rtw.c revision 1.97 1 /* $NetBSD: rtw.c,v 1.97 2007/12/20 18:47:23 dyoung Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005, 2006, 2007 David Young. All rights
4 * reserved.
5 *
6 * Programmed for NetBSD by David Young.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of David Young may not be used to endorse or promote
17 * products derived from this software without specific prior
18 * written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
21 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
23 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
24 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
26 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31 * OF SUCH DAMAGE.
32 */
33 /*
34 * Device driver for the Realtek RTL8180 802.11 MAC/BBP.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.97 2007/12/20 18:47:23 dyoung Exp $");
39
40 #include "bpfilter.h"
41
42 #include <sys/param.h>
43 #include <sys/sysctl.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/time.h>
50 #include <sys/types.h>
51
52 #include <machine/endian.h>
53 #include <sys/bus.h>
54 #include <sys/intr.h> /* splnet */
55
56 #include <uvm/uvm_extern.h>
57
58 #include <net/if.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #include <net80211/ieee80211_netbsd.h>
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_radiotap.h>
65
66 #if NBPFILTER > 0
67 #include <net/bpf.h>
68 #endif
69
70 #include <dev/ic/rtwreg.h>
71 #include <dev/ic/rtwvar.h>
72 #include <dev/ic/rtwphyio.h>
73 #include <dev/ic/rtwphy.h>
74
75 #include <dev/ic/smc93cx6var.h>
76
77 static int rtw_rfprog_fallback = 0;
78 static int rtw_host_rfio = 0;
79
80 #ifdef RTW_DEBUG
81 int rtw_debug = 0;
82 static int rtw_rxbufs_limit = RTW_RXQLEN;
83 #endif /* RTW_DEBUG */
84
85 #define NEXT_ATTACH_STATE(sc, state) do { \
86 DPRINTF(sc, RTW_DEBUG_ATTACH, \
87 ("%s: attach state %s\n", __func__, #state)); \
88 sc->sc_attach_state = state; \
89 } while (0)
90
91 int rtw_dwelltime = 200; /* milliseconds */
92 static struct ieee80211_cipher rtw_cipher_wep;
93
94 static void rtw_start(struct ifnet *);
95 static void rtw_reset_oactive(struct rtw_softc *);
96 static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
97 struct ieee80211_node *);
98 static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
99
100 static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
101 static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
102 static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
103 const u_int8_t[IEEE80211_ADDR_LEN]);
104 static void rtw_key_update_end(struct ieee80211com *);
105 static void rtw_key_update_begin(struct ieee80211com *);
106 static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
107 static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
108
109 static void rtw_led_attach(struct rtw_led_state *, void *);
110 static void rtw_led_init(struct rtw_regs *);
111 static void rtw_led_slowblink(void *);
112 static void rtw_led_fastblink(void *);
113 static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
114
115 static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
116 static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
117 #ifdef RTW_DEBUG
118 static void rtw_dump_rings(struct rtw_softc *sc);
119 static void rtw_print_txdesc(struct rtw_softc *, const char *,
120 struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
121 static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
122 static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
123 #endif /* RTW_DEBUG */
124 #ifdef RTW_DIAG
125 static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
126 #endif /* RTW_DIAG */
127
128 /*
129 * Setup sysctl(3) MIB, hw.rtw.*
130 *
131 * TBD condition CTLFLAG_PERMANENT on being an LKM or not
132 */
133 SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
134 {
135 int rc;
136 const struct sysctlnode *cnode, *rnode;
137
138 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
139 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
140 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
141 goto err;
142
143 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
144 CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
145 "Realtek RTL818x 802.11 controls",
146 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
147 goto err;
148
149 #ifdef RTW_DEBUG
150 /* control debugging printfs */
151 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
152 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
153 "debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
154 rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
155 CTL_CREATE, CTL_EOL)) != 0)
156 goto err;
157
158 /* Limit rx buffers, for simulating resource exhaustion. */
159 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
160 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
161 "rxbufs_limit",
162 SYSCTL_DESCR("Set rx buffers limit"),
163 rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
164 CTL_CREATE, CTL_EOL)) != 0)
165 goto err;
166
167 #endif /* RTW_DEBUG */
168 /* set fallback RF programming method */
169 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
170 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
171 "rfprog_fallback",
172 SYSCTL_DESCR("Set fallback RF programming method"),
173 rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
174 CTL_CREATE, CTL_EOL)) != 0)
175 goto err;
176
177 /* force host to control RF I/O bus */
178 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
179 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
180 "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
181 rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
182 CTL_CREATE, CTL_EOL)) != 0)
183 goto err;
184
185 return;
186 err:
187 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
188 }
189
190 static int
191 rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
192 {
193 int error, t;
194 struct sysctlnode node;
195
196 node = *rnode;
197 t = *(int*)rnode->sysctl_data;
198 node.sysctl_data = &t;
199 error = sysctl_lookup(SYSCTLFN_CALL(&node));
200 if (error || newp == NULL)
201 return (error);
202
203 if (t < lower || t > upper)
204 return (EINVAL);
205
206 *(int*)rnode->sysctl_data = t;
207
208 return (0);
209 }
210
211 static int
212 rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
213 {
214 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
215 __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
216 }
217
218 static int
219 rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
220 {
221 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
222 }
223
224 #ifdef RTW_DEBUG
225 static int
226 rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
227 {
228 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
229 0, RTW_DEBUG_MAX);
230 }
231
232 static int
233 rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
234 {
235 return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
236 0, RTW_RXQLEN);
237 }
238
239 static void
240 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
241 {
242 #define PRINTREG32(sc, reg) \
243 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
244 ("%s: reg[ " #reg " / %03x ] = %08x\n", \
245 dvname, reg, RTW_READ(regs, reg)))
246
247 #define PRINTREG16(sc, reg) \
248 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
249 ("%s: reg[ " #reg " / %03x ] = %04x\n", \
250 dvname, reg, RTW_READ16(regs, reg)))
251
252 #define PRINTREG8(sc, reg) \
253 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
254 ("%s: reg[ " #reg " / %03x ] = %02x\n", \
255 dvname, reg, RTW_READ8(regs, reg)))
256
257 RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
258
259 PRINTREG32(regs, RTW_IDR0);
260 PRINTREG32(regs, RTW_IDR1);
261 PRINTREG32(regs, RTW_MAR0);
262 PRINTREG32(regs, RTW_MAR1);
263 PRINTREG32(regs, RTW_TSFTRL);
264 PRINTREG32(regs, RTW_TSFTRH);
265 PRINTREG32(regs, RTW_TLPDA);
266 PRINTREG32(regs, RTW_TNPDA);
267 PRINTREG32(regs, RTW_THPDA);
268 PRINTREG32(regs, RTW_TCR);
269 PRINTREG32(regs, RTW_RCR);
270 PRINTREG32(regs, RTW_TINT);
271 PRINTREG32(regs, RTW_TBDA);
272 PRINTREG32(regs, RTW_ANAPARM);
273 PRINTREG32(regs, RTW_BB);
274 PRINTREG32(regs, RTW_PHYCFG);
275 PRINTREG32(regs, RTW_WAKEUP0L);
276 PRINTREG32(regs, RTW_WAKEUP0H);
277 PRINTREG32(regs, RTW_WAKEUP1L);
278 PRINTREG32(regs, RTW_WAKEUP1H);
279 PRINTREG32(regs, RTW_WAKEUP2LL);
280 PRINTREG32(regs, RTW_WAKEUP2LH);
281 PRINTREG32(regs, RTW_WAKEUP2HL);
282 PRINTREG32(regs, RTW_WAKEUP2HH);
283 PRINTREG32(regs, RTW_WAKEUP3LL);
284 PRINTREG32(regs, RTW_WAKEUP3LH);
285 PRINTREG32(regs, RTW_WAKEUP3HL);
286 PRINTREG32(regs, RTW_WAKEUP3HH);
287 PRINTREG32(regs, RTW_WAKEUP4LL);
288 PRINTREG32(regs, RTW_WAKEUP4LH);
289 PRINTREG32(regs, RTW_WAKEUP4HL);
290 PRINTREG32(regs, RTW_WAKEUP4HH);
291 PRINTREG32(regs, RTW_DK0);
292 PRINTREG32(regs, RTW_DK1);
293 PRINTREG32(regs, RTW_DK2);
294 PRINTREG32(regs, RTW_DK3);
295 PRINTREG32(regs, RTW_RETRYCTR);
296 PRINTREG32(regs, RTW_RDSAR);
297 PRINTREG32(regs, RTW_FER);
298 PRINTREG32(regs, RTW_FEMR);
299 PRINTREG32(regs, RTW_FPSR);
300 PRINTREG32(regs, RTW_FFER);
301
302 /* 16-bit registers */
303 PRINTREG16(regs, RTW_BRSR);
304 PRINTREG16(regs, RTW_IMR);
305 PRINTREG16(regs, RTW_ISR);
306 PRINTREG16(regs, RTW_BCNITV);
307 PRINTREG16(regs, RTW_ATIMWND);
308 PRINTREG16(regs, RTW_BINTRITV);
309 PRINTREG16(regs, RTW_ATIMTRITV);
310 PRINTREG16(regs, RTW_CRC16ERR);
311 PRINTREG16(regs, RTW_CRC0);
312 PRINTREG16(regs, RTW_CRC1);
313 PRINTREG16(regs, RTW_CRC2);
314 PRINTREG16(regs, RTW_CRC3);
315 PRINTREG16(regs, RTW_CRC4);
316 PRINTREG16(regs, RTW_CWR);
317
318 /* 8-bit registers */
319 PRINTREG8(regs, RTW_CR);
320 PRINTREG8(regs, RTW_9346CR);
321 PRINTREG8(regs, RTW_CONFIG0);
322 PRINTREG8(regs, RTW_CONFIG1);
323 PRINTREG8(regs, RTW_CONFIG2);
324 PRINTREG8(regs, RTW_MSR);
325 PRINTREG8(regs, RTW_CONFIG3);
326 PRINTREG8(regs, RTW_CONFIG4);
327 PRINTREG8(regs, RTW_TESTR);
328 PRINTREG8(regs, RTW_PSR);
329 PRINTREG8(regs, RTW_SCR);
330 PRINTREG8(regs, RTW_PHYDELAY);
331 PRINTREG8(regs, RTW_CRCOUNT);
332 PRINTREG8(regs, RTW_PHYADDR);
333 PRINTREG8(regs, RTW_PHYDATAW);
334 PRINTREG8(regs, RTW_PHYDATAR);
335 PRINTREG8(regs, RTW_CONFIG5);
336 PRINTREG8(regs, RTW_TPPOLL);
337
338 PRINTREG16(regs, RTW_BSSID16);
339 PRINTREG32(regs, RTW_BSSID32);
340 #undef PRINTREG32
341 #undef PRINTREG16
342 #undef PRINTREG8
343 }
344 #endif /* RTW_DEBUG */
345
346 void
347 rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
348 {
349 struct rtw_regs *regs = &sc->sc_regs;
350
351 uint32_t tcr;
352 tcr = RTW_READ(regs, RTW_TCR);
353 tcr &= ~RTW_TCR_LBK_MASK;
354 if (enable)
355 tcr |= RTW_TCR_LBK_CONT;
356 else
357 tcr |= RTW_TCR_LBK_NORMAL;
358 RTW_WRITE(regs, RTW_TCR, tcr);
359 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
360 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
361 rtw_txdac_enable(sc, !enable);
362 rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
363 rtw_set_access(regs, RTW_ACCESS_NONE);
364 }
365
366 #ifdef RTW_DEBUG
367 static const char *
368 rtw_access_string(enum rtw_access access)
369 {
370 switch (access) {
371 case RTW_ACCESS_NONE:
372 return "none";
373 case RTW_ACCESS_CONFIG:
374 return "config";
375 case RTW_ACCESS_ANAPARM:
376 return "anaparm";
377 default:
378 return "unknown";
379 }
380 }
381 #endif /* RTW_DEBUG */
382
383 static void
384 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
385 {
386 KASSERT(/* naccess >= RTW_ACCESS_NONE && */
387 naccess <= RTW_ACCESS_ANAPARM);
388 KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
389 regs->r_access <= RTW_ACCESS_ANAPARM);
390
391 if (naccess == regs->r_access)
392 return;
393
394 switch (naccess) {
395 case RTW_ACCESS_NONE:
396 switch (regs->r_access) {
397 case RTW_ACCESS_ANAPARM:
398 rtw_anaparm_enable(regs, 0);
399 /*FALLTHROUGH*/
400 case RTW_ACCESS_CONFIG:
401 rtw_config0123_enable(regs, 0);
402 /*FALLTHROUGH*/
403 case RTW_ACCESS_NONE:
404 break;
405 }
406 break;
407 case RTW_ACCESS_CONFIG:
408 switch (regs->r_access) {
409 case RTW_ACCESS_NONE:
410 rtw_config0123_enable(regs, 1);
411 /*FALLTHROUGH*/
412 case RTW_ACCESS_CONFIG:
413 break;
414 case RTW_ACCESS_ANAPARM:
415 rtw_anaparm_enable(regs, 0);
416 break;
417 }
418 break;
419 case RTW_ACCESS_ANAPARM:
420 switch (regs->r_access) {
421 case RTW_ACCESS_NONE:
422 rtw_config0123_enable(regs, 1);
423 /*FALLTHROUGH*/
424 case RTW_ACCESS_CONFIG:
425 rtw_anaparm_enable(regs, 1);
426 /*FALLTHROUGH*/
427 case RTW_ACCESS_ANAPARM:
428 break;
429 }
430 break;
431 }
432 }
433
434 void
435 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
436 {
437 rtw_set_access1(regs, access);
438 RTW_DPRINTF(RTW_DEBUG_ACCESS,
439 ("%s: access %s -> %s\n", __func__,
440 rtw_access_string(regs->r_access),
441 rtw_access_string(access)));
442 regs->r_access = access;
443 }
444
445 /*
446 * Enable registers, switch register banks.
447 */
448 void
449 rtw_config0123_enable(struct rtw_regs *regs, int enable)
450 {
451 uint8_t ecr;
452 ecr = RTW_READ8(regs, RTW_9346CR);
453 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
454 if (enable)
455 ecr |= RTW_9346CR_EEM_CONFIG;
456 else {
457 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
458 ecr |= RTW_9346CR_EEM_NORMAL;
459 }
460 RTW_WRITE8(regs, RTW_9346CR, ecr);
461 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
462 }
463
464 /* requires rtw_config0123_enable(, 1) */
465 void
466 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
467 {
468 uint8_t cfg3;
469
470 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
471 cfg3 |= RTW_CONFIG3_CLKRUNEN;
472 if (enable)
473 cfg3 |= RTW_CONFIG3_PARMEN;
474 else
475 cfg3 &= ~RTW_CONFIG3_PARMEN;
476 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
477 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
478 }
479
480 /* requires rtw_anaparm_enable(, 1) */
481 void
482 rtw_txdac_enable(struct rtw_softc *sc, int enable)
483 {
484 uint32_t anaparm;
485 struct rtw_regs *regs = &sc->sc_regs;
486
487 anaparm = RTW_READ(regs, RTW_ANAPARM);
488 if (enable)
489 anaparm &= ~RTW_ANAPARM_TXDACOFF;
490 else
491 anaparm |= RTW_ANAPARM_TXDACOFF;
492 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
493 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
494 }
495
496 static inline int
497 rtw_chip_reset1(struct rtw_regs *regs, const char *dvname)
498 {
499 uint8_t cr;
500 int i;
501
502 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
503
504 RTW_WBR(regs, RTW_CR, RTW_CR);
505
506 for (i = 0; i < 1000; i++) {
507 if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
508 RTW_DPRINTF(RTW_DEBUG_RESET,
509 ("%s: reset in %dus\n", dvname, i));
510 return 0;
511 }
512 RTW_RBR(regs, RTW_CR, RTW_CR);
513 DELAY(10); /* 10us */
514 }
515
516 printf("%s: reset failed\n", dvname);
517 return ETIMEDOUT;
518 }
519
520 static inline int
521 rtw_chip_reset(struct rtw_regs *regs, const char *dvname)
522 {
523 uint32_t tcr;
524
525 /* from Linux driver */
526 tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
527 __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
528
529 RTW_WRITE(regs, RTW_TCR, tcr);
530
531 RTW_WBW(regs, RTW_CR, RTW_TCR);
532
533 return rtw_chip_reset1(regs, dvname);
534 }
535
536 static int
537 rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
538 {
539 struct ieee80211_key keycopy;
540
541 RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
542
543 keycopy = *k;
544 keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
545
546 return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
547 }
548
549 static int
550 rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
551 {
552 struct rtw_softc *sc = ic->ic_ifp->if_softc;
553 u_int keyix = k->wk_keyix;
554
555 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__, keyix));
556
557 if (keyix >= IEEE80211_WEP_NKID)
558 return 0;
559 if (k->wk_keylen != 0)
560 sc->sc_flags &= ~RTW_F_DK_VALID;
561
562 return 1;
563 }
564
565 static int
566 rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
567 const u_int8_t mac[IEEE80211_ADDR_LEN])
568 {
569 struct rtw_softc *sc = ic->ic_ifp->if_softc;
570
571 DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
572
573 if (k->wk_keyix >= IEEE80211_WEP_NKID)
574 return 0;
575
576 sc->sc_flags &= ~RTW_F_DK_VALID;
577
578 return 1;
579 }
580
581 static void
582 rtw_key_update_begin(struct ieee80211com *ic)
583 {
584 #ifdef RTW_DEBUG
585 struct ifnet *ifp = ic->ic_ifp;
586 struct rtw_softc *sc = ifp->if_softc;
587 #endif
588
589 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
590 }
591
592 static void
593 rtw_key_update_end(struct ieee80211com *ic)
594 {
595 struct ifnet *ifp = ic->ic_ifp;
596 struct rtw_softc *sc = ifp->if_softc;
597
598 DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
599
600 if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
601 (sc->sc_flags & RTW_F_ENABLED) == 0 ||
602 (sc->sc_flags & RTW_F_INVALID) != 0)
603 return;
604
605 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
606 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
607 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
608 (ifp->if_flags & IFF_RUNNING) != 0);
609 }
610
611 static inline int
612 rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
613 {
614 if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
615 return 0;
616
617 return ((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
618 ((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
619 }
620
621 static void
622 rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
623 {
624 uint8_t psr, scr;
625 int i, keylen;
626 struct rtw_regs *regs;
627 union rtw_keys *rk;
628
629 regs = &sc->sc_regs;
630 rk = &sc->sc_keys;
631
632 (void)memset(rk, 0, sizeof(rk));
633
634 /* Temporarily use software crypto for all keys. */
635 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
636 if (wk[i].wk_cipher == &rtw_cipher_wep)
637 wk[i].wk_cipher = &ieee80211_cipher_wep;
638 }
639
640 rtw_set_access(regs, RTW_ACCESS_CONFIG);
641
642 psr = RTW_READ8(regs, RTW_PSR);
643 scr = RTW_READ8(regs, RTW_SCR);
644 scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
645
646 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
647 goto out;
648
649 for (keylen = i = 0; i < IEEE80211_WEP_NKID; i++) {
650 if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
651 continue;
652 if (i == txkey) {
653 keylen = wk[i].wk_keylen;
654 break;
655 }
656 keylen = MAX(keylen, wk[i].wk_keylen);
657 }
658
659 if (keylen == 5)
660 scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
661 else if (keylen == 13)
662 scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
663
664 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
665 if (wk[i].wk_keylen != keylen ||
666 wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
667 continue;
668 /* h/w will decrypt, s/w still strips headers */
669 wk[i].wk_cipher = &rtw_cipher_wep;
670 (void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
671 }
672
673 out:
674 RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
675
676 bus_space_write_region_stream_4(regs->r_bt, regs->r_bh,
677 RTW_DK0, rk->rk_words, __arraycount(rk->rk_words));
678
679 bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
680 BUS_SPACE_BARRIER_SYNC);
681
682 RTW_WBW(regs, RTW_DK0, RTW_PSR);
683 RTW_WRITE8(regs, RTW_PSR, psr);
684 RTW_WBW(regs, RTW_PSR, RTW_SCR);
685 RTW_WRITE8(regs, RTW_SCR, scr);
686 RTW_SYNC(regs, RTW_SCR, RTW_SCR);
687 rtw_set_access(regs, RTW_ACCESS_NONE);
688 sc->sc_flags |= RTW_F_DK_VALID;
689 }
690
691 static inline int
692 rtw_recall_eeprom(struct rtw_regs *regs, const char *dvname)
693 {
694 int i;
695 uint8_t ecr;
696
697 ecr = RTW_READ8(regs, RTW_9346CR);
698 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
699 RTW_WRITE8(regs, RTW_9346CR, ecr);
700
701 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
702
703 /* wait 25ms for completion */
704 for (i = 0; i < 250; i++) {
705 ecr = RTW_READ8(regs, RTW_9346CR);
706 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
707 RTW_DPRINTF(RTW_DEBUG_RESET,
708 ("%s: recall EEPROM in %dus\n", dvname, i * 100));
709 return 0;
710 }
711 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
712 DELAY(100);
713 }
714 printf("%s: recall EEPROM failed\n", dvname);
715 return ETIMEDOUT;
716 }
717
718 static inline int
719 rtw_reset(struct rtw_softc *sc)
720 {
721 int rc;
722 uint8_t config1;
723
724 sc->sc_flags &= ~RTW_F_DK_VALID;
725
726 if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev.dv_xname)) != 0)
727 return rc;
728
729 rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev.dv_xname);
730
731 config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
732 RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
733 /* TBD turn off maximum power saving? */
734
735 return 0;
736 }
737
738 static inline int
739 rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
740 u_int ndescs)
741 {
742 int i, rc = 0;
743 for (i = 0; i < ndescs; i++) {
744 rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
745 0, 0, &descs[i].ts_dmamap);
746 if (rc != 0)
747 break;
748 }
749 return rc;
750 }
751
752 static inline int
753 rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
754 u_int ndescs)
755 {
756 int i, rc = 0;
757 for (i = 0; i < ndescs; i++) {
758 rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
759 &descs[i].rs_dmamap);
760 if (rc != 0)
761 break;
762 }
763 return rc;
764 }
765
766 static inline void
767 rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
768 u_int ndescs)
769 {
770 int i;
771 for (i = 0; i < ndescs; i++) {
772 if (descs[i].rs_dmamap != NULL)
773 bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
774 }
775 }
776
777 static inline void
778 rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
779 u_int ndescs)
780 {
781 int i;
782 for (i = 0; i < ndescs; i++) {
783 if (descs[i].ts_dmamap != NULL)
784 bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
785 }
786 }
787
788 static inline void
789 rtw_srom_free(struct rtw_srom *sr)
790 {
791 sr->sr_size = 0;
792 if (sr->sr_content == NULL)
793 return;
794 free(sr->sr_content, M_DEVBUF);
795 sr->sr_content = NULL;
796 }
797
798 static void
799 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
800 uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
801 {
802 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
803 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
804 *rcr |= RTW_RCR_ENCS1;
805 *rfchipid = RTW_RFCHIPID_PHILIPS;
806 }
807
808 static int
809 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
810 enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
811 const char *dvname)
812 {
813 int i;
814 const char *rfname, *paname;
815 char scratch[sizeof("unknown 0xXX")];
816 uint16_t srom_version;
817 uint8_t mac[IEEE80211_ADDR_LEN];
818
819 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
820 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
821
822 srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
823 printf("%s: SROM version %d.%d", dvname,
824 srom_version >> 8, srom_version & 0xff);
825
826 if (srom_version <= 0x0101) {
827 printf(" is not understood, limping along with defaults\n");
828 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
829 return 0;
830 }
831 printf("\n");
832
833 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
834 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
835
836 RTW_DPRINTF(RTW_DEBUG_ATTACH,
837 ("%s: EEPROM MAC %s\n", dvname, ether_sprintf(mac)));
838
839 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
840
841 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
842 *flags |= RTW_F_ANTDIV;
843
844 /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
845 * to be reversed.
846 */
847 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
848 *flags |= RTW_F_DIGPHY;
849 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
850 *flags |= RTW_F_DFLANTB;
851
852 *rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
853 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
854
855 if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
856 *flags |= RTW_C_RXWEP_104;
857
858 *flags |= RTW_C_RXWEP_40; /* XXX */
859
860 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
861 switch (*rfchipid) {
862 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
863 rfname = "GCT GRF5101";
864 paname = "Winspring WS9901";
865 break;
866 case RTW_RFCHIPID_MAXIM:
867 rfname = "Maxim MAX2820"; /* guess */
868 paname = "Maxim MAX2422"; /* guess */
869 break;
870 case RTW_RFCHIPID_INTERSIL:
871 rfname = "Intersil HFA3873"; /* guess */
872 paname = "Intersil <unknown>";
873 break;
874 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
875 rfname = "Philips SA2400A";
876 paname = "Philips SA2411";
877 break;
878 case RTW_RFCHIPID_RFMD:
879 /* this is the same front-end as an atw(4)! */
880 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
881 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
882 "SYN: Silicon Labs Si4126"; /* inferred from
883 * reference driver
884 */
885 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
886 break;
887 case RTW_RFCHIPID_RESERVED:
888 rfname = paname = "reserved";
889 break;
890 default:
891 snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
892 rfname = paname = scratch;
893 }
894 printf("%s: RF: %s, PA: %s\n", dvname, rfname, paname);
895
896 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
897 case RTW_CONFIG0_GL_USA:
898 case _RTW_CONFIG0_GL_USA:
899 *locale = RTW_LOCALE_USA;
900 break;
901 case RTW_CONFIG0_GL_EUROPE:
902 *locale = RTW_LOCALE_EUROPE;
903 break;
904 case RTW_CONFIG0_GL_JAPAN:
905 *locale = RTW_LOCALE_JAPAN;
906 break;
907 default:
908 *locale = RTW_LOCALE_UNKNOWN;
909 break;
910 }
911 return 0;
912 }
913
914 /* Returns -1 on failure. */
915 static int
916 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
917 const char *dvname)
918 {
919 int rc;
920 struct seeprom_descriptor sd;
921 uint8_t ecr;
922
923 (void)memset(&sd, 0, sizeof(sd));
924
925 ecr = RTW_READ8(regs, RTW_9346CR);
926
927 if ((flags & RTW_F_9356SROM) != 0) {
928 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n", dvname));
929 sr->sr_size = 256;
930 sd.sd_chip = C56_66;
931 } else {
932 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n", dvname));
933 sr->sr_size = 128;
934 sd.sd_chip = C46;
935 }
936
937 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
938 RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
939 ecr |= RTW_9346CR_EEM_PROGRAM;
940
941 RTW_WRITE8(regs, RTW_9346CR, ecr);
942
943 sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT);
944
945 if (sr->sr_content == NULL) {
946 printf("%s: unable to allocate SROM buffer\n", dvname);
947 return ENOMEM;
948 }
949
950 (void)memset(sr->sr_content, 0, sr->sr_size);
951
952 /* RTL8180 has a single 8-bit register for controlling the
953 * 93cx6 SROM. There is no "ready" bit. The RTL8180
954 * input/output sense is the reverse of read_seeprom's.
955 */
956 sd.sd_tag = regs->r_bt;
957 sd.sd_bsh = regs->r_bh;
958 sd.sd_regsize = 1;
959 sd.sd_control_offset = RTW_9346CR;
960 sd.sd_status_offset = RTW_9346CR;
961 sd.sd_dataout_offset = RTW_9346CR;
962 sd.sd_CK = RTW_9346CR_EESK;
963 sd.sd_CS = RTW_9346CR_EECS;
964 sd.sd_DI = RTW_9346CR_EEDO;
965 sd.sd_DO = RTW_9346CR_EEDI;
966 /* make read_seeprom enter EEPROM read/write mode */
967 sd.sd_MS = ecr;
968 sd.sd_RDY = 0;
969
970 /* TBD bus barriers */
971 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
972 printf("%s: could not read SROM\n", dvname);
973 free(sr->sr_content, M_DEVBUF);
974 sr->sr_content = NULL;
975 return -1; /* XXX */
976 }
977
978 /* end EEPROM read/write mode */
979 RTW_WRITE8(regs, RTW_9346CR,
980 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
981 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
982
983 if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
984 return rc;
985
986 #ifdef RTW_DEBUG
987 {
988 int i;
989 RTW_DPRINTF(RTW_DEBUG_ATTACH,
990 ("\n%s: serial ROM:\n\t", dvname));
991 for (i = 0; i < sr->sr_size/2; i++) {
992 if (((i % 8) == 0) && (i != 0))
993 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
994 RTW_DPRINTF(RTW_DEBUG_ATTACH,
995 (" %04x", sr->sr_content[i]));
996 }
997 RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
998 }
999 #endif /* RTW_DEBUG */
1000 return 0;
1001 }
1002
1003 static void
1004 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
1005 const char *dvname)
1006 {
1007 uint8_t cfg4;
1008 const char *method;
1009
1010 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
1011
1012 switch (rfchipid) {
1013 default:
1014 cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
1015 method = "fallback";
1016 break;
1017 case RTW_RFCHIPID_INTERSIL:
1018 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
1019 method = "Intersil";
1020 break;
1021 case RTW_RFCHIPID_PHILIPS:
1022 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
1023 method = "Philips";
1024 break;
1025 case RTW_RFCHIPID_GCT: /* XXX a guess */
1026 case RTW_RFCHIPID_RFMD:
1027 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
1028 method = "RFMD";
1029 break;
1030 }
1031
1032 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
1033
1034 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
1035
1036 RTW_DPRINTF(RTW_DEBUG_INIT,
1037 ("%s: %s RF programming method, %#02x\n", dvname, method,
1038 RTW_READ8(regs, RTW_CONFIG4)));
1039 }
1040
1041 static inline void
1042 rtw_init_channels(enum rtw_locale locale,
1043 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
1044 const char *dvname)
1045 {
1046 int i;
1047 const char *name = NULL;
1048 #define ADD_CHANNEL(_chans, _chan) do { \
1049 (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
1050 (*_chans)[_chan].ic_freq = \
1051 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
1052 } while (0)
1053
1054 switch (locale) {
1055 case RTW_LOCALE_USA: /* 1-11 */
1056 name = "USA";
1057 for (i = 1; i <= 11; i++)
1058 ADD_CHANNEL(chans, i);
1059 break;
1060 case RTW_LOCALE_JAPAN: /* 1-14 */
1061 name = "Japan";
1062 ADD_CHANNEL(chans, 14);
1063 for (i = 1; i <= 14; i++)
1064 ADD_CHANNEL(chans, i);
1065 break;
1066 case RTW_LOCALE_EUROPE: /* 1-13 */
1067 name = "Europe";
1068 for (i = 1; i <= 13; i++)
1069 ADD_CHANNEL(chans, i);
1070 break;
1071 default: /* 10-11 allowed by most countries */
1072 name = "<unknown>";
1073 for (i = 10; i <= 11; i++)
1074 ADD_CHANNEL(chans, i);
1075 break;
1076 }
1077 printf("%s: Geographic Location %s\n", dvname, name);
1078 #undef ADD_CHANNEL
1079 }
1080
1081
1082 static inline void
1083 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
1084 {
1085 uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
1086
1087 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
1088 case RTW_CONFIG0_GL_USA:
1089 case _RTW_CONFIG0_GL_USA:
1090 *locale = RTW_LOCALE_USA;
1091 break;
1092 case RTW_CONFIG0_GL_JAPAN:
1093 *locale = RTW_LOCALE_JAPAN;
1094 break;
1095 case RTW_CONFIG0_GL_EUROPE:
1096 *locale = RTW_LOCALE_EUROPE;
1097 break;
1098 default:
1099 *locale = RTW_LOCALE_UNKNOWN;
1100 break;
1101 }
1102 }
1103
1104 static inline int
1105 rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
1106 const char *dvname)
1107 {
1108 static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
1109 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1110 };
1111 uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1112 idr1 = RTW_READ(regs, RTW_IDR1);
1113
1114 (*addr)[0] = __SHIFTOUT(idr0, __BITS(0, 7));
1115 (*addr)[1] = __SHIFTOUT(idr0, __BITS(8, 15));
1116 (*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
1117 (*addr)[3] = __SHIFTOUT(idr0, __BITS(24 ,31));
1118
1119 (*addr)[4] = __SHIFTOUT(idr1, __BITS(0, 7));
1120 (*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
1121
1122 if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
1123 printf("%s: could not get mac address, attach failed\n",
1124 dvname);
1125 return ENXIO;
1126 }
1127
1128 printf("%s: 802.11 address %s\n", dvname, ether_sprintf(*addr));
1129
1130 return 0;
1131 }
1132
1133 static uint8_t
1134 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1135 struct ieee80211_channel *chan)
1136 {
1137 u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1138 KASSERT(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14);
1139 return RTW_SR_GET(sr, idx);
1140 }
1141
1142 static void
1143 rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
1144 {
1145 int pri;
1146 /* nfree: the number of free descriptors in each ring.
1147 * The beacon ring is a special case: I do not let the
1148 * driver use all of the descriptors on the beacon ring.
1149 * The reasons are two-fold:
1150 *
1151 * (1) A BEACON descriptor's OWN bit is (apparently) not
1152 * updated, so the driver cannot easily know if the descriptor
1153 * belongs to it, or if it is racing the NIC. If the NIC
1154 * does not OWN every descriptor, then the driver can safely
1155 * update the descriptors when RTW_TBDA points at tdb_next.
1156 *
1157 * (2) I hope that the NIC will process more than one BEACON
1158 * descriptor in a single beacon interval, since that will
1159 * enable multiple-BSS support. Since the NIC does not
1160 * clear the OWN bit, there is no natural place for it to
1161 * stop processing BEACON desciptors. Maybe it will *not*
1162 * stop processing them! I do not want to chance the NIC
1163 * looping around and around a saturated beacon ring, so
1164 * I will leave one descriptor unOWNed at all times.
1165 */
1166 u_int nfree[RTW_NTXPRI] =
1167 {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
1168 RTW_NTXDESCBCN - 1};
1169
1170 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1171 tdb[pri].tdb_nfree = nfree[pri];
1172 tdb[pri].tdb_next = 0;
1173 }
1174 }
1175
1176 static int
1177 rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
1178 {
1179 int i;
1180 struct rtw_txsoft *ts;
1181
1182 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
1183 SIMPLEQ_INIT(&tsb->tsb_freeq);
1184 for (i = 0; i < tsb->tsb_ndesc; i++) {
1185 ts = &tsb->tsb_desc[i];
1186 ts->ts_mbuf = NULL;
1187 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1188 }
1189 tsb->tsb_tx_timer = 0;
1190 return 0;
1191 }
1192
1193 static void
1194 rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
1195 {
1196 int pri;
1197 for (pri = 0; pri < RTW_NTXPRI; pri++)
1198 rtw_txsoft_blk_init(&tsb[pri]);
1199 }
1200
1201 static inline void
1202 rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
1203 {
1204 KASSERT(nsync <= rdb->rdb_ndesc);
1205 /* sync to end of ring */
1206 if (desc0 + nsync > rdb->rdb_ndesc) {
1207 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1208 offsetof(struct rtw_descs, hd_rx[desc0]),
1209 sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
1210 nsync -= (rdb->rdb_ndesc - desc0);
1211 desc0 = 0;
1212 }
1213
1214 KASSERT(desc0 < rdb->rdb_ndesc);
1215 KASSERT(nsync <= rdb->rdb_ndesc);
1216 KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
1217
1218 /* sync what remains */
1219 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1220 offsetof(struct rtw_descs, hd_rx[desc0]),
1221 sizeof(struct rtw_rxdesc) * nsync, ops);
1222 }
1223
1224 static void
1225 rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
1226 {
1227 /* sync to end of ring */
1228 if (desc0 + nsync > tdb->tdb_ndesc) {
1229 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1230 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1231 sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
1232 ops);
1233 nsync -= (tdb->tdb_ndesc - desc0);
1234 desc0 = 0;
1235 }
1236
1237 /* sync what remains */
1238 bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
1239 tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
1240 sizeof(struct rtw_txdesc) * nsync, ops);
1241 }
1242
1243 static void
1244 rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
1245 {
1246 int pri;
1247 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1248 rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
1249 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1250 }
1251 }
1252
1253 static void
1254 rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
1255 {
1256 int i;
1257 struct rtw_rxsoft *rs;
1258
1259 for (i = 0; i < RTW_RXQLEN; i++) {
1260 rs = &desc[i];
1261 if (rs->rs_mbuf == NULL)
1262 continue;
1263 bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
1264 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1265 bus_dmamap_unload(dmat, rs->rs_dmamap);
1266 m_freem(rs->rs_mbuf);
1267 rs->rs_mbuf = NULL;
1268 }
1269 }
1270
1271 static inline int
1272 rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
1273 {
1274 int rc;
1275 struct mbuf *m;
1276
1277 MGETHDR(m, M_DONTWAIT, MT_DATA);
1278 if (m == NULL)
1279 return ENOBUFS;
1280
1281 MCLGET(m, M_DONTWAIT);
1282 if ((m->m_flags & M_EXT) == 0) {
1283 m_freem(m);
1284 return ENOBUFS;
1285 }
1286
1287 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1288
1289 if (rs->rs_mbuf != NULL)
1290 bus_dmamap_unload(dmat, rs->rs_dmamap);
1291
1292 rs->rs_mbuf = NULL;
1293
1294 rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
1295 if (rc != 0) {
1296 m_freem(m);
1297 return -1;
1298 }
1299
1300 rs->rs_mbuf = m;
1301
1302 return 0;
1303 }
1304
1305 static int
1306 rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
1307 int *ndesc, const char *dvname)
1308 {
1309 int i, rc = 0;
1310 struct rtw_rxsoft *rs;
1311
1312 for (i = 0; i < RTW_RXQLEN; i++) {
1313 rs = &desc[i];
1314 /* we're in rtw_init, so there should be no mbufs allocated */
1315 KASSERT(rs->rs_mbuf == NULL);
1316 #ifdef RTW_DEBUG
1317 if (i == rtw_rxbufs_limit) {
1318 printf("%s: TEST hit %d-buffer limit\n", dvname, i);
1319 rc = ENOBUFS;
1320 break;
1321 }
1322 #endif /* RTW_DEBUG */
1323 if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
1324 printf("%s: rtw_rxsoft_alloc failed, %d buffers, "
1325 "rc %d\n", dvname, i, rc);
1326 break;
1327 }
1328 }
1329 *ndesc = i;
1330 return rc;
1331 }
1332
1333 static inline void
1334 rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
1335 int idx, int kick)
1336 {
1337 int is_last = (idx == rdb->rdb_ndesc - 1);
1338 uint32_t ctl, octl, obuf;
1339 struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
1340
1341 /* sync the mbuf before the descriptor */
1342 bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
1343 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1344
1345 obuf = rd->rd_buf;
1346 rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
1347
1348 ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
1349 RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
1350
1351 if (is_last)
1352 ctl |= RTW_RXCTL_EOR;
1353
1354 octl = rd->rd_ctl;
1355 rd->rd_ctl = htole32(ctl);
1356
1357 RTW_DPRINTF(
1358 kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
1359 : RTW_DEBUG_RECV_DESC,
1360 ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
1361 le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
1362 le32toh(rd->rd_ctl)));
1363
1364 /* sync the descriptor */
1365 bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
1366 RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
1367 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1368 }
1369
1370 static void
1371 rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
1372 {
1373 int i;
1374 struct rtw_rxdesc *rd;
1375 struct rtw_rxsoft *rs;
1376
1377 for (i = 0; i < rdb->rdb_ndesc; i++) {
1378 rd = &rdb->rdb_desc[i];
1379 rs = &ctl[i];
1380 rtw_rxdesc_init(rdb, rs, i, kick);
1381 }
1382 }
1383
1384 static void
1385 rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
1386 {
1387 struct rtw_regs *regs = &sc->sc_regs;
1388 uint8_t cr;
1389
1390 RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
1391 enable ? "enable" : "disable", flags));
1392
1393 cr = RTW_READ8(regs, RTW_CR);
1394
1395 /* XXX reference source does not enable MULRW */
1396 /* enable PCI Read/Write Multiple */
1397 cr |= RTW_CR_MULRW;
1398
1399 /* The receive engine will always start at RDSAR. */
1400 if (enable && (flags & ~cr & RTW_CR_RE)) {
1401 struct rtw_rxdesc_blk *rdb;
1402 rdb = &sc->sc_rxdesc_blk;
1403 rdb->rdb_next = 0;
1404 }
1405
1406 RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
1407 if (enable)
1408 cr |= flags;
1409 else
1410 cr &= ~flags;
1411 RTW_WRITE8(regs, RTW_CR, cr);
1412 RTW_SYNC(regs, RTW_CR, RTW_CR);
1413
1414 #ifdef RTW_DIAG
1415 if (cr & RTW_CR_TE)
1416 rtw_txring_fixup(sc, __func__, __LINE__);
1417 #endif
1418 }
1419
1420 static void
1421 rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
1422 {
1423 #define IS_BEACON(__fc0) \
1424 ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
1425 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
1426
1427 static const int ratetbl[4] = {2, 4, 11, 22}; /* convert rates:
1428 * hardware -> net80211
1429 */
1430 u_int next, nproc = 0;
1431 int hwrate, len, rate, rssi, sq;
1432 uint32_t hrssi, hstat, htsfth, htsftl;
1433 struct rtw_rxdesc *rd;
1434 struct rtw_rxsoft *rs;
1435 struct rtw_rxdesc_blk *rdb;
1436 struct mbuf *m;
1437 struct ifnet *ifp = &sc->sc_if;
1438
1439 struct ieee80211_node *ni;
1440 struct ieee80211_frame_min *wh;
1441
1442 rdb = &sc->sc_rxdesc_blk;
1443
1444 for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
1445 KASSERT(next < rdb->rdb_ndesc);
1446
1447 rtw_rxdescs_sync(rdb, next, 1,
1448 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1449 rd = &rdb->rdb_desc[next];
1450 rs = &sc->sc_rxsoft[next];
1451
1452 hstat = le32toh(rd->rd_stat);
1453 hrssi = le32toh(rd->rd_rssi);
1454 htsfth = le32toh(rd->rd_tsfth);
1455 htsftl = le32toh(rd->rd_tsftl);
1456
1457 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1458 ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
1459 __func__, next, hstat, hrssi, htsfth, htsftl));
1460
1461 ++nproc;
1462
1463 /* still belongs to NIC */
1464 if ((hstat & RTW_RXSTAT_OWN) != 0) {
1465 rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
1466 break;
1467 }
1468
1469 /* ieee80211_input() might reset the receive engine
1470 * (e.g. by indirectly calling rtw_tune()), so save
1471 * the next pointer here and retrieve it again on
1472 * the next round.
1473 */
1474 rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
1475
1476 #ifdef RTW_DEBUG
1477 #define PRINTSTAT(flag) do { \
1478 if ((hstat & flag) != 0) { \
1479 printf("%s" #flag, delim); \
1480 delim = ","; \
1481 } \
1482 } while (0)
1483 if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
1484 const char *delim = "<";
1485 printf("%s: ", sc->sc_dev.dv_xname);
1486 if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
1487 printf("status %08x", hstat);
1488 PRINTSTAT(RTW_RXSTAT_SPLCP);
1489 PRINTSTAT(RTW_RXSTAT_MAR);
1490 PRINTSTAT(RTW_RXSTAT_PAR);
1491 PRINTSTAT(RTW_RXSTAT_BAR);
1492 PRINTSTAT(RTW_RXSTAT_PWRMGT);
1493 PRINTSTAT(RTW_RXSTAT_CRC32);
1494 PRINTSTAT(RTW_RXSTAT_ICV);
1495 printf(">, ");
1496 }
1497 }
1498 #endif /* RTW_DEBUG */
1499
1500 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
1501 printf("%s: DMA error/FIFO overflow %08" PRIx32 ", "
1502 "rx descriptor %d\n", sc->sc_dev.dv_xname,
1503 hstat, next);
1504 ifp->if_ierrors++;
1505 goto next;
1506 }
1507
1508 len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
1509 if (len < IEEE80211_MIN_LEN) {
1510 sc->sc_ic.ic_stats.is_rx_tooshort++;
1511 goto next;
1512 }
1513 KASSERT(len <= rs->rs_mbuf->m_pkthdr.len);
1514 KASSERT(len <= rs->rs_mbuf->m_len);
1515
1516 hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
1517 if (hwrate >= __arraycount(ratetbl)) {
1518 printf("%s: unknown rate #%" __PRIuBITS "\n",
1519 sc->sc_dev.dv_xname,
1520 __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
1521 ifp->if_ierrors++;
1522 goto next;
1523 }
1524 rate = ratetbl[hwrate];
1525
1526 #ifdef RTW_DEBUG
1527 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1528 ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
1529 (rate * 5) % 10, htsfth, htsftl));
1530 #endif /* RTW_DEBUG */
1531
1532 /* if bad flags, skip descriptor */
1533 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
1534 printf("%s: too many rx segments, "
1535 "next=%d, %08" PRIx32 "\n",
1536 sc->sc_dev.dv_xname, next, hstat);
1537 goto next;
1538 }
1539
1540 bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
1541 rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1542
1543 m = rs->rs_mbuf;
1544
1545 /* if temporarily out of memory, re-use mbuf */
1546 switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
1547 case 0:
1548 break;
1549 case ENOBUFS:
1550 printf("%s: rtw_rxsoft_alloc(, %d) failed, "
1551 "dropping packet\n", sc->sc_dev.dv_xname, next);
1552 goto next;
1553 default:
1554 /* XXX shorten rx ring, instead? */
1555 panic("%s: could not load DMA map\n",
1556 sc->sc_dev.dv_xname);
1557 }
1558
1559 sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
1560
1561 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1562 rssi = UINT8_MAX - sq;
1563 else {
1564 rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
1565 /* TBD find out each front-end's LNA gain in the
1566 * front-end's units
1567 */
1568 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
1569 rssi |= 0x80;
1570 }
1571
1572 /* Note well: now we cannot recycle the rs_mbuf unless
1573 * we restore its original length.
1574 */
1575 m->m_pkthdr.rcvif = ifp;
1576 m->m_pkthdr.len = m->m_len = len;
1577
1578 wh = mtod(m, struct ieee80211_frame_min *);
1579
1580 if (!IS_BEACON(wh->i_fc[0]))
1581 sc->sc_led_state.ls_event |= RTW_LED_S_RX;
1582
1583 sc->sc_tsfth = htsfth;
1584
1585 #ifdef RTW_DEBUG
1586 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
1587 (IFF_DEBUG|IFF_LINK2)) {
1588 ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
1589 rate, rssi);
1590 }
1591 #endif /* RTW_DEBUG */
1592
1593 #if NBPFILTER > 0
1594 if (sc->sc_radiobpf != NULL) {
1595 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
1596
1597 rr->rr_tsft =
1598 htole64(((uint64_t)htsfth << 32) | htsftl);
1599
1600 rr->rr_flags = IEEE80211_RADIOTAP_F_FCS;
1601
1602 if ((hstat & RTW_RXSTAT_SPLCP) != 0)
1603 rr->rr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1604 if ((hstat & RTW_RXSTAT_CRC32) != 0)
1605 rr->rr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
1606
1607 rr->rr_rate = rate;
1608
1609 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
1610 rr->rr_u.u_philips.p_antsignal = rssi;
1611 else {
1612 rr->rr_u.u_other.o_antsignal = rssi;
1613 rr->rr_u.u_other.o_barker_lock =
1614 htole16(UINT8_MAX - sq);
1615 }
1616
1617 bpf_mtap2(sc->sc_radiobpf, rr,
1618 sizeof(sc->sc_rxtapu), m);
1619 }
1620 #endif /* NBPFILTER > 0 */
1621
1622 if ((hstat & RTW_RXSTAT_RES) != 0) {
1623 m_freem(m);
1624 goto next;
1625 }
1626
1627 /* CRC is included with the packet; trim it off. */
1628 m_adj(m, -IEEE80211_CRC_LEN);
1629
1630 /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
1631 ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
1632 ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
1633 ieee80211_free_node(ni);
1634 next:
1635 rtw_rxdesc_init(rdb, rs, next, 0);
1636 }
1637 #undef IS_BEACON
1638 }
1639
1640 static void
1641 rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1642 struct rtw_txsoft *ts)
1643 {
1644 struct mbuf *m;
1645 struct ieee80211_node *ni;
1646
1647 m = ts->ts_mbuf;
1648 ni = ts->ts_ni;
1649 KASSERT(m != NULL);
1650 KASSERT(ni != NULL);
1651 ts->ts_mbuf = NULL;
1652 ts->ts_ni = NULL;
1653
1654 bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
1655 BUS_DMASYNC_POSTWRITE);
1656 bus_dmamap_unload(dmat, ts->ts_dmamap);
1657 m_freem(m);
1658 ieee80211_free_node(ni);
1659 }
1660
1661 static void
1662 rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
1663 struct rtw_txsoft_blk *tsb)
1664 {
1665 struct rtw_txsoft *ts;
1666
1667 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1668 rtw_txsoft_release(dmat, ic, ts);
1669 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1670 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1671 }
1672 tsb->tsb_tx_timer = 0;
1673 }
1674
1675 static inline void
1676 rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
1677 struct rtw_txsoft *ts, int ndesc)
1678 {
1679 uint32_t hstat;
1680 int data_retry, rts_retry;
1681 struct rtw_txdesc *tdn;
1682 const char *condstring;
1683 struct ifnet *ifp = &sc->sc_if;
1684
1685 rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
1686
1687 tdb->tdb_nfree += ndesc;
1688
1689 tdn = &tdb->tdb_desc[ts->ts_last];
1690
1691 hstat = le32toh(tdn->td_stat);
1692 rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
1693 data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
1694
1695 ifp->if_collisions += rts_retry + data_retry;
1696
1697 if ((hstat & RTW_TXSTAT_TOK) != 0)
1698 condstring = "ok";
1699 else {
1700 ifp->if_oerrors++;
1701 condstring = "error";
1702 }
1703
1704 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
1705 ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
1706 sc->sc_dev.dv_xname, ts, ts->ts_first, ts->ts_last,
1707 condstring, rts_retry, data_retry));
1708 }
1709
1710 static void
1711 rtw_reset_oactive(struct rtw_softc *sc)
1712 {
1713 short oflags;
1714 int pri;
1715 struct rtw_txsoft_blk *tsb;
1716 struct rtw_txdesc_blk *tdb;
1717 oflags = sc->sc_if.if_flags;
1718 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1719 tsb = &sc->sc_txsoft_blk[pri];
1720 tdb = &sc->sc_txdesc_blk[pri];
1721 if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
1722 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1723 }
1724 if (oflags != sc->sc_if.if_flags) {
1725 DPRINTF(sc, RTW_DEBUG_OACTIVE,
1726 ("%s: reset OACTIVE\n", __func__));
1727 }
1728 }
1729
1730 /* Collect transmitted packets. */
1731 static void
1732 rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
1733 struct rtw_txdesc_blk *tdb, int force)
1734 {
1735 int ndesc;
1736 struct rtw_txsoft *ts;
1737
1738 #ifdef RTW_DEBUG
1739 rtw_dump_rings(sc);
1740 #endif
1741
1742 while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
1743 /* If we're clearing a failed transmission, only clear
1744 up to the last packet the hardware has processed. */
1745 if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
1746 break;
1747
1748 ndesc = 1 + ts->ts_last - ts->ts_first;
1749 if (ts->ts_last < ts->ts_first)
1750 ndesc += tdb->tdb_ndesc;
1751
1752 KASSERT(ndesc > 0);
1753
1754 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1755 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1756
1757 if (force) {
1758 int next;
1759 #ifdef RTW_DIAG
1760 printf("%s: clearing packet, stats", __func__);
1761 #endif
1762 for (next = ts->ts_first; ;
1763 next = RTW_NEXT_IDX(tdb, next)) {
1764 #ifdef RTW_DIAG
1765 printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
1766 #endif
1767 tdb->tdb_desc[next].td_stat &=
1768 ~htole32(RTW_TXSTAT_OWN);
1769 if (next == ts->ts_last)
1770 break;
1771 }
1772 rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
1773 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1774 #ifdef RTW_DIAG
1775 next = RTW_NEXT_IDX(tdb, next);
1776 printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
1777 le32toh(tdb->tdb_desc[next].td_stat),
1778 rtw_txring_next(&sc->sc_regs, tdb));
1779 #endif
1780 } else if ((tdb->tdb_desc[ts->ts_last].td_stat &
1781 htole32(RTW_TXSTAT_OWN)) != 0) {
1782 rtw_txdescs_sync(tdb, ts->ts_last, 1,
1783 BUS_DMASYNC_PREREAD);
1784 break;
1785 }
1786
1787 rtw_collect_txpkt(sc, tdb, ts, ndesc);
1788 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
1789 SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
1790 }
1791
1792 /* no more pending transmissions, cancel watchdog */
1793 if (ts == NULL)
1794 tsb->tsb_tx_timer = 0;
1795 rtw_reset_oactive(sc);
1796 }
1797
1798 static void
1799 rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
1800 {
1801 int pri;
1802 struct rtw_txsoft_blk *tsb;
1803 struct rtw_txdesc_blk *tdb;
1804 struct ifnet *ifp = &sc->sc_if;
1805
1806 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1807 tsb = &sc->sc_txsoft_blk[pri];
1808 tdb = &sc->sc_txdesc_blk[pri];
1809 rtw_collect_txring(sc, tsb, tdb, 0);
1810 }
1811
1812 if ((isr & RTW_INTR_TX) != 0)
1813 rtw_start(ifp);
1814
1815 return;
1816 }
1817
1818 static void
1819 rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
1820 {
1821 u_int next;
1822 uint32_t tsfth, tsftl;
1823 struct ieee80211com *ic;
1824 struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
1825 struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
1826 struct mbuf *m;
1827
1828 tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
1829 tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
1830
1831 if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) {
1832 next = rtw_txring_next(&sc->sc_regs, tdb);
1833 RTW_DPRINTF(RTW_DEBUG_BEACON,
1834 ("%s: beacon ring %sprocessed, isr = %#04" PRIx16
1835 ", next %u expected %u, %" PRIu64 "\n", __func__,
1836 (next == tdb->tdb_next) ? "" : "un", isr, next,
1837 tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
1838 if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
1839 rtw_collect_txring(sc, tsb, tdb, 1);
1840 }
1841 /* Start beacon transmission. */
1842
1843 if ((isr & RTW_INTR_BCNINT) != 0 &&
1844 sc->sc_ic.ic_state == IEEE80211_S_RUN &&
1845 SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
1846 RTW_DPRINTF(RTW_DEBUG_BEACON,
1847 ("%s: beacon prep. time, isr = %#04" PRIx16
1848 ", %16" PRIu64 "\n", __func__, isr,
1849 (uint64_t)tsfth << 32 | tsftl));
1850 ic = &sc->sc_ic;
1851 m = rtw_beacon_alloc(sc, ic->ic_bss);
1852
1853 if (m == NULL) {
1854 printf("%s: could not allocate beacon\n",
1855 sc->sc_dev.dv_xname);
1856 return;
1857 }
1858 m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss);
1859 IF_ENQUEUE(&sc->sc_beaconq, m);
1860 rtw_start(&sc->sc_if);
1861 }
1862 }
1863
1864 static void
1865 rtw_intr_atim(struct rtw_softc *sc)
1866 {
1867 /* TBD */
1868 return;
1869 }
1870
1871 #ifdef RTW_DEBUG
1872 static void
1873 rtw_dump_rings(struct rtw_softc *sc)
1874 {
1875 struct rtw_txdesc_blk *tdb;
1876 struct rtw_rxdesc *rd;
1877 struct rtw_rxdesc_blk *rdb;
1878 int desc, pri;
1879
1880 if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
1881 return;
1882
1883 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1884 tdb = &sc->sc_txdesc_blk[pri];
1885 printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
1886 tdb->tdb_ndesc, tdb->tdb_nfree);
1887 for (desc = 0; desc < tdb->tdb_ndesc; desc++)
1888 rtw_print_txdesc(sc, ".", NULL, tdb, desc);
1889 }
1890
1891 rdb = &sc->sc_rxdesc_blk;
1892
1893 for (desc = 0; desc < RTW_RXQLEN; desc++) {
1894 rd = &rdb->rdb_desc[desc];
1895 printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
1896 "rsvd1/tsfth %08x\n", __func__,
1897 (desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
1898 le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
1899 le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
1900 }
1901 }
1902 #endif /* RTW_DEBUG */
1903
1904 static void
1905 rtw_hwring_setup(struct rtw_softc *sc)
1906 {
1907 int pri;
1908 struct rtw_regs *regs = &sc->sc_regs;
1909 struct rtw_txdesc_blk *tdb;
1910
1911 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
1912 sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
1913 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
1914 sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
1915 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
1916 sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
1917 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
1918 sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
1919
1920 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1921 tdb = &sc->sc_txdesc_blk[pri];
1922 RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
1923 RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
1924 ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
1925 (uintptr_t)tdb->tdb_base));
1926 }
1927
1928 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
1929
1930 RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
1931 ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
1932 (uintptr_t)RTW_RING_BASE(sc, hd_rx)));
1933
1934 RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
1935
1936 }
1937
1938 static int
1939 rtw_swring_setup(struct rtw_softc *sc)
1940 {
1941 int rc;
1942 struct rtw_rxdesc_blk *rdb;
1943
1944 rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
1945
1946 rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
1947
1948 rdb = &sc->sc_rxdesc_blk;
1949 if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
1950 sc->sc_dev.dv_xname)) != 0 && rdb->rdb_ndesc == 0) {
1951 printf("%s: could not allocate rx buffers\n",
1952 sc->sc_dev.dv_xname);
1953 return rc;
1954 }
1955
1956 rdb = &sc->sc_rxdesc_blk;
1957 rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
1958 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1959 rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
1960 rdb->rdb_next = 0;
1961
1962 rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
1963 return 0;
1964 }
1965
1966 static void
1967 rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
1968 {
1969 int i;
1970
1971 (void)memset(tdb->tdb_desc, 0,
1972 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
1973 for (i = 0; i < tdb->tdb_ndesc; i++)
1974 tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
1975 }
1976
1977 static u_int
1978 rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
1979 {
1980 return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
1981 sizeof(struct rtw_txdesc);
1982 }
1983
1984 #ifdef RTW_DIAG
1985 static void
1986 rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
1987 {
1988 int pri;
1989 u_int next;
1990 struct rtw_txdesc_blk *tdb;
1991 struct rtw_regs *regs = &sc->sc_regs;
1992
1993 for (pri = 0; pri < RTW_NTXPRI; pri++) {
1994 int i;
1995 tdb = &sc->sc_txdesc_blk[pri];
1996 next = rtw_txring_next(regs, tdb);
1997 if (tdb->tdb_next == next)
1998 continue;
1999 for (i = 0; next != tdb->tdb_next;
2000 next = RTW_NEXT_IDX(tdb, next), i++) {
2001 if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
2002 break;
2003 }
2004 printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
2005 ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
2006 if (tdb->tdb_next == next)
2007 continue;
2008 tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
2009 }
2010 }
2011 #endif
2012
2013 static void
2014 rtw_txdescs_reset(struct rtw_softc *sc)
2015 {
2016 int pri;
2017 struct rtw_txsoft_blk *tsb;
2018 struct rtw_txdesc_blk *tdb;
2019
2020 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2021 tsb = &sc->sc_txsoft_blk[pri];
2022 tdb = &sc->sc_txdesc_blk[pri];
2023 rtw_collect_txring(sc, tsb, tdb, 1);
2024 #ifdef RTW_DIAG
2025 if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
2026 printf("%s: packets left in ring %d\n", __func__, pri);
2027 #endif
2028 }
2029 }
2030
2031 static void
2032 rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
2033 {
2034 printf("%s: tx fifo underflow\n", sc->sc_dev.dv_xname);
2035
2036 RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
2037 "\n", sc->sc_dev.dv_xname, isr));
2038
2039 #ifdef RTW_DEBUG
2040 rtw_dump_rings(sc);
2041 #endif /* RTW_DEBUG */
2042
2043 /* Collect tx'd packets. XXX let's hope this stops the transmit
2044 * timeouts.
2045 */
2046 rtw_txdescs_reset(sc);
2047
2048 #ifdef RTW_DEBUG
2049 rtw_dump_rings(sc);
2050 #endif /* RTW_DEBUG */
2051 }
2052
2053 static inline void
2054 rtw_suspend_ticks(struct rtw_softc *sc)
2055 {
2056 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2057 ("%s: suspending ticks\n", sc->sc_dev.dv_xname));
2058 sc->sc_do_tick = 0;
2059 }
2060
2061 static inline void
2062 rtw_resume_ticks(struct rtw_softc *sc)
2063 {
2064 uint32_t tsftrl0, tsftrl1, next_tick;
2065
2066 tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2067
2068 tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
2069 next_tick = tsftrl1 + 1000000;
2070 RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick);
2071
2072 sc->sc_do_tick = 1;
2073
2074 RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
2075 ("%s: resume ticks delta %#08x now %#08x next %#08x\n",
2076 sc->sc_dev.dv_xname, tsftrl1 - tsftrl0, tsftrl1, next_tick));
2077 }
2078
2079 static void
2080 rtw_intr_timeout(struct rtw_softc *sc)
2081 {
2082 RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", sc->sc_dev.dv_xname));
2083 if (sc->sc_do_tick)
2084 rtw_resume_ticks(sc);
2085 return;
2086 }
2087
2088 int
2089 rtw_intr(void *arg)
2090 {
2091 int i;
2092 struct rtw_softc *sc = arg;
2093 struct rtw_regs *regs = &sc->sc_regs;
2094 uint16_t isr;
2095 struct ifnet *ifp = &sc->sc_if;
2096
2097 /*
2098 * If the interface isn't running, the interrupt couldn't
2099 * possibly have come from us.
2100 */
2101 if ((sc->sc_flags & RTW_F_ENABLED) == 0 ||
2102 (ifp->if_flags & IFF_RUNNING) == 0 ||
2103 !device_is_active(&sc->sc_dev)) {
2104 RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n", sc->sc_dev.dv_xname));
2105 return (0);
2106 }
2107
2108 for (i = 0; i < 10; i++) {
2109 isr = RTW_READ16(regs, RTW_ISR);
2110
2111 RTW_WRITE16(regs, RTW_ISR, isr);
2112 RTW_WBR(regs, RTW_ISR, RTW_ISR);
2113
2114 if (sc->sc_intr_ack != NULL)
2115 (*sc->sc_intr_ack)(regs);
2116
2117 if (isr == 0)
2118 break;
2119
2120 #ifdef RTW_DEBUG
2121 #define PRINTINTR(flag) do { \
2122 if ((isr & flag) != 0) { \
2123 printf("%s" #flag, delim); \
2124 delim = ","; \
2125 } \
2126 } while (0)
2127
2128 if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
2129 const char *delim = "<";
2130
2131 printf("%s: reg[ISR] = %x", sc->sc_dev.dv_xname, isr);
2132
2133 PRINTINTR(RTW_INTR_TXFOVW);
2134 PRINTINTR(RTW_INTR_TIMEOUT);
2135 PRINTINTR(RTW_INTR_BCNINT);
2136 PRINTINTR(RTW_INTR_ATIMINT);
2137 PRINTINTR(RTW_INTR_TBDER);
2138 PRINTINTR(RTW_INTR_TBDOK);
2139 PRINTINTR(RTW_INTR_THPDER);
2140 PRINTINTR(RTW_INTR_THPDOK);
2141 PRINTINTR(RTW_INTR_TNPDER);
2142 PRINTINTR(RTW_INTR_TNPDOK);
2143 PRINTINTR(RTW_INTR_RXFOVW);
2144 PRINTINTR(RTW_INTR_RDU);
2145 PRINTINTR(RTW_INTR_TLPDER);
2146 PRINTINTR(RTW_INTR_TLPDOK);
2147 PRINTINTR(RTW_INTR_RER);
2148 PRINTINTR(RTW_INTR_ROK);
2149
2150 printf(">\n");
2151 }
2152 #undef PRINTINTR
2153 #endif /* RTW_DEBUG */
2154
2155 if ((isr & RTW_INTR_RX) != 0)
2156 rtw_intr_rx(sc, isr);
2157 if ((isr & RTW_INTR_TX) != 0)
2158 rtw_intr_tx(sc, isr);
2159 if ((isr & RTW_INTR_BEACON) != 0)
2160 rtw_intr_beacon(sc, isr);
2161 if ((isr & RTW_INTR_ATIMINT) != 0)
2162 rtw_intr_atim(sc);
2163 if ((isr & RTW_INTR_IOERROR) != 0)
2164 rtw_intr_ioerror(sc, isr);
2165 if ((isr & RTW_INTR_TIMEOUT) != 0)
2166 rtw_intr_timeout(sc);
2167 }
2168
2169 return 1;
2170 }
2171
2172 /* Must be called at splnet. */
2173 static void
2174 rtw_stop(struct ifnet *ifp, int disable)
2175 {
2176 int pri;
2177 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2178 struct ieee80211com *ic = &sc->sc_ic;
2179 struct rtw_regs *regs = &sc->sc_regs;
2180
2181 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2182 return;
2183
2184 rtw_suspend_ticks(sc);
2185
2186 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2187
2188 if ((sc->sc_flags & RTW_F_INVALID) == 0) {
2189 /* Disable interrupts. */
2190 RTW_WRITE16(regs, RTW_IMR, 0);
2191
2192 RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
2193
2194 /* Stop the transmit and receive processes. First stop DMA,
2195 * then disable receiver and transmitter.
2196 */
2197 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2198
2199 RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
2200
2201 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2202 }
2203
2204 for (pri = 0; pri < RTW_NTXPRI; pri++) {
2205 rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
2206 &sc->sc_txsoft_blk[pri]);
2207 }
2208
2209 rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
2210
2211 if (disable)
2212 rtw_disable(sc);
2213
2214 /* Mark the interface as not running. Cancel the watchdog timer. */
2215 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2216 ifp->if_timer = 0;
2217
2218 return;
2219 }
2220
2221 const char *
2222 rtw_pwrstate_string(enum rtw_pwrstate power)
2223 {
2224 switch (power) {
2225 case RTW_ON:
2226 return "on";
2227 case RTW_SLEEP:
2228 return "sleep";
2229 case RTW_OFF:
2230 return "off";
2231 default:
2232 return "unknown";
2233 }
2234 }
2235
2236 /* XXX For Maxim, I am using the RFMD settings gleaned from the
2237 * reference driver, plus a magic Maxim "ON" value that comes from
2238 * the Realtek document "Windows PG for Rtl8180."
2239 */
2240 static void
2241 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2242 int before_rf, int digphy)
2243 {
2244 uint32_t anaparm;
2245
2246 anaparm = RTW_READ(regs, RTW_ANAPARM);
2247 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2248
2249 switch (power) {
2250 case RTW_OFF:
2251 if (before_rf)
2252 return;
2253 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
2254 anaparm |= RTW_ANAPARM_TXDACOFF;
2255 break;
2256 case RTW_SLEEP:
2257 if (!before_rf)
2258 return;
2259 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
2260 anaparm |= RTW_ANAPARM_TXDACOFF;
2261 break;
2262 case RTW_ON:
2263 if (!before_rf)
2264 return;
2265 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
2266 break;
2267 }
2268 RTW_DPRINTF(RTW_DEBUG_PWR,
2269 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2270 __func__, rtw_pwrstate_string(power),
2271 (before_rf) ? "before" : "after", anaparm));
2272
2273 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2274 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2275 }
2276
2277 /* XXX I am using the RFMD settings gleaned from the reference
2278 * driver. They agree
2279 */
2280 static void
2281 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2282 int before_rf, int digphy)
2283 {
2284 uint32_t anaparm;
2285
2286 anaparm = RTW_READ(regs, RTW_ANAPARM);
2287 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2288
2289 switch (power) {
2290 case RTW_OFF:
2291 if (before_rf)
2292 return;
2293 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
2294 anaparm |= RTW_ANAPARM_TXDACOFF;
2295 break;
2296 case RTW_SLEEP:
2297 if (!before_rf)
2298 return;
2299 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
2300 anaparm |= RTW_ANAPARM_TXDACOFF;
2301 break;
2302 case RTW_ON:
2303 if (!before_rf)
2304 return;
2305 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
2306 break;
2307 }
2308 RTW_DPRINTF(RTW_DEBUG_PWR,
2309 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2310 __func__, rtw_pwrstate_string(power),
2311 (before_rf) ? "before" : "after", anaparm));
2312
2313 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2314 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2315 }
2316
2317 static void
2318 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
2319 int before_rf, int digphy)
2320 {
2321 uint32_t anaparm;
2322
2323 anaparm = RTW_READ(regs, RTW_ANAPARM);
2324 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
2325
2326 switch (power) {
2327 case RTW_OFF:
2328 if (before_rf)
2329 return;
2330 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
2331 anaparm |= RTW_ANAPARM_TXDACOFF;
2332 break;
2333 case RTW_SLEEP:
2334 if (!before_rf)
2335 return;
2336 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
2337 anaparm |= RTW_ANAPARM_TXDACOFF;
2338 break;
2339 case RTW_ON:
2340 if (!before_rf)
2341 return;
2342 if (digphy) {
2343 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
2344 /* XXX guess */
2345 anaparm |= RTW_ANAPARM_TXDACOFF;
2346 } else
2347 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
2348 break;
2349 }
2350 RTW_DPRINTF(RTW_DEBUG_PWR,
2351 ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
2352 __func__, rtw_pwrstate_string(power),
2353 (before_rf) ? "before" : "after", anaparm));
2354
2355 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
2356 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
2357 }
2358
2359 static void
2360 rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
2361 int digphy)
2362 {
2363 struct rtw_regs *regs = &sc->sc_regs;
2364
2365 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2366
2367 (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
2368
2369 rtw_set_access(regs, RTW_ACCESS_NONE);
2370
2371 return;
2372 }
2373
2374 static int
2375 rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
2376 {
2377 int rc;
2378
2379 RTW_DPRINTF(RTW_DEBUG_PWR,
2380 ("%s: %s->%s\n", __func__,
2381 rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
2382
2383 if (sc->sc_pwrstate == power)
2384 return 0;
2385
2386 rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
2387 rc = rtw_rf_pwrstate(sc->sc_rf, power);
2388 rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
2389
2390 switch (power) {
2391 case RTW_ON:
2392 /* TBD set LEDs */
2393 break;
2394 case RTW_SLEEP:
2395 /* TBD */
2396 break;
2397 case RTW_OFF:
2398 /* TBD */
2399 break;
2400 }
2401 if (rc == 0)
2402 sc->sc_pwrstate = power;
2403 else
2404 sc->sc_pwrstate = RTW_OFF;
2405 return rc;
2406 }
2407
2408 static int
2409 rtw_tune(struct rtw_softc *sc)
2410 {
2411 struct ieee80211com *ic = &sc->sc_ic;
2412 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
2413 struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
2414 u_int chan;
2415 int rc;
2416 int antdiv = sc->sc_flags & RTW_F_ANTDIV,
2417 dflantb = sc->sc_flags & RTW_F_DFLANTB;
2418
2419 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2420 KASSERT(chan != IEEE80211_CHAN_ANY);
2421
2422 rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2423 rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2424
2425 rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
2426 rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2427
2428 if (chan == sc->sc_cur_chan) {
2429 RTW_DPRINTF(RTW_DEBUG_TUNE,
2430 ("%s: already tuned chan #%d\n", __func__, chan));
2431 return 0;
2432 }
2433
2434 rtw_suspend_ticks(sc);
2435
2436 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
2437
2438 /* TBD wait for Tx to complete */
2439
2440 KASSERT((sc->sc_flags & RTW_F_ENABLED) != 0);
2441
2442 if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
2443 rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
2444 ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
2445 /* XXX condition on powersaving */
2446 printf("%s: phy init failed\n", sc->sc_dev.dv_xname);
2447 }
2448
2449 sc->sc_cur_chan = chan;
2450
2451 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2452
2453 rtw_resume_ticks(sc);
2454
2455 return rc;
2456 }
2457
2458 void
2459 rtw_disable(struct rtw_softc *sc)
2460 {
2461 int rc;
2462
2463 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
2464 return;
2465
2466 /* turn off PHY */
2467 if ((sc->sc_flags & RTW_F_INVALID) == 0 &&
2468 (rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
2469 printf("%s: failed to turn off PHY (%d)\n",
2470 sc->sc_dev.dv_xname, rc);
2471 }
2472
2473 if (sc->sc_disable != NULL)
2474 (*sc->sc_disable)(sc);
2475
2476 sc->sc_flags &= ~RTW_F_ENABLED;
2477 }
2478
2479 int
2480 rtw_enable(struct rtw_softc *sc)
2481 {
2482 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
2483 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2484 printf("%s: device enable failed\n",
2485 sc->sc_dev.dv_xname);
2486 return (EIO);
2487 }
2488 sc->sc_flags |= RTW_F_ENABLED;
2489 /* Power may have been removed, and WEP keys thus
2490 * reset.
2491 */
2492 sc->sc_flags &= ~RTW_F_DK_VALID;
2493 }
2494 return (0);
2495 }
2496
2497 static void
2498 rtw_transmit_config(struct rtw_regs *regs)
2499 {
2500 uint32_t tcr;
2501
2502 tcr = RTW_READ(regs, RTW_TCR);
2503
2504 tcr |= RTW_TCR_CWMIN;
2505 tcr &= ~RTW_TCR_MXDMA_MASK;
2506 tcr |= RTW_TCR_MXDMA_256;
2507 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
2508 tcr &= ~RTW_TCR_LBK_MASK;
2509 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
2510
2511 /* set short/long retry limits */
2512 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
2513 tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
2514
2515 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
2516
2517 RTW_WRITE(regs, RTW_TCR, tcr);
2518 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
2519 }
2520
2521 static inline void
2522 rtw_enable_interrupts(struct rtw_softc *sc)
2523 {
2524 struct rtw_regs *regs = &sc->sc_regs;
2525
2526 sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT;
2527 sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT;
2528
2529 RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
2530 RTW_WBW(regs, RTW_IMR, RTW_ISR);
2531 RTW_WRITE16(regs, RTW_ISR, 0xffff);
2532 RTW_SYNC(regs, RTW_IMR, RTW_ISR);
2533
2534 /* XXX necessary? */
2535 if (sc->sc_intr_ack != NULL)
2536 (*sc->sc_intr_ack)(regs);
2537 }
2538
2539 static void
2540 rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
2541 {
2542 uint8_t msr;
2543
2544 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
2545 rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
2546
2547 msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
2548
2549 switch (opmode) {
2550 case IEEE80211_M_AHDEMO:
2551 case IEEE80211_M_IBSS:
2552 msr |= RTW_MSR_NETYPE_ADHOC_OK;
2553 break;
2554 case IEEE80211_M_HOSTAP:
2555 msr |= RTW_MSR_NETYPE_AP_OK;
2556 break;
2557 case IEEE80211_M_MONITOR:
2558 /* XXX */
2559 msr |= RTW_MSR_NETYPE_NOLINK;
2560 break;
2561 case IEEE80211_M_STA:
2562 msr |= RTW_MSR_NETYPE_INFRA_OK;
2563 break;
2564 }
2565 RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
2566
2567 rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
2568 }
2569
2570 #define rtw_calchash(addr) \
2571 (ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
2572
2573 static void
2574 rtw_pktfilt_load(struct rtw_softc *sc)
2575 {
2576 struct rtw_regs *regs = &sc->sc_regs;
2577 struct ieee80211com *ic = &sc->sc_ic;
2578 struct ethercom *ec = &sc->sc_ec;
2579 struct ifnet *ifp = &sc->sc_if;
2580 int hash;
2581 uint32_t hashes[2] = { 0, 0 };
2582 struct ether_multi *enm;
2583 struct ether_multistep step;
2584
2585 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
2586
2587 sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
2588 sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
2589
2590 sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
2591 /* MAC auto-reset PHY (huh?) */
2592 sc->sc_rcr |= RTW_RCR_ENMARP;
2593 /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
2594 sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
2595
2596 switch (ic->ic_opmode) {
2597 case IEEE80211_M_MONITOR:
2598 sc->sc_rcr |= RTW_RCR_MONITOR;
2599 break;
2600 case IEEE80211_M_AHDEMO:
2601 case IEEE80211_M_IBSS:
2602 /* receive broadcasts in our BSS */
2603 sc->sc_rcr |= RTW_RCR_ADD3;
2604 break;
2605 default:
2606 break;
2607 }
2608
2609 ifp->if_flags &= ~IFF_ALLMULTI;
2610
2611 /*
2612 * Program the 64-bit multicast hash filter.
2613 */
2614 ETHER_FIRST_MULTI(step, ec, enm);
2615 while (enm != NULL) {
2616 /* XXX */
2617 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2618 ETHER_ADDR_LEN) != 0) {
2619 ifp->if_flags |= IFF_ALLMULTI;
2620 break;
2621 }
2622
2623 hash = rtw_calchash(enm->enm_addrlo);
2624 hashes[hash >> 5] |= (1 << (hash & 0x1f));
2625 ETHER_NEXT_MULTI(step, enm);
2626 }
2627
2628 /* XXX accept all broadcast if scanning */
2629 if ((ifp->if_flags & IFF_BROADCAST) != 0)
2630 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2631
2632 if (ifp->if_flags & IFF_PROMISC) {
2633 sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
2634 sc->sc_rcr |= RTW_RCR_ACRC32; /* accept frames failing CRC */
2635 sc->sc_rcr |= RTW_RCR_AICV; /* accept frames failing ICV */
2636 ifp->if_flags |= IFF_ALLMULTI;
2637 }
2638
2639 if (ifp->if_flags & IFF_ALLMULTI)
2640 hashes[0] = hashes[1] = 0xffffffff;
2641
2642 if ((hashes[0] | hashes[1]) != 0)
2643 sc->sc_rcr |= RTW_RCR_AM; /* accept multicast */
2644
2645 RTW_WRITE(regs, RTW_MAR0, hashes[0]);
2646 RTW_WRITE(regs, RTW_MAR1, hashes[1]);
2647 RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
2648 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
2649
2650 DPRINTF(sc, RTW_DEBUG_PKTFILT,
2651 ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
2652 sc->sc_dev.dv_xname, RTW_READ(regs, RTW_MAR0),
2653 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
2654 }
2655
2656 static struct mbuf *
2657 rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
2658 {
2659 struct ieee80211com *ic = &sc->sc_ic;
2660 struct mbuf *m;
2661 struct ieee80211_beacon_offsets boff;
2662
2663 if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
2664 RTW_DPRINTF(RTW_DEBUG_BEACON,
2665 ("%s: m %p len %u\n", __func__, m, m->m_len));
2666 }
2667 return m;
2668 }
2669
2670 /* Must be called at splnet. */
2671 static int
2672 rtw_init(struct ifnet *ifp)
2673 {
2674 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
2675 struct ieee80211com *ic = &sc->sc_ic;
2676 struct rtw_regs *regs = &sc->sc_regs;
2677 int rc = 0;
2678
2679 if ((rc = rtw_enable(sc)) != 0)
2680 goto out;
2681
2682 /* Cancel pending I/O and reset. */
2683 rtw_stop(ifp, 0);
2684
2685 DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
2686 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
2687 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
2688
2689 if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
2690 goto out;
2691
2692 if ((rc = rtw_swring_setup(sc)) != 0)
2693 goto out;
2694
2695 rtw_transmit_config(regs);
2696
2697 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2698
2699 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
2700 RTW_WBW(regs, RTW_MSR, RTW_BRSR);
2701
2702 /* long PLCP header, 1Mb/2Mb basic rate */
2703 RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
2704 RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
2705
2706 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
2707 rtw_set_access(regs, RTW_ACCESS_NONE);
2708
2709 /* XXX from reference sources */
2710 RTW_WRITE(regs, RTW_FEMR, 0xffff);
2711 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
2712
2713 rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev.dv_xname);
2714
2715 RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
2716 /* from Linux driver */
2717 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
2718
2719 RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
2720
2721 rtw_enable_interrupts(sc);
2722
2723 rtw_pktfilt_load(sc);
2724
2725 rtw_hwring_setup(sc);
2726
2727 rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
2728
2729 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
2730
2731 ifp->if_flags |= IFF_RUNNING;
2732 ic->ic_state = IEEE80211_S_INIT;
2733
2734 RTW_WRITE16(regs, RTW_BSSID16, 0x0);
2735 RTW_WRITE(regs, RTW_BSSID32, 0x0);
2736
2737 rtw_resume_ticks(sc);
2738
2739 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
2740
2741 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2742 return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2743 else
2744 return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2745
2746 out:
2747 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2748 return rc;
2749 }
2750
2751 static inline void
2752 rtw_led_init(struct rtw_regs *regs)
2753 {
2754 uint8_t cfg0, cfg1;
2755
2756 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2757
2758 cfg0 = RTW_READ8(regs, RTW_CONFIG0);
2759 cfg0 |= RTW_CONFIG0_LEDGPOEN;
2760 RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
2761
2762 cfg1 = RTW_READ8(regs, RTW_CONFIG1);
2763 RTW_DPRINTF(RTW_DEBUG_LED,
2764 ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
2765
2766 cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
2767 cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
2768 RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
2769
2770 rtw_set_access(regs, RTW_ACCESS_NONE);
2771 }
2772
2773 /*
2774 * IEEE80211_S_INIT: LED1 off
2775 *
2776 * IEEE80211_S_AUTH,
2777 * IEEE80211_S_ASSOC,
2778 * IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
2779 *
2780 * IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx
2781 */
2782 static void
2783 rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
2784 {
2785 struct rtw_led_state *ls;
2786
2787 ls = &sc->sc_led_state;
2788
2789 switch (nstate) {
2790 case IEEE80211_S_INIT:
2791 rtw_led_init(&sc->sc_regs);
2792 callout_stop(&ls->ls_slow_ch);
2793 callout_stop(&ls->ls_fast_ch);
2794 ls->ls_slowblink = 0;
2795 ls->ls_actblink = 0;
2796 ls->ls_default = 0;
2797 break;
2798 case IEEE80211_S_SCAN:
2799 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2800 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2801 /*FALLTHROUGH*/
2802 case IEEE80211_S_AUTH:
2803 case IEEE80211_S_ASSOC:
2804 ls->ls_default = RTW_LED1;
2805 ls->ls_actblink = RTW_LED1;
2806 ls->ls_slowblink = RTW_LED1;
2807 break;
2808 case IEEE80211_S_RUN:
2809 ls->ls_slowblink = 0;
2810 break;
2811 }
2812 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2813 }
2814
2815 static void
2816 rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
2817 {
2818 uint8_t led_condition;
2819 bus_size_t ofs;
2820 uint8_t mask, newval, val;
2821
2822 led_condition = ls->ls_default;
2823
2824 if (ls->ls_state & RTW_LED_S_SLOW)
2825 led_condition ^= ls->ls_slowblink;
2826 if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX))
2827 led_condition ^= ls->ls_actblink;
2828
2829 RTW_DPRINTF(RTW_DEBUG_LED,
2830 ("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
2831
2832 switch (hwverid) {
2833 default:
2834 case 'F':
2835 ofs = RTW_PSR;
2836 newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
2837 if (led_condition & RTW_LED0)
2838 newval &= ~RTW_PSR_LEDGPO0;
2839 if (led_condition & RTW_LED1)
2840 newval &= ~RTW_PSR_LEDGPO1;
2841 break;
2842 case 'D':
2843 ofs = RTW_9346CR;
2844 mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
2845 newval = RTW_9346CR_EEM_PROGRAM;
2846 if (led_condition & RTW_LED0)
2847 newval |= RTW_9346CR_EEDI;
2848 if (led_condition & RTW_LED1)
2849 newval |= RTW_9346CR_EECS;
2850 break;
2851 }
2852 val = RTW_READ8(regs, ofs);
2853 RTW_DPRINTF(RTW_DEBUG_LED,
2854 ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
2855 (uintptr_t)ofs));
2856 val &= ~mask;
2857 val |= newval;
2858 RTW_WRITE8(regs, ofs, val);
2859 RTW_DPRINTF(RTW_DEBUG_LED,
2860 ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
2861 (uintptr_t)ofs));
2862 RTW_SYNC(regs, ofs, ofs);
2863 }
2864
2865 static void
2866 rtw_led_fastblink(void *arg)
2867 {
2868 int ostate, s;
2869 struct rtw_softc *sc = (struct rtw_softc *)arg;
2870 struct rtw_led_state *ls = &sc->sc_led_state;
2871
2872 s = splnet();
2873 ostate = ls->ls_state;
2874 ls->ls_state ^= ls->ls_event;
2875
2876 if ((ls->ls_event & RTW_LED_S_TX) == 0)
2877 ls->ls_state &= ~RTW_LED_S_TX;
2878
2879 if ((ls->ls_event & RTW_LED_S_RX) == 0)
2880 ls->ls_state &= ~RTW_LED_S_RX;
2881
2882 ls->ls_event = 0;
2883
2884 if (ostate != ls->ls_state)
2885 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2886 splx(s);
2887
2888 callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
2889 }
2890
2891 static void
2892 rtw_led_slowblink(void *arg)
2893 {
2894 int s;
2895 struct rtw_softc *sc = (struct rtw_softc *)arg;
2896 struct rtw_led_state *ls = &sc->sc_led_state;
2897
2898 s = splnet();
2899 ls->ls_state ^= RTW_LED_S_SLOW;
2900 rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
2901 splx(s);
2902 callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
2903 }
2904
2905 static inline void
2906 rtw_led_attach(struct rtw_led_state *ls, void *arg)
2907 {
2908 callout_init(&ls->ls_fast_ch, 0);
2909 callout_init(&ls->ls_slow_ch, 0);
2910 callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
2911 callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
2912 }
2913
2914 static int
2915 rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2916 {
2917 int rc = 0, s;
2918 struct rtw_softc *sc = ifp->if_softc;
2919
2920 s = splnet();
2921 if (cmd == SIOCSIFFLAGS) {
2922 if ((ifp->if_flags & IFF_UP) != 0) {
2923 if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2924 rtw_pktfilt_load(sc);
2925 else
2926 rc = rtw_init(ifp);
2927 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2928 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0) {
2929 RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
2930 rtw_stop(ifp, 1);
2931 }
2932 } else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
2933 ; /* nothing to do */
2934 else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
2935 /* reload packet filter if running */
2936 if (ifp->if_flags & IFF_RUNNING)
2937 rtw_pktfilt_load(sc);
2938 rc = 0;
2939 } else if ((sc->sc_flags & RTW_F_ENABLED) != 0)
2940 /* reinitialize h/w if activated */
2941 rc = rtw_init(ifp);
2942 else
2943 rc = 0;
2944 splx(s);
2945 return rc;
2946 }
2947
2948 /* Select a transmit ring with at least one h/w and s/w descriptor free.
2949 * Return 0 on success, -1 on failure.
2950 */
2951 static inline int
2952 rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
2953 struct rtw_txdesc_blk **tdbp, int pri)
2954 {
2955 struct rtw_txsoft_blk *tsb;
2956 struct rtw_txdesc_blk *tdb;
2957
2958 KASSERT(pri >= 0 && pri < RTW_NTXPRI);
2959
2960 tsb = &sc->sc_txsoft_blk[pri];
2961 tdb = &sc->sc_txdesc_blk[pri];
2962
2963 if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
2964 if (tsb->tsb_tx_timer == 0)
2965 tsb->tsb_tx_timer = 5;
2966 *tsbp = NULL;
2967 *tdbp = NULL;
2968 return -1;
2969 }
2970 *tsbp = tsb;
2971 *tdbp = tdb;
2972 return 0;
2973 }
2974
2975 static inline struct mbuf *
2976 rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
2977 struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
2978 struct ieee80211_node **nip, short *if_flagsp)
2979 {
2980 struct mbuf *m;
2981
2982 if (IF_IS_EMPTY(ifq))
2983 return NULL;
2984 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
2985 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
2986 __func__, pri));
2987 *if_flagsp |= IFF_OACTIVE;
2988 sc->sc_if.if_timer = 1;
2989 return NULL;
2990 }
2991 IF_DEQUEUE(ifq, m);
2992 *nip = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2993 m->m_pkthdr.rcvif = NULL;
2994 KASSERT(*nip != NULL);
2995 return m;
2996 }
2997
2998 /* Point *mp at the next 802.11 frame to transmit. Point *tsbp
2999 * at the driver's selection of transmit control block for the packet.
3000 */
3001 static inline int
3002 rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
3003 struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
3004 struct ieee80211_node **nip)
3005 {
3006 int pri;
3007 struct ether_header *eh;
3008 struct mbuf *m0;
3009 struct rtw_softc *sc;
3010 short *if_flagsp;
3011
3012 *mp = NULL;
3013
3014 sc = (struct rtw_softc *)ifp->if_softc;
3015
3016 DPRINTF(sc, RTW_DEBUG_XMIT,
3017 ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
3018
3019 if_flagsp = &ifp->if_flags;
3020
3021 if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
3022 (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
3023 tdbp, nip, if_flagsp)) != NULL) {
3024 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
3025 __func__));
3026 return 0;
3027 }
3028
3029 if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
3030 tdbp, nip, if_flagsp)) != NULL) {
3031 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
3032 __func__));
3033 return 0;
3034 }
3035
3036 if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
3037 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
3038 return 0;
3039 }
3040
3041 IFQ_POLL(&ifp->if_snd, m0);
3042 if (m0 == NULL) {
3043 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3044 __func__));
3045 return 0;
3046 }
3047
3048 pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
3049
3050 if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
3051 DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
3052 __func__, pri));
3053 *if_flagsp |= IFF_OACTIVE;
3054 sc->sc_if.if_timer = 1;
3055 return 0;
3056 }
3057
3058 IFQ_DEQUEUE(&ifp->if_snd, m0);
3059 if (m0 == NULL) {
3060 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
3061 __func__));
3062 return 0;
3063 }
3064 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
3065 ifp->if_opackets++;
3066 #if NBPFILTER > 0
3067 if (ifp->if_bpf)
3068 bpf_mtap(ifp->if_bpf, m0);
3069 #endif
3070 eh = mtod(m0, struct ether_header *);
3071 *nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
3072 if (*nip == NULL) {
3073 /* NB: ieee80211_find_txnode does stat+msg */
3074 m_freem(m0);
3075 return -1;
3076 }
3077 if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
3078 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
3079 ifp->if_oerrors++;
3080 return -1;
3081 }
3082 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3083 *mp = m0;
3084 return 0;
3085 }
3086
3087 static int
3088 rtw_seg_too_short(bus_dmamap_t dmamap)
3089 {
3090 int i;
3091 for (i = 0; i < dmamap->dm_nsegs; i++) {
3092 if (dmamap->dm_segs[i].ds_len < 4)
3093 return 1;
3094 }
3095 return 0;
3096 }
3097
3098 /* TBD factor with atw_start */
3099 static struct mbuf *
3100 rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
3101 u_int ndescfree, const char *dvname)
3102 {
3103 int first, rc;
3104 struct mbuf *m, *m0;
3105
3106 m0 = chain;
3107
3108 /*
3109 * Load the DMA map. Copy and try (once) again if the packet
3110 * didn't fit in the alloted number of segments.
3111 */
3112 for (first = 1;
3113 ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
3114 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
3115 dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
3116 first = 0) {
3117 if (rc == 0) {
3118 #ifdef RTW_DIAGxxx
3119 if (rtw_seg_too_short(dmam)) {
3120 printf("%s: short segment, mbuf lengths:", __func__);
3121 for (m = m0; m; m = m->m_next)
3122 printf(" %d", m->m_len);
3123 printf("\n");
3124 }
3125 #endif
3126 bus_dmamap_unload(dmat, dmam);
3127 }
3128 MGETHDR(m, M_DONTWAIT, MT_DATA);
3129 if (m == NULL) {
3130 printf("%s: unable to allocate Tx mbuf\n",
3131 dvname);
3132 break;
3133 }
3134 if (m0->m_pkthdr.len > MHLEN) {
3135 MCLGET(m, M_DONTWAIT);
3136 if ((m->m_flags & M_EXT) == 0) {
3137 printf("%s: cannot allocate Tx cluster\n",
3138 dvname);
3139 m_freem(m);
3140 break;
3141 }
3142 }
3143 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3144 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3145 m_freem(m0);
3146 m0 = m;
3147 m = NULL;
3148 }
3149 if (rc != 0) {
3150 printf("%s: cannot load Tx buffer, rc = %d\n", dvname, rc);
3151 m_freem(m0);
3152 return NULL;
3153 } else if (rtw_seg_too_short(dmam)) {
3154 printf("%s: cannot load Tx buffer, segment too short\n",
3155 dvname);
3156 bus_dmamap_unload(dmat, dmam);
3157 m_freem(m0);
3158 return NULL;
3159 } else if (dmam->dm_nsegs > ndescfree) {
3160 printf("%s: too many tx segments\n", dvname);
3161 bus_dmamap_unload(dmat, dmam);
3162 m_freem(m0);
3163 return NULL;
3164 }
3165 return m0;
3166 }
3167
3168 #ifdef RTW_DEBUG
3169 static void
3170 rtw_print_txdesc(struct rtw_softc *sc, const char *action,
3171 struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
3172 {
3173 struct rtw_txdesc *td = &tdb->tdb_desc[desc];
3174 DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
3175 "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
3176 sc->sc_dev.dv_xname, ts, action, desc,
3177 le32toh(td->td_buf), le32toh(td->td_next),
3178 le32toh(td->td_ctl0), le32toh(td->td_ctl1),
3179 le32toh(td->td_len)));
3180 }
3181 #endif /* RTW_DEBUG */
3182
3183 static void
3184 rtw_start(struct ifnet *ifp)
3185 {
3186 uint8_t tppoll;
3187 int desc, i, lastdesc, npkt, rate;
3188 uint32_t proto_ctl0, ctl0, ctl1;
3189 bus_dmamap_t dmamap;
3190 struct ieee80211com *ic;
3191 struct ieee80211_duration *d0;
3192 struct ieee80211_frame_min *wh;
3193 struct ieee80211_node *ni = NULL; /* XXX: GCC */
3194 struct mbuf *m0;
3195 struct rtw_softc *sc;
3196 struct rtw_txsoft_blk *tsb = NULL; /* XXX: GCC */
3197 struct rtw_txdesc_blk *tdb = NULL; /* XXX: GCC */
3198 struct rtw_txsoft *ts;
3199 struct rtw_txdesc *td;
3200 struct ieee80211_key *k;
3201
3202 sc = (struct rtw_softc *)ifp->if_softc;
3203 ic = &sc->sc_ic;
3204
3205 DPRINTF(sc, RTW_DEBUG_XMIT,
3206 ("%s: enter %s\n", sc->sc_dev.dv_xname, __func__));
3207
3208 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3209 goto out;
3210
3211 /* XXX do real rate control */
3212 proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
3213
3214 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
3215 proto_ctl0 |= RTW_TXCTL0_SPLCP;
3216
3217 for (;;) {
3218 if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
3219 continue;
3220 if (m0 == NULL)
3221 break;
3222
3223 wh = mtod(m0, struct ieee80211_frame_min *);
3224
3225 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
3226 (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3227 m_freem(m0);
3228 break;
3229 } else
3230 k = NULL;
3231
3232 ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
3233
3234 dmamap = ts->ts_dmamap;
3235
3236 m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
3237 tdb->tdb_nfree, sc->sc_dev.dv_xname);
3238
3239 if (m0 == NULL || dmamap->dm_nsegs == 0) {
3240 DPRINTF(sc, RTW_DEBUG_XMIT,
3241 ("%s: fail dmamap load\n", __func__));
3242 goto post_dequeue_err;
3243 }
3244
3245 /* Note well: rtw_dmamap_load_txbuf may have created
3246 * a new chain, so we must find the header once
3247 * more.
3248 */
3249 wh = mtod(m0, struct ieee80211_frame_min *);
3250
3251 /* XXX do real rate control */
3252 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3253 IEEE80211_FC0_TYPE_MGT)
3254 rate = 2;
3255 else
3256 rate = MAX(2, ieee80211_get_rate(ni));
3257
3258 #ifdef RTW_DEBUG
3259 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3260 (IFF_DEBUG|IFF_LINK2)) {
3261 ieee80211_dump_pkt(mtod(m0, uint8_t *),
3262 (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
3263 : sizeof(wh),
3264 rate, 0);
3265 }
3266 #endif /* RTW_DEBUG */
3267 ctl0 = proto_ctl0 |
3268 __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
3269
3270 switch (rate) {
3271 default:
3272 case 2:
3273 ctl0 |= RTW_TXCTL0_RATE_1MBPS;
3274 break;
3275 case 4:
3276 ctl0 |= RTW_TXCTL0_RATE_2MBPS;
3277 break;
3278 case 11:
3279 ctl0 |= RTW_TXCTL0_RATE_5MBPS;
3280 break;
3281 case 22:
3282 ctl0 |= RTW_TXCTL0_RATE_11MBPS;
3283 break;
3284 }
3285 /* XXX >= ? Compare after fragmentation? */
3286 if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
3287 ctl0 |= RTW_TXCTL0_RTSEN;
3288
3289 /* XXX Sometimes writes a bogus keyid; h/w doesn't
3290 * seem to care, since we don't activate h/w Tx
3291 * encryption.
3292 */
3293 if (k != NULL) {
3294 ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
3295 RTW_TXCTL0_KEYID_MASK;
3296 }
3297
3298 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
3299 IEEE80211_FC0_TYPE_MGT) {
3300 ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
3301 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
3302 IEEE80211_FC0_SUBTYPE_BEACON)
3303 ctl0 |= RTW_TXCTL0_BEACON;
3304 }
3305
3306 if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
3307 ic->ic_flags, ic->ic_fragthreshold,
3308 rate, &ts->ts_d0, &ts->ts_dn, &npkt,
3309 (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) ==
3310 (IFF_DEBUG|IFF_LINK2)) == -1) {
3311 DPRINTF(sc, RTW_DEBUG_XMIT,
3312 ("%s: fail compute duration\n", __func__));
3313 goto post_load_err;
3314 }
3315
3316 d0 = &ts->ts_d0;
3317
3318 *(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
3319
3320 ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
3321 __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
3322
3323 if (d0->d_residue)
3324 ctl1 |= RTW_TXCTL1_LENGEXT;
3325
3326 /* TBD fragmentation */
3327
3328 ts->ts_first = tdb->tdb_next;
3329
3330 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3331 BUS_DMASYNC_PREWRITE);
3332
3333 KASSERT(ts->ts_first < tdb->tdb_ndesc);
3334
3335 #if NBPFILTER > 0
3336 if (ic->ic_rawbpf != NULL)
3337 bpf_mtap((void *)ic->ic_rawbpf, m0);
3338
3339 if (sc->sc_radiobpf != NULL) {
3340 struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
3341
3342 rt->rt_rate = rate;
3343
3344 bpf_mtap2(sc->sc_radiobpf, (void *)rt,
3345 sizeof(sc->sc_txtapu), m0);
3346 }
3347 #endif /* NBPFILTER > 0 */
3348
3349 for (i = 0, lastdesc = desc = ts->ts_first;
3350 i < dmamap->dm_nsegs;
3351 i++, desc = RTW_NEXT_IDX(tdb, desc)) {
3352 if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
3353 DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
3354 ("%s: seg too long\n", __func__));
3355 goto post_load_err;
3356 }
3357 td = &tdb->tdb_desc[desc];
3358 td->td_ctl0 = htole32(ctl0);
3359 td->td_ctl1 = htole32(ctl1);
3360 td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
3361 td->td_len = htole32(dmamap->dm_segs[i].ds_len);
3362 td->td_next = htole32(RTW_NEXT_DESC(tdb, desc));
3363 if (i != 0)
3364 td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
3365 lastdesc = desc;
3366 #ifdef RTW_DEBUG
3367 rtw_print_txdesc(sc, "load", ts, tdb, desc);
3368 #endif /* RTW_DEBUG */
3369 }
3370
3371 KASSERT(desc < tdb->tdb_ndesc);
3372
3373 ts->ts_ni = ni;
3374 KASSERT(ni != NULL);
3375 ts->ts_mbuf = m0;
3376 ts->ts_last = lastdesc;
3377 tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
3378 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3379 htole32(RTW_TXCTL0_FS);
3380
3381 #ifdef RTW_DEBUG
3382 rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
3383 rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
3384 #endif /* RTW_DEBUG */
3385
3386 tdb->tdb_nfree -= dmamap->dm_nsegs;
3387 tdb->tdb_next = desc;
3388
3389 rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
3390 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3391
3392 tdb->tdb_desc[ts->ts_first].td_ctl0 |=
3393 htole32(RTW_TXCTL0_OWN);
3394
3395 #ifdef RTW_DEBUG
3396 rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
3397 #endif /* RTW_DEBUG */
3398
3399 rtw_txdescs_sync(tdb, ts->ts_first, 1,
3400 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3401
3402 SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
3403 SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
3404
3405 if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
3406 sc->sc_led_state.ls_event |= RTW_LED_S_TX;
3407 tsb->tsb_tx_timer = 5;
3408 ifp->if_timer = 1;
3409 tppoll = RTW_READ8(&sc->sc_regs, RTW_TPPOLL);
3410 tppoll &= ~RTW_TPPOLL_SALL;
3411 tppoll |= tsb->tsb_poll & RTW_TPPOLL_ALL;
3412 RTW_WRITE8(&sc->sc_regs, RTW_TPPOLL, tppoll);
3413 RTW_SYNC(&sc->sc_regs, RTW_TPPOLL, RTW_TPPOLL);
3414 }
3415 out:
3416 DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
3417 return;
3418 post_load_err:
3419 bus_dmamap_unload(sc->sc_dmat, dmamap);
3420 m_freem(m0);
3421 post_dequeue_err:
3422 ieee80211_free_node(ni);
3423 return;
3424 }
3425
3426 static void
3427 rtw_idle(struct rtw_regs *regs)
3428 {
3429 int active;
3430
3431 /* request stop DMA; wait for packets to stop transmitting. */
3432
3433 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3434 RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
3435
3436 for (active = 0; active < 300 &&
3437 (RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0; active++)
3438 DELAY(10);
3439 printf("%s: transmit DMA idle in %dus\n", __func__, active * 10);
3440 }
3441
3442 static void
3443 rtw_watchdog(struct ifnet *ifp)
3444 {
3445 int pri, tx_timeouts = 0;
3446 struct rtw_softc *sc;
3447 struct rtw_txsoft_blk *tsb;
3448
3449 sc = ifp->if_softc;
3450
3451 ifp->if_timer = 0;
3452
3453 if ((sc->sc_flags & RTW_F_ENABLED) == 0)
3454 return;
3455
3456 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3457 tsb = &sc->sc_txsoft_blk[pri];
3458
3459 if (tsb->tsb_tx_timer == 0)
3460 continue;
3461 else if (--tsb->tsb_tx_timer == 0) {
3462 if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
3463 continue;
3464 printf("%s: transmit timeout, priority %d\n",
3465 ifp->if_xname, pri);
3466 ifp->if_oerrors++;
3467 if (pri != RTW_TXPRIBCN)
3468 tx_timeouts++;
3469 } else
3470 ifp->if_timer = 1;
3471 }
3472
3473 if (tx_timeouts > 0) {
3474 /* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
3475 * reset s/w tx-ring pointers, and start transmission.
3476 *
3477 * TBD Stop/restart just the broken rings?
3478 */
3479 rtw_idle(&sc->sc_regs);
3480 rtw_io_enable(sc, RTW_CR_TE, 0);
3481 rtw_txdescs_reset(sc);
3482 rtw_io_enable(sc, RTW_CR_TE, 1);
3483 rtw_start(ifp);
3484 }
3485 ieee80211_watchdog(&sc->sc_ic);
3486 return;
3487 }
3488
3489 static void
3490 rtw_next_scan(void *arg)
3491 {
3492 struct ieee80211com *ic = arg;
3493 int s;
3494
3495 /* don't call rtw_start w/o network interrupts blocked */
3496 s = splnet();
3497 if (ic->ic_state == IEEE80211_S_SCAN)
3498 ieee80211_next_scan(ic);
3499 splx(s);
3500 }
3501
3502 static void
3503 rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
3504 {
3505 uint16_t bcnitv, bintritv, intval;
3506 int i;
3507 struct rtw_regs *regs = &sc->sc_regs;
3508
3509 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
3510 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
3511
3512 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
3513
3514 rtw_set_access(regs, RTW_ACCESS_CONFIG);
3515
3516 intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
3517
3518 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
3519 bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
3520 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
3521 /* interrupt host 1ms before the TBTT */
3522 bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
3523 bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
3524 RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
3525 /* magic from Linux */
3526 RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
3527 RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
3528 rtw_set_access(regs, RTW_ACCESS_NONE);
3529
3530 rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
3531 }
3532
3533 /* Synchronize the hardware state with the software state. */
3534 static int
3535 rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3536 {
3537 struct ifnet *ifp = ic->ic_ifp;
3538 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3539 enum ieee80211_state ostate;
3540 int error;
3541
3542 ostate = ic->ic_state;
3543
3544 rtw_led_newstate(sc, nstate);
3545
3546 if (nstate == IEEE80211_S_INIT) {
3547 callout_stop(&sc->sc_scan_ch);
3548 sc->sc_cur_chan = IEEE80211_CHAN_ANY;
3549 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3550 }
3551
3552 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
3553 rtw_pwrstate(sc, RTW_ON);
3554
3555 if ((error = rtw_tune(sc)) != 0)
3556 return error;
3557
3558 switch (nstate) {
3559 case IEEE80211_S_INIT:
3560 panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
3561 break;
3562 case IEEE80211_S_SCAN:
3563 if (ostate != IEEE80211_S_SCAN) {
3564 (void)memset(ic->ic_bss->ni_bssid, 0,
3565 IEEE80211_ADDR_LEN);
3566 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3567 }
3568
3569 callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
3570 rtw_next_scan, ic);
3571
3572 break;
3573 case IEEE80211_S_RUN:
3574 switch (ic->ic_opmode) {
3575 case IEEE80211_M_HOSTAP:
3576 case IEEE80211_M_IBSS:
3577 rtw_set_nettype(sc, IEEE80211_M_MONITOR);
3578 /*FALLTHROUGH*/
3579 case IEEE80211_M_AHDEMO:
3580 case IEEE80211_M_STA:
3581 rtw_join_bss(sc, ic->ic_bss->ni_bssid,
3582 ic->ic_bss->ni_intval);
3583 break;
3584 case IEEE80211_M_MONITOR:
3585 break;
3586 }
3587 rtw_set_nettype(sc, ic->ic_opmode);
3588 break;
3589 case IEEE80211_S_ASSOC:
3590 case IEEE80211_S_AUTH:
3591 break;
3592 }
3593
3594 if (nstate != IEEE80211_S_SCAN)
3595 callout_stop(&sc->sc_scan_ch);
3596
3597 return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
3598 }
3599
3600 /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
3601 static uint64_t
3602 rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
3603 {
3604 uint32_t tsftl, tsfth;
3605
3606 tsfth = RTW_READ(regs, RTW_TSFTRH);
3607 tsftl = RTW_READ(regs, RTW_TSFTRL);
3608 if (tsftl < rstamp) /* Compensate for rollover. */
3609 tsfth--;
3610 return ((uint64_t)tsfth << 32) | rstamp;
3611 }
3612
3613 static void
3614 rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3615 struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
3616 {
3617 struct ifnet *ifp = ic->ic_ifp;
3618 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3619
3620 (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3621
3622 switch (subtype) {
3623 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3624 case IEEE80211_FC0_SUBTYPE_BEACON:
3625 if (ic->ic_opmode == IEEE80211_M_IBSS &&
3626 ic->ic_state == IEEE80211_S_RUN) {
3627 uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
3628 if (le64toh(ni->ni_tstamp.tsf) >= tsf)
3629 (void)ieee80211_ibss_merge(ni);
3630 }
3631 break;
3632 default:
3633 break;
3634 }
3635 return;
3636 }
3637
3638 static struct ieee80211_node *
3639 rtw_node_alloc(struct ieee80211_node_table *nt)
3640 {
3641 struct ifnet *ifp = nt->nt_ic->ic_ifp;
3642 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3643 struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
3644
3645 DPRINTF(sc, RTW_DEBUG_NODE,
3646 ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
3647 return ni;
3648 }
3649
3650 static void
3651 rtw_node_free(struct ieee80211_node *ni)
3652 {
3653 struct ieee80211com *ic = ni->ni_ic;
3654 struct ifnet *ifp = ic->ic_ifp;
3655 struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
3656
3657 DPRINTF(sc, RTW_DEBUG_NODE,
3658 ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
3659 ether_sprintf(ni->ni_bssid)));
3660 (*sc->sc_mtbl.mt_node_free)(ni);
3661 }
3662
3663 static int
3664 rtw_media_change(struct ifnet *ifp)
3665 {
3666 int error;
3667
3668 error = ieee80211_media_change(ifp);
3669 if (error == ENETRESET) {
3670 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3671 (IFF_RUNNING|IFF_UP))
3672 rtw_init(ifp); /* XXX lose error */
3673 error = 0;
3674 }
3675 return error;
3676 }
3677
3678 static void
3679 rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3680 {
3681 struct rtw_softc *sc = ifp->if_softc;
3682
3683 if ((sc->sc_flags & RTW_F_ENABLED) == 0) {
3684 imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3685 imr->ifm_status = 0;
3686 return;
3687 }
3688 ieee80211_media_status(ifp, imr);
3689 }
3690
3691 static inline void
3692 rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
3693 {
3694 (void)memcpy(ifp->if_xname, dvname, IFNAMSIZ);
3695 ifp->if_softc = softc;
3696 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
3697 IFF_NOTRAILERS;
3698 ifp->if_ioctl = rtw_ioctl;
3699 ifp->if_start = rtw_start;
3700 ifp->if_watchdog = rtw_watchdog;
3701 ifp->if_init = rtw_init;
3702 ifp->if_stop = rtw_stop;
3703 }
3704
3705 static inline void
3706 rtw_set80211props(struct ieee80211com *ic)
3707 {
3708 int nrate;
3709 ic->ic_phytype = IEEE80211_T_DS;
3710 ic->ic_opmode = IEEE80211_M_STA;
3711 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
3712 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
3713
3714 nrate = 0;
3715 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3716 IEEE80211_RATE_BASIC | 2;
3717 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
3718 IEEE80211_RATE_BASIC | 4;
3719 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
3720 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
3721 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
3722 }
3723
3724 static inline void
3725 rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
3726 {
3727 mtbl->mt_newstate = ic->ic_newstate;
3728 ic->ic_newstate = rtw_newstate;
3729
3730 mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
3731 ic->ic_recv_mgmt = rtw_recv_mgmt;
3732
3733 mtbl->mt_node_free = ic->ic_node_free;
3734 ic->ic_node_free = rtw_node_free;
3735
3736 mtbl->mt_node_alloc = ic->ic_node_alloc;
3737 ic->ic_node_alloc = rtw_node_alloc;
3738
3739 ic->ic_crypto.cs_key_delete = rtw_key_delete;
3740 ic->ic_crypto.cs_key_set = rtw_key_set;
3741 ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
3742 ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
3743 }
3744
3745 static inline void
3746 rtw_init_radiotap(struct rtw_softc *sc)
3747 {
3748 uint32_t present;
3749
3750 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
3751 sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
3752
3753 if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
3754 present = htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT);
3755 else
3756 present = htole32(RTW_RX_RADIOTAP_PRESENT);
3757 sc->sc_rxtap.rr_ihdr.it_present = present;
3758
3759 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
3760 sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
3761 sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
3762 }
3763
3764 static int
3765 rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
3766 {
3767 SIMPLEQ_INIT(&tsb->tsb_dirtyq);
3768 SIMPLEQ_INIT(&tsb->tsb_freeq);
3769 tsb->tsb_ndesc = qlen;
3770 tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
3771 M_NOWAIT);
3772 if (tsb->tsb_desc == NULL)
3773 return ENOMEM;
3774 return 0;
3775 }
3776
3777 static void
3778 rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
3779 {
3780 int pri;
3781 struct rtw_txsoft_blk *tsb;
3782
3783 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3784 tsb = &sc->sc_txsoft_blk[pri];
3785 free(tsb->tsb_desc, M_DEVBUF);
3786 tsb->tsb_desc = NULL;
3787 }
3788 }
3789
3790 static int
3791 rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
3792 {
3793 int pri, rc = 0;
3794 int qlen[RTW_NTXPRI] =
3795 {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
3796 struct rtw_txsoft_blk *tsbs;
3797
3798 tsbs = sc->sc_txsoft_blk;
3799
3800 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3801 rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
3802 if (rc != 0)
3803 break;
3804 }
3805 tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
3806 tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
3807 tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
3808 tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
3809 return rc;
3810 }
3811
3812 static void
3813 rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
3814 u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
3815 {
3816 tdb->tdb_ndesc = ndesc;
3817 tdb->tdb_desc = desc;
3818 tdb->tdb_physbase = physbase;
3819 tdb->tdb_ofs = ofs;
3820
3821 (void)memset(tdb->tdb_desc, 0,
3822 sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
3823
3824 rtw_txdesc_blk_init(tdb);
3825 tdb->tdb_next = 0;
3826 }
3827
3828 static void
3829 rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
3830 {
3831 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
3832 &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
3833 RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
3834
3835 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
3836 &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
3837 RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
3838
3839 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
3840 &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
3841 RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
3842
3843 rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
3844 &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
3845 RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
3846 }
3847
3848 static struct rtw_rf *
3849 rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
3850 {
3851 rtw_rf_write_t rf_write;
3852 struct rtw_rf *rf;
3853
3854 switch (rfchipid) {
3855 default:
3856 rf_write = rtw_rf_hostwrite;
3857 break;
3858 case RTW_RFCHIPID_INTERSIL:
3859 case RTW_RFCHIPID_PHILIPS:
3860 case RTW_RFCHIPID_GCT: /* XXX a guess */
3861 case RTW_RFCHIPID_RFMD:
3862 rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
3863 break;
3864 }
3865
3866 switch (rfchipid) {
3867 case RTW_RFCHIPID_GCT:
3868 rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
3869 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3870 break;
3871 case RTW_RFCHIPID_MAXIM:
3872 rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
3873 sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
3874 break;
3875 case RTW_RFCHIPID_PHILIPS:
3876 rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
3877 sc->sc_pwrstate_cb = rtw_philips_pwrstate;
3878 break;
3879 case RTW_RFCHIPID_RFMD:
3880 /* XXX RFMD has no RF constructor */
3881 sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
3882 /*FALLTHROUGH*/
3883 default:
3884 return NULL;
3885 }
3886 rf->rf_continuous_tx_cb =
3887 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
3888 rf->rf_continuous_tx_arg = (void *)sc;
3889 return rf;
3890 }
3891
3892 /* Revision C and later use a different PHY delay setting than
3893 * revisions A and B.
3894 */
3895 static uint8_t
3896 rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
3897 {
3898 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
3899 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
3900
3901 uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
3902
3903 RTW_WRITE(regs, RTW_RCR, REVAB);
3904 RTW_WBW(regs, RTW_RCR, RTW_RCR);
3905 RTW_WRITE(regs, RTW_RCR, REVC);
3906
3907 RTW_WBR(regs, RTW_RCR, RTW_RCR);
3908 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
3909 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
3910
3911 RTW_WRITE(regs, RTW_RCR, old_rcr); /* restore RCR */
3912 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
3913
3914 return phydelay;
3915 #undef REVC
3916 }
3917
3918 void
3919 rtw_attach(struct rtw_softc *sc)
3920 {
3921 struct ifnet *ifp = &sc->sc_if;
3922 struct ieee80211com *ic = &sc->sc_ic;
3923 struct rtw_txsoft_blk *tsb;
3924 int pri, rc;
3925
3926 rtw_cipher_wep = ieee80211_cipher_wep;
3927 rtw_cipher_wep.ic_decap = rtw_wep_decap;
3928
3929 NEXT_ATTACH_STATE(sc, DETACHED);
3930
3931 switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
3932 case RTW_TCR_HWVERID_F:
3933 sc->sc_hwverid = 'F';
3934 break;
3935 case RTW_TCR_HWVERID_D:
3936 sc->sc_hwverid = 'D';
3937 break;
3938 default:
3939 sc->sc_hwverid = '?';
3940 break;
3941 }
3942 printf("%s: hardware version %c\n", sc->sc_dev.dv_xname,
3943 sc->sc_hwverid);
3944
3945 rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
3946 RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
3947 0);
3948
3949 if (rc != 0) {
3950 printf("%s: could not allocate hw descriptors, error %d\n",
3951 sc->sc_dev.dv_xname, rc);
3952 goto err;
3953 }
3954
3955 NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
3956
3957 rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
3958 sc->sc_desc_nsegs, sizeof(struct rtw_descs),
3959 (void **)&sc->sc_descs, BUS_DMA_COHERENT);
3960
3961 if (rc != 0) {
3962 printf("%s: could not map hw descriptors, error %d\n",
3963 sc->sc_dev.dv_xname, rc);
3964 goto err;
3965 }
3966 NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
3967
3968 rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
3969 sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
3970
3971 if (rc != 0) {
3972 printf("%s: could not create DMA map for hw descriptors, "
3973 "error %d\n", sc->sc_dev.dv_xname, rc);
3974 goto err;
3975 }
3976 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
3977
3978 sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
3979 sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
3980
3981 for (pri = 0; pri < RTW_NTXPRI; pri++) {
3982 sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
3983 sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
3984 }
3985
3986 rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
3987 sizeof(struct rtw_descs), NULL, 0);
3988
3989 if (rc != 0) {
3990 printf("%s: could not load DMA map for hw descriptors, "
3991 "error %d\n", sc->sc_dev.dv_xname, rc);
3992 goto err;
3993 }
3994 NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
3995
3996 if (rtw_txsoft_blk_setup_all(sc) != 0)
3997 goto err;
3998 NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
3999
4000 rtw_txdesc_blk_setup_all(sc);
4001
4002 NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
4003
4004 sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
4005
4006 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4007 tsb = &sc->sc_txsoft_blk[pri];
4008
4009 if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
4010 &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
4011 printf("%s: could not load DMA map for "
4012 "hw tx descriptors, error %d\n",
4013 sc->sc_dev.dv_xname, rc);
4014 goto err;
4015 }
4016 }
4017
4018 NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
4019 if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
4020 RTW_RXQLEN)) != 0) {
4021 printf("%s: could not load DMA map for hw rx descriptors, "
4022 "error %d\n", sc->sc_dev.dv_xname, rc);
4023 goto err;
4024 }
4025 NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
4026
4027 /* Reset the chip to a known state. */
4028 if (rtw_reset(sc) != 0)
4029 goto err;
4030 NEXT_ATTACH_STATE(sc, FINISH_RESET);
4031
4032 sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
4033
4034 if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
4035 sc->sc_flags |= RTW_F_9356SROM;
4036
4037 if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
4038 sc->sc_dev.dv_xname) != 0)
4039 goto err;
4040
4041 NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
4042
4043 if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
4044 &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
4045 sc->sc_dev.dv_xname) != 0) {
4046 printf("%s: attach failed, malformed serial ROM\n",
4047 sc->sc_dev.dv_xname);
4048 goto err;
4049 }
4050
4051 printf("%s: %s PHY\n", sc->sc_dev.dv_xname,
4052 ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
4053
4054 printf("%s: CS threshold %u\n", sc->sc_dev.dv_xname, sc->sc_csthr);
4055
4056 NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
4057
4058 sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
4059 sc->sc_flags & RTW_F_DIGPHY);
4060
4061 if (sc->sc_rf == NULL) {
4062 printf("%s: attach failed, could not attach RF\n",
4063 sc->sc_dev.dv_xname);
4064 goto err;
4065 }
4066
4067 NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
4068
4069 sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
4070
4071 RTW_DPRINTF(RTW_DEBUG_ATTACH,
4072 ("%s: PHY delay %d\n", sc->sc_dev.dv_xname, sc->sc_phydelay));
4073
4074 if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
4075 rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
4076
4077 rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels,
4078 sc->sc_dev.dv_xname);
4079
4080 if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
4081 sc->sc_dev.dv_xname) != 0)
4082 goto err;
4083 NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
4084
4085 rtw_setifprops(ifp, sc->sc_dev.dv_xname, (void*)sc);
4086
4087 IFQ_SET_READY(&ifp->if_snd);
4088
4089 sc->sc_ic.ic_ifp = ifp;
4090 rtw_set80211props(&sc->sc_ic);
4091
4092 rtw_led_attach(&sc->sc_led_state, (void *)sc);
4093
4094 /*
4095 * Call MI attach routines.
4096 */
4097 if_attach(ifp);
4098 ieee80211_ifattach(&sc->sc_ic);
4099
4100 rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
4101
4102 /* possibly we should fill in our own sc_send_prresp, since
4103 * the RTL8180 is probably sending probe responses in ad hoc
4104 * mode.
4105 */
4106
4107 /* complete initialization */
4108 ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
4109 callout_init(&sc->sc_scan_ch, 0);
4110
4111 rtw_init_radiotap(sc);
4112
4113 #if NBPFILTER > 0
4114 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4115 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
4116 #endif
4117
4118 if (!pmf_device_register(&sc->sc_dev, NULL, NULL)) {
4119 aprint_error_dev(&sc->sc_dev,
4120 "couldn't establish power handler\n");
4121 } else
4122 pmf_class_network_register(&sc->sc_dev, &sc->sc_if);
4123
4124 NEXT_ATTACH_STATE(sc, FINISHED);
4125
4126 ieee80211_announce(ic);
4127 return;
4128 err:
4129 rtw_detach(sc);
4130 return;
4131 }
4132
4133 int
4134 rtw_detach(struct rtw_softc *sc)
4135 {
4136 struct ifnet *ifp = &sc->sc_if;
4137 int pri, s;
4138
4139 s = splnet();
4140 sc->sc_flags |= RTW_F_INVALID;
4141
4142 switch (sc->sc_attach_state) {
4143 case FINISHED:
4144 rtw_stop(ifp, 1);
4145
4146 pmf_device_deregister(&sc->sc_dev);
4147 callout_stop(&sc->sc_scan_ch);
4148 ieee80211_ifdetach(&sc->sc_ic);
4149 if_detach(ifp);
4150 /*FALLTHROUGH*/
4151 case FINISH_ID_STA:
4152 case FINISH_RF_ATTACH:
4153 rtw_rf_destroy(sc->sc_rf);
4154 sc->sc_rf = NULL;
4155 /*FALLTHROUGH*/
4156 case FINISH_PARSE_SROM:
4157 case FINISH_READ_SROM:
4158 rtw_srom_free(&sc->sc_srom);
4159 /*FALLTHROUGH*/
4160 case FINISH_RESET:
4161 case FINISH_RXMAPS_CREATE:
4162 rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
4163 RTW_RXQLEN);
4164 /*FALLTHROUGH*/
4165 case FINISH_TXMAPS_CREATE:
4166 for (pri = 0; pri < RTW_NTXPRI; pri++) {
4167 rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
4168 sc->sc_txsoft_blk[pri].tsb_desc,
4169 sc->sc_txsoft_blk[pri].tsb_ndesc);
4170 }
4171 /*FALLTHROUGH*/
4172 case FINISH_TXDESCBLK_SETUP:
4173 case FINISH_TXCTLBLK_SETUP:
4174 rtw_txsoft_blk_cleanup_all(sc);
4175 /*FALLTHROUGH*/
4176 case FINISH_DESCMAP_LOAD:
4177 bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
4178 /*FALLTHROUGH*/
4179 case FINISH_DESCMAP_CREATE:
4180 bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
4181 /*FALLTHROUGH*/
4182 case FINISH_DESC_MAP:
4183 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
4184 sizeof(struct rtw_descs));
4185 /*FALLTHROUGH*/
4186 case FINISH_DESC_ALLOC:
4187 bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
4188 sc->sc_desc_nsegs);
4189 /*FALLTHROUGH*/
4190 case DETACHED:
4191 NEXT_ATTACH_STATE(sc, DETACHED);
4192 break;
4193 }
4194 splx(s);
4195 return 0;
4196 }
4197
4198 int
4199 rtw_activate(struct device *self, enum devact act)
4200 {
4201 struct rtw_softc *sc = (struct rtw_softc *)self;
4202 int rc = 0, s;
4203
4204 s = splnet();
4205 switch (act) {
4206 case DVACT_ACTIVATE:
4207 rc = EOPNOTSUPP;
4208 break;
4209
4210 case DVACT_DEACTIVATE:
4211 if_deactivate(&sc->sc_if);
4212 break;
4213 }
4214 splx(s);
4215 return rc;
4216 }
4217