sgec.c revision 1.53 1 1.53 thorpej /* $NetBSD: sgec.c,v 1.53 2020/03/15 22:19:00 thorpej Exp $ */
2 1.1 ragge /*
3 1.1 ragge * Copyright (c) 1999 Ludd, University of Lule}, Sweden. All rights reserved.
4 1.1 ragge *
5 1.1 ragge * Redistribution and use in source and binary forms, with or without
6 1.1 ragge * modification, are permitted provided that the following conditions
7 1.1 ragge * are met:
8 1.1 ragge * 1. Redistributions of source code must retain the above copyright
9 1.1 ragge * notice, this list of conditions and the following disclaimer.
10 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 ragge * notice, this list of conditions and the following disclaimer in the
12 1.1 ragge * documentation and/or other materials provided with the distribution.
13 1.1 ragge *
14 1.1 ragge * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 1.1 ragge * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 1.1 ragge * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 1.1 ragge * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 1.1 ragge * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 1.1 ragge * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 1.1 ragge * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 1.1 ragge * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 1.1 ragge * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 1.1 ragge * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 1.1 ragge */
25 1.1 ragge
26 1.1 ragge /*
27 1.1 ragge * Driver for the SGEC (Second Generation Ethernet Controller), sitting
28 1.26 perry * on for example the VAX 4000/300 (KA670).
29 1.1 ragge *
30 1.1 ragge * The SGEC looks like a mixture of the DEQNA and the TULIP. Fun toy.
31 1.1 ragge *
32 1.1 ragge * Even though the chip is capable to use virtual addresses (read the
33 1.1 ragge * System Page Table directly) this driver doesn't do so, and there
34 1.1 ragge * is no benefit in doing it either in NetBSD of today.
35 1.1 ragge *
36 1.1 ragge * Things that is still to do:
37 1.1 ragge * Collect statistics.
38 1.1 ragge * Use imperfect filtering when many multicast addresses.
39 1.1 ragge */
40 1.18 lukem
41 1.18 lukem #include <sys/cdefs.h>
42 1.53 thorpej __KERNEL_RCSID(0, "$NetBSD: sgec.c,v 1.53 2020/03/15 22:19:00 thorpej Exp $");
43 1.1 ragge
44 1.1 ragge #include "opt_inet.h"
45 1.1 ragge
46 1.1 ragge #include <sys/param.h>
47 1.1 ragge #include <sys/mbuf.h>
48 1.1 ragge #include <sys/socket.h>
49 1.1 ragge #include <sys/device.h>
50 1.1 ragge #include <sys/systm.h>
51 1.1 ragge #include <sys/sockio.h>
52 1.1 ragge
53 1.1 ragge #include <net/if.h>
54 1.1 ragge #include <net/if_ether.h>
55 1.1 ragge #include <net/if_dl.h>
56 1.47 msaitoh #include <net/bpf.h>
57 1.1 ragge
58 1.1 ragge #include <netinet/in.h>
59 1.1 ragge #include <netinet/if_inarp.h>
60 1.1 ragge
61 1.34 ad #include <sys/bus.h>
62 1.1 ragge
63 1.1 ragge #include <dev/ic/sgecreg.h>
64 1.1 ragge #include <dev/ic/sgecvar.h>
65 1.1 ragge
66 1.25 perry static void zeinit(struct ze_softc *);
67 1.25 perry static void zestart(struct ifnet *);
68 1.28 christos static int zeioctl(struct ifnet *, u_long, void *);
69 1.25 perry static int ze_add_rxbuf(struct ze_softc *, int);
70 1.25 perry static void ze_setup(struct ze_softc *);
71 1.25 perry static void zetimeout(struct ifnet *);
72 1.35 matt static bool zereset(struct ze_softc *);
73 1.1 ragge
74 1.1 ragge #define ZE_WCSR(csr, val) \
75 1.1 ragge bus_space_write_4(sc->sc_iot, sc->sc_ioh, csr, val)
76 1.1 ragge #define ZE_RCSR(csr) \
77 1.1 ragge bus_space_read_4(sc->sc_iot, sc->sc_ioh, csr)
78 1.1 ragge
79 1.1 ragge /*
80 1.1 ragge * Interface exists: make available by filling in network interface
81 1.1 ragge * record. System will initialize the interface when it is ready
82 1.1 ragge * to accept packets.
83 1.1 ragge */
84 1.1 ragge void
85 1.35 matt sgec_attach(struct ze_softc *sc)
86 1.1 ragge {
87 1.35 matt struct ifnet *ifp = &sc->sc_if;
88 1.35 matt struct ze_tdes *tp;
89 1.35 matt struct ze_rdes *rp;
90 1.1 ragge bus_dma_segment_t seg;
91 1.1 ragge int i, rseg, error;
92 1.1 ragge
93 1.50 msaitoh /*
94 1.50 msaitoh * Allocate DMA safe memory for descriptors and setup memory.
95 1.50 msaitoh */
96 1.35 matt error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct ze_cdata),
97 1.35 matt PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
98 1.35 matt if (error) {
99 1.35 matt aprint_error(": unable to allocate control data, error = %d\n",
100 1.1 ragge error);
101 1.1 ragge goto fail_0;
102 1.1 ragge }
103 1.1 ragge
104 1.35 matt error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, sizeof(struct ze_cdata),
105 1.49 msaitoh (void **)&sc->sc_zedata, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
106 1.35 matt if (error) {
107 1.35 matt aprint_error(
108 1.35 matt ": unable to map control data, error = %d\n", error);
109 1.1 ragge goto fail_1;
110 1.1 ragge }
111 1.1 ragge
112 1.35 matt error = bus_dmamap_create(sc->sc_dmat, sizeof(struct ze_cdata), 1,
113 1.35 matt sizeof(struct ze_cdata), 0, BUS_DMA_NOWAIT, &sc->sc_cmap);
114 1.35 matt if (error) {
115 1.35 matt aprint_error(
116 1.35 matt ": unable to create control data DMA map, error = %d\n",
117 1.1 ragge error);
118 1.1 ragge goto fail_2;
119 1.1 ragge }
120 1.1 ragge
121 1.35 matt error = bus_dmamap_load(sc->sc_dmat, sc->sc_cmap, sc->sc_zedata,
122 1.35 matt sizeof(struct ze_cdata), NULL, BUS_DMA_NOWAIT);
123 1.35 matt if (error) {
124 1.35 matt aprint_error(
125 1.35 matt ": unable to load control data DMA map, error = %d\n",
126 1.1 ragge error);
127 1.1 ragge goto fail_3;
128 1.1 ragge }
129 1.1 ragge
130 1.1 ragge /*
131 1.1 ragge * Zero the newly allocated memory.
132 1.1 ragge */
133 1.16 thorpej memset(sc->sc_zedata, 0, sizeof(struct ze_cdata));
134 1.35 matt
135 1.1 ragge /*
136 1.1 ragge * Create the transmit descriptor DMA maps.
137 1.1 ragge */
138 1.35 matt for (i = 0; error == 0 && i < TXDESCS; i++) {
139 1.49 msaitoh error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, TXDESCS - 1,
140 1.49 msaitoh MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
141 1.35 matt &sc->sc_xmtmap[i]);
142 1.35 matt }
143 1.35 matt if (error) {
144 1.35 matt aprint_error(": unable to create tx DMA map %d, error = %d\n",
145 1.35 matt i, error);
146 1.35 matt goto fail_4;
147 1.1 ragge }
148 1.1 ragge
149 1.1 ragge /*
150 1.1 ragge * Create receive buffer DMA maps.
151 1.1 ragge */
152 1.35 matt for (i = 0; error == 0 && i < RXDESCS; i++) {
153 1.35 matt error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
154 1.35 matt MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_rcvmap[i]);
155 1.35 matt }
156 1.35 matt if (error) {
157 1.35 matt aprint_error(": unable to create rx DMA map %d, error = %d\n",
158 1.35 matt i, error);
159 1.35 matt goto fail_5;
160 1.1 ragge }
161 1.35 matt
162 1.1 ragge /*
163 1.1 ragge * Pre-allocate the receive buffers.
164 1.1 ragge */
165 1.35 matt for (i = 0; error == 0 && i < RXDESCS; i++) {
166 1.35 matt error = ze_add_rxbuf(sc, i);
167 1.35 matt }
168 1.35 matt
169 1.35 matt if (error) {
170 1.35 matt aprint_error(
171 1.35 matt ": unable to allocate or map rx buffer %d, error = %d\n",
172 1.35 matt i, error);
173 1.35 matt goto fail_6;
174 1.1 ragge }
175 1.5 matt
176 1.5 matt /* For vmstat -i
177 1.5 matt */
178 1.6 matt evcnt_attach_dynamic(&sc->sc_intrcnt, EVCNT_TYPE_INTR, NULL,
179 1.35 matt device_xname(sc->sc_dev), "intr");
180 1.30 matt evcnt_attach_dynamic(&sc->sc_rxintrcnt, EVCNT_TYPE_INTR,
181 1.35 matt &sc->sc_intrcnt, device_xname(sc->sc_dev), "rx intr");
182 1.30 matt evcnt_attach_dynamic(&sc->sc_txintrcnt, EVCNT_TYPE_INTR,
183 1.35 matt &sc->sc_intrcnt, device_xname(sc->sc_dev), "tx intr");
184 1.30 matt evcnt_attach_dynamic(&sc->sc_txdraincnt, EVCNT_TYPE_INTR,
185 1.35 matt &sc->sc_intrcnt, device_xname(sc->sc_dev), "tx drain");
186 1.30 matt evcnt_attach_dynamic(&sc->sc_nobufintrcnt, EVCNT_TYPE_INTR,
187 1.35 matt &sc->sc_intrcnt, device_xname(sc->sc_dev), "nobuf intr");
188 1.30 matt evcnt_attach_dynamic(&sc->sc_nointrcnt, EVCNT_TYPE_INTR,
189 1.35 matt &sc->sc_intrcnt, device_xname(sc->sc_dev), "no intr");
190 1.1 ragge
191 1.1 ragge /*
192 1.1 ragge * Create ring loops of the buffer chains.
193 1.1 ragge * This is only done once.
194 1.1 ragge */
195 1.1 ragge sc->sc_pzedata = (struct ze_cdata *)sc->sc_cmap->dm_segs[0].ds_addr;
196 1.1 ragge
197 1.1 ragge rp = sc->sc_zedata->zc_recv;
198 1.1 ragge rp[RXDESCS].ze_framelen = ZE_FRAMELEN_OW;
199 1.1 ragge rp[RXDESCS].ze_rdes1 = ZE_RDES1_CA;
200 1.1 ragge rp[RXDESCS].ze_bufaddr = (char *)sc->sc_pzedata->zc_recv;
201 1.1 ragge
202 1.1 ragge tp = sc->sc_zedata->zc_xmit;
203 1.1 ragge tp[TXDESCS].ze_tdr = ZE_TDR_OW;
204 1.1 ragge tp[TXDESCS].ze_tdes1 = ZE_TDES1_CA;
205 1.1 ragge tp[TXDESCS].ze_bufaddr = (char *)sc->sc_pzedata->zc_xmit;
206 1.1 ragge
207 1.1 ragge if (zereset(sc))
208 1.1 ragge return;
209 1.1 ragge
210 1.35 matt strcpy(ifp->if_xname, device_xname(sc->sc_dev));
211 1.1 ragge ifp->if_softc = sc;
212 1.1 ragge ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
213 1.1 ragge ifp->if_start = zestart;
214 1.1 ragge ifp->if_ioctl = zeioctl;
215 1.1 ragge ifp->if_watchdog = zetimeout;
216 1.11 thorpej IFQ_SET_READY(&ifp->if_snd);
217 1.1 ragge
218 1.1 ragge /*
219 1.1 ragge * Attach the interface.
220 1.1 ragge */
221 1.1 ragge if_attach(ifp);
222 1.1 ragge ether_ifattach(ifp, sc->sc_enaddr);
223 1.1 ragge
224 1.35 matt aprint_normal("\n");
225 1.35 matt aprint_normal_dev(sc->sc_dev, "hardware address %s\n",
226 1.1 ragge ether_sprintf(sc->sc_enaddr));
227 1.1 ragge return;
228 1.1 ragge
229 1.1 ragge /*
230 1.1 ragge * Free any resources we've allocated during the failed attach
231 1.1 ragge * attempt. Do this in reverse order and fall through.
232 1.1 ragge */
233 1.1 ragge fail_6:
234 1.1 ragge for (i = 0; i < RXDESCS; i++) {
235 1.1 ragge if (sc->sc_rxmbuf[i] != NULL) {
236 1.40 martin bus_dmamap_unload(sc->sc_dmat, sc->sc_rcvmap[i]);
237 1.1 ragge m_freem(sc->sc_rxmbuf[i]);
238 1.1 ragge }
239 1.1 ragge }
240 1.1 ragge fail_5:
241 1.40 martin for (i = 0; i < TXDESCS; i++) {
242 1.1 ragge if (sc->sc_xmtmap[i] != NULL)
243 1.1 ragge bus_dmamap_destroy(sc->sc_dmat, sc->sc_xmtmap[i]);
244 1.1 ragge }
245 1.1 ragge fail_4:
246 1.40 martin for (i = 0; i < RXDESCS; i++) {
247 1.1 ragge if (sc->sc_rcvmap[i] != NULL)
248 1.1 ragge bus_dmamap_destroy(sc->sc_dmat, sc->sc_rcvmap[i]);
249 1.1 ragge }
250 1.1 ragge bus_dmamap_unload(sc->sc_dmat, sc->sc_cmap);
251 1.1 ragge fail_3:
252 1.1 ragge bus_dmamap_destroy(sc->sc_dmat, sc->sc_cmap);
253 1.1 ragge fail_2:
254 1.28 christos bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_zedata,
255 1.1 ragge sizeof(struct ze_cdata));
256 1.1 ragge fail_1:
257 1.1 ragge bus_dmamem_free(sc->sc_dmat, &seg, rseg);
258 1.1 ragge fail_0:
259 1.1 ragge return;
260 1.1 ragge }
261 1.1 ragge
262 1.1 ragge /*
263 1.1 ragge * Initialization of interface.
264 1.1 ragge */
265 1.1 ragge void
266 1.35 matt zeinit(struct ze_softc *sc)
267 1.1 ragge {
268 1.35 matt struct ifnet *ifp = &sc->sc_if;
269 1.1 ragge struct ze_cdata *zc = sc->sc_zedata;
270 1.1 ragge int i;
271 1.1 ragge
272 1.1 ragge /*
273 1.1 ragge * Reset the interface.
274 1.1 ragge */
275 1.1 ragge if (zereset(sc))
276 1.1 ragge return;
277 1.1 ragge
278 1.30 matt sc->sc_nexttx = sc->sc_inq = sc->sc_lastack = sc->sc_txcnt = 0;
279 1.1 ragge /*
280 1.1 ragge * Release and init transmit descriptors.
281 1.1 ragge */
282 1.1 ragge for (i = 0; i < TXDESCS; i++) {
283 1.29 matt if (sc->sc_xmtmap[i]->dm_nsegs > 0)
284 1.29 matt bus_dmamap_unload(sc->sc_dmat, sc->sc_xmtmap[i]);
285 1.1 ragge if (sc->sc_txmbuf[i]) {
286 1.1 ragge m_freem(sc->sc_txmbuf[i]);
287 1.1 ragge sc->sc_txmbuf[i] = 0;
288 1.1 ragge }
289 1.1 ragge zc->zc_xmit[i].ze_tdr = 0; /* Clear valid bit */
290 1.1 ragge }
291 1.1 ragge
292 1.1 ragge
293 1.1 ragge /*
294 1.1 ragge * Init receive descriptors.
295 1.1 ragge */
296 1.1 ragge for (i = 0; i < RXDESCS; i++)
297 1.1 ragge zc->zc_recv[i].ze_framelen = ZE_FRAMELEN_OW;
298 1.1 ragge sc->sc_nextrx = 0;
299 1.1 ragge
300 1.49 msaitoh ZE_WCSR(ZE_CSR6, ZE_NICSR6_IE | ZE_NICSR6_BL_8 | ZE_NICSR6_ST |
301 1.49 msaitoh ZE_NICSR6_SR | ZE_NICSR6_DC);
302 1.1 ragge
303 1.1 ragge ifp->if_flags |= IFF_RUNNING;
304 1.1 ragge
305 1.1 ragge /*
306 1.1 ragge * Send a setup frame.
307 1.1 ragge * This will start the transmit machinery as well.
308 1.1 ragge */
309 1.1 ragge ze_setup(sc);
310 1.1 ragge
311 1.1 ragge }
312 1.1 ragge
313 1.1 ragge /*
314 1.1 ragge * Start output on interface.
315 1.1 ragge */
316 1.1 ragge void
317 1.35 matt zestart(struct ifnet *ifp)
318 1.1 ragge {
319 1.1 ragge struct ze_softc *sc = ifp->if_softc;
320 1.1 ragge struct ze_cdata *zc = sc->sc_zedata;
321 1.1 ragge paddr_t buffer;
322 1.29 matt struct mbuf *m;
323 1.30 matt int nexttx, starttx;
324 1.30 matt int len, i, totlen, error;
325 1.4 matt int old_inq = sc->sc_inq;
326 1.41 dholland uint16_t orword, tdr = 0;
327 1.29 matt bus_dmamap_t map;
328 1.1 ragge
329 1.1 ragge while (sc->sc_inq < (TXDESCS - 1)) {
330 1.1 ragge
331 1.1 ragge if (sc->sc_setup) {
332 1.1 ragge ze_setup(sc);
333 1.1 ragge continue;
334 1.1 ragge }
335 1.29 matt nexttx = sc->sc_nexttx;
336 1.11 thorpej IFQ_POLL(&sc->sc_if.if_snd, m);
337 1.1 ragge if (m == 0)
338 1.1 ragge goto out;
339 1.1 ragge /*
340 1.1 ragge * Count number of mbufs in chain.
341 1.1 ragge * Always do DMA directly from mbufs, therefore the transmit
342 1.1 ragge * ring is really big.
343 1.1 ragge */
344 1.29 matt map = sc->sc_xmtmap[nexttx];
345 1.29 matt error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
346 1.29 matt BUS_DMA_WRITE);
347 1.29 matt if (error) {
348 1.35 matt aprint_error_dev(sc->sc_dev,
349 1.35 matt "zestart: load_mbuf failed: %d", error);
350 1.29 matt goto out;
351 1.29 matt }
352 1.29 matt
353 1.29 matt if (map->dm_nsegs >= TXDESCS)
354 1.1 ragge panic("zestart"); /* XXX */
355 1.1 ragge
356 1.29 matt if ((map->dm_nsegs + sc->sc_inq) >= (TXDESCS - 1)) {
357 1.29 matt bus_dmamap_unload(sc->sc_dmat, map);
358 1.1 ragge goto out;
359 1.1 ragge }
360 1.26 perry
361 1.1 ragge /*
362 1.1 ragge * m now points to a mbuf chain that can be loaded.
363 1.1 ragge * Loop around and set it.
364 1.1 ragge */
365 1.1 ragge totlen = 0;
366 1.29 matt orword = ZE_TDES1_FS;
367 1.30 matt starttx = nexttx;
368 1.29 matt for (i = 0; i < map->dm_nsegs; i++) {
369 1.29 matt buffer = map->dm_segs[i].ds_addr;
370 1.29 matt len = map->dm_segs[i].ds_len;
371 1.29 matt
372 1.30 matt KASSERT(len > 0);
373 1.1 ragge
374 1.1 ragge totlen += len;
375 1.1 ragge /* Word alignment calc */
376 1.1 ragge if (totlen == m->m_pkthdr.len) {
377 1.30 matt sc->sc_txcnt += map->dm_nsegs;
378 1.30 matt if (sc->sc_txcnt >= TXDESCS * 3 / 4) {
379 1.30 matt orword |= ZE_TDES1_IC;
380 1.30 matt sc->sc_txcnt = 0;
381 1.30 matt }
382 1.30 matt orword |= ZE_TDES1_LS;
383 1.29 matt sc->sc_txmbuf[nexttx] = m;
384 1.1 ragge }
385 1.29 matt zc->zc_xmit[nexttx].ze_bufsize = len;
386 1.29 matt zc->zc_xmit[nexttx].ze_bufaddr = (char *)buffer;
387 1.29 matt zc->zc_xmit[nexttx].ze_tdes1 = orword;
388 1.30 matt zc->zc_xmit[nexttx].ze_tdr = tdr;
389 1.29 matt
390 1.29 matt if (++nexttx == TXDESCS)
391 1.29 matt nexttx = 0;
392 1.29 matt orword = 0;
393 1.30 matt tdr = ZE_TDR_OW;
394 1.1 ragge }
395 1.29 matt
396 1.29 matt sc->sc_inq += map->dm_nsegs;
397 1.29 matt
398 1.11 thorpej IFQ_DEQUEUE(&ifp->if_snd, m);
399 1.1 ragge #ifdef DIAGNOSTIC
400 1.1 ragge if (totlen != m->m_pkthdr.len)
401 1.1 ragge panic("zestart: len fault");
402 1.1 ragge #endif
403 1.30 matt /*
404 1.30 matt * Turn ownership of the packet over to the device.
405 1.30 matt */
406 1.30 matt zc->zc_xmit[starttx].ze_tdr = ZE_TDR_OW;
407 1.1 ragge
408 1.1 ragge /*
409 1.1 ragge * Kick off the transmit logic, if it is stopped.
410 1.1 ragge */
411 1.1 ragge if ((ZE_RCSR(ZE_CSR5) & ZE_NICSR5_TS) != ZE_NICSR5_TS_RUN)
412 1.1 ragge ZE_WCSR(ZE_CSR1, -1);
413 1.29 matt sc->sc_nexttx = nexttx;
414 1.45 ozaki
415 1.48 msaitoh bpf_mtap(ifp, m, BPF_D_OUT);
416 1.1 ragge }
417 1.1 ragge
418 1.4 matt out: if (old_inq < sc->sc_inq)
419 1.1 ragge ifp->if_timer = 5; /* If transmit logic dies */
420 1.1 ragge }
421 1.1 ragge
422 1.1 ragge int
423 1.35 matt sgec_intr(struct ze_softc *sc)
424 1.1 ragge {
425 1.1 ragge struct ze_cdata *zc = sc->sc_zedata;
426 1.1 ragge struct ifnet *ifp = &sc->sc_if;
427 1.1 ragge struct mbuf *m;
428 1.1 ragge int csr, len;
429 1.1 ragge
430 1.1 ragge csr = ZE_RCSR(ZE_CSR5);
431 1.30 matt if ((csr & ZE_NICSR5_IS) == 0) { /* Wasn't we */
432 1.30 matt sc->sc_nointrcnt.ev_count++;
433 1.1 ragge return 0;
434 1.30 matt }
435 1.1 ragge ZE_WCSR(ZE_CSR5, csr);
436 1.1 ragge
437 1.30 matt if (csr & ZE_NICSR5_RU)
438 1.30 matt sc->sc_nobufintrcnt.ev_count++;
439 1.30 matt
440 1.24 thorpej if (csr & ZE_NICSR5_RI) {
441 1.30 matt sc->sc_rxintrcnt.ev_count++;
442 1.1 ragge while ((zc->zc_recv[sc->sc_nextrx].ze_framelen &
443 1.1 ragge ZE_FRAMELEN_OW) == 0) {
444 1.1 ragge
445 1.1 ragge m = sc->sc_rxmbuf[sc->sc_nextrx];
446 1.1 ragge len = zc->zc_recv[sc->sc_nextrx].ze_framelen;
447 1.1 ragge ze_add_rxbuf(sc, sc->sc_nextrx);
448 1.1 ragge if (++sc->sc_nextrx == RXDESCS)
449 1.1 ragge sc->sc_nextrx = 0;
450 1.24 thorpej if (len < ETHER_MIN_LEN) {
451 1.52 thorpej if_statinc(ifp, if_ierrors);
452 1.24 thorpej m_freem(m);
453 1.24 thorpej } else {
454 1.43 ozaki m_set_rcvif(m, ifp);
455 1.24 thorpej m->m_pkthdr.len = m->m_len =
456 1.24 thorpej len - ETHER_CRC_LEN;
457 1.42 ozaki if_percpuq_enqueue(ifp->if_percpuq, m);
458 1.24 thorpej }
459 1.1 ragge }
460 1.24 thorpej }
461 1.1 ragge
462 1.30 matt if (csr & ZE_NICSR5_TI)
463 1.30 matt sc->sc_txintrcnt.ev_count++;
464 1.30 matt if (sc->sc_lastack != sc->sc_nexttx) {
465 1.30 matt int lastack;
466 1.30 matt for (lastack = sc->sc_lastack; lastack != sc->sc_nexttx; ) {
467 1.29 matt bus_dmamap_t map;
468 1.29 matt int nlastack;
469 1.1 ragge
470 1.30 matt if ((zc->zc_xmit[lastack].ze_tdr & ZE_TDR_OW) != 0)
471 1.1 ragge break;
472 1.1 ragge
473 1.29 matt if ((zc->zc_xmit[lastack].ze_tdes1 & ZE_TDES1_DT) ==
474 1.29 matt ZE_TDES1_DT_SETUP) {
475 1.29 matt if (++lastack == TXDESCS)
476 1.29 matt lastack = 0;
477 1.29 matt sc->sc_inq--;
478 1.1 ragge continue;
479 1.1 ragge }
480 1.29 matt
481 1.29 matt KASSERT(zc->zc_xmit[lastack].ze_tdes1 & ZE_TDES1_FS);
482 1.29 matt map = sc->sc_xmtmap[lastack];
483 1.29 matt KASSERT(map->dm_nsegs > 0);
484 1.29 matt nlastack = (lastack + map->dm_nsegs - 1) % TXDESCS;
485 1.29 matt if (zc->zc_xmit[nlastack].ze_tdr & ZE_TDR_OW)
486 1.29 matt break;
487 1.29 matt lastack = nlastack;
488 1.30 matt if (sc->sc_txcnt > map->dm_nsegs)
489 1.30 matt sc->sc_txcnt -= map->dm_nsegs;
490 1.30 matt else
491 1.30 matt sc->sc_txcnt = 0;
492 1.29 matt sc->sc_inq -= map->dm_nsegs;
493 1.29 matt KASSERT(zc->zc_xmit[lastack].ze_tdes1 & ZE_TDES1_LS);
494 1.52 thorpej if_statinc(ifp, if_opackets);
495 1.29 matt bus_dmamap_unload(sc->sc_dmat, map);
496 1.29 matt KASSERT(sc->sc_txmbuf[lastack]);
497 1.29 matt m_freem(sc->sc_txmbuf[lastack]);
498 1.29 matt sc->sc_txmbuf[lastack] = 0;
499 1.29 matt if (++lastack == TXDESCS)
500 1.29 matt lastack = 0;
501 1.1 ragge }
502 1.30 matt if (lastack != sc->sc_lastack) {
503 1.30 matt sc->sc_txdraincnt.ev_count++;
504 1.30 matt sc->sc_lastack = lastack;
505 1.30 matt if (sc->sc_inq == 0)
506 1.30 matt ifp->if_timer = 0;
507 1.30 matt zestart(ifp); /* Put in more in queue */
508 1.30 matt }
509 1.1 ragge }
510 1.1 ragge return 1;
511 1.1 ragge }
512 1.1 ragge
513 1.1 ragge /*
514 1.1 ragge * Process an ioctl request.
515 1.1 ragge */
516 1.1 ragge int
517 1.35 matt zeioctl(struct ifnet *ifp, u_long cmd, void *data)
518 1.1 ragge {
519 1.1 ragge struct ze_softc *sc = ifp->if_softc;
520 1.35 matt struct ifaddr *ifa = data;
521 1.1 ragge int s = splnet(), error = 0;
522 1.1 ragge
523 1.1 ragge switch (cmd) {
524 1.1 ragge
525 1.36 dyoung case SIOCINITIFADDR:
526 1.1 ragge ifp->if_flags |= IFF_UP;
527 1.49 msaitoh switch (ifa->ifa_addr->sa_family) {
528 1.1 ragge #ifdef INET
529 1.1 ragge case AF_INET:
530 1.1 ragge zeinit(sc);
531 1.1 ragge arp_ifinit(ifp, ifa);
532 1.1 ragge break;
533 1.1 ragge #endif
534 1.1 ragge }
535 1.1 ragge break;
536 1.1 ragge
537 1.1 ragge case SIOCSIFFLAGS:
538 1.36 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0)
539 1.36 dyoung break;
540 1.36 dyoung /* XXX re-use ether_ioctl() */
541 1.49 msaitoh switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
542 1.36 dyoung case IFF_RUNNING:
543 1.1 ragge /*
544 1.1 ragge * If interface is marked down and it is running,
545 1.1 ragge * stop it. (by disabling receive mechanism).
546 1.1 ragge */
547 1.1 ragge ZE_WCSR(ZE_CSR6, ZE_RCSR(ZE_CSR6) &
548 1.49 msaitoh ~(ZE_NICSR6_ST | ZE_NICSR6_SR));
549 1.1 ragge ifp->if_flags &= ~IFF_RUNNING;
550 1.36 dyoung break;
551 1.36 dyoung case IFF_UP:
552 1.1 ragge /*
553 1.1 ragge * If interface it marked up and it is stopped, then
554 1.1 ragge * start it.
555 1.1 ragge */
556 1.1 ragge zeinit(sc);
557 1.36 dyoung break;
558 1.49 msaitoh case IFF_UP | IFF_RUNNING:
559 1.1 ragge /*
560 1.1 ragge * Send a new setup packet to match any new changes.
561 1.1 ragge * (Like IFF_PROMISC etc)
562 1.1 ragge */
563 1.1 ragge ze_setup(sc);
564 1.36 dyoung break;
565 1.36 dyoung case 0:
566 1.36 dyoung break;
567 1.1 ragge }
568 1.1 ragge break;
569 1.1 ragge
570 1.1 ragge case SIOCADDMULTI:
571 1.1 ragge case SIOCDELMULTI:
572 1.1 ragge /*
573 1.1 ragge * Update our multicast list.
574 1.1 ragge */
575 1.32 dyoung if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
576 1.1 ragge /*
577 1.1 ragge * Multicast list has changed; set the hardware filter
578 1.1 ragge * accordingly.
579 1.1 ragge */
580 1.23 thorpej if (ifp->if_flags & IFF_RUNNING)
581 1.23 thorpej ze_setup(sc);
582 1.1 ragge error = 0;
583 1.1 ragge }
584 1.1 ragge break;
585 1.1 ragge
586 1.1 ragge default:
587 1.36 dyoung error = ether_ioctl(ifp, cmd, data);
588 1.1 ragge
589 1.1 ragge }
590 1.1 ragge splx(s);
591 1.49 msaitoh return error;
592 1.1 ragge }
593 1.1 ragge
594 1.1 ragge /*
595 1.1 ragge * Add a receive buffer to the indicated descriptor.
596 1.1 ragge */
597 1.1 ragge int
598 1.35 matt ze_add_rxbuf(struct ze_softc *sc, int i)
599 1.1 ragge {
600 1.1 ragge struct mbuf *m;
601 1.1 ragge struct ze_rdes *rp;
602 1.1 ragge int error;
603 1.1 ragge
604 1.1 ragge MGETHDR(m, M_DONTWAIT, MT_DATA);
605 1.1 ragge if (m == NULL)
606 1.49 msaitoh return ENOBUFS;
607 1.1 ragge
608 1.22 matt MCLAIM(m, &sc->sc_ec.ec_rx_mowner);
609 1.1 ragge MCLGET(m, M_DONTWAIT);
610 1.1 ragge if ((m->m_flags & M_EXT) == 0) {
611 1.1 ragge m_freem(m);
612 1.49 msaitoh return ENOBUFS;
613 1.1 ragge }
614 1.1 ragge
615 1.1 ragge if (sc->sc_rxmbuf[i] != NULL)
616 1.1 ragge bus_dmamap_unload(sc->sc_dmat, sc->sc_rcvmap[i]);
617 1.1 ragge
618 1.1 ragge error = bus_dmamap_load(sc->sc_dmat, sc->sc_rcvmap[i],
619 1.17 thorpej m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
620 1.49 msaitoh BUS_DMA_READ | BUS_DMA_NOWAIT);
621 1.1 ragge if (error)
622 1.19 provos panic("%s: can't load rx DMA map %d, error = %d",
623 1.35 matt device_xname(sc->sc_dev), i, error);
624 1.1 ragge sc->sc_rxmbuf[i] = m;
625 1.1 ragge
626 1.1 ragge bus_dmamap_sync(sc->sc_dmat, sc->sc_rcvmap[i], 0,
627 1.1 ragge sc->sc_rcvmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
628 1.1 ragge
629 1.1 ragge /*
630 1.1 ragge * We know that the mbuf cluster is page aligned. Also, be sure
631 1.1 ragge * that the IP header will be longword aligned.
632 1.1 ragge */
633 1.1 ragge m->m_data += 2;
634 1.1 ragge rp = &sc->sc_zedata->zc_recv[i];
635 1.1 ragge rp->ze_bufsize = (m->m_ext.ext_size - 2);
636 1.1 ragge rp->ze_bufaddr = (char *)sc->sc_rcvmap[i]->dm_segs[0].ds_addr + 2;
637 1.1 ragge rp->ze_framelen = ZE_FRAMELEN_OW;
638 1.1 ragge
639 1.49 msaitoh return 0;
640 1.1 ragge }
641 1.1 ragge
642 1.1 ragge /*
643 1.1 ragge * Create a setup packet and put in queue for sending.
644 1.1 ragge */
645 1.1 ragge void
646 1.35 matt ze_setup(struct ze_softc *sc)
647 1.1 ragge {
648 1.51 msaitoh struct ethercom *ec = &sc->sc_ec;
649 1.1 ragge struct ether_multi *enm;
650 1.1 ragge struct ether_multistep step;
651 1.1 ragge struct ze_cdata *zc = sc->sc_zedata;
652 1.1 ragge struct ifnet *ifp = &sc->sc_if;
653 1.49 msaitoh const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
654 1.13 ragge int j, idx, reg;
655 1.1 ragge
656 1.1 ragge if (sc->sc_inq == (TXDESCS - 1)) {
657 1.1 ragge sc->sc_setup = 1;
658 1.1 ragge return;
659 1.1 ragge }
660 1.1 ragge sc->sc_setup = 0;
661 1.1 ragge /*
662 1.1 ragge * Init the setup packet with valid info.
663 1.1 ragge */
664 1.1 ragge memset(zc->zc_setup, 0xff, sizeof(zc->zc_setup)); /* Broadcast */
665 1.15 thorpej memcpy(zc->zc_setup, enaddr, ETHER_ADDR_LEN);
666 1.1 ragge
667 1.1 ragge /*
668 1.26 perry * Multicast handling. The SGEC can handle up to 16 direct
669 1.1 ragge * ethernet addresses.
670 1.1 ragge */
671 1.1 ragge j = 16;
672 1.1 ragge ifp->if_flags &= ~IFF_ALLMULTI;
673 1.51 msaitoh ETHER_LOCK(ec);
674 1.51 msaitoh ETHER_FIRST_MULTI(step, ec, enm);
675 1.1 ragge while (enm != NULL) {
676 1.14 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6)) {
677 1.1 ragge ifp->if_flags |= IFF_ALLMULTI;
678 1.1 ragge break;
679 1.1 ragge }
680 1.15 thorpej memcpy(&zc->zc_setup[j], enm->enm_addrlo, ETHER_ADDR_LEN);
681 1.1 ragge j += 8;
682 1.1 ragge ETHER_NEXT_MULTI(step, enm);
683 1.1 ragge if ((enm != NULL)&& (j == 128)) {
684 1.1 ragge ifp->if_flags |= IFF_ALLMULTI;
685 1.1 ragge break;
686 1.1 ragge }
687 1.1 ragge }
688 1.51 msaitoh ETHER_UNLOCK(ec);
689 1.7 thorpej
690 1.7 thorpej /*
691 1.7 thorpej * ALLMULTI implies PROMISC in this driver.
692 1.7 thorpej */
693 1.7 thorpej if (ifp->if_flags & IFF_ALLMULTI)
694 1.7 thorpej ifp->if_flags |= IFF_PROMISC;
695 1.7 thorpej else if (ifp->if_pcount == 0)
696 1.7 thorpej ifp->if_flags &= ~IFF_PROMISC;
697 1.1 ragge
698 1.1 ragge /*
699 1.1 ragge * Fiddle with the receive logic.
700 1.1 ragge */
701 1.1 ragge reg = ZE_RCSR(ZE_CSR6);
702 1.1 ragge DELAY(10);
703 1.1 ragge ZE_WCSR(ZE_CSR6, reg & ~ZE_NICSR6_SR); /* Stop rx */
704 1.1 ragge reg &= ~ZE_NICSR6_AF;
705 1.1 ragge if (ifp->if_flags & IFF_PROMISC)
706 1.1 ragge reg |= ZE_NICSR6_AF_PROM;
707 1.1 ragge else if (ifp->if_flags & IFF_ALLMULTI)
708 1.1 ragge reg |= ZE_NICSR6_AF_ALLM;
709 1.1 ragge DELAY(10);
710 1.1 ragge ZE_WCSR(ZE_CSR6, reg);
711 1.1 ragge /*
712 1.1 ragge * Only send a setup packet if needed.
713 1.1 ragge */
714 1.49 msaitoh if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) == 0) {
715 1.1 ragge idx = sc->sc_nexttx;
716 1.1 ragge zc->zc_xmit[idx].ze_tdes1 = ZE_TDES1_DT_SETUP;
717 1.1 ragge zc->zc_xmit[idx].ze_bufsize = 128;
718 1.1 ragge zc->zc_xmit[idx].ze_bufaddr = sc->sc_pzedata->zc_setup;
719 1.1 ragge zc->zc_xmit[idx].ze_tdr = ZE_TDR_OW;
720 1.1 ragge
721 1.1 ragge if ((ZE_RCSR(ZE_CSR5) & ZE_NICSR5_TS) != ZE_NICSR5_TS_RUN)
722 1.1 ragge ZE_WCSR(ZE_CSR1, -1);
723 1.1 ragge
724 1.1 ragge sc->sc_inq++;
725 1.1 ragge if (++sc->sc_nexttx == TXDESCS)
726 1.1 ragge sc->sc_nexttx = 0;
727 1.1 ragge }
728 1.1 ragge }
729 1.1 ragge
730 1.1 ragge /*
731 1.1 ragge * Check for dead transmit logic.
732 1.1 ragge */
733 1.1 ragge void
734 1.35 matt zetimeout(struct ifnet *ifp)
735 1.1 ragge {
736 1.1 ragge struct ze_softc *sc = ifp->if_softc;
737 1.1 ragge
738 1.1 ragge if (sc->sc_inq == 0)
739 1.1 ragge return;
740 1.1 ragge
741 1.35 matt aprint_error_dev(sc->sc_dev, "xmit logic died, resetting...\n");
742 1.1 ragge /*
743 1.1 ragge * Do a reset of interface, to get it going again.
744 1.1 ragge * Will it work by just restart the transmit logic?
745 1.1 ragge */
746 1.1 ragge zeinit(sc);
747 1.1 ragge }
748 1.1 ragge
749 1.1 ragge /*
750 1.1 ragge * Reset chip:
751 1.1 ragge * Set/reset the reset flag.
752 1.1 ragge * Write interrupt vector.
753 1.1 ragge * Write ring buffer addresses.
754 1.1 ragge * Write SBR.
755 1.1 ragge */
756 1.35 matt bool
757 1.35 matt zereset(struct ze_softc *sc)
758 1.1 ragge {
759 1.13 ragge int reg, i;
760 1.1 ragge
761 1.1 ragge ZE_WCSR(ZE_CSR6, ZE_NICSR6_RE);
762 1.1 ragge DELAY(50000);
763 1.1 ragge if (ZE_RCSR(ZE_CSR6) & ZE_NICSR5_SF) {
764 1.35 matt aprint_error_dev(sc->sc_dev, "selftest failed\n");
765 1.35 matt return true;
766 1.1 ragge }
767 1.1 ragge
768 1.1 ragge /*
769 1.1 ragge * Get the vector that were set at match time, and remember it.
770 1.1 ragge * WHICH VECTOR TO USE? Take one unused. XXX
771 1.1 ragge * Funny way to set vector described in the programmers manual.
772 1.1 ragge */
773 1.1 ragge reg = ZE_NICSR0_IPL14 | sc->sc_intvec | 0x1fff0003; /* SYNC/ASYNC??? */
774 1.1 ragge i = 10;
775 1.1 ragge do {
776 1.1 ragge if (i-- == 0) {
777 1.35 matt aprint_error_dev(sc->sc_dev,
778 1.35 matt "failing SGEC CSR0 init\n");
779 1.35 matt return true;
780 1.1 ragge }
781 1.1 ragge ZE_WCSR(ZE_CSR0, reg);
782 1.1 ragge } while (ZE_RCSR(ZE_CSR0) != reg);
783 1.1 ragge
784 1.1 ragge ZE_WCSR(ZE_CSR3, (vaddr_t)sc->sc_pzedata->zc_recv);
785 1.1 ragge ZE_WCSR(ZE_CSR4, (vaddr_t)sc->sc_pzedata->zc_xmit);
786 1.35 matt return false;
787 1.1 ragge }
788