seeq8005.c revision 1.64 1 /* $NetBSD: seeq8005.c,v 1.64 2019/05/28 07:41:48 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2000, 2001 Ben Harris
5 * Copyright (c) 1995-1998 Mark Brinicombe
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Mark Brinicombe
19 * for the NetBSD Project.
20 * 4. The name of the company nor the name of the author may be used to
21 * endorse or promote products derived from this software without specific
22 * prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
25 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
26 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
28 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36 /*
37 * seeq8005.c - SEEQ 8005 device driver
38 */
39 /*
40 * This driver currently supports the following chips:
41 * SEEQ 8005 Advanced Ethernet Data Link Controller
42 * SEEQ 80C04 Ethernet Data Link Controller
43 * SEEQ 80C04A AutoDUPLEX CMOS Ethernet Data Link Controller
44 */
45 /*
46 * More information on the 8004 and 8005 AEDLC controllers can be found in
47 * the SEEQ Technology Inc 1992 Data Comm Devices data book.
48 *
49 * This data book may no longer be available as these are rather old chips
50 * (1991 - 1993)
51 */
52 /*
53 * This driver is based on the arm32 ea(4) driver, hence the names of many
54 * of the functions.
55 */
56 /*
57 * Bugs/possible improvements:
58 * - Does not currently support DMA
59 * - Does not transmit multiple packets in one go
60 * - Does not support 8-bit busses
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: seeq8005.c,v 1.64 2019/05/28 07:41:48 msaitoh Exp $");
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/endian.h>
69 #include <sys/errno.h>
70 #include <sys/ioctl.h>
71 #include <sys/mbuf.h>
72 #include <sys/socket.h>
73 #include <sys/syslog.h>
74 #include <sys/device.h>
75
76 #include <net/if.h>
77 #include <net/if_dl.h>
78 #include <net/if_types.h>
79 #include <net/if_ether.h>
80 #include <net/if_media.h>
81 #include <net/bpf.h>
82
83 #include <sys/rndsource.h>
84
85 #include <sys/bus.h>
86 #include <sys/intr.h>
87
88 #include <dev/ic/seeq8005reg.h>
89 #include <dev/ic/seeq8005var.h>
90
91 /*#define SEEQ_DEBUG*/
92
93 /* for debugging convenience */
94 #ifdef SEEQ8005_DEBUG
95 #define SEEQ_DEBUG_MISC 1
96 #define SEEQ_DEBUG_TX 2
97 #define SEEQ_DEBUG_RX 4
98 #define SEEQ_DEBUG_PKT 8
99 #define SEEQ_DEBUG_TXINT 16
100 #define SEEQ_DEBUG_RXINT 32
101 int seeq8005_debug = 0;
102 #define DPRINTF(f, x) { if (seeq8005_debug & (f)) printf x; }
103 #else
104 #define DPRINTF(f, x)
105 #endif
106
107 #ifndef EA_TX_BUFFER_SIZE
108 #define EA_TX_BUFFER_SIZE 0x800 /* (> ETHER_MAX_LEN) */
109 #endif
110 #ifndef EA_TX_BUFFER_COUNT
111 #define EA_TX_BUFFER_COUNT 1 /* (> 0) */
112 #endif
113
114 #define SEEQ_READ16(sc, iot, ioh, reg) \
115 ((sc)->sc_flags & SF_8BIT ? \
116 (bus_space_read_1((iot), (ioh), (reg)) | \
117 (bus_space_read_1((iot), (ioh), (reg) + 1) << 8)) : \
118 (bus_space_read_2((iot), (ioh), (reg))))
119
120 #define SEEQ_WRITE16(sc, iot, ioh, reg, val) do { \
121 if ((sc)->sc_flags & SF_8BIT) { \
122 bus_space_write_1((iot), (ioh), (reg), (val) & 0xff); \
123 bus_space_write_1((iot), (ioh), (reg) + 1, (val) >> 8); \
124 } else \
125 bus_space_write_2((iot), (ioh), (reg), (val)); \
126 } while (/*CONSTCOND*/0)
127
128 /*
129 * prototypes
130 */
131
132 static int ea_init(struct ifnet *);
133 static int ea_ioctl(struct ifnet *, u_long, void *);
134 static void ea_start(struct ifnet *);
135 static void ea_watchdog(struct ifnet *);
136 static void ea_chipreset(struct seeq8005_softc *);
137 static void ea_ramtest(struct seeq8005_softc *);
138 static int ea_stoptx(struct seeq8005_softc *);
139 static int ea_stoprx(struct seeq8005_softc *);
140 static void ea_stop(struct ifnet *, int);
141 static void ea_await_fifo_empty(struct seeq8005_softc *);
142 static void ea_await_fifo_full(struct seeq8005_softc *);
143 static void ea_writebuf(struct seeq8005_softc *, u_char *, int, size_t);
144 static void ea_readbuf(struct seeq8005_softc *, u_char *, int, size_t);
145 static void ea_select_buffer(struct seeq8005_softc *, int);
146 static void ea_set_address(struct seeq8005_softc *, int, const uint8_t *);
147 static void ea_read(struct seeq8005_softc *, int, int);
148 static struct mbuf *ea_get(struct seeq8005_softc *, int, int, struct ifnet *);
149 static void ea_txint(struct seeq8005_softc *);
150 static void ea_rxint(struct seeq8005_softc *);
151 static void ea_txpacket(struct seeq8005_softc *);
152 static int ea_writembuf(struct seeq8005_softc *, struct mbuf *, int);
153 static void ea_mc_reset(struct seeq8005_softc *);
154 static void ea_mc_reset_8004(struct seeq8005_softc *);
155 static void ea_mc_reset_8005(struct seeq8005_softc *);
156 static int ea_mediachange(struct ifnet *);
157 static void ea_mediastatus(struct ifnet *, struct ifmediareq *);
158
159 static u_char* padbuf = NULL;
160
161
162 /*
163 * Attach chip.
164 */
165
166 void
167 seeq8005_attach(struct seeq8005_softc *sc, const uint8_t *myaddr, int *media,
168 int nmedia, int defmedia)
169 {
170 device_t dev = sc->sc_dev;
171 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
172 bus_space_tag_t iot = sc->sc_iot;
173 bus_space_handle_t ioh = sc->sc_ioh;
174 u_int id;
175
176 KASSERT(myaddr != NULL);
177 printf(" address %s", ether_sprintf(myaddr));
178
179 /* Stop the board. */
180
181 ea_chipreset(sc);
182
183 /* Work out data bus width. */
184 SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_PTR, 0x1234);
185 if (SEEQ_READ16(sc, iot, ioh, SEEQ_RX_PTR) != 0x1234) {
186 /* Try 8-bit mode */
187 sc->sc_flags |= SF_8BIT;
188 SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_PTR, 0x1234);
189 if (SEEQ_READ16(sc, iot, ioh, SEEQ_RX_PTR) != 0x1234) {
190 aprint_normal("\n");
191 aprint_error_dev(dev,
192 "Cannot determine data bus width\n");
193 return;
194 }
195 }
196
197 printf(", %d-bit", sc->sc_flags & SF_8BIT ? 8 : 16);
198
199 /* Get the product ID */
200
201 ea_select_buffer(sc, SEEQ_BUFCODE_PRODUCTID);
202 id = SEEQ_READ16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_BUFWIN);
203
204 switch (id & SEEQ_PRODUCTID_MASK) {
205 case SEEQ_PRODUCTID_8004:
206 sc->sc_variant = SEEQ_8004;
207 switch (id & SEEQ_PRODUCTID_REV_MASK) {
208 case SEEQ_PRODUCTID_REV_80C04:
209 printf(", SEEQ 80C04\n");
210 break;
211 case SEEQ_PRODUCTID_REV_80C04A:
212 printf(", SEEQ 80C04A\n");
213 break;
214 default:
215 /* Unknown SEEQ 8004 variants */
216 printf(", SEEQ 8004 rev %x\n",
217 id & SEEQ_PRODUCTID_REV_MASK);
218 break;
219 }
220 break;
221 default: /* XXX */
222 sc->sc_variant = SEEQ_8005;
223 printf(", SEEQ 8005\n");
224 break;
225 }
226
227 /* Both the 8004 and 8005 are designed for 64K Buffer memory */
228 sc->sc_buffersize = SEEQ_MAX_BUFFER_SIZE;
229
230 /*
231 * Set up tx and rx buffers.
232 *
233 * We set aside EA_TX_BUFFER_SIZE * EA_TX_BUFFER_COUNT for TX
234 * buffers and the rest for RX buffers
235 */
236 sc->sc_tx_bufs = EA_TX_BUFFER_COUNT;
237 sc->sc_tx_bufsize = sc->sc_tx_bufs * EA_TX_BUFFER_SIZE;
238 sc->sc_rx_bufsize = sc->sc_buffersize - sc->sc_tx_bufsize;
239 sc->sc_enabled = 0;
240
241 /* Test the RAM */
242 ea_ramtest(sc);
243
244 printf("%s: %dKB packet memory, txbuf=%dKB (%d buffers), rxbuf=%dKB",
245 device_xname(dev), sc->sc_buffersize >> 10,
246 sc->sc_tx_bufsize >> 10, sc->sc_tx_bufs, sc->sc_rx_bufsize >> 10);
247
248 if (padbuf == NULL) {
249 padbuf = malloc(ETHER_MIN_LEN - ETHER_CRC_LEN, M_DEVBUF,
250 M_ZERO | M_NOWAIT);
251 if (padbuf == NULL) {
252 aprint_error_dev(dev, "can't allocate pad buffer\n");
253 return;
254 }
255 }
256
257 /* Initialise ifnet structure. */
258
259 strlcpy(ifp->if_xname, device_xname(dev), IFNAMSIZ);
260 ifp->if_softc = sc;
261 ifp->if_start = ea_start;
262 ifp->if_ioctl = ea_ioctl;
263 ifp->if_init = ea_init;
264 ifp->if_stop = ea_stop;
265 ifp->if_watchdog = ea_watchdog;
266 ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST;
267 if (sc->sc_variant == SEEQ_8004)
268 ifp->if_flags |= IFF_SIMPLEX;
269 IFQ_SET_READY(&ifp->if_snd);
270
271 /* Initialize media goo. */
272 ifmedia_init(&sc->sc_media, 0, ea_mediachange, ea_mediastatus);
273 if (media != NULL) {
274 int i;
275
276 for (i = 0; i < nmedia; i++)
277 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
278 ifmedia_set(&sc->sc_media, defmedia);
279 } else {
280 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
281 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL);
282 }
283
284 /* We can support 802.1Q VLAN-sized frames. */
285 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
286
287 /* Now we can attach the interface. */
288
289 if_attach(ifp);
290 ether_ifattach(ifp, myaddr);
291
292 printf("\n");
293
294 /* After \n because it can print a line of its own. */
295 rnd_attach_source(&sc->rnd_source, device_xname(dev),
296 RND_TYPE_NET, RND_FLAG_DEFAULT);
297 }
298
299 /*
300 * Media change callback.
301 */
302 static int
303 ea_mediachange(struct ifnet *ifp)
304 {
305 struct seeq8005_softc *sc = ifp->if_softc;
306
307 if (sc->sc_mediachange)
308 return (*sc->sc_mediachange)(sc);
309 return EINVAL;
310 }
311
312 /*
313 * Media status callback.
314 */
315 static void
316 ea_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
317 {
318 struct seeq8005_softc *sc = ifp->if_softc;
319
320 if (sc->sc_enabled == 0) {
321 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
322 ifmr->ifm_status = 0;
323 return;
324 }
325
326 if (sc->sc_mediastatus)
327 (*sc->sc_mediastatus)(sc, ifmr);
328 }
329
330 /*
331 * Test the RAM on the ethernet card.
332 */
333
334 void
335 ea_ramtest(struct seeq8005_softc *sc)
336 {
337 bus_space_tag_t iot = sc->sc_iot;
338 bus_space_handle_t ioh = sc->sc_ioh;
339 int loop;
340 u_int sum = 0;
341
342 /*
343 * Test the buffer memory on the board.
344 * Write simple pattens to it and read them back.
345 */
346
347 /* Set up the whole buffer RAM for writing */
348
349 ea_select_buffer(sc, SEEQ_BUFCODE_TX_EAP);
350 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, (SEEQ_MAX_BUFFER_SIZE >> 8) - 1);
351 SEEQ_WRITE16(sc, iot, ioh, SEEQ_TX_PTR, 0x0000);
352 SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_PTR, SEEQ_MAX_BUFFER_SIZE - 2);
353
354 #define SEEQ_RAMTEST_LOOP(value) \
355 do { \
356 /* Set the write start address and write a pattern */ \
357 ea_writebuf(sc, NULL, 0x0000, 0); \
358 for (loop = 0; loop < SEEQ_MAX_BUFFER_SIZE; loop += 2) \
359 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, (value)); \
360 \
361 /* Set the read start address and verify the pattern */ \
362 ea_readbuf(sc, NULL, 0x0000, 0); \
363 for (loop = 0; loop < SEEQ_MAX_BUFFER_SIZE; loop += 2) \
364 if (SEEQ_READ16(sc, iot, ioh, SEEQ_BUFWIN) != (value)) \
365 ++sum; \
366 } while (/*CONSTCOND*/0)
367
368 SEEQ_RAMTEST_LOOP(loop);
369 SEEQ_RAMTEST_LOOP(loop ^ (SEEQ_MAX_BUFFER_SIZE - 1));
370 SEEQ_RAMTEST_LOOP(0xaa55);
371 SEEQ_RAMTEST_LOOP(0x55aa);
372
373 /* Report */
374
375 if (sum > 0)
376 aprint_error_dev(sc->sc_dev,
377 "buffer RAM failed self test, %d faults\n", sum);
378 }
379
380
381 /*
382 * Stop the tx interface.
383 *
384 * Returns 0 if the tx was already stopped or 1 if it was active
385 */
386
387 static int
388 ea_stoptx(struct seeq8005_softc *sc)
389 {
390 bus_space_tag_t iot = sc->sc_iot;
391 bus_space_handle_t ioh = sc->sc_ioh;
392 int timeout;
393 int status;
394
395 DPRINTF(SEEQ_DEBUG_TX, ("ea_stoptx()\n"));
396
397 sc->sc_enabled = 0;
398
399 status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
400 if (!(status & SEEQ_STATUS_TX_ON))
401 return 0;
402
403 /* Stop any tx and wait for confirmation */
404 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
405 sc->sc_command | SEEQ_CMD_TX_OFF);
406
407 timeout = 20000;
408 do {
409 status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
410 delay(1);
411 } while ((status & SEEQ_STATUS_TX_ON) && --timeout > 0);
412 if (timeout == 0)
413 log(LOG_ERR, "%s: timeout waiting for tx termination\n",
414 device_xname(sc->sc_dev));
415
416 /* Clear any pending tx interrupt */
417 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
418 sc->sc_command | SEEQ_CMD_TX_INTACK);
419 return 1;
420 }
421
422
423 /*
424 * Stop the rx interface.
425 *
426 * Returns 0 if the tx was already stopped or 1 if it was active
427 */
428
429 static int
430 ea_stoprx(struct seeq8005_softc *sc)
431 {
432 bus_space_tag_t iot = sc->sc_iot;
433 bus_space_handle_t ioh = sc->sc_ioh;
434 int timeout;
435 int status;
436
437 DPRINTF(SEEQ_DEBUG_RX, ("ea_stoprx()\n"));
438
439 status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
440 if (!(status & SEEQ_STATUS_RX_ON))
441 return 0;
442
443 /* Stop any rx and wait for confirmation */
444
445 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
446 sc->sc_command | SEEQ_CMD_RX_OFF);
447
448 timeout = 20000;
449 do {
450 status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
451 delay(1);
452 } while ((status & SEEQ_STATUS_RX_ON) && --timeout > 0);
453 if (timeout == 0)
454 log(LOG_ERR, "%s: timeout waiting for rx termination\n",
455 device_xname(sc->sc_dev));
456
457 /* Clear any pending rx interrupt */
458
459 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
460 sc->sc_command | SEEQ_CMD_RX_INTACK);
461 return 1;
462 }
463
464
465 /*
466 * Stop interface.
467 * Stop all IO and shut the interface down
468 */
469
470 /* ARGSUSED */
471 static void
472 ea_stop(struct ifnet *ifp, int disable)
473 {
474 struct seeq8005_softc *sc = ifp->if_softc;
475 bus_space_tag_t iot = sc->sc_iot;
476 bus_space_handle_t ioh = sc->sc_ioh;
477
478 DPRINTF(SEEQ_DEBUG_MISC, ("ea_stop()\n"));
479
480 /* Stop all IO */
481 ea_stoptx(sc);
482 ea_stoprx(sc);
483
484 /* Disable rx and tx interrupts */
485 sc->sc_command &= ~(SEEQ_CMD_RX_INTEN | SEEQ_CMD_TX_INTEN);
486
487 /* Clear any pending interrupts */
488 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
489 sc->sc_command | SEEQ_CMD_RX_INTACK | SEEQ_CMD_TX_INTACK |
490 SEEQ_CMD_DMA_INTACK | SEEQ_CMD_BW_INTACK);
491
492 if (sc->sc_variant == SEEQ_8004) {
493 /* Put the chip to sleep */
494 ea_select_buffer(sc, SEEQ_BUFCODE_CONFIG3);
495 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN,
496 sc->sc_config3 | SEEQ_CFG3_SLEEP);
497 }
498
499 /* Cancel any watchdog timer */
500 sc->sc_ethercom.ec_if.if_timer = 0;
501 }
502
503
504 /*
505 * Reset the chip
506 * Following this the software registers are reset
507 */
508
509 static void
510 ea_chipreset(struct seeq8005_softc *sc)
511 {
512 bus_space_tag_t iot = sc->sc_iot;
513 bus_space_handle_t ioh = sc->sc_ioh;
514
515 DPRINTF(SEEQ_DEBUG_MISC, ("ea_chipreset()\n"));
516
517 /* Reset the controller. Min of 4us delay here */
518
519 /*
520 * This can be called before we know whether the chip is in 8- or
521 * 16-bit mode, so we do a reset in both modes. The 16-bit reset is
522 * harmless in 8-bit mode, so we do that second.
523 */
524
525 /* In 16-bit mode, this will munge the PreamSelect bit. */
526 bus_space_write_1(iot, ioh, SEEQ_CONFIG2 + 1, SEEQ_CFG2_RESET >> 8);
527 delay(4);
528 /* In 8-bit mode, this will zero the bottom half of config reg 2. */
529 bus_space_write_2(iot, ioh, SEEQ_CONFIG2, SEEQ_CFG2_RESET);
530 delay(4);
531
532 sc->sc_command = 0;
533 sc->sc_config1 = 0;
534 sc->sc_config2 = 0;
535 sc->sc_config3 = 0;
536 }
537
538
539 /*
540 * If the DMA FIFO's in write mode, wait for it to empty. Needed when
541 * switching the FIFO from write to read. We also use it when changing
542 * the address for writes.
543 */
544 static void
545 ea_await_fifo_empty(struct seeq8005_softc *sc)
546 {
547 bus_space_tag_t iot = sc->sc_iot;
548 bus_space_handle_t ioh = sc->sc_ioh;
549 int timeout;
550
551 timeout = 20000;
552 if ((SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS) &
553 SEEQ_STATUS_FIFO_DIR) != 0)
554 return; /* FIFO is reading anyway. */
555 while (--timeout > 0)
556 if (SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS) &
557 SEEQ_STATUS_FIFO_EMPTY)
558 return;
559 log(LOG_ERR, "%s: DMA FIFO failed to empty\n",
560 device_xname(sc->sc_dev));
561 }
562
563 /*
564 * Wait for the DMA FIFO to fill before reading from it.
565 */
566 static void
567 ea_await_fifo_full(struct seeq8005_softc *sc)
568 {
569 bus_space_tag_t iot = sc->sc_iot;
570 bus_space_handle_t ioh = sc->sc_ioh;
571 int timeout;
572
573 timeout = 20000;
574 while (--timeout > 0)
575 if (SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS) &
576 SEEQ_STATUS_FIFO_FULL)
577 return;
578 log(LOG_ERR, "%s: DMA FIFO failed to fill\n", device_xname(sc->sc_dev));
579 }
580
581 /*
582 * write to the buffer memory on the interface
583 *
584 * The buffer address is set to ADDR.
585 * If len != 0 then data is copied from the address starting at buf
586 * to the interface buffer.
587 * BUF must be usable as a uint16_t *.
588 * If LEN is odd, it must be safe to overwrite one extra byte.
589 */
590
591 static void
592 ea_writebuf(struct seeq8005_softc *sc, u_char *buf, int addr, size_t len)
593 {
594 bus_space_tag_t iot = sc->sc_iot;
595 bus_space_handle_t ioh = sc->sc_ioh;
596
597 DPRINTF(SEEQ_DEBUG_MISC, ("writebuf: st=%04x\n",
598 SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS)));
599
600 #ifdef DIAGNOSTIC
601 if (__predict_false(!ALIGNED_POINTER(buf, uint16_t)))
602 panic("%s: unaligned writebuf", device_xname(sc->sc_dev));
603 if (__predict_false(addr >= SEEQ_MAX_BUFFER_SIZE))
604 panic("%s: writebuf out of range", device_xname(sc->sc_dev));
605 #endif
606
607 if (addr != -1) {
608 ea_await_fifo_empty(sc);
609
610 ea_select_buffer(sc, SEEQ_BUFCODE_LOCAL_MEM);
611 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
612 sc->sc_command | SEEQ_CMD_FIFO_WRITE);
613
614 ea_await_fifo_empty(sc);
615
616 SEEQ_WRITE16(sc, iot, ioh, SEEQ_DMA_ADDR, addr);
617 }
618
619 if (len > 0) {
620 if (sc->sc_flags & SF_8BIT)
621 bus_space_write_multi_1(iot, ioh, SEEQ_BUFWIN,
622 (uint8_t *)buf, len);
623 else
624 bus_space_write_multi_2(iot, ioh, SEEQ_BUFWIN,
625 /* LINTED: alignment checked above */
626 (uint16_t *)buf, len / 2);
627 }
628 if (!(sc->sc_flags & SF_8BIT) && len % 2) {
629 /* Write the last byte */
630 bus_space_write_2(iot, ioh, SEEQ_BUFWIN, buf[len - 1]);
631 }
632 /* Leave FIFO to empty in the background */
633 }
634
635
636 /*
637 * read from the buffer memory on the interface
638 *
639 * The buffer address is set to ADDR.
640 * If len != 0 then data is copied from the interface buffer to the
641 * address starting at buf.
642 * BUF must be usable as a uint16_t *.
643 * If LEN is odd, it must be safe to overwrite one extra byte.
644 */
645
646 static void
647 ea_readbuf(struct seeq8005_softc *sc, u_char *buf, int addr, size_t len)
648 {
649 bus_space_tag_t iot = sc->sc_iot;
650 bus_space_handle_t ioh = sc->sc_ioh;
651 int runup;
652
653 DPRINTF(SEEQ_DEBUG_MISC, ("readbuf: st=%04x addr=%04x len=%d\n",
654 SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS), addr, len));
655
656 #ifdef DIAGNOSTIC
657 if (__predict_false(!ALIGNED_POINTER(buf, uint16_t)))
658 panic("%s: unaligned readbuf", device_xname(sc->sc_dev));
659 if (__predict_false(addr >= SEEQ_MAX_BUFFER_SIZE))
660 panic("%s: readbuf out of range", device_xname(sc->sc_dev));
661 #endif
662
663 if (addr != -1) {
664 /*
665 * SEEQ 80C04 bug:
666 * Starting reading from certain addresses seems to cause
667 * us to get bogus results, so we avoid them.
668 */
669 runup = 0;
670 if (sc->sc_variant == SEEQ_8004 &&
671 ((addr & 0x00ff) == 0x00ea ||
672 (addr & 0x00ff) == 0x00ee ||
673 (addr & 0x00ff) == 0x00f0))
674 runup = (addr & 0x00ff) - 0x00e8;
675
676 ea_await_fifo_empty(sc);
677
678 ea_select_buffer(sc, SEEQ_BUFCODE_LOCAL_MEM);
679
680 /*
681 * 80C04 bug workaround. I found this in the old arm32 "eb"
682 * driver. I've no idea what it does, but it seems to stop
683 * the chip mangling data so often.
684 */
685 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
686 sc->sc_command | SEEQ_CMD_FIFO_WRITE);
687 ea_await_fifo_empty(sc);
688
689 SEEQ_WRITE16(sc, iot, ioh, SEEQ_DMA_ADDR, addr - runup);
690 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
691 sc->sc_command | SEEQ_CMD_FIFO_READ);
692
693 ea_await_fifo_full(sc);
694 while (runup > 0) {
695 /* LINTED: Reading a volatile _does_ have an effect */
696 (void)SEEQ_READ16(sc, iot, ioh, SEEQ_BUFWIN);
697 runup -= 2;
698 }
699 }
700
701 if (len > 0) {
702 if (sc->sc_flags & SF_8BIT)
703 bus_space_read_multi_1(iot, ioh, SEEQ_BUFWIN,
704 (uint8_t *)buf, len);
705 else
706 bus_space_read_multi_2(iot, ioh, SEEQ_BUFWIN,
707 /* LINTED: pointer alignment checked above */
708 (uint16_t *)buf, len / 2);
709 }
710 if (!(sc->sc_flags & SF_8BIT) && len % 2) {
711 /* Read the last byte */
712 buf[len - 1] = bus_space_read_2(iot, ioh, SEEQ_BUFWIN);
713 }
714 }
715
716 static void
717 ea_select_buffer(struct seeq8005_softc *sc, int bufcode)
718 {
719
720 SEEQ_WRITE16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_CONFIG1,
721 sc->sc_config1 | bufcode);
722 }
723
724 /* Must be called at splnet */
725 static void
726 ea_set_address(struct seeq8005_softc *sc, int which, const uint8_t *ea)
727 {
728 int i;
729
730 ea_select_buffer(sc, SEEQ_BUFCODE_STATION_ADDR0 + which);
731 for (i = 0; i < ETHER_ADDR_LEN; ++i)
732 SEEQ_WRITE16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_BUFWIN, ea[i]);
733 }
734
735 /*
736 * Initialize interface.
737 *
738 * This should leave the interface in a state for packet reception and
739 * transmission.
740 */
741
742 static int
743 ea_init(struct ifnet *ifp)
744 {
745 struct seeq8005_softc *sc = ifp->if_softc;
746 bus_space_tag_t iot = sc->sc_iot;
747 bus_space_handle_t ioh = sc->sc_ioh;
748 int s;
749
750 DPRINTF(SEEQ_DEBUG_MISC, ("ea_init()\n"));
751
752 s = splnet();
753
754 /* First, reset the board. */
755
756 ea_chipreset(sc);
757
758 /* Set up defaults for the registers */
759
760 sc->sc_command = 0;
761 sc->sc_config1 = 0;
762 #if BYTE_ORDER == BIG_ENDIAN
763 sc->sc_config2 = SEEQ_CFG2_BYTESWAP;
764 #else
765 sc->sc_config2 = 0;
766 #endif
767 sc->sc_config3 = 0;
768
769 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND, sc->sc_command);
770 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG1, sc->sc_config1);
771 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
772 if (sc->sc_variant == SEEQ_8004) {
773 ea_select_buffer(sc, SEEQ_BUFCODE_CONFIG3);
774 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, sc->sc_config3);
775 }
776
777 /* Write the station address - the receiver must be off */
778 ea_set_address(sc, 0, (const uint8_t *)CLLADDR(ifp->if_sadl));
779
780 /* Split board memory into Rx and Tx. */
781 ea_select_buffer(sc, SEEQ_BUFCODE_TX_EAP);
782 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, (sc->sc_tx_bufsize>> 8) - 1);
783
784 if (sc->sc_variant == SEEQ_8004) {
785 /* Make the interface IFF_SIMPLEX. */
786 sc->sc_config2 |= SEEQ_CFG2_RX_TX_DISABLE;
787 /* Enable reception of long packets (for vlan(4)). */
788 sc->sc_config2 |= SEEQ_CFG2_PASS_LONGSHORT;
789 }
790
791 /* Configure rx. */
792 ea_mc_reset(sc);
793 if (ifp->if_flags & IFF_PROMISC)
794 sc->sc_config1 = SEEQ_CFG1_PROMISCUOUS;
795 else if ((ifp->if_flags & IFF_ALLMULTI) || sc->sc_variant == SEEQ_8004)
796 sc->sc_config1 = SEEQ_CFG1_MULTICAST;
797 else
798 sc->sc_config1 = SEEQ_CFG1_BROADCAST;
799 sc->sc_config1 |= SEEQ_CFG1_STATION_ADDR0;
800 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG1, sc->sc_config1);
801
802 /* Setup the Rx pointers */
803 sc->sc_rx_ptr = sc->sc_tx_bufsize;
804
805 SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_PTR, sc->sc_rx_ptr);
806 SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_END, sc->sc_rx_ptr >> 8);
807
808
809 /* Place a NULL header at the beginning of the receive area */
810 ea_writebuf(sc, NULL, sc->sc_rx_ptr, 0);
811
812 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, 0x0000);
813 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, 0x0000);
814
815
816 /* Configure TX. */
817 DPRINTF(SEEQ_DEBUG_MISC, ("Configuring tx...\n"));
818
819 SEEQ_WRITE16(sc, iot, ioh, SEEQ_TX_PTR, 0x0000);
820
821 sc->sc_config2 |= SEEQ_CFG2_OUTPUT;
822 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
823
824 /* Reset tx buffer pointers */
825 sc->sc_tx_cur = 0;
826 sc->sc_tx_used = 0;
827 sc->sc_tx_next = 0;
828
829 /* Place a NULL header at the beginning of the transmit area */
830 ea_writebuf(sc, NULL, 0x0000, 0);
831
832 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, 0x0000);
833 SEEQ_WRITE16(sc, iot, ioh, SEEQ_BUFWIN, 0x0000);
834
835 sc->sc_command |= SEEQ_CMD_TX_INTEN;
836 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND, sc->sc_command);
837
838 /* Turn on Rx */
839 sc->sc_command |= SEEQ_CMD_RX_INTEN;
840 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
841 sc->sc_command | SEEQ_CMD_RX_ON);
842
843 /* TX_ON gets set by ea_txpacket when there's something to transmit. */
844
845
846 /* Set flags appropriately. */
847 ifp->if_flags |= IFF_RUNNING;
848 ifp->if_flags &= ~IFF_OACTIVE;
849 sc->sc_enabled = 1;
850
851 /* And start output. */
852 ea_start(ifp);
853
854 splx(s);
855 return 0;
856 }
857
858 /*
859 * Start output on interface. Get datagrams from the queue and output them,
860 * giving the receiver a chance between datagrams. Call only from splnet or
861 * interrupt level!
862 */
863
864 static void
865 ea_start(struct ifnet *ifp)
866 {
867 struct seeq8005_softc *sc = ifp->if_softc;
868 int s;
869
870 s = splnet();
871 DPRINTF(SEEQ_DEBUG_TX, ("ea_start()...\n"));
872
873 /*
874 * Don't do anything if output is active. seeq8005intr() will call
875 * us (actually ea_txpacket()) back when the card's ready for more
876 * frames.
877 */
878 if (ifp->if_flags & IFF_OACTIVE) {
879 splx(s);
880 return;
881 }
882
883 /* Mark interface as output active */
884
885 ifp->if_flags |= IFF_OACTIVE;
886
887 /* tx packets */
888
889 ea_txpacket(sc);
890 splx(s);
891 }
892
893
894 /*
895 * Transfer a packet to the interface buffer and start transmission
896 *
897 * Called at splnet()
898 */
899
900 static void
901 ea_txpacket(struct seeq8005_softc *sc)
902 {
903 bus_space_tag_t iot = sc->sc_iot;
904 bus_space_handle_t ioh = sc->sc_ioh;
905 struct mbuf *m0;
906 struct ifnet *ifp;
907
908 ifp = &sc->sc_ethercom.ec_if;
909
910 /* Dequeue the next packet. */
911 IFQ_DEQUEUE(&ifp->if_snd, m0);
912
913 /* If there's nothing to send, return. */
914 if (m0 == NULL) {
915 ifp->if_flags &= ~IFF_OACTIVE;
916 sc->sc_config2 |= SEEQ_CFG2_OUTPUT;
917 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
918 DPRINTF(SEEQ_DEBUG_TX, ("tx finished\n"));
919 return;
920 }
921
922 /* Give the packet to the bpf, if any. */
923 bpf_mtap(ifp, m0, BPF_D_OUT);
924
925 DPRINTF(SEEQ_DEBUG_TX, ("Tx new packet\n"));
926
927 sc->sc_config2 &= ~SEEQ_CFG2_OUTPUT;
928 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
929
930 ea_writembuf(sc, m0, 0x0000);
931 m_freem(m0);
932
933 SEEQ_WRITE16(sc, iot, ioh, SEEQ_TX_PTR, 0x0000);
934
935 /* Now transmit the datagram. */
936 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
937 sc->sc_command | SEEQ_CMD_TX_ON);
938
939 /* Make sure we notice if the chip goes silent on us. */
940 ifp->if_timer = 5;
941
942 DPRINTF(SEEQ_DEBUG_TX,
943 ("st=%04x\n", SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS)));
944 DPRINTF(SEEQ_DEBUG_TX, ("tx: queued\n"));
945 }
946
947 /*
948 * Copy a packet from an mbuf to the transmit buffer on the card.
949 *
950 * Puts a valid Tx header at the start of the packet, and a null header at
951 * the end.
952 */
953 static int
954 ea_writembuf(struct seeq8005_softc *sc, struct mbuf *m0, int bufstart)
955 {
956 struct mbuf *m;
957 int len, nextpacket;
958 uint8_t hdr[4];
959
960 /*
961 * Copy the datagram to the packet buffer.
962 */
963 len = 0;
964 for (m = m0; m; m = m->m_next) {
965 if (m->m_len == 0)
966 continue;
967 ea_writebuf(sc, mtod(m, u_char *), bufstart + 4 + len,
968 m->m_len);
969 len += m->m_len;
970 }
971
972 if (len < ETHER_MIN_LEN) {
973 ea_writebuf(sc, padbuf, bufstart + 4 + len,
974 ETHER_MIN_LEN - len);
975 len = ETHER_MIN_LEN;
976 }
977
978 /* Follow it with a NULL packet header */
979 memset(hdr, 0, 4);
980 ea_writebuf(sc, hdr, bufstart + 4 + len, 4);
981
982 /* Ok we now have a packet len bytes long in our packet buffer */
983 DPRINTF(SEEQ_DEBUG_TX, ("ea_writembuf: length=%d\n", len));
984
985 /* Write the packet header */
986 nextpacket = bufstart + len + 4;
987 hdr[0] = (nextpacket >> 8) & 0xff;
988 hdr[1] = nextpacket & 0xff;
989 hdr[2] = SEEQ_PKTCMD_TX | SEEQ_PKTCMD_DATA_FOLLOWS |
990 SEEQ_TXCMD_XMIT_SUCCESS_INT | SEEQ_TXCMD_COLLISION_INT;
991 hdr[3] = 0; /* Status byte -- will be updated by hardware. */
992 ea_writebuf(sc, hdr, bufstart, 4);
993
994 return len;
995 }
996
997 /*
998 * Ethernet controller interrupt.
999 */
1000
1001 int
1002 seeq8005intr(void *arg)
1003 {
1004 struct seeq8005_softc *sc = arg;
1005 bus_space_tag_t iot = sc->sc_iot;
1006 bus_space_handle_t ioh = sc->sc_ioh;
1007 int status, handled;
1008
1009 handled = 0;
1010
1011 /* Get the controller status */
1012 status = SEEQ_READ16(sc, iot, ioh, SEEQ_STATUS);
1013
1014 /* Tx interrupt ? */
1015 if (status & SEEQ_STATUS_TX_INT) {
1016 handled = 1;
1017
1018 /* Acknowledge the interrupt */
1019 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
1020 sc->sc_command | SEEQ_CMD_TX_INTACK);
1021
1022 ea_txint(sc);
1023 }
1024
1025
1026 /* Rx interrupt ? */
1027 if (status & SEEQ_STATUS_RX_INT) {
1028 handled = 1;
1029
1030 /* Acknowledge the interrupt */
1031 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
1032 sc->sc_command | SEEQ_CMD_RX_INTACK);
1033
1034 /* Processes the received packets */
1035 ea_rxint(sc);
1036 }
1037
1038 if (handled)
1039 rnd_add_uint32(&sc->rnd_source, status);
1040
1041 return handled;
1042 }
1043
1044 static void
1045 ea_txint(struct seeq8005_softc *sc)
1046 {
1047 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1048 bus_space_tag_t iot = sc->sc_iot;
1049 bus_space_handle_t ioh = sc->sc_ioh;
1050 uint8_t txhdr[4];
1051 u_int txstatus;
1052
1053 ea_readbuf(sc, txhdr, 0x0000, 4);
1054
1055 DPRINTF(SEEQ_DEBUG_TX, ("txstatus=%02x %02x %02x %02x\n",
1056 txhdr[0], txhdr[1], txhdr[2], txhdr[3]));
1057 txstatus = txhdr[3];
1058
1059 /*
1060 * If SEEQ_TXSTAT_COLLISION is set then we received at least
1061 * one collision. On the 8004 we can find out exactly how many
1062 * collisions occurred.
1063 *
1064 * The SEEQ_PKTSTAT_DONE will be set if the transmission has
1065 * completed.
1066 *
1067 * If SEEQ_TXSTAT_COLLISION16 is set then 16 collisions
1068 * occurred and the packet transmission was aborted.
1069 * This situation is untested as present.
1070 *
1071 * The SEEQ_TXSTAT_BABBLE is untested as it should only be set
1072 * when we deliberately transmit oversized packets (e.g. for
1073 * 802.1Q).
1074 */
1075 if (txstatus & SEEQ_TXSTAT_COLLISION) {
1076 switch (sc->sc_variant) {
1077 case SEEQ_8004: {
1078 int colls;
1079
1080 /*
1081 * The 8004 contains a 4 bit collision count
1082 * in the status register.
1083 */
1084
1085 /* This appears to be broken on 80C04.AE */
1086 /* ifp->if_collisions +=
1087 (txstatus >> SEEQ_TXSTAT_COLLISIONS_SHIFT)
1088 & SEEQ_TXSTAT_COLLISION_MASK;*/
1089
1090 /* Use the TX Collision register */
1091 ea_select_buffer(sc, SEEQ_BUFCODE_TX_COLLS);
1092 colls = bus_space_read_1(iot, ioh, SEEQ_BUFWIN);
1093 ifp->if_collisions += colls;
1094 break;
1095 }
1096 case SEEQ_8005:
1097 /* We known there was at least 1 collision */
1098 ifp->if_collisions++;
1099 break;
1100 }
1101 } else if (txstatus & SEEQ_TXSTAT_COLLISION16) {
1102 printf("seeq_intr: col16 %x\n", txstatus);
1103 ifp->if_collisions += 16;
1104 ifp->if_oerrors++;
1105 }
1106
1107 /* Have we completed transmission on the packet ? */
1108 if (txstatus & SEEQ_PKTSTAT_DONE) {
1109 /* Clear watchdog timer. */
1110 ifp->if_timer = 0;
1111 ifp->if_flags &= ~IFF_OACTIVE;
1112
1113 /* Update stats */
1114 ifp->if_opackets++;
1115
1116 /* Tx next packet */
1117
1118 ea_txpacket(sc);
1119 }
1120 }
1121
1122 static void
1123 ea_rxint(struct seeq8005_softc *sc)
1124 {
1125 bus_space_tag_t iot = sc->sc_iot;
1126 bus_space_handle_t ioh = sc->sc_ioh;
1127 u_int addr;
1128 int len;
1129 int ctrl;
1130 int ptr;
1131 int status;
1132 uint8_t rxhdr[4];
1133 struct ifnet *ifp;
1134
1135 ifp = &sc->sc_ethercom.ec_if;
1136
1137
1138 /* We start from the last rx pointer position */
1139 addr = sc->sc_rx_ptr;
1140 sc->sc_config2 &= ~SEEQ_CFG2_OUTPUT;
1141 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
1142
1143 do {
1144 /* Read rx header */
1145 ea_readbuf(sc, rxhdr, addr, 4);
1146
1147 /* Split the packet header */
1148 ptr = (rxhdr[0] << 8) | rxhdr[1];
1149 ctrl = rxhdr[2];
1150 status = rxhdr[3];
1151
1152 DPRINTF(SEEQ_DEBUG_RX,
1153 ("addr=%04x ptr=%04x ctrl=%02x status=%02x\n",
1154 addr, ptr, ctrl, status));
1155
1156 /* Zero packet ptr ? then must be null header so exit */
1157 if (ptr == 0) break;
1158
1159 /* Sanity-check the next-packet pointer and flags. */
1160 if (__predict_false(ptr < sc->sc_tx_bufsize ||
1161 (ctrl & SEEQ_PKTCMD_TX))) {
1162 ++ifp->if_ierrors;
1163 log(LOG_ERR,
1164 "%s: Rx chain corrupt at %04x (ptr = %04x)\n",
1165 device_xname(sc->sc_dev), addr, ptr);
1166 ea_init(ifp);
1167 return;
1168 }
1169
1170 /* Get packet length */
1171 len = (ptr - addr) - 4;
1172
1173 if (len < 0)
1174 len += sc->sc_rx_bufsize;
1175 DPRINTF(SEEQ_DEBUG_RX, ("len=%04x\n", len));
1176
1177 /* Has the packet rx completed ? if not then exit */
1178 if ((status & SEEQ_PKTSTAT_DONE) == 0)
1179 break;
1180
1181 /*
1182 * Did we have any errors? then note error and go to
1183 * next packet
1184 */
1185 if (__predict_false(status &
1186 (SEEQ_RXSTAT_CRC_ERROR | SEEQ_RXSTAT_DRIBBLE_ERROR |
1187 SEEQ_RXSTAT_SHORT_FRAME))) {
1188 ++ifp->if_ierrors;
1189 log(LOG_WARNING,
1190 "%s: rx packet error at %04x (err=%02x)\n",
1191 device_xname(sc->sc_dev), addr, status & 0x0f);
1192 /* XXX shouldn't need to reset if it's genuine. */
1193 ea_init(ifp);
1194 return;
1195 }
1196 /*
1197 * Is the packet too big? We allow slightly oversize packets
1198 * for vlan(4) and tcpdump purposes, but the rest of the world
1199 * wants incoming packets in a single mbuf cluster.
1200 */
1201 if (__predict_false(len > MCLBYTES)) {
1202 ++ifp->if_ierrors;
1203 log(LOG_ERR,
1204 "%s: rx packet size error at %04x (len=%d)\n",
1205 device_xname(sc->sc_dev), addr, len);
1206 ea_init(ifp);
1207 return;
1208 }
1209
1210 /* Pass data up to upper levels. */
1211 ea_read(sc, addr + 4, len);
1212
1213 addr = ptr;
1214 } while (len != 0);
1215
1216 sc->sc_config2 |= SEEQ_CFG2_OUTPUT;
1217 SEEQ_WRITE16(sc, iot, ioh, SEEQ_CONFIG2, sc->sc_config2);
1218
1219 DPRINTF(SEEQ_DEBUG_RX, ("new rx ptr=%04x\n", addr));
1220
1221 /* Store new rx pointer */
1222 sc->sc_rx_ptr = addr;
1223 SEEQ_WRITE16(sc, iot, ioh, SEEQ_RX_END, sc->sc_rx_ptr >> 8);
1224
1225 /* Make sure the receiver is on */
1226 SEEQ_WRITE16(sc, iot, ioh, SEEQ_COMMAND,
1227 sc->sc_command | SEEQ_CMD_RX_ON);
1228 }
1229
1230
1231 /*
1232 * Pass a packet up to the higher levels.
1233 */
1234
1235 static void
1236 ea_read(struct seeq8005_softc *sc, int addr, int len)
1237 {
1238 struct mbuf *m;
1239 struct ifnet *ifp;
1240
1241 ifp = &sc->sc_ethercom.ec_if;
1242
1243 /* Pull packet off interface. */
1244 m = ea_get(sc, addr, len, ifp);
1245 if (m == NULL)
1246 return;
1247
1248 if_percpuq_enqueue(ifp->if_percpuq, m);
1249 }
1250
1251 /*
1252 * Pull read data off a interface. Len is length of data, with local net
1253 * header stripped. We copy the data into mbufs. When full cluster sized
1254 * units are present we copy into clusters.
1255 */
1256
1257 struct mbuf *
1258 ea_get(struct seeq8005_softc *sc, int addr, int totlen, struct ifnet *ifp)
1259 {
1260 struct mbuf *top, **mp, *m;
1261 int len;
1262 u_int cp, epkt;
1263
1264 cp = addr;
1265 epkt = cp + totlen;
1266
1267 MGETHDR(m, M_DONTWAIT, MT_DATA);
1268 if (m == NULL)
1269 return NULL;
1270 m_set_rcvif(m, ifp);
1271 m->m_pkthdr.len = totlen;
1272 m->m_len = MHLEN;
1273 top = NULL;
1274 mp = ⊤
1275
1276 while (totlen > 0) {
1277 if (top) {
1278 MGET(m, M_DONTWAIT, MT_DATA);
1279 if (m == NULL) {
1280 m_freem(top);
1281 return NULL;
1282 }
1283 m->m_len = MLEN;
1284 }
1285 len = uimin(totlen, epkt - cp);
1286 if (len >= MINCLSIZE) {
1287 MCLGET(m, M_DONTWAIT);
1288 if (m->m_flags & M_EXT)
1289 m->m_len = len = uimin(len, MCLBYTES);
1290 else
1291 len = m->m_len;
1292 } else {
1293 /*
1294 * Place initial small packet/header at end of mbuf.
1295 */
1296 if (len < m->m_len) {
1297 if (top == NULL && len + max_linkhdr <= m->m_len)
1298 m->m_data += max_linkhdr;
1299 m->m_len = len;
1300 } else
1301 len = m->m_len;
1302 }
1303 if (top == NULL) {
1304 /* Make sure the payload is aligned */
1305 char *newdata = (char *)
1306 ALIGN((char*)m->m_data +
1307 sizeof(struct ether_header)) -
1308 sizeof(struct ether_header);
1309 len -= newdata - m->m_data;
1310 m->m_len = len;
1311 m->m_data = newdata;
1312 }
1313 ea_readbuf(sc, mtod(m, u_char *),
1314 cp < SEEQ_MAX_BUFFER_SIZE ? cp : cp - sc->sc_rx_bufsize,
1315 len);
1316 cp += len;
1317 *mp = m;
1318 mp = &m->m_next;
1319 totlen -= len;
1320 if (cp == epkt)
1321 cp = addr;
1322 }
1323
1324 return top;
1325 }
1326
1327 /*
1328 * Process an ioctl request. Mostly boilerplate.
1329 */
1330 static int
1331 ea_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1332 {
1333 struct seeq8005_softc *sc = ifp->if_softc;
1334 int s, error = 0;
1335
1336 s = splnet();
1337 switch (cmd) {
1338
1339 default:
1340 error = ether_ioctl(ifp, cmd, data);
1341 if (error == ENETRESET) {
1342 /*
1343 * Multicast list has changed; set the hardware filter
1344 * accordingly.
1345 */
1346 if (ifp->if_flags & IFF_RUNNING)
1347 ea_mc_reset(sc);
1348 error = 0;
1349 }
1350 break;
1351 }
1352
1353 splx(s);
1354 return error;
1355 }
1356
1357 /* Must be called at splnet() */
1358
1359 static void
1360 ea_mc_reset(struct seeq8005_softc *sc)
1361 {
1362
1363 switch (sc->sc_variant) {
1364 case SEEQ_8004:
1365 ea_mc_reset_8004(sc);
1366 return;
1367 case SEEQ_8005:
1368 ea_mc_reset_8005(sc);
1369 return;
1370 }
1371 }
1372
1373 static void
1374 ea_mc_reset_8004(struct seeq8005_softc *sc)
1375 {
1376 struct ethercom *ec = &sc->sc_ethercom;
1377 struct ifnet *ifp = &ec->ec_if;
1378 struct ether_multi *enm;
1379 uint32_t crc;
1380 int i;
1381 struct ether_multistep step;
1382 uint8_t af[8];
1383
1384 /*
1385 * Set up multicast address filter by passing all multicast addresses
1386 * through a crc generator, and then using bits 2 - 7 as an index
1387 * into the 64 bit logical address filter. The high order bits
1388 * selects the word, while the rest of the bits select the bit within
1389 * the word.
1390 */
1391
1392 if (ifp->if_flags & IFF_PROMISC) {
1393 ifp->if_flags |= IFF_ALLMULTI;
1394 for (i = 0; i < 8; i++)
1395 af[i] = 0xff;
1396 return;
1397 }
1398 for (i = 0; i < 8; i++)
1399 af[i] = 0;
1400
1401 ETHER_LOCK(ec);
1402 ETHER_FIRST_MULTI(step, ec, enm);
1403 while (enm != NULL) {
1404 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1405 sizeof(enm->enm_addrlo)) != 0) {
1406 /*
1407 * We must listen to a range of multicast addresses.
1408 * For now, just accept all multicasts, rather than
1409 * trying to set only those filter bits needed to match
1410 * the range. (At this time, the only use of address
1411 * ranges is for IP multicast routing, for which the
1412 * range is big enough to require all bits set.)
1413 */
1414 ifp->if_flags |= IFF_ALLMULTI;
1415 for (i = 0; i < 8; i++)
1416 af[i] = 0xff;
1417 break;
1418 }
1419
1420 crc = ether_crc32_be(enm->enm_addrlo, sizeof(enm->enm_addrlo));
1421
1422 /* Just want the 6 most significant bits. */
1423 crc = (crc >> 2) & 0x3f;
1424
1425 /* Turn on the corresponding bit in the filter. */
1426 af[crc >> 3] |= 1 << (crc & 0x7);
1427
1428 ETHER_NEXT_MULTI(step, enm);
1429 }
1430 ETHER_UNLOCK(ec);
1431 ifp->if_flags &= ~IFF_ALLMULTI;
1432
1433 ea_select_buffer(sc, SEEQ_BUFCODE_MULTICAST);
1434 for (i = 0; i < 8; ++i)
1435 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
1436 SEEQ_BUFWIN, af[i]);
1437 }
1438
1439 static void
1440 ea_mc_reset_8005(struct seeq8005_softc *sc)
1441 {
1442 struct ethercom *ec = &sc->sc_ethercom;
1443 struct ether_multi *enm;
1444 struct ether_multistep step;
1445 int naddr, maxaddrs;
1446
1447 naddr = 0;
1448 maxaddrs = 5;
1449 ETHER_LOCK(ec);
1450 ETHER_FIRST_MULTI(step, ec, enm);
1451 while (enm != NULL) {
1452 /* Have we got space? */
1453 if (naddr >= maxaddrs ||
1454 memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
1455 ec->ec_if.if_flags |= IFF_ALLMULTI;
1456 ETHER_UNLOCK(ec);
1457 ea_ioctl(&ec->ec_if, SIOCSIFFLAGS, NULL);
1458 return;
1459 }
1460 ea_set_address(sc, 1 + naddr, enm->enm_addrlo);
1461 sc->sc_config1 |= SEEQ_CFG1_STATION_ADDR1 << naddr;
1462 naddr++;
1463 ETHER_NEXT_MULTI(step, enm);
1464 }
1465 ETHER_UNLOCK(ec);
1466
1467 for (; naddr < maxaddrs; naddr++)
1468 sc->sc_config1 &= ~(SEEQ_CFG1_STATION_ADDR1 << naddr);
1469 SEEQ_WRITE16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_CONFIG1,
1470 sc->sc_config1);
1471 }
1472
1473 /*
1474 * Device timeout routine.
1475 */
1476
1477 static void
1478 ea_watchdog(struct ifnet *ifp)
1479 {
1480 struct seeq8005_softc *sc = ifp->if_softc;
1481
1482 log(LOG_ERR, "%s: lost Tx interrupt (status = 0x%04x)\n",
1483 device_xname(sc->sc_dev),
1484 SEEQ_READ16(sc, sc->sc_iot, sc->sc_ioh, SEEQ_STATUS));
1485 ifp->if_oerrors++;
1486
1487 /* Kick the interface */
1488
1489 ea_init(ifp);
1490
1491 ifp->if_timer = 0;
1492 }
1493
1494 /* End of seeq8005.c */
1495