Home | History | Annotate | Line # | Download | only in ic
rtwphy.c revision 1.13
      1 /* $NetBSD: rtwphy.c,v 1.13 2007/10/19 12:00:00 ad Exp $ */
      2 /*-
      3  * Copyright (c) 2004, 2005 David Young.  All rights reserved.
      4  *
      5  * Programmed for NetBSD by David Young.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of David Young may not be used to endorse or promote
     16  *    products derived from this software without specific prior
     17  *    written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
     20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     21  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     22  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL David
     23  * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     24  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
     25  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     27  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     28  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
     30  * OF SUCH DAMAGE.
     31  */
     32 /*
     33  * Control the Philips SA2400 RF front-end and the baseband processor
     34  * built into the Realtek RTL8180.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: rtwphy.c,v 1.13 2007/10/19 12:00:00 ad Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/types.h>
     43 
     44 #include <sys/bus.h>
     45 
     46 #include <net/if.h>
     47 #include <net/if_media.h>
     48 #include <net/if_ether.h>
     49 
     50 #include <net80211/ieee80211_netbsd.h>
     51 #include <net80211/ieee80211_radiotap.h>
     52 #include <net80211/ieee80211_var.h>
     53 
     54 #include <dev/ic/rtwreg.h>
     55 #include <dev/ic/max2820reg.h>
     56 #include <dev/ic/sa2400reg.h>
     57 #include <dev/ic/rtwvar.h>
     58 #include <dev/ic/rtwphyio.h>
     59 #include <dev/ic/rtwphy.h>
     60 
     61 static int rtw_max2820_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
     62 static int rtw_sa2400_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
     63 
     64 #define	GCT_WRITE(__gr, __addr, __val, __label)				\
     65 	do {								\
     66 		if (rtw_rfbus_write(&(__gr)->gr_bus, RTW_RFCHIPID_GCT,	\
     67 		    (__addr), (__val)) == -1)				\
     68 			goto __label;					\
     69 	} while(0)
     70 
     71 static int
     72 rtw_bbp_preinit(struct rtw_regs *regs, u_int antatten0, int dflantb,
     73     u_int freq)
     74 {
     75 	u_int antatten = antatten0;
     76 	if (dflantb)
     77 		antatten |= RTW_BBP_ANTATTEN_DFLANTB;
     78 	if (freq == 2484) /* channel 14 */
     79 		antatten |= RTW_BBP_ANTATTEN_CHAN14;
     80 	return rtw_bbp_write(regs, RTW_BBP_ANTATTEN, antatten);
     81 }
     82 
     83 static int
     84 rtw_bbp_init(struct rtw_regs *regs, struct rtw_bbpset *bb, int antdiv,
     85     int dflantb, uint8_t cs_threshold, u_int freq)
     86 {
     87 	int rc;
     88 	uint32_t sys2, sys3;
     89 
     90 	sys2 = bb->bb_sys2;
     91 	if (antdiv)
     92 		sys2 |= RTW_BBP_SYS2_ANTDIV;
     93 	sys3 = bb->bb_sys3 |
     94 	    __SHIFTIN(cs_threshold, RTW_BBP_SYS3_CSTHRESH_MASK);
     95 
     96 #define	RTW_BBP_WRITE_OR_RETURN(reg, val) \
     97 	if ((rc = rtw_bbp_write(regs, reg, val)) != 0) \
     98 		return rc;
     99 
    100 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS1,		bb->bb_sys1);
    101 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TXAGC,		bb->bb_txagc);
    102 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_LNADET,		bb->bb_lnadet);
    103 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCINI,	bb->bb_ifagcini);
    104 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCLIMIT,	bb->bb_ifagclimit);
    105 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCDET,	bb->bb_ifagcdet);
    106 
    107 	if ((rc = rtw_bbp_preinit(regs, bb->bb_antatten, dflantb, freq)) != 0)
    108 		return rc;
    109 
    110 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TRL,		bb->bb_trl);
    111 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS2,		sys2);
    112 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS3,		sys3);
    113 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHESTLIM,	bb->bb_chestlim);
    114 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHSQLIM,	bb->bb_chsqlim);
    115 	return 0;
    116 }
    117 
    118 static int
    119 rtw_sa2400_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
    120 {
    121 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
    122 	struct rtw_rfbus *bus = &sa->sa_bus;
    123 
    124 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_TX,
    125 	    opaque_txpower);
    126 }
    127 
    128 /* make sure we're using the same settings as the reference driver */
    129 static void
    130 verify_syna(u_int freq, uint32_t val)
    131 {
    132 	uint32_t expected_val = ~val;
    133 
    134 	switch (freq) {
    135 	case 2412:
    136 		expected_val = 0x0000096c; /* ch 1 */
    137 		break;
    138 	case 2417:
    139 		expected_val = 0x00080970; /* ch 2 */
    140 		break;
    141 	case 2422:
    142 		expected_val = 0x00100974; /* ch 3 */
    143 		break;
    144 	case 2427:
    145 		expected_val = 0x00180978; /* ch 4 */
    146 		break;
    147 	case 2432:
    148 		expected_val = 0x00000980; /* ch 5 */
    149 		break;
    150 	case 2437:
    151 		expected_val = 0x00080984; /* ch 6 */
    152 		break;
    153 	case 2442:
    154 		expected_val = 0x00100988; /* ch 7 */
    155 		break;
    156 	case 2447:
    157 		expected_val = 0x0018098c; /* ch 8 */
    158 		break;
    159 	case 2452:
    160 		expected_val = 0x00000994; /* ch 9 */
    161 		break;
    162 	case 2457:
    163 		expected_val = 0x00080998; /* ch 10 */
    164 		break;
    165 	case 2462:
    166 		expected_val = 0x0010099c; /* ch 11 */
    167 		break;
    168 	case 2467:
    169 		expected_val = 0x001809a0; /* ch 12 */
    170 		break;
    171         case 2472:
    172 		expected_val = 0x000009a8; /* ch 13 */
    173 		break;
    174         case 2484:
    175 		expected_val = 0x000009b4; /* ch 14 */
    176 		break;
    177 	}
    178 	KASSERT(val == expected_val);
    179 }
    180 
    181 /* freq is in MHz */
    182 static int
    183 rtw_sa2400_tune(struct rtw_rf *rf, u_int freq)
    184 {
    185 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
    186 	struct rtw_rfbus *bus = &sa->sa_bus;
    187 	int rc;
    188 	uint32_t syna, synb, sync;
    189 
    190 	/* XO = 44MHz, R = 11, hence N is in units of XO / R = 4MHz.
    191 	 *
    192 	 * The channel spacing (5MHz) is not divisible by 4MHz, so
    193 	 * we set the fractional part of N to compensate.
    194 	 */
    195 	int n = freq / 4, nf = (freq % 4) * 2;
    196 
    197 	syna = __SHIFTIN(nf, SA2400_SYNA_NF_MASK) | __SHIFTIN(n, SA2400_SYNA_N_MASK);
    198 	verify_syna(freq, syna);
    199 
    200 	/* Divide the 44MHz crystal down to 4MHz. Set the fractional
    201 	 * compensation charge pump value to agree with the fractional
    202 	 * modulus.
    203 	 */
    204 	synb = __SHIFTIN(11, SA2400_SYNB_R_MASK) | SA2400_SYNB_L_NORMAL |
    205 	    SA2400_SYNB_ON | SA2400_SYNB_ONE |
    206 	    __SHIFTIN(80, SA2400_SYNB_FC_MASK); /* agrees w/ SA2400_SYNA_FM = 0 */
    207 
    208 	sync = SA2400_SYNC_CP_NORMAL;
    209 
    210 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNA,
    211 	    syna)) != 0)
    212 		return rc;
    213 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNB,
    214 	    synb)) != 0)
    215 		return rc;
    216 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNC,
    217 	    sync)) != 0)
    218 		return rc;
    219 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYND, 0x0);
    220 }
    221 
    222 static int
    223 rtw_sa2400_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
    224 {
    225 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
    226 	struct rtw_rfbus *bus = &sa->sa_bus;
    227 	uint32_t opmode;
    228 	opmode = SA2400_OPMODE_DEFAULTS;
    229 	switch (power) {
    230 	case RTW_ON:
    231 		opmode |= SA2400_OPMODE_MODE_TXRX;
    232 		break;
    233 	case RTW_SLEEP:
    234 		opmode |= SA2400_OPMODE_MODE_WAIT;
    235 		break;
    236 	case RTW_OFF:
    237 		opmode |= SA2400_OPMODE_MODE_SLEEP;
    238 		break;
    239 	}
    240 
    241 	if (sa->sa_digphy)
    242 		opmode |= SA2400_OPMODE_DIGIN;
    243 
    244 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
    245 	    opmode);
    246 }
    247 
    248 static int
    249 rtw_sa2400_manrx_init(struct rtw_sa2400 *sa)
    250 {
    251 	uint32_t manrx;
    252 
    253 	/* XXX we are not supposed to be in RXMGC mode when we do
    254 	 * this?
    255 	 */
    256 	manrx = SA2400_MANRX_AHSN;
    257 	manrx |= SA2400_MANRX_TEN;
    258 	manrx |= __SHIFTIN(1023, SA2400_MANRX_RXGAIN_MASK);
    259 
    260 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_MANRX,
    261 	    manrx);
    262 }
    263 
    264 static int
    265 rtw_sa2400_vcocal_start(struct rtw_sa2400 *sa, int start)
    266 {
    267 	uint32_t opmode;
    268 
    269 	opmode = SA2400_OPMODE_DEFAULTS;
    270 	if (start)
    271 		opmode |= SA2400_OPMODE_MODE_VCOCALIB;
    272 	else
    273 		opmode |= SA2400_OPMODE_MODE_SLEEP;
    274 
    275 	if (sa->sa_digphy)
    276 		opmode |= SA2400_OPMODE_DIGIN;
    277 
    278 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
    279 	    opmode);
    280 }
    281 
    282 static int
    283 rtw_sa2400_vco_calibration(struct rtw_sa2400 *sa)
    284 {
    285 	int rc;
    286 	/* calibrate VCO */
    287 	if ((rc = rtw_sa2400_vcocal_start(sa, 1)) != 0)
    288 		return rc;
    289 	DELAY(2200);	/* 2.2 milliseconds */
    290 	/* XXX superfluous: SA2400 automatically entered SLEEP mode. */
    291 	return rtw_sa2400_vcocal_start(sa, 0);
    292 }
    293 
    294 static int
    295 rtw_sa2400_filter_calibration(struct rtw_sa2400 *sa)
    296 {
    297 	uint32_t opmode;
    298 
    299 	opmode = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_FCALIB;
    300 	if (sa->sa_digphy)
    301 		opmode |= SA2400_OPMODE_DIGIN;
    302 
    303 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
    304 	    opmode);
    305 }
    306 
    307 static int
    308 rtw_sa2400_dc_calibration(struct rtw_sa2400 *sa)
    309 {
    310 	struct rtw_rf *rf = &sa->sa_rf;
    311 	int rc;
    312 	uint32_t dccal;
    313 
    314 	(*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 1);
    315 
    316 	dccal = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_TXRX;
    317 
    318 	rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
    319 	    dccal);
    320 	if (rc != 0)
    321 		return rc;
    322 
    323 	DELAY(5);	/* DCALIB after being in Tx mode for 5
    324 			 * microseconds
    325 			 */
    326 
    327 	dccal &= ~SA2400_OPMODE_MODE_MASK;
    328 	dccal |= SA2400_OPMODE_MODE_DCALIB;
    329 
    330 	rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
    331 	   dccal);
    332 	if (rc != 0)
    333 		return rc;
    334 
    335 	DELAY(20);	/* calibration takes at most 20 microseconds */
    336 
    337 	(*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 0);
    338 
    339 	return 0;
    340 }
    341 
    342 static int
    343 rtw_sa2400_agc_init(struct rtw_sa2400 *sa)
    344 {
    345 	uint32_t agc;
    346 
    347 	agc = __SHIFTIN(25, SA2400_AGC_MAXGAIN_MASK);
    348 	agc |= __SHIFTIN(7, SA2400_AGC_BBPDELAY_MASK);
    349 	agc |= __SHIFTIN(15, SA2400_AGC_LNADELAY_MASK);
    350 	agc |= __SHIFTIN(27, SA2400_AGC_RXONDELAY_MASK);
    351 
    352 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_AGC,
    353 	    agc);
    354 }
    355 
    356 static void
    357 rtw_sa2400_destroy(struct rtw_rf *rf)
    358 {
    359 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
    360 	memset(sa, 0, sizeof(*sa));
    361 	free(sa, M_DEVBUF);
    362 }
    363 
    364 static int
    365 rtw_sa2400_calibrate(struct rtw_rf *rf, u_int freq)
    366 {
    367 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
    368 	int i, rc;
    369 
    370 	/* XXX reference driver calibrates VCO twice. Is it a bug? */
    371 	for (i = 0; i < 2; i++) {
    372 		if ((rc = rtw_sa2400_vco_calibration(sa)) != 0)
    373 			return rc;
    374 	}
    375 	/* VCO calibration erases synthesizer registers, so re-tune */
    376 	if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
    377 		return rc;
    378 	if ((rc = rtw_sa2400_filter_calibration(sa)) != 0)
    379 		return rc;
    380 	/* analog PHY needs DC calibration */
    381 	if (!sa->sa_digphy)
    382 		return rtw_sa2400_dc_calibration(sa);
    383 	return 0;
    384 }
    385 
    386 static int
    387 rtw_sa2400_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
    388     enum rtw_pwrstate power)
    389 {
    390 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
    391 	int rc;
    392 
    393 	if ((rc = rtw_sa2400_txpower(rf, opaque_txpower)) != 0)
    394 		return rc;
    395 
    396 	/* skip configuration if it's time to sleep or to power-down. */
    397 	if (power == RTW_SLEEP || power == RTW_OFF)
    398 		return rtw_sa2400_pwrstate(rf, power);
    399 
    400 	/* go to sleep for configuration */
    401 	if ((rc = rtw_sa2400_pwrstate(rf, RTW_SLEEP)) != 0)
    402 		return rc;
    403 
    404 	if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
    405 		return rc;
    406 	if ((rc = rtw_sa2400_agc_init(sa)) != 0)
    407 		return rc;
    408 	if ((rc = rtw_sa2400_manrx_init(sa)) != 0)
    409 		return rc;
    410 	if ((rc = rtw_sa2400_calibrate(rf, freq)) != 0)
    411 		return rc;
    412 
    413 	/* enter Tx/Rx mode */
    414 	return rtw_sa2400_pwrstate(rf, power);
    415 }
    416 
    417 struct rtw_rf *
    418 rtw_sa2400_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int digphy)
    419 {
    420 	struct rtw_sa2400 *sa;
    421 	struct rtw_rfbus *bus;
    422 	struct rtw_rf *rf;
    423 	struct rtw_bbpset *bb;
    424 
    425 	sa = malloc(sizeof(*sa), M_DEVBUF, M_NOWAIT | M_ZERO);
    426 	if (sa == NULL)
    427 		return NULL;
    428 
    429 	sa->sa_digphy = digphy;
    430 
    431 	rf = &sa->sa_rf;
    432 	bus = &sa->sa_bus;
    433 
    434 	rf->rf_init = rtw_sa2400_init;
    435 	rf->rf_destroy = rtw_sa2400_destroy;
    436 	rf->rf_txpower = rtw_sa2400_txpower;
    437 	rf->rf_tune = rtw_sa2400_tune;
    438 	rf->rf_pwrstate = rtw_sa2400_pwrstate;
    439 	bb = &rf->rf_bbpset;
    440 
    441 	/* XXX magic */
    442 	bb->bb_antatten = RTW_BBP_ANTATTEN_PHILIPS_MAGIC;
    443 	bb->bb_chestlim =	0x00;
    444 	bb->bb_chsqlim =	0xa0;
    445 	bb->bb_ifagcdet =	0x64;
    446 	bb->bb_ifagcini =	0x90;
    447 	bb->bb_ifagclimit =	0x1a;
    448 	bb->bb_lnadet =		0xe0;
    449 	bb->bb_sys1 =		0x98;
    450 	bb->bb_sys2 =		0x47;
    451 	bb->bb_sys3 =		0x90;
    452 	bb->bb_trl =		0x88;
    453 	bb->bb_txagc =		0x38;
    454 
    455 	bus->b_regs = regs;
    456 	bus->b_write = rf_write;
    457 
    458 	return &sa->sa_rf;
    459 }
    460 
    461 static int
    462 rtw_grf5101_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
    463 {
    464 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
    465 
    466 	GCT_WRITE(gr, 0x15, 0, err);
    467 	GCT_WRITE(gr, 0x06, opaque_txpower, err);
    468 	GCT_WRITE(gr, 0x15, 0x10, err);
    469 	GCT_WRITE(gr, 0x15, 0x00, err);
    470 	return 0;
    471 err:
    472 	return -1;
    473 }
    474 
    475 static int
    476 rtw_grf5101_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
    477 {
    478 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
    479 	switch (power) {
    480 	case RTW_OFF:
    481 	case RTW_SLEEP:
    482 		GCT_WRITE(gr, 0x07, 0x0000, err);
    483 		GCT_WRITE(gr, 0x1f, 0x0045, err);
    484 		GCT_WRITE(gr, 0x1f, 0x0005, err);
    485 		GCT_WRITE(gr, 0x00, 0x08e4, err);
    486 	default:
    487 		break;
    488 	case RTW_ON:
    489 		GCT_WRITE(gr, 0x1f, 0x0001, err);
    490 		DELAY(10);
    491 		GCT_WRITE(gr, 0x1f, 0x0001, err);
    492 		DELAY(10);
    493 		GCT_WRITE(gr, 0x1f, 0x0041, err);
    494 		DELAY(10);
    495 		GCT_WRITE(gr, 0x1f, 0x0061, err);
    496 		DELAY(10);
    497 		GCT_WRITE(gr, 0x00, 0x0ae4, err);
    498 		DELAY(10);
    499 		GCT_WRITE(gr, 0x07, 0x1000, err);
    500 		DELAY(100);
    501 		break;
    502 	}
    503 
    504 	return 0;
    505 err:
    506 	return -1;
    507 }
    508 
    509 static int
    510 rtw_grf5101_tune(struct rtw_rf *rf, u_int freq)
    511 {
    512 	int channel;
    513 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
    514 
    515 	if (freq == 2484)
    516 		channel = 14;
    517 	else if ((channel = (freq - 2412) / 5 + 1) < 1 || channel > 13) {
    518 		RTW_DPRINTF(RTW_DEBUG_PHY,
    519 		    ("%s: invalid channel %d (freq %d)\n", __func__, channel,
    520 		     freq));
    521 		return -1;
    522 	}
    523 
    524 	GCT_WRITE(gr, 0x07, 0, err);
    525 	GCT_WRITE(gr, 0x0b, channel - 1, err);
    526 	GCT_WRITE(gr, 0x07, 0x1000, err);
    527 	return 0;
    528 err:
    529 	return -1;
    530 }
    531 
    532 static int
    533 rtw_grf5101_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
    534     enum rtw_pwrstate power)
    535 {
    536 	int rc;
    537 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
    538 
    539 	/*
    540          * These values have been derived from the rtl8180-sa2400
    541          * Linux driver.  It is unknown what they all do, GCT refuse
    542          * to release any documentation so these are more than
    543          * likely sub optimal settings
    544 	 */
    545 
    546 	GCT_WRITE(gr, 0x01, 0x1a23, err);
    547 	GCT_WRITE(gr, 0x02, 0x4971, err);
    548 	GCT_WRITE(gr, 0x03, 0x41de, err);
    549 	GCT_WRITE(gr, 0x04, 0x2d80, err);
    550 
    551 	GCT_WRITE(gr, 0x05, 0x61ff, err);
    552 
    553 	GCT_WRITE(gr, 0x06, 0x0, err);
    554 
    555 	GCT_WRITE(gr, 0x08, 0x7533, err);
    556 	GCT_WRITE(gr, 0x09, 0xc401, err);
    557 	GCT_WRITE(gr, 0x0a, 0x0, err);
    558 	GCT_WRITE(gr, 0x0c, 0x1c7, err);
    559 	GCT_WRITE(gr, 0x0d, 0x29d3, err);
    560 	GCT_WRITE(gr, 0x0e, 0x2e8, err);
    561 	GCT_WRITE(gr, 0x10, 0x192, err);
    562 	GCT_WRITE(gr, 0x11, 0x248, err);
    563 	GCT_WRITE(gr, 0x12, 0x0, err);
    564 	GCT_WRITE(gr, 0x13, 0x20c4, err);
    565 	GCT_WRITE(gr, 0x14, 0xf4fc, err);
    566 	GCT_WRITE(gr, 0x15, 0x0, err);
    567 	GCT_WRITE(gr, 0x16, 0x1500, err);
    568 
    569 	if ((rc = rtw_grf5101_txpower(rf, opaque_txpower)) != 0)
    570 		return rc;
    571 
    572 	if ((rc = rtw_grf5101_tune(rf, freq)) != 0)
    573 		return rc;
    574 
    575 	return 0;
    576 err:
    577 	return -1;
    578 }
    579 
    580 static void
    581 rtw_grf5101_destroy(struct rtw_rf *rf)
    582 {
    583 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
    584 	memset(gr, 0, sizeof(*gr));
    585 	free(gr, M_DEVBUF);
    586 }
    587 
    588 struct rtw_rf *
    589 rtw_grf5101_create(struct rtw_regs *regs, rtw_rf_write_t rf_write,
    590     int digphy)
    591 {
    592 	struct rtw_grf5101 *gr;
    593 	struct rtw_rfbus *bus;
    594 	struct rtw_rf *rf;
    595 	struct rtw_bbpset *bb;
    596 
    597 	gr = malloc(sizeof(*gr), M_DEVBUF, M_NOWAIT | M_ZERO);
    598 	if (gr == NULL)
    599 		return NULL;
    600 
    601 	rf = &gr->gr_rf;
    602 	bus = &gr->gr_bus;
    603 
    604 	rf->rf_init = rtw_grf5101_init;
    605 	rf->rf_destroy = rtw_grf5101_destroy;
    606 	rf->rf_txpower = rtw_grf5101_txpower;
    607 	rf->rf_tune = rtw_grf5101_tune;
    608 	rf->rf_pwrstate = rtw_grf5101_pwrstate;
    609 	bb = &rf->rf_bbpset;
    610 
    611 	/* XXX magic */
    612 	bb->bb_antatten = RTW_BBP_ANTATTEN_GCT_MAGIC;
    613 	bb->bb_chestlim =       0x00;
    614 	bb->bb_chsqlim =        0xa0;
    615 	bb->bb_ifagcdet =       0x64;
    616 	bb->bb_ifagcini =       0x90;
    617 	bb->bb_ifagclimit =     0x1e;
    618 	bb->bb_lnadet =         0xc0;
    619 	bb->bb_sys1 =           0xa8;
    620 	bb->bb_sys2 =           0x47;
    621 	bb->bb_sys3 =           0x9b;
    622 	bb->bb_trl =            0x88;
    623 	bb->bb_txagc =          0x08;
    624 
    625 	bus->b_regs = regs;
    626 	bus->b_write = rf_write;
    627 
    628 	return &gr->gr_rf;
    629 }
    630 
    631 /* freq is in MHz */
    632 static int
    633 rtw_max2820_tune(struct rtw_rf *rf, u_int freq)
    634 {
    635 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
    636 	struct rtw_rfbus *bus = &mx->mx_bus;
    637 
    638 	if (freq < 2400 || freq > 2499)
    639 		return -1;
    640 
    641 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_CHANNEL,
    642 	    __SHIFTIN(freq - 2400, MAX2820_CHANNEL_CF_MASK));
    643 }
    644 
    645 static void
    646 rtw_max2820_destroy(struct rtw_rf *rf)
    647 {
    648 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
    649 	memset(mx, 0, sizeof(*mx));
    650 	free(mx, M_DEVBUF);
    651 }
    652 
    653 static int
    654 rtw_max2820_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
    655     enum rtw_pwrstate power)
    656 {
    657 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
    658 	struct rtw_rfbus *bus = &mx->mx_bus;
    659 	int rc;
    660 
    661 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TEST,
    662 	    MAX2820_TEST_DEFAULT)) != 0)
    663 		return rc;
    664 
    665 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE,
    666 	    MAX2820_ENABLE_DEFAULT)) != 0)
    667 		return rc;
    668 
    669 	/* skip configuration if it's time to sleep or to power-down. */
    670 	if ((rc = rtw_max2820_pwrstate(rf, power)) != 0)
    671 		return rc;
    672 	else if (power == RTW_OFF || power == RTW_SLEEP)
    673 		return 0;
    674 
    675 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_SYNTH,
    676 	    MAX2820_SYNTH_R_44MHZ)) != 0)
    677 		return rc;
    678 
    679 	if ((rc = rtw_max2820_tune(rf, freq)) != 0)
    680 		return rc;
    681 
    682 	/* XXX The MAX2820 datasheet indicates that 1C and 2C should not
    683 	 * be changed from 7, however, the reference driver sets them
    684 	 * to 4 and 1, respectively.
    685 	 */
    686 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_RECEIVE,
    687 	    MAX2820_RECEIVE_DL_DEFAULT |
    688 	    __SHIFTIN(4, MAX2820A_RECEIVE_1C_MASK) |
    689 	    __SHIFTIN(1, MAX2820A_RECEIVE_2C_MASK))) != 0)
    690 		return rc;
    691 
    692 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TRANSMIT,
    693 	    MAX2820_TRANSMIT_PA_DEFAULT);
    694 }
    695 
    696 static int
    697 rtw_max2820_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
    698 {
    699 	/* TBD */
    700 	return 0;
    701 }
    702 
    703 static int
    704 rtw_max2820_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
    705 {
    706 	uint32_t enable;
    707 	struct rtw_max2820 *mx;
    708 	struct rtw_rfbus *bus;
    709 
    710 	mx = (struct rtw_max2820 *)rf;
    711 	bus = &mx->mx_bus;
    712 
    713 	switch (power) {
    714 	case RTW_OFF:
    715 	case RTW_SLEEP:
    716 	default:
    717 		enable = 0x0;
    718 		break;
    719 	case RTW_ON:
    720 		enable = MAX2820_ENABLE_DEFAULT;
    721 		break;
    722 	}
    723 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, enable);
    724 }
    725 
    726 struct rtw_rf *
    727 rtw_max2820_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int is_a)
    728 {
    729 	struct rtw_max2820 *mx;
    730 	struct rtw_rfbus *bus;
    731 	struct rtw_rf *rf;
    732 	struct rtw_bbpset *bb;
    733 
    734 	mx = malloc(sizeof(*mx), M_DEVBUF, M_NOWAIT | M_ZERO);
    735 	if (mx == NULL)
    736 		return NULL;
    737 
    738 	mx->mx_is_a = is_a;
    739 
    740 	rf = &mx->mx_rf;
    741 	bus = &mx->mx_bus;
    742 
    743 	rf->rf_init = rtw_max2820_init;
    744 	rf->rf_destroy = rtw_max2820_destroy;
    745 	rf->rf_txpower = rtw_max2820_txpower;
    746 	rf->rf_tune = rtw_max2820_tune;
    747 	rf->rf_pwrstate = rtw_max2820_pwrstate;
    748 	bb = &rf->rf_bbpset;
    749 
    750 	/* XXX magic */
    751 	bb->bb_antatten = RTW_BBP_ANTATTEN_MAXIM_MAGIC;
    752 	bb->bb_chestlim =	0;
    753 	bb->bb_chsqlim =	159;
    754 	bb->bb_ifagcdet =	100;
    755 	bb->bb_ifagcini =	144;
    756 	bb->bb_ifagclimit =	26;
    757 	bb->bb_lnadet =		248;
    758 	bb->bb_sys1 =		136;
    759 	bb->bb_sys2 =		71;
    760 	bb->bb_sys3 =		155;
    761 	bb->bb_trl =		136;
    762 	bb->bb_txagc =		8;
    763 
    764 	bus->b_regs = regs;
    765 	bus->b_write = rf_write;
    766 
    767 	return &mx->mx_rf;
    768 }
    769 
    770 /* freq is in MHz */
    771 int
    772 rtw_phy_init(struct rtw_regs *regs, struct rtw_rf *rf, uint8_t opaque_txpower,
    773     uint8_t cs_threshold, u_int freq, int antdiv, int dflantb,
    774     enum rtw_pwrstate power)
    775 {
    776 	int rc;
    777 	RTW_DPRINTF(RTW_DEBUG_PHY,
    778 	    ("%s: txpower %u csthresh %u freq %u antdiv %u dflantb %u "
    779 	     "pwrstate %s\n", __func__, opaque_txpower, cs_threshold, freq,
    780 	     antdiv, dflantb, rtw_pwrstate_string(power)));
    781 
    782 	/* XXX is this really necessary? */
    783 	if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
    784 		return rc;
    785 	if ((rc = rtw_bbp_preinit(regs, rf->rf_bbpset.bb_antatten, dflantb,
    786 	    freq)) != 0)
    787 		return rc;
    788 	if ((rc = rtw_rf_tune(rf, freq)) != 0)
    789 		return rc;
    790 	/* initialize RF  */
    791 	if ((rc = rtw_rf_init(rf, freq, opaque_txpower, power)) != 0)
    792 		return rc;
    793 #if 0	/* what is this redundant tx power setting here for? */
    794 	if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
    795 		return rc;
    796 #endif
    797 	return rtw_bbp_init(regs, &rf->rf_bbpset, antdiv, dflantb,
    798 	    cs_threshold, freq);
    799 }
    800