rtwphy.c revision 1.1.2.2 1 /* $NetBSD: rtwphy.c,v 1.1.2.2 2004/10/19 15:56:56 skrll Exp $ */
2 /*-
3 * Copyright (c) 2004, 2005 David Young. All rights reserved.
4 *
5 * Programmed for NetBSD by David Young.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of David Young may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
22 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
23 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
25 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
30 * OF SUCH DAMAGE.
31 */
32 /*
33 * Control the Philips SA2400 RF front-end and the baseband processor
34 * built into the Realtek RTL8180.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: rtwphy.c,v 1.1.2.2 2004/10/19 15:56:56 skrll Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/types.h>
43
44 #include <machine/bus.h>
45
46 #include <net/if.h>
47 #include <net/if_media.h>
48 #include <net/if_ether.h>
49
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_compat.h>
52 #include <net80211/ieee80211_radiotap.h>
53
54 #include <dev/ic/rtwreg.h>
55 #include <dev/ic/max2820reg.h>
56 #include <dev/ic/sa2400reg.h>
57 #include <dev/ic/rtwvar.h>
58 #include <dev/ic/rtwphyio.h>
59 #include <dev/ic/rtwphy.h>
60
61 static int rtw_max2820_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
62 static int rtw_sa2400_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
63
64 static int
65 rtw_bbp_preinit(struct rtw_regs *regs, u_int antatten0, int dflantb,
66 u_int freq)
67 {
68 u_int antatten = antatten0;
69 if (dflantb)
70 antatten |= RTW_BBP_ANTATTEN_DFLANTB;
71 if (freq == 2484) /* channel 14 */
72 antatten |= RTW_BBP_ANTATTEN_CHAN14;
73 return rtw_bbp_write(regs, RTW_BBP_ANTATTEN, antatten);
74 }
75
76 static int
77 rtw_bbp_init(struct rtw_regs *regs, struct rtw_bbpset *bb, int antdiv,
78 int dflantb, u_int8_t cs_threshold, u_int freq)
79 {
80 int rc;
81 u_int32_t sys2, sys3;
82
83 sys2 = bb->bb_sys2;
84 if (antdiv)
85 sys2 |= RTW_BBP_SYS2_ANTDIV;
86 sys3 = bb->bb_sys3 |
87 LSHIFT(cs_threshold, RTW_BBP_SYS3_CSTHRESH_MASK);
88
89 #define RTW_BBP_WRITE_OR_RETURN(reg, val) \
90 if ((rc = rtw_bbp_write(regs, reg, val)) != 0) \
91 return rc;
92
93 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS1, bb->bb_sys1);
94 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TXAGC, bb->bb_txagc);
95 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_LNADET, bb->bb_lnadet);
96 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCINI, bb->bb_ifagcini);
97 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCLIMIT, bb->bb_ifagclimit);
98 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCDET, bb->bb_ifagcdet);
99
100 if ((rc = rtw_bbp_preinit(regs, bb->bb_antatten, dflantb, freq)) != 0)
101 return rc;
102
103 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TRL, bb->bb_trl);
104 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS2, sys2);
105 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS3, sys3);
106 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHESTLIM, bb->bb_chestlim);
107 RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHSQLIM, bb->bb_chsqlim);
108 return 0;
109 }
110
111 static int
112 rtw_sa2400_txpower(struct rtw_rf *rf, u_int8_t opaque_txpower)
113 {
114 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
115 struct rtw_rfbus *bus = &sa->sa_bus;
116
117 return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_TX,
118 opaque_txpower);
119 }
120
121 /* make sure we're using the same settings as the reference driver */
122 static void
123 verify_syna(u_int freq, u_int32_t val)
124 {
125 u_int32_t expected_val = ~val;
126
127 switch (freq) {
128 case 2412:
129 expected_val = 0x0000096c; /* ch 1 */
130 break;
131 case 2417:
132 expected_val = 0x00080970; /* ch 2 */
133 break;
134 case 2422:
135 expected_val = 0x00100974; /* ch 3 */
136 break;
137 case 2427:
138 expected_val = 0x00180978; /* ch 4 */
139 break;
140 case 2432:
141 expected_val = 0x00000980; /* ch 5 */
142 break;
143 case 2437:
144 expected_val = 0x00080984; /* ch 6 */
145 break;
146 case 2442:
147 expected_val = 0x00100988; /* ch 7 */
148 break;
149 case 2447:
150 expected_val = 0x0018098c; /* ch 8 */
151 break;
152 case 2452:
153 expected_val = 0x00000994; /* ch 9 */
154 break;
155 case 2457:
156 expected_val = 0x00080998; /* ch 10 */
157 break;
158 case 2462:
159 expected_val = 0x0010099c; /* ch 11 */
160 break;
161 case 2467:
162 expected_val = 0x001809a0; /* ch 12 */
163 break;
164 case 2472:
165 expected_val = 0x000009a8; /* ch 13 */
166 break;
167 case 2484:
168 expected_val = 0x000009b4; /* ch 14 */
169 break;
170 }
171 KASSERT(val == expected_val);
172 }
173
174 /* freq is in MHz */
175 static int
176 rtw_sa2400_tune(struct rtw_rf *rf, u_int freq)
177 {
178 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
179 struct rtw_rfbus *bus = &sa->sa_bus;
180 int rc;
181 u_int32_t syna, synb, sync;
182
183 /* XO = 44MHz, R = 11, hence N is in units of XO / R = 4MHz.
184 *
185 * The channel spacing (5MHz) is not divisible by 4MHz, so
186 * we set the fractional part of N to compensate.
187 */
188 int n = freq / 4, nf = (freq % 4) * 2;
189
190 syna = LSHIFT(nf, SA2400_SYNA_NF_MASK) | LSHIFT(n, SA2400_SYNA_N_MASK);
191 verify_syna(freq, syna);
192
193 /* Divide the 44MHz crystal down to 4MHz. Set the fractional
194 * compensation charge pump value to agree with the fractional
195 * modulus.
196 */
197 synb = LSHIFT(11, SA2400_SYNB_R_MASK) | SA2400_SYNB_L_NORMAL |
198 SA2400_SYNB_ON | SA2400_SYNB_ONE |
199 LSHIFT(80, SA2400_SYNB_FC_MASK); /* agrees w/ SA2400_SYNA_FM = 0 */
200
201 sync = SA2400_SYNC_CP_NORMAL;
202
203 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNA,
204 syna)) != 0)
205 return rc;
206 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNB,
207 synb)) != 0)
208 return rc;
209 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNC,
210 sync)) != 0)
211 return rc;
212 return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYND, 0x0);
213 }
214
215 static int
216 rtw_sa2400_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
217 {
218 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
219 struct rtw_rfbus *bus = &sa->sa_bus;
220 u_int32_t opmode;
221 opmode = SA2400_OPMODE_XO;
222 opmode |= SA2400_OPMODE_RXLV;
223 opmode |= SA2400_OPMODE_CLK;
224 opmode |= SA2400_OPMODE_I0P3;
225 opmode |= LSHIFT(3, SA2400_OPMODE_FILTTUNE_MASK);
226 switch (power) {
227 case RTW_ON:
228 opmode |= SA2400_OPMODE_MODE_TXRX;
229 break;
230 case RTW_SLEEP:
231 opmode |= SA2400_OPMODE_MODE_WAIT;
232 break;
233 case RTW_OFF:
234 opmode |= SA2400_OPMODE_MODE_SLEEP;
235 break;
236 }
237
238 if (sa->sa_digphy)
239 opmode |= SA2400_OPMODE_DIGIN;
240
241 return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
242 opmode);
243 }
244
245 static int
246 rtw_sa2400_manrx_init(struct rtw_sa2400 *sa)
247 {
248 u_int32_t manrx;
249
250 /* XXX we are not supposed to be in RXMGC mode when we do
251 * this?
252 */
253 manrx = SA2400_MANRX_AHSN;
254 manrx |= SA2400_MANRX_TEN;
255 manrx |= LSHIFT(1023, SA2400_MANRX_RXGAIN_MASK);
256
257 return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_MANRX,
258 manrx);
259 }
260
261 static int
262 rtw_sa2400_vcocal_start(struct rtw_sa2400 *sa, int start)
263 {
264 u_int32_t opmode;
265
266 opmode = SA2400_OPMODE_XO;
267 opmode |= SA2400_OPMODE_RXLV;
268 opmode |= SA2400_OPMODE_CLK;
269 opmode |= SA2400_OPMODE_I0P3;
270 opmode |= LSHIFT(3, SA2400_OPMODE_FILTTUNE_MASK);
271 if (start)
272 opmode |= SA2400_OPMODE_MODE_VCOCALIB;
273 else
274 opmode |= SA2400_OPMODE_MODE_SLEEP;
275
276 if (sa->sa_digphy)
277 opmode |= SA2400_OPMODE_DIGIN;
278
279 return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
280 opmode);
281 }
282
283 static int
284 rtw_sa2400_vco_calibration(struct rtw_sa2400 *sa)
285 {
286 int rc;
287 /* calibrate VCO */
288 if ((rc = rtw_sa2400_vcocal_start(sa, 1)) != 0)
289 return rc;
290 DELAY(2200); /* 2.2 milliseconds */
291 /* XXX superfluous: SA2400 automatically entered SLEEP mode. */
292 return rtw_sa2400_vcocal_start(sa, 0);
293 }
294
295 static int
296 rtw_sa2400_filter_calibration(struct rtw_sa2400 *sa)
297 {
298 u_int32_t opmode;
299
300 opmode = SA2400_OPMODE_XO;
301 opmode |= SA2400_OPMODE_RXLV;
302 opmode |= SA2400_OPMODE_CLK;
303 opmode |= SA2400_OPMODE_I0P3;
304 opmode |= LSHIFT(3, SA2400_OPMODE_FILTTUNE_MASK);
305 opmode |= SA2400_OPMODE_MODE_FCALIB;
306 if (sa->sa_digphy)
307 opmode |= SA2400_OPMODE_DIGIN;
308
309 return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
310 opmode);
311 }
312
313 static int
314 rtw_sa2400_dc_calibration(struct rtw_sa2400 *sa)
315 {
316 struct rtw_rf *rf = &sa->sa_rf;
317 int rc;
318 u_int32_t dccal;
319
320 (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 1);
321
322 dccal = SA2400_OPMODE_XO;
323 dccal |= SA2400_OPMODE_RXLV;
324 dccal |= SA2400_OPMODE_CLK;
325 dccal |= SA2400_OPMODE_I0P3;
326 dccal |= LSHIFT(3, SA2400_OPMODE_FILTTUNE_MASK);
327 dccal |= SA2400_OPMODE_MODE_TXRX;
328
329 rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
330 dccal);
331 if (rc != 0)
332 return rc;
333
334 DELAY(5); /* DCALIB after being in Tx mode for 5
335 * microseconds
336 */
337
338 dccal &= ~SA2400_OPMODE_MODE_MASK;
339 dccal |= SA2400_OPMODE_MODE_DCALIB;
340
341 rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
342 dccal);
343 if (rc != 0)
344 return rc;
345
346 DELAY(20); /* calibration takes at most 20 microseconds */
347
348 (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 0);
349
350 return 0;
351 }
352
353 static int
354 rtw_sa2400_agc_init(struct rtw_sa2400 *sa)
355 {
356 u_int32_t agc;
357
358 agc = LSHIFT(25, SA2400_AGC_MAXGAIN_MASK);
359 agc |= LSHIFT(7, SA2400_AGC_BBPDELAY_MASK);
360 agc |= LSHIFT(15, SA2400_AGC_LNADELAY_MASK);
361 agc |= LSHIFT(27, SA2400_AGC_RXONDELAY_MASK);
362
363 return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_AGC,
364 agc);
365 }
366
367 static void
368 rtw_sa2400_destroy(struct rtw_rf *rf)
369 {
370 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
371 memset(sa, 0, sizeof(*sa));
372 free(sa, M_DEVBUF);
373 }
374
375 static int
376 rtw_sa2400_init(struct rtw_rf *rf, u_int freq, u_int8_t opaque_txpower,
377 enum rtw_pwrstate power)
378 {
379 struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
380 int rc;
381
382 if ((rc = rtw_sa2400_txpower(rf, opaque_txpower)) != 0)
383 return rc;
384
385 /* skip configuration if it's time to sleep or to power-down. */
386 if (power == RTW_SLEEP || power == RTW_OFF)
387 return rtw_sa2400_pwrstate(rf, power);
388
389 /* go to sleep for configuration */
390 if ((rc = rtw_sa2400_pwrstate(rf, RTW_SLEEP)) != 0)
391 return rc;
392
393 if ((rc = rtw_sa2400_agc_init(sa)) != 0)
394 return rc;
395 if ((rc = rtw_sa2400_manrx_init(sa)) != 0)
396 return rc;
397
398 /* XXX reference driver calibrates VCO twice. Is it a bug? */
399 if ((rc = rtw_sa2400_vco_calibration(sa)) != 0)
400 return rc;
401 /* VCO calibration erases synthesizer registers */
402 if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
403 return rc;
404 if ((rc = rtw_sa2400_filter_calibration(sa)) != 0)
405 return rc;
406 /* analog PHY needs DC calibration */
407 if (!sa->sa_digphy && (rc = rtw_sa2400_dc_calibration(sa)) != 0)
408 return rc;
409 /* enter Tx/Rx mode */
410 return rtw_sa2400_pwrstate(rf, power);
411 }
412
413 struct rtw_rf *
414 rtw_sa2400_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int digphy)
415 {
416 struct rtw_sa2400 *sa;
417 struct rtw_rfbus *bus;
418 struct rtw_rf *rf;
419 struct rtw_bbpset *bb;
420
421 sa = malloc(sizeof(*sa), M_DEVBUF, M_NOWAIT | M_ZERO);
422 if (sa == NULL)
423 return NULL;
424
425 sa->sa_digphy = digphy;
426
427 rf = &sa->sa_rf;
428 bus = &sa->sa_bus;
429
430 rf->rf_init = rtw_sa2400_init;
431 rf->rf_destroy = rtw_sa2400_destroy;
432 rf->rf_txpower = rtw_sa2400_txpower;
433 rf->rf_tune = rtw_sa2400_tune;
434 rf->rf_pwrstate = rtw_sa2400_pwrstate;
435 bb = &rf->rf_bbpset;
436
437 /* XXX magic */
438 bb->bb_antatten = RTW_BBP_ANTATTEN_PHILIPS_MAGIC;
439 bb->bb_chestlim = 0x00;
440 bb->bb_chsqlim = 0xa0;
441 bb->bb_ifagcdet = 0x64;
442 bb->bb_ifagcini = 0x90;
443 bb->bb_ifagclimit = 0x1a;
444 bb->bb_lnadet = 0xe0;
445 bb->bb_sys1 = 0x98;
446 bb->bb_sys2 = 0x47;
447 bb->bb_sys3 = 0x90;
448 bb->bb_trl = 0x88;
449 bb->bb_txagc = 0x38;
450
451 bus->b_regs = regs;
452 bus->b_write = rf_write;
453
454 return &sa->sa_rf;
455 }
456
457 /* freq is in MHz */
458 static int
459 rtw_max2820_tune(struct rtw_rf *rf, u_int freq)
460 {
461 struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
462 struct rtw_rfbus *bus = &mx->mx_bus;
463
464 if (freq < 2400 || freq > 2499)
465 return -1;
466
467 return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_CHANNEL,
468 LSHIFT(freq - 2400, MAX2820_CHANNEL_CF_MASK));
469 }
470
471 static void
472 rtw_max2820_destroy(struct rtw_rf *rf)
473 {
474 struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
475 memset(mx, 0, sizeof(*mx));
476 free(mx, M_DEVBUF);
477 }
478
479 static int
480 rtw_max2820_init(struct rtw_rf *rf, u_int freq, u_int8_t opaque_txpower,
481 enum rtw_pwrstate power)
482 {
483 struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
484 struct rtw_rfbus *bus = &mx->mx_bus;
485 int rc;
486
487 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TEST,
488 MAX2820_TEST_DEFAULT)) != 0)
489 return rc;
490
491 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE,
492 MAX2820_ENABLE_DEFAULT)) != 0)
493 return rc;
494
495 /* skip configuration if it's time to sleep or to power-down. */
496 if ((rc = rtw_max2820_pwrstate(rf, power)) != 0)
497 return rc;
498 else if (power == RTW_OFF || power == RTW_SLEEP)
499 return 0;
500
501 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_SYNTH,
502 MAX2820_SYNTH_R_44MHZ)) != 0)
503 return rc;
504
505 if ((rc = rtw_max2820_tune(rf, freq)) != 0)
506 return rc;
507
508 /* XXX The MAX2820 datasheet indicates that 1C and 2C should not
509 * be changed from 7, however, the reference driver sets them
510 * to 4 and 1, respectively.
511 */
512 if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_RECEIVE,
513 MAX2820_RECEIVE_DL_DEFAULT |
514 LSHIFT(4, MAX2820A_RECEIVE_1C_MASK) |
515 LSHIFT(1, MAX2820A_RECEIVE_2C_MASK))) != 0)
516 return rc;
517
518 return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TRANSMIT,
519 MAX2820_TRANSMIT_PA_DEFAULT);
520 }
521
522 static int
523 rtw_max2820_txpower(struct rtw_rf *rf, u_int8_t opaque_txpower)
524 {
525 /* TBD */
526 return 0;
527 }
528
529 static int
530 rtw_max2820_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
531 {
532 uint32_t enable;
533 struct rtw_max2820 *mx;
534 struct rtw_rfbus *bus;
535
536 mx = (struct rtw_max2820 *)rf;
537 bus = &mx->mx_bus;
538
539 switch (power) {
540 case RTW_OFF:
541 case RTW_SLEEP:
542 default:
543 enable = 0x0;
544 break;
545 case RTW_ON:
546 enable = MAX2820_ENABLE_DEFAULT;
547 break;
548 }
549 return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, enable);
550 }
551
552 struct rtw_rf *
553 rtw_max2820_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int is_a)
554 {
555 struct rtw_max2820 *mx;
556 struct rtw_rfbus *bus;
557 struct rtw_rf *rf;
558 struct rtw_bbpset *bb;
559
560 mx = malloc(sizeof(*mx), M_DEVBUF, M_NOWAIT | M_ZERO);
561 if (mx == NULL)
562 return NULL;
563
564 mx->mx_is_a = is_a;
565
566 rf = &mx->mx_rf;
567 bus = &mx->mx_bus;
568
569 rf->rf_init = rtw_max2820_init;
570 rf->rf_destroy = rtw_max2820_destroy;
571 rf->rf_txpower = rtw_max2820_txpower;
572 rf->rf_tune = rtw_max2820_tune;
573 rf->rf_pwrstate = rtw_max2820_pwrstate;
574 bb = &rf->rf_bbpset;
575
576 /* XXX magic */
577 bb->bb_antatten = RTW_BBP_ANTATTEN_MAXIM_MAGIC;
578 bb->bb_chestlim = 0;
579 bb->bb_chsqlim = 159;
580 bb->bb_ifagcdet = 100;
581 bb->bb_ifagcini = 144;
582 bb->bb_ifagclimit = 26;
583 bb->bb_lnadet = 248;
584 bb->bb_sys1 = 136;
585 bb->bb_sys2 = 71;
586 bb->bb_sys3 = 155;
587 bb->bb_trl = 136;
588 bb->bb_txagc = 8;
589
590 bus->b_regs = regs;
591 bus->b_write = rf_write;
592
593 return &mx->mx_rf;
594 }
595
596 /* freq is in MHz */
597 int
598 rtw_phy_init(struct rtw_regs *regs, struct rtw_rf *rf, u_int8_t opaque_txpower,
599 u_int8_t cs_threshold, u_int freq, int antdiv, int dflantb,
600 enum rtw_pwrstate power)
601 {
602 int rc;
603 RTW_DPRINTF(("%s: txpower %u csthresh %u freq %u antdiv %u dflantb %u "
604 "pwrstate %s\n", __func__, opaque_txpower, cs_threshold,
605 freq, antdiv, dflantb, rtw_pwrstate_string(power)));
606
607 /* XXX is this really necessary? */
608 if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
609 return rc;
610 if ((rc = rtw_bbp_preinit(regs, rf->rf_bbpset.bb_antatten, dflantb,
611 freq)) != 0)
612 return rc;
613 if ((rc = rtw_rf_tune(rf, freq)) != 0)
614 return rc;
615 /* initialize RF */
616 if ((rc = rtw_rf_init(rf, freq, opaque_txpower, power)) != 0)
617 return rc;
618 #if 0 /* what is this redundant tx power setting here for? */
619 if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
620 return rc;
621 #endif
622 return rtw_bbp_init(regs, &rf->rf_bbpset, antdiv, dflantb,
623 cs_threshold, freq);
624 }
625