rtw.c revision 1.96 1 /* $NetBSD: rtw.c,v 1.96 2007/12/16 21:39:33 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005, 2006, 2007 David Young. All rights
4 * reserved.
5 *
6 * Programmed for NetBSD by David Young.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of David Young may not be used to endorse or promote
17 * products derived from this software without specific prior
18 * written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
21 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
23 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
24 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
26 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31 * OF SUCH DAMAGE.
32 */
33 /*
34 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.96 2007/12/16 21:39:33 dyoung Exp $");
39
40 #include "bpfilter.h"
41
42 #include <sys/param.h>
43 #include <sys/sysctl.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/time.h>
50 #include <sys/types.h>
51
52 #include <machine/endian.h>
53 #include <sys/bus.h>
54 #include <sys/intr.h> /* splnet */
55
56 #include <uvm/uvm_extern.h>
57
58 #include <net/if.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #include <net80211/ieee80211_netbsd.h>
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #if NBPFILTER > 0
67 #include <net/bpf.h>
68 #endif
69
70 #include <dev/ic/rtwreg.h>
71 #include <dev/ic/rtwvar.h>
72 #include <dev/ic/rtwphyio.h>
73 #include <dev/ic/rtwphy.h>
74
75 #include <dev/ic/smc93cx6var.h>
76
77 static int rtw_rfprog_fallback = 0;
78 static int rtw_host_rfio = 0;
79
80 #ifdef RTW_DEBUG
81 int rtw_debug = 0;
82 static int rtw_rxbufs_limit = RTW_RXQLEN;
83 #endif /* RTW_DEBUG */
84
85 #define NEXT_ATTACH_STATE(sc, state) do { \
86 DPRINTF(sc, RTW_DEBUG_ATTACH, \
87 ("%s: attach state %s\n", __func__, #state)); \
88 sc->sc_attach_state = state; \
89 } while (0)
90
91 int rtw_dwelltime = 200; /* milliseconds */
92 static struct ieee80211_cipher rtw_cipher_wep;
93
94 static void rtw_start(struct ifnet *);
95 static void rtw_reset_oactive(struct rtw_softc *);
96 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
97 struct ieee80211_node *);
98 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
99
100 static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
101 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
102 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
103 const u_int8_t[IEEE80211_ADDR_LEN]);
104 static void rtw_key_update_end(struct ieee80211com *);
105 static void rtw_key_update_begin(struct ieee80211com *);
106 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
107 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
108
109 static void rtw_led_attach(struct rtw_led_state *, void *);
110 static void rtw_led_init(struct rtw_regs *);
111 static void rtw_led_slowblink(void *);
112 static void rtw_led_fastblink(void *);
113 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
114
115 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
116 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
117 #ifdef RTW_DEBUG
118 static void rtw_dump_rings(struct rtw_softc *sc);
119 static void rtw_print_txdesc(struct rtw_softc *, const char *,
120 struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
121 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
122 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
123 #endif /* RTW_DEBUG */
124 #ifdef RTW_DIAG
125 static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
126 #endif /* RTW_DIAG */
127
128 /*
129 * Setup sysctl(3) MIB, hw.rtw.*
130 *
131 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
132 */
133 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
134 {
135 int rc;
136 const struct sysctlnode *cnode, *rnode;
137
138 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
139 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
140 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
141 goto err;
142
143 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
144 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
145 "Realtek RTL818x 802.11 controls",
146 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
147 goto err;
148
149 #ifdef RTW_DEBUG
150 /* control debugging printfs */
151 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
152 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
153 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
154 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
155 CTL_CREATE, CTL_EOL)) != 0)
156 goto err;
157
158 /* Limit rx buffers, for simulating resource exhaustion. */
159 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
160 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
161 "rxbufs_limit",
162 SYSCTL_DESCR("Set rx buffers limit"),
163 rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
164 CTL_CREATE, CTL_EOL)) != 0)
165 goto err;
166
167 #endif /* RTW_DEBUG */
168 /* set fallback RF programming method */
169 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
170 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
171 "rfprog_fallback",
172 SYSCTL_DESCR("Set fallback RF programming method"),
173 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
174 CTL_CREATE, CTL_EOL)) != 0)
175 goto err;
176
177 /* force host to control RF I/O bus */
178 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
179 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
180 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
181 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
182 CTL_CREATE, CTL_EOL)) != 0)
183 goto err;
184
185 return;
186 err:
187 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
188 }
189
190 static int
191 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
192 {
193 int error, t;
194 struct sysctlnode node;
195
196 node = *rnode;
197 t = *(int*)rnode->sysctl_data;
198 node.sysctl_data = &t;
199 error = sysctl_lookup(SYSCTLFN_CALL(&node));
200 if (error || newp == NULL)
201 return (error);
202
203 if (t < lower || t > upper)
204 return (EINVAL);
205
206 *(int*)rnode->sysctl_data = t;
207
208 return (0);
209 }
210
211 static int
212 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
213 {
214 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
215 __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
216 }
217
218 static int
219 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
220 {
221 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
222 }
223
224 #ifdef RTW_DEBUG
225 static int
226 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
227 {
228 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
229 0, RTW_DEBUG_MAX);
230 }
231
232 static int
233 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
234 {
235 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
236 0, RTW_RXQLEN);
237 }
238
239 static void
240 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
241 {
242 #define PRINTREG32(sc, reg) \
243 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
244 ("%s: reg[ " #reg " / %03x ] = %08x\n", \
245 dvname, reg, RTW_READ(regs, reg)))
246
247 #define PRINTREG16(sc, reg) \
248 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
249 ("%s: reg[ " #reg " / %03x ] = %04x\n", \
250 dvname, reg, RTW_READ16(regs, reg)))
251
252 #define PRINTREG8(sc, reg) \
253 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
254 ("%s: reg[ " #reg " / %03x ] = %02x\n", \
255 dvname, reg, RTW_READ8(regs, reg)))
256
257 RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
258
259 PRINTREG32(regs, RTW_IDR0);
260 PRINTREG32(regs, RTW_IDR1);
261 PRINTREG32(regs, RTW_MAR0);
262 PRINTREG32(regs, RTW_MAR1);
263 PRINTREG32(regs, RTW_TSFTRL);
264 PRINTREG32(regs, RTW_TSFTRH);
265 PRINTREG32(regs, RTW_TLPDA);
266 PRINTREG32(regs, RTW_TNPDA);
267 PRINTREG32(regs, RTW_THPDA);
268 PRINTREG32(regs, RTW_TCR);
269 PRINTREG32(regs, RTW_RCR);
270 PRINTREG32(regs, RTW_TINT);
271 PRINTREG32(regs, RTW_TBDA);
272 PRINTREG32(regs, RTW_ANAPARM);
273 PRINTREG32(regs, RTW_BB);
274 PRINTREG32(regs, RTW_PHYCFG);
275 PRINTREG32(regs, RTW_WAKEUP0L);
276 PRINTREG32(regs, RTW_WAKEUP0H);
277 PRINTREG32(regs, RTW_WAKEUP1L);
278 PRINTREG32(regs, RTW_WAKEUP1H);
279 PRINTREG32(regs, RTW_WAKEUP2LL);
280 PRINTREG32(regs, RTW_WAKEUP2LH);
281 PRINTREG32(regs, RTW_WAKEUP2HL);
282 PRINTREG32(regs, RTW_WAKEUP2HH);
283 PRINTREG32(regs, RTW_WAKEUP3LL);
284 PRINTREG32(regs, RTW_WAKEUP3LH);
285 PRINTREG32(regs, RTW_WAKEUP3HL);
286 PRINTREG32(regs, RTW_WAKEUP3HH);
287 PRINTREG32(regs, RTW_WAKEUP4LL);
288 PRINTREG32(regs, RTW_WAKEUP4LH);
289 PRINTREG32(regs, RTW_WAKEUP4HL);
290 PRINTREG32(regs, RTW_WAKEUP4HH);
291 PRINTREG32(regs, RTW_DK0);
292 PRINTREG32(regs, RTW_DK1);
293 PRINTREG32(regs, RTW_DK2);
294 PRINTREG32(regs, RTW_DK3);
295 PRINTREG32(regs, RTW_RETRYCTR);
296 PRINTREG32(regs, RTW_RDSAR);
297 PRINTREG32(regs, RTW_FER);
298 PRINTREG32(regs, RTW_FEMR);
299 PRINTREG32(regs, RTW_FPSR);
300 PRINTREG32(regs, RTW_FFER);
301
302 /* 16-bit registers */
303 PRINTREG16(regs, RTW_BRSR);
304 PRINTREG16(regs, RTW_IMR);
305 PRINTREG16(regs, RTW_ISR);
306 PRINTREG16(regs, RTW_BCNITV);
307 PRINTREG16(regs, RTW_ATIMWND);
308 PRINTREG16(regs, RTW_BINTRITV);
309 PRINTREG16(regs, RTW_ATIMTRITV);
310 PRINTREG16(regs, RTW_CRC16ERR);
311 PRINTREG16(regs, RTW_CRC0);
312 PRINTREG16(regs, RTW_CRC1);
313 PRINTREG16(regs, RTW_CRC2);
314 PRINTREG16(regs, RTW_CRC3);
315 PRINTREG16(regs, RTW_CRC4);
316 PRINTREG16(regs, RTW_CWR);
317
318 /* 8-bit registers */
319 PRINTREG8(regs, RTW_CR);
320 PRINTREG8(regs, RTW_9346CR);
321 PRINTREG8(regs, RTW_CONFIG0);
322 PRINTREG8(regs, RTW_CONFIG1);
323 PRINTREG8(regs, RTW_CONFIG2);
324 PRINTREG8(regs, RTW_MSR);
325 PRINTREG8(regs, RTW_CONFIG3);
326 PRINTREG8(regs, RTW_CONFIG4);
327 PRINTREG8(regs, RTW_TESTR);
328 PRINTREG8(regs, RTW_PSR);
329 PRINTREG8(regs, RTW_SCR);
330 PRINTREG8(regs, RTW_PHYDELAY);
331 PRINTREG8(regs, RTW_CRCOUNT);
332 PRINTREG8(regs, RTW_PHYADDR);
333 PRINTREG8(regs, RTW_PHYDATAW);
334 PRINTREG8(regs, RTW_PHYDATAR);
335 PRINTREG8(regs, RTW_CONFIG5);
336 PRINTREG8(regs, RTW_TPPOLL);
337
338 PRINTREG16(regs, RTW_BSSID16);
339 PRINTREG32(regs, RTW_BSSID32);
340 #undef PRINTREG32
341 #undef PRINTREG16
342 #undef PRINTREG8
343 }
344 #endif /* RTW_DEBUG */
345
346 void
347 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
348 {
349 struct rtw_regs *regs = &sc->sc_regs;
350
351 uint32_t tcr;
352 tcr = RTW_READ(regs, RTW_TCR);
353 tcr &= ~RTW_TCR_LBK_MASK;
354 if (enable)
355 tcr |= RTW_TCR_LBK_CONT;
356 else
357 tcr |= RTW_TCR_LBK_NORMAL;
358 RTW_WRITE(regs, RTW_TCR, tcr);
359 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
360 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
361 rtw_txdac_enable(sc, !enable);
362 rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
363 rtw_set_access(regs, RTW_ACCESS_NONE);
364 }
365
366 #ifdef RTW_DEBUG
367 static const char *
368 rtw_access_string(enum rtw_access access)
369 {
370 switch (access) {
371 case RTW_ACCESS_NONE:
372 return "none";
373 case RTW_ACCESS_CONFIG:
374 return "config";
375 case RTW_ACCESS_ANAPARM:
376 return "anaparm";
377 default:
378 return "unknown";
379 }
380 }
381 #endif /* RTW_DEBUG */
382
383 static void
384 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
385 {
386 KASSERT(/* naccess >= RTW_ACCESS_NONE && */
387 naccess <= RTW_ACCESS_ANAPARM);
388 KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
389 regs->r_access <= RTW_ACCESS_ANAPARM);
390
391 if (naccess == regs->r_access)
392 return;
393
394 switch (naccess) {
395 case RTW_ACCESS_NONE:
396 switch (regs->r_access) {
397 case RTW_ACCESS_ANAPARM:
398 rtw_anaparm_enable(regs, 0);
399 /*FALLTHROUGH*/
400 case RTW_ACCESS_CONFIG:
401 rtw_config0123_enable(regs, 0);
402 /*FALLTHROUGH*/
403 case RTW_ACCESS_NONE:
404 break;
405 }
406 break;
407 case RTW_ACCESS_CONFIG:
408 switch (regs->r_access) {
409 case RTW_ACCESS_NONE:
410 rtw_config0123_enable(regs, 1);
411 /*FALLTHROUGH*/
412 case RTW_ACCESS_CONFIG:
413 break;
414 case RTW_ACCESS_ANAPARM:
415 rtw_anaparm_enable(regs, 0);
416 break;
417 }
418 break;
419 case RTW_ACCESS_ANAPARM:
420 switch (regs->r_access) {
421 case RTW_ACCESS_NONE:
422 rtw_config0123_enable(regs, 1);
423 /*FALLTHROUGH*/
424 case RTW_ACCESS_CONFIG:
425 rtw_anaparm_enable(regs, 1);
426 /*FALLTHROUGH*/
427 case RTW_ACCESS_ANAPARM:
428 break;
429 }
430 break;
431 }
432 }
433
434 void
435 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
436 {
437 rtw_set_access1(regs, access);
438 RTW_DPRINTF(RTW_DEBUG_ACCESS,
439 ("%s: access %s -> %s\n", __func__,
440 rtw_access_string(regs->r_access),
441 rtw_access_string(access)));
442 regs->r_access = access;
443 }
444
445 /*
446 * Enable registers, switch register banks.
447 */
448 void
449 rtw_config0123_enable(struct rtw_regs *regs, int enable)
450 {
451 uint8_t ecr;
452 ecr = RTW_READ8(regs, RTW_9346CR);
453 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
454 if (enable)
455 ecr |= RTW_9346CR_EEM_CONFIG;
456 else {
457 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
458 ecr |= RTW_9346CR_EEM_NORMAL;
459 }
460 RTW_WRITE8(regs, RTW_9346CR, ecr);
461 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
462 }
463
464 /* requires rtw_config0123_enable(, 1) */
465 void
466 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
467 {
468 uint8_t cfg3;
469
470 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
471 cfg3 |= RTW_CONFIG3_CLKRUNEN;
472 if (enable)
473 cfg3 |= RTW_CONFIG3_PARMEN;
474 else
475 cfg3 &= ~RTW_CONFIG3_PARMEN;
476 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
477 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
478 }
479
480 /* requires rtw_anaparm_enable(, 1) */
481 void
482 rtw_txdac_enable(struct rtw_softc *sc, int enable)
483 {
484 uint32_t anaparm;
485 struct rtw_regs *regs = &sc->sc_regs;
486
487 anaparm = RTW_READ(regs, RTW_ANAPARM);
488 if (enable)
489 anaparm &= ~RTW_ANAPARM_TXDACOFF;
490 else
491 anaparm |= RTW_ANAPARM_TXDACOFF;
492 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
493 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
494 }
495
496 static inline int
497 rtw_chip_reset1(struct rtw_regs *regs, const char *dvname)
498 {
499 uint8_t cr;
500 int i;
501
502 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
503
504 RTW_WBR(regs, RTW_CR, RTW_CR);
505
506 for (i = 0; i < 1000; i++) {
507 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
508 RTW_DPRINTF(RTW_DEBUG_RESET,
509 ("%s: reset in %dus\n", dvname, i));
510 return 0;
511 }
512 RTW_RBR(regs, RTW_CR, RTW_CR);
513 DELAY(10); /* 10us */
514 }
515
516 printf("%s: reset failed\n", dvname);
517 return ETIMEDOUT;
518 }
519
520 static inline int
521 rtw_chip_reset(struct rtw_regs *regs, const char *dvname)
522 {
523 uint32_t tcr;
524
525 /* from Linux driver */
526 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
527 __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
528
529 RTW_WRITE(regs, RTW_TCR, tcr);
530
531 RTW_WBW(regs, RTW_CR, RTW_TCR);
532
533 return rtw_chip_reset1(regs, dvname);
534 }
535
536 static int
537 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
538 {
539 struct ieee80211_key keycopy;
540
541 RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
542
543 keycopy = *k;
544 keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
545
546 return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
547 }
548
549 static int
550 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
551 {
552 struct rtw_softc *sc = ic->ic_ifp->if_softc;
553 u_int keyix = k->wk_keyix;
554
555 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__, keyix));
556
557 if (keyix >= IEEE80211_WEP_NKID)
558 return 0;
559 if (k->wk_keylen != 0)
560 sc->sc_flags &= ~RTW_F_DK_VALID;
561
562 return 1;
563 }
564
565 static int
566 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
567 const u_int8_t mac[IEEE80211_ADDR_LEN])
568 {
569 struct rtw_softc *sc = ic->ic_ifp->if_softc;
570
571 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
572
573 if (k->wk_keyix >= IEEE80211_WEP_NKID)
574 return 0;
575
576 sc->sc_flags &= ~RTW_F_DK_VALID;
577
578 return 1;
579 }
580
581 static void
582 rtw_key_update_begin(struct ieee80211com *ic)
583 {
584 #ifdef RTW_DEBUG
585 struct ifnet *ifp = ic->ic_ifp;
586 struct rtw_softc *sc = ifp->if_softc;
587 #endif
588
589 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
590 }
591
592 static void
593 rtw_key_update_end(struct ieee80211com *ic)
594 {
595 struct ifnet *ifp = ic->ic_ifp;
596 struct rtw_softc *sc = ifp->if_softc;
597
598 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
599
600 if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
601 (sc->sc_flags & RTW_F_ENABLED) == 0 ||
602 (sc->sc_flags & RTW_F_INVALID) != 0)
603 return;
604
605 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
606 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
607 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
608 (ifp->if_flags & IFF_RUNNING) != 0);
609 }
610
611 static inline int
612 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
613 {
614 if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
615 return 0;
616
617 return ((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
618 ((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
619 }
620
621 static void
622 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
623 {
624 uint8_t psr, scr;
625 int i, keylen;
626 struct rtw_regs *regs;
627 union rtw_keys *rk;
628
629 regs = &sc->sc_regs;
630 rk = &sc->sc_keys;
631
632 (void)memset(rk, 0, sizeof(rk));
633
634 /* Temporarily use software crypto for all keys. */
635 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
636 if (wk[i].wk_cipher == &rtw_cipher_wep)
637 wk[i].wk_cipher = &ieee80211_cipher_wep;
638 }
639
640 rtw_set_access(regs, RTW_ACCESS_CONFIG);
641
642 psr = RTW_READ8(regs, RTW_PSR);
643 scr = RTW_READ8(regs, RTW_SCR);
644 scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
645
646 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
647 goto out;
648
649 for (keylen = i = 0; i < IEEE80211_WEP_NKID; i++) {
650 if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
651 continue;
652 if (i == txkey) {
653 keylen = wk[i].wk_keylen;
654 break;
655 }
656 keylen = MAX(keylen, wk[i].wk_keylen);
657 }
658
659 if (keylen == 5)
660 scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
661 else if (keylen == 13)
662 scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
663
664 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
665 if (wk[i].wk_keylen != keylen ||
666 wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
667 continue;
668 /* h/w will decrypt, s/w still strips headers */
669 wk[i].wk_cipher = &rtw_cipher_wep;
670 (void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
671 }
672
673 out:
674 RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
675
676 bus_space_write_region_stream_4(regs->r_bt, regs->r_bh,
677 RTW_DK0, rk->rk_words, __arraycount(rk->rk_words));
678
679 bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
680 BUS_SPACE_BARRIER_SYNC);
681
682 RTW_WBW(regs, RTW_DK0, RTW_PSR);
683 RTW_WRITE8(regs, RTW_PSR, psr);
684 RTW_WBW(regs, RTW_PSR, RTW_SCR);
685 RTW_WRITE8(regs, RTW_SCR, scr);
686 RTW_SYNC(regs, RTW_SCR, RTW_SCR);
687 rtw_set_access(regs, RTW_ACCESS_NONE);
688 sc->sc_flags |= RTW_F_DK_VALID;
689 }
690
691 static inline int
692 rtw_recall_eeprom(struct rtw_regs *regs, const char *dvname)
693 {
694 int i;
695 uint8_t ecr;
696
697 ecr = RTW_READ8(regs, RTW_9346CR);
698 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
699 RTW_WRITE8(regs, RTW_9346CR, ecr);
700
701 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
702
703 /* wait 25ms for completion */
704 for (i = 0; i < 250; i++) {
705 ecr = RTW_READ8(regs, RTW_9346CR);
706 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
707 RTW_DPRINTF(RTW_DEBUG_RESET,
708 ("%s: recall EEPROM in %dus\n", dvname, i * 100));
709 return 0;
710 }
711 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
712 DELAY(100);
713 }
714 printf("%s: recall EEPROM failed\n", dvname);
715 return ETIMEDOUT;
716 }
717
718 static inline int
719 rtw_reset(struct rtw_softc *sc)
720 {
721 int rc;
722 uint8_t config1;
723
724 sc->sc_flags &= ~RTW_F_DK_VALID;
725
726 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev.dv_xname)) != 0)
727 return rc;
728
729 rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev.dv_xname);
730
731 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
732 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
733 /* TBD turn off maximum power saving? */
734
735 return 0;
736 }
737
738 static inline int
739 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
740 u_int ndescs)
741 {
742 int i, rc = 0;
743 for (i = 0; i < ndescs; i++) {
744 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
745 0, 0, &descs[i].ts_dmamap);
746 if (rc != 0)
747 break;
748 }
749 return rc;
750 }
751
752 static inline int
753 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
754 u_int ndescs)
755 {
756 int i, rc = 0;
757 for (i = 0; i < ndescs; i++) {
758 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
759 &descs[i].rs_dmamap);
760 if (rc != 0)
761 break;
762 }
763 return rc;
764 }
765
766 static inline void
767 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
768 u_int ndescs)
769 {
770 int i;
771 for (i = 0; i < ndescs; i++) {
772 if (descs[i].rs_dmamap != NULL)
773 bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
774 }
775 }
776
777 static inline void
778 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
779 u_int ndescs)
780 {
781 int i;
782 for (i = 0; i < ndescs; i++) {
783 if (descs[i].ts_dmamap != NULL)
784 bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
785 }
786 }
787
788 static inline void
789 rtw_srom_free(struct rtw_srom *sr)
790 {
791 sr->sr_size = 0;
792 if (sr->sr_content == NULL)
793 return;
794 free(sr->sr_content, M_DEVBUF);
795 sr->sr_content = NULL;
796 }
797
798 static void
799 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
800 uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
801 {
802 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
803 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
804 *rcr |= RTW_RCR_ENCS1;
805 *rfchipid = RTW_RFCHIPID_PHILIPS;
806 }
807
808 static int
809 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
810 enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
811 const char *dvname)
812 {
813 int i;
814 const char *rfname, *paname;
815 char scratch[sizeof("unknown 0xXX")];
816 uint16_t srom_version;
817 uint8_t mac[IEEE80211_ADDR_LEN];
818
819 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
820 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
821
822 srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
823 printf("%s: SROM version %d.%d", dvname,
824 srom_version >> 8, srom_version & 0xff);
825
826 if (srom_version <= 0x0101) {
827 printf(" is not understood, limping along with defaults\n");
828 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
829 return 0;
830 }
831 printf("\n");
832
833 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
834 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
835
836 RTW_DPRINTF(RTW_DEBUG_ATTACH,
837 ("%s: EEPROM MAC %s\n", dvname, ether_sprintf(mac)));
838
839 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
840
841 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
842 *flags |= RTW_F_ANTDIV;
843
844 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
845 * to be reversed.
846 */
847 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
848 *flags |= RTW_F_DIGPHY;
849 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
850 *flags |= RTW_F_DFLANTB;
851
852 *rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
853 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
854
855 if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
856 *flags |= RTW_C_RXWEP_104;
857
858 *flags |= RTW_C_RXWEP_40; /* XXX */
859
860 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
861 switch (*rfchipid) {
862 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
863 rfname = "GCT GRF5101";
864 paname = "Winspring WS9901";
865 break;
866 case RTW_RFCHIPID_MAXIM:
867 rfname = "Maxim MAX2820"; /* guess */
868 paname = "Maxim MAX2422"; /* guess */
869 break;
870 case RTW_RFCHIPID_INTERSIL:
871 rfname = "Intersil HFA3873"; /* guess */
872 paname = "Intersil <unknown>";
873 break;
874 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
875 rfname = "Philips SA2400A";
876 paname = "Philips SA2411";
877 break;
878 case RTW_RFCHIPID_RFMD:
879 /* this is the same front-end as an atw(4)! */
880 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
881 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
882 "SYN: Silicon Labs Si4126"; /* inferred from
883 * reference driver
884 */
885 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
886 break;
887 case RTW_RFCHIPID_RESERVED:
888 rfname = paname = "reserved";
889 break;
890 default:
891 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
892 rfname = paname = scratch;
893 }
894 printf("%s: RF: %s, PA: %s\n", dvname, rfname, paname);
895
896 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
897 case RTW_CONFIG0_GL_USA:
898 case _RTW_CONFIG0_GL_USA:
899 *locale = RTW_LOCALE_USA;
900 break;
901 case RTW_CONFIG0_GL_EUROPE:
902 *locale = RTW_LOCALE_EUROPE;
903 break;
904 case RTW_CONFIG0_GL_JAPAN:
905 *locale = RTW_LOCALE_JAPAN;
906 break;
907 default:
908 *locale = RTW_LOCALE_UNKNOWN;
909 break;
910 }
911 return 0;
912 }
913
914 /* Returns -1 on failure. */
915 static int
916 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
917 const char *dvname)
918 {
919 int rc;
920 struct seeprom_descriptor sd;
921 uint8_t ecr;
922
923 (void)memset(&sd, 0, sizeof(sd));
924
925 ecr = RTW_READ8(regs, RTW_9346CR);
926
927 if ((flags & RTW_F_9356SROM) != 0) {
928 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n", dvname));
929 sr->sr_size = 256;
930 sd.sd_chip = C56_66;
931 } else {
932 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n", dvname));
933 sr->sr_size = 128;
934 sd.sd_chip = C46;
935 }
936
937 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
938 RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
939 ecr |= RTW_9346CR_EEM_PROGRAM;
940
941 RTW_WRITE8(regs, RTW_9346CR, ecr);
942
943 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
944
945 if (sr->sr_content == NULL) {
946 printf("%s: unable to allocate SROM buffer\n", dvname);
947 return ENOMEM;
948 }
949
950 (void)memset(sr->sr_content, 0, sr->sr_size);
951
952 /* RTL8180 has a single 8-bit register for controlling the
953 * 93cx6 SROM. There is no "ready" bit. The RTL8180
954 * input/output sense is the reverse of read_seeprom's.
955 */
956 sd.sd_tag = regs->r_bt;
957 sd.sd_bsh = regs->r_bh;
958 sd.sd_regsize = 1;
959 sd.sd_control_offset = RTW_9346CR;
960 sd.sd_status_offset = RTW_9346CR;
961 sd.sd_dataout_offset = RTW_9346CR;
962 sd.sd_CK = RTW_9346CR_EESK;
963 sd.sd_CS = RTW_9346CR_EECS;
964 sd.sd_DI = RTW_9346CR_EEDO;
965 sd.sd_DO = RTW_9346CR_EEDI;
966 /* make read_seeprom enter EEPROM read/write mode */
967 sd.sd_MS = ecr;
968 sd.sd_RDY = 0;
969
970 /* TBD bus barriers */
971 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
972 printf("%s: could not read SROM\n", dvname);
973 free(sr->sr_content, M_DEVBUF);
974 sr->sr_content = NULL;
975 return -1; /* XXX */
976 }
977
978 /* end EEPROM read/write mode */
979 RTW_WRITE8(regs, RTW_9346CR,
980 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
981 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
982
983 if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
984 return rc;
985
986 #ifdef RTW_DEBUG
987 {
988 int i;
989 RTW_DPRINTF(RTW_DEBUG_ATTACH,
990 ("\n%s: serial ROM:\n\t", dvname));
991 for (i = 0; i < sr->sr_size/2; i++) {
992 if (((i % 8) == 0) && (i != 0))
993 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
994 RTW_DPRINTF(RTW_DEBUG_ATTACH,
995 (" %04x", sr->sr_content[i]));
996 }
997 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
998 }
999 #endif /* RTW_DEBUG */
1000 return 0;
1001 }
1002
1003 static void
1004 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1005 const char *dvname)
1006 {
1007 uint8_t cfg4;
1008 const char *method;
1009
1010 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1011
1012 switch (rfchipid) {
1013 default:
1014 cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1015 method = "fallback";
1016 break;
1017 case RTW_RFCHIPID_INTERSIL:
1018 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1019 method = "Intersil";
1020 break;
1021 case RTW_RFCHIPID_PHILIPS:
1022 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1023 method = "Philips";
1024 break;
1025 case RTW_RFCHIPID_GCT: /* XXX a guess */
1026 case RTW_RFCHIPID_RFMD:
1027 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1028 method = "RFMD";
1029 break;
1030 }
1031
1032 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1033
1034 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1035
1036 RTW_DPRINTF(RTW_DEBUG_INIT,
1037 ("%s: %s RF programming method, %#02x\n", dvname, method,
1038 RTW_READ8(regs, RTW_CONFIG4)));
1039 }
1040
1041 static inline void
1042 rtw_init_channels(enum rtw_locale locale,
1043 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
1044 const char *dvname)
1045 {
1046 int i;
1047 const char *name = NULL;
1048 #define ADD_CHANNEL(_chans, _chan) do { \
1049 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
1050 (*_chans)[_chan].ic_freq = \
1051 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1052 } while (0)
1053
1054 switch (locale) {
1055 case RTW_LOCALE_USA: /* 1-11 */
1056 name = "USA";
1057 for (i = 1; i <= 11; i++)
1058 ADD_CHANNEL(chans, i);
1059 break;
1060 case RTW_LOCALE_JAPAN: /* 1-14 */
1061 name = "Japan";
1062 ADD_CHANNEL(chans, 14);
1063 for (i = 1; i <= 14; i++)
1064 ADD_CHANNEL(chans, i);
1065 break;
1066 case RTW_LOCALE_EUROPE: /* 1-13 */
1067 name = "Europe";
1068 for (i = 1; i <= 13; i++)
1069 ADD_CHANNEL(chans, i);
1070 break;
1071 default: /* 10-11 allowed by most countries */
1072 name = "<unknown>";
1073 for (i = 10; i <= 11; i++)
1074 ADD_CHANNEL(chans, i);
1075 break;
1076 }
1077 printf("%s: Geographic Location %s\n", dvname, name);
1078 #undef ADD_CHANNEL
1079 }
1080
1081
1082 static inline void
1083 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1084 {
1085 uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1086
1087 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1088 case RTW_CONFIG0_GL_USA:
1089 case _RTW_CONFIG0_GL_USA:
1090 *locale = RTW_LOCALE_USA;
1091 break;
1092 case RTW_CONFIG0_GL_JAPAN:
1093 *locale = RTW_LOCALE_JAPAN;
1094 break;
1095 case RTW_CONFIG0_GL_EUROPE:
1096 *locale = RTW_LOCALE_EUROPE;
1097 break;
1098 default:
1099 *locale = RTW_LOCALE_UNKNOWN;
1100 break;
1101 }
1102 }
1103
1104 static inline int
1105 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1106 const char *dvname)
1107 {
1108 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1109 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1110 };
1111 uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1112 idr1 = RTW_READ(regs, RTW_IDR1);
1113
1114 (*addr)[0] = __SHIFTOUT(idr0, __BITS(0, 7));
1115 (*addr)[1] = __SHIFTOUT(idr0, __BITS(8, 15));
1116 (*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
1117 (*addr)[3] = __SHIFTOUT(idr0, __BITS(24 ,31));
1118
1119 (*addr)[4] = __SHIFTOUT(idr1, __BITS(0, 7));
1120 (*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
1121
1122 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1123 printf("%s: could not get mac address, attach failed\n",
1124 dvname);
1125 return ENXIO;
1126 }
1127
1128 printf("%s: 802.11 address %s\n", dvname, ether_sprintf(*addr));
1129
1130 return 0;
1131 }
1132
1133 static uint8_t
1134 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1135 struct ieee80211_channel *chan)
1136 {
1137 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1138 if (idx < RTW_SR_TXPOWER1 || idx > RTW_SR_TXPOWER14) {
1139 panic("%s: channel %d out of range", __func__,
1140 idx - RTW_SR_TXPOWER1 + 1);
1141 }
1142 return RTW_SR_GET(sr, idx);
1143 }
1144
1145 static void
1146 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1147 {
1148 int pri;
1149 /* nfree: the number of free descriptors in each ring.
1150 * The beacon ring is a special case: I do not let the
1151 * driver use all of the descriptors on the beacon ring.
1152 * The reasons are two-fold:
1153 *
1154 * (1) A BEACON descriptor's OWN bit is (apparently) not
1155 * updated, so the driver cannot easily know if the descriptor
1156 * belongs to it, or if it is racing the NIC. If the NIC
1157 * does not OWN every descriptor, then the driver can safely
1158 * update the descriptors when RTW_TBDA points at tdb_next.
1159 *
1160 * (2) I hope that the NIC will process more than one BEACON
1161 * descriptor in a single beacon interval, since that will
1162 * enable multiple-BSS support. Since the NIC does not
1163 * clear the OWN bit, there is no natural place for it to
1164 * stop processing BEACON desciptors. Maybe it will *not*
1165 * stop processing them! I do not want to chance the NIC
1166 * looping around and around a saturated beacon ring, so
1167 * I will leave one descriptor unOWNed at all times.
1168 */
1169 u_int nfree[RTW_NTXPRI] =
1170 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1171 RTW_NTXDESCBCN - 1};
1172
1173 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1174 tdb[pri].tdb_nfree = nfree[pri];
1175 tdb[pri].tdb_next = 0;
1176 }
1177 }
1178
1179 static int
1180 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1181 {
1182 int i;
1183 struct rtw_txsoft *ts;
1184
1185 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1186 SIMPLEQ_INIT(&tsb->tsb_freeq);
1187 for (i = 0; i < tsb->tsb_ndesc; i++) {
1188 ts = &tsb->tsb_desc[i];
1189 ts->ts_mbuf = NULL;
1190 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1191 }
1192 tsb->tsb_tx_timer = 0;
1193 return 0;
1194 }
1195
1196 static void
1197 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1198 {
1199 int pri;
1200 for (pri = 0; pri < RTW_NTXPRI; pri++)
1201 rtw_txsoft_blk_init(&tsb[pri]);
1202 }
1203
1204 static inline void
1205 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1206 {
1207 KASSERT(nsync <= rdb->rdb_ndesc);
1208 /* sync to end of ring */
1209 if (desc0 + nsync > rdb->rdb_ndesc) {
1210 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1211 offsetof(struct rtw_descs, hd_rx[desc0]),
1212 sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1213 nsync -= (rdb->rdb_ndesc - desc0);
1214 desc0 = 0;
1215 }
1216
1217 KASSERT(desc0 < rdb->rdb_ndesc);
1218 KASSERT(nsync <= rdb->rdb_ndesc);
1219 KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1220
1221 /* sync what remains */
1222 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1223 offsetof(struct rtw_descs, hd_rx[desc0]),
1224 sizeof(struct rtw_rxdesc) * nsync, ops);
1225 }
1226
1227 static void
1228 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1229 {
1230 /* sync to end of ring */
1231 if (desc0 + nsync > tdb->tdb_ndesc) {
1232 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1233 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1234 sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1235 ops);
1236 nsync -= (tdb->tdb_ndesc - desc0);
1237 desc0 = 0;
1238 }
1239
1240 /* sync what remains */
1241 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1242 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1243 sizeof(struct rtw_txdesc) * nsync, ops);
1244 }
1245
1246 static void
1247 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1248 {
1249 int pri;
1250 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1251 rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1252 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1253 }
1254 }
1255
1256 static void
1257 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1258 {
1259 int i;
1260 struct rtw_rxsoft *rs;
1261
1262 for (i = 0; i < RTW_RXQLEN; i++) {
1263 rs = &desc[i];
1264 if (rs->rs_mbuf == NULL)
1265 continue;
1266 bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1267 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1268 bus_dmamap_unload(dmat, rs->rs_dmamap);
1269 m_freem(rs->rs_mbuf);
1270 rs->rs_mbuf = NULL;
1271 }
1272 }
1273
1274 static inline int
1275 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1276 {
1277 int rc;
1278 struct mbuf *m;
1279
1280 MGETHDR(m, M_DONTWAIT, MT_DATA);
1281 if (m == NULL)
1282 return ENOBUFS;
1283
1284 MCLGET(m, M_DONTWAIT);
1285 if ((m->m_flags & M_EXT) == 0) {
1286 m_freem(m);
1287 return ENOBUFS;
1288 }
1289
1290 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1291
1292 if (rs->rs_mbuf != NULL)
1293 bus_dmamap_unload(dmat, rs->rs_dmamap);
1294
1295 rs->rs_mbuf = NULL;
1296
1297 rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1298 if (rc != 0) {
1299 m_freem(m);
1300 return -1;
1301 }
1302
1303 rs->rs_mbuf = m;
1304
1305 return 0;
1306 }
1307
1308 static int
1309 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1310 int *ndesc, const char *dvname)
1311 {
1312 int i, rc = 0;
1313 struct rtw_rxsoft *rs;
1314
1315 for (i = 0; i < RTW_RXQLEN; i++) {
1316 rs = &desc[i];
1317 /* we're in rtw_init, so there should be no mbufs allocated */
1318 KASSERT(rs->rs_mbuf == NULL);
1319 #ifdef RTW_DEBUG
1320 if (i == rtw_rxbufs_limit) {
1321 printf("%s: TEST hit %d-buffer limit\n", dvname, i);
1322 rc = ENOBUFS;
1323 break;
1324 }
1325 #endif /* RTW_DEBUG */
1326 if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1327 printf("%s: rtw_rxsoft_alloc failed, %d buffers, "
1328 "rc %d\n", dvname, i, rc);
1329 break;
1330 }
1331 }
1332 *ndesc = i;
1333 return rc;
1334 }
1335
1336 static inline void
1337 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1338 int idx, int kick)
1339 {
1340 int is_last = (idx == rdb->rdb_ndesc - 1);
1341 uint32_t ctl, octl, obuf;
1342 struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1343
1344 /* sync the mbuf before the descriptor */
1345 bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1346 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1347
1348 obuf = rd->rd_buf;
1349 rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1350
1351 ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1352 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1353
1354 if (is_last)
1355 ctl |= RTW_RXCTL_EOR;
1356
1357 octl = rd->rd_ctl;
1358 rd->rd_ctl = htole32(ctl);
1359
1360 RTW_DPRINTF(
1361 kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1362 : RTW_DEBUG_RECV_DESC,
1363 ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1364 le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1365 le32toh(rd->rd_ctl)));
1366
1367 /* sync the descriptor */
1368 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1369 RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1370 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1371 }
1372
1373 static void
1374 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1375 {
1376 int i;
1377 struct rtw_rxdesc *rd;
1378 struct rtw_rxsoft *rs;
1379
1380 for (i = 0; i < rdb->rdb_ndesc; i++) {
1381 rd = &rdb->rdb_desc[i];
1382 rs = &ctl[i];
1383 rtw_rxdesc_init(rdb, rs, i, kick);
1384 }
1385 }
1386
1387 static void
1388 rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
1389 {
1390 struct rtw_regs *regs = &sc->sc_regs;
1391 uint8_t cr;
1392
1393 RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1394 enable ? "enable" : "disable", flags));
1395
1396 cr = RTW_READ8(regs, RTW_CR);
1397
1398 /* XXX reference source does not enable MULRW */
1399 /* enable PCI Read/Write Multiple */
1400 cr |= RTW_CR_MULRW;
1401
1402 /* The receive engine will always start at RDSAR. */
1403 if (enable && (flags & ~cr & RTW_CR_RE)) {
1404 struct rtw_rxdesc_blk *rdb;
1405 rdb = &sc->sc_rxdesc_blk;
1406 rdb->rdb_next = 0;
1407 }
1408
1409 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1410 if (enable)
1411 cr |= flags;
1412 else
1413 cr &= ~flags;
1414 RTW_WRITE8(regs, RTW_CR, cr);
1415 RTW_SYNC(regs, RTW_CR, RTW_CR);
1416
1417 #ifdef RTW_DIAG
1418 if (cr & RTW_CR_TE)
1419 rtw_txring_fixup(sc, __func__, __LINE__);
1420 #endif
1421 }
1422
1423 static void
1424 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1425 {
1426 #define IS_BEACON(__fc0) \
1427 ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1428 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1429
1430 static const int ratetbl[4] = {2, 4, 11, 22}; /* convert rates:
1431 * hardware -> net80211
1432 */
1433 u_int next, nproc = 0;
1434 int hwrate, len, rate, rssi, sq;
1435 uint32_t hrssi, hstat, htsfth, htsftl;
1436 struct rtw_rxdesc *rd;
1437 struct rtw_rxsoft *rs;
1438 struct rtw_rxdesc_blk *rdb;
1439 struct mbuf *m;
1440 struct ifnet *ifp = &sc->sc_if;
1441
1442 struct ieee80211_node *ni;
1443 struct ieee80211_frame_min *wh;
1444
1445 rdb = &sc->sc_rxdesc_blk;
1446
1447 for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
1448 KASSERT(next < rdb->rdb_ndesc);
1449
1450 rtw_rxdescs_sync(rdb, next, 1,
1451 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1452 rd = &rdb->rdb_desc[next];
1453 rs = &sc->sc_rxsoft[next];
1454
1455 hstat = le32toh(rd->rd_stat);
1456 hrssi = le32toh(rd->rd_rssi);
1457 htsfth = le32toh(rd->rd_tsfth);
1458 htsftl = le32toh(rd->rd_tsftl);
1459
1460 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1461 ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1462 __func__, next, hstat, hrssi, htsfth, htsftl));
1463
1464 ++nproc;
1465
1466 /* still belongs to NIC */
1467 if ((hstat & RTW_RXSTAT_OWN) != 0) {
1468 rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
1469 break;
1470 }
1471
1472 /* ieee80211_input() might reset the receive engine
1473 * (e.g. by indirectly calling rtw_tune()), so save
1474 * the next pointer here and retrieve it again on
1475 * the next round.
1476 */
1477 rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
1478
1479 #ifdef RTW_DEBUG
1480 #define PRINTSTAT(flag) do { \
1481 if ((hstat & flag) != 0) { \
1482 printf("%s" #flag, delim); \
1483 delim = ","; \
1484 } \
1485 } while (0)
1486 if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1487 const char *delim = "<";
1488 printf("%s: ", sc->sc_dev.dv_xname);
1489 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1490 printf("status %08x", hstat);
1491 PRINTSTAT(RTW_RXSTAT_SPLCP);
1492 PRINTSTAT(RTW_RXSTAT_MAR);
1493 PRINTSTAT(RTW_RXSTAT_PAR);
1494 PRINTSTAT(RTW_RXSTAT_BAR);
1495 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1496 PRINTSTAT(RTW_RXSTAT_CRC32);
1497 PRINTSTAT(RTW_RXSTAT_ICV);
1498 printf(">, ");
1499 }
1500 }
1501 #endif /* RTW_DEBUG */
1502
1503 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1504 printf("%s: DMA error/FIFO overflow %08" PRIx32 ", "
1505 "rx descriptor %d\n", sc->sc_dev.dv_xname,
1506 hstat, next);
1507 ifp->if_ierrors++;
1508 goto next;
1509 }
1510
1511 len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1512 if (len < IEEE80211_MIN_LEN) {
1513 sc->sc_ic.ic_stats.is_rx_tooshort++;
1514 goto next;
1515 }
1516 KASSERT(len <= rs->rs_mbuf->m_pkthdr.len);
1517 KASSERT(len <= rs->rs_mbuf->m_len);
1518
1519 hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1520 if (hwrate >= __arraycount(ratetbl)) {
1521 printf("%s: unknown rate #%" __PRIuBITS "\n",
1522 sc->sc_dev.dv_xname,
1523 __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1524 ifp->if_ierrors++;
1525 goto next;
1526 }
1527 rate = ratetbl[hwrate];
1528
1529 #ifdef RTW_DEBUG
1530 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1531 ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1532 (rate * 5) % 10, htsfth, htsftl));
1533 #endif /* RTW_DEBUG */
1534
1535 /* if bad flags, skip descriptor */
1536 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1537 printf("%s: too many rx segments, "
1538 "next=%d, %08" PRIx32 "\n",
1539 sc->sc_dev.dv_xname, next, hstat);
1540 goto next;
1541 }
1542
1543 bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1544 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1545
1546 m = rs->rs_mbuf;
1547
1548 /* if temporarily out of memory, re-use mbuf */
1549 switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1550 case 0:
1551 break;
1552 case ENOBUFS:
1553 printf("%s: rtw_rxsoft_alloc(, %d) failed, "
1554 "dropping packet\n", sc->sc_dev.dv_xname, next);
1555 goto next;
1556 default:
1557 /* XXX shorten rx ring, instead? */
1558 panic("%s: could not load DMA map\n",
1559 sc->sc_dev.dv_xname);
1560 }
1561
1562 sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1563
1564 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1565 rssi = UINT8_MAX - sq;
1566 else {
1567 rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1568 /* TBD find out each front-end's LNA gain in the
1569 * front-end's units
1570 */
1571 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1572 rssi |= 0x80;
1573 }
1574
1575 /* Note well: now we cannot recycle the rs_mbuf unless
1576 * we restore its original length.
1577 */
1578 m->m_pkthdr.rcvif = ifp;
1579 m->m_pkthdr.len = m->m_len = len;
1580
1581 wh = mtod(m, struct ieee80211_frame_min *);
1582
1583 if (!IS_BEACON(wh->i_fc[0]))
1584 sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1585
1586 sc->sc_tsfth = htsfth;
1587
1588 #ifdef RTW_DEBUG
1589 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1590 (IFF_DEBUG|IFF_LINK2)) {
1591 ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1592 rate, rssi);
1593 }
1594 #endif /* RTW_DEBUG */
1595
1596 #if NBPFILTER > 0
1597 if (sc->sc_radiobpf != NULL) {
1598 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1599
1600 rr->rr_tsft =
1601 htole64(((uint64_t)htsfth << 32) | htsftl);
1602
1603 rr->rr_flags = IEEE80211_RADIOTAP_F_FCS;
1604
1605 if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1606 rr->rr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1607 if ((hstat & RTW_RXSTAT_CRC32) != 0)
1608 rr->rr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
1609
1610 rr->rr_rate = rate;
1611
1612 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1613 rr->rr_u.u_philips.p_antsignal = rssi;
1614 else {
1615 rr->rr_u.u_other.o_antsignal = rssi;
1616 rr->rr_u.u_other.o_barker_lock =
1617 htole16(UINT8_MAX - sq);
1618 }
1619
1620 bpf_mtap2(sc->sc_radiobpf, rr,
1621 sizeof(sc->sc_rxtapu), m);
1622 }
1623 #endif /* NBPFILTER > 0 */
1624
1625 if ((hstat & RTW_RXSTAT_RES) != 0) {
1626 m_freem(m);
1627 goto next;
1628 }
1629
1630 /* CRC is included with the packet; trim it off. */
1631 m_adj(m, -IEEE80211_CRC_LEN);
1632
1633 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1634 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1635 ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1636 ieee80211_free_node(ni);
1637 next:
1638 rtw_rxdesc_init(rdb, rs, next, 0);
1639 }
1640 #undef IS_BEACON
1641 }
1642
1643 static void
1644 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1645 struct rtw_txsoft *ts)
1646 {
1647 struct mbuf *m;
1648 struct ieee80211_node *ni;
1649
1650 m = ts->ts_mbuf;
1651 ni = ts->ts_ni;
1652 KASSERT(m != NULL);
1653 KASSERT(ni != NULL);
1654 ts->ts_mbuf = NULL;
1655 ts->ts_ni = NULL;
1656
1657 bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1658 BUS_DMASYNC_POSTWRITE);
1659 bus_dmamap_unload(dmat, ts->ts_dmamap);
1660 m_freem(m);
1661 ieee80211_free_node(ni);
1662 }
1663
1664 static void
1665 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1666 struct rtw_txsoft_blk *tsb)
1667 {
1668 struct rtw_txsoft *ts;
1669
1670 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1671 rtw_txsoft_release(dmat, ic, ts);
1672 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1673 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1674 }
1675 tsb->tsb_tx_timer = 0;
1676 }
1677
1678 static inline void
1679 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1680 struct rtw_txsoft *ts, int ndesc)
1681 {
1682 uint32_t hstat;
1683 int data_retry, rts_retry;
1684 struct rtw_txdesc *tdn;
1685 const char *condstring;
1686 struct ifnet *ifp = &sc->sc_if;
1687
1688 rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1689
1690 tdb->tdb_nfree += ndesc;
1691
1692 tdn = &tdb->tdb_desc[ts->ts_last];
1693
1694 hstat = le32toh(tdn->td_stat);
1695 rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1696 data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1697
1698 ifp->if_collisions += rts_retry + data_retry;
1699
1700 if ((hstat & RTW_TXSTAT_TOK) != 0)
1701 condstring = "ok";
1702 else {
1703 ifp->if_oerrors++;
1704 condstring = "error";
1705 }
1706
1707 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1708 ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1709 sc->sc_dev.dv_xname, ts, ts->ts_first, ts->ts_last,
1710 condstring, rts_retry, data_retry));
1711 }
1712
1713 static void
1714 rtw_reset_oactive(struct rtw_softc *sc)
1715 {
1716 short oflags;
1717 int pri;
1718 struct rtw_txsoft_blk *tsb;
1719 struct rtw_txdesc_blk *tdb;
1720 oflags = sc->sc_if.if_flags;
1721 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1722 tsb = &sc->sc_txsoft_blk[pri];
1723 tdb = &sc->sc_txdesc_blk[pri];
1724 if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1725 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1726 }
1727 if (oflags != sc->sc_if.if_flags) {
1728 DPRINTF(sc, RTW_DEBUG_OACTIVE,
1729 ("%s: reset OACTIVE\n", __func__));
1730 }
1731 }
1732
1733 /* Collect transmitted packets. */
1734 static void
1735 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1736 struct rtw_txdesc_blk *tdb, int force)
1737 {
1738 int ndesc;
1739 struct rtw_txsoft *ts;
1740
1741 #ifdef RTW_DEBUG
1742 rtw_dump_rings(sc);
1743 #endif
1744
1745 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1746 /* If we're clearing a failed transmission, only clear
1747 up to the last packet the hardware has processed. */
1748 if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
1749 break;
1750
1751 ndesc = 1 + ts->ts_last - ts->ts_first;
1752 if (ts->ts_last < ts->ts_first)
1753 ndesc += tdb->tdb_ndesc;
1754
1755 KASSERT(ndesc > 0);
1756
1757 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1758 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1759
1760 if (force) {
1761 int next;
1762 #ifdef RTW_DIAG
1763 printf("%s: clearing packet, stats", __func__);
1764 #endif
1765 for (next = ts->ts_first; ;
1766 next = RTW_NEXT_IDX(tdb, next)) {
1767 #ifdef RTW_DIAG
1768 printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
1769 #endif
1770 tdb->tdb_desc[next].td_stat &=
1771 ~htole32(RTW_TXSTAT_OWN);
1772 if (next == ts->ts_last)
1773 break;
1774 }
1775 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1776 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1777 #ifdef RTW_DIAG
1778 next = RTW_NEXT_IDX(tdb, next);
1779 printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
1780 le32toh(tdb->tdb_desc[next].td_stat),
1781 rtw_txring_next(&sc->sc_regs, tdb));
1782 #endif
1783 } else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1784 htole32(RTW_TXSTAT_OWN)) != 0) {
1785 rtw_txdescs_sync(tdb, ts->ts_last, 1,
1786 BUS_DMASYNC_PREREAD);
1787 break;
1788 }
1789
1790 rtw_collect_txpkt(sc, tdb, ts, ndesc);
1791 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1792 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1793 }
1794
1795 /* no more pending transmissions, cancel watchdog */
1796 if (ts == NULL)
1797 tsb->tsb_tx_timer = 0;
1798 rtw_reset_oactive(sc);
1799 }
1800
1801 static void
1802 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1803 {
1804 int pri;
1805 struct rtw_txsoft_blk *tsb;
1806 struct rtw_txdesc_blk *tdb;
1807 struct ifnet *ifp = &sc->sc_if;
1808
1809 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1810 tsb = &sc->sc_txsoft_blk[pri];
1811 tdb = &sc->sc_txdesc_blk[pri];
1812 rtw_collect_txring(sc, tsb, tdb, 0);
1813 }
1814
1815 if ((isr & RTW_INTR_TX) != 0)
1816 rtw_start(ifp);
1817
1818 return;
1819 }
1820
1821 static void
1822 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1823 {
1824 u_int next;
1825 uint32_t tsfth, tsftl;
1826 struct ieee80211com *ic;
1827 struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1828 struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1829 struct mbuf *m;
1830
1831 tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1832 tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1833
1834 if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) {
1835 next = rtw_txring_next(&sc->sc_regs, tdb);
1836 RTW_DPRINTF(RTW_DEBUG_BEACON,
1837 ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1838 ", next %u expected %u, %" PRIu64 "\n", __func__,
1839 (next == tdb->tdb_next) ? "" : "un", isr, next,
1840 tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1841 if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
1842 rtw_collect_txring(sc, tsb, tdb, 1);
1843 }
1844 /* Start beacon transmission. */
1845
1846 if ((isr & RTW_INTR_BCNINT) != 0 &&
1847 sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1848 SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1849 RTW_DPRINTF(RTW_DEBUG_BEACON,
1850 ("%s: beacon prep. time, isr = %#04" PRIx16
1851 ", %16" PRIu64 "\n", __func__, isr,
1852 (uint64_t)tsfth << 32 | tsftl));
1853 ic = &sc->sc_ic;
1854 m = rtw_beacon_alloc(sc, ic->ic_bss);
1855
1856 if (m == NULL) {
1857 printf("%s: could not allocate beacon\n",
1858 sc->sc_dev.dv_xname);
1859 return;
1860 }
1861 m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss);
1862 IF_ENQUEUE(&sc->sc_beaconq, m);
1863 rtw_start(&sc->sc_if);
1864 }
1865 }
1866
1867 static void
1868 rtw_intr_atim(struct rtw_softc *sc)
1869 {
1870 /* TBD */
1871 return;
1872 }
1873
1874 #ifdef RTW_DEBUG
1875 static void
1876 rtw_dump_rings(struct rtw_softc *sc)
1877 {
1878 struct rtw_txdesc_blk *tdb;
1879 struct rtw_rxdesc *rd;
1880 struct rtw_rxdesc_blk *rdb;
1881 int desc, pri;
1882
1883 if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1884 return;
1885
1886 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1887 tdb = &sc->sc_txdesc_blk[pri];
1888 printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1889 tdb->tdb_ndesc, tdb->tdb_nfree);
1890 for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1891 rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1892 }
1893
1894 rdb = &sc->sc_rxdesc_blk;
1895
1896 for (desc = 0; desc < RTW_RXQLEN; desc++) {
1897 rd = &rdb->rdb_desc[desc];
1898 printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1899 "rsvd1/tsfth %08x\n", __func__,
1900 (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1901 le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1902 le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1903 }
1904 }
1905 #endif /* RTW_DEBUG */
1906
1907 static void
1908 rtw_hwring_setup(struct rtw_softc *sc)
1909 {
1910 int pri;
1911 struct rtw_regs *regs = &sc->sc_regs;
1912 struct rtw_txdesc_blk *tdb;
1913
1914 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1915 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1916 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1917 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1918 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1919 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1920 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1921 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1922
1923 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1924 tdb = &sc->sc_txdesc_blk[pri];
1925 RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1926 RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1927 ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1928 (uintptr_t)tdb->tdb_base));
1929 }
1930
1931 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1932
1933 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1934 ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1935 (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1936
1937 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1938
1939 }
1940
1941 static int
1942 rtw_swring_setup(struct rtw_softc *sc)
1943 {
1944 int rc;
1945 struct rtw_rxdesc_blk *rdb;
1946
1947 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1948
1949 rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
1950
1951 rdb = &sc->sc_rxdesc_blk;
1952 if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
1953 sc->sc_dev.dv_xname)) != 0 && rdb->rdb_ndesc == 0) {
1954 printf("%s: could not allocate rx buffers\n",
1955 sc->sc_dev.dv_xname);
1956 return rc;
1957 }
1958
1959 rdb = &sc->sc_rxdesc_blk;
1960 rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
1961 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1962 rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
1963 rdb->rdb_next = 0;
1964
1965 rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
1966 return 0;
1967 }
1968
1969 static void
1970 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
1971 {
1972 int i;
1973
1974 (void)memset(tdb->tdb_desc, 0,
1975 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
1976 for (i = 0; i < tdb->tdb_ndesc; i++)
1977 tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
1978 }
1979
1980 static u_int
1981 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
1982 {
1983 return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
1984 sizeof(struct rtw_txdesc);
1985 }
1986
1987 #ifdef RTW_DIAG
1988 static void
1989 rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
1990 {
1991 int pri;
1992 u_int next;
1993 struct rtw_txdesc_blk *tdb;
1994 struct rtw_regs *regs = &sc->sc_regs;
1995
1996 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1997 int i;
1998 tdb = &sc->sc_txdesc_blk[pri];
1999 next = rtw_txring_next(regs, tdb);
2000 if (tdb->tdb_next == next)
2001 continue;
2002 for (i = 0; next != tdb->tdb_next;
2003 next = RTW_NEXT_IDX(tdb, next), i++) {
2004 if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
2005 break;
2006 }
2007 printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
2008 ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
2009 if (tdb->tdb_next == next)
2010 continue;
2011 tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
2012 }
2013 }
2014 #endif
2015
2016 static void
2017 rtw_txdescs_reset(struct rtw_softc *sc)
2018 {
2019 int pri;
2020 struct rtw_txsoft_blk *tsb;
2021 struct rtw_txdesc_blk *tdb;
2022
2023 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2024 tsb = &sc->sc_txsoft_blk[pri];
2025 tdb = &sc->sc_txdesc_blk[pri];
2026 rtw_collect_txring(sc, tsb, tdb, 1);
2027 #ifdef RTW_DIAG
2028 if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
2029 printf("%s: packets left in ring %d\n", __func__, pri);
2030 #endif
2031 }
2032 }
2033
2034 static void
2035 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2036 {
2037 printf("%s: tx fifo underflow\n", sc->sc_dev.dv_xname);
2038
2039 RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
2040 "\n", sc->sc_dev.dv_xname, isr));
2041
2042 #ifdef RTW_DEBUG
2043 rtw_dump_rings(sc);
2044 #endif /* RTW_DEBUG */
2045
2046 /* Collect tx'd packets. XXX let's hope this stops the transmit
2047 * timeouts.
2048 */
2049 rtw_txdescs_reset(sc);
2050
2051 #ifdef RTW_DEBUG
2052 rtw_dump_rings(sc);
2053 #endif /* RTW_DEBUG */
2054 }
2055
2056 static inline void
2057 rtw_suspend_ticks(struct rtw_softc *sc)
2058 {
2059 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2060 ("%s: suspending ticks\n", sc->sc_dev.dv_xname));
2061 sc->sc_do_tick = 0;
2062 }
2063
2064 static inline void
2065 rtw_resume_ticks(struct rtw_softc *sc)
2066 {
2067 uint32_t tsftrl0, tsftrl1, next_tick;
2068
2069 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2070
2071 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2072 next_tick = tsftrl1 + 1000000;
2073 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
2074
2075 sc->sc_do_tick = 1;
2076
2077 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2078 ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2079 sc->sc_dev.dv_xname, tsftrl1 - tsftrl0, tsftrl1, next_tick));
2080 }
2081
2082 static void
2083 rtw_intr_timeout(struct rtw_softc *sc)
2084 {
2085 RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", sc->sc_dev.dv_xname));
2086 if (sc->sc_do_tick)
2087 rtw_resume_ticks(sc);
2088 return;
2089 }
2090
2091 int
2092 rtw_intr(void *arg)
2093 {
2094 int i;
2095 struct rtw_softc *sc = arg;
2096 struct rtw_regs *regs = &sc->sc_regs;
2097 uint16_t isr;
2098 struct ifnet *ifp = &sc->sc_if;
2099
2100 /*
2101 * If the interface isn't running, the interrupt couldn't
2102 * possibly have come from us.
2103 */
2104 if ((sc->sc_flags & RTW_F_ENABLED) == 0 ||
2105 (ifp->if_flags & IFF_RUNNING) == 0 ||
2106 !device_is_active(&sc->sc_dev)) {
2107 RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n", sc->sc_dev.dv_xname));
2108 return (0);
2109 }
2110
2111 for (i = 0; i < 10; i++) {
2112 isr = RTW_READ16(regs, RTW_ISR);
2113
2114 RTW_WRITE16(regs, RTW_ISR, isr);
2115 RTW_WBR(regs, RTW_ISR, RTW_ISR);
2116
2117 if (sc->sc_intr_ack != NULL)
2118 (*sc->sc_intr_ack)(regs);
2119
2120 if (isr == 0)
2121 break;
2122
2123 #ifdef RTW_DEBUG
2124 #define PRINTINTR(flag) do { \
2125 if ((isr & flag) != 0) { \
2126 printf("%s" #flag, delim); \
2127 delim = ","; \
2128 } \
2129 } while (0)
2130
2131 if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2132 const char *delim = "<";
2133
2134 printf("%s: reg[ISR] = %x", sc->sc_dev.dv_xname, isr);
2135
2136 PRINTINTR(RTW_INTR_TXFOVW);
2137 PRINTINTR(RTW_INTR_TIMEOUT);
2138 PRINTINTR(RTW_INTR_BCNINT);
2139 PRINTINTR(RTW_INTR_ATIMINT);
2140 PRINTINTR(RTW_INTR_TBDER);
2141 PRINTINTR(RTW_INTR_TBDOK);
2142 PRINTINTR(RTW_INTR_THPDER);
2143 PRINTINTR(RTW_INTR_THPDOK);
2144 PRINTINTR(RTW_INTR_TNPDER);
2145 PRINTINTR(RTW_INTR_TNPDOK);
2146 PRINTINTR(RTW_INTR_RXFOVW);
2147 PRINTINTR(RTW_INTR_RDU);
2148 PRINTINTR(RTW_INTR_TLPDER);
2149 PRINTINTR(RTW_INTR_TLPDOK);
2150 PRINTINTR(RTW_INTR_RER);
2151 PRINTINTR(RTW_INTR_ROK);
2152
2153 printf(">\n");
2154 }
2155 #undef PRINTINTR
2156 #endif /* RTW_DEBUG */
2157
2158 if ((isr & RTW_INTR_RX) != 0)
2159 rtw_intr_rx(sc, isr);
2160 if ((isr & RTW_INTR_TX) != 0)
2161 rtw_intr_tx(sc, isr);
2162 if ((isr & RTW_INTR_BEACON) != 0)
2163 rtw_intr_beacon(sc, isr);
2164 if ((isr & RTW_INTR_ATIMINT) != 0)
2165 rtw_intr_atim(sc);
2166 if ((isr & RTW_INTR_IOERROR) != 0)
2167 rtw_intr_ioerror(sc, isr);
2168 if ((isr & RTW_INTR_TIMEOUT) != 0)
2169 rtw_intr_timeout(sc);
2170 }
2171
2172 return 1;
2173 }
2174
2175 /* Must be called at splnet. */
2176 static void
2177 rtw_stop(struct ifnet *ifp, int disable)
2178 {
2179 int pri;
2180 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2181 struct ieee80211com *ic = &sc->sc_ic;
2182 struct rtw_regs *regs = &sc->sc_regs;
2183
2184 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2185 return;
2186
2187 rtw_suspend_ticks(sc);
2188
2189 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2190
2191 if ((sc->sc_flags & RTW_F_INVALID) == 0) {
2192 /* Disable interrupts. */
2193 RTW_WRITE16(regs, RTW_IMR, 0);
2194
2195 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2196
2197 /* Stop the transmit and receive processes. First stop DMA,
2198 * then disable receiver and transmitter.
2199 */
2200 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2201
2202 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2203
2204 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2205 }
2206
2207 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2208 rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2209 &sc->sc_txsoft_blk[pri]);
2210 }
2211
2212 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2213
2214 if (disable)
2215 rtw_disable(sc);
2216
2217 /* Mark the interface as not running. Cancel the watchdog timer. */
2218 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2219 ifp->if_timer = 0;
2220
2221 return;
2222 }
2223
2224 const char *
2225 rtw_pwrstate_string(enum rtw_pwrstate power)
2226 {
2227 switch (power) {
2228 case RTW_ON:
2229 return "on";
2230 case RTW_SLEEP:
2231 return "sleep";
2232 case RTW_OFF:
2233 return "off";
2234 default:
2235 return "unknown";
2236 }
2237 }
2238
2239 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2240 * reference driver, plus a magic Maxim "ON" value that comes from
2241 * the Realtek document "Windows PG for Rtl8180."
2242 */
2243 static void
2244 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2245 int before_rf, int digphy)
2246 {
2247 uint32_t anaparm;
2248
2249 anaparm = RTW_READ(regs, RTW_ANAPARM);
2250 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2251
2252 switch (power) {
2253 case RTW_OFF:
2254 if (before_rf)
2255 return;
2256 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2257 anaparm |= RTW_ANAPARM_TXDACOFF;
2258 break;
2259 case RTW_SLEEP:
2260 if (!before_rf)
2261 return;
2262 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2263 anaparm |= RTW_ANAPARM_TXDACOFF;
2264 break;
2265 case RTW_ON:
2266 if (!before_rf)
2267 return;
2268 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2269 break;
2270 }
2271 RTW_DPRINTF(RTW_DEBUG_PWR,
2272 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2273 __func__, rtw_pwrstate_string(power),
2274 (before_rf) ? "before" : "after", anaparm));
2275
2276 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2277 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2278 }
2279
2280 /* XXX I am using the RFMD settings gleaned from the reference
2281 * driver. They agree
2282 */
2283 static void
2284 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2285 int before_rf, int digphy)
2286 {
2287 uint32_t anaparm;
2288
2289 anaparm = RTW_READ(regs, RTW_ANAPARM);
2290 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2291
2292 switch (power) {
2293 case RTW_OFF:
2294 if (before_rf)
2295 return;
2296 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2297 anaparm |= RTW_ANAPARM_TXDACOFF;
2298 break;
2299 case RTW_SLEEP:
2300 if (!before_rf)
2301 return;
2302 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2303 anaparm |= RTW_ANAPARM_TXDACOFF;
2304 break;
2305 case RTW_ON:
2306 if (!before_rf)
2307 return;
2308 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2309 break;
2310 }
2311 RTW_DPRINTF(RTW_DEBUG_PWR,
2312 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2313 __func__, rtw_pwrstate_string(power),
2314 (before_rf) ? "before" : "after", anaparm));
2315
2316 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2317 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2318 }
2319
2320 static void
2321 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2322 int before_rf, int digphy)
2323 {
2324 uint32_t anaparm;
2325
2326 anaparm = RTW_READ(regs, RTW_ANAPARM);
2327 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2328
2329 switch (power) {
2330 case RTW_OFF:
2331 if (before_rf)
2332 return;
2333 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2334 anaparm |= RTW_ANAPARM_TXDACOFF;
2335 break;
2336 case RTW_SLEEP:
2337 if (!before_rf)
2338 return;
2339 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2340 anaparm |= RTW_ANAPARM_TXDACOFF;
2341 break;
2342 case RTW_ON:
2343 if (!before_rf)
2344 return;
2345 if (digphy) {
2346 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2347 /* XXX guess */
2348 anaparm |= RTW_ANAPARM_TXDACOFF;
2349 } else
2350 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2351 break;
2352 }
2353 RTW_DPRINTF(RTW_DEBUG_PWR,
2354 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2355 __func__, rtw_pwrstate_string(power),
2356 (before_rf) ? "before" : "after", anaparm));
2357
2358 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2359 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2360 }
2361
2362 static void
2363 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2364 int digphy)
2365 {
2366 struct rtw_regs *regs = &sc->sc_regs;
2367
2368 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2369
2370 (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2371
2372 rtw_set_access(regs, RTW_ACCESS_NONE);
2373
2374 return;
2375 }
2376
2377 static int
2378 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2379 {
2380 int rc;
2381
2382 RTW_DPRINTF(RTW_DEBUG_PWR,
2383 ("%s: %s->%s\n", __func__,
2384 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2385
2386 if (sc->sc_pwrstate == power)
2387 return 0;
2388
2389 rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2390 rc = rtw_rf_pwrstate(sc->sc_rf, power);
2391 rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2392
2393 switch (power) {
2394 case RTW_ON:
2395 /* TBD set LEDs */
2396 break;
2397 case RTW_SLEEP:
2398 /* TBD */
2399 break;
2400 case RTW_OFF:
2401 /* TBD */
2402 break;
2403 }
2404 if (rc == 0)
2405 sc->sc_pwrstate = power;
2406 else
2407 sc->sc_pwrstate = RTW_OFF;
2408 return rc;
2409 }
2410
2411 static int
2412 rtw_tune(struct rtw_softc *sc)
2413 {
2414 struct ieee80211com *ic = &sc->sc_ic;
2415 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
2416 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
2417 u_int chan;
2418 int rc;
2419 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2420 dflantb = sc->sc_flags & RTW_F_DFLANTB;
2421
2422 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2423 if (chan == IEEE80211_CHAN_ANY)
2424 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
2425
2426 rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2427 rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2428
2429 rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2430 rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2431
2432 if (chan == sc->sc_cur_chan) {
2433 RTW_DPRINTF(RTW_DEBUG_TUNE,
2434 ("%s: already tuned chan #%d\n", __func__, chan));
2435 return 0;
2436 }
2437
2438 rtw_suspend_ticks(sc);
2439
2440 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2441
2442 /* TBD wait for Tx to complete */
2443
2444 KASSERT((sc->sc_flags & RTW_F_ENABLED) != 0);
2445
2446 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2447 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2448 ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2449 /* XXX condition on powersaving */
2450 printf("%s: phy init failed\n", sc->sc_dev.dv_xname);
2451 }
2452
2453 sc->sc_cur_chan = chan;
2454
2455 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2456
2457 rtw_resume_ticks(sc);
2458
2459 return rc;
2460 }
2461
2462 void
2463 rtw_disable(struct rtw_softc *sc)
2464 {
2465 int rc;
2466
2467 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2468 return;
2469
2470 /* turn off PHY */
2471 if ((sc->sc_flags & RTW_F_INVALID) == 0 &&
2472 (rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2473 printf("%s: failed to turn off PHY (%d)\n",
2474 sc->sc_dev.dv_xname, rc);
2475 }
2476
2477 if (sc->sc_disable != NULL)
2478 (*sc->sc_disable)(sc);
2479
2480 sc->sc_flags &= ~RTW_F_ENABLED;
2481 }
2482
2483 int
2484 rtw_enable(struct rtw_softc *sc)
2485 {
2486 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2487 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2488 printf("%s: device enable failed\n",
2489 sc->sc_dev.dv_xname);
2490 return (EIO);
2491 }
2492 sc->sc_flags |= RTW_F_ENABLED;
2493 /* Power may have been removed, and WEP keys thus
2494 * reset.
2495 */
2496 sc->sc_flags &= ~RTW_F_DK_VALID;
2497 }
2498 return (0);
2499 }
2500
2501 static void
2502 rtw_transmit_config(struct rtw_regs *regs)
2503 {
2504 uint32_t tcr;
2505
2506 tcr = RTW_READ(regs, RTW_TCR);
2507
2508 tcr |= RTW_TCR_CWMIN;
2509 tcr &= ~RTW_TCR_MXDMA_MASK;
2510 tcr |= RTW_TCR_MXDMA_256;
2511 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
2512 tcr &= ~RTW_TCR_LBK_MASK;
2513 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
2514
2515 /* set short/long retry limits */
2516 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2517 tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
2518
2519 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
2520
2521 RTW_WRITE(regs, RTW_TCR, tcr);
2522 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2523 }
2524
2525 static inline void
2526 rtw_enable_interrupts(struct rtw_softc *sc)
2527 {
2528 struct rtw_regs *regs = &sc->sc_regs;
2529
2530 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2531 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2532
2533 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2534 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2535 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2536 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2537
2538 /* XXX necessary? */
2539 if (sc->sc_intr_ack != NULL)
2540 (*sc->sc_intr_ack)(regs);
2541 }
2542
2543 static void
2544 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2545 {
2546 uint8_t msr;
2547
2548 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2549 rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2550
2551 msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2552
2553 switch (opmode) {
2554 case IEEE80211_M_AHDEMO:
2555 case IEEE80211_M_IBSS:
2556 msr |= RTW_MSR_NETYPE_ADHOC_OK;
2557 break;
2558 case IEEE80211_M_HOSTAP:
2559 msr |= RTW_MSR_NETYPE_AP_OK;
2560 break;
2561 case IEEE80211_M_MONITOR:
2562 /* XXX */
2563 msr |= RTW_MSR_NETYPE_NOLINK;
2564 break;
2565 case IEEE80211_M_STA:
2566 msr |= RTW_MSR_NETYPE_INFRA_OK;
2567 break;
2568 }
2569 RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2570
2571 rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2572 }
2573
2574 #define rtw_calchash(addr) \
2575 (ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2576
2577 static void
2578 rtw_pktfilt_load(struct rtw_softc *sc)
2579 {
2580 struct rtw_regs *regs = &sc->sc_regs;
2581 struct ieee80211com *ic = &sc->sc_ic;
2582 struct ethercom *ec = &sc->sc_ec;
2583 struct ifnet *ifp = &sc->sc_if;
2584 int hash;
2585 uint32_t hashes[2] = { 0, 0 };
2586 struct ether_multi *enm;
2587 struct ether_multistep step;
2588
2589 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2590
2591 sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2592 sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2593
2594 sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2595 /* MAC auto-reset PHY (huh?) */
2596 sc->sc_rcr |= RTW_RCR_ENMARP;
2597 /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
2598 sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2599
2600 switch (ic->ic_opmode) {
2601 case IEEE80211_M_MONITOR:
2602 sc->sc_rcr |= RTW_RCR_MONITOR;
2603 break;
2604 case IEEE80211_M_AHDEMO:
2605 case IEEE80211_M_IBSS:
2606 /* receive broadcasts in our BSS */
2607 sc->sc_rcr |= RTW_RCR_ADD3;
2608 break;
2609 default:
2610 break;
2611 }
2612
2613 ifp->if_flags &= ~IFF_ALLMULTI;
2614
2615 /*
2616 * Program the 64-bit multicast hash filter.
2617 */
2618 ETHER_FIRST_MULTI(step, ec, enm);
2619 while (enm != NULL) {
2620 /* XXX */
2621 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2622 ETHER_ADDR_LEN) != 0) {
2623 ifp->if_flags |= IFF_ALLMULTI;
2624 break;
2625 }
2626
2627 hash = rtw_calchash(enm->enm_addrlo);
2628 hashes[hash >> 5] |= (1 << (hash & 0x1f));
2629 ETHER_NEXT_MULTI(step, enm);
2630 }
2631
2632 /* XXX accept all broadcast if scanning */
2633 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2634 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2635
2636 if (ifp->if_flags & IFF_PROMISC) {
2637 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2638 sc->sc_rcr |= RTW_RCR_ACRC32; /* accept frames failing CRC */
2639 sc->sc_rcr |= RTW_RCR_AICV; /* accept frames failing ICV */
2640 ifp->if_flags |= IFF_ALLMULTI;
2641 }
2642
2643 if (ifp->if_flags & IFF_ALLMULTI)
2644 hashes[0] = hashes[1] = 0xffffffff;
2645
2646 if ((hashes[0] | hashes[1]) != 0)
2647 sc->sc_rcr |= RTW_RCR_AM; /* accept multicast */
2648
2649 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2650 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2651 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2652 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2653
2654 DPRINTF(sc, RTW_DEBUG_PKTFILT,
2655 ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2656 sc->sc_dev.dv_xname, RTW_READ(regs, RTW_MAR0),
2657 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2658 }
2659
2660 static struct mbuf *
2661 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2662 {
2663 struct ieee80211com *ic = &sc->sc_ic;
2664 struct mbuf *m;
2665 struct ieee80211_beacon_offsets boff;
2666
2667 if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2668 RTW_DPRINTF(RTW_DEBUG_BEACON,
2669 ("%s: m %p len %u\n", __func__, m, m->m_len));
2670 }
2671 return m;
2672 }
2673
2674 /* Must be called at splnet. */
2675 static int
2676 rtw_init(struct ifnet *ifp)
2677 {
2678 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2679 struct ieee80211com *ic = &sc->sc_ic;
2680 struct rtw_regs *regs = &sc->sc_regs;
2681 int rc = 0;
2682
2683 if ((rc = rtw_enable(sc)) != 0)
2684 goto out;
2685
2686 /* Cancel pending I/O and reset. */
2687 rtw_stop(ifp, 0);
2688
2689 DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2690 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2691 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2692
2693 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2694 goto out;
2695
2696 if ((rc = rtw_swring_setup(sc)) != 0)
2697 goto out;
2698
2699 rtw_transmit_config(regs);
2700
2701 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2702
2703 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2704 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2705
2706 /* long PLCP header, 1Mb/2Mb basic rate */
2707 RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2708 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2709
2710 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2711 rtw_set_access(regs, RTW_ACCESS_NONE);
2712
2713 /* XXX from reference sources */
2714 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2715 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2716
2717 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev.dv_xname);
2718
2719 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2720 /* from Linux driver */
2721 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2722
2723 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2724
2725 rtw_enable_interrupts(sc);
2726
2727 rtw_pktfilt_load(sc);
2728
2729 rtw_hwring_setup(sc);
2730
2731 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2732
2733 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2734
2735 ifp->if_flags |= IFF_RUNNING;
2736 ic->ic_state = IEEE80211_S_INIT;
2737
2738 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2739 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2740
2741 rtw_resume_ticks(sc);
2742
2743 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2744
2745 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2746 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2747 else
2748 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2749
2750 out:
2751 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2752 return rc;
2753 }
2754
2755 static inline void
2756 rtw_led_init(struct rtw_regs *regs)
2757 {
2758 uint8_t cfg0, cfg1;
2759
2760 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2761
2762 cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2763 cfg0 |= RTW_CONFIG0_LEDGPOEN;
2764 RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2765
2766 cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2767 RTW_DPRINTF(RTW_DEBUG_LED,
2768 ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2769
2770 cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2771 cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2772 RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2773
2774 rtw_set_access(regs, RTW_ACCESS_NONE);
2775 }
2776
2777 /*
2778 * IEEE80211_S_INIT: LED1 off
2779 *
2780 * IEEE80211_S_AUTH,
2781 * IEEE80211_S_ASSOC,
2782 * IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2783 *
2784 * IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx
2785 */
2786 static void
2787 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2788 {
2789 struct rtw_led_state *ls;
2790
2791 ls = &sc->sc_led_state;
2792
2793 switch (nstate) {
2794 case IEEE80211_S_INIT:
2795 rtw_led_init(&sc->sc_regs);
2796 callout_stop(&ls->ls_slow_ch);
2797 callout_stop(&ls->ls_fast_ch);
2798 ls->ls_slowblink = 0;
2799 ls->ls_actblink = 0;
2800 ls->ls_default = 0;
2801 break;
2802 case IEEE80211_S_SCAN:
2803 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2804 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2805 /*FALLTHROUGH*/
2806 case IEEE80211_S_AUTH:
2807 case IEEE80211_S_ASSOC:
2808 ls->ls_default = RTW_LED1;
2809 ls->ls_actblink = RTW_LED1;
2810 ls->ls_slowblink = RTW_LED1;
2811 break;
2812 case IEEE80211_S_RUN:
2813 ls->ls_slowblink = 0;
2814 break;
2815 }
2816 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2817 }
2818
2819 static void
2820 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2821 {
2822 uint8_t led_condition;
2823 bus_size_t ofs;
2824 uint8_t mask, newval, val;
2825
2826 led_condition = ls->ls_default;
2827
2828 if (ls->ls_state & RTW_LED_S_SLOW)
2829 led_condition ^= ls->ls_slowblink;
2830 if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX))
2831 led_condition ^= ls->ls_actblink;
2832
2833 RTW_DPRINTF(RTW_DEBUG_LED,
2834 ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2835
2836 switch (hwverid) {
2837 default:
2838 case 'F':
2839 ofs = RTW_PSR;
2840 newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2841 if (led_condition & RTW_LED0)
2842 newval &= ~RTW_PSR_LEDGPO0;
2843 if (led_condition & RTW_LED1)
2844 newval &= ~RTW_PSR_LEDGPO1;
2845 break;
2846 case 'D':
2847 ofs = RTW_9346CR;
2848 mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2849 newval = RTW_9346CR_EEM_PROGRAM;
2850 if (led_condition & RTW_LED0)
2851 newval |= RTW_9346CR_EEDI;
2852 if (led_condition & RTW_LED1)
2853 newval |= RTW_9346CR_EECS;
2854 break;
2855 }
2856 val = RTW_READ8(regs, ofs);
2857 RTW_DPRINTF(RTW_DEBUG_LED,
2858 ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2859 (uintptr_t)ofs));
2860 val &= ~mask;
2861 val |= newval;
2862 RTW_WRITE8(regs, ofs, val);
2863 RTW_DPRINTF(RTW_DEBUG_LED,
2864 ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2865 (uintptr_t)ofs));
2866 RTW_SYNC(regs, ofs, ofs);
2867 }
2868
2869 static void
2870 rtw_led_fastblink(void *arg)
2871 {
2872 int ostate, s;
2873 struct rtw_softc *sc = (struct rtw_softc *)arg;
2874 struct rtw_led_state *ls = &sc->sc_led_state;
2875
2876 s = splnet();
2877 ostate = ls->ls_state;
2878 ls->ls_state ^= ls->ls_event;
2879
2880 if ((ls->ls_event & RTW_LED_S_TX) == 0)
2881 ls->ls_state &= ~RTW_LED_S_TX;
2882
2883 if ((ls->ls_event & RTW_LED_S_RX) == 0)
2884 ls->ls_state &= ~RTW_LED_S_RX;
2885
2886 ls->ls_event = 0;
2887
2888 if (ostate != ls->ls_state)
2889 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2890 splx(s);
2891
2892 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2893 }
2894
2895 static void
2896 rtw_led_slowblink(void *arg)
2897 {
2898 int s;
2899 struct rtw_softc *sc = (struct rtw_softc *)arg;
2900 struct rtw_led_state *ls = &sc->sc_led_state;
2901
2902 s = splnet();
2903 ls->ls_state ^= RTW_LED_S_SLOW;
2904 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2905 splx(s);
2906 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2907 }
2908
2909 static inline void
2910 rtw_led_attach(struct rtw_led_state *ls, void *arg)
2911 {
2912 callout_init(&ls->ls_fast_ch, 0);
2913 callout_init(&ls->ls_slow_ch, 0);
2914 callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
2915 callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
2916 }
2917
2918 static int
2919 rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2920 {
2921 int rc = 0, s;
2922 struct rtw_softc *sc = ifp->if_softc;
2923
2924 s = splnet();
2925 if (cmd == SIOCSIFFLAGS) {
2926 if ((ifp->if_flags & IFF_UP) != 0) {
2927 if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2928 rtw_pktfilt_load(sc);
2929 else
2930 rc = rtw_init(ifp);
2931 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2932 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2933 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2934 rtw_stop(ifp, 1);
2935 }
2936 } else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
2937 ; /* nothing to do */
2938 else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
2939 /* reload packet filter if running */
2940 if (ifp->if_flags & IFF_RUNNING)
2941 rtw_pktfilt_load(sc);
2942 rc = 0;
2943 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2944 /* reinitialize h/w if activated */
2945 rc = rtw_init(ifp);
2946 else
2947 rc = 0;
2948 splx(s);
2949 return rc;
2950 }
2951
2952 /* Select a transmit ring with at least one h/w and s/w descriptor free.
2953 * Return 0 on success, -1 on failure.
2954 */
2955 static inline int
2956 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
2957 struct rtw_txdesc_blk **tdbp, int pri)
2958 {
2959 struct rtw_txsoft_blk *tsb;
2960 struct rtw_txdesc_blk *tdb;
2961
2962 KASSERT(pri >= 0 && pri < RTW_NTXPRI);
2963
2964 tsb = &sc->sc_txsoft_blk[pri];
2965 tdb = &sc->sc_txdesc_blk[pri];
2966
2967 if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
2968 if (tsb->tsb_tx_timer == 0)
2969 tsb->tsb_tx_timer = 5;
2970 *tsbp = NULL;
2971 *tdbp = NULL;
2972 return -1;
2973 }
2974 *tsbp = tsb;
2975 *tdbp = tdb;
2976 return 0;
2977 }
2978
2979 static inline struct mbuf *
2980 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
2981 struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
2982 struct ieee80211_node **nip, short *if_flagsp)
2983 {
2984 struct mbuf *m;
2985
2986 if (IF_IS_EMPTY(ifq))
2987 return NULL;
2988 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
2989 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
2990 __func__, pri));
2991 *if_flagsp |= IFF_OACTIVE;
2992 sc->sc_if.if_timer = 1;
2993 return NULL;
2994 }
2995 IF_DEQUEUE(ifq, m);
2996 *nip = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2997 m->m_pkthdr.rcvif = NULL;
2998 KASSERT(*nip != NULL);
2999 return m;
3000 }
3001
3002 /* Point *mp at the next 802.11 frame to transmit. Point *tsbp
3003 * at the driver's selection of transmit control block for the packet.
3004 */
3005 static inline int
3006 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
3007 struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
3008 struct ieee80211_node **nip)
3009 {
3010 int pri;
3011 struct ether_header *eh;
3012 struct mbuf *m0;
3013 struct rtw_softc *sc;
3014 short *if_flagsp;
3015
3016 *mp = NULL;
3017
3018 sc = (struct rtw_softc *)ifp->if_softc;
3019
3020 DPRINTF(sc, RTW_DEBUG_XMIT,
3021 ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
3022
3023 if_flagsp = &ifp->if_flags;
3024
3025 if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3026 (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3027 tdbp, nip, if_flagsp)) != NULL) {
3028 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3029 __func__));
3030 return 0;
3031 }
3032
3033 if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3034 tdbp, nip, if_flagsp)) != NULL) {
3035 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3036 __func__));
3037 return 0;
3038 }
3039
3040 if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3041 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3042 return 0;
3043 }
3044
3045 IFQ_POLL(&ifp->if_snd, m0);
3046 if (m0 == NULL) {
3047 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3048 __func__));
3049 return 0;
3050 }
3051
3052 pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3053
3054 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3055 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3056 __func__, pri));
3057 *if_flagsp |= IFF_OACTIVE;
3058 sc->sc_if.if_timer = 1;
3059 return 0;
3060 }
3061
3062 IFQ_DEQUEUE(&ifp->if_snd, m0);
3063 if (m0 == NULL) {
3064 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3065 __func__));
3066 return 0;
3067 }
3068 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3069 ifp->if_opackets++;
3070 #if NBPFILTER > 0
3071 if (ifp->if_bpf)
3072 bpf_mtap(ifp->if_bpf, m0);
3073 #endif
3074 eh = mtod(m0, struct ether_header *);
3075 *nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3076 if (*nip == NULL) {
3077 /* NB: ieee80211_find_txnode does stat+msg */
3078 m_freem(m0);
3079 return -1;
3080 }
3081 if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3082 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3083 ifp->if_oerrors++;
3084 return -1;
3085 }
3086 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3087 *mp = m0;
3088 return 0;
3089 }
3090
3091 static int
3092 rtw_seg_too_short(bus_dmamap_t dmamap)
3093 {
3094 int i;
3095 for (i = 0; i < dmamap->dm_nsegs; i++) {
3096 if (dmamap->dm_segs[i].ds_len < 4)
3097 return 1;
3098 }
3099 return 0;
3100 }
3101
3102 /* TBD factor with atw_start */
3103 static struct mbuf *
3104 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3105 u_int ndescfree, const char *dvname)
3106 {
3107 int first, rc;
3108 struct mbuf *m, *m0;
3109
3110 m0 = chain;
3111
3112 /*
3113 * Load the DMA map. Copy and try (once) again if the packet
3114 * didn't fit in the alloted number of segments.
3115 */
3116 for (first = 1;
3117 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3118 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
3119 dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3120 first = 0) {
3121 if (rc == 0) {
3122 #ifdef RTW_DIAGxxx
3123 if (rtw_seg_too_short(dmam)) {
3124 printf("%s: short segment, mbuf lengths:", __func__);
3125 for (m = m0; m; m = m->m_next)
3126 printf(" %d", m->m_len);
3127 printf("\n");
3128 }
3129 #endif
3130 bus_dmamap_unload(dmat, dmam);
3131 }
3132 MGETHDR(m, M_DONTWAIT, MT_DATA);
3133 if (m == NULL) {
3134 printf("%s: unable to allocate Tx mbuf\n",
3135 dvname);
3136 break;
3137 }
3138 if (m0->m_pkthdr.len > MHLEN) {
3139 MCLGET(m, M_DONTWAIT);
3140 if ((m->m_flags & M_EXT) == 0) {
3141 printf("%s: cannot allocate Tx cluster\n",
3142 dvname);
3143 m_freem(m);
3144 break;
3145 }
3146 }
3147 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3148 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3149 m_freem(m0);
3150 m0 = m;
3151 m = NULL;
3152 }
3153 if (rc != 0) {
3154 printf("%s: cannot load Tx buffer, rc = %d\n", dvname, rc);
3155 m_freem(m0);
3156 return NULL;
3157 } else if (rtw_seg_too_short(dmam)) {
3158 printf("%s: cannot load Tx buffer, segment too short\n",
3159 dvname);
3160 bus_dmamap_unload(dmat, dmam);
3161 m_freem(m0);
3162 return NULL;
3163 } else if (dmam->dm_nsegs > ndescfree) {
3164 printf("%s: too many tx segments\n", dvname);
3165 bus_dmamap_unload(dmat, dmam);
3166 m_freem(m0);
3167 return NULL;
3168 }
3169 return m0;
3170 }
3171
3172 #ifdef RTW_DEBUG
3173 static void
3174 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3175 struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3176 {
3177 struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3178 DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3179 "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3180 sc->sc_dev.dv_xname, ts, action, desc,
3181 le32toh(td->td_buf), le32toh(td->td_next),
3182 le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3183 le32toh(td->td_len)));
3184 }
3185 #endif /* RTW_DEBUG */
3186
3187 static void
3188 rtw_start(struct ifnet *ifp)
3189 {
3190 uint8_t tppoll;
3191 int desc, i, lastdesc, npkt, rate;
3192 uint32_t proto_ctl0, ctl0, ctl1;
3193 bus_dmamap_t dmamap;
3194 struct ieee80211com *ic;
3195 struct ieee80211_duration *d0;
3196 struct ieee80211_frame_min *wh;
3197 struct ieee80211_node *ni = NULL; /* XXX: GCC */
3198 struct mbuf *m0;
3199 struct rtw_softc *sc;
3200 struct rtw_txsoft_blk *tsb = NULL; /* XXX: GCC */
3201 struct rtw_txdesc_blk *tdb = NULL; /* XXX: GCC */
3202 struct rtw_txsoft *ts;
3203 struct rtw_txdesc *td;
3204 struct ieee80211_key *k;
3205
3206 sc = (struct rtw_softc *)ifp->if_softc;
3207 ic = &sc->sc_ic;
3208
3209 DPRINTF(sc, RTW_DEBUG_XMIT,
3210 ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
3211
3212 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3213 goto out;
3214
3215 /* XXX do real rate control */
3216 proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3217
3218 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3219 proto_ctl0 |= RTW_TXCTL0_SPLCP;
3220
3221 for (;;) {
3222 if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3223 continue;
3224 if (m0 == NULL)
3225 break;
3226
3227 wh = mtod(m0, struct ieee80211_frame_min *);
3228
3229 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3230 (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3231 m_freem(m0);
3232 break;
3233 } else
3234 k = NULL;
3235
3236 ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3237
3238 dmamap = ts->ts_dmamap;
3239
3240 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3241 tdb->tdb_nfree, sc->sc_dev.dv_xname);
3242
3243 if (m0 == NULL || dmamap->dm_nsegs == 0) {
3244 DPRINTF(sc, RTW_DEBUG_XMIT,
3245 ("%s: fail dmamap load\n", __func__));
3246 goto post_dequeue_err;
3247 }
3248
3249 /* Note well: rtw_dmamap_load_txbuf may have created
3250 * a new chain, so we must find the header once
3251 * more.
3252 */
3253 wh = mtod(m0, struct ieee80211_frame_min *);
3254
3255 /* XXX do real rate control */
3256 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3257 IEEE80211_FC0_TYPE_MGT)
3258 rate = 2;
3259 else
3260 rate = MAX(2, ieee80211_get_rate(ni));
3261
3262 #ifdef RTW_DEBUG
3263 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3264 (IFF_DEBUG|IFF_LINK2)) {
3265 ieee80211_dump_pkt(mtod(m0, uint8_t *),
3266 (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3267 : sizeof(wh),
3268 rate, 0);
3269 }
3270 #endif /* RTW_DEBUG */
3271 ctl0 = proto_ctl0 |
3272 __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3273
3274 switch (rate) {
3275 default:
3276 case 2:
3277 ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3278 break;
3279 case 4:
3280 ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3281 break;
3282 case 11:
3283 ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3284 break;
3285 case 22:
3286 ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3287 break;
3288 }
3289 /* XXX >= ? Compare after fragmentation? */
3290 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3291 ctl0 |= RTW_TXCTL0_RTSEN;
3292
3293 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3294 * seem to care, since we don't activate h/w Tx
3295 * encryption.
3296 */
3297 if (k != NULL) {
3298 ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3299 RTW_TXCTL0_KEYID_MASK;
3300 }
3301
3302 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3303 IEEE80211_FC0_TYPE_MGT) {
3304 ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3305 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3306 IEEE80211_FC0_SUBTYPE_BEACON)
3307 ctl0 |= RTW_TXCTL0_BEACON;
3308 }
3309
3310 if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3311 ic->ic_flags, ic->ic_fragthreshold,
3312 rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3313 (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3314 (IFF_DEBUG|IFF_LINK2)) == -1) {
3315 DPRINTF(sc, RTW_DEBUG_XMIT,
3316 ("%s: fail compute duration\n", __func__));
3317 goto post_load_err;
3318 }
3319
3320 d0 = &ts->ts_d0;
3321
3322 *(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3323
3324 ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3325 __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3326
3327 if (d0->d_residue)
3328 ctl1 |= RTW_TXCTL1_LENGEXT;
3329
3330 /* TBD fragmentation */
3331
3332 ts->ts_first = tdb->tdb_next;
3333
3334 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3335 BUS_DMASYNC_PREWRITE);
3336
3337 KASSERT(ts->ts_first < tdb->tdb_ndesc);
3338
3339 #if NBPFILTER > 0
3340 if (ic->ic_rawbpf != NULL)
3341 bpf_mtap((void *)ic->ic_rawbpf, m0);
3342
3343 if (sc->sc_radiobpf != NULL) {
3344 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3345
3346 rt->rt_rate = rate;
3347
3348 bpf_mtap2(sc->sc_radiobpf, (void *)rt,
3349 sizeof(sc->sc_txtapu), m0);
3350 }
3351 #endif /* NBPFILTER > 0 */
3352
3353 for (i = 0, lastdesc = desc = ts->ts_first;
3354 i < dmamap->dm_nsegs;
3355 i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3356 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3357 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3358 ("%s: seg too long\n", __func__));
3359 goto post_load_err;
3360 }
3361 td = &tdb->tdb_desc[desc];
3362 td->td_ctl0 = htole32(ctl0);
3363 td->td_ctl1 = htole32(ctl1);
3364 td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3365 td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3366 td->td_next = htole32(RTW_NEXT_DESC(tdb, desc));
3367 if (i != 0)
3368 td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3369 lastdesc = desc;
3370 #ifdef RTW_DEBUG
3371 rtw_print_txdesc(sc, "load", ts, tdb, desc);
3372 #endif /* RTW_DEBUG */
3373 }
3374
3375 KASSERT(desc < tdb->tdb_ndesc);
3376
3377 ts->ts_ni = ni;
3378 KASSERT(ni != NULL);
3379 ts->ts_mbuf = m0;
3380 ts->ts_last = lastdesc;
3381 tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3382 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3383 htole32(RTW_TXCTL0_FS);
3384
3385 #ifdef RTW_DEBUG
3386 rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3387 rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3388 #endif /* RTW_DEBUG */
3389
3390 tdb->tdb_nfree -= dmamap->dm_nsegs;
3391 tdb->tdb_next = desc;
3392
3393 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3394 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3395
3396 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3397 htole32(RTW_TXCTL0_OWN);
3398
3399 #ifdef RTW_DEBUG
3400 rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3401 #endif /* RTW_DEBUG */
3402
3403 rtw_txdescs_sync(tdb, ts->ts_first, 1,
3404 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3405
3406 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3407 SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3408
3409 if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3410 sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3411 tsb->tsb_tx_timer = 5;
3412 ifp->if_timer = 1;
3413 tppoll = RTW_READ8(&sc->sc_regs, RTW_TPPOLL);
3414 tppoll &= ~RTW_TPPOLL_SALL;
3415 tppoll |= tsb->tsb_poll & RTW_TPPOLL_ALL;
3416 RTW_WRITE8(&sc->sc_regs, RTW_TPPOLL, tppoll);
3417 RTW_SYNC(&sc->sc_regs, RTW_TPPOLL, RTW_TPPOLL);
3418 }
3419 out:
3420 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3421 return;
3422 post_load_err:
3423 bus_dmamap_unload(sc->sc_dmat, dmamap);
3424 m_freem(m0);
3425 post_dequeue_err:
3426 ieee80211_free_node(ni);
3427 return;
3428 }
3429
3430 static void
3431 rtw_idle(struct rtw_regs *regs)
3432 {
3433 int active;
3434
3435 /* request stop DMA; wait for packets to stop transmitting. */
3436
3437 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3438 RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3439
3440 for (active = 0; active < 300 &&
3441 (RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0; active++)
3442 DELAY(10);
3443 printf("%s: transmit DMA idle in %dus\n", __func__, active * 10);
3444 }
3445
3446 static void
3447 rtw_watchdog(struct ifnet *ifp)
3448 {
3449 int pri, tx_timeouts = 0;
3450 struct rtw_softc *sc;
3451 struct rtw_txsoft_blk *tsb;
3452
3453 sc = ifp->if_softc;
3454
3455 ifp->if_timer = 0;
3456
3457 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
3458 return;
3459
3460 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3461 tsb = &sc->sc_txsoft_blk[pri];
3462
3463 if (tsb->tsb_tx_timer == 0)
3464 continue;
3465 else if (--tsb->tsb_tx_timer == 0) {
3466 if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3467 continue;
3468 printf("%s: transmit timeout, priority %d\n",
3469 ifp->if_xname, pri);
3470 ifp->if_oerrors++;
3471 if (pri != RTW_TXPRIBCN)
3472 tx_timeouts++;
3473 } else
3474 ifp->if_timer = 1;
3475 }
3476
3477 if (tx_timeouts > 0) {
3478 /* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3479 * reset s/w tx-ring pointers, and start transmission.
3480 *
3481 * TBD Stop/restart just the broken rings?
3482 */
3483 rtw_idle(&sc->sc_regs);
3484 rtw_io_enable(sc, RTW_CR_TE, 0);
3485 rtw_txdescs_reset(sc);
3486 rtw_io_enable(sc, RTW_CR_TE, 1);
3487 rtw_start(ifp);
3488 }
3489 ieee80211_watchdog(&sc->sc_ic);
3490 return;
3491 }
3492
3493 static void
3494 rtw_next_scan(void *arg)
3495 {
3496 struct ieee80211com *ic = arg;
3497 int s;
3498
3499 /* don't call rtw_start w/o network interrupts blocked */
3500 s = splnet();
3501 if (ic->ic_state == IEEE80211_S_SCAN)
3502 ieee80211_next_scan(ic);
3503 splx(s);
3504 }
3505
3506 static void
3507 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3508 {
3509 uint16_t bcnitv, bintritv, intval;
3510 int i;
3511 struct rtw_regs *regs = &sc->sc_regs;
3512
3513 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3514 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3515
3516 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3517
3518 rtw_set_access(regs, RTW_ACCESS_CONFIG);
3519
3520 intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3521
3522 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3523 bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3524 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3525 /* interrupt host 1ms before the TBTT */
3526 bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3527 bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3528 RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3529 /* magic from Linux */
3530 RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3531 RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3532 rtw_set_access(regs, RTW_ACCESS_NONE);
3533
3534 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3535 }
3536
3537 /* Synchronize the hardware state with the software state. */
3538 static int
3539 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3540 {
3541 struct ifnet *ifp = ic->ic_ifp;
3542 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3543 enum ieee80211_state ostate;
3544 int error;
3545
3546 ostate = ic->ic_state;
3547
3548 rtw_led_newstate(sc, nstate);
3549
3550 if (nstate == IEEE80211_S_INIT) {
3551 callout_stop(&sc->sc_scan_ch);
3552 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3553 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3554 }
3555
3556 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3557 rtw_pwrstate(sc, RTW_ON);
3558
3559 if ((error = rtw_tune(sc)) != 0)
3560 return error;
3561
3562 switch (nstate) {
3563 case IEEE80211_S_INIT:
3564 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3565 break;
3566 case IEEE80211_S_SCAN:
3567 if (ostate != IEEE80211_S_SCAN) {
3568 (void)memset(ic->ic_bss->ni_bssid, 0,
3569 IEEE80211_ADDR_LEN);
3570 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3571 }
3572
3573 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3574 rtw_next_scan, ic);
3575
3576 break;
3577 case IEEE80211_S_RUN:
3578 switch (ic->ic_opmode) {
3579 case IEEE80211_M_HOSTAP:
3580 case IEEE80211_M_IBSS:
3581 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3582 /*FALLTHROUGH*/
3583 case IEEE80211_M_AHDEMO:
3584 case IEEE80211_M_STA:
3585 rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3586 ic->ic_bss->ni_intval);
3587 break;
3588 case IEEE80211_M_MONITOR:
3589 break;
3590 }
3591 rtw_set_nettype(sc, ic->ic_opmode);
3592 break;
3593 case IEEE80211_S_ASSOC:
3594 case IEEE80211_S_AUTH:
3595 break;
3596 }
3597
3598 if (nstate != IEEE80211_S_SCAN)
3599 callout_stop(&sc->sc_scan_ch);
3600
3601 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3602 }
3603
3604 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3605 static uint64_t
3606 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3607 {
3608 uint32_t tsftl, tsfth;
3609
3610 tsfth = RTW_READ(regs, RTW_TSFTRH);
3611 tsftl = RTW_READ(regs, RTW_TSFTRL);
3612 if (tsftl < rstamp) /* Compensate for rollover. */
3613 tsfth--;
3614 return ((uint64_t)tsfth << 32) | rstamp;
3615 }
3616
3617 static void
3618 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3619 struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3620 {
3621 struct ifnet *ifp = ic->ic_ifp;
3622 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3623
3624 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3625
3626 switch (subtype) {
3627 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3628 case IEEE80211_FC0_SUBTYPE_BEACON:
3629 if (ic->ic_opmode == IEEE80211_M_IBSS &&
3630 ic->ic_state == IEEE80211_S_RUN) {
3631 uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3632 if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3633 (void)ieee80211_ibss_merge(ni);
3634 }
3635 break;
3636 default:
3637 break;
3638 }
3639 return;
3640 }
3641
3642 static struct ieee80211_node *
3643 rtw_node_alloc(struct ieee80211_node_table *nt)
3644 {
3645 struct ifnet *ifp = nt->nt_ic->ic_ifp;
3646 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3647 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3648
3649 DPRINTF(sc, RTW_DEBUG_NODE,
3650 ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
3651 return ni;
3652 }
3653
3654 static void
3655 rtw_node_free(struct ieee80211_node *ni)
3656 {
3657 struct ieee80211com *ic = ni->ni_ic;
3658 struct ifnet *ifp = ic->ic_ifp;
3659 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3660
3661 DPRINTF(sc, RTW_DEBUG_NODE,
3662 ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
3663 ether_sprintf(ni->ni_bssid)));
3664 (*sc->sc_mtbl.mt_node_free)(ni);
3665 }
3666
3667 static int
3668 rtw_media_change(struct ifnet *ifp)
3669 {
3670 int error;
3671
3672 error = ieee80211_media_change(ifp);
3673 if (error == ENETRESET) {
3674 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3675 (IFF_RUNNING|IFF_UP))
3676 rtw_init(ifp); /* XXX lose error */
3677 error = 0;
3678 }
3679 return error;
3680 }
3681
3682 static void
3683 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3684 {
3685 struct rtw_softc *sc = ifp->if_softc;
3686
3687 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
3688 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3689 imr->ifm_status = 0;
3690 return;
3691 }
3692 ieee80211_media_status(ifp, imr);
3693 }
3694
3695 /* rtw_shutdown: make sure the interface is stopped at reboot time. */
3696 void
3697 rtw_shutdown(void *arg)
3698 {
3699 struct rtw_softc *sc = arg;
3700
3701 rtw_stop(&sc->sc_if, 1);
3702 }
3703
3704 static inline void
3705 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3706 {
3707 (void)memcpy(ifp->if_xname, dvname, IFNAMSIZ);
3708 ifp->if_softc = softc;
3709 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
3710 IFF_NOTRAILERS;
3711 ifp->if_ioctl = rtw_ioctl;
3712 ifp->if_start = rtw_start;
3713 ifp->if_watchdog = rtw_watchdog;
3714 ifp->if_init = rtw_init;
3715 ifp->if_stop = rtw_stop;
3716 }
3717
3718 static inline void
3719 rtw_set80211props(struct ieee80211com *ic)
3720 {
3721 int nrate;
3722 ic->ic_phytype = IEEE80211_T_DS;
3723 ic->ic_opmode = IEEE80211_M_STA;
3724 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3725 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
3726
3727 nrate = 0;
3728 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3729 IEEE80211_RATE_BASIC | 2;
3730 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3731 IEEE80211_RATE_BASIC | 4;
3732 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3733 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3734 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3735 }
3736
3737 static inline void
3738 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3739 {
3740 mtbl->mt_newstate = ic->ic_newstate;
3741 ic->ic_newstate = rtw_newstate;
3742
3743 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3744 ic->ic_recv_mgmt = rtw_recv_mgmt;
3745
3746 mtbl->mt_node_free = ic->ic_node_free;
3747 ic->ic_node_free = rtw_node_free;
3748
3749 mtbl->mt_node_alloc = ic->ic_node_alloc;
3750 ic->ic_node_alloc = rtw_node_alloc;
3751
3752 ic->ic_crypto.cs_key_delete = rtw_key_delete;
3753 ic->ic_crypto.cs_key_set = rtw_key_set;
3754 ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3755 ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3756 }
3757
3758 static inline void
3759 rtw_establish_hooks(struct rtw_hooks *hooks, const char *dvname,
3760 void *arg)
3761 {
3762 /*
3763 * Make sure the interface is shutdown during reboot.
3764 */
3765 hooks->rh_shutdown = shutdownhook_establish(rtw_shutdown, arg);
3766 if (hooks->rh_shutdown == NULL)
3767 printf("%s: WARNING: unable to establish shutdown hook\n",
3768 dvname);
3769 }
3770
3771 static inline void
3772 rtw_disestablish_hooks(struct rtw_hooks *hooks, const char *dvname,
3773 void *arg)
3774 {
3775 if (hooks->rh_shutdown != NULL)
3776 shutdownhook_disestablish(hooks->rh_shutdown);
3777 }
3778
3779 static inline void
3780 rtw_init_radiotap(struct rtw_softc *sc)
3781 {
3782 uint32_t present;
3783
3784 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3785 sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3786
3787 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
3788 present = htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT);
3789 else
3790 present = htole32(RTW_RX_RADIOTAP_PRESENT);
3791 sc->sc_rxtap.rr_ihdr.it_present = present;
3792
3793 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3794 sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3795 sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3796 }
3797
3798 static int
3799 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3800 {
3801 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3802 SIMPLEQ_INIT(&tsb->tsb_freeq);
3803 tsb->tsb_ndesc = qlen;
3804 tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3805 M_NOWAIT);
3806 if (tsb->tsb_desc == NULL)
3807 return ENOMEM;
3808 return 0;
3809 }
3810
3811 static void
3812 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3813 {
3814 int pri;
3815 struct rtw_txsoft_blk *tsb;
3816
3817 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3818 tsb = &sc->sc_txsoft_blk[pri];
3819 free(tsb->tsb_desc, M_DEVBUF);
3820 tsb->tsb_desc = NULL;
3821 }
3822 }
3823
3824 static int
3825 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3826 {
3827 int pri, rc = 0;
3828 int qlen[RTW_NTXPRI] =
3829 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3830 struct rtw_txsoft_blk *tsbs;
3831
3832 tsbs = sc->sc_txsoft_blk;
3833
3834 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3835 rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3836 if (rc != 0)
3837 break;
3838 }
3839 tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3840 tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3841 tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3842 tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3843 return rc;
3844 }
3845
3846 static void
3847 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3848 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3849 {
3850 tdb->tdb_ndesc = ndesc;
3851 tdb->tdb_desc = desc;
3852 tdb->tdb_physbase = physbase;
3853 tdb->tdb_ofs = ofs;
3854
3855 (void)memset(tdb->tdb_desc, 0,
3856 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3857
3858 rtw_txdesc_blk_init(tdb);
3859 tdb->tdb_next = 0;
3860 }
3861
3862 static void
3863 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3864 {
3865 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3866 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3867 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3868
3869 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3870 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3871 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3872
3873 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3874 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3875 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3876
3877 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3878 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3879 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3880 }
3881
3882 static struct rtw_rf *
3883 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3884 {
3885 rtw_rf_write_t rf_write;
3886 struct rtw_rf *rf;
3887
3888 switch (rfchipid) {
3889 default:
3890 rf_write = rtw_rf_hostwrite;
3891 break;
3892 case RTW_RFCHIPID_INTERSIL:
3893 case RTW_RFCHIPID_PHILIPS:
3894 case RTW_RFCHIPID_GCT: /* XXX a guess */
3895 case RTW_RFCHIPID_RFMD:
3896 rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3897 break;
3898 }
3899
3900 switch (rfchipid) {
3901 case RTW_RFCHIPID_GCT:
3902 rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3903 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3904 break;
3905 case RTW_RFCHIPID_MAXIM:
3906 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3907 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3908 break;
3909 case RTW_RFCHIPID_PHILIPS:
3910 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3911 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3912 break;
3913 case RTW_RFCHIPID_RFMD:
3914 /* XXX RFMD has no RF constructor */
3915 sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3916 /*FALLTHROUGH*/
3917 default:
3918 return NULL;
3919 }
3920 rf->rf_continuous_tx_cb =
3921 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3922 rf->rf_continuous_tx_arg = (void *)sc;
3923 return rf;
3924 }
3925
3926 /* Revision C and later use a different PHY delay setting than
3927 * revisions A and B.
3928 */
3929 static uint8_t
3930 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
3931 {
3932 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3933 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3934
3935 uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
3936
3937 RTW_WRITE(regs, RTW_RCR, REVAB);
3938 RTW_WBW(regs, RTW_RCR, RTW_RCR);
3939 RTW_WRITE(regs, RTW_RCR, REVC);
3940
3941 RTW_WBR(regs, RTW_RCR, RTW_RCR);
3942 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3943 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3944
3945 RTW_WRITE(regs, RTW_RCR, old_rcr); /* restore RCR */
3946 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3947
3948 return phydelay;
3949 #undef REVC
3950 }
3951
3952 void
3953 rtw_attach(struct rtw_softc *sc)
3954 {
3955 struct ifnet *ifp = &sc->sc_if;
3956 struct ieee80211com *ic = &sc->sc_ic;
3957 struct rtw_txsoft_blk *tsb;
3958 int pri, rc;
3959
3960 rtw_cipher_wep = ieee80211_cipher_wep;
3961 rtw_cipher_wep.ic_decap = rtw_wep_decap;
3962
3963 NEXT_ATTACH_STATE(sc, DETACHED);
3964
3965 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
3966 case RTW_TCR_HWVERID_F:
3967 sc->sc_hwverid = 'F';
3968 break;
3969 case RTW_TCR_HWVERID_D:
3970 sc->sc_hwverid = 'D';
3971 break;
3972 default:
3973 sc->sc_hwverid = '?';
3974 break;
3975 }
3976 printf("%s: hardware version %c\n", sc->sc_dev.dv_xname,
3977 sc->sc_hwverid);
3978
3979 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
3980 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
3981 0);
3982
3983 if (rc != 0) {
3984 printf("%s: could not allocate hw descriptors, error %d\n",
3985 sc->sc_dev.dv_xname, rc);
3986 goto err;
3987 }
3988
3989 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
3990
3991 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
3992 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
3993 (void **)&sc->sc_descs, BUS_DMA_COHERENT);
3994
3995 if (rc != 0) {
3996 printf("%s: could not map hw descriptors, error %d\n",
3997 sc->sc_dev.dv_xname, rc);
3998 goto err;
3999 }
4000 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
4001
4002 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
4003 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
4004
4005 if (rc != 0) {
4006 printf("%s: could not create DMA map for hw descriptors, "
4007 "error %d\n", sc->sc_dev.dv_xname, rc);
4008 goto err;
4009 }
4010 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
4011
4012 sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
4013 sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
4014
4015 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4016 sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
4017 sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
4018 }
4019
4020 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
4021 sizeof(struct rtw_descs), NULL, 0);
4022
4023 if (rc != 0) {
4024 printf("%s: could not load DMA map for hw descriptors, "
4025 "error %d\n", sc->sc_dev.dv_xname, rc);
4026 goto err;
4027 }
4028 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
4029
4030 if (rtw_txsoft_blk_setup_all(sc) != 0)
4031 goto err;
4032 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
4033
4034 rtw_txdesc_blk_setup_all(sc);
4035
4036 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4037
4038 sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4039
4040 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4041 tsb = &sc->sc_txsoft_blk[pri];
4042
4043 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4044 &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4045 printf("%s: could not load DMA map for "
4046 "hw tx descriptors, error %d\n",
4047 sc->sc_dev.dv_xname, rc);
4048 goto err;
4049 }
4050 }
4051
4052 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4053 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4054 RTW_RXQLEN)) != 0) {
4055 printf("%s: could not load DMA map for hw rx descriptors, "
4056 "error %d\n", sc->sc_dev.dv_xname, rc);
4057 goto err;
4058 }
4059 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4060
4061 /* Reset the chip to a known state. */
4062 if (rtw_reset(sc) != 0)
4063 goto err;
4064 NEXT_ATTACH_STATE(sc, FINISH_RESET);
4065
4066 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4067
4068 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4069 sc->sc_flags |= RTW_F_9356SROM;
4070
4071 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4072 sc->sc_dev.dv_xname) != 0)
4073 goto err;
4074
4075 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4076
4077 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4078 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4079 sc->sc_dev.dv_xname) != 0) {
4080 printf("%s: attach failed, malformed serial ROM\n",
4081 sc->sc_dev.dv_xname);
4082 goto err;
4083 }
4084
4085 printf("%s: %s PHY\n", sc->sc_dev.dv_xname,
4086 ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4087
4088 printf("%s: CS threshold %u\n", sc->sc_dev.dv_xname, sc->sc_csthr);
4089
4090 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4091
4092 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4093 sc->sc_flags & RTW_F_DIGPHY);
4094
4095 if (sc->sc_rf == NULL) {
4096 printf("%s: attach failed, could not attach RF\n",
4097 sc->sc_dev.dv_xname);
4098 goto err;
4099 }
4100
4101 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4102
4103 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4104
4105 RTW_DPRINTF(RTW_DEBUG_ATTACH,
4106 ("%s: PHY delay %d\n", sc->sc_dev.dv_xname, sc->sc_phydelay));
4107
4108 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4109 rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4110
4111 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels,
4112 sc->sc_dev.dv_xname);
4113
4114 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4115 sc->sc_dev.dv_xname) != 0)
4116 goto err;
4117 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4118
4119 rtw_setifprops(ifp, sc->sc_dev.dv_xname, (void*)sc);
4120
4121 IFQ_SET_READY(&ifp->if_snd);
4122
4123 sc->sc_ic.ic_ifp = ifp;
4124 rtw_set80211props(&sc->sc_ic);
4125
4126 rtw_led_attach(&sc->sc_led_state, (void *)sc);
4127
4128 /*
4129 * Call MI attach routines.
4130 */
4131 if_attach(ifp);
4132 ieee80211_ifattach(&sc->sc_ic);
4133
4134 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4135
4136 /* possibly we should fill in our own sc_send_prresp, since
4137 * the RTL8180 is probably sending probe responses in ad hoc
4138 * mode.
4139 */
4140
4141 /* complete initialization */
4142 ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4143 callout_init(&sc->sc_scan_ch, 0);
4144
4145 rtw_init_radiotap(sc);
4146
4147 #if NBPFILTER > 0
4148 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4149 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4150 #endif
4151
4152 rtw_establish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname, (void*)sc);
4153
4154 if (!pmf_device_register(&sc->sc_dev, NULL, NULL)) {
4155 aprint_error_dev(&sc->sc_dev,
4156 "couldn't establish power handler\n");
4157 } else
4158 pmf_class_network_register(&sc->sc_dev, &sc->sc_if);
4159
4160 NEXT_ATTACH_STATE(sc, FINISHED);
4161
4162 ieee80211_announce(ic);
4163 return;
4164 err:
4165 rtw_detach(sc);
4166 return;
4167 }
4168
4169 int
4170 rtw_detach(struct rtw_softc *sc)
4171 {
4172 struct ifnet *ifp = &sc->sc_if;
4173 int pri, s;
4174
4175 s = splnet();
4176 sc->sc_flags |= RTW_F_INVALID;
4177
4178 switch (sc->sc_attach_state) {
4179 case FINISHED:
4180 rtw_stop(ifp, 1);
4181
4182 pmf_device_deregister(&sc->sc_dev);
4183 rtw_disestablish_hooks(&sc->sc_hooks, sc->sc_dev.dv_xname,
4184 (void*)sc);
4185 callout_stop(&sc->sc_scan_ch);
4186 ieee80211_ifdetach(&sc->sc_ic);
4187 if_detach(ifp);
4188 /*FALLTHROUGH*/
4189 case FINISH_ID_STA:
4190 case FINISH_RF_ATTACH:
4191 rtw_rf_destroy(sc->sc_rf);
4192 sc->sc_rf = NULL;
4193 /*FALLTHROUGH*/
4194 case FINISH_PARSE_SROM:
4195 case FINISH_READ_SROM:
4196 rtw_srom_free(&sc->sc_srom);
4197 /*FALLTHROUGH*/
4198 case FINISH_RESET:
4199 case FINISH_RXMAPS_CREATE:
4200 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4201 RTW_RXQLEN);
4202 /*FALLTHROUGH*/
4203 case FINISH_TXMAPS_CREATE:
4204 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4205 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4206 sc->sc_txsoft_blk[pri].tsb_desc,
4207 sc->sc_txsoft_blk[pri].tsb_ndesc);
4208 }
4209 /*FALLTHROUGH*/
4210 case FINISH_TXDESCBLK_SETUP:
4211 case FINISH_TXCTLBLK_SETUP:
4212 rtw_txsoft_blk_cleanup_all(sc);
4213 /*FALLTHROUGH*/
4214 case FINISH_DESCMAP_LOAD:
4215 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4216 /*FALLTHROUGH*/
4217 case FINISH_DESCMAP_CREATE:
4218 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4219 /*FALLTHROUGH*/
4220 case FINISH_DESC_MAP:
4221 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
4222 sizeof(struct rtw_descs));
4223 /*FALLTHROUGH*/
4224 case FINISH_DESC_ALLOC:
4225 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4226 sc->sc_desc_nsegs);
4227 /*FALLTHROUGH*/
4228 case DETACHED:
4229 NEXT_ATTACH_STATE(sc, DETACHED);
4230 break;
4231 }
4232 splx(s);
4233 return 0;
4234 }
4235
4236 int
4237 rtw_activate(struct device *self, enum devact act)
4238 {
4239 struct rtw_softc *sc = (struct rtw_softc *)self;
4240 int rc = 0, s;
4241
4242 s = splnet();
4243 switch (act) {
4244 case DVACT_ACTIVATE:
4245 rc = EOPNOTSUPP;
4246 break;
4247
4248 case DVACT_DEACTIVATE:
4249 if_deactivate(&sc->sc_if);
4250 break;
4251 }
4252 splx(s);
4253 return rc;
4254 }
4255