sgec.c revision 1.1 1 /* $NetBSD: sgec.c,v 1.1 1999/08/08 11:41:29 ragge Exp $ */
2 /*
3 * Copyright (c) 1999 Ludd, University of Lule}, Sweden. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed at Ludd, University of
16 * Lule}, Sweden and its contributors.
17 * 4. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Driver for the SGEC (Second Generation Ethernet Controller), sitting
34 * on for example the VAX 4000/300 (KA670).
35 *
36 * The SGEC looks like a mixture of the DEQNA and the TULIP. Fun toy.
37 *
38 * Even though the chip is capable to use virtual addresses (read the
39 * System Page Table directly) this driver doesn't do so, and there
40 * is no benefit in doing it either in NetBSD of today.
41 *
42 * Things that is still to do:
43 * Collect statistics.
44 * Use imperfect filtering when many multicast addresses.
45 */
46
47 #include "opt_inet.h"
48 #include "bpfilter.h"
49
50 #include <sys/param.h>
51 #include <sys/mbuf.h>
52 #include <sys/socket.h>
53 #include <sys/device.h>
54 #include <sys/systm.h>
55 #include <sys/sockio.h>
56
57 #include <net/if.h>
58 #include <net/if_ether.h>
59 #include <net/if_dl.h>
60
61 #include <netinet/in.h>
62 #include <netinet/if_inarp.h>
63
64 #if NBPFILTER > 0
65 #include <net/bpf.h>
66 #include <net/bpfdesc.h>
67 #endif
68
69 #include <machine/bus.h>
70
71 #include <dev/ic/sgecreg.h>
72 #include <dev/ic/sgecvar.h>
73
74 static void zeinit __P((struct ze_softc *));
75 static void zestart __P((struct ifnet *));
76 static int zeioctl __P((struct ifnet *, u_long, caddr_t));
77 static int ze_add_rxbuf __P((struct ze_softc *, int));
78 static void ze_setup __P((struct ze_softc *));
79 static void zetimeout __P((struct ifnet *));
80 static int zereset __P((struct ze_softc *));
81
82 #define ZE_WCSR(csr, val) \
83 bus_space_write_4(sc->sc_iot, sc->sc_ioh, csr, val)
84 #define ZE_RCSR(csr) \
85 bus_space_read_4(sc->sc_iot, sc->sc_ioh, csr)
86
87 /*
88 * Interface exists: make available by filling in network interface
89 * record. System will initialize the interface when it is ready
90 * to accept packets.
91 */
92 void
93 sgec_attach(sc)
94 struct ze_softc *sc;
95 {
96 struct ifnet *ifp = (struct ifnet *)&sc->sc_if;
97 struct ze_tdes *tp;
98 struct ze_rdes *rp;
99 bus_dma_segment_t seg;
100 int i, rseg, error;
101
102 /*
103 * Allocate DMA safe memory for descriptors and setup memory.
104 */
105 if ((error = bus_dmamem_alloc(sc->sc_dmat,
106 sizeof(struct ze_cdata), NBPG, 0, &seg, 1, &rseg,
107 BUS_DMA_NOWAIT)) != 0) {
108 printf(": unable to allocate control data, error = %d\n",
109 error);
110 goto fail_0;
111 }
112
113 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
114 sizeof(struct ze_cdata), (caddr_t *)&sc->sc_zedata,
115 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
116 printf(": unable to map control data, error = %d\n", error);
117 goto fail_1;
118 }
119
120 if ((error = bus_dmamap_create(sc->sc_dmat,
121 sizeof(struct ze_cdata), 1,
122 sizeof(struct ze_cdata), 0, BUS_DMA_NOWAIT,
123 &sc->sc_cmap)) != 0) {
124 printf(": unable to create control data DMA map, error = %d\n",
125 error);
126 goto fail_2;
127 }
128
129 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cmap,
130 sc->sc_zedata, sizeof(struct ze_cdata), NULL,
131 BUS_DMA_NOWAIT)) != 0) {
132 printf(": unable to load control data DMA map, error = %d\n",
133 error);
134 goto fail_3;
135 }
136
137 /*
138 * Zero the newly allocated memory.
139 */
140 bzero(sc->sc_zedata, sizeof(struct ze_cdata));
141 /*
142 * Create the transmit descriptor DMA maps.
143 */
144 for (i = 0; i < TXDESCS; i++) {
145 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
146 1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
147 &sc->sc_xmtmap[i]))) {
148 printf(": unable to create tx DMA map %d, error = %d\n",
149 i, error);
150 goto fail_4;
151 }
152 }
153
154 /*
155 * Create receive buffer DMA maps.
156 */
157 for (i = 0; i < RXDESCS; i++) {
158 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
159 MCLBYTES, 0, BUS_DMA_NOWAIT,
160 &sc->sc_rcvmap[i]))) {
161 printf(": unable to create rx DMA map %d, error = %d\n",
162 i, error);
163 goto fail_5;
164 }
165 }
166 /*
167 * Pre-allocate the receive buffers.
168 */
169 for (i = 0; i < RXDESCS; i++) {
170 if ((error = ze_add_rxbuf(sc, i)) != 0) {
171 printf(": unable to allocate or map rx buffer %d\n,"
172 " error = %d\n", i, error);
173 goto fail_6;
174 }
175 }
176
177 /*
178 * Create ring loops of the buffer chains.
179 * This is only done once.
180 */
181 sc->sc_pzedata = (struct ze_cdata *)sc->sc_cmap->dm_segs[0].ds_addr;
182
183 rp = sc->sc_zedata->zc_recv;
184 rp[RXDESCS].ze_framelen = ZE_FRAMELEN_OW;
185 rp[RXDESCS].ze_rdes1 = ZE_RDES1_CA;
186 rp[RXDESCS].ze_bufaddr = (char *)sc->sc_pzedata->zc_recv;
187
188 tp = sc->sc_zedata->zc_xmit;
189 tp[TXDESCS].ze_tdr = ZE_TDR_OW;
190 tp[TXDESCS].ze_tdes1 = ZE_TDES1_CA;
191 tp[TXDESCS].ze_bufaddr = (char *)sc->sc_pzedata->zc_xmit;
192
193 if (zereset(sc))
194 return;
195
196 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
197 ifp->if_softc = sc;
198 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
199 ifp->if_start = zestart;
200 ifp->if_ioctl = zeioctl;
201 ifp->if_watchdog = zetimeout;
202
203 /*
204 * Attach the interface.
205 */
206 if_attach(ifp);
207 ether_ifattach(ifp, sc->sc_enaddr);
208
209 #if NBPFILTER > 0
210 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
211 #endif
212 printf("\n%s: hardware address %s\n", sc->sc_dev.dv_xname,
213 ether_sprintf(sc->sc_enaddr));
214 return;
215
216 /*
217 * Free any resources we've allocated during the failed attach
218 * attempt. Do this in reverse order and fall through.
219 */
220 fail_6:
221 for (i = 0; i < RXDESCS; i++) {
222 if (sc->sc_rxmbuf[i] != NULL) {
223 bus_dmamap_unload(sc->sc_dmat, sc->sc_xmtmap[i]);
224 m_freem(sc->sc_rxmbuf[i]);
225 }
226 }
227 fail_5:
228 for (i = 0; i < RXDESCS; i++) {
229 if (sc->sc_xmtmap[i] != NULL)
230 bus_dmamap_destroy(sc->sc_dmat, sc->sc_xmtmap[i]);
231 }
232 fail_4:
233 for (i = 0; i < TXDESCS; i++) {
234 if (sc->sc_rcvmap[i] != NULL)
235 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rcvmap[i]);
236 }
237 bus_dmamap_unload(sc->sc_dmat, sc->sc_cmap);
238 fail_3:
239 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cmap);
240 fail_2:
241 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_zedata,
242 sizeof(struct ze_cdata));
243 fail_1:
244 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
245 fail_0:
246 return;
247 }
248
249 /*
250 * Initialization of interface.
251 */
252 void
253 zeinit(sc)
254 struct ze_softc *sc;
255 {
256 struct ifnet *ifp = (struct ifnet *)&sc->sc_if;
257 struct ze_cdata *zc = sc->sc_zedata;
258 int i;
259
260 /*
261 * Reset the interface.
262 */
263 if (zereset(sc))
264 return;
265
266 sc->sc_nexttx = sc->sc_inq = sc->sc_lastack = 0;
267 /*
268 * Release and init transmit descriptors.
269 */
270 for (i = 0; i < TXDESCS; i++) {
271 if (sc->sc_txmbuf[i]) {
272 bus_dmamap_unload(sc->sc_dmat, sc->sc_xmtmap[i]);
273 m_freem(sc->sc_txmbuf[i]);
274 sc->sc_txmbuf[i] = 0;
275 }
276 zc->zc_xmit[i].ze_tdr = 0; /* Clear valid bit */
277 }
278
279
280 /*
281 * Init receive descriptors.
282 */
283 for (i = 0; i < RXDESCS; i++)
284 zc->zc_recv[i].ze_framelen = ZE_FRAMELEN_OW;
285 sc->sc_nextrx = 0;
286
287 ZE_WCSR(ZE_CSR6, ZE_NICSR6_IE|ZE_NICSR6_BL_8|ZE_NICSR6_ST|
288 ZE_NICSR6_SR|ZE_NICSR6_DC);
289
290 ifp->if_flags |= IFF_RUNNING;
291 ifp->if_flags &= ~IFF_OACTIVE;
292
293 /*
294 * Send a setup frame.
295 * This will start the transmit machinery as well.
296 */
297 ze_setup(sc);
298
299 }
300
301 /*
302 * Start output on interface.
303 */
304 void
305 zestart(ifp)
306 struct ifnet *ifp;
307 {
308 struct ze_softc *sc = ifp->if_softc;
309 struct ze_cdata *zc = sc->sc_zedata;
310 paddr_t buffer;
311 struct mbuf *m, *m0;
312 int idx, len, s, i, totlen, error;
313 short orword;
314
315 s = splimp();
316 while (sc->sc_inq < (TXDESCS - 1)) {
317
318 if (sc->sc_setup) {
319 ze_setup(sc);
320 continue;
321 }
322 idx = sc->sc_nexttx;
323 IF_DEQUEUE(&sc->sc_if.if_snd, m);
324 if (m == 0)
325 goto out;
326 /*
327 * Count number of mbufs in chain.
328 * Always do DMA directly from mbufs, therefore the transmit
329 * ring is really big.
330 */
331 for (m0 = m, i = 0; m0; m0 = m0->m_next)
332 if (m0->m_len)
333 i++;
334 if (i >= TXDESCS)
335 panic("zestart"); /* XXX */
336
337 if ((i + sc->sc_inq) >= (TXDESCS - 1)) {
338 IF_PREPEND(&sc->sc_if.if_snd, m);
339 ifp->if_flags |= IFF_OACTIVE;
340 goto out;
341 }
342
343 #if NBPFILTER > 0
344 if (ifp->if_bpf)
345 bpf_mtap(ifp->if_bpf, m);
346 #endif
347 /*
348 * m now points to a mbuf chain that can be loaded.
349 * Loop around and set it.
350 */
351 totlen = 0;
352 for (m0 = m; m0; m0 = m0->m_next) {
353 error = bus_dmamap_load(sc->sc_dmat, sc->sc_xmtmap[idx],
354 mtod(m0, void *), m0->m_len, 0, 0);
355 buffer = sc->sc_xmtmap[idx]->dm_segs[0].ds_addr;
356 len = m0->m_len;
357 if (len == 0)
358 continue;
359
360 totlen += len;
361 /* Word alignment calc */
362 orword = 0;
363 if (totlen == len)
364 orword = ZE_TDES1_FS;
365 if (totlen == m->m_pkthdr.len) {
366 if (totlen < ETHER_MIN_LEN)
367 len += (ETHER_MIN_LEN - totlen);
368 orword |= ZE_TDES1_LS;
369 sc->sc_txmbuf[idx] = m;
370 }
371 zc->zc_xmit[idx].ze_bufsize = len;
372 zc->zc_xmit[idx].ze_bufaddr = (char *)buffer;
373 zc->zc_xmit[idx].ze_tdes1 = orword | ZE_TDES1_IC;
374 zc->zc_xmit[idx].ze_tdr = ZE_TDR_OW;
375
376 if (++idx == TXDESCS)
377 idx = 0;
378 sc->sc_inq++;
379 }
380 #ifdef DIAGNOSTIC
381 if (totlen != m->m_pkthdr.len)
382 panic("zestart: len fault");
383 #endif
384
385 /*
386 * Kick off the transmit logic, if it is stopped.
387 */
388 if ((ZE_RCSR(ZE_CSR5) & ZE_NICSR5_TS) != ZE_NICSR5_TS_RUN)
389 ZE_WCSR(ZE_CSR1, -1);
390 sc->sc_nexttx = idx;
391 }
392 if (sc->sc_inq == (TXDESCS - 1))
393 ifp->if_flags |= IFF_OACTIVE;
394
395 out: if (sc->sc_inq)
396 ifp->if_timer = 5; /* If transmit logic dies */
397 splx(s);
398 }
399
400 int
401 sgec_intr(sc)
402 struct ze_softc *sc;
403 {
404 struct ze_cdata *zc = sc->sc_zedata;
405 struct ifnet *ifp = &sc->sc_if;
406 struct ether_header *eh;
407 struct mbuf *m;
408 int csr, len;
409
410 csr = ZE_RCSR(ZE_CSR5);
411 if ((csr & ZE_NICSR5_IS) == 0) /* Wasn't we */
412 return 0;
413 ZE_WCSR(ZE_CSR5, csr);
414
415 if (csr & ZE_NICSR5_RI)
416 while ((zc->zc_recv[sc->sc_nextrx].ze_framelen &
417 ZE_FRAMELEN_OW) == 0) {
418
419 m = sc->sc_rxmbuf[sc->sc_nextrx];
420 len = zc->zc_recv[sc->sc_nextrx].ze_framelen;
421 ze_add_rxbuf(sc, sc->sc_nextrx);
422 m->m_pkthdr.rcvif = ifp;
423 m->m_pkthdr.len = m->m_len = len;
424 if (++sc->sc_nextrx == RXDESCS)
425 sc->sc_nextrx = 0;
426 eh = mtod(m, struct ether_header *);
427 #if NBPFILTER > 0
428 if (ifp->if_bpf) {
429 bpf_mtap(ifp->if_bpf, m);
430 if ((ifp->if_flags & IFF_PROMISC) != 0 &&
431 bcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
432 ETHER_ADDR_LEN) != 0 &&
433 ((eh->ether_dhost[0] & 1) == 0)) {
434 m_freem(m);
435 continue;
436 }
437 }
438 #endif
439 /*
440 * ALLMULTI means PROMISC in this driver.
441 */
442 if ((ifp->if_flags & IFF_ALLMULTI) &&
443 ((eh->ether_dhost[0] & 1) == 0) &&
444 bcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
445 ETHER_ADDR_LEN)) {
446 m_freem(m);
447 continue;
448 }
449 (*ifp->if_input)(ifp, m);
450 }
451
452 if (csr & ZE_NICSR5_TI) {
453 while ((zc->zc_xmit[sc->sc_lastack].ze_tdr & ZE_TDR_OW) == 0) {
454 int idx = sc->sc_lastack;
455
456 if (sc->sc_lastack == sc->sc_nexttx)
457 break;
458 sc->sc_inq--;
459 if (++sc->sc_lastack == TXDESCS)
460 sc->sc_lastack = 0;
461
462 /* XXX collect statistics */
463 if ((zc->zc_xmit[idx].ze_tdes1 & ZE_TDES1_DT) ==
464 ZE_TDES1_DT_SETUP)
465 continue;
466 bus_dmamap_unload(sc->sc_dmat, sc->sc_xmtmap[idx]);
467 if (sc->sc_txmbuf[idx]) {
468 m_freem(sc->sc_txmbuf[idx]);
469 sc->sc_txmbuf[idx] = 0;
470 }
471 }
472 ifp->if_timer = 0;
473 ifp->if_flags &= ~IFF_OACTIVE;
474 zestart(ifp); /* Put in more in queue */
475 }
476 return 1;
477 }
478
479 /*
480 * Process an ioctl request.
481 */
482 int
483 zeioctl(ifp, cmd, data)
484 register struct ifnet *ifp;
485 u_long cmd;
486 caddr_t data;
487 {
488 struct ze_softc *sc = ifp->if_softc;
489 struct ifreq *ifr = (struct ifreq *)data;
490 struct ifaddr *ifa = (struct ifaddr *)data;
491 int s = splnet(), error = 0;
492
493 switch (cmd) {
494
495 case SIOCSIFADDR:
496 ifp->if_flags |= IFF_UP;
497 switch(ifa->ifa_addr->sa_family) {
498 #ifdef INET
499 case AF_INET:
500 zeinit(sc);
501 arp_ifinit(ifp, ifa);
502 break;
503 #endif
504 }
505 break;
506
507 case SIOCSIFFLAGS:
508 if ((ifp->if_flags & IFF_UP) == 0 &&
509 (ifp->if_flags & IFF_RUNNING) != 0) {
510 /*
511 * If interface is marked down and it is running,
512 * stop it. (by disabling receive mechanism).
513 */
514 ZE_WCSR(ZE_CSR6, ZE_RCSR(ZE_CSR6) &
515 ~(ZE_NICSR6_ST|ZE_NICSR6_SR));
516 ifp->if_flags &= ~IFF_RUNNING;
517 } else if ((ifp->if_flags & IFF_UP) != 0 &&
518 (ifp->if_flags & IFF_RUNNING) == 0) {
519 /*
520 * If interface it marked up and it is stopped, then
521 * start it.
522 */
523 zeinit(sc);
524 } else if ((ifp->if_flags & IFF_UP) != 0) {
525 /*
526 * Send a new setup packet to match any new changes.
527 * (Like IFF_PROMISC etc)
528 */
529 ze_setup(sc);
530 }
531 break;
532
533 case SIOCADDMULTI:
534 case SIOCDELMULTI:
535 /*
536 * Update our multicast list.
537 */
538 error = (cmd == SIOCADDMULTI) ?
539 ether_addmulti(ifr, &sc->sc_ec):
540 ether_delmulti(ifr, &sc->sc_ec);
541
542 if (error == ENETRESET) {
543 /*
544 * Multicast list has changed; set the hardware filter
545 * accordingly.
546 */
547 ze_setup(sc);
548 error = 0;
549 }
550 break;
551
552 default:
553 error = EINVAL;
554
555 }
556 splx(s);
557 return (error);
558 }
559
560 /*
561 * Add a receive buffer to the indicated descriptor.
562 */
563 int
564 ze_add_rxbuf(sc, i)
565 struct ze_softc *sc;
566 int i;
567 {
568 struct mbuf *m;
569 struct ze_rdes *rp;
570 int error;
571
572 MGETHDR(m, M_DONTWAIT, MT_DATA);
573 if (m == NULL)
574 return (ENOBUFS);
575
576 MCLGET(m, M_DONTWAIT);
577 if ((m->m_flags & M_EXT) == 0) {
578 m_freem(m);
579 return (ENOBUFS);
580 }
581
582 if (sc->sc_rxmbuf[i] != NULL)
583 bus_dmamap_unload(sc->sc_dmat, sc->sc_rcvmap[i]);
584
585 error = bus_dmamap_load(sc->sc_dmat, sc->sc_rcvmap[i],
586 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
587 if (error)
588 panic("%s: can't load rx DMA map %d, error = %d\n",
589 sc->sc_dev.dv_xname, i, error);
590 sc->sc_rxmbuf[i] = m;
591
592 bus_dmamap_sync(sc->sc_dmat, sc->sc_rcvmap[i], 0,
593 sc->sc_rcvmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
594
595 /*
596 * We know that the mbuf cluster is page aligned. Also, be sure
597 * that the IP header will be longword aligned.
598 */
599 m->m_data += 2;
600 rp = &sc->sc_zedata->zc_recv[i];
601 rp->ze_bufsize = (m->m_ext.ext_size - 2);
602 rp->ze_bufaddr = (char *)sc->sc_rcvmap[i]->dm_segs[0].ds_addr + 2;
603 rp->ze_framelen = ZE_FRAMELEN_OW;
604
605 return (0);
606 }
607
608 /*
609 * Create a setup packet and put in queue for sending.
610 */
611 void
612 ze_setup(sc)
613 struct ze_softc *sc;
614 {
615 struct ether_multi *enm;
616 struct ether_multistep step;
617 struct ze_cdata *zc = sc->sc_zedata;
618 struct ifnet *ifp = &sc->sc_if;
619 u_int8_t *enaddr = LLADDR(ifp->if_sadl);
620 int j, idx, s, reg;
621
622 s = splimp();
623 if (sc->sc_inq == (TXDESCS - 1)) {
624 sc->sc_setup = 1;
625 splx(s);
626 return;
627 }
628 sc->sc_setup = 0;
629 /*
630 * Init the setup packet with valid info.
631 */
632 memset(zc->zc_setup, 0xff, sizeof(zc->zc_setup)); /* Broadcast */
633 bcopy(enaddr, zc->zc_setup, ETHER_ADDR_LEN);
634
635 /*
636 * Multicast handling. The SGEC can handle up to 16 direct
637 * ethernet addresses.
638 */
639 j = 16;
640 ifp->if_flags &= ~IFF_ALLMULTI;
641 ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
642 while (enm != NULL) {
643 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, 6)) {
644 ifp->if_flags |= IFF_ALLMULTI;
645 break;
646 }
647 bcopy(enm->enm_addrlo, &zc->zc_setup[j], ETHER_ADDR_LEN);
648 j += 8;
649 ETHER_NEXT_MULTI(step, enm);
650 if ((enm != NULL)&& (j == 128)) {
651 ifp->if_flags |= IFF_ALLMULTI;
652 break;
653 }
654 }
655
656 /*
657 * Fiddle with the receive logic.
658 */
659 reg = ZE_RCSR(ZE_CSR6);
660 DELAY(10);
661 ZE_WCSR(ZE_CSR6, reg & ~ZE_NICSR6_SR); /* Stop rx */
662 reg &= ~ZE_NICSR6_AF;
663 if (ifp->if_flags & IFF_PROMISC)
664 reg |= ZE_NICSR6_AF_PROM;
665 else if (ifp->if_flags & IFF_ALLMULTI)
666 reg |= ZE_NICSR6_AF_ALLM;
667 DELAY(10);
668 ZE_WCSR(ZE_CSR6, reg);
669 /*
670 * Only send a setup packet if needed.
671 */
672 if ((ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI)) == 0) {
673 idx = sc->sc_nexttx;
674 zc->zc_xmit[idx].ze_tdes1 = ZE_TDES1_DT_SETUP;
675 zc->zc_xmit[idx].ze_bufsize = 128;
676 zc->zc_xmit[idx].ze_bufaddr = sc->sc_pzedata->zc_setup;
677 zc->zc_xmit[idx].ze_tdr = ZE_TDR_OW;
678
679 if ((ZE_RCSR(ZE_CSR5) & ZE_NICSR5_TS) != ZE_NICSR5_TS_RUN)
680 ZE_WCSR(ZE_CSR1, -1);
681
682 sc->sc_inq++;
683 if (++sc->sc_nexttx == TXDESCS)
684 sc->sc_nexttx = 0;
685 }
686 splx(s);
687 }
688
689 /*
690 * Check for dead transmit logic.
691 */
692 void
693 zetimeout(ifp)
694 struct ifnet *ifp;
695 {
696 struct ze_softc *sc = ifp->if_softc;
697
698 if (sc->sc_inq == 0)
699 return;
700
701 printf("%s: xmit logic died, resetting...\n", sc->sc_dev.dv_xname);
702 /*
703 * Do a reset of interface, to get it going again.
704 * Will it work by just restart the transmit logic?
705 */
706 zeinit(sc);
707 }
708
709 /*
710 * Reset chip:
711 * Set/reset the reset flag.
712 * Write interrupt vector.
713 * Write ring buffer addresses.
714 * Write SBR.
715 */
716 int
717 zereset(sc)
718 struct ze_softc *sc;
719 {
720 int reg, i, s;
721
722 ZE_WCSR(ZE_CSR6, ZE_NICSR6_RE);
723 DELAY(50000);
724 if (ZE_RCSR(ZE_CSR6) & ZE_NICSR5_SF) {
725 printf("%s: selftest failed\n", sc->sc_dev.dv_xname);
726 return 1;
727 }
728
729 /*
730 * Get the vector that were set at match time, and remember it.
731 * WHICH VECTOR TO USE? Take one unused. XXX
732 * Funny way to set vector described in the programmers manual.
733 */
734 reg = ZE_NICSR0_IPL14 | sc->sc_intvec | 0x1fff0003; /* SYNC/ASYNC??? */
735 i = 10;
736 s = splimp();
737 do {
738 if (i-- == 0) {
739 printf("Failing SGEC CSR0 init\n");
740 splx(s);
741 return 1;
742 }
743 ZE_WCSR(ZE_CSR0, reg);
744 } while (ZE_RCSR(ZE_CSR0) != reg);
745 splx(s);
746
747 ZE_WCSR(ZE_CSR3, (vaddr_t)sc->sc_pzedata->zc_recv);
748 ZE_WCSR(ZE_CSR4, (vaddr_t)sc->sc_pzedata->zc_xmit);
749 return 0;
750 }
751