }
3671
3672 static void
3673 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3674 {
3675 struct rtw_softc *sc = ifp->if_softc;
3676
3677 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
3678 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3679 imr->ifm_status = 0;
3680 return;
3681 }
3682 ieee80211_media_status(ifp, imr);
3683 }
3684
3685 void
3686 rtw_power(int why, void *arg)
3687 {
3688 struct rtw_softc *sc = arg;
3689 struct ifnet *ifp = &sc->sc_if;
3690 int s;
3691
3692 DPRINTF(sc, RTW_DEBUG_PWR,
3693 ("%s: rtw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3694
3695 s = splnet();
3696 switch (why) {
3697 case PWR_STANDBY:
3698 /* XXX do nothing. */
3699 break;
3700 case PWR_SUSPEND:
3701 rtw_stop(ifp, 0);
3702 if (sc->sc_power != NULL)
3703 (*sc->sc_power)(sc, why);
3704 break;
3705 case PWR_RESUME:
3706 if (ifp->if_flags & IFF_UP) {
3707 if (sc->sc_power != NULL)
3708 (*sc->sc_power)(sc, why);
3709 rtw_init(ifp);
3710 }
3711 break;
3712 case PWR_SOFTSUSPEND:
3713 case PWR_SOFTSTANDBY:
3714 case PWR_SOFTRESUME:
3715 break;
3716 }
3717 splx(s);
3718 }
3719
3720 /* rtw_shutdown: make sure the interface is stopped at reboot time. */
3721 void
3722 rtw_shutdown(void *arg)
3723 {
3724 struct rtw_softc *sc = arg;
3725
3726 rtw_stop(&sc->sc_if, 1);
3727 }
3728
3729 static inline void
3730 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3731 {
3732 (void)memcpy(ifp->if_xname, dvname, IFNAMSIZ);
3733 ifp->if_softc = softc;
3734 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
3735 IFF_NOTRAILERS;
3736 ifp->if_ioctl = rtw_ioctl;
3737 ifp->if_start = rtw_start;
3738 ifp->if_watchdog = rtw_watchdog;
3739 ifp->if_init = rtw_init;
3740 ifp->if_stop = rtw_stop;
3741 }
3742
3743 static inline void
3744 rtw_set80211props(struct ieee80211com *ic)
3745 {
3746 int nrate;
3747 ic->ic_phytype = IEEE80211_T_DS;
3748 ic->ic_opmode = IEEE80211_M_STA;
3749 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3750 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
3751
3752 nrate = 0;
3753 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3754 IEEE80211_RATE_BASIC | 2;
3755 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3756 IEEE80211_RATE_BASIC | 4;
3757 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3758 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3759 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3760 }
3761
3762 static inline void
3763 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3764 {
3765 mtbl->mt_newstate = ic->ic_newstate;
3766 ic->ic_newstate = rtw_newstate;
3767
3768 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3769 ic->ic_recv_mgmt = rtw_recv_mgmt;
3770
3771 mtbl->mt_node_free = ic->ic_node_free;
3772 ic->ic_node_free = rtw_node_free;
3773
3774 mtbl->mt_node_alloc = ic->ic_node_alloc;
3775 ic->ic_node_alloc = rtw_node_alloc;
3776
3777 ic->ic_crypto.cs_key_delete = rtw_key_delete;
3778 ic->ic_crypto.cs_key_set = rtw_key_set;
3779 ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3780 ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3781 }
3782
3783 static inline void
3784 rtw_establish_hooks(struct rtw_hooks *hooks, const char *dvname,
3785 void *arg)
3786 {
3787 /*
3788 * Make sure the interface is shutdown during reboot.
3789 */
3790 hooks->rh_shutdown = shutdownhook_establish(rtw_shutdown, arg);
3791 if (hooks->rh_shutdown == NULL)
3792 printf("%s: WARNING: unable to establish shutdown hook\n",
3793 dvname);
3794
3795 /*
3796 * Add a suspend hook to make sure we come back up after a
3797 * resume.
3798 */
3799 hooks->rh_power = powerhook_establish(dvname, rtw_power, arg);
3800 if (hooks->rh_power == NULL)
3801 printf("%s: WARNING: unable to establish power hook\n",
3802 dvname);
3803 }
3804
3805 static inline void
3806 rtw_disestablish_hooks(struct rtw_hooks *hooks, const char *dvname,
3807 void *arg)
3808 {
3809 if (hooks->rh_shutdown != NULL)
3810 shutdownhook_disestablish(hooks->rh_shutdown);
3811
3812 if (hooks->rh_power != NULL)
3813 powerhook_disestablish(hooks->rh_power);
3814 }
3815
3816 static inline void
3817 rtw_init_radiotap(struct rtw_softc *sc)
3818 {
3819 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3820 sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3821 sc->sc_rxtap.rr_ihdr.it_present = htole32(RTW_RX_RADIOTAP_PRESENT);
3822
3823 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3824 sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3825 sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3826 }
3827
3828 static int
3829 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3830 {
3831 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3832 SIMPLEQ_INIT(&tsb->tsb_freeq);
3833 tsb->tsb_ndesc = qlen;
3834 tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3835 M_NOWAIT);
3836 if (tsb->tsb_desc == NULL)
3837 return ENOMEM;
3838 return 0;
3839 }
3840
3841 static void
3842 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3843 {
3844 int pri;
3845 struct rtw_txsoft_blk *tsb;
3846
3847 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3848 tsb = &sc->sc_txsoft_blk[pri];
3849 free(tsb->tsb_desc, M_DEVBUF);
3850 tsb->tsb_desc = NULL;
3851 }
3852 }
3853
3854 static int
3855 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3856 {
3857 int pri, rc = 0;
3858 int qlen[RTW_NTXPRI] =
3859 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3860 struct rtw_txsoft_blk *tsbs;
3861
3862 tsbs = sc->sc_txsoft_blk;
3863
3864 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3865 rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3866 if (rc != 0)
3867 break;
3868 }
3869 tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3870 tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3871 tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3872 tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3873 return rc;
3874 }
3875
3876 static void
3877 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3878 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3879 {
3880 tdb->tdb_ndesc = ndesc;
3881 tdb->tdb_desc = desc;
3882 tdb->tdb_physbase = physbase;
3883 tdb->tdb_ofs = ofs;
3884
3885 (void)memset(tdb->tdb_desc, 0,
3886 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3887
3888 rtw_txdesc_blk_init(tdb);
3889 tdb->tdb_next = 0;
3890 }
3891
3892 static void
3893 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3894 {
3895 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3896 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3897 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3898
3899 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3900 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3901 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3902
3903 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3904 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3905 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3906
3907 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3908 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3909 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3910 }
3911
3912 static struct rtw_rf *
3913 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3914 {
3915 rtw_rf_write_t rf_write;
3916 struct rtw_rf *rf;
3917
3918 switch (rfchipid) {
3919 default:
3920 rf_write = rtw_rf_hostwrite;
3921 break;
3922 case RTW_RFCHIPID_INTERSIL:
3923 case RTW_RFCHIPID_PHILIPS:
3924 case RTW_RFCHIPID_GCT: /* XXX a guess */
3925 case RTW_RFCHIPID_RFMD:
3926 rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3927 break;
3928 }
3929
3930 switch (rfchipid) {
3931 case RTW_RFCHIPID_GCT:
3932 rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3933 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3934 break;
3935 case RTW_RFCHIPID_MAXIM:
3936 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3937 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3938 break;
3939 case RTW_RFCHIPID_PHILIPS:
3940 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3941 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3942 break;
3943 case RTW_RFCHIPID_RFMD:
3944 /* XXX RFMD has no RF constructor */
3945 sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3946 /*FALLTHROUGH*/
3947 default:
3948 return NULL;
3949 }
3950 rf->rf_continuous_tx_cb =
3951 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3952 rf->rf_continuous_tx_arg = (void *)sc;
3953 return rf;
3954 }
3955
3956 /* Revision C and later use a different PHY delay setting than
3957 * revisions A and B.
3958 */
3959 static uint8_t
3960 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
3961 {
3962 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3963 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3964
3965 uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
3966
3967 RTW_WRITE(regs, RTW_RCR, REVAB);
3968 RTW_WBW(regs, RTW_RCR, RTW_RCR);
3969 RTW_WRITE(regs, RTW_RCR, REVC);
3970
3971 RTW_WBR(regs, RTW_RCR, RTW_RCR);
3972 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3973 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3974
3975 RTW_WRITE(regs, RTW_RCR, old_rcr); /* restore RCR */
3976 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3977
3978 return phydelay;
3979 #undef REVC
3980 }
3981
3982 void
3983 rtw_attach(struct rtw_softc *sc)
3984 {
3985 struct ifnet *ifp = &sc->sc_if;
3986 struct ieee80211com *ic = &sc->sc_ic;
3987 struct rtw_txsoft_blk *tsb;
3988 int pri, rc;
3989
3990 rtw_cipher_wep = ieee80211_cipher_wep;
3991 rtw_cipher_wep.ic_decap = rtw_wep_decap;
3992
3993 NEXT_ATTACH_STATE(sc, DETACHED);
3994
3995 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
3996 case RTW_TCR_HWVERID_F:
3997 sc->sc_hwverid = 'F';
3998 break;
3999 case RTW_TCR_HWVERID_D:
4000 sc->sc_hwverid = 'D';
4001 break;
4002 default:
4003 sc->sc_hwverid = '?';
4004 break;
4005 }
4006 printf("%s: hardware version %c\n", sc->sc_dev.dv_xname,
4007 sc->sc_hwverid);
4008
4009 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
4010 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
4011 0);
4012
4013 if (rc != 0) {
4014 printf("%s: could not allocate hw descriptors, error %d\n",
4015 sc->sc_dev.dv_xname, rc);
4016 goto err;
4017 }
4018
4019 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
4020
4021 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
4022 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
4023 (void **)&sc->sc_descs, BUS_DMA_COHERENT);
4024
4025 if (rc != 0) {
4026 printf("%s: could not map hw descriptors, error %d\n",
4027 sc->sc_dev.dv_xname, rc);
4028 goto err;
4029 }
4030 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
4031
4032 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
4033 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
4034
4035 if (rc != 0) {
4036 printf("%s: could not create DMA map for hw descriptors, "
4037 "error %d\n", sc->sc_dev.dv_xname, rc);
4038 goto err;
4039 }
4040 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
4041
4042 sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
4043 sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
4044
4045 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4046 sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
4047 sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
4048 }
4049
4050 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
4051 sizeof(struct rtw_descs), NULL, 0);
4052
4053 if (rc != 0) {
4054 printf("%s: could not load DMA map for hw descriptors, "
4055 "error %d\n", sc->sc_dev.dv_xname, rc);
4056 goto err;
4057 }
4058 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
4059
4060 if (rtw_txsoft_blk_setup_all(sc) != 0)
4061 goto err;
4062 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
4063
4064 rtw_txdesc_blk_setup_all(sc);
4065
4066 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4067
4068 sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4069
4070 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4071 tsb = &sc->sc_txsoft_blk[pri];
4072
4073 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4074 &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4075 printf("%s: could not load DMA map for "
4076 "hw tx descriptors, error %d\n",
4077 sc->sc_dev.dv_xname, rc);
4078 goto err;
4079 }
4080 }
4081
4082 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4083 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4084 RTW_RXQLEN)) != 0) {
4085 printf("%s: could not load DMA map for hw rx descriptors, "
4086 "error %d\n", sc->sc_dev.dv_xname, rc);
4087 goto err;
4088 }
4089 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4090
4091 /* Reset the chip to a known state. */
4092 if (rtw_reset(sc) != 0)
4093 goto err;
4094 NEXT_ATTACH_STATE(sc, FINISH_RESET);
4095
4096 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4097
4098 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4099 sc->sc_flags |= RTW_F_9356SROM;
4100
4101 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4102 sc->sc_dev.dv_xname) != 0)
4103 goto err;
4104
4105 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4106
4107 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4108 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4109 sc->sc_dev.dv_xname) != 0) {
4110 printf("%s: attach failed, malformed serial ROM\n",
4111 sc->sc_dev.dv_xname);
4112 goto err;
4113 }
4114
4115 printf("%s: %s PHY\n", sc->sc_dev.dv_xname,
4116 ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4117
4118 printf("%s: CS threshold %u\n", sc->sc_dev.dv_xname, sc->sc_csthr);
4119
4120 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4121
4122 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4123 sc->sc_flags & RTW_F_DIGPHY);
4124
4125 if (sc->sc_rf == NULL) {
4126 printf("%s: attach failed, could not attach RF\n",
4127 sc->sc_dev.dv_xname);
4128 goto err;
4129 }
4130
4131 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4132
4133 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4134
4135 RTW_DPRINTF(RTW_DEBUG_ATTACH,
4136 ("%s: PHY delay %d\n", sc->sc_dev.dv_xname, sc->sc_phydelay));
4137
4138 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4139 rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4140
4141 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels,
4142 sc->sc_dev.dv_xname);
4143
4144 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4145 sc->sc_dev.dv_xname) != 0)
4146 goto err;
4147 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4148
4149 rtw_setifprops(ifp, sc->sc_dev.dv_xname, (void*)sc);
4150
4151 IFQ_SET_READY(&ifp->if_snd);
4152
4153 sc->sc_ic.ic_ifp = ifp;
4154 rtw_set80211props(&sc->sc_ic);
4155
4156 rtw_led_attach(&sc->sc_led_state, (void *)sc);
4157
4158 /*
4159 * Call MI attach routines.
4160 */
4161 if_attach(ifp);
4162 ieee80211_ifattach(&sc->sc_ic);
4163
4164 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4165
4166 /* possibly we should fill in our own sc_send_prresp, since
4167 * the RTL8180 is probably sending probe responses in ad hoc
4168 * mode.
4169 */
4170
4171 /* complete initialization */
4172 ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4173 callout_init(&sc->sc_scan_ch, 0);
4174
4175 rtw_init_radiotap(sc);
4176
4177 #if NBPFILTER > 0
4178 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4179 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4180 #endif
4181
4182 rtw_establish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname, (void*)sc);
4183
4184 NEXT_ATTACH_STATE(sc, FINISHED);
4185
4186 ieee80211_announce(ic);
4187 return;
4188 err:
4189 rtw_detach(sc);
4190 return;
4191 }
4192
4193 int
4194 rtw_detach(struct rtw_softc *sc)
4195 {
4196 struct ifnet *ifp = &sc->sc_if;
4197 int pri;
4198
4199 sc->sc_flags |= RTW_F_INVALID;
4200
4201 switch (sc->sc_attach_state) {
4202 case FINISHED:
4203 rtw_stop(ifp, 1);
4204
4205 rtw_disestablish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname,
4206 (void*)sc);
4207 callout_stop(&sc->sc_scan_ch);
4208 ieee80211_ifdetach(&sc->sc_ic);
4209 if_detach(ifp);
4210 break;
4211 case FINISH_ID_STA:
4212 case FINISH_RF_ATTACH:
4213 rtw_rf_destroy(sc->sc_rf);
4214 sc->sc_rf = NULL;
4215 /*FALLTHROUGH*/
4216 case FINISH_PARSE_SROM:
4217 case FINISH_READ_SROM:
4218 rtw_srom_free(&sc->sc_srom);
4219 /*FALLTHROUGH*/
4220 case FINISH_RESET:
4221 case FINISH_RXMAPS_CREATE:
4222 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4223 RTW_RXQLEN);
4224 /*FALLTHROUGH*/
4225 case FINISH_TXMAPS_CREATE:
4226 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4227 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4228 sc->sc_txsoft_blk[pri].tsb_desc,
4229 sc->sc_txsoft_blk[pri].tsb_ndesc);
4230 }
4231 /*FALLTHROUGH*/
4232 case FINISH_TXDESCBLK_SETUP:
4233 case FINISH_TXCTLBLK_SETUP:
4234 rtw_txsoft_blk_cleanup_all(sc);
4235 /*FALLTHROUGH*/
4236 case FINISH_DESCMAP_LOAD:
4237 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4238 /*FALLTHROUGH*/
4239 case FINISH_DESCMAP_CREATE:
4240 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4241 /*FALLTHROUGH*/
4242 case FINISH_DESC_MAP:
4243 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
4244 sizeof(struct rtw_descs));
4245 /*FALLTHROUGH*/
4246 case FINISH_DESC_ALLOC:
4247 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4248 sc->sc_desc_nsegs);
4249 /*FALLTHROUGH*/
4250 case DETACHED:
4251 NEXT_ATTACH_STATE(sc, DETACHED);
4252 break;
4253 }
4254 return 0;
4255 }
4256
4257 int
4258 rtw_activate(struct device *self, enum devact act)
4259 {
4260 struct rtw_softc *sc = (struct rtw_softc *)self;
4261 int rc = 0, s;
4262
4263 s = splnet();
4264 switch (act) {
4265 case DVACT_ACTIVATE:
4266 rc = EOPNOTSUPP;
4267 break;
4268
4269 case DVACT_DEACTIVATE:
4270 if_deactivate(&sc->sc_if);
4271 break;
4272 }
4273 splx(s);
4274 return rc;
4275 }
4276