seeq8005.c revision 1.31 1 1.31 lukem /* $NetBSD: seeq8005.c,v 1.31 2001/11/13 13:14:43 lukem Exp $ */
2 1.1 bjh21
3 1.1 bjh21 /*
4 1.27 bjh21 * Copyright (c) 2000, 2001 Ben Harris
5 1.11 bjh21 * Copyright (c) 1995-1998 Mark Brinicombe
6 1.1 bjh21 * All rights reserved.
7 1.1 bjh21 *
8 1.1 bjh21 * Redistribution and use in source and binary forms, with or without
9 1.1 bjh21 * modification, are permitted provided that the following conditions
10 1.1 bjh21 * are met:
11 1.1 bjh21 * 1. Redistributions of source code must retain the above copyright
12 1.1 bjh21 * notice, this list of conditions and the following disclaimer.
13 1.1 bjh21 * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 bjh21 * notice, this list of conditions and the following disclaimer in the
15 1.1 bjh21 * documentation and/or other materials provided with the distribution.
16 1.1 bjh21 * 3. All advertising materials mentioning features or use of this software
17 1.1 bjh21 * must display the following acknowledgement:
18 1.11 bjh21 * This product includes software developed by Mark Brinicombe
19 1.11 bjh21 * for the NetBSD Project.
20 1.1 bjh21 * 4. The name of the company nor the name of the author may be used to
21 1.1 bjh21 * endorse or promote products derived from this software without specific
22 1.1 bjh21 * prior written permission.
23 1.1 bjh21 *
24 1.1 bjh21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
25 1.1 bjh21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
26 1.1 bjh21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 1.1 bjh21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
28 1.1 bjh21 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 1.1 bjh21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 1.1 bjh21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 bjh21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 bjh21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 bjh21 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 bjh21 * SUCH DAMAGE.
35 1.1 bjh21 */
36 1.1 bjh21 /*
37 1.2 bjh21 * seeq8005.c - SEEQ 8005 device driver
38 1.2 bjh21 */
39 1.2 bjh21 /*
40 1.24 bjh21 * This driver currently supports the following chips:
41 1.2 bjh21 * SEEQ 8005 Advanced Ethernet Data Link Controller
42 1.20 bjh21 * SEEQ 80C04 Ethernet Data Link Controller
43 1.20 bjh21 * SEEQ 80C04A AutoDUPLEX CMOS Ethernet Data Link Controller
44 1.2 bjh21 */
45 1.2 bjh21 /*
46 1.11 bjh21 * More information on the 8004 and 8005 AEDLC controllers can be found in
47 1.11 bjh21 * the SEEQ Technology Inc 1992 Data Comm Devices data book.
48 1.11 bjh21 *
49 1.11 bjh21 * This data book may no longer be available as these are rather old chips
50 1.11 bjh21 * (1991 - 1993)
51 1.11 bjh21 */
52 1.11 bjh21 /*
53 1.2 bjh21 * This driver is based on the arm32 ea(4) driver, hence the names of many
54 1.2 bjh21 * of the functions.
55 1.1 bjh21 */
56 1.1 bjh21 /*
57 1.1 bjh21 * Bugs/possible improvements:
58 1.1 bjh21 * - Does not currently support DMA
59 1.1 bjh21 * - Does not transmit multiple packets in one go
60 1.1 bjh21 * - Does not support 8-bit busses
61 1.1 bjh21 */
62 1.1 bjh21
63 1.31 lukem #include <sys/cdefs.h>
64 1.31 lukem __KERNEL_RCSID(0, "$NetBSD: seeq8005.c,v 1.31 2001/11/13 13:14:43 lukem Exp $");
65 1.31 lukem
66 1.1 bjh21 #include <sys/types.h>
67 1.1 bjh21 #include <sys/param.h>
68 1.1 bjh21 #include <sys/systm.h>
69 1.1 bjh21 #include <sys/endian.h>
70 1.1 bjh21 #include <sys/errno.h>
71 1.1 bjh21 #include <sys/ioctl.h>
72 1.1 bjh21 #include <sys/mbuf.h>
73 1.1 bjh21 #include <sys/socket.h>
74 1.1 bjh21 #include <sys/syslog.h>
75 1.1 bjh21 #include <sys/device.h>
76 1.1 bjh21
77 1.1 bjh21 #include <net/if.h>
78 1.1 bjh21 #include <net/if_dl.h>
79 1.1 bjh21 #include <net/if_types.h>
80 1.1 bjh21 #include <net/if_ether.h>
81 1.11 bjh21 #include <net/if_media.h>
82 1.1 bjh21
83 1.1 bjh21 #include "bpfilter.h"
84 1.1 bjh21 #if NBPFILTER > 0
85 1.1 bjh21 #include <net/bpf.h>
86 1.1 bjh21 #include <net/bpfdesc.h>
87 1.1 bjh21 #endif
88 1.1 bjh21
89 1.30 bjh21 #include "rnd.h"
90 1.30 bjh21 #if NRND > 0
91 1.30 bjh21 #include <sys/rnd.h>
92 1.30 bjh21 #endif
93 1.30 bjh21
94 1.1 bjh21 #include <machine/bus.h>
95 1.1 bjh21 #include <machine/intr.h>
96 1.1 bjh21
97 1.1 bjh21 #include <dev/ic/seeq8005reg.h>
98 1.1 bjh21 #include <dev/ic/seeq8005var.h>
99 1.1 bjh21
100 1.10 bjh21 /*#define SEEQ_DEBUG*/
101 1.1 bjh21
102 1.1 bjh21 /* for debugging convenience */
103 1.16 bjh21 #ifdef SEEQ8005_DEBUG
104 1.11 bjh21 #define SEEQ_DEBUG_MISC 1
105 1.11 bjh21 #define SEEQ_DEBUG_TX 2
106 1.11 bjh21 #define SEEQ_DEBUG_RX 4
107 1.11 bjh21 #define SEEQ_DEBUG_PKT 8
108 1.11 bjh21 #define SEEQ_DEBUG_TXINT 16
109 1.11 bjh21 #define SEEQ_DEBUG_RXINT 32
110 1.16 bjh21 int seeq8005_debug = 0;
111 1.16 bjh21 #define DPRINTF(f, x) { if (seeq8005_debug & (f)) printf x; }
112 1.1 bjh21 #else
113 1.11 bjh21 #define DPRINTF(f, x)
114 1.1 bjh21 #endif
115 1.11 bjh21
116 1.27 bjh21 #define SEEQ_TX_BUFFER_SIZE 0x800 /* (> ETHER_MAX_LEN) */
117 1.1 bjh21
118 1.24 bjh21 #define SEEQ_READ16(sc, iot, ioh, reg) \
119 1.24 bjh21 ((sc)->sc_flags & SF_8BIT ? \
120 1.24 bjh21 (bus_space_read_1((iot), (ioh), (reg)) | \
121 1.24 bjh21 (bus_space_read_1((iot), (ioh), (reg) + 1) << 8)) : \
122 1.24 bjh21 (bus_space_read_2((iot), (ioh), (reg))))
123 1.24 bjh21
124 1.24 bjh21 #define SEEQ_WRITE16(sc, iot, ioh, reg, val) do { \
125 1.24 bjh21 if ((sc)->sc_flags & SF_8BIT) { \
126 1.24 bjh21 bus_space_write_1((iot), (ioh), (reg), (val) & 0xff); \
127 1.24 bjh21 bus_space_write_1((iot), (ioh), (reg) + 1, (val) >> 8); \
128 1.24 bjh21 } else \
129 1.24 bjh21 bus_space_write_2((iot), (ioh), (reg), (val)); \
130 1.24 bjh21 } while (/*CONSTCOND*/0)
131 1.24 bjh21
132 1.1 bjh21 /*
133 1.1 bjh21 * prototypes
134 1.1 bjh21 */
135 1.1 bjh21
136 1.5 bjh21 static int ea_init(struct ifnet *);
137 1.1 bjh21 static int ea_ioctl(struct ifnet *, u_long, caddr_t);
138 1.1 bjh21 static void ea_start(struct ifnet *);
139 1.1 bjh21 static void ea_watchdog(struct ifnet *);
140 1.1 bjh21 static void ea_chipreset(struct seeq8005_softc *);
141 1.1 bjh21 static void ea_ramtest(struct seeq8005_softc *);
142 1.1 bjh21 static int ea_stoptx(struct seeq8005_softc *);
143 1.1 bjh21 static int ea_stoprx(struct seeq8005_softc *);
144 1.5 bjh21 static void ea_stop(struct ifnet *, int);
145 1.1 bjh21 static void ea_await_fifo_empty(struct seeq8005_softc *);
146 1.1 bjh21 static void ea_await_fifo_full(struct seeq8005_softc *);
147 1.11 bjh21 static void ea_writebuf(struct seeq8005_softc *, u_char *, int, size_t);
148 1.11 bjh21 static void ea_readbuf(struct seeq8005_softc *, u_char *, int, size_t);
149 1.3 bjh21 static void ea_select_buffer(struct seeq8005_softc *, int);
150 1.5 bjh21 static void ea_set_address(struct seeq8005_softc *, int, const u_int8_t *);
151 1.11 bjh21 static void ea_read(struct seeq8005_softc *, int, int);
152 1.11 bjh21 static struct mbuf *ea_get(struct seeq8005_softc *, int, int, struct ifnet *);
153 1.20 bjh21 static void ea_txint(struct seeq8005_softc *);
154 1.20 bjh21 static void ea_rxint(struct seeq8005_softc *);
155 1.1 bjh21 static void eatxpacket(struct seeq8005_softc *);
156 1.12 bjh21 static int ea_writembuf(struct seeq8005_softc *, struct mbuf *, int);
157 1.5 bjh21 static void ea_mc_reset(struct seeq8005_softc *);
158 1.11 bjh21 static void ea_mc_reset_8004(struct seeq8005_softc *);
159 1.11 bjh21 static void ea_mc_reset_8005(struct seeq8005_softc *);
160 1.11 bjh21 static int ea_mediachange(struct ifnet *);
161 1.11 bjh21 static void ea_mediastatus(struct ifnet *, struct ifmediareq *);
162 1.1 bjh21
163 1.1 bjh21
164 1.1 bjh21 /*
165 1.1 bjh21 * Attach chip.
166 1.1 bjh21 */
167 1.1 bjh21
168 1.1 bjh21 void
169 1.11 bjh21 seeq8005_attach(struct seeq8005_softc *sc, const u_int8_t *myaddr, int *media,
170 1.11 bjh21 int nmedia, int defmedia)
171 1.1 bjh21 {
172 1.1 bjh21 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
173 1.24 bjh21 bus_space_tag_t iot = sc->sc_iot;
174 1.24 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
175 1.2 bjh21 u_int id;
176 1.2 bjh21
177 1.11 bjh21 KASSERT(myaddr != NULL);
178 1.2 bjh21 printf(" address %s", ether_sprintf(myaddr));
179 1.2 bjh21
180 1.3 bjh21 /* Stop the board. */
181 1.3 bjh21
182 1.3 bjh21 ea_chipreset(sc);
183 1.3 bjh21
184 1.24 bjh21 /* Work out data bus width. */
185 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_PTR, 0x1234);
186 1.25 bjh21 if (SEEQ_READ16(sc, iot, ioh, SEEQ_RX_PTR) != 0x1234) {
187 1.24 bjh21 /* Try 8-bit mode */
188 1.24 bjh21 sc->sc_flags |= SF_8BIT;
189 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_PTR, 0x1234);
190 1.25 bjh21 if (SEEQ_READ16(sc, iot, ioh, SEEQ_RX_PTR) != 0x1234) {
191 1.24 bjh21 printf("\n%s: Cannot determine data bus width\n",
192 1.24 bjh21 sc->sc_dev.dv_xname);
193 1.24 bjh21 return;
194 1.24 bjh21 }
195 1.24 bjh21 }
196 1.24 bjh21
197 1.24 bjh21 printf(", %d-bit", sc->sc_flags & SF_8BIT ? 8 : 16);
198 1.24 bjh21
199 1.2 bjh21 /* Get the product ID */
200 1.1 bjh21
201 1.10 bjh21 ea_select_buffer(sc, SEEQ_BUFCODE_PRODUCTID);
202 1.24 bjh21 id = SEEQ_READ16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_BUFWIN);
203 1.2 bjh21
204 1.11 bjh21 switch (id & SEEQ_PRODUCTID_MASK) {
205 1.11 bjh21 case SEEQ_PRODUCTID_8004:
206 1.11 bjh21 sc->sc_variant = SEEQ_8004;
207 1.20 bjh21 switch (id & SEEQ_PRODUCTID_REV_MASK) {
208 1.20 bjh21 case SEEQ_PRODUCTID_REV_80C04:
209 1.20 bjh21 printf(", SEEQ 80C04\n");
210 1.20 bjh21 break;
211 1.20 bjh21 case SEEQ_PRODUCTID_REV_80C04A:
212 1.20 bjh21 printf(", SEEQ 80C04A\n");
213 1.20 bjh21 break;
214 1.20 bjh21 default:
215 1.20 bjh21 /* Unknown SEEQ 8004 variants */
216 1.20 bjh21 printf(", SEEQ 8004 rev %x\n",
217 1.20 bjh21 id & SEEQ_PRODUCTID_REV_MASK);
218 1.20 bjh21 break;
219 1.20 bjh21 }
220 1.11 bjh21 break;
221 1.11 bjh21 default: /* XXX */
222 1.11 bjh21 sc->sc_variant = SEEQ_8005;
223 1.20 bjh21 printf(", SEEQ 8005\n");
224 1.11 bjh21 break;
225 1.11 bjh21 }
226 1.11 bjh21
227 1.11 bjh21 /* Both the 8004 and 8005 are designed for 64K Buffer memory */
228 1.11 bjh21 sc->sc_buffersize = SEEQ_MAX_BUFFER_SIZE;
229 1.11 bjh21
230 1.11 bjh21 /*
231 1.11 bjh21 * Set up tx and rx buffers.
232 1.11 bjh21 *
233 1.12 bjh21 * We use approximately a quarter of the packet memory for TX
234 1.11 bjh21 * buffers and the rest for RX buffers
235 1.11 bjh21 */
236 1.12 bjh21 /* sc->sc_tx_bufs = sc->sc_buffersize / SEEQ_TX_BUFFER_SIZE / 4; */
237 1.12 bjh21 sc->sc_tx_bufs = 1;
238 1.11 bjh21 sc->sc_tx_bufsize = sc->sc_tx_bufs * SEEQ_TX_BUFFER_SIZE;
239 1.11 bjh21 sc->sc_rx_bufsize = sc->sc_buffersize - sc->sc_tx_bufsize;
240 1.11 bjh21 sc->sc_enabled = 0;
241 1.11 bjh21
242 1.11 bjh21 /* Test the RAM */
243 1.11 bjh21 ea_ramtest(sc);
244 1.11 bjh21
245 1.11 bjh21 printf("%s: %dKB packet memory, txbuf=%dKB (%d buffers), rxbuf=%dKB",
246 1.11 bjh21 sc->sc_dev.dv_xname, sc->sc_buffersize >> 10,
247 1.11 bjh21 sc->sc_tx_bufsize >> 10, sc->sc_tx_bufs, sc->sc_rx_bufsize >> 10);
248 1.1 bjh21
249 1.1 bjh21 /* Initialise ifnet structure. */
250 1.1 bjh21
251 1.29 thorpej strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
252 1.1 bjh21 ifp->if_softc = sc;
253 1.1 bjh21 ifp->if_start = ea_start;
254 1.1 bjh21 ifp->if_ioctl = ea_ioctl;
255 1.5 bjh21 ifp->if_init = ea_init;
256 1.5 bjh21 ifp->if_stop = ea_stop;
257 1.1 bjh21 ifp->if_watchdog = ea_watchdog;
258 1.5 bjh21 ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
259 1.11 bjh21 if (sc->sc_variant == SEEQ_8004)
260 1.11 bjh21 ifp->if_flags |= IFF_SIMPLEX;
261 1.7 thorpej IFQ_SET_READY(&ifp->if_snd);
262 1.1 bjh21
263 1.11 bjh21 /* Initialize media goo. */
264 1.11 bjh21 ifmedia_init(&sc->sc_media, 0, ea_mediachange, ea_mediastatus);
265 1.11 bjh21 if (media != NULL) {
266 1.11 bjh21 int i;
267 1.11 bjh21
268 1.11 bjh21 for (i = 0; i < nmedia; i++)
269 1.11 bjh21 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
270 1.11 bjh21 ifmedia_set(&sc->sc_media, defmedia);
271 1.11 bjh21 } else {
272 1.11 bjh21 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
273 1.11 bjh21 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
274 1.11 bjh21 }
275 1.11 bjh21
276 1.27 bjh21 /* We can support 802.1Q VLAN-sized frames. */
277 1.27 bjh21 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
278 1.27 bjh21
279 1.1 bjh21 /* Now we can attach the interface. */
280 1.1 bjh21
281 1.1 bjh21 if_attach(ifp);
282 1.1 bjh21 ether_ifattach(ifp, myaddr);
283 1.1 bjh21
284 1.11 bjh21 printf("\n");
285 1.30 bjh21
286 1.30 bjh21 #if NRND > 0
287 1.30 bjh21 /* After \n because it can print a line of its own. */
288 1.30 bjh21 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
289 1.30 bjh21 RND_TYPE_NET, 0);
290 1.30 bjh21 #endif
291 1.11 bjh21 }
292 1.11 bjh21
293 1.11 bjh21 /*
294 1.11 bjh21 * Media change callback.
295 1.11 bjh21 */
296 1.11 bjh21 static int
297 1.11 bjh21 ea_mediachange(struct ifnet *ifp)
298 1.11 bjh21 {
299 1.11 bjh21 struct seeq8005_softc *sc = ifp->if_softc;
300 1.8 bjh21
301 1.11 bjh21 if (sc->sc_mediachange)
302 1.11 bjh21 return ((*sc->sc_mediachange)(sc));
303 1.11 bjh21 return (EINVAL);
304 1.1 bjh21 }
305 1.1 bjh21
306 1.11 bjh21 /*
307 1.11 bjh21 * Media status callback.
308 1.11 bjh21 */
309 1.11 bjh21 static void
310 1.11 bjh21 ea_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
311 1.11 bjh21 {
312 1.11 bjh21 struct seeq8005_softc *sc = ifp->if_softc;
313 1.11 bjh21
314 1.11 bjh21 if (sc->sc_enabled == 0) {
315 1.11 bjh21 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
316 1.11 bjh21 ifmr->ifm_status = 0;
317 1.11 bjh21 return;
318 1.11 bjh21 }
319 1.11 bjh21
320 1.11 bjh21 if (sc->sc_mediastatus)
321 1.11 bjh21 (*sc->sc_mediastatus)(sc, ifmr);
322 1.11 bjh21 }
323 1.1 bjh21
324 1.1 bjh21 /*
325 1.1 bjh21 * Test the RAM on the ethernet card.
326 1.1 bjh21 */
327 1.1 bjh21
328 1.1 bjh21 void
329 1.1 bjh21 ea_ramtest(struct seeq8005_softc *sc)
330 1.1 bjh21 {
331 1.1 bjh21 bus_space_tag_t iot = sc->sc_iot;
332 1.1 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
333 1.1 bjh21 int loop;
334 1.1 bjh21 u_int sum = 0;
335 1.1 bjh21
336 1.1 bjh21 /*
337 1.1 bjh21 * Test the buffer memory on the board.
338 1.1 bjh21 * Write simple pattens to it and read them back.
339 1.1 bjh21 */
340 1.1 bjh21
341 1.1 bjh21 /* Set up the whole buffer RAM for writing */
342 1.1 bjh21
343 1.10 bjh21 ea_select_buffer(sc, SEEQ_BUFCODE_TX_EAP);
344 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, (SEEQ_MAX_BUFFER_SIZE >> 8) - 1);
345 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_TX_PTR, 0x0000);
346 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_PTR, SEEQ_MAX_BUFFER_SIZE - 2);
347 1.1 bjh21
348 1.10 bjh21 #define SEEQ_RAMTEST_LOOP(value) \
349 1.3 bjh21 do { \
350 1.3 bjh21 /* Set the write start address and write a pattern */ \
351 1.3 bjh21 ea_writebuf(sc, NULL, 0x0000, 0); \
352 1.10 bjh21 for (loop = 0; loop < SEEQ_MAX_BUFFER_SIZE; loop += 2) \
353 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, (value)); \
354 1.3 bjh21 \
355 1.3 bjh21 /* Set the read start address and verify the pattern */ \
356 1.3 bjh21 ea_readbuf(sc, NULL, 0x0000, 0); \
357 1.10 bjh21 for (loop = 0; loop < SEEQ_MAX_BUFFER_SIZE; loop += 2) \
358 1.24 bjh21 if (SEEQ_READ16(sc, iot, ioh, SEEQ_BUFWIN) != (value)) \
359 1.3 bjh21 ++sum; \
360 1.3 bjh21 } while (/*CONSTCOND*/0)
361 1.3 bjh21
362 1.10 bjh21 SEEQ_RAMTEST_LOOP(loop);
363 1.10 bjh21 SEEQ_RAMTEST_LOOP(loop ^ (SEEQ_MAX_BUFFER_SIZE - 1));
364 1.10 bjh21 SEEQ_RAMTEST_LOOP(0xaa55);
365 1.10 bjh21 SEEQ_RAMTEST_LOOP(0x55aa);
366 1.1 bjh21
367 1.1 bjh21 /* Report */
368 1.1 bjh21
369 1.2 bjh21 if (sum > 0)
370 1.2 bjh21 printf("%s: buffer RAM failed self test, %d faults\n",
371 1.2 bjh21 sc->sc_dev.dv_xname, sum);
372 1.1 bjh21 }
373 1.1 bjh21
374 1.1 bjh21
375 1.1 bjh21 /*
376 1.1 bjh21 * Stop the tx interface.
377 1.1 bjh21 *
378 1.1 bjh21 * Returns 0 if the tx was already stopped or 1 if it was active
379 1.1 bjh21 */
380 1.1 bjh21
381 1.1 bjh21 static int
382 1.1 bjh21 ea_stoptx(struct seeq8005_softc *sc)
383 1.1 bjh21 {
384 1.1 bjh21 bus_space_tag_t iot = sc->sc_iot;
385 1.1 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
386 1.1 bjh21 int timeout;
387 1.1 bjh21 int status;
388 1.1 bjh21
389 1.16 bjh21 DPRINTF(SEEQ_DEBUG_TX, ("ea_stoptx()\n"));
390 1.11 bjh21
391 1.11 bjh21 sc->sc_enabled = 0;
392 1.1 bjh21
393 1.24 bjh21 status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
394 1.10 bjh21 if (!(status & SEEQ_STATUS_TX_ON))
395 1.1 bjh21 return 0;
396 1.1 bjh21
397 1.1 bjh21 /* Stop any tx and wait for confirmation */
398 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
399 1.10 bjh21 sc->sc_command | SEEQ_CMD_TX_OFF);
400 1.1 bjh21
401 1.1 bjh21 timeout = 20000;
402 1.1 bjh21 do {
403 1.24 bjh21 status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
404 1.11 bjh21 delay(1);
405 1.10 bjh21 } while ((status & SEEQ_STATUS_TX_ON) && --timeout > 0);
406 1.11 bjh21 if (timeout == 0)
407 1.11 bjh21 log(LOG_ERR, "%s: timeout waiting for tx termination\n",
408 1.11 bjh21 sc->sc_dev.dv_xname);
409 1.1 bjh21
410 1.1 bjh21 /* Clear any pending tx interrupt */
411 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
412 1.10 bjh21 sc->sc_command | SEEQ_CMD_TX_INTACK);
413 1.1 bjh21 return 1;
414 1.1 bjh21 }
415 1.1 bjh21
416 1.1 bjh21
417 1.1 bjh21 /*
418 1.1 bjh21 * Stop the rx interface.
419 1.1 bjh21 *
420 1.1 bjh21 * Returns 0 if the tx was already stopped or 1 if it was active
421 1.1 bjh21 */
422 1.1 bjh21
423 1.1 bjh21 static int
424 1.1 bjh21 ea_stoprx(struct seeq8005_softc *sc)
425 1.1 bjh21 {
426 1.1 bjh21 bus_space_tag_t iot = sc->sc_iot;
427 1.1 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
428 1.1 bjh21 int timeout;
429 1.1 bjh21 int status;
430 1.1 bjh21
431 1.16 bjh21 DPRINTF(SEEQ_DEBUG_RX, ("ea_stoprx()\n"));
432 1.1 bjh21
433 1.24 bjh21 status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
434 1.10 bjh21 if (!(status & SEEQ_STATUS_RX_ON))
435 1.1 bjh21 return 0;
436 1.1 bjh21
437 1.1 bjh21 /* Stop any rx and wait for confirmation */
438 1.1 bjh21
439 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
440 1.10 bjh21 sc->sc_command | SEEQ_CMD_RX_OFF);
441 1.1 bjh21
442 1.1 bjh21 timeout = 20000;
443 1.1 bjh21 do {
444 1.24 bjh21 status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
445 1.10 bjh21 } while ((status & SEEQ_STATUS_RX_ON) && --timeout > 0);
446 1.1 bjh21 if (timeout == 0)
447 1.11 bjh21 log(LOG_ERR, "%s: timeout waiting for rx termination\n",
448 1.11 bjh21 sc->sc_dev.dv_xname);
449 1.1 bjh21
450 1.1 bjh21 /* Clear any pending rx interrupt */
451 1.1 bjh21
452 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
453 1.10 bjh21 sc->sc_command | SEEQ_CMD_RX_INTACK);
454 1.1 bjh21 return 1;
455 1.1 bjh21 }
456 1.1 bjh21
457 1.1 bjh21
458 1.1 bjh21 /*
459 1.1 bjh21 * Stop interface.
460 1.1 bjh21 * Stop all IO and shut the interface down
461 1.1 bjh21 */
462 1.1 bjh21
463 1.1 bjh21 static void
464 1.5 bjh21 ea_stop(struct ifnet *ifp, int disable)
465 1.1 bjh21 {
466 1.5 bjh21 struct seeq8005_softc *sc = ifp->if_softc;
467 1.1 bjh21 bus_space_tag_t iot = sc->sc_iot;
468 1.1 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
469 1.1 bjh21
470 1.16 bjh21 DPRINTF(SEEQ_DEBUG_MISC, ("ea_stop()\n"));
471 1.1 bjh21
472 1.1 bjh21 /* Stop all IO */
473 1.1 bjh21 ea_stoptx(sc);
474 1.1 bjh21 ea_stoprx(sc);
475 1.1 bjh21
476 1.1 bjh21 /* Disable rx and tx interrupts */
477 1.10 bjh21 sc->sc_command &= (SEEQ_CMD_RX_INTEN | SEEQ_CMD_TX_INTEN);
478 1.1 bjh21
479 1.1 bjh21 /* Clear any pending interrupts */
480 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
481 1.10 bjh21 sc->sc_command | SEEQ_CMD_RX_INTACK |
482 1.10 bjh21 SEEQ_CMD_TX_INTACK | SEEQ_CMD_DMA_INTACK |
483 1.10 bjh21 SEEQ_CMD_BW_INTACK);
484 1.11 bjh21
485 1.11 bjh21 if (sc->sc_variant == SEEQ_8004) {
486 1.11 bjh21 /* Put the chip to sleep */
487 1.11 bjh21 ea_select_buffer(sc, SEEQ_BUFCODE_CONFIG3);
488 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN,
489 1.11 bjh21 sc->sc_config3 | SEEQ_CFG3_SLEEP);
490 1.11 bjh21 }
491 1.1 bjh21
492 1.1 bjh21 /* Cancel any watchdog timer */
493 1.1 bjh21 sc->sc_ethercom.ec_if.if_timer = 0;
494 1.1 bjh21 }
495 1.1 bjh21
496 1.1 bjh21
497 1.1 bjh21 /*
498 1.1 bjh21 * Reset the chip
499 1.1 bjh21 * Following this the software registers are reset
500 1.1 bjh21 */
501 1.1 bjh21
502 1.1 bjh21 static void
503 1.1 bjh21 ea_chipreset(struct seeq8005_softc *sc)
504 1.1 bjh21 {
505 1.1 bjh21 bus_space_tag_t iot = sc->sc_iot;
506 1.1 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
507 1.1 bjh21
508 1.16 bjh21 DPRINTF(SEEQ_DEBUG_MISC, ("ea_chipreset()\n"));
509 1.1 bjh21
510 1.1 bjh21 /* Reset the controller. Min of 4us delay here */
511 1.1 bjh21
512 1.24 bjh21 /*
513 1.24 bjh21 * This can be called before we know whether the chip is in 8- or
514 1.24 bjh21 * 16-bit mode, so we do a reset in both modes. The 16-bit reset is
515 1.24 bjh21 * harmless in 8-bit mode, so we do that second.
516 1.24 bjh21 */
517 1.24 bjh21
518 1.24 bjh21 /* In 16-bit mode, this will munge the PreamSelect bit. */
519 1.24 bjh21 bus_space_write_1(iot, ioh, SEEQ_CONFIG2 + 1, SEEQ_CFG2_RESET >> 8);
520 1.24 bjh21 delay(4);
521 1.24 bjh21 /* In 8-bit mode, this will zero the bottom half of config reg 2. */
522 1.10 bjh21 bus_space_write_2(iot, ioh, SEEQ_CONFIG2, SEEQ_CFG2_RESET);
523 1.3 bjh21 delay(4);
524 1.1 bjh21
525 1.1 bjh21 sc->sc_command = 0;
526 1.1 bjh21 sc->sc_config1 = 0;
527 1.1 bjh21 sc->sc_config2 = 0;
528 1.11 bjh21 sc->sc_config3 = 0;
529 1.1 bjh21 }
530 1.1 bjh21
531 1.1 bjh21
532 1.1 bjh21 /*
533 1.1 bjh21 * If the DMA FIFO's in write mode, wait for it to empty. Needed when
534 1.1 bjh21 * switching the FIFO from write to read. We also use it when changing
535 1.1 bjh21 * the address for writes.
536 1.1 bjh21 */
537 1.1 bjh21 static void
538 1.1 bjh21 ea_await_fifo_empty(struct seeq8005_softc *sc)
539 1.1 bjh21 {
540 1.1 bjh21 bus_space_tag_t iot = sc->sc_iot;
541 1.1 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
542 1.1 bjh21 int timeout;
543 1.1 bjh21
544 1.1 bjh21 timeout = 20000;
545 1.24 bjh21 if ((SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS) &
546 1.10 bjh21 SEEQ_STATUS_FIFO_DIR) != 0)
547 1.1 bjh21 return; /* FIFO is reading anyway. */
548 1.18 bjh21 while (--timeout > 0)
549 1.24 bjh21 if (SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS) &
550 1.18 bjh21 SEEQ_STATUS_FIFO_EMPTY)
551 1.18 bjh21 return;
552 1.18 bjh21 log(LOG_ERR, "%s: DMA FIFO failed to empty\n", sc->sc_dev.dv_xname);
553 1.1 bjh21 }
554 1.1 bjh21
555 1.1 bjh21 /*
556 1.1 bjh21 * Wait for the DMA FIFO to fill before reading from it.
557 1.1 bjh21 */
558 1.1 bjh21 static void
559 1.1 bjh21 ea_await_fifo_full(struct seeq8005_softc *sc)
560 1.1 bjh21 {
561 1.1 bjh21 bus_space_tag_t iot = sc->sc_iot;
562 1.1 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
563 1.1 bjh21 int timeout;
564 1.1 bjh21
565 1.1 bjh21 timeout = 20000;
566 1.18 bjh21 while (--timeout > 0)
567 1.24 bjh21 if (SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS) &
568 1.18 bjh21 SEEQ_STATUS_FIFO_FULL)
569 1.18 bjh21 return;
570 1.18 bjh21 log(LOG_ERR, "%s: DMA FIFO failed to fill\n", sc->sc_dev.dv_xname);
571 1.1 bjh21 }
572 1.1 bjh21
573 1.1 bjh21 /*
574 1.1 bjh21 * write to the buffer memory on the interface
575 1.1 bjh21 *
576 1.1 bjh21 * The buffer address is set to ADDR.
577 1.1 bjh21 * If len != 0 then data is copied from the address starting at buf
578 1.1 bjh21 * to the interface buffer.
579 1.1 bjh21 * BUF must be usable as a u_int16_t *.
580 1.1 bjh21 * If LEN is odd, it must be safe to overwrite one extra byte.
581 1.1 bjh21 */
582 1.1 bjh21
583 1.1 bjh21 static void
584 1.11 bjh21 ea_writebuf(struct seeq8005_softc *sc, u_char *buf, int addr, size_t len)
585 1.1 bjh21 {
586 1.1 bjh21 bus_space_tag_t iot = sc->sc_iot;
587 1.1 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
588 1.1 bjh21
589 1.16 bjh21 DPRINTF(SEEQ_DEBUG_MISC, ("writebuf: st=%04x\n",
590 1.24 bjh21 SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS)));
591 1.1 bjh21
592 1.1 bjh21 #ifdef DIAGNOSTIC
593 1.1 bjh21 if (__predict_false(!ALIGNED_POINTER(buf, u_int16_t)))
594 1.1 bjh21 panic("%s: unaligned writebuf", sc->sc_dev.dv_xname);
595 1.10 bjh21 if (__predict_false(addr >= SEEQ_MAX_BUFFER_SIZE))
596 1.1 bjh21 panic("%s: writebuf out of range", sc->sc_dev.dv_xname);
597 1.14 bjh21 #endif
598 1.1 bjh21
599 1.1 bjh21 /* Assume that copying too much is safe. */
600 1.1 bjh21 if (len % 2 != 0)
601 1.1 bjh21 len++;
602 1.1 bjh21
603 1.11 bjh21 if (addr != -1) {
604 1.11 bjh21 ea_await_fifo_empty(sc);
605 1.1 bjh21
606 1.11 bjh21 ea_select_buffer(sc, SEEQ_BUFCODE_LOCAL_MEM);
607 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
608 1.11 bjh21 sc->sc_command | SEEQ_CMD_FIFO_WRITE);
609 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_DMA_ADDR, addr);
610 1.11 bjh21 }
611 1.1 bjh21
612 1.24 bjh21 if (len > 0) {
613 1.24 bjh21 if (sc->sc_flags & SF_8BIT)
614 1.24 bjh21 bus_space_write_multi_1(iot, ioh, SEEQ_BUFWIN,
615 1.24 bjh21 (u_int8_t *)buf, len);
616 1.24 bjh21 else
617 1.24 bjh21 bus_space_write_multi_2(iot, ioh, SEEQ_BUFWIN,
618 1.24 bjh21 (u_int16_t *)buf, len / 2);
619 1.24 bjh21 }
620 1.1 bjh21 /* Leave FIFO to empty in the background */
621 1.1 bjh21 }
622 1.1 bjh21
623 1.1 bjh21
624 1.1 bjh21 /*
625 1.1 bjh21 * read from the buffer memory on the interface
626 1.1 bjh21 *
627 1.1 bjh21 * The buffer address is set to ADDR.
628 1.1 bjh21 * If len != 0 then data is copied from the interface buffer to the
629 1.1 bjh21 * address starting at buf.
630 1.1 bjh21 * BUF must be usable as a u_int16_t *.
631 1.1 bjh21 * If LEN is odd, it must be safe to overwrite one extra byte.
632 1.1 bjh21 */
633 1.1 bjh21
634 1.1 bjh21 static void
635 1.11 bjh21 ea_readbuf(struct seeq8005_softc *sc, u_char *buf, int addr, size_t len)
636 1.1 bjh21 {
637 1.1 bjh21 bus_space_tag_t iot = sc->sc_iot;
638 1.1 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
639 1.19 bjh21 int runup;
640 1.1 bjh21
641 1.16 bjh21 DPRINTF(SEEQ_DEBUG_MISC, ("readbuf: st=%04x addr=%04x len=%d\n",
642 1.24 bjh21 SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS), addr, len));
643 1.1 bjh21
644 1.1 bjh21 #ifdef DIAGNOSTIC
645 1.14 bjh21 if (__predict_false(!ALIGNED_POINTER(buf, u_int16_t)))
646 1.1 bjh21 panic("%s: unaligned readbuf", sc->sc_dev.dv_xname);
647 1.14 bjh21 if (__predict_false(addr >= SEEQ_MAX_BUFFER_SIZE))
648 1.14 bjh21 panic("%s: readbuf out of range", sc->sc_dev.dv_xname);
649 1.1 bjh21 #endif
650 1.1 bjh21
651 1.1 bjh21 /* Assume that copying too much is safe. */
652 1.1 bjh21 if (len % 2 != 0)
653 1.1 bjh21 len++;
654 1.1 bjh21
655 1.11 bjh21 if (addr != -1) {
656 1.19 bjh21 /*
657 1.19 bjh21 * SEEQ 80C04 bug:
658 1.19 bjh21 * Starting reading from certain addresses seems to cause
659 1.19 bjh21 * us to get bogus results, so we avoid them.
660 1.19 bjh21 */
661 1.19 bjh21 runup = 0;
662 1.19 bjh21 if (sc->sc_variant == SEEQ_8004 &&
663 1.19 bjh21 ((addr & 0x00ff) == 0x00ea ||
664 1.19 bjh21 (addr & 0x00ff) == 0x00ee ||
665 1.19 bjh21 (addr & 0x00ff) == 0x00f0))
666 1.19 bjh21 runup = (addr & 0x00ff) - 0x00e8;
667 1.19 bjh21
668 1.11 bjh21 ea_await_fifo_empty(sc);
669 1.1 bjh21
670 1.11 bjh21 ea_select_buffer(sc, SEEQ_BUFCODE_LOCAL_MEM);
671 1.21 bjh21
672 1.21 bjh21 /*
673 1.21 bjh21 * 80C04 bug workaround. I found this in the old arm32 "eb"
674 1.21 bjh21 * driver. I've no idea what it does, but it seems to stop
675 1.21 bjh21 * the chip mangling data so often.
676 1.21 bjh21 */
677 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
678 1.21 bjh21 sc->sc_command | SEEQ_CMD_FIFO_WRITE);
679 1.21 bjh21 ea_await_fifo_empty(sc);
680 1.21 bjh21
681 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_DMA_ADDR, addr - runup);
682 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
683 1.11 bjh21 sc->sc_command | SEEQ_CMD_FIFO_READ);
684 1.1 bjh21
685 1.11 bjh21 ea_await_fifo_full(sc);
686 1.19 bjh21 while (runup > 0) {
687 1.24 bjh21 (void)SEEQ_READ16(sc, iot, ioh, SEEQ_BUFWIN);
688 1.19 bjh21 runup -= 2;
689 1.19 bjh21 }
690 1.11 bjh21 }
691 1.1 bjh21
692 1.24 bjh21 if (len > 0) {
693 1.24 bjh21 if (sc->sc_flags & SF_8BIT)
694 1.24 bjh21 bus_space_read_multi_1(iot, ioh, SEEQ_BUFWIN,
695 1.24 bjh21 (u_int8_t *)buf, len);
696 1.24 bjh21 else
697 1.24 bjh21 bus_space_read_multi_2(iot, ioh, SEEQ_BUFWIN,
698 1.24 bjh21 (u_int16_t *)buf, len / 2);
699 1.24 bjh21 }
700 1.1 bjh21 }
701 1.1 bjh21
702 1.3 bjh21 static void
703 1.3 bjh21 ea_select_buffer(struct seeq8005_softc *sc, int bufcode)
704 1.3 bjh21 {
705 1.3 bjh21
706 1.24 bjh21 SEEQ_WRITE16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_CONFIG1,
707 1.3 bjh21 sc->sc_config1 | bufcode);
708 1.3 bjh21 }
709 1.1 bjh21
710 1.5 bjh21 /* Must be called at splnet */
711 1.5 bjh21 static void
712 1.5 bjh21 ea_set_address(struct seeq8005_softc *sc, int which, u_int8_t const *ea)
713 1.5 bjh21 {
714 1.5 bjh21 int i;
715 1.5 bjh21
716 1.10 bjh21 ea_select_buffer(sc, SEEQ_BUFCODE_STATION_ADDR0 + which);
717 1.5 bjh21 for (i = 0; i < ETHER_ADDR_LEN; ++i)
718 1.24 bjh21 SEEQ_WRITE16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_BUFWIN,
719 1.5 bjh21 ea[i]);
720 1.5 bjh21 }
721 1.5 bjh21
722 1.1 bjh21 /*
723 1.1 bjh21 * Initialize interface.
724 1.1 bjh21 *
725 1.1 bjh21 * This should leave the interface in a state for packet reception and
726 1.1 bjh21 * transmission.
727 1.1 bjh21 */
728 1.1 bjh21
729 1.1 bjh21 static int
730 1.5 bjh21 ea_init(struct ifnet *ifp)
731 1.1 bjh21 {
732 1.5 bjh21 struct seeq8005_softc *sc = ifp->if_softc;
733 1.1 bjh21 bus_space_tag_t iot = sc->sc_iot;
734 1.1 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
735 1.5 bjh21 int s;
736 1.1 bjh21
737 1.16 bjh21 DPRINTF(SEEQ_DEBUG_MISC, ("ea_init()\n"));
738 1.1 bjh21
739 1.1 bjh21 s = splnet();
740 1.1 bjh21
741 1.1 bjh21 /* First, reset the board. */
742 1.1 bjh21
743 1.3 bjh21 ea_chipreset(sc);
744 1.3 bjh21
745 1.3 bjh21 /* Set up defaults for the registers */
746 1.3 bjh21
747 1.11 bjh21 sc->sc_command = 0;
748 1.11 bjh21 sc->sc_config1 = 0;
749 1.3 bjh21 #if BYTE_ORDER == BIG_ENDIAN
750 1.11 bjh21 sc->sc_config2 = SEEQ_CFG2_BYTESWAP;
751 1.3 bjh21 #else
752 1.3 bjh21 sc->sc_config2 = 0;
753 1.3 bjh21 #endif
754 1.11 bjh21 sc->sc_config3 = 0;
755 1.1 bjh21
756 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND, sc->sc_command);
757 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG1, sc->sc_config1);
758 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
759 1.11 bjh21 if (sc->sc_variant == SEEQ_8004) {
760 1.11 bjh21 ea_select_buffer(sc, SEEQ_BUFCODE_CONFIG3);
761 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, sc->sc_config3);
762 1.11 bjh21 }
763 1.11 bjh21
764 1.11 bjh21 /* Write the station address - the receiver must be off */
765 1.11 bjh21 ea_set_address(sc, 0, LLADDR(ifp->if_sadl));
766 1.3 bjh21
767 1.3 bjh21 /* Split board memory into Rx and Tx. */
768 1.10 bjh21 ea_select_buffer(sc, SEEQ_BUFCODE_TX_EAP);
769 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, (sc->sc_tx_bufsize>> 8) - 1);
770 1.3 bjh21
771 1.27 bjh21 if (sc->sc_variant == SEEQ_8004) {
772 1.27 bjh21 /* Make the interface IFF_SIMPLEX. */
773 1.11 bjh21 sc->sc_config2 |= SEEQ_CFG2_RX_TX_DISABLE;
774 1.27 bjh21 /* Enable reception of long packets (for vlan(4)). */
775 1.27 bjh21 sc->sc_config2 |= SEEQ_CFG2_PASS_LONGSHORT;
776 1.27 bjh21 }
777 1.1 bjh21
778 1.1 bjh21 /* Configure rx. */
779 1.13 bjh21 ea_mc_reset(sc);
780 1.1 bjh21 if (ifp->if_flags & IFF_PROMISC)
781 1.10 bjh21 sc->sc_config1 = SEEQ_CFG1_PROMISCUOUS;
782 1.13 bjh21 else if ((ifp->if_flags & IFF_ALLMULTI) || sc->sc_variant == SEEQ_8004)
783 1.10 bjh21 sc->sc_config1 = SEEQ_CFG1_MULTICAST;
784 1.1 bjh21 else
785 1.10 bjh21 sc->sc_config1 = SEEQ_CFG1_BROADCAST;
786 1.10 bjh21 sc->sc_config1 |= SEEQ_CFG1_STATION_ADDR0;
787 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG1, sc->sc_config1);
788 1.3 bjh21
789 1.3 bjh21 /* Setup the Rx pointers */
790 1.11 bjh21 sc->sc_rx_ptr = sc->sc_tx_bufsize;
791 1.3 bjh21
792 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_PTR, sc->sc_rx_ptr);
793 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_END, sc->sc_rx_ptr >> 8);
794 1.3 bjh21
795 1.3 bjh21
796 1.3 bjh21 /* Place a NULL header at the beginning of the receive area */
797 1.3 bjh21 ea_writebuf(sc, NULL, sc->sc_rx_ptr, 0);
798 1.3 bjh21
799 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, 0x0000);
800 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, 0x0000);
801 1.1 bjh21
802 1.3 bjh21
803 1.1 bjh21 /* Configure TX. */
804 1.16 bjh21 DPRINTF(SEEQ_DEBUG_MISC, ("Configuring tx...\n"));
805 1.1 bjh21
806 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_TX_PTR, 0x0000);
807 1.1 bjh21
808 1.10 bjh21 sc->sc_config2 |= SEEQ_CFG2_OUTPUT;
809 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
810 1.1 bjh21
811 1.11 bjh21 /* Reset tx buffer pointers */
812 1.11 bjh21 sc->sc_tx_cur = 0;
813 1.11 bjh21 sc->sc_tx_used = 0;
814 1.11 bjh21 sc->sc_tx_next = 0;
815 1.1 bjh21
816 1.1 bjh21 /* Place a NULL header at the beginning of the transmit area */
817 1.1 bjh21 ea_writebuf(sc, NULL, 0x0000, 0);
818 1.1 bjh21
819 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, 0x0000);
820 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, 0x0000);
821 1.1 bjh21
822 1.10 bjh21 sc->sc_command |= SEEQ_CMD_TX_INTEN;
823 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND, sc->sc_command);
824 1.1 bjh21
825 1.11 bjh21 /* Turn on Rx */
826 1.11 bjh21 sc->sc_command |= SEEQ_CMD_RX_INTEN;
827 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
828 1.11 bjh21 sc->sc_command | SEEQ_CMD_RX_ON);
829 1.11 bjh21
830 1.3 bjh21 /* TX_ON gets set by ea_txpacket when there's something to transmit. */
831 1.1 bjh21
832 1.1 bjh21
833 1.1 bjh21 /* Set flags appropriately. */
834 1.1 bjh21 ifp->if_flags |= IFF_RUNNING;
835 1.1 bjh21 ifp->if_flags &= ~IFF_OACTIVE;
836 1.11 bjh21 sc->sc_enabled = 1;
837 1.1 bjh21
838 1.1 bjh21 /* And start output. */
839 1.1 bjh21 ea_start(ifp);
840 1.1 bjh21
841 1.1 bjh21 splx(s);
842 1.1 bjh21 return 0;
843 1.1 bjh21 }
844 1.1 bjh21
845 1.1 bjh21 /*
846 1.1 bjh21 * Start output on interface. Get datagrams from the queue and output them,
847 1.1 bjh21 * giving the receiver a chance between datagrams. Call only from splnet or
848 1.1 bjh21 * interrupt level!
849 1.1 bjh21 */
850 1.1 bjh21
851 1.1 bjh21 static void
852 1.1 bjh21 ea_start(struct ifnet *ifp)
853 1.1 bjh21 {
854 1.1 bjh21 struct seeq8005_softc *sc = ifp->if_softc;
855 1.1 bjh21 int s;
856 1.1 bjh21
857 1.1 bjh21 s = splnet();
858 1.16 bjh21 DPRINTF(SEEQ_DEBUG_TX, ("ea_start()...\n"));
859 1.1 bjh21
860 1.14 bjh21 /*
861 1.14 bjh21 * Don't do anything if output is active. seeq8005intr() will call
862 1.14 bjh21 * us (actually eatxpacket()) back when the card's ready for more
863 1.14 bjh21 * frames.
864 1.14 bjh21 */
865 1.1 bjh21 if (ifp->if_flags & IFF_OACTIVE)
866 1.1 bjh21 return;
867 1.1 bjh21
868 1.1 bjh21 /* Mark interface as output active */
869 1.1 bjh21
870 1.1 bjh21 ifp->if_flags |= IFF_OACTIVE;
871 1.1 bjh21
872 1.1 bjh21 /* tx packets */
873 1.1 bjh21
874 1.1 bjh21 eatxpacket(sc);
875 1.1 bjh21 splx(s);
876 1.1 bjh21 }
877 1.1 bjh21
878 1.1 bjh21
879 1.1 bjh21 /*
880 1.1 bjh21 * Transfer a packet to the interface buffer and start transmission
881 1.1 bjh21 *
882 1.1 bjh21 * Called at splnet()
883 1.1 bjh21 */
884 1.1 bjh21
885 1.1 bjh21 void
886 1.1 bjh21 eatxpacket(struct seeq8005_softc *sc)
887 1.1 bjh21 {
888 1.1 bjh21 bus_space_tag_t iot = sc->sc_iot;
889 1.1 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
890 1.12 bjh21 struct mbuf *m0;
891 1.1 bjh21 struct ifnet *ifp;
892 1.1 bjh21
893 1.1 bjh21 ifp = &sc->sc_ethercom.ec_if;
894 1.1 bjh21
895 1.1 bjh21 /* Dequeue the next packet. */
896 1.7 thorpej IFQ_DEQUEUE(&ifp->if_snd, m0);
897 1.1 bjh21
898 1.1 bjh21 /* If there's nothing to send, return. */
899 1.1 bjh21 if (!m0) {
900 1.1 bjh21 ifp->if_flags &= ~IFF_OACTIVE;
901 1.10 bjh21 sc->sc_config2 |= SEEQ_CFG2_OUTPUT;
902 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
903 1.16 bjh21 DPRINTF(SEEQ_DEBUG_TX, ("tx finished\n"));
904 1.1 bjh21 return;
905 1.1 bjh21 }
906 1.1 bjh21
907 1.1 bjh21 #if NBPFILTER > 0
908 1.1 bjh21 /* Give the packet to the bpf, if any. */
909 1.1 bjh21 if (ifp->if_bpf)
910 1.1 bjh21 bpf_mtap(ifp->if_bpf, m0);
911 1.1 bjh21 #endif
912 1.1 bjh21
913 1.16 bjh21 DPRINTF(SEEQ_DEBUG_TX, ("Tx new packet\n"));
914 1.1 bjh21
915 1.10 bjh21 sc->sc_config2 &= ~SEEQ_CFG2_OUTPUT;
916 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
917 1.1 bjh21
918 1.12 bjh21 ea_writembuf(sc, m0, 0x0000);
919 1.12 bjh21 m_freem(m0);
920 1.12 bjh21
921 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_TX_PTR, 0x0000);
922 1.12 bjh21
923 1.12 bjh21 /* Now transmit the datagram. */
924 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
925 1.12 bjh21 sc->sc_command | SEEQ_CMD_TX_ON);
926 1.15 bjh21
927 1.15 bjh21 /* Make sure we notice if the chip goes silent on us. */
928 1.15 bjh21 ifp->if_timer = 5;
929 1.15 bjh21
930 1.16 bjh21 DPRINTF(SEEQ_DEBUG_TX,
931 1.24 bjh21 ("st=%04x\n", SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS)));
932 1.16 bjh21 DPRINTF(SEEQ_DEBUG_TX, ("tx: queued\n"));
933 1.12 bjh21 }
934 1.12 bjh21
935 1.12 bjh21 /*
936 1.12 bjh21 * Copy a packet from an mbuf to the transmit buffer on the card.
937 1.12 bjh21 *
938 1.12 bjh21 * Puts a valid Tx header at the start of the packet, and a null header at
939 1.12 bjh21 * the end.
940 1.12 bjh21 */
941 1.12 bjh21 static int
942 1.12 bjh21 ea_writembuf(struct seeq8005_softc *sc, struct mbuf *m0, int bufstart)
943 1.12 bjh21 {
944 1.12 bjh21 struct mbuf *m;
945 1.12 bjh21 int len, nextpacket;
946 1.12 bjh21 u_int8_t hdr[4];
947 1.12 bjh21
948 1.1 bjh21 /*
949 1.12 bjh21 * Copy the datagram to the packet buffer.
950 1.1 bjh21 */
951 1.1 bjh21 len = 0;
952 1.1 bjh21 for (m = m0; m; m = m->m_next) {
953 1.1 bjh21 if (m->m_len == 0)
954 1.1 bjh21 continue;
955 1.22 bjh21 ea_writebuf(sc, mtod(m, caddr_t), bufstart + 4 + len,
956 1.22 bjh21 m->m_len);
957 1.1 bjh21 len += m->m_len;
958 1.1 bjh21 }
959 1.1 bjh21
960 1.1 bjh21 len = max(len, ETHER_MIN_LEN);
961 1.1 bjh21
962 1.1 bjh21 /* Follow it with a NULL packet header */
963 1.22 bjh21 memset(hdr, 0, 4);
964 1.22 bjh21 ea_writebuf(sc, hdr, bufstart + 4 + len, 4);
965 1.24 bjh21 SEEQ_WRITE16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_BUFWIN, 0x0000);
966 1.24 bjh21 SEEQ_WRITE16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_BUFWIN, 0x0000);
967 1.1 bjh21
968 1.12 bjh21 /* Ok we now have a packet len bytes long in our packet buffer */
969 1.16 bjh21 DPRINTF(SEEQ_DEBUG_TX, ("ea_writembuf: length=%d\n", len));
970 1.1 bjh21
971 1.1 bjh21 /* Write the packet header */
972 1.1 bjh21 nextpacket = len + 4;
973 1.1 bjh21 hdr[0] = (nextpacket >> 8) & 0xff;
974 1.1 bjh21 hdr[1] = nextpacket & 0xff;
975 1.10 bjh21 hdr[2] = SEEQ_PKTCMD_TX | SEEQ_PKTCMD_DATA_FOLLOWS |
976 1.10 bjh21 SEEQ_TXCMD_XMIT_SUCCESS_INT | SEEQ_TXCMD_COLLISION_INT;
977 1.1 bjh21 hdr[3] = 0; /* Status byte -- will be update by hardware. */
978 1.1 bjh21 ea_writebuf(sc, hdr, 0x0000, 4);
979 1.1 bjh21
980 1.12 bjh21 return len;
981 1.1 bjh21 }
982 1.1 bjh21
983 1.1 bjh21 /*
984 1.1 bjh21 * Ethernet controller interrupt.
985 1.1 bjh21 */
986 1.1 bjh21
987 1.1 bjh21 int
988 1.1 bjh21 seeq8005intr(void *arg)
989 1.1 bjh21 {
990 1.1 bjh21 struct seeq8005_softc *sc = arg;
991 1.1 bjh21 bus_space_tag_t iot = sc->sc_iot;
992 1.1 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
993 1.11 bjh21 int status, handled;
994 1.1 bjh21
995 1.1 bjh21 handled = 0;
996 1.1 bjh21
997 1.1 bjh21 /* Get the controller status */
998 1.24 bjh21 status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
999 1.1 bjh21
1000 1.1 bjh21 /* Tx interrupt ? */
1001 1.10 bjh21 if (status & SEEQ_STATUS_TX_INT) {
1002 1.1 bjh21 handled = 1;
1003 1.1 bjh21
1004 1.1 bjh21 /* Acknowledge the interrupt */
1005 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
1006 1.10 bjh21 sc->sc_command | SEEQ_CMD_TX_INTACK);
1007 1.1 bjh21
1008 1.20 bjh21 ea_txint(sc);
1009 1.1 bjh21 }
1010 1.1 bjh21
1011 1.1 bjh21
1012 1.1 bjh21 /* Rx interrupt ? */
1013 1.10 bjh21 if (status & SEEQ_STATUS_RX_INT) {
1014 1.1 bjh21 handled = 1;
1015 1.1 bjh21
1016 1.1 bjh21 /* Acknowledge the interrupt */
1017 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
1018 1.10 bjh21 sc->sc_command | SEEQ_CMD_RX_INTACK);
1019 1.1 bjh21
1020 1.1 bjh21 /* Processes the received packets */
1021 1.20 bjh21 ea_rxint(sc);
1022 1.20 bjh21 }
1023 1.1 bjh21
1024 1.30 bjh21 #if NRND > 0
1025 1.30 bjh21 if (handled)
1026 1.30 bjh21 rnd_add_uint32(&sc->rnd_source, status);
1027 1.30 bjh21 #endif
1028 1.20 bjh21 return handled;
1029 1.20 bjh21 }
1030 1.1 bjh21
1031 1.20 bjh21 static void
1032 1.20 bjh21 ea_txint(struct seeq8005_softc *sc)
1033 1.20 bjh21 {
1034 1.20 bjh21 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1035 1.20 bjh21 bus_space_tag_t iot = sc->sc_iot;
1036 1.20 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
1037 1.20 bjh21 u_int8_t txhdr[4];
1038 1.20 bjh21 u_int txstatus;
1039 1.20 bjh21
1040 1.20 bjh21 ea_readbuf(sc, txhdr, 0x0000, 4);
1041 1.20 bjh21
1042 1.20 bjh21 DPRINTF(SEEQ_DEBUG_TX, ("txstatus=%02x %02x %02x %02x\n",
1043 1.20 bjh21 txhdr[0], txhdr[1], txhdr[2], txhdr[3]));
1044 1.20 bjh21 txstatus = txhdr[3];
1045 1.20 bjh21
1046 1.20 bjh21 /*
1047 1.20 bjh21 * If SEEQ_TXSTAT_COLLISION is set then we received at least
1048 1.20 bjh21 * one collision. On the 8004 we can find out exactly how many
1049 1.20 bjh21 * collisions occurred.
1050 1.20 bjh21 *
1051 1.20 bjh21 * The SEEQ_PKTSTAT_DONE will be set if the transmission has
1052 1.20 bjh21 * completed.
1053 1.20 bjh21 *
1054 1.20 bjh21 * If SEEQ_TXSTAT_COLLISION16 is set then 16 collisions
1055 1.20 bjh21 * occurred and the packet transmission was aborted.
1056 1.20 bjh21 * This situation is untested as present.
1057 1.20 bjh21 *
1058 1.27 bjh21 * The SEEQ_TXSTAT_BABBLE is untested as it should only be set
1059 1.27 bjh21 * when we deliberately transmit oversized packets (e.g. for
1060 1.27 bjh21 * 802.1Q).
1061 1.20 bjh21 */
1062 1.20 bjh21 if (txstatus & SEEQ_TXSTAT_COLLISION) {
1063 1.20 bjh21 switch (sc->sc_variant) {
1064 1.20 bjh21 case SEEQ_8004: {
1065 1.20 bjh21 int colls;
1066 1.20 bjh21
1067 1.20 bjh21 /*
1068 1.20 bjh21 * The 8004 contains a 4 bit collision count
1069 1.20 bjh21 * in the status register.
1070 1.20 bjh21 */
1071 1.20 bjh21
1072 1.20 bjh21 /* This appears to be broken on 80C04.AE */
1073 1.20 bjh21 /* ifp->if_collisions +=
1074 1.20 bjh21 (txstatus >> SEEQ_TXSTAT_COLLISIONS_SHIFT)
1075 1.20 bjh21 & SEEQ_TXSTAT_COLLISION_MASK;*/
1076 1.20 bjh21
1077 1.20 bjh21 /* Use the TX Collision register */
1078 1.20 bjh21 ea_select_buffer(sc, SEEQ_BUFCODE_TX_COLLS);
1079 1.20 bjh21 colls = bus_space_read_1(iot, ioh, SEEQ_BUFWIN);
1080 1.20 bjh21 ifp->if_collisions += colls;
1081 1.20 bjh21 break;
1082 1.1 bjh21 }
1083 1.20 bjh21 case SEEQ_8005:
1084 1.20 bjh21 /* We known there was at least 1 collision */
1085 1.20 bjh21 ifp->if_collisions++;
1086 1.20 bjh21 break;
1087 1.20 bjh21 }
1088 1.20 bjh21 } else if (txstatus & SEEQ_TXSTAT_COLLISION16) {
1089 1.20 bjh21 printf("seeq_intr: col16 %x\n", txstatus);
1090 1.20 bjh21 ifp->if_collisions += 16;
1091 1.20 bjh21 ifp->if_oerrors++;
1092 1.1 bjh21 }
1093 1.1 bjh21
1094 1.20 bjh21 /* Have we completed transmission on the packet ? */
1095 1.20 bjh21 if (txstatus & SEEQ_PKTSTAT_DONE) {
1096 1.20 bjh21 /* Clear watchdog timer. */
1097 1.20 bjh21 ifp->if_timer = 0;
1098 1.20 bjh21 ifp->if_flags &= ~IFF_OACTIVE;
1099 1.20 bjh21
1100 1.20 bjh21 /* Update stats */
1101 1.20 bjh21 ifp->if_opackets++;
1102 1.20 bjh21
1103 1.20 bjh21 /* Tx next packet */
1104 1.20 bjh21
1105 1.20 bjh21 eatxpacket(sc);
1106 1.20 bjh21 }
1107 1.1 bjh21 }
1108 1.1 bjh21
1109 1.1 bjh21 void
1110 1.20 bjh21 ea_rxint(struct seeq8005_softc *sc)
1111 1.1 bjh21 {
1112 1.1 bjh21 bus_space_tag_t iot = sc->sc_iot;
1113 1.1 bjh21 bus_space_handle_t ioh = sc->sc_ioh;
1114 1.1 bjh21 u_int addr;
1115 1.1 bjh21 int len;
1116 1.1 bjh21 int ctrl;
1117 1.1 bjh21 int ptr;
1118 1.1 bjh21 int pack;
1119 1.1 bjh21 int status;
1120 1.1 bjh21 u_int8_t rxhdr[4];
1121 1.1 bjh21 struct ifnet *ifp;
1122 1.1 bjh21
1123 1.1 bjh21 ifp = &sc->sc_ethercom.ec_if;
1124 1.1 bjh21
1125 1.1 bjh21
1126 1.1 bjh21 /* We start from the last rx pointer position */
1127 1.1 bjh21 addr = sc->sc_rx_ptr;
1128 1.10 bjh21 sc->sc_config2 &= ~SEEQ_CFG2_OUTPUT;
1129 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
1130 1.1 bjh21
1131 1.1 bjh21 do {
1132 1.1 bjh21 /* Read rx header */
1133 1.1 bjh21 ea_readbuf(sc, rxhdr, addr, 4);
1134 1.1 bjh21
1135 1.1 bjh21 /* Split the packet header */
1136 1.1 bjh21 ptr = (rxhdr[0] << 8) | rxhdr[1];
1137 1.1 bjh21 ctrl = rxhdr[2];
1138 1.1 bjh21 status = rxhdr[3];
1139 1.1 bjh21
1140 1.16 bjh21 DPRINTF(SEEQ_DEBUG_RX,
1141 1.16 bjh21 ("addr=%04x ptr=%04x ctrl=%02x status=%02x\n",
1142 1.16 bjh21 addr, ptr, ctrl, status));
1143 1.1 bjh21
1144 1.1 bjh21 /* Zero packet ptr ? then must be null header so exit */
1145 1.1 bjh21 if (ptr == 0) break;
1146 1.1 bjh21
1147 1.15 bjh21 /* Sanity-check the next-packet pointer and flags. */
1148 1.15 bjh21 if (__predict_false(ptr < sc->sc_tx_bufsize ||
1149 1.15 bjh21 (ctrl & SEEQ_PKTCMD_TX))) {
1150 1.15 bjh21 ++ifp->if_ierrors;
1151 1.15 bjh21 log(LOG_ERR,
1152 1.15 bjh21 "%s: Rx chain corrupt at %04x (ptr = %04x)\n",
1153 1.15 bjh21 sc->sc_dev.dv_xname, addr, ptr);
1154 1.15 bjh21 ea_init(ifp);
1155 1.15 bjh21 return;
1156 1.15 bjh21 }
1157 1.1 bjh21
1158 1.1 bjh21 /* Get packet length */
1159 1.1 bjh21 len = (ptr - addr) - 4;
1160 1.1 bjh21
1161 1.1 bjh21 if (len < 0)
1162 1.11 bjh21 len += sc->sc_rx_bufsize;
1163 1.16 bjh21 DPRINTF(SEEQ_DEBUG_RX, ("len=%04x\n", len));
1164 1.1 bjh21
1165 1.1 bjh21 /* Has the packet rx completed ? if not then exit */
1166 1.10 bjh21 if ((status & SEEQ_PKTSTAT_DONE) == 0)
1167 1.1 bjh21 break;
1168 1.1 bjh21
1169 1.1 bjh21 /*
1170 1.1 bjh21 * Did we have any errors? then note error and go to
1171 1.1 bjh21 * next packet
1172 1.1 bjh21 */
1173 1.27 bjh21 if (__predict_false(status &
1174 1.27 bjh21 (SEEQ_RXSTAT_CRC_ERROR | SEEQ_RXSTAT_DRIBBLE_ERROR |
1175 1.27 bjh21 SEEQ_RXSTAT_SHORT_FRAME))) {
1176 1.1 bjh21 ++ifp->if_ierrors;
1177 1.1 bjh21 log(LOG_WARNING,
1178 1.17 bjh21 "%s: rx packet error at %04x (err=%02x)\n",
1179 1.17 bjh21 sc->sc_dev.dv_xname, addr, status & 0x0f);
1180 1.19 bjh21 /* XXX shouldn't need to reset if it's genuine. */
1181 1.19 bjh21 ea_init(ifp);
1182 1.19 bjh21 return;
1183 1.1 bjh21 }
1184 1.1 bjh21 /*
1185 1.27 bjh21 * Is the packet too big? We allow slightly oversize packets
1186 1.27 bjh21 * for vlan(4) and tcpdump purposes, but the rest of the world
1187 1.27 bjh21 * wants incoming packets in a single mbuf cluster.
1188 1.1 bjh21 */
1189 1.27 bjh21 if (__predict_false(len > MCLBYTES)) {
1190 1.1 bjh21 ++ifp->if_ierrors;
1191 1.17 bjh21 log(LOG_ERR,
1192 1.17 bjh21 "%s: rx packet size error at %04x (len=%d)\n",
1193 1.17 bjh21 sc->sc_dev.dv_xname, addr, len);
1194 1.10 bjh21 sc->sc_config2 |= SEEQ_CFG2_OUTPUT;
1195 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2,
1196 1.1 bjh21 sc->sc_config2);
1197 1.5 bjh21 ea_init(ifp);
1198 1.1 bjh21 return;
1199 1.1 bjh21 }
1200 1.1 bjh21
1201 1.1 bjh21 ifp->if_ipackets++;
1202 1.1 bjh21 /* Pass data up to upper levels. */
1203 1.11 bjh21 ea_read(sc, addr + 4, len);
1204 1.1 bjh21
1205 1.1 bjh21 addr = ptr;
1206 1.1 bjh21 ++pack;
1207 1.1 bjh21 } while (len != 0);
1208 1.1 bjh21
1209 1.10 bjh21 sc->sc_config2 |= SEEQ_CFG2_OUTPUT;
1210 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
1211 1.1 bjh21
1212 1.16 bjh21 DPRINTF(SEEQ_DEBUG_RX, ("new rx ptr=%04x\n", addr));
1213 1.1 bjh21
1214 1.1 bjh21 /* Store new rx pointer */
1215 1.1 bjh21 sc->sc_rx_ptr = addr;
1216 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_END, sc->sc_rx_ptr >> 8);
1217 1.1 bjh21
1218 1.1 bjh21 /* Make sure the receiver is on */
1219 1.24 bjh21 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
1220 1.10 bjh21 sc->sc_command | SEEQ_CMD_RX_ON);
1221 1.1 bjh21 }
1222 1.1 bjh21
1223 1.1 bjh21
1224 1.1 bjh21 /*
1225 1.1 bjh21 * Pass a packet up to the higher levels.
1226 1.1 bjh21 */
1227 1.1 bjh21
1228 1.1 bjh21 static void
1229 1.11 bjh21 ea_read(struct seeq8005_softc *sc, int addr, int len)
1230 1.1 bjh21 {
1231 1.1 bjh21 struct mbuf *m;
1232 1.1 bjh21 struct ifnet *ifp;
1233 1.1 bjh21
1234 1.1 bjh21 ifp = &sc->sc_ethercom.ec_if;
1235 1.1 bjh21
1236 1.1 bjh21 /* Pull packet off interface. */
1237 1.11 bjh21 m = ea_get(sc, addr, len, ifp);
1238 1.1 bjh21 if (m == 0)
1239 1.1 bjh21 return;
1240 1.1 bjh21
1241 1.1 bjh21 #if NBPFILTER > 0
1242 1.1 bjh21 /*
1243 1.1 bjh21 * Check if there's a BPF listener on this interface.
1244 1.1 bjh21 * If so, hand off the raw packet to bpf.
1245 1.1 bjh21 */
1246 1.4 thorpej if (ifp->if_bpf)
1247 1.1 bjh21 bpf_mtap(ifp->if_bpf, m);
1248 1.1 bjh21 #endif
1249 1.1 bjh21
1250 1.1 bjh21 (*ifp->if_input)(ifp, m);
1251 1.1 bjh21 }
1252 1.1 bjh21
1253 1.1 bjh21 /*
1254 1.1 bjh21 * Pull read data off a interface. Len is length of data, with local net
1255 1.1 bjh21 * header stripped. We copy the data into mbufs. When full cluster sized
1256 1.1 bjh21 * units are present we copy into clusters.
1257 1.1 bjh21 */
1258 1.1 bjh21
1259 1.1 bjh21 struct mbuf *
1260 1.11 bjh21 ea_get(struct seeq8005_softc *sc, int addr, int totlen, struct ifnet *ifp)
1261 1.1 bjh21 {
1262 1.1 bjh21 struct mbuf *top, **mp, *m;
1263 1.1 bjh21 int len;
1264 1.1 bjh21 u_int cp, epkt;
1265 1.1 bjh21
1266 1.1 bjh21 cp = addr;
1267 1.1 bjh21 epkt = cp + totlen;
1268 1.1 bjh21
1269 1.1 bjh21 MGETHDR(m, M_DONTWAIT, MT_DATA);
1270 1.1 bjh21 if (m == 0)
1271 1.1 bjh21 return 0;
1272 1.1 bjh21 m->m_pkthdr.rcvif = ifp;
1273 1.1 bjh21 m->m_pkthdr.len = totlen;
1274 1.1 bjh21 m->m_len = MHLEN;
1275 1.1 bjh21 top = 0;
1276 1.1 bjh21 mp = ⊤
1277 1.1 bjh21
1278 1.1 bjh21 while (totlen > 0) {
1279 1.1 bjh21 if (top) {
1280 1.1 bjh21 MGET(m, M_DONTWAIT, MT_DATA);
1281 1.1 bjh21 if (m == 0) {
1282 1.1 bjh21 m_freem(top);
1283 1.1 bjh21 return 0;
1284 1.1 bjh21 }
1285 1.1 bjh21 m->m_len = MLEN;
1286 1.1 bjh21 }
1287 1.1 bjh21 len = min(totlen, epkt - cp);
1288 1.1 bjh21 if (len >= MINCLSIZE) {
1289 1.1 bjh21 MCLGET(m, M_DONTWAIT);
1290 1.1 bjh21 if (m->m_flags & M_EXT)
1291 1.1 bjh21 m->m_len = len = min(len, MCLBYTES);
1292 1.1 bjh21 else
1293 1.1 bjh21 len = m->m_len;
1294 1.1 bjh21 } else {
1295 1.1 bjh21 /*
1296 1.1 bjh21 * Place initial small packet/header at end of mbuf.
1297 1.1 bjh21 */
1298 1.1 bjh21 if (len < m->m_len) {
1299 1.1 bjh21 if (top == 0 && len + max_linkhdr <= m->m_len)
1300 1.1 bjh21 m->m_data += max_linkhdr;
1301 1.1 bjh21 m->m_len = len;
1302 1.1 bjh21 } else
1303 1.1 bjh21 len = m->m_len;
1304 1.1 bjh21 }
1305 1.1 bjh21 if (top == 0) {
1306 1.1 bjh21 /* Make sure the payload is aligned */
1307 1.1 bjh21 caddr_t newdata = (caddr_t)
1308 1.1 bjh21 ALIGN(m->m_data + sizeof(struct ether_header)) -
1309 1.1 bjh21 sizeof(struct ether_header);
1310 1.1 bjh21 len -= newdata - m->m_data;
1311 1.1 bjh21 m->m_len = len;
1312 1.1 bjh21 m->m_data = newdata;
1313 1.1 bjh21 }
1314 1.1 bjh21 ea_readbuf(sc, mtod(m, u_char *),
1315 1.11 bjh21 cp < SEEQ_MAX_BUFFER_SIZE ? cp : cp - sc->sc_rx_bufsize,
1316 1.11 bjh21 len);
1317 1.1 bjh21 cp += len;
1318 1.1 bjh21 *mp = m;
1319 1.1 bjh21 mp = &m->m_next;
1320 1.1 bjh21 totlen -= len;
1321 1.1 bjh21 if (cp == epkt)
1322 1.1 bjh21 cp = addr;
1323 1.1 bjh21 }
1324 1.1 bjh21
1325 1.1 bjh21 return top;
1326 1.1 bjh21 }
1327 1.1 bjh21
1328 1.1 bjh21 /*
1329 1.3 bjh21 * Process an ioctl request. Mostly boilerplate.
1330 1.1 bjh21 */
1331 1.1 bjh21 static int
1332 1.1 bjh21 ea_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1333 1.1 bjh21 {
1334 1.1 bjh21 struct seeq8005_softc *sc = ifp->if_softc;
1335 1.1 bjh21 int s, error = 0;
1336 1.1 bjh21
1337 1.1 bjh21 s = splnet();
1338 1.1 bjh21 switch (cmd) {
1339 1.1 bjh21
1340 1.5 bjh21 default:
1341 1.5 bjh21 error = ether_ioctl(ifp, cmd, data);
1342 1.5 bjh21 if (error == ENETRESET) {
1343 1.1 bjh21 /*
1344 1.5 bjh21 * Multicast list has changed; set the hardware filter
1345 1.5 bjh21 * accordingly.
1346 1.1 bjh21 */
1347 1.5 bjh21 ea_mc_reset(sc);
1348 1.5 bjh21 error = 0;
1349 1.1 bjh21 }
1350 1.1 bjh21 break;
1351 1.1 bjh21 }
1352 1.1 bjh21
1353 1.1 bjh21 splx(s);
1354 1.1 bjh21 return error;
1355 1.1 bjh21 }
1356 1.1 bjh21
1357 1.5 bjh21 /* Must be called at splnet() */
1358 1.11 bjh21
1359 1.5 bjh21 static void
1360 1.5 bjh21 ea_mc_reset(struct seeq8005_softc *sc)
1361 1.5 bjh21 {
1362 1.11 bjh21
1363 1.11 bjh21 switch (sc->sc_variant) {
1364 1.11 bjh21 case SEEQ_8004:
1365 1.11 bjh21 ea_mc_reset_8004(sc);
1366 1.11 bjh21 return;
1367 1.11 bjh21 case SEEQ_8005:
1368 1.11 bjh21 ea_mc_reset_8005(sc);
1369 1.11 bjh21 return;
1370 1.11 bjh21 }
1371 1.11 bjh21 }
1372 1.11 bjh21
1373 1.11 bjh21 static void
1374 1.11 bjh21 ea_mc_reset_8004(struct seeq8005_softc *sc)
1375 1.11 bjh21 {
1376 1.11 bjh21 struct ethercom *ec = &sc->sc_ethercom;
1377 1.11 bjh21 struct ifnet *ifp = &ec->ec_if;
1378 1.11 bjh21 struct ether_multi *enm;
1379 1.25 bjh21 u_int32_t crc;
1380 1.26 bjh21 int i;
1381 1.25 bjh21 struct ether_multistep step;
1382 1.25 bjh21 u_int8_t af[8];
1383 1.11 bjh21
1384 1.11 bjh21 /*
1385 1.11 bjh21 * Set up multicast address filter by passing all multicast addresses
1386 1.11 bjh21 * through a crc generator, and then using bits 2 - 7 as an index
1387 1.11 bjh21 * into the 64 bit logical address filter. The high order bits
1388 1.11 bjh21 * selects the word, while the rest of the bits select the bit within
1389 1.11 bjh21 * the word.
1390 1.11 bjh21 */
1391 1.11 bjh21
1392 1.11 bjh21 if (ifp->if_flags & IFF_PROMISC) {
1393 1.11 bjh21 ifp->if_flags |= IFF_ALLMULTI;
1394 1.11 bjh21 for (i = 0; i < 8; i++)
1395 1.11 bjh21 af[i] = 0xff;
1396 1.11 bjh21 return;
1397 1.11 bjh21 }
1398 1.11 bjh21 for (i = 0; i < 8; i++)
1399 1.11 bjh21 af[i] = 0;
1400 1.11 bjh21 ETHER_FIRST_MULTI(step, ec, enm);
1401 1.11 bjh21 while (enm != NULL) {
1402 1.28 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1403 1.11 bjh21 sizeof(enm->enm_addrlo)) != 0) {
1404 1.11 bjh21 /*
1405 1.11 bjh21 * We must listen to a range of multicast addresses.
1406 1.11 bjh21 * For now, just accept all multicasts, rather than
1407 1.11 bjh21 * trying to set only those filter bits needed to match
1408 1.11 bjh21 * the range. (At this time, the only use of address
1409 1.11 bjh21 * ranges is for IP multicast routing, for which the
1410 1.11 bjh21 * range is big enough to require all bits set.)
1411 1.11 bjh21 */
1412 1.11 bjh21 ifp->if_flags |= IFF_ALLMULTI;
1413 1.11 bjh21 for (i = 0; i < 8; i++)
1414 1.11 bjh21 af[i] = 0xff;
1415 1.13 bjh21 break;
1416 1.11 bjh21 }
1417 1.26 bjh21
1418 1.26 bjh21 crc = ether_crc32_be(enm->enm_addrlo, sizeof(enm->enm_addrlo));
1419 1.26 bjh21
1420 1.11 bjh21 /* Just want the 6 most significant bits. */
1421 1.11 bjh21 crc = (crc >> 2) & 0x3f;
1422 1.11 bjh21
1423 1.11 bjh21 /* Turn on the corresponding bit in the filter. */
1424 1.11 bjh21 af[crc >> 3] |= 1 << (crc & 0x7);
1425 1.11 bjh21
1426 1.11 bjh21 ETHER_NEXT_MULTI(step, enm);
1427 1.11 bjh21 }
1428 1.11 bjh21 ifp->if_flags &= ~IFF_ALLMULTI;
1429 1.11 bjh21
1430 1.11 bjh21 ea_select_buffer(sc, SEEQ_BUFCODE_MULTICAST);
1431 1.11 bjh21 for (i = 0; i < 8; ++i)
1432 1.11 bjh21 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
1433 1.11 bjh21 SEEQ_BUFWIN, af[i]);
1434 1.11 bjh21 }
1435 1.11 bjh21
1436 1.11 bjh21 static void
1437 1.11 bjh21 ea_mc_reset_8005(struct seeq8005_softc *sc)
1438 1.11 bjh21 {
1439 1.5 bjh21 struct ether_multi *enm;
1440 1.5 bjh21 struct ether_multistep step;
1441 1.5 bjh21 int naddr, maxaddrs;
1442 1.5 bjh21
1443 1.5 bjh21 naddr = 0;
1444 1.11 bjh21 maxaddrs = 5;
1445 1.5 bjh21 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1446 1.5 bjh21 while (enm != NULL) {
1447 1.5 bjh21 /* Have we got space? */
1448 1.5 bjh21 if (naddr >= maxaddrs ||
1449 1.28 thorpej memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
1450 1.5 bjh21 sc->sc_ethercom.ec_if.if_flags |= IFF_ALLMULTI;
1451 1.5 bjh21 ea_ioctl(&sc->sc_ethercom.ec_if, SIOCSIFFLAGS, NULL);
1452 1.5 bjh21 return;
1453 1.5 bjh21 }
1454 1.11 bjh21 ea_set_address(sc, 1 + naddr, enm->enm_addrlo);
1455 1.11 bjh21 sc->sc_config1 |= SEEQ_CFG1_STATION_ADDR1 << naddr;
1456 1.5 bjh21 naddr++;
1457 1.5 bjh21 ETHER_NEXT_MULTI(step, enm);
1458 1.5 bjh21 }
1459 1.5 bjh21 for (; naddr < maxaddrs; naddr++)
1460 1.11 bjh21 sc->sc_config1 &= ~(SEEQ_CFG1_STATION_ADDR1 << naddr);
1461 1.24 bjh21 SEEQ_WRITE16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_CONFIG1,
1462 1.5 bjh21 sc->sc_config1);
1463 1.5 bjh21 }
1464 1.5 bjh21
1465 1.1 bjh21 /*
1466 1.1 bjh21 * Device timeout routine.
1467 1.1 bjh21 */
1468 1.1 bjh21
1469 1.1 bjh21 static void
1470 1.1 bjh21 ea_watchdog(struct ifnet *ifp)
1471 1.1 bjh21 {
1472 1.1 bjh21 struct seeq8005_softc *sc = ifp->if_softc;
1473 1.1 bjh21
1474 1.15 bjh21 log(LOG_ERR, "%s: lost Tx interrupt (status = 0x%04x)\n",
1475 1.15 bjh21 sc->sc_dev.dv_xname,
1476 1.24 bjh21 SEEQ_READ16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_STATUS));
1477 1.1 bjh21 ifp->if_oerrors++;
1478 1.1 bjh21
1479 1.1 bjh21 /* Kick the interface */
1480 1.1 bjh21
1481 1.5 bjh21 ea_init(ifp);
1482 1.1 bjh21
1483 1.1 bjh21 ifp->if_timer = 0;
1484 1.1 bjh21 }
1485 1.1 bjh21
1486 1.1 bjh21 /* End of if_ea.c */
1487