Home | History | Annotate | Line # | Download | only in ic
rtwphy.c revision 1.15
      1 /* $NetBSD: rtwphy.c,v 1.15 2009/10/19 23:19:39 rmind Exp $ */
      2 /*-
      3  * Copyright (c) 2004, 2005 David Young.  All rights reserved.
      4  *
      5  * Programmed for NetBSD by David Young.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
     17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     18  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     19  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL David
     20  * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     21  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
     22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
     27  * OF SUCH DAMAGE.
     28  */
     29 /*
     30  * Control the Philips SA2400 RF front-end and the baseband processor
     31  * built into the Realtek RTL8180.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: rtwphy.c,v 1.15 2009/10/19 23:19:39 rmind Exp $");
     36 
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/types.h>
     40 #include <sys/device.h>
     41 
     42 #include <sys/bus.h>
     43 
     44 #include <net/if.h>
     45 #include <net/if_media.h>
     46 #include <net/if_ether.h>
     47 
     48 #include <net80211/ieee80211_netbsd.h>
     49 #include <net80211/ieee80211_radiotap.h>
     50 #include <net80211/ieee80211_var.h>
     51 
     52 #include <dev/ic/rtwreg.h>
     53 #include <dev/ic/max2820reg.h>
     54 #include <dev/ic/sa2400reg.h>
     55 #include <dev/ic/rtwvar.h>
     56 #include <dev/ic/rtwphyio.h>
     57 #include <dev/ic/rtwphy.h>
     58 
     59 static int rtw_max2820_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
     60 static int rtw_sa2400_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
     61 
     62 #define	GCT_WRITE(__gr, __addr, __val, __label)				\
     63 	do {								\
     64 		if (rtw_rfbus_write(&(__gr)->gr_bus, RTW_RFCHIPID_GCT,	\
     65 		    (__addr), (__val)) == -1)				\
     66 			goto __label;					\
     67 	} while(0)
     68 
     69 static int
     70 rtw_bbp_preinit(struct rtw_regs *regs, u_int antatten0, int dflantb,
     71     u_int freq)
     72 {
     73 	u_int antatten = antatten0;
     74 	if (dflantb)
     75 		antatten |= RTW_BBP_ANTATTEN_DFLANTB;
     76 	if (freq == 2484) /* channel 14 */
     77 		antatten |= RTW_BBP_ANTATTEN_CHAN14;
     78 	return rtw_bbp_write(regs, RTW_BBP_ANTATTEN, antatten);
     79 }
     80 
     81 static int
     82 rtw_bbp_init(struct rtw_regs *regs, struct rtw_bbpset *bb, int antdiv,
     83     int dflantb, uint8_t cs_threshold, u_int freq)
     84 {
     85 	int rc;
     86 	uint32_t sys2, sys3;
     87 
     88 	sys2 = bb->bb_sys2;
     89 	if (antdiv)
     90 		sys2 |= RTW_BBP_SYS2_ANTDIV;
     91 	sys3 = bb->bb_sys3 |
     92 	    __SHIFTIN(cs_threshold, RTW_BBP_SYS3_CSTHRESH_MASK);
     93 
     94 #define	RTW_BBP_WRITE_OR_RETURN(reg, val) \
     95 	if ((rc = rtw_bbp_write(regs, reg, val)) != 0) \
     96 		return rc;
     97 
     98 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS1,		bb->bb_sys1);
     99 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TXAGC,		bb->bb_txagc);
    100 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_LNADET,		bb->bb_lnadet);
    101 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCINI,	bb->bb_ifagcini);
    102 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCLIMIT,	bb->bb_ifagclimit);
    103 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCDET,	bb->bb_ifagcdet);
    104 
    105 	if ((rc = rtw_bbp_preinit(regs, bb->bb_antatten, dflantb, freq)) != 0)
    106 		return rc;
    107 
    108 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TRL,		bb->bb_trl);
    109 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS2,		sys2);
    110 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS3,		sys3);
    111 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHESTLIM,	bb->bb_chestlim);
    112 	RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHSQLIM,	bb->bb_chsqlim);
    113 	return 0;
    114 }
    115 
    116 static int
    117 rtw_sa2400_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
    118 {
    119 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
    120 	struct rtw_rfbus *bus = &sa->sa_bus;
    121 
    122 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_TX,
    123 	    opaque_txpower);
    124 }
    125 
    126 /* make sure we're using the same settings as the reference driver */
    127 static void
    128 verify_syna(u_int freq, uint32_t val)
    129 {
    130 	uint32_t expected_val = ~val;
    131 
    132 	switch (freq) {
    133 	case 2412:
    134 		expected_val = 0x0000096c; /* ch 1 */
    135 		break;
    136 	case 2417:
    137 		expected_val = 0x00080970; /* ch 2 */
    138 		break;
    139 	case 2422:
    140 		expected_val = 0x00100974; /* ch 3 */
    141 		break;
    142 	case 2427:
    143 		expected_val = 0x00180978; /* ch 4 */
    144 		break;
    145 	case 2432:
    146 		expected_val = 0x00000980; /* ch 5 */
    147 		break;
    148 	case 2437:
    149 		expected_val = 0x00080984; /* ch 6 */
    150 		break;
    151 	case 2442:
    152 		expected_val = 0x00100988; /* ch 7 */
    153 		break;
    154 	case 2447:
    155 		expected_val = 0x0018098c; /* ch 8 */
    156 		break;
    157 	case 2452:
    158 		expected_val = 0x00000994; /* ch 9 */
    159 		break;
    160 	case 2457:
    161 		expected_val = 0x00080998; /* ch 10 */
    162 		break;
    163 	case 2462:
    164 		expected_val = 0x0010099c; /* ch 11 */
    165 		break;
    166 	case 2467:
    167 		expected_val = 0x001809a0; /* ch 12 */
    168 		break;
    169         case 2472:
    170 		expected_val = 0x000009a8; /* ch 13 */
    171 		break;
    172         case 2484:
    173 		expected_val = 0x000009b4; /* ch 14 */
    174 		break;
    175 	}
    176 	KASSERT(val == expected_val);
    177 }
    178 
    179 /* freq is in MHz */
    180 static int
    181 rtw_sa2400_tune(struct rtw_rf *rf, u_int freq)
    182 {
    183 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
    184 	struct rtw_rfbus *bus = &sa->sa_bus;
    185 	int rc;
    186 	uint32_t syna, synb, sync;
    187 
    188 	/* XO = 44MHz, R = 11, hence N is in units of XO / R = 4MHz.
    189 	 *
    190 	 * The channel spacing (5MHz) is not divisible by 4MHz, so
    191 	 * we set the fractional part of N to compensate.
    192 	 */
    193 	int n = freq / 4, nf = (freq % 4) * 2;
    194 
    195 	syna = __SHIFTIN(nf, SA2400_SYNA_NF_MASK) | __SHIFTIN(n, SA2400_SYNA_N_MASK);
    196 	verify_syna(freq, syna);
    197 
    198 	/* Divide the 44MHz crystal down to 4MHz. Set the fractional
    199 	 * compensation charge pump value to agree with the fractional
    200 	 * modulus.
    201 	 */
    202 	synb = __SHIFTIN(11, SA2400_SYNB_R_MASK) | SA2400_SYNB_L_NORMAL |
    203 	    SA2400_SYNB_ON | SA2400_SYNB_ONE |
    204 	    __SHIFTIN(80, SA2400_SYNB_FC_MASK); /* agrees w/ SA2400_SYNA_FM = 0 */
    205 
    206 	sync = SA2400_SYNC_CP_NORMAL;
    207 
    208 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNA,
    209 	    syna)) != 0)
    210 		return rc;
    211 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNB,
    212 	    synb)) != 0)
    213 		return rc;
    214 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNC,
    215 	    sync)) != 0)
    216 		return rc;
    217 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYND, 0x0);
    218 }
    219 
    220 static int
    221 rtw_sa2400_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
    222 {
    223 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
    224 	struct rtw_rfbus *bus = &sa->sa_bus;
    225 	uint32_t opmode;
    226 	opmode = SA2400_OPMODE_DEFAULTS;
    227 	switch (power) {
    228 	case RTW_ON:
    229 		opmode |= SA2400_OPMODE_MODE_TXRX;
    230 		break;
    231 	case RTW_SLEEP:
    232 		opmode |= SA2400_OPMODE_MODE_WAIT;
    233 		break;
    234 	case RTW_OFF:
    235 		opmode |= SA2400_OPMODE_MODE_SLEEP;
    236 		break;
    237 	}
    238 
    239 	if (sa->sa_digphy)
    240 		opmode |= SA2400_OPMODE_DIGIN;
    241 
    242 	return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
    243 	    opmode);
    244 }
    245 
    246 static int
    247 rtw_sa2400_manrx_init(struct rtw_sa2400 *sa)
    248 {
    249 	uint32_t manrx;
    250 
    251 	/* XXX we are not supposed to be in RXMGC mode when we do
    252 	 * this?
    253 	 */
    254 	manrx = SA2400_MANRX_AHSN;
    255 	manrx |= SA2400_MANRX_TEN;
    256 	manrx |= __SHIFTIN(1023, SA2400_MANRX_RXGAIN_MASK);
    257 
    258 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_MANRX,
    259 	    manrx);
    260 }
    261 
    262 static int
    263 rtw_sa2400_vcocal_start(struct rtw_sa2400 *sa, int start)
    264 {
    265 	uint32_t opmode;
    266 
    267 	opmode = SA2400_OPMODE_DEFAULTS;
    268 	if (start)
    269 		opmode |= SA2400_OPMODE_MODE_VCOCALIB;
    270 	else
    271 		opmode |= SA2400_OPMODE_MODE_SLEEP;
    272 
    273 	if (sa->sa_digphy)
    274 		opmode |= SA2400_OPMODE_DIGIN;
    275 
    276 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
    277 	    opmode);
    278 }
    279 
    280 static int
    281 rtw_sa2400_vco_calibration(struct rtw_sa2400 *sa)
    282 {
    283 	int rc;
    284 	/* calibrate VCO */
    285 	if ((rc = rtw_sa2400_vcocal_start(sa, 1)) != 0)
    286 		return rc;
    287 	DELAY(2200);	/* 2.2 milliseconds */
    288 	/* XXX superfluous: SA2400 automatically entered SLEEP mode. */
    289 	return rtw_sa2400_vcocal_start(sa, 0);
    290 }
    291 
    292 static int
    293 rtw_sa2400_filter_calibration(struct rtw_sa2400 *sa)
    294 {
    295 	uint32_t opmode;
    296 
    297 	opmode = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_FCALIB;
    298 	if (sa->sa_digphy)
    299 		opmode |= SA2400_OPMODE_DIGIN;
    300 
    301 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
    302 	    opmode);
    303 }
    304 
    305 static int
    306 rtw_sa2400_dc_calibration(struct rtw_sa2400 *sa)
    307 {
    308 	struct rtw_rf *rf = &sa->sa_rf;
    309 	int rc;
    310 	uint32_t dccal;
    311 
    312 	(*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 1);
    313 
    314 	dccal = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_TXRX;
    315 
    316 	rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
    317 	    dccal);
    318 	if (rc != 0)
    319 		return rc;
    320 
    321 	DELAY(5);	/* DCALIB after being in Tx mode for 5
    322 			 * microseconds
    323 			 */
    324 
    325 	dccal &= ~SA2400_OPMODE_MODE_MASK;
    326 	dccal |= SA2400_OPMODE_MODE_DCALIB;
    327 
    328 	rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
    329 	   dccal);
    330 	if (rc != 0)
    331 		return rc;
    332 
    333 	DELAY(20);	/* calibration takes at most 20 microseconds */
    334 
    335 	(*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 0);
    336 
    337 	return 0;
    338 }
    339 
    340 static int
    341 rtw_sa2400_agc_init(struct rtw_sa2400 *sa)
    342 {
    343 	uint32_t agc;
    344 
    345 	agc = __SHIFTIN(25, SA2400_AGC_MAXGAIN_MASK);
    346 	agc |= __SHIFTIN(7, SA2400_AGC_BBPDELAY_MASK);
    347 	agc |= __SHIFTIN(15, SA2400_AGC_LNADELAY_MASK);
    348 	agc |= __SHIFTIN(27, SA2400_AGC_RXONDELAY_MASK);
    349 
    350 	return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_AGC,
    351 	    agc);
    352 }
    353 
    354 static void
    355 rtw_sa2400_destroy(struct rtw_rf *rf)
    356 {
    357 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
    358 	memset(sa, 0, sizeof(*sa));
    359 	free(sa, M_DEVBUF);
    360 }
    361 
    362 static int
    363 rtw_sa2400_calibrate(struct rtw_rf *rf, u_int freq)
    364 {
    365 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
    366 	int i, rc;
    367 
    368 	/* XXX reference driver calibrates VCO twice. Is it a bug? */
    369 	for (i = 0; i < 2; i++) {
    370 		if ((rc = rtw_sa2400_vco_calibration(sa)) != 0)
    371 			return rc;
    372 	}
    373 	/* VCO calibration erases synthesizer registers, so re-tune */
    374 	if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
    375 		return rc;
    376 	if ((rc = rtw_sa2400_filter_calibration(sa)) != 0)
    377 		return rc;
    378 	/* analog PHY needs DC calibration */
    379 	if (!sa->sa_digphy)
    380 		return rtw_sa2400_dc_calibration(sa);
    381 	return 0;
    382 }
    383 
    384 static int
    385 rtw_sa2400_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
    386     enum rtw_pwrstate power)
    387 {
    388 	struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
    389 	int rc;
    390 
    391 	if ((rc = rtw_sa2400_txpower(rf, opaque_txpower)) != 0)
    392 		return rc;
    393 
    394 	/* skip configuration if it's time to sleep or to power-down. */
    395 	if (power == RTW_SLEEP || power == RTW_OFF)
    396 		return rtw_sa2400_pwrstate(rf, power);
    397 
    398 	/* go to sleep for configuration */
    399 	if ((rc = rtw_sa2400_pwrstate(rf, RTW_SLEEP)) != 0)
    400 		return rc;
    401 
    402 	if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
    403 		return rc;
    404 	if ((rc = rtw_sa2400_agc_init(sa)) != 0)
    405 		return rc;
    406 	if ((rc = rtw_sa2400_manrx_init(sa)) != 0)
    407 		return rc;
    408 	if ((rc = rtw_sa2400_calibrate(rf, freq)) != 0)
    409 		return rc;
    410 
    411 	/* enter Tx/Rx mode */
    412 	return rtw_sa2400_pwrstate(rf, power);
    413 }
    414 
    415 struct rtw_rf *
    416 rtw_sa2400_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int digphy)
    417 {
    418 	struct rtw_sa2400 *sa;
    419 	struct rtw_rfbus *bus;
    420 	struct rtw_rf *rf;
    421 	struct rtw_bbpset *bb;
    422 
    423 	sa = malloc(sizeof(*sa), M_DEVBUF, M_NOWAIT | M_ZERO);
    424 	if (sa == NULL)
    425 		return NULL;
    426 
    427 	sa->sa_digphy = digphy;
    428 
    429 	rf = &sa->sa_rf;
    430 	bus = &sa->sa_bus;
    431 
    432 	rf->rf_init = rtw_sa2400_init;
    433 	rf->rf_destroy = rtw_sa2400_destroy;
    434 	rf->rf_txpower = rtw_sa2400_txpower;
    435 	rf->rf_tune = rtw_sa2400_tune;
    436 	rf->rf_pwrstate = rtw_sa2400_pwrstate;
    437 	bb = &rf->rf_bbpset;
    438 
    439 	/* XXX magic */
    440 	bb->bb_antatten = RTW_BBP_ANTATTEN_PHILIPS_MAGIC;
    441 	bb->bb_chestlim =	0x00;
    442 	bb->bb_chsqlim =	0xa0;
    443 	bb->bb_ifagcdet =	0x64;
    444 	bb->bb_ifagcini =	0x90;
    445 	bb->bb_ifagclimit =	0x1a;
    446 	bb->bb_lnadet =		0xe0;
    447 	bb->bb_sys1 =		0x98;
    448 	bb->bb_sys2 =		0x47;
    449 	bb->bb_sys3 =		0x90;
    450 	bb->bb_trl =		0x88;
    451 	bb->bb_txagc =		0x38;
    452 
    453 	bus->b_regs = regs;
    454 	bus->b_write = rf_write;
    455 
    456 	return &sa->sa_rf;
    457 }
    458 
    459 static int
    460 rtw_grf5101_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
    461 {
    462 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
    463 
    464 	GCT_WRITE(gr, 0x15, 0, err);
    465 	GCT_WRITE(gr, 0x06, opaque_txpower, err);
    466 	GCT_WRITE(gr, 0x15, 0x10, err);
    467 	GCT_WRITE(gr, 0x15, 0x00, err);
    468 	return 0;
    469 err:
    470 	return -1;
    471 }
    472 
    473 static int
    474 rtw_grf5101_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
    475 {
    476 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
    477 	switch (power) {
    478 	case RTW_OFF:
    479 	case RTW_SLEEP:
    480 		GCT_WRITE(gr, 0x07, 0x0000, err);
    481 		GCT_WRITE(gr, 0x1f, 0x0045, err);
    482 		GCT_WRITE(gr, 0x1f, 0x0005, err);
    483 		GCT_WRITE(gr, 0x00, 0x08e4, err);
    484 	default:
    485 		break;
    486 	case RTW_ON:
    487 		GCT_WRITE(gr, 0x1f, 0x0001, err);
    488 		DELAY(10);
    489 		GCT_WRITE(gr, 0x1f, 0x0001, err);
    490 		DELAY(10);
    491 		GCT_WRITE(gr, 0x1f, 0x0041, err);
    492 		DELAY(10);
    493 		GCT_WRITE(gr, 0x1f, 0x0061, err);
    494 		DELAY(10);
    495 		GCT_WRITE(gr, 0x00, 0x0ae4, err);
    496 		DELAY(10);
    497 		GCT_WRITE(gr, 0x07, 0x1000, err);
    498 		DELAY(100);
    499 		break;
    500 	}
    501 
    502 	return 0;
    503 err:
    504 	return -1;
    505 }
    506 
    507 static int
    508 rtw_grf5101_tune(struct rtw_rf *rf, u_int freq)
    509 {
    510 	int channel;
    511 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
    512 
    513 	if (freq == 2484)
    514 		channel = 14;
    515 	else if ((channel = (freq - 2412) / 5 + 1) < 1 || channel > 13) {
    516 		RTW_DPRINTF(RTW_DEBUG_PHY,
    517 		    ("%s: invalid channel %d (freq %d)\n", __func__, channel,
    518 		     freq));
    519 		return -1;
    520 	}
    521 
    522 	GCT_WRITE(gr, 0x07, 0, err);
    523 	GCT_WRITE(gr, 0x0b, channel - 1, err);
    524 	GCT_WRITE(gr, 0x07, 0x1000, err);
    525 	return 0;
    526 err:
    527 	return -1;
    528 }
    529 
    530 static int
    531 rtw_grf5101_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
    532     enum rtw_pwrstate power)
    533 {
    534 	int rc;
    535 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
    536 
    537 	/*
    538          * These values have been derived from the rtl8180-sa2400
    539          * Linux driver.  It is unknown what they all do, GCT refuse
    540          * to release any documentation so these are more than
    541          * likely sub optimal settings
    542 	 */
    543 
    544 	GCT_WRITE(gr, 0x01, 0x1a23, err);
    545 	GCT_WRITE(gr, 0x02, 0x4971, err);
    546 	GCT_WRITE(gr, 0x03, 0x41de, err);
    547 	GCT_WRITE(gr, 0x04, 0x2d80, err);
    548 
    549 	GCT_WRITE(gr, 0x05, 0x61ff, err);
    550 
    551 	GCT_WRITE(gr, 0x06, 0x0, err);
    552 
    553 	GCT_WRITE(gr, 0x08, 0x7533, err);
    554 	GCT_WRITE(gr, 0x09, 0xc401, err);
    555 	GCT_WRITE(gr, 0x0a, 0x0, err);
    556 	GCT_WRITE(gr, 0x0c, 0x1c7, err);
    557 	GCT_WRITE(gr, 0x0d, 0x29d3, err);
    558 	GCT_WRITE(gr, 0x0e, 0x2e8, err);
    559 	GCT_WRITE(gr, 0x10, 0x192, err);
    560 	GCT_WRITE(gr, 0x11, 0x248, err);
    561 	GCT_WRITE(gr, 0x12, 0x0, err);
    562 	GCT_WRITE(gr, 0x13, 0x20c4, err);
    563 	GCT_WRITE(gr, 0x14, 0xf4fc, err);
    564 	GCT_WRITE(gr, 0x15, 0x0, err);
    565 	GCT_WRITE(gr, 0x16, 0x1500, err);
    566 
    567 	if ((rc = rtw_grf5101_txpower(rf, opaque_txpower)) != 0)
    568 		return rc;
    569 
    570 	if ((rc = rtw_grf5101_tune(rf, freq)) != 0)
    571 		return rc;
    572 
    573 	return 0;
    574 err:
    575 	return -1;
    576 }
    577 
    578 static void
    579 rtw_grf5101_destroy(struct rtw_rf *rf)
    580 {
    581 	struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
    582 	memset(gr, 0, sizeof(*gr));
    583 	free(gr, M_DEVBUF);
    584 }
    585 
    586 struct rtw_rf *
    587 rtw_grf5101_create(struct rtw_regs *regs, rtw_rf_write_t rf_write,
    588     int digphy)
    589 {
    590 	struct rtw_grf5101 *gr;
    591 	struct rtw_rfbus *bus;
    592 	struct rtw_rf *rf;
    593 	struct rtw_bbpset *bb;
    594 
    595 	gr = malloc(sizeof(*gr), M_DEVBUF, M_NOWAIT | M_ZERO);
    596 	if (gr == NULL)
    597 		return NULL;
    598 
    599 	rf = &gr->gr_rf;
    600 	bus = &gr->gr_bus;
    601 
    602 	rf->rf_init = rtw_grf5101_init;
    603 	rf->rf_destroy = rtw_grf5101_destroy;
    604 	rf->rf_txpower = rtw_grf5101_txpower;
    605 	rf->rf_tune = rtw_grf5101_tune;
    606 	rf->rf_pwrstate = rtw_grf5101_pwrstate;
    607 	bb = &rf->rf_bbpset;
    608 
    609 	/* XXX magic */
    610 	bb->bb_antatten = RTW_BBP_ANTATTEN_GCT_MAGIC;
    611 	bb->bb_chestlim =       0x00;
    612 	bb->bb_chsqlim =        0xa0;
    613 	bb->bb_ifagcdet =       0x64;
    614 	bb->bb_ifagcini =       0x90;
    615 	bb->bb_ifagclimit =     0x1e;
    616 	bb->bb_lnadet =         0xc0;
    617 	bb->bb_sys1 =           0xa8;
    618 	bb->bb_sys2 =           0x47;
    619 	bb->bb_sys3 =           0x9b;
    620 	bb->bb_trl =            0x88;
    621 	bb->bb_txagc =          0x08;
    622 
    623 	bus->b_regs = regs;
    624 	bus->b_write = rf_write;
    625 
    626 	return &gr->gr_rf;
    627 }
    628 
    629 /* freq is in MHz */
    630 static int
    631 rtw_max2820_tune(struct rtw_rf *rf, u_int freq)
    632 {
    633 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
    634 	struct rtw_rfbus *bus = &mx->mx_bus;
    635 
    636 	if (freq < 2400 || freq > 2499)
    637 		return -1;
    638 
    639 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_CHANNEL,
    640 	    __SHIFTIN(freq - 2400, MAX2820_CHANNEL_CF_MASK));
    641 }
    642 
    643 static void
    644 rtw_max2820_destroy(struct rtw_rf *rf)
    645 {
    646 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
    647 	memset(mx, 0, sizeof(*mx));
    648 	free(mx, M_DEVBUF);
    649 }
    650 
    651 static int
    652 rtw_max2820_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
    653     enum rtw_pwrstate power)
    654 {
    655 	struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
    656 	struct rtw_rfbus *bus = &mx->mx_bus;
    657 	int rc;
    658 
    659 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TEST,
    660 	    MAX2820_TEST_DEFAULT)) != 0)
    661 		return rc;
    662 
    663 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE,
    664 	    MAX2820_ENABLE_DEFAULT)) != 0)
    665 		return rc;
    666 
    667 	/* skip configuration if it's time to sleep or to power-down. */
    668 	if ((rc = rtw_max2820_pwrstate(rf, power)) != 0)
    669 		return rc;
    670 	else if (power == RTW_OFF || power == RTW_SLEEP)
    671 		return 0;
    672 
    673 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_SYNTH,
    674 	    MAX2820_SYNTH_R_44MHZ)) != 0)
    675 		return rc;
    676 
    677 	if ((rc = rtw_max2820_tune(rf, freq)) != 0)
    678 		return rc;
    679 
    680 	/* XXX The MAX2820 datasheet indicates that 1C and 2C should not
    681 	 * be changed from 7, however, the reference driver sets them
    682 	 * to 4 and 1, respectively.
    683 	 */
    684 	if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_RECEIVE,
    685 	    MAX2820_RECEIVE_DL_DEFAULT |
    686 	    __SHIFTIN(4, MAX2820A_RECEIVE_1C_MASK) |
    687 	    __SHIFTIN(1, MAX2820A_RECEIVE_2C_MASK))) != 0)
    688 		return rc;
    689 
    690 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TRANSMIT,
    691 	    MAX2820_TRANSMIT_PA_DEFAULT);
    692 }
    693 
    694 static int
    695 rtw_max2820_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
    696 {
    697 	/* TBD */
    698 	return 0;
    699 }
    700 
    701 static int
    702 rtw_max2820_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
    703 {
    704 	uint32_t enable;
    705 	struct rtw_max2820 *mx;
    706 	struct rtw_rfbus *bus;
    707 
    708 	mx = (struct rtw_max2820 *)rf;
    709 	bus = &mx->mx_bus;
    710 
    711 	switch (power) {
    712 	case RTW_OFF:
    713 	case RTW_SLEEP:
    714 	default:
    715 		enable = 0x0;
    716 		break;
    717 	case RTW_ON:
    718 		enable = MAX2820_ENABLE_DEFAULT;
    719 		break;
    720 	}
    721 	return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, enable);
    722 }
    723 
    724 struct rtw_rf *
    725 rtw_max2820_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int is_a)
    726 {
    727 	struct rtw_max2820 *mx;
    728 	struct rtw_rfbus *bus;
    729 	struct rtw_rf *rf;
    730 	struct rtw_bbpset *bb;
    731 
    732 	mx = malloc(sizeof(*mx), M_DEVBUF, M_NOWAIT | M_ZERO);
    733 	if (mx == NULL)
    734 		return NULL;
    735 
    736 	mx->mx_is_a = is_a;
    737 
    738 	rf = &mx->mx_rf;
    739 	bus = &mx->mx_bus;
    740 
    741 	rf->rf_init = rtw_max2820_init;
    742 	rf->rf_destroy = rtw_max2820_destroy;
    743 	rf->rf_txpower = rtw_max2820_txpower;
    744 	rf->rf_tune = rtw_max2820_tune;
    745 	rf->rf_pwrstate = rtw_max2820_pwrstate;
    746 	bb = &rf->rf_bbpset;
    747 
    748 	/* XXX magic */
    749 	bb->bb_antatten = RTW_BBP_ANTATTEN_MAXIM_MAGIC;
    750 	bb->bb_chestlim =	0;
    751 	bb->bb_chsqlim =	159;
    752 	bb->bb_ifagcdet =	100;
    753 	bb->bb_ifagcini =	144;
    754 	bb->bb_ifagclimit =	26;
    755 	bb->bb_lnadet =		248;
    756 	bb->bb_sys1 =		136;
    757 	bb->bb_sys2 =		71;
    758 	bb->bb_sys3 =		155;
    759 	bb->bb_trl =		136;
    760 	bb->bb_txagc =		8;
    761 
    762 	bus->b_regs = regs;
    763 	bus->b_write = rf_write;
    764 
    765 	return &mx->mx_rf;
    766 }
    767 
    768 /* freq is in MHz */
    769 int
    770 rtw_phy_init(struct rtw_regs *regs, struct rtw_rf *rf, uint8_t opaque_txpower,
    771     uint8_t cs_threshold, u_int freq, int antdiv, int dflantb,
    772     enum rtw_pwrstate power)
    773 {
    774 	int rc;
    775 	RTW_DPRINTF(RTW_DEBUG_PHY,
    776 	    ("%s: txpower %u csthresh %u freq %u antdiv %u dflantb %u "
    777 	     "pwrstate %s\n", __func__, opaque_txpower, cs_threshold, freq,
    778 	     antdiv, dflantb, rtw_pwrstate_string(power)));
    779 
    780 	/* XXX is this really necessary? */
    781 	if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
    782 		return rc;
    783 	if ((rc = rtw_bbp_preinit(regs, rf->rf_bbpset.bb_antatten, dflantb,
    784 	    freq)) != 0)
    785 		return rc;
    786 	if ((rc = rtw_rf_tune(rf, freq)) != 0)
    787 		return rc;
    788 	/* initialize RF  */
    789 	if ((rc = rtw_rf_init(rf, freq, opaque_txpower, power)) != 0)
    790 		return rc;
    791 #if 0	/* what is this redundant tx power setting here for? */
    792 	if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
    793 		return rc;
    794 #endif
    795 	return rtw_bbp_init(regs, &rf->rf_bbpset, antdiv, dflantb,
    796 	    cs_threshold, freq);
    797 }
    798