sl811hs.c revision 1.28 1 /* $NetBSD: sl811hs.c,v 1.28 2011/05/17 04:18:06 mrg Exp $ */
2
3 /*
4 * Not (c) 2007 Matthew Orgass
5 * This file is public domain, meaning anyone can make any use of part or all
6 * of this file including copying into other works without credit. Any use,
7 * modified or not, is solely the responsibility of the user. If this file is
8 * part of a collection then use in the collection is governed by the terms of
9 * the collection.
10 */
11
12 /*
13 * Cypress/ScanLogic SL811HS/T USB Host Controller
14 * Datasheet, Errata, and App Note available at www.cypress.com
15 *
16 * Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid Mac 68k USB HC, ISA
17 * HCs. The Ratoc CFU2 uses a different chip.
18 *
19 * This chip puts the serial in USB. It implements USB by means of an eight
20 * bit I/O interface. It can be used for ISA, PCMCIA/CF, parallel port,
21 * serial port, or any eight bit interface. It has 256 bytes of memory, the
22 * first 16 of which are used for register access. There are two sets of
23 * registers for sending individual bus transactions. Because USB is polled,
24 * this organization means that some amount of card access must often be made
25 * when devices are attached, even if when they are not directly being used.
26 * A per-ms frame interrupt is necessary and many devices will poll with a
27 * per-frame bulk transfer.
28 *
29 * It is possible to write a little over two bytes to the chip (auto
30 * incremented) per full speed byte time on the USB. Unfortunately,
31 * auto-increment does not work reliably so write and bus speed is
32 * approximately the same for full speed devices.
33 *
34 * In addition to the 240 byte packet size limit for isochronous transfers,
35 * this chip has no means of determining the current frame number other than
36 * getting all 1ms SOF interrupts, which is not always possible even on a fast
37 * system. Isochronous transfers guarantee that transfers will never be
38 * retried in a later frame, so this can cause problems with devices beyond
39 * the difficulty in actually performing the transfer most frames. I tried
40 * implementing isoc transfers and was able to play CD-derrived audio via an
41 * iMic on a 2GHz PC, however it would still be interrupted at times and
42 * once interrupted, would stay out of sync. All isoc support has been
43 * removed.
44 *
45 * BUGS: all chip revisions have problems with low speed devices through hubs.
46 * The chip stops generating SOF with hubs that send SE0 during SOF. See
47 * comment in dointr(). All performance enhancing features of this chip seem
48 * not to work properly, most confirmed buggy in errata doc.
49 *
50 */
51
52 /*
53 * The hard interrupt is the main entry point. Start, callbacks, and repeat
54 * are the only others called frequently.
55 *
56 * Since this driver attaches to pcmcia, card removal at any point should be
57 * expected and not cause panics or infinite loops.
58 *
59 * This driver does fine grained locking for its own data structures, however
60 * the general USB code does not yet have locks, some of which would need to
61 * be used in this driver. This is mostly for debug use on single processor
62 * systems.
63 *
64 * The theory of the wait lock is that start is the only function that would
65 * be frequently called from arbitrary processors, so it should not need to
66 * wait for the rest to be completed. However, once entering the lock as much
67 * device access as possible is done, so any other CPU that tries to service
68 * an interrupt would be blocked. Ideally, the hard and soft interrupt could
69 * be assigned to the same CPU and start would normally just put work on the
70 * wait queue and generate a soft interrupt.
71 *
72 * Any use of the main lock must check the wait lock before returning. The
73 * aquisition order is main lock then wait lock, but the wait lock must be
74 * released last when clearing the wait queue.
75 */
76
77 /* XXX TODO:
78 * copy next output packet while transfering
79 * usb suspend
80 * could keep track of known values of all buffer space?
81 * combined print/log function for errors
82 *
83 * use_polling support is untested and may not work
84 */
85
86 #include <sys/cdefs.h>
87 __KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.28 2011/05/17 04:18:06 mrg Exp $");
88
89 #include "opt_slhci.h"
90
91 #include <sys/cdefs.h>
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/proc.h>
96 #include <sys/device.h>
97 #include <sys/malloc.h>
98 #include <sys/queue.h>
99 #include <sys/gcq.h>
100 #include <sys/simplelock.h>
101 #include <sys/intr.h>
102 #include <sys/cpu.h>
103 #include <sys/bus.h>
104
105 #include <dev/usb/usb.h>
106 #include <dev/usb/usbdi.h>
107 #include <dev/usb/usbdivar.h>
108 #include <dev/usb/usb_mem.h>
109 #include <dev/usb/usbdevs.h>
110 #include <dev/usb/usbroothub_subr.h>
111
112 #include <dev/ic/sl811hsreg.h>
113 #include <dev/ic/sl811hsvar.h>
114
115 #define Q_CB 0 /* Control/Bulk */
116 #define Q_NEXT_CB 1
117 #define Q_MAX_XFER Q_CB
118 #define Q_CALLBACKS 2
119 #define Q_MAX Q_CALLBACKS
120
121 #define F_AREADY (0x00000001)
122 #define F_BREADY (0x00000002)
123 #define F_AINPROG (0x00000004)
124 #define F_BINPROG (0x00000008)
125 #define F_LOWSPEED (0x00000010)
126 #define F_UDISABLED (0x00000020) /* Consider disabled for USB */
127 #define F_NODEV (0x00000040)
128 #define F_ROOTINTR (0x00000080)
129 #define F_REALPOWER (0x00000100) /* Actual power state */
130 #define F_POWER (0x00000200) /* USB reported power state */
131 #define F_ACTIVE (0x00000400)
132 #define F_CALLBACK (0x00000800) /* Callback scheduled */
133 #define F_SOFCHECK1 (0x00001000)
134 #define F_SOFCHECK2 (0x00002000)
135 #define F_CRESET (0x00004000) /* Reset done not reported */
136 #define F_CCONNECT (0x00008000) /* Connect change not reported */
137 #define F_RESET (0x00010000)
138 #define F_ISOC_WARNED (0x00020000)
139 #define F_LSVH_WARNED (0x00040000)
140
141 #define F_DISABLED (F_NODEV|F_UDISABLED)
142 #define F_CHANGE (F_CRESET|F_CCONNECT)
143
144 #ifdef SLHCI_TRY_LSVH
145 unsigned int slhci_try_lsvh = 1;
146 #else
147 unsigned int slhci_try_lsvh = 0;
148 #endif
149
150 #define ADR 0
151 #define LEN 1
152 #define PID 2
153 #define DEV 3
154 #define STAT 2
155 #define CONT 3
156
157 #define A 0
158 #define B 1
159
160 static const uint8_t slhci_tregs[2][4] =
161 {{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV },
162 {SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }};
163
164 #define PT_ROOT_CTRL 0
165 #define PT_ROOT_INTR 1
166 #define PT_CTRL_SETUP 2
167 #define PT_CTRL_DATA 3
168 #define PT_CTRL_STATUS 4
169 #define PT_INTR 5
170 #define PT_BULK 6
171 #define PT_MAX 6
172
173 #ifdef SLHCI_DEBUG
174 #define SLHCI_MEM_ACCOUNTING
175 static const char *
176 pnames(int ptype)
177 {
178 static const char * const names[] = { "ROOT Ctrl", "ROOT Intr",
179 "Control (setup)", "Control (data)", "Control (status)",
180 "Interrupt", "Bulk", "BAD PTYPE" };
181
182 KASSERT(sizeof(names) / sizeof(names[0]) == PT_MAX + 2);
183 if (ptype > PT_MAX)
184 ptype = PT_MAX + 1;
185 return names[ptype];
186 }
187 #endif
188
189 #define SLHCI_XFER_TYPE(x) (((struct slhci_pipe *)((x)->pipe))->ptype)
190
191 /* Maximum allowable reserved bus time. Since intr/isoc transfers have
192 * unconditional priority, this is all that ensures control and bulk transfers
193 * get a chance. It is a single value for all frames since all transfers can
194 * use multiple consecutive frames if an error is encountered. Note that it
195 * is not really possible to fill the bus with transfers, so this value should
196 * be on the low side. Defaults to giving a warning unless SLHCI_NO_OVERTIME
197 * is defined. Full time is 12000 - END_BUSTIME. */
198 #ifndef SLHCI_RESERVED_BUSTIME
199 #define SLHCI_RESERVED_BUSTIME 5000
200 #endif
201
202 /* Rate for "exceeds reserved bus time" warnings (default) or errors.
203 * Warnings only happen when an endpoint open causes the time to go above
204 * SLHCI_RESERVED_BUSTIME, not if it is already above. */
205 #ifndef SLHCI_OVERTIME_WARNING_RATE
206 #define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */
207 #endif
208 static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE;
209
210 /* Rate for overflow warnings */
211 #ifndef SLHCI_OVERFLOW_WARNING_RATE
212 #define SLHCI_OVERFLOW_WARNING_RATE { 60, 0 } /* 60 seconds */
213 #endif
214 static const struct timeval overflow_warn_rate = SLHCI_OVERFLOW_WARNING_RATE;
215
216 /* For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of
217 * 20 bit times. By default leave 66 bit times to start the transfer beyond
218 * the required time. Units are full-speed bit times (a bit over 5us per 64).
219 * Only multiples of 64 are significant. */
220 #define SLHCI_STANDARD_END_BUSTIME 128
221 #ifndef SLHCI_EXTRA_END_BUSTIME
222 #define SLHCI_EXTRA_END_BUSTIME 0
223 #endif
224
225 #define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME)
226
227 /* This is an approximation of the USB worst-case timings presented on p. 54 of
228 * the USB 1.1 spec translated to full speed bit times.
229 * FS = full speed with handshake, FSII = isoc in, FSIO = isoc out,
230 * FSI = isoc (worst case), LS = low speed */
231 #define SLHCI_FS_CONST 114
232 #define SLHCI_FSII_CONST 92
233 #define SLHCI_FSIO_CONST 80
234 #define SLHCI_FSI_CONST 92
235 #define SLHCI_LS_CONST 804
236 #ifndef SLHCI_PRECICE_BUSTIME
237 /* These values are < 3% too high (compared to the multiply and divide) for
238 * max sized packets. */
239 #define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1))
240 #define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4))
241 #else
242 #define SLHCI_FS_DATA_TIME(len) (56*(len)/6)
243 #define SLHCI_LS_DATA_TIME(len) (449*(len)/6)
244 #endif
245
246 /* Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer
247 * to poll for after starting a transfer. 64 gets all full speed transfers.
248 * Note that even if 0 polling will occur if data equal or greater than the
249 * transfer size is copied to the chip while the transfer is in progress.
250 * Setting SLHCI_WAIT_TIME to -12000 will disable polling.
251 */
252 #ifndef SLHCI_WAIT_SIZE
253 #define SLHCI_WAIT_SIZE 8
254 #endif
255 #ifndef SLHCI_WAIT_TIME
256 #define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \
257 SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE))
258 #endif
259 const int slhci_wait_time = SLHCI_WAIT_TIME;
260
261 /* Root hub intr endpoint */
262 #define ROOT_INTR_ENDPT 1
263
264 #ifndef SLHCI_MAX_RETRIES
265 #define SLHCI_MAX_RETRIES 3
266 #endif
267
268 /* Check IER values for corruption after this many unrecognized interrupts. */
269 #ifndef SLHCI_IER_CHECK_FREQUENCY
270 #ifdef SLHCI_DEBUG
271 #define SLHCI_IER_CHECK_FREQUENCY 1
272 #else
273 #define SLHCI_IER_CHECK_FREQUENCY 100
274 #endif
275 #endif
276
277 /* Note that buffer points to the start of the buffer for this transfer. */
278 struct slhci_pipe {
279 struct usbd_pipe pipe;
280 struct usbd_xfer *xfer; /* xfer in progress */
281 uint8_t *buffer; /* I/O buffer (if needed) */
282 struct gcq ap; /* All pipes */
283 struct gcq to; /* Timeout list */
284 struct gcq xq; /* Xfer queues */
285 unsigned int pflags; /* Pipe flags */
286 #define PF_GONE (0x01) /* Pipe is on disabled device */
287 #define PF_TOGGLE (0x02) /* Data toggle status */
288 #define PF_LS (0x04) /* Pipe is low speed */
289 #define PF_PREAMBLE (0x08) /* Needs preamble */
290 Frame to_frame; /* Frame number for timeout */
291 Frame frame; /* Frame number for intr xfer */
292 Frame lastframe; /* Previous frame number for intr */
293 uint16_t bustime; /* Worst case bus time usage */
294 uint16_t newbustime[2]; /* new bustimes (see index below) */
295 uint8_t tregs[4]; /* ADR, LEN, PID, DEV */
296 uint8_t newlen[2]; /* 0 = short data, 1 = ctrl data */
297 uint8_t newpid; /* for ctrl */
298 uint8_t wantshort; /* last xfer must be short */
299 uint8_t control; /* Host control register settings */
300 uint8_t nerrs; /* Current number of errors */
301 uint8_t ptype; /* Pipe type */
302 };
303
304 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
305 #define SLHCI_WAITLOCK 1
306 #endif
307
308 #ifdef SLHCI_PROFILE_TRANSFER
309 #if defined(__mips__)
310 /* MIPS cycle counter does not directly count cpu cycles but is a different
311 * fraction of cpu cycles depending on the cpu. */
312 typedef u_int32_t cc_type;
313 #define CC_TYPE_FMT "%u"
314 #define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \
315 : [cc] "=r"(x))
316 #elif defined(__i386__)
317 typedef u_int64_t cc_type;
318 #define CC_TYPE_FMT "%llu"
319 #define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x))
320 #else
321 #error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)"
322 #endif
323 struct slhci_cc_time {
324 cc_type start;
325 cc_type stop;
326 unsigned int miscdata;
327 };
328 #ifndef SLHCI_N_TIMES
329 #define SLHCI_N_TIMES 200
330 #endif
331 struct slhci_cc_times {
332 struct slhci_cc_time times[SLHCI_N_TIMES];
333 int current;
334 int wraparound;
335 };
336
337 static struct slhci_cc_times t_ab[2];
338 static struct slhci_cc_times t_abdone;
339 static struct slhci_cc_times t_copy_to_dev;
340 static struct slhci_cc_times t_copy_from_dev;
341 static struct slhci_cc_times t_intr;
342 static struct slhci_cc_times t_lock;
343 static struct slhci_cc_times t_delay;
344 static struct slhci_cc_times t_hard_int;
345 static struct slhci_cc_times t_callback;
346
347 static inline void
348 start_cc_time(struct slhci_cc_times *times, unsigned int misc) {
349 times->times[times->current].miscdata = misc;
350 slhci_cc_set(times->times[times->current].start);
351 }
352 static inline void
353 stop_cc_time(struct slhci_cc_times *times) {
354 slhci_cc_set(times->times[times->current].stop);
355 if (++times->current >= SLHCI_N_TIMES) {
356 times->current = 0;
357 times->wraparound = 1;
358 }
359 }
360
361 void slhci_dump_cc_times(int);
362
363 void
364 slhci_dump_cc_times(int n) {
365 struct slhci_cc_times *times;
366 int i;
367
368 switch (n) {
369 default:
370 case 0:
371 printf("USBA start transfer to intr:\n");
372 times = &t_ab[A];
373 break;
374 case 1:
375 printf("USBB start transfer to intr:\n");
376 times = &t_ab[B];
377 break;
378 case 2:
379 printf("abdone:\n");
380 times = &t_abdone;
381 break;
382 case 3:
383 printf("copy to device:\n");
384 times = &t_copy_to_dev;
385 break;
386 case 4:
387 printf("copy from device:\n");
388 times = &t_copy_from_dev;
389 break;
390 case 5:
391 printf("intr to intr:\n");
392 times = &t_intr;
393 break;
394 case 6:
395 printf("lock to release:\n");
396 times = &t_lock;
397 break;
398 case 7:
399 printf("delay time:\n");
400 times = &t_delay;
401 break;
402 case 8:
403 printf("hard interrupt enter to exit:\n");
404 times = &t_hard_int;
405 break;
406 case 9:
407 printf("callback:\n");
408 times = &t_callback;
409 break;
410 }
411
412 if (times->wraparound)
413 for (i = times->current + 1; i < SLHCI_N_TIMES; i++)
414 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
415 " difference %8i miscdata %#x\n",
416 times->times[i].start, times->times[i].stop,
417 (int)(times->times[i].stop -
418 times->times[i].start), times->times[i].miscdata);
419
420 for (i = 0; i < times->current; i++)
421 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
422 " difference %8i miscdata %#x\n", times->times[i].start,
423 times->times[i].stop, (int)(times->times[i].stop -
424 times->times[i].start), times->times[i].miscdata);
425 }
426 #else
427 #define start_cc_time(x, y)
428 #define stop_cc_time(x)
429 #endif /* SLHCI_PROFILE_TRANSFER */
430
431 typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe
432 *, struct usbd_xfer *);
433
434 usbd_status slhci_allocm(struct usbd_bus *, usb_dma_t *, u_int32_t);
435 void slhci_freem(struct usbd_bus *, usb_dma_t *);
436 struct usbd_xfer * slhci_allocx(struct usbd_bus *);
437 void slhci_freex(struct usbd_bus *, struct usbd_xfer *);
438
439 usbd_status slhci_transfer(struct usbd_xfer *);
440 usbd_status slhci_start(struct usbd_xfer *);
441 usbd_status slhci_root_start(struct usbd_xfer *);
442 usbd_status slhci_open(struct usbd_pipe *);
443
444 /* slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach,
445 * slhci_activate */
446
447 void slhci_abort(struct usbd_xfer *);
448 void slhci_close(struct usbd_pipe *);
449 void slhci_clear_toggle(struct usbd_pipe *);
450 void slhci_poll(struct usbd_bus *);
451 void slhci_done(struct usbd_xfer *);
452 void slhci_void(void *);
453
454 /* lock entry functions */
455
456 #ifdef SLHCI_MEM_ACCOUNTING
457 void slhci_mem_use(struct usbd_bus *, int);
458 #endif
459
460 void slhci_reset_entry(void *);
461 usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc,
462 struct slhci_pipe *, struct usbd_xfer *);
463 void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *);
464 void slhci_callback_entry(void *arg);
465 void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *, int *);
466
467 /* slhci_intr */
468
469 void slhci_main(struct slhci_softc *, int *);
470
471 /* in lock functions */
472
473 static void slhci_write(struct slhci_softc *, uint8_t, uint8_t);
474 static uint8_t slhci_read(struct slhci_softc *, uint8_t);
475 static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
476 static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
477
478 static void slhci_waitintr(struct slhci_softc *, int);
479 static int slhci_dointr(struct slhci_softc *);
480 static void slhci_abdone(struct slhci_softc *, int);
481 static void slhci_tstart(struct slhci_softc *);
482 static void slhci_dotransfer(struct slhci_softc *);
483
484 static void slhci_callback(struct slhci_softc *, int *);
485 static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *);
486 #ifdef SLHCI_WAITLOCK
487 static void slhci_enter_xfers(struct slhci_softc *);
488 #endif
489 static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *);
490 static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *);
491
492 static void slhci_do_repeat(struct slhci_softc *, struct usbd_xfer *);
493 static void slhci_callback_schedule(struct slhci_softc *);
494 static void slhci_do_callback_schedule(struct slhci_softc *);
495 #if 0
496 void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *, int *); /* XXX */
497 #endif
498
499 static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *,
500 struct usbd_xfer *);
501 static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *,
502 struct usbd_xfer *);
503 static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *,
504 struct usbd_xfer *);
505 static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *,
506 struct usbd_xfer *);
507 static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *,
508 struct usbd_xfer *);
509 static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *,
510 struct usbd_xfer *);
511 static usbd_status slhci_do_attach(struct slhci_softc *, struct slhci_pipe *,
512 struct usbd_xfer *);
513 static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *,
514 struct usbd_xfer *);
515
516 static void slhci_intrchange(struct slhci_softc *, uint8_t);
517 static void slhci_drain(struct slhci_softc *);
518 static void slhci_reset(struct slhci_softc *);
519 static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *,
520 int);
521 static void slhci_insert(struct slhci_softc *);
522
523 static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int);
524 static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int);
525 static void slhci_get_status(struct slhci_softc *, usb_port_status_t *);
526 static usbd_status slhci_root(struct slhci_softc *, struct slhci_pipe *,
527 struct usbd_xfer *);
528
529 #ifdef SLHCI_DEBUG
530 void slhci_log_buffer(struct usbd_xfer *);
531 void slhci_log_req(usb_device_request_t *);
532 void slhci_log_req_hub(usb_device_request_t *);
533 void slhci_log_dumpreg(void);
534 void slhci_log_xfer(struct usbd_xfer *);
535 void slhci_log_spipe(struct slhci_pipe *);
536 void slhci_print_intr(void);
537 void slhci_log_sc(void);
538 void slhci_log_slreq(struct slhci_pipe *);
539
540 extern int usbdebug;
541
542 /* Constified so you can read the values from ddb */
543 const int SLHCI_D_TRACE = 0x0001;
544 const int SLHCI_D_MSG = 0x0002;
545 const int SLHCI_D_XFER = 0x0004;
546 const int SLHCI_D_MEM = 0x0008;
547 const int SLHCI_D_INTR = 0x0010;
548 const int SLHCI_D_SXFER = 0x0020;
549 const int SLHCI_D_ERR = 0x0080;
550 const int SLHCI_D_BUF = 0x0100;
551 const int SLHCI_D_SOFT = 0x0200;
552 const int SLHCI_D_WAIT = 0x0400;
553 const int SLHCI_D_ROOT = 0x0800;
554 /* SOF/NAK alone normally ignored, SOF also needs D_INTR */
555 const int SLHCI_D_SOF = 0x1000;
556 const int SLHCI_D_NAK = 0x2000;
557
558 int slhci_debug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */
559 struct slhci_softc *ssc;
560 #ifdef USB_DEBUG
561 int slhci_usbdebug = -1; /* value to set usbdebug on attach, -1 = leave alone */
562 #endif
563
564 /*
565 * XXXMRG the SLHCI UVMHIST code has been converted to KERNHIST, but it has
566 * not been tested. the extra instructions to enable it can probably be
567 * commited to the kernhist code, and these instructions reduced to simply
568 * enabling SLHCI_DEBUG.
569 */
570
571 /* Add KERNHIST history for debugging:
572 *
573 * Before kern_hist in sys/kern/subr_kernhist.c add:
574 * KERNHIST_DECL(slhcihist);
575 *
576 * In kern_hist add:
577 * if ((bitmask & KERNHIST_SLHCI))
578 * hists[i++] = &slhcihist;
579 *
580 * In sys/sys/kernhist.h add KERNHIST_SLHCI define.
581 */
582
583 #include <sys/kernhist.h>
584 KERNHIST_DECL(slhcihist);
585
586 #if !defined(KERNHIST) || !defined(KERNHIST_SLHCI)
587 #error "SLHCI_DEBUG requires KERNHIST (with modifications, see sys/dev/ic/sl81hs.c)"
588 #endif
589
590 #ifndef SLHCI_NHIST
591 #define SLHCI_NHIST 409600
592 #endif
593 const unsigned int SLHCI_HISTMASK = KERNHIST_SLHCI;
594 struct kern_history_ent slhci_he[SLHCI_NHIST];
595
596 #define SLHCI_DEXEC(x, y) do { if ((slhci_debug & SLHCI_ ## x)) { y; } \
597 } while (/*CONSTCOND*/ 0)
598 #define DDOLOG(f, a, b, c, d) do { const char *_kernhist_name = __func__; \
599 u_long _kernhist_call = 0; KERNHIST_LOG(slhcihist, f, a, b, c, d); \
600 } while (/*CONSTCOND*/0)
601 #define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d))
602 /* DLOGFLAG8 is a macro not a function so that flag name expressions are not
603 * evaluated unless the flag bit is set (which could save a register read).
604 * x is debug mask, y is flag identifier, z is flag variable,
605 * a-h are flag names (must evaluate to string constants, msb first). */
606 #define DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h) do { uint8_t _DLF8 = (z); \
607 const char *_kernhist_name = __func__; u_long _kernhist_call = 0; \
608 if (_DLF8 & 0xf0) KERNHIST_LOG(slhcihist, y " %s %s %s %s", _DLF8 & 0x80 ? \
609 (a) : "", _DLF8 & 0x40 ? (b) : "", _DLF8 & 0x20 ? (c) : "", _DLF8 & 0x10 ? \
610 (d) : ""); if (_DLF8 & 0x0f) KERNHIST_LOG(slhcihist, y " %s %s %s %s", \
611 _DLF8 & 0x08 ? (e) : "", _DLF8 & 0x04 ? (f) : "", _DLF8 & 0x02 ? (g) : "", \
612 _DLF8 & 0x01 ? (h) : ""); \
613 } while (/*CONSTCOND*/ 0)
614 #define DLOGFLAG8(x, y, z, a, b, c, d, e, f, g, h) \
615 SLHCI_DEXEC(x, DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h))
616 /* DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we
617 * can make it a real function. */
618 static void
619 DDOLOGBUF(uint8_t *buf, unsigned int length)
620 {
621 int i;
622
623 for(i=0; i+8 <= length; i+=8)
624 DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
625 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
626 (buf[i+6] << 8) | buf[i+7]);
627 if (length == i+7)
628 DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
629 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
630 buf[i+6]);
631 else if (length == i+6)
632 DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
633 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0);
634 else if (length == i+5)
635 DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
636 (buf[i+2] << 8) | buf[i+3], buf[i+4], 0);
637 else if (length == i+4)
638 DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1],
639 (buf[i+2] << 8) | buf[i+3], 0,0);
640 else if (length == i+3)
641 DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0);
642 else if (length == i+2)
643 DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0);
644 else if (length == i+1)
645 DDOLOG("%.2x", buf[i], 0,0,0);
646 }
647 #define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l))
648 #else /* now !SLHCI_DEBUG */
649 #define slhci_log_spipe(spipe) ((void)0)
650 #define slhci_log_xfer(xfer) ((void)0)
651 #define SLHCI_DEXEC(x, y) ((void)0)
652 #define DDOLOG(f, a, b, c, d) ((void)0)
653 #define DLOG(x, f, a, b, c, d) ((void)0)
654 #define DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h) ((void)0)
655 #define DLOGFLAG8(x, y, z, a, b, c, d, e, f, g, h) ((void)0)
656 #define DDOLOGBUF(b, l) ((void)0)
657 #define DLOGBUF(x, b, l) ((void)0)
658 #endif /* SLHCI_DEBUG */
659
660 #define SLHCI_MAINLOCKASSERT(sc) ((void)0)
661 #define SLHCI_LOCKASSERT(sc, main, wait) ((void)0)
662
663 #ifdef DIAGNOSTIC
664 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) do { \
665 if (!(exp)) { \
666 printf("%s: assertion %s failed line %u function %s!" \
667 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
668 DDOLOG("%s: assertion %s failed line %u function %s!" \
669 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
670 slhci_halt(sc, spipe, xfer); \
671 ext; \
672 } \
673 } while (/*CONSTCOND*/0)
674 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) do { \
675 if (!(exp)) { \
676 printf("%s: assertion %s failed line %u function %s!" \
677 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \
678 DDOLOG("%s: assertion %s failed line %u function %s!" \
679 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \
680 slhci_lock_call(sc, &slhci_halt, spipe, xfer); \
681 ext; \
682 } \
683 } while (/*CONSTCOND*/0)
684 #else
685 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
686 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
687 #endif
688
689 const struct usbd_bus_methods slhci_bus_methods = {
690 slhci_open,
691 slhci_void,
692 slhci_poll,
693 slhci_allocm,
694 slhci_freem,
695 slhci_allocx,
696 slhci_freex,
697 };
698
699 const struct usbd_pipe_methods slhci_pipe_methods = {
700 slhci_transfer,
701 slhci_start,
702 slhci_abort,
703 slhci_close,
704 slhci_clear_toggle,
705 slhci_done,
706 };
707
708 const struct usbd_pipe_methods slhci_root_methods = {
709 slhci_transfer,
710 slhci_root_start,
711 slhci_abort,
712 (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */
713 slhci_clear_toggle,
714 slhci_done,
715 };
716
717 /* Queue inlines */
718
719 #define GOT_FIRST_TO(tvar, t) \
720 GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to)
721
722 #define FIND_TO(var, t, tvar, cond) \
723 GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond)
724
725 #define FOREACH_AP(var, t, tvar) \
726 GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap)
727
728 #define GOT_FIRST_TIMED_COND(tvar, t, cond) \
729 GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond)
730
731 #define GOT_FIRST_CB(tvar, t) \
732 GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq)
733
734 #define DEQUEUED_CALLBACK(tvar, t) \
735 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq)
736
737 #define FIND_TIMED(var, t, tvar, cond) \
738 GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond)
739
740 #ifdef SLHCI_WAITLOCK
741 #define DEQUEUED_WAITQ(tvar, sc) \
742 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq)
743
744 static inline void
745 enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe)
746 {
747 gcq_insert_tail(&sc->sc_waitq, &spipe->xq);
748 }
749 #endif
750
751 static inline void
752 enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i)
753 {
754 gcq_insert_tail(&t->q[i], &spipe->xq);
755 }
756
757 static inline void
758 enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe)
759 {
760 gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq);
761 }
762
763 static inline void
764 enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe)
765 {
766 gcq_insert_tail(&t->ap, &spipe->ap);
767 }
768
769 /* Start out of lock functions. */
770
771 struct slhci_mem {
772 usb_dma_block_t block;
773 uint8_t data[];
774 };
775
776 /* The SL811HS does not do DMA as a host controller, but NetBSD's USB interface
777 * assumes DMA is used. So we fake the DMA block. */
778 usbd_status
779 slhci_allocm(struct usbd_bus *bus, usb_dma_t *dma, u_int32_t size)
780 {
781 struct slhci_mem *mem;
782
783 mem = malloc(sizeof(struct slhci_mem) + size, M_USB, M_NOWAIT|M_ZERO);
784
785 DLOG(D_MEM, "allocm %p", mem, 0,0,0);
786
787 if (mem == NULL)
788 return USBD_NOMEM;
789
790 dma->block = &mem->block;
791 dma->block->kaddr = mem->data;
792
793 /* dma->offs = 0; */
794 dma->block->nsegs = 1;
795 dma->block->size = size;
796 dma->block->align = size;
797 dma->block->flags |= USB_DMA_FULLBLOCK;
798
799 #ifdef SLHCI_MEM_ACCOUNTING
800 slhci_mem_use(bus, 1);
801 #endif
802
803 return USBD_NORMAL_COMPLETION;
804 }
805
806 void
807 slhci_freem(struct usbd_bus *bus, usb_dma_t *dma)
808 {
809 DLOG(D_MEM, "freem %p", dma->block, 0,0,0);
810
811 #ifdef SLHCI_MEM_ACCOUNTING
812 slhci_mem_use(bus, -1);
813 #endif
814
815 free(dma->block, M_USB);
816 }
817
818 struct usbd_xfer *
819 slhci_allocx(struct usbd_bus *bus)
820 {
821 struct usbd_xfer *xfer;
822
823 xfer = malloc(sizeof(*xfer), M_USB, M_NOWAIT|M_ZERO);
824
825 DLOG(D_MEM, "allocx %p", xfer, 0,0,0);
826
827 #ifdef SLHCI_MEM_ACCOUNTING
828 slhci_mem_use(bus, 1);
829 #endif
830 #ifdef DIAGNOSTIC
831 if (xfer != NULL)
832 xfer->busy_free = XFER_BUSY;
833 #endif
834 return xfer;
835 }
836
837 void
838 slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
839 {
840 DLOG(D_MEM, "freex xfer %p spipe %p", xfer, xfer->pipe,0,0);
841
842 #ifdef SLHCI_MEM_ACCOUNTING
843 slhci_mem_use(bus, -1);
844 #endif
845 #ifdef DIAGNOSTIC
846 if (xfer->busy_free != XFER_BUSY) {
847 struct slhci_softc *sc = bus->hci_private;
848 printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
849 SC_NAME(sc), xfer, xfer->busy_free);
850 DDOLOG("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
851 SC_NAME(sc), xfer, xfer->busy_free, 0);
852 slhci_lock_call(sc, &slhci_halt, NULL, NULL);
853 return;
854 }
855 xfer->busy_free = XFER_FREE;
856 #endif
857
858 free(xfer, M_USB);
859 }
860
861 usbd_status
862 slhci_transfer(struct usbd_xfer *xfer)
863 {
864 usbd_status error;
865 int s;
866
867 DLOG(D_TRACE, "%s transfer xfer %p spipe %p ",
868 pnames(SLHCI_XFER_TYPE(xfer)), xfer, xfer->pipe,0);
869
870 /* Insert last in queue */
871 error = usb_insert_transfer(xfer);
872 if (error) {
873 if (error != USBD_IN_PROGRESS)
874 DLOG(D_ERR, "usb_insert_transfer returns %d!", error,
875 0,0,0);
876 return error;
877 }
878
879 /*
880 * Pipe isn't running (otherwise error would be USBD_INPROG),
881 * so start it first.
882 */
883
884 /* Start next is always done at splsoftusb, so we do this here so
885 * start functions are always called at softusb. XXX */
886 s = splsoftusb();
887 error = xfer->pipe->methods->start(SIMPLEQ_FIRST(&xfer->pipe->queue));
888 splx(s);
889
890 return error;
891 }
892
893 /* It is not safe for start to return anything other than USBD_INPROG. */
894 usbd_status
895 slhci_start(struct usbd_xfer *xfer)
896 {
897 struct slhci_softc *sc;
898 struct usbd_pipe *pipe;
899 struct slhci_pipe *spipe;
900 struct slhci_transfers *t;
901 usb_endpoint_descriptor_t *ed;
902 unsigned int max_packet;
903
904 pipe = xfer->pipe;
905 sc = pipe->device->bus->hci_private;
906 spipe = (struct slhci_pipe *)xfer->pipe;
907 t = &sc->sc_transfers;
908 ed = pipe->endpoint->edesc;
909
910 max_packet = UGETW(ed->wMaxPacketSize);
911
912 DLOG(D_TRACE, "%s start xfer %p spipe %p length %d",
913 pnames(spipe->ptype), xfer, spipe, xfer->length);
914
915 /* root transfers use slhci_root_start */
916
917 KASSERT(spipe->xfer == NULL); /* not SLASSERT */
918
919 xfer->actlen = 0;
920 xfer->status = USBD_IN_PROGRESS;
921
922 spipe->xfer = xfer;
923
924 spipe->nerrs = 0;
925 spipe->frame = t->frame;
926 spipe->control = SL11_EPCTRL_ARM_ENABLE;
927 spipe->tregs[DEV] = pipe->device->address;
928 spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress)
929 | (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN :
930 SL11_PID_OUT);
931 spipe->newlen[0] = xfer->length % max_packet;
932 spipe->newlen[1] = min(xfer->length, max_packet);
933
934 if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) {
935 if (spipe->pflags & PF_TOGGLE)
936 spipe->control |= SL11_EPCTRL_DATATOGGLE;
937 spipe->tregs[LEN] = spipe->newlen[1];
938 if (spipe->tregs[LEN])
939 spipe->buffer = KERNADDR(&xfer->dmabuf, 0);
940 else
941 spipe->buffer = NULL;
942 spipe->lastframe = t->frame;
943 #if defined(DEBUG) || defined(SLHCI_DEBUG)
944 if (__predict_false(spipe->ptype == PT_INTR &&
945 xfer->length > spipe->tregs[LEN])) {
946 printf("%s: Long INTR transfer not supported!\n",
947 SC_NAME(sc));
948 DDOLOG("%s: Long INTR transfer not supported!\n",
949 SC_NAME(sc), 0,0,0);
950 xfer->status = USBD_INVAL;
951 }
952 #endif
953 } else {
954 /* ptype may be currently set to any control transfer type. */
955 SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer));
956
957 /* SETUP contains IN/OUT bits also */
958 spipe->tregs[PID] |= SL11_PID_SETUP;
959 spipe->tregs[LEN] = 8;
960 spipe->buffer = (uint8_t *)&xfer->request;
961 DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]);
962 spipe->ptype = PT_CTRL_SETUP;
963 spipe->newpid &= ~SL11_PID_BITS;
964 if (xfer->length == 0 || (xfer->request.bmRequestType &
965 UT_READ))
966 spipe->newpid |= SL11_PID_IN;
967 else
968 spipe->newpid |= SL11_PID_OUT;
969 }
970
971 if (xfer->flags & USBD_FORCE_SHORT_XFER && spipe->tregs[LEN] ==
972 max_packet && (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT)
973 spipe->wantshort = 1;
974 else
975 spipe->wantshort = 0;
976
977 /* The goal of newbustime and newlen is to avoid bustime calculation
978 * in the interrupt. The calculations are not too complex, but they
979 * complicate the conditional logic somewhat and doing them all in the
980 * same place shares constants. Index 0 is "short length" for bulk and
981 * ctrl data and 1 is "full length" for ctrl data (bulk/intr are
982 * already set to full length). */
983 if (spipe->pflags & PF_LS) {
984 /* Setting PREAMBLE for directly connnected LS devices will
985 * lock up the chip. */
986 if (spipe->pflags & PF_PREAMBLE)
987 spipe->control |= SL11_EPCTRL_PREAMBLE;
988 if (max_packet <= 8) {
989 spipe->bustime = SLHCI_LS_CONST +
990 SLHCI_LS_DATA_TIME(spipe->tregs[LEN]);
991 spipe->newbustime[0] = SLHCI_LS_CONST +
992 SLHCI_LS_DATA_TIME(spipe->newlen[0]);
993 spipe->newbustime[1] = SLHCI_LS_CONST +
994 SLHCI_LS_DATA_TIME(spipe->newlen[1]);
995 } else
996 xfer->status = USBD_INVAL;
997 } else {
998 UL_SLASSERT(pipe->device->speed == USB_SPEED_FULL, sc,
999 spipe, xfer, return USBD_IN_PROGRESS);
1000 if (max_packet <= SL11_MAX_PACKET_SIZE) {
1001 spipe->bustime = SLHCI_FS_CONST +
1002 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
1003 spipe->newbustime[0] = SLHCI_FS_CONST +
1004 SLHCI_FS_DATA_TIME(spipe->newlen[0]);
1005 spipe->newbustime[1] = SLHCI_FS_CONST +
1006 SLHCI_FS_DATA_TIME(spipe->newlen[1]);
1007 } else
1008 xfer->status = USBD_INVAL;
1009 }
1010
1011 /* The datasheet incorrectly indicates that DIRECTION is for
1012 * "transmit to host". It is for OUT and SETUP. The app note
1013 * describes its use correctly. */
1014 if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN)
1015 spipe->control |= SL11_EPCTRL_DIRECTION;
1016
1017 slhci_start_entry(sc, spipe);
1018
1019 return USBD_IN_PROGRESS;
1020 }
1021
1022 usbd_status
1023 slhci_root_start(struct usbd_xfer *xfer)
1024 {
1025 struct slhci_softc *sc;
1026 struct slhci_pipe *spipe;
1027
1028 spipe = (struct slhci_pipe *)xfer->pipe;
1029 sc = xfer->pipe->device->bus->hci_private;
1030
1031 return slhci_lock_call(sc, &slhci_root, spipe, xfer);
1032 }
1033
1034 usbd_status
1035 slhci_open(struct usbd_pipe *pipe)
1036 {
1037 struct usbd_device *dev;
1038 struct slhci_softc *sc;
1039 struct slhci_pipe *spipe;
1040 usb_endpoint_descriptor_t *ed;
1041 struct slhci_transfers *t;
1042 unsigned int max_packet, pmaxpkt;
1043
1044 dev = pipe->device;
1045 sc = dev->bus->hci_private;
1046 spipe = (struct slhci_pipe *)pipe;
1047 ed = pipe->endpoint->edesc;
1048 t = &sc->sc_transfers;
1049
1050 DLOG(D_TRACE, "slhci_open(addr=%d,ep=%d,rootaddr=%d)",
1051 dev->address, ed->bEndpointAddress, t->rootaddr, 0);
1052
1053 spipe->pflags = 0;
1054 spipe->frame = 0;
1055 spipe->lastframe = 0;
1056 spipe->xfer = NULL;
1057 spipe->buffer = NULL;
1058
1059 gcq_init(&spipe->ap);
1060 gcq_init(&spipe->to);
1061 gcq_init(&spipe->xq);
1062
1063 /* The endpoint descriptor will not have been set up yet in the case
1064 * of the standard control pipe, so the max packet checks are also
1065 * necessary in start. */
1066
1067 max_packet = UGETW(ed->wMaxPacketSize);
1068
1069 if (dev->speed == USB_SPEED_LOW) {
1070 spipe->pflags |= PF_LS;
1071 if (dev->myhub->address != t->rootaddr) {
1072 spipe->pflags |= PF_PREAMBLE;
1073 if (!slhci_try_lsvh)
1074 return slhci_lock_call(sc, &slhci_lsvh_warn,
1075 spipe, NULL);
1076 }
1077 pmaxpkt = 8;
1078 } else
1079 pmaxpkt = SL11_MAX_PACKET_SIZE;
1080
1081 if (max_packet > pmaxpkt) {
1082 DLOG(D_ERR, "packet too large! size %d spipe %p", max_packet,
1083 spipe, 0,0);
1084 return USBD_INVAL;
1085 }
1086
1087 if (dev->address == t->rootaddr) {
1088 switch (ed->bEndpointAddress) {
1089 case USB_CONTROL_ENDPOINT:
1090 spipe->ptype = PT_ROOT_CTRL;
1091 pipe->interval = 0;
1092 break;
1093 case UE_DIR_IN | ROOT_INTR_ENDPT:
1094 spipe->ptype = PT_ROOT_INTR;
1095 pipe->interval = 1;
1096 break;
1097 default:
1098 printf("%s: Invalid root endpoint!\n", SC_NAME(sc));
1099 DDOLOG("%s: Invalid root endpoint!\n", SC_NAME(sc),
1100 0,0,0);
1101 return USBD_INVAL;
1102 }
1103 pipe->methods = __UNCONST(&slhci_root_methods);
1104 return USBD_NORMAL_COMPLETION;
1105 } else {
1106 switch (ed->bmAttributes & UE_XFERTYPE) {
1107 case UE_CONTROL:
1108 spipe->ptype = PT_CTRL_SETUP;
1109 pipe->interval = 0;
1110 break;
1111 case UE_INTERRUPT:
1112 spipe->ptype = PT_INTR;
1113 if (pipe->interval == USBD_DEFAULT_INTERVAL)
1114 pipe->interval = ed->bInterval;
1115 break;
1116 case UE_ISOCHRONOUS:
1117 return slhci_lock_call(sc, &slhci_isoc_warn, spipe,
1118 NULL);
1119 case UE_BULK:
1120 spipe->ptype = PT_BULK;
1121 pipe->interval = 0;
1122 break;
1123 }
1124
1125 DLOG(D_MSG, "open pipe %s interval %d", pnames(spipe->ptype),
1126 pipe->interval, 0,0);
1127
1128 pipe->methods = __UNCONST(&slhci_pipe_methods);
1129
1130 return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL);
1131 }
1132 }
1133
1134 int
1135 slhci_supported_rev(uint8_t rev)
1136 {
1137 return (rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15);
1138 }
1139
1140 /* Must be called before the ISR is registered. Interrupts can be shared so
1141 * slhci_intr could be called as soon as the ISR is registered.
1142 * Note max_current argument is actual current, but stored as current/2 */
1143 void
1144 slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot,
1145 bus_space_handle_t ioh, uint16_t max_current, uint8_t stride)
1146 {
1147 struct slhci_transfers *t;
1148 int i;
1149
1150 t = &sc->sc_transfers;
1151
1152 #ifdef SLHCI_DEBUG
1153 KERNHIST_INIT_STATIC(slhcihist, slhci_he);
1154 #endif
1155 simple_lock_init(&sc->sc_lock);
1156 #ifdef SLHCI_WAITLOCK
1157 simple_lock_init(&sc->sc_wait_lock);
1158 #endif
1159 /* sc->sc_ier = 0; */
1160 /* t->rootintr = NULL; */
1161 t->flags = F_NODEV|F_UDISABLED;
1162 t->pend = INT_MAX;
1163 KASSERT(slhci_wait_time != INT_MAX);
1164 t->len[0] = t->len[1] = -1;
1165 if (max_current > 500)
1166 max_current = 500;
1167 t->max_current = (uint8_t)(max_current / 2);
1168 sc->sc_enable_power = pow;
1169 sc->sc_iot = iot;
1170 sc->sc_ioh = ioh;
1171 sc->sc_stride = stride;
1172
1173 KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0]));
1174
1175 for (i = 0; i <= Q_MAX; i++)
1176 gcq_init_head(&t->q[i]);
1177 gcq_init_head(&t->timed);
1178 gcq_init_head(&t->to);
1179 gcq_init_head(&t->ap);
1180 #ifdef SLHCI_WAITLOCK
1181 gcq_init_head(&sc->sc_waitq);
1182 #endif
1183 }
1184
1185 int
1186 slhci_attach(struct slhci_softc *sc)
1187 {
1188 if (slhci_lock_call(sc, &slhci_do_attach, NULL, NULL) !=
1189 USBD_NORMAL_COMPLETION)
1190 return -1;
1191
1192 /* Attach usb and uhub. */
1193 sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint);
1194
1195 if (!sc->sc_child)
1196 return -1;
1197 else
1198 return 0;
1199 }
1200
1201 int
1202 slhci_detach(struct slhci_softc *sc, int flags)
1203 {
1204 struct slhci_transfers *t;
1205 int ret;
1206
1207 t = &sc->sc_transfers;
1208
1209 /* By this point bus access is no longer allowed. */
1210
1211 KASSERT(!(t->flags & F_ACTIVE));
1212
1213 /* To be MPSAFE is not sufficient to cancel callouts and soft
1214 * interrupts and assume they are dead since the code could already be
1215 * running or about to run. Wait until they are known to be done. */
1216 while (t->flags & (F_RESET|F_CALLBACK))
1217 tsleep(&sc, PPAUSE, "slhci_detach", hz);
1218
1219 softint_disestablish(sc->sc_cb_softintr);
1220
1221 ret = 0;
1222
1223 if (sc->sc_child)
1224 ret = config_detach(sc->sc_child, flags);
1225
1226 #ifdef SLHCI_MEM_ACCOUNTING
1227 if (sc->sc_mem_use) {
1228 printf("%s: Memory still in use after detach! mem_use (count)"
1229 " = %d\n", SC_NAME(sc), sc->sc_mem_use);
1230 DDOLOG("%s: Memory still in use after detach! mem_use (count)"
1231 " = %d\n", SC_NAME(sc), sc->sc_mem_use, 0,0);
1232 }
1233 #endif
1234
1235 return ret;
1236 }
1237
1238 int
1239 slhci_activate(device_t self, enum devact act)
1240 {
1241 struct slhci_softc *sc = device_private(self);
1242
1243 switch (act) {
1244 case DVACT_DEACTIVATE:
1245 slhci_lock_call(sc, &slhci_halt, NULL, NULL);
1246 return 0;
1247 default:
1248 return EOPNOTSUPP;
1249 }
1250 }
1251
1252 void
1253 slhci_abort(struct usbd_xfer *xfer)
1254 {
1255 struct slhci_softc *sc;
1256 struct slhci_pipe *spipe;
1257
1258 spipe = (struct slhci_pipe *)xfer->pipe;
1259
1260 if (spipe == NULL)
1261 goto callback;
1262
1263 sc = spipe->pipe.device->bus->hci_private;
1264
1265 DLOG(D_TRACE, "%s abort xfer %p spipe %p spipe->xfer %p",
1266 pnames(spipe->ptype), xfer, spipe, spipe->xfer);
1267
1268 slhci_lock_call(sc, &slhci_do_abort, spipe, xfer);
1269
1270 callback:
1271 xfer->status = USBD_CANCELLED;
1272 /* Abort happens at splsoftusb. */
1273 usb_transfer_complete(xfer);
1274 }
1275
1276 void
1277 slhci_close(struct usbd_pipe *pipe)
1278 {
1279 struct slhci_softc *sc;
1280 struct slhci_pipe *spipe;
1281 struct slhci_transfers *t;
1282
1283 sc = pipe->device->bus->hci_private;
1284 spipe = (struct slhci_pipe *)pipe;
1285 t = &sc->sc_transfers;
1286
1287 DLOG(D_TRACE, "%s close spipe %p spipe->xfer %p",
1288 pnames(spipe->ptype), spipe, spipe->xfer, 0);
1289
1290 slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL);
1291 }
1292
1293 void
1294 slhci_clear_toggle(struct usbd_pipe *pipe)
1295 {
1296 struct slhci_pipe *spipe;
1297
1298 spipe = (struct slhci_pipe *)pipe;
1299
1300 DLOG(D_TRACE, "%s toggle spipe %p", pnames(spipe->ptype),
1301 spipe,0,0);
1302
1303 spipe->pflags &= ~PF_TOGGLE;
1304
1305 #ifdef DIAGNOSTIC
1306 if (spipe->xfer != NULL) {
1307 struct slhci_softc *sc = (struct slhci_softc
1308 *)pipe->device->bus;
1309
1310 printf("%s: Clear toggle on transfer in progress! halted\n",
1311 SC_NAME(sc));
1312 DDOLOG("%s: Clear toggle on transfer in progress! halted\n",
1313 SC_NAME(sc), 0,0,0);
1314 slhci_halt(sc, NULL, NULL);
1315 }
1316 #endif
1317 }
1318
1319 void
1320 slhci_poll(struct usbd_bus *bus) /* XXX necessary? */
1321 {
1322 struct slhci_softc *sc;
1323
1324 sc = bus->hci_private;
1325
1326 DLOG(D_TRACE, "slhci_poll", 0,0,0,0);
1327
1328 slhci_lock_call(sc, &slhci_do_poll, NULL, NULL);
1329 }
1330
1331 void
1332 slhci_done(struct usbd_xfer *xfer)
1333 {
1334 /* xfer may not be valid here */
1335 }
1336
1337 void
1338 slhci_void(void *v) {}
1339
1340 /* End out of lock functions. Start lock entry functions. */
1341
1342 #ifdef SLHCI_MEM_ACCOUNTING
1343 void
1344 slhci_mem_use(struct usbd_bus *bus, int val)
1345 {
1346 struct slhci_softc *sc = bus->hci_private;
1347 int s;
1348
1349 s = splhardusb();
1350 simple_lock(&sc->sc_wait_lock);
1351 sc->sc_mem_use += val;
1352 simple_unlock(&sc->sc_wait_lock);
1353 splx(s);
1354 }
1355 #endif
1356
1357 void
1358 slhci_reset_entry(void *arg)
1359 {
1360 struct slhci_softc *sc;
1361 int s;
1362
1363 sc = (struct slhci_softc *)arg;
1364
1365 s = splhardusb();
1366 simple_lock(&sc->sc_lock);
1367 slhci_reset(sc);
1368 /* We cannot call the calback directly since we could then be reset
1369 * again before finishing and need the callout delay for timing.
1370 * Scheduling the callout again before we exit would defeat the reap
1371 * mechanism since we could be unlocked while the reset flag is not
1372 * set. The callback code will check the wait queue. */
1373 slhci_callback_schedule(sc);
1374 simple_unlock(&sc->sc_lock);
1375 splx(s);
1376 }
1377
1378 usbd_status
1379 slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe
1380 *spipe, struct usbd_xfer *xfer)
1381 {
1382 usbd_status ret;
1383 int x, s;
1384
1385 x = splsoftusb();
1386 s = splhardusb();
1387 simple_lock(&sc->sc_lock);
1388 ret = (*lcf)(sc, spipe, xfer);
1389 slhci_main(sc, &s);
1390 splx(s);
1391 splx(x);
1392
1393 return ret;
1394 }
1395
1396 void
1397 slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe)
1398 {
1399 struct slhci_transfers *t;
1400 int s;
1401
1402 t = &sc->sc_transfers;
1403
1404 s = splhardusb();
1405 #ifdef SLHCI_WAITLOCK
1406 if (simple_lock_try(&sc->sc_lock))
1407 #else
1408 simple_lock(&sc->sc_lock);
1409 #endif
1410 {
1411 slhci_enter_xfer(sc, spipe);
1412 slhci_dotransfer(sc);
1413 slhci_main(sc, &s);
1414 #ifdef SLHCI_WAITLOCK
1415 } else {
1416 simple_lock(&sc->sc_wait_lock);
1417 enter_waitq(sc, spipe);
1418 simple_unlock(&sc->sc_wait_lock);
1419 #endif
1420 }
1421 splx(s);
1422 }
1423
1424 void
1425 slhci_callback_entry(void *arg)
1426 {
1427 struct slhci_softc *sc;
1428 struct slhci_transfers *t;
1429 int s, x;
1430
1431
1432 sc = (struct slhci_softc *)arg;
1433
1434 x = splsoftusb();
1435 s = splhardusb();
1436 simple_lock(&sc->sc_lock);
1437 t = &sc->sc_transfers;
1438 DLOG(D_SOFT, "callback_entry flags %#x", t->flags, 0,0,0);
1439
1440 #ifdef SLHCI_WAITLOCK
1441 repeat:
1442 #endif
1443 slhci_callback(sc, &s);
1444
1445 #ifdef SLHCI_WAITLOCK
1446 simple_lock(&sc->sc_wait_lock);
1447 if (!gcq_empty(&sc->sc_waitq)) {
1448 slhci_enter_xfers(sc);
1449 simple_unlock(&sc->sc_wait_lock);
1450 slhci_dotransfer(sc);
1451 slhci_waitintr(sc, 0);
1452 goto repeat;
1453 }
1454
1455 t->flags &= ~F_CALLBACK;
1456 simple_unlock(&sc->sc_lock);
1457 simple_unlock(&sc->sc_wait_lock);
1458 #else
1459 t->flags &= ~F_CALLBACK;
1460 simple_unlock(&sc->sc_lock);
1461 #endif
1462 splx(s);
1463 splx(x);
1464 }
1465
1466 void
1467 slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer, int *s)
1468 {
1469 SLHCI_LOCKASSERT(sc, locked, unlocked);
1470
1471 int repeat;
1472
1473 sc->sc_bus.intr_context++;
1474 start_cc_time(&t_callback, (u_int)xfer);
1475 simple_unlock(&sc->sc_lock);
1476 splx(*s);
1477
1478 repeat = xfer->pipe->repeat;
1479
1480 usb_transfer_complete(xfer);
1481
1482 *s = splhardusb();
1483 simple_lock(&sc->sc_lock);
1484 stop_cc_time(&t_callback);
1485 sc->sc_bus.intr_context--;
1486
1487 if (repeat && !sc->sc_bus.use_polling)
1488 slhci_do_repeat(sc, xfer);
1489 }
1490
1491 int
1492 slhci_intr(void *arg)
1493 {
1494 struct slhci_softc *sc;
1495 int ret;
1496
1497 sc = (struct slhci_softc *)arg;
1498
1499 start_cc_time(&t_hard_int, (unsigned int)arg);
1500 simple_lock(&sc->sc_lock);
1501
1502 ret = slhci_dointr(sc);
1503 slhci_main(sc, NULL);
1504
1505 stop_cc_time(&t_hard_int);
1506 return ret;
1507 }
1508
1509 /* called with main lock only held, returns with locks released. */
1510 void
1511 slhci_main(struct slhci_softc *sc, int *s)
1512 {
1513 struct slhci_transfers *t;
1514
1515 t = &sc->sc_transfers;
1516
1517 SLHCI_LOCKASSERT(sc, locked, unlocked);
1518
1519 #ifdef SLHCI_WAITLOCK
1520 waitcheck:
1521 #endif
1522 slhci_waitintr(sc, slhci_wait_time);
1523
1524
1525 /*
1526 * XXX Directly calling the callback anytime s != NULL
1527 * causes panic:sbdrop with aue (simultaneously using umass).
1528 * Doing that affects process accounting, but is supposed to work as
1529 * far as I can tell.
1530 *
1531 * The direct call is needed in the use_polling and disabled cases
1532 * since the soft interrupt is not available. In the disabled case,
1533 * this code can be reached from the usb detach, after the reaping of
1534 * the soft interrupt. That test could be !F_ACTIVE (in which case
1535 * s != NULL could be an assertion), but there is no reason not to
1536 * make the callbacks directly in the other DISABLED cases.
1537 */
1538 if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) {
1539 if (__predict_false(sc->sc_bus.use_polling || t->flags &
1540 F_DISABLED) && s != NULL)
1541 slhci_callback(sc, s);
1542 else
1543 slhci_callback_schedule(sc);
1544 }
1545
1546 #ifdef SLHCI_WAITLOCK
1547 simple_lock(&sc->sc_wait_lock);
1548
1549 if (!gcq_empty(&sc->sc_waitq)) {
1550 slhci_enter_xfers(sc);
1551 simple_unlock(&sc->sc_wait_lock);
1552 slhci_dotransfer(sc);
1553 goto waitcheck;
1554 }
1555
1556 simple_unlock(&sc->sc_lock);
1557 simple_unlock(&sc->sc_wait_lock);
1558 #else
1559 simple_unlock(&sc->sc_lock);
1560 #endif
1561 }
1562
1563 /* End lock entry functions. Start in lock function. */
1564
1565 /* Register read/write routines and barriers. */
1566 #ifdef SLHCI_BUS_SPACE_BARRIERS
1567 #define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e)
1568 #define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_SYNC)
1569 #else /* now !SLHCI_BUS_SPACE_BARRIERS */
1570 #define BSB(a, b, c, d, e)
1571 #define BSB_SYNC(a, b, c, d)
1572 #endif /* SLHCI_BUS_SPACE_BARRIERS */
1573
1574 static void
1575 slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data)
1576 {
1577 bus_size_t paddr, pdata, pst, psz;
1578 bus_space_tag_t iot;
1579 bus_space_handle_t ioh;
1580
1581 paddr = pst = 0;
1582 pdata = sc->sc_stride;
1583 psz = pdata * 2;
1584 iot = sc->sc_iot;
1585 ioh = sc->sc_ioh;
1586
1587 bus_space_write_1(iot, ioh, paddr, addr);
1588 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1589 bus_space_write_1(iot, ioh, pdata, data);
1590 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1591 }
1592
1593 static uint8_t
1594 slhci_read(struct slhci_softc *sc, uint8_t addr)
1595 {
1596 bus_size_t paddr, pdata, pst, psz;
1597 bus_space_tag_t iot;
1598 bus_space_handle_t ioh;
1599 uint8_t data;
1600
1601 paddr = pst = 0;
1602 pdata = sc->sc_stride;
1603 psz = pdata * 2;
1604 iot = sc->sc_iot;
1605 ioh = sc->sc_ioh;
1606
1607 bus_space_write_1(iot, ioh, paddr, addr);
1608 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1609 data = bus_space_read_1(iot, ioh, pdata);
1610 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1611 return data;
1612 }
1613
1614 #if 0 /* auto-increment mode broken, see errata doc */
1615 static void
1616 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1617 {
1618 bus_size_t paddr, pdata, pst, psz;
1619 bus_space_tag_t iot;
1620 bus_space_handle_t ioh;
1621
1622 paddr = pst = 0;
1623 pdata = sc->sc_stride;
1624 psz = pdata * 2;
1625 iot = sc->sc_iot;
1626 ioh = sc->sc_ioh;
1627
1628 bus_space_write_1(iot, ioh, paddr, addr);
1629 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1630 bus_space_write_multi_1(iot, ioh, pdata, buf, l);
1631 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1632 }
1633
1634 static void
1635 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1636 {
1637 bus_size_t paddr, pdata, pst, psz;
1638 bus_space_tag_t iot;
1639 bus_space_handle_t ioh;
1640
1641 paddr = pst = 0;
1642 pdata = sc->sc_stride;
1643 psz = pdata * 2;
1644 iot = sc->sc_iot;
1645 ioh = sc->sc_ioh;
1646
1647 bus_space_write_1(iot, ioh, paddr, addr);
1648 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1649 bus_space_read_multi_1(iot, ioh, pdata, buf, l);
1650 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1651 }
1652 #else
1653 static void
1654 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1655 {
1656 #if 1
1657 for (; l; addr++, buf++, l--)
1658 slhci_write(sc, addr, *buf);
1659 #else
1660 bus_size_t paddr, pdata, pst, psz;
1661 bus_space_tag_t iot;
1662 bus_space_handle_t ioh;
1663
1664 paddr = pst = 0;
1665 pdata = sc->sc_stride;
1666 psz = pdata * 2;
1667 iot = sc->sc_iot;
1668 ioh = sc->sc_ioh;
1669
1670 for (; l; addr++, buf++, l--) {
1671 bus_space_write_1(iot, ioh, paddr, addr);
1672 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1673 bus_space_write_1(iot, ioh, pdata, *buf);
1674 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1675 }
1676 #endif
1677 }
1678
1679 static void
1680 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1681 {
1682 #if 1
1683 for (; l; addr++, buf++, l--)
1684 *buf = slhci_read(sc, addr);
1685 #else
1686 bus_size_t paddr, pdata, pst, psz;
1687 bus_space_tag_t iot;
1688 bus_space_handle_t ioh;
1689
1690 paddr = pst = 0;
1691 pdata = sc->sc_stride;
1692 psz = pdata * 2;
1693 iot = sc->sc_iot;
1694 ioh = sc->sc_ioh;
1695
1696 for (; l; addr++, buf++, l--) {
1697 bus_space_write_1(iot, ioh, paddr, addr);
1698 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1699 *buf = bus_space_read_1(iot, ioh, pdata);
1700 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1701 }
1702 #endif
1703 }
1704 #endif
1705
1706 /* After calling waitintr it is necessary to either call slhci_callback or
1707 * schedule the callback if necessary. The callback cannot be called directly
1708 * from the hard interrupt since it interrupts at a high IPL and callbacks
1709 * can do copyout and such. */
1710 static void
1711 slhci_waitintr(struct slhci_softc *sc, int wait_time)
1712 {
1713 struct slhci_transfers *t;
1714
1715 t = &sc->sc_transfers;
1716
1717 SLHCI_LOCKASSERT(sc, locked, unlocked);
1718
1719 if (__predict_false(sc->sc_bus.use_polling))
1720 wait_time = 12000;
1721
1722 while (t->pend <= wait_time) {
1723 DLOG(D_WAIT, "waiting... frame %d pend %d flags %#x",
1724 t->frame, t->pend, t->flags, 0);
1725 LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return);
1726 LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL,
1727 return);
1728 slhci_dointr(sc);
1729 }
1730 }
1731
1732 static int
1733 slhci_dointr(struct slhci_softc *sc)
1734 {
1735 struct slhci_transfers *t;
1736 struct slhci_pipe *tosp;
1737 uint8_t r;
1738
1739 t = &sc->sc_transfers;
1740
1741 SLHCI_LOCKASSERT(sc, locked, unlocked);
1742
1743 if (sc->sc_ier == 0)
1744 return 0;
1745
1746 r = slhci_read(sc, SL11_ISR);
1747
1748 #ifdef SLHCI_DEBUG
1749 if (slhci_debug & SLHCI_D_INTR && r & sc->sc_ier &&
1750 ((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhci_debug &
1751 SLHCI_D_SOF)) {
1752 uint8_t e, f;
1753
1754 e = slhci_read(sc, SL11_IER);
1755 f = slhci_read(sc, SL11_CTRL);
1756 DDOLOG("Flags=%#x IER=%#x ISR=%#x", t->flags, e, r, 0);
1757 DDOLOGFLAG8("Status=", r, "D+", (f & SL11_CTRL_SUSPEND) ?
1758 "RESUME" : "NODEV", "INSERT", "SOF", "res", "BABBLE",
1759 "USBB", "USBA");
1760 }
1761 #endif
1762
1763 /* check IER for corruption occasionally. Assume that the above
1764 * sc_ier == 0 case works correctly. */
1765 if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) {
1766 sc->sc_ier_check = 0;
1767 if (sc->sc_ier != slhci_read(sc, SL11_IER)) {
1768 printf("%s: IER value corrupted! halted\n",
1769 SC_NAME(sc));
1770 DDOLOG("%s: IER value corrupted! halted\n",
1771 SC_NAME(sc), 0,0,0);
1772 slhci_halt(sc, NULL, NULL);
1773 return 1;
1774 }
1775 }
1776
1777 r &= sc->sc_ier;
1778
1779 if (r == 0)
1780 return 0;
1781
1782 sc->sc_ier_check = 0;
1783
1784 slhci_write(sc, SL11_ISR, r);
1785 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
1786
1787
1788 /* If we have an insertion event we do not care about anything else. */
1789 if (__predict_false(r & SL11_ISR_INSERT)) {
1790 slhci_insert(sc);
1791 return 1;
1792 }
1793
1794 stop_cc_time(&t_intr);
1795 start_cc_time(&t_intr, r);
1796
1797 if (r & SL11_ISR_SOF) {
1798 t->frame++;
1799
1800 gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]);
1801
1802 /* SOFCHECK flags are cleared in tstart. Two flags are needed
1803 * since the first SOF interrupt processed after the transfer
1804 * is started might have been generated before the transfer
1805 * was started. */
1806 if (__predict_false(t->flags & F_SOFCHECK2 && t->flags &
1807 (F_AINPROG|F_BINPROG))) {
1808 printf("%s: Missed transfer completion. halted\n",
1809 SC_NAME(sc));
1810 DDOLOG("%s: Missed transfer completion. halted\n",
1811 SC_NAME(sc), 0,0,0);
1812 slhci_halt(sc, NULL, NULL);
1813 return 1;
1814 } else if (t->flags & F_SOFCHECK1) {
1815 t->flags |= F_SOFCHECK2;
1816 } else
1817 t->flags |= F_SOFCHECK1;
1818
1819 if (t->flags & F_CHANGE)
1820 t->flags |= F_ROOTINTR;
1821
1822 while (__predict_true(GOT_FIRST_TO(tosp, t)) &&
1823 __predict_false(tosp->to_frame <= t->frame)) {
1824 tosp->xfer->status = USBD_TIMEOUT;
1825 slhci_do_abort(sc, tosp, tosp->xfer);
1826 enter_callback(t, tosp);
1827 }
1828
1829 /* Start any waiting transfers right away. If none, we will
1830 * start any new transfers later. */
1831 slhci_tstart(sc);
1832 }
1833
1834 if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) {
1835 int ab;
1836
1837 if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) ==
1838 (SL11_ISR_USBA|SL11_ISR_USBB)) {
1839 if (!(t->flags & (F_AINPROG|F_BINPROG)))
1840 return 1; /* presume card pulled */
1841
1842 LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) !=
1843 (F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1);
1844
1845 /* This should never happen (unless card removal just
1846 * occurred) but appeared frequently when both
1847 * transfers were started at the same time and was
1848 * accompanied by data corruption. It still happens
1849 * at times. I have not seen data correption except
1850 * when the STATUS bit gets set, which now causes the
1851 * driver to halt, however this should still not
1852 * happen so the warning is kept. See comment in
1853 * abdone, below.
1854 */
1855 printf("%s: Transfer reported done but not started! "
1856 "Verify data integrity if not detaching. "
1857 " flags %#x r %x\n", SC_NAME(sc), t->flags, r);
1858
1859 if (!(t->flags & F_AINPROG))
1860 r &= ~SL11_ISR_USBA;
1861 else
1862 r &= ~SL11_ISR_USBB;
1863 }
1864 t->pend = INT_MAX;
1865
1866 if (r & SL11_ISR_USBA)
1867 ab = A;
1868 else
1869 ab = B;
1870
1871 /* This happens when a low speed device is attached to
1872 * a hub with chip rev 1.5. SOF stops, but a few transfers
1873 * still work before causing this error.
1874 */
1875 if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) {
1876 printf("%s: %s done but not in progress! halted\n",
1877 SC_NAME(sc), ab ? "B" : "A");
1878 DDOLOG("%s: %s done but not in progress! halted\n",
1879 SC_NAME(sc), ab ? "B" : "A", 0,0);
1880 slhci_halt(sc, NULL, NULL);
1881 return 1;
1882 }
1883
1884 t->flags &= ~(ab ? F_BINPROG : F_AINPROG);
1885 slhci_tstart(sc);
1886 stop_cc_time(&t_ab[ab]);
1887 start_cc_time(&t_abdone, t->flags);
1888 slhci_abdone(sc, ab);
1889 stop_cc_time(&t_abdone);
1890 }
1891
1892 slhci_dotransfer(sc);
1893
1894 return 1;
1895 }
1896
1897 static void
1898 slhci_abdone(struct slhci_softc *sc, int ab)
1899 {
1900 struct slhci_transfers *t;
1901 struct slhci_pipe *spipe;
1902 struct usbd_xfer *xfer;
1903 uint8_t status, buf_start;
1904 uint8_t *target_buf;
1905 unsigned int actlen;
1906 int head;
1907
1908 t = &sc->sc_transfers;
1909
1910 SLHCI_LOCKASSERT(sc, locked, unlocked);
1911
1912 DLOG(D_TRACE, "ABDONE flags %#x", t->flags, 0,0,0);
1913
1914 DLOG(D_MSG, "DONE %s spipe %p len %d xfer %p", ab ? "B" : "A",
1915 t->spipe[ab], t->len[ab], t->spipe[ab] ?
1916 t->spipe[ab]->xfer : NULL);
1917
1918 spipe = t->spipe[ab];
1919
1920 /* skip this one if aborted; do not call return from the rest of the
1921 * function unless halting, else t->len will not be cleared. */
1922 if (spipe == NULL)
1923 goto done;
1924
1925 t->spipe[ab] = NULL;
1926
1927 xfer = spipe->xfer;
1928
1929 gcq_remove(&spipe->to);
1930
1931 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
1932
1933 status = slhci_read(sc, slhci_tregs[ab][STAT]);
1934
1935 /*
1936 * I saw no status or remaining length greater than the requested
1937 * length in early driver versions in circumstances I assumed caused
1938 * excess power draw. I am no longer able to reproduce this when
1939 * causing excess power draw circumstances.
1940 *
1941 * Disabling a power check and attaching aue to a keyboard and hub
1942 * that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard
1943 * 98mA) sometimes works and sometimes fails to configure. After
1944 * removing the aue and attaching a self-powered umass dvd reader
1945 * (unknown if it draws power from the host also) soon a single Error
1946 * status occurs then only timeouts. The controller soon halts freeing
1947 * memory due to being ONQU instead of BUSY. This may be the same
1948 * basic sequence that caused the no status/bad length errors. The
1949 * umass device seems to work (better at least) with the keyboard hub
1950 * when not first attaching aue (tested once reading an approximately
1951 * 200MB file).
1952 *
1953 * Overflow can indicate that the device and host disagree about how
1954 * much data has been transfered. This may indicate a problem at any
1955 * point during the transfer, not just when the error occurs. It may
1956 * indicate data corruption. A warning message is printed.
1957 *
1958 * Trying to use both A and B transfers at the same time results in
1959 * incorrect transfer completion ISR reports and the status will then
1960 * include SL11_EPSTAT_SETUP, which is apparently set while the
1961 * transfer is in progress. I also noticed data corruption, even
1962 * after waiting for the transfer to complete. The driver now avoids
1963 * trying to start both at the same time.
1964 *
1965 * I had accidently initialized the B registers before they were valid
1966 * in some driver versions. Since every other performance enhancing
1967 * feature has been confirmed buggy in the errata doc, I have not
1968 * tried both transfers at once again with the documented
1969 * initialization order.
1970 *
1971 * However, I have seen this problem again ("done but not started"
1972 * errors), which in some cases cases the SETUP status bit to remain
1973 * set on future transfers. In other cases, the SETUP bit is not set
1974 * and no data corruption occurs. This occured while using both umass
1975 * and aue on a powered hub (maybe triggered by some local activity
1976 * also) and needs several reads of the 200MB file to trigger. The
1977 * driver now halts if SETUP is detected.
1978 */
1979
1980 actlen = 0;
1981
1982 if (__predict_false(!status)) {
1983 DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0);
1984 printf("%s: no status! halted\n", SC_NAME(sc));
1985 slhci_halt(sc, spipe, xfer);
1986 return;
1987 }
1988
1989 #ifdef SLHCI_DEBUG
1990 if (slhci_debug & SLHCI_D_NAK || (status & SL11_EPSTAT_ERRBITS) !=
1991 SL11_EPSTAT_NAK)
1992 DLOGFLAG8(D_XFER, "STATUS=", status, "STALL", "NAK",
1993 "Overflow", "Setup", "Data Toggle", "Timeout", "Error",
1994 "ACK");
1995 #endif
1996
1997 if (!(status & SL11_EPSTAT_ERRBITS)) {
1998 unsigned int cont;
1999 cont = slhci_read(sc, slhci_tregs[ab][CONT]);
2000 if (cont != 0)
2001 DLOG(D_XFER, "cont %d len %d", cont,
2002 spipe->tregs[LEN], 0,0);
2003 if (__predict_false(cont > spipe->tregs[LEN])) {
2004 DDOLOG("cont > len! cont %d len %d xfer->length %d "
2005 "spipe %p", cont, spipe->tregs[LEN], xfer->length,
2006 spipe);
2007 printf("%s: cont > len! cont %d len %d xfer->length "
2008 "%d", SC_NAME(sc), cont, spipe->tregs[LEN],
2009 xfer->length);
2010 slhci_halt(sc, spipe, xfer);
2011 return;
2012 } else {
2013 spipe->nerrs = 0;
2014 actlen = spipe->tregs[LEN] - cont;
2015 }
2016 }
2017
2018 /* Actual copyin done after starting next transfer. */
2019 if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) {
2020 target_buf = spipe->buffer;
2021 buf_start = spipe->tregs[ADR];
2022 } else {
2023 target_buf = NULL;
2024 buf_start = 0; /* XXX gcc uninitialized warnings */
2025 }
2026
2027 if (status & SL11_EPSTAT_ERRBITS) {
2028 status &= SL11_EPSTAT_ERRBITS;
2029 if (status & SL11_EPSTAT_SETUP) {
2030 printf("%s: Invalid controller state detected! "
2031 "halted\n", SC_NAME(sc));
2032 DDOLOG("%s: Invalid controller state detected! "
2033 "halted\n", SC_NAME(sc), 0,0,0);
2034 slhci_halt(sc, spipe, xfer);
2035 return;
2036 } else if (__predict_false(sc->sc_bus.use_polling)) {
2037 if (status == SL11_EPSTAT_STALL)
2038 xfer->status = USBD_STALLED;
2039 else if (status == SL11_EPSTAT_TIMEOUT)
2040 xfer->status = USBD_TIMEOUT;
2041 else if (status == SL11_EPSTAT_NAK)
2042 xfer->status = USBD_TIMEOUT; /*XXX*/
2043 else
2044 xfer->status = USBD_IOERROR;
2045 head = Q_CALLBACKS;
2046 } else if (status == SL11_EPSTAT_NAK) {
2047 if (spipe->pipe.interval) {
2048 spipe->lastframe = spipe->frame =
2049 t->frame + spipe->pipe.interval;
2050 slhci_queue_timed(sc, spipe);
2051 goto queued;
2052 }
2053 head = Q_NEXT_CB;
2054 } else if (++spipe->nerrs > SLHCI_MAX_RETRIES ||
2055 status == SL11_EPSTAT_STALL) {
2056 if (status == SL11_EPSTAT_STALL)
2057 xfer->status = USBD_STALLED;
2058 else if (status == SL11_EPSTAT_TIMEOUT)
2059 xfer->status = USBD_TIMEOUT;
2060 else
2061 xfer->status = USBD_IOERROR;
2062
2063 DLOG(D_ERR, "Max retries reached! status %#x "
2064 "xfer->status %#x", status, xfer->status, 0,0);
2065 DLOGFLAG8(D_ERR, "STATUS=", status, "STALL",
2066 "NAK", "Overflow", "Setup", "Data Toggle",
2067 "Timeout", "Error", "ACK");
2068
2069 if (status == SL11_EPSTAT_OVERFLOW &&
2070 ratecheck(&sc->sc_overflow_warn_rate,
2071 &overflow_warn_rate)) {
2072 printf("%s: Overflow condition: "
2073 "data corruption possible\n",
2074 SC_NAME(sc));
2075 DDOLOG("%s: Overflow condition: "
2076 "data corruption possible\n",
2077 SC_NAME(sc), 0,0,0);
2078 }
2079 head = Q_CALLBACKS;
2080 } else {
2081 head = Q_NEXT_CB;
2082 }
2083 } else if (spipe->ptype == PT_CTRL_SETUP) {
2084 spipe->tregs[PID] = spipe->newpid;
2085
2086 if (xfer->length) {
2087 LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer,
2088 return);
2089 spipe->tregs[LEN] = spipe->newlen[1];
2090 spipe->bustime = spipe->newbustime[1];
2091 spipe->buffer = KERNADDR(&xfer->dmabuf, 0);
2092 spipe->ptype = PT_CTRL_DATA;
2093 } else {
2094 status_setup:
2095 /* CTRL_DATA swaps direction in PID then jumps here */
2096 spipe->tregs[LEN] = 0;
2097 if (spipe->pflags & PF_LS)
2098 spipe->bustime = SLHCI_LS_CONST;
2099 else
2100 spipe->bustime = SLHCI_FS_CONST;
2101 spipe->ptype = PT_CTRL_STATUS;
2102 spipe->buffer = NULL;
2103 }
2104
2105 /* Status or first data packet must be DATA1. */
2106 spipe->control |= SL11_EPCTRL_DATATOGGLE;
2107 if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN)
2108 spipe->control &= ~SL11_EPCTRL_DIRECTION;
2109 else
2110 spipe->control |= SL11_EPCTRL_DIRECTION;
2111
2112 head = Q_CB;
2113 } else if (spipe->ptype == PT_CTRL_STATUS) {
2114 head = Q_CALLBACKS;
2115 } else { /* bulk, intr, control data */
2116 xfer->actlen += actlen;
2117 spipe->control ^= SL11_EPCTRL_DATATOGGLE;
2118
2119 if (actlen == spipe->tregs[LEN] && (xfer->length >
2120 xfer->actlen || spipe->wantshort)) {
2121 spipe->buffer += actlen;
2122 LK_SLASSERT(xfer->length >= xfer->actlen, sc,
2123 spipe, xfer, return);
2124 if (xfer->length - xfer->actlen < actlen) {
2125 spipe->wantshort = 0;
2126 spipe->tregs[LEN] = spipe->newlen[0];
2127 spipe->bustime = spipe->newbustime[0];
2128 LK_SLASSERT(xfer->actlen +
2129 spipe->tregs[LEN] == xfer->length, sc,
2130 spipe, xfer, return);
2131 }
2132 head = Q_CB;
2133 } else if (spipe->ptype == PT_CTRL_DATA) {
2134 spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT;
2135 goto status_setup;
2136 } else {
2137 if (spipe->ptype == PT_INTR) {
2138 spipe->lastframe +=
2139 spipe->pipe.interval;
2140 /* If ack, we try to keep the
2141 * interrupt rate by using lastframe
2142 * instead of the current frame. */
2143 spipe->frame = spipe->lastframe +
2144 spipe->pipe.interval;
2145 }
2146
2147 /* Set the toggle for the next transfer. It
2148 * has already been toggled above, so the
2149 * current setting will apply to the next
2150 * transfer. */
2151 if (spipe->control & SL11_EPCTRL_DATATOGGLE)
2152 spipe->pflags |= PF_TOGGLE;
2153 else
2154 spipe->pflags &= ~PF_TOGGLE;
2155
2156 head = Q_CALLBACKS;
2157 }
2158 }
2159
2160 if (head == Q_CALLBACKS) {
2161 gcq_remove(&spipe->to);
2162
2163 if (xfer->status == USBD_IN_PROGRESS) {
2164 LK_SLASSERT(xfer->actlen <= xfer->length, sc,
2165 spipe, xfer, return);
2166 xfer->status = USBD_NORMAL_COMPLETION;
2167 #if 0 /* usb_transfer_complete will do this */
2168 if (xfer->length == xfer->actlen || xfer->flags &
2169 USBD_SHORT_XFER_OK)
2170 xfer->status = USBD_NORMAL_COMPLETION;
2171 else
2172 xfer->status = USBD_SHORT_XFER;
2173 #endif
2174 }
2175 }
2176
2177 enter_q(t, spipe, head);
2178
2179 queued:
2180 if (target_buf != NULL) {
2181 slhci_dotransfer(sc);
2182 start_cc_time(&t_copy_from_dev, actlen);
2183 slhci_read_multi(sc, buf_start, target_buf, actlen);
2184 stop_cc_time(&t_copy_from_dev);
2185 DLOGBUF(D_BUF, target_buf, actlen);
2186 t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen);
2187 }
2188
2189 done:
2190 t->len[ab] = -1;
2191 }
2192
2193 static void
2194 slhci_tstart(struct slhci_softc *sc)
2195 {
2196 struct slhci_transfers *t;
2197 struct slhci_pipe *spipe;
2198 int remaining_bustime;
2199 int s;
2200
2201 t = &sc->sc_transfers;
2202
2203 SLHCI_LOCKASSERT(sc, locked, unlocked);
2204
2205 if (!(t->flags & (F_AREADY|F_BREADY)))
2206 return;
2207
2208 if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED))
2209 return;
2210
2211 /* We have about 6 us to get from the bus time check to
2212 * starting the transfer or we might babble or the chip might fail to
2213 * signal transfer complete. This leaves no time for any other
2214 * interrupts.
2215 */
2216 s = splhigh();
2217 remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6;
2218 remaining_bustime -= SLHCI_END_BUSTIME;
2219
2220 /* Start one transfer only, clearing any aborted transfers that are
2221 * not yet in progress and skipping missed isoc. It is easier to copy
2222 * & paste most of the A/B sections than to make the logic work
2223 * otherwise and this allows better constant use. */
2224 if (t->flags & F_AREADY) {
2225 spipe = t->spipe[A];
2226 if (spipe == NULL) {
2227 t->flags &= ~F_AREADY;
2228 t->len[A] = -1;
2229 } else if (remaining_bustime >= spipe->bustime) {
2230 t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2);
2231 t->flags |= F_AINPROG;
2232 start_cc_time(&t_ab[A], spipe->tregs[LEN]);
2233 slhci_write(sc, SL11_E0CTRL, spipe->control);
2234 goto pend;
2235 }
2236 }
2237 if (t->flags & F_BREADY) {
2238 spipe = t->spipe[B];
2239 if (spipe == NULL) {
2240 t->flags &= ~F_BREADY;
2241 t->len[B] = -1;
2242 } else if (remaining_bustime >= spipe->bustime) {
2243 t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2);
2244 t->flags |= F_BINPROG;
2245 start_cc_time(&t_ab[B], spipe->tregs[LEN]);
2246 slhci_write(sc, SL11_E1CTRL, spipe->control);
2247 pend:
2248 t->pend = spipe->bustime;
2249 }
2250 }
2251 splx(s);
2252 }
2253
2254 static void
2255 slhci_dotransfer(struct slhci_softc *sc)
2256 {
2257 struct slhci_transfers *t;
2258 struct slhci_pipe *spipe;
2259 int ab, i;
2260
2261 t = &sc->sc_transfers;
2262
2263 SLHCI_LOCKASSERT(sc, locked, unlocked);
2264
2265 while ((t->len[A] == -1 || t->len[B] == -1) &&
2266 (GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) ||
2267 GOT_FIRST_CB(spipe, t))) {
2268 LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return);
2269 LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype !=
2270 PT_ROOT_INTR, sc, spipe, NULL, return);
2271
2272 /* Check that this transfer can fit in the remaining memory. */
2273 if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 >
2274 SL11_MAX_PACKET_SIZE) {
2275 DLOG(D_XFER, "Transfer does not fit. alen %d blen %d "
2276 "len %d", t->len[A], t->len[B], spipe->tregs[LEN],
2277 0);
2278 return;
2279 }
2280
2281 gcq_remove(&spipe->xq);
2282
2283 if (t->len[A] == -1) {
2284 ab = A;
2285 spipe->tregs[ADR] = SL11_BUFFER_START;
2286 } else {
2287 ab = B;
2288 spipe->tregs[ADR] = SL11_BUFFER_END -
2289 spipe->tregs[LEN];
2290 }
2291
2292 t->len[ab] = spipe->tregs[LEN];
2293
2294 if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS)
2295 != SL11_PID_IN) {
2296 start_cc_time(&t_copy_to_dev,
2297 spipe->tregs[LEN]);
2298 slhci_write_multi(sc, spipe->tregs[ADR],
2299 spipe->buffer, spipe->tregs[LEN]);
2300 stop_cc_time(&t_copy_to_dev);
2301 t->pend -= SLHCI_FS_CONST +
2302 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
2303 }
2304
2305 DLOG(D_MSG, "NEW TRANSFER %s flags %#x alen %d blen %d",
2306 ab ? "B" : "A", t->flags, t->len[0], t->len[1]);
2307
2308 if (spipe->tregs[LEN])
2309 i = 0;
2310 else
2311 i = 1;
2312
2313 for (; i <= 3; i++)
2314 if (t->current_tregs[ab][i] != spipe->tregs[i]) {
2315 t->current_tregs[ab][i] = spipe->tregs[i];
2316 slhci_write(sc, slhci_tregs[ab][i],
2317 spipe->tregs[i]);
2318 }
2319
2320 DLOG(D_SXFER, "Transfer len %d pid %#x dev %d type %s",
2321 spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV],
2322 pnames(spipe->ptype));
2323
2324 t->spipe[ab] = spipe;
2325 t->flags |= ab ? F_BREADY : F_AREADY;
2326
2327 slhci_tstart(sc);
2328 }
2329 }
2330
2331 /* slhci_callback is called after the lock is taken from splsoftusb.
2332 * s is pointer to old spl (splsoftusb). */
2333 static void
2334 slhci_callback(struct slhci_softc *sc, int *s)
2335 {
2336 struct slhci_transfers *t;
2337 struct slhci_pipe *spipe;
2338 struct usbd_xfer *xfer;
2339
2340 t = &sc->sc_transfers;
2341
2342 SLHCI_LOCKASSERT(sc, locked, unlocked);
2343
2344 DLOG(D_SOFT, "CB flags %#x", t->flags, 0,0,0);
2345 for (;;) {
2346 if (__predict_false(t->flags & F_ROOTINTR)) {
2347 t->flags &= ~F_ROOTINTR;
2348 if (t->rootintr != NULL) {
2349 u_char *p;
2350
2351 p = KERNADDR(&t->rootintr->dmabuf, 0);
2352 p[0] = 2;
2353 t->rootintr->actlen = 1;
2354 t->rootintr->status = USBD_NORMAL_COMPLETION;
2355 xfer = t->rootintr;
2356 goto do_callback;
2357 }
2358 }
2359
2360
2361 if (!DEQUEUED_CALLBACK(spipe, t))
2362 return;
2363
2364 xfer = spipe->xfer;
2365 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
2366 spipe->xfer = NULL;
2367 DLOG(D_XFER, "xfer callback length %d actlen %d spipe %x "
2368 "type %s", xfer->length, xfer->actlen, spipe,
2369 pnames(spipe->ptype));
2370 do_callback:
2371 slhci_do_callback(sc, xfer, s);
2372 }
2373 }
2374
2375 static void
2376 slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2377 {
2378 struct slhci_transfers *t;
2379
2380 t = &sc->sc_transfers;
2381
2382 SLHCI_MAINLOCKASSERT(sc);
2383
2384 if (__predict_false(t->flags & F_DISABLED) ||
2385 __predict_false(spipe->pflags & PF_GONE)) {
2386 DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0);
2387 spipe->xfer->status = USBD_CANCELLED;
2388 }
2389
2390 if (spipe->xfer->status == USBD_IN_PROGRESS) {
2391 if (spipe->xfer->timeout) {
2392 spipe->to_frame = t->frame + spipe->xfer->timeout;
2393 slhci_xfer_timer(sc, spipe);
2394 }
2395 if (spipe->pipe.interval)
2396 slhci_queue_timed(sc, spipe);
2397 else
2398 enter_q(t, spipe, Q_CB);
2399 } else
2400 enter_callback(t, spipe);
2401 }
2402
2403 #ifdef SLHCI_WAITLOCK
2404 static void
2405 slhci_enter_xfers(struct slhci_softc *sc)
2406 {
2407 struct slhci_pipe *spipe;
2408
2409 SLHCI_LOCKASSERT(sc, locked, locked);
2410
2411 while (DEQUEUED_WAITQ(spipe, sc))
2412 slhci_enter_xfer(sc, spipe);
2413 }
2414 #endif
2415
2416 static void
2417 slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe)
2418 {
2419 struct slhci_transfers *t;
2420 struct gcq *q;
2421 struct slhci_pipe *spp;
2422
2423 t = &sc->sc_transfers;
2424
2425 SLHCI_MAINLOCKASSERT(sc);
2426
2427 FIND_TIMED(q, t, spp, spp->frame > spipe->frame);
2428 gcq_insert_before(q, &spipe->xq);
2429 }
2430
2431 static void
2432 slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2433 {
2434 struct slhci_transfers *t;
2435 struct gcq *q;
2436 struct slhci_pipe *spp;
2437
2438 t = &sc->sc_transfers;
2439
2440 SLHCI_MAINLOCKASSERT(sc);
2441
2442 FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame);
2443 gcq_insert_before(q, &spipe->to);
2444 }
2445
2446 static void
2447 slhci_do_repeat(struct slhci_softc *sc, struct usbd_xfer *xfer)
2448 {
2449 struct slhci_transfers *t;
2450 struct slhci_pipe *spipe;
2451
2452 t = &sc->sc_transfers;
2453 spipe = (struct slhci_pipe *)xfer->pipe;
2454
2455 if (xfer == t->rootintr)
2456 return;
2457
2458 DLOG(D_TRACE, "REPEAT: xfer %p actlen %d frame %u now %u",
2459 xfer, xfer->actlen, spipe->frame, sc->sc_transfers.frame);
2460
2461 xfer->actlen = 0;
2462 spipe->xfer = xfer;
2463 if (spipe->tregs[LEN])
2464 KASSERT(spipe->buffer == KERNADDR(&xfer->dmabuf, 0));
2465 slhci_queue_timed(sc, spipe);
2466 slhci_dotransfer(sc);
2467 }
2468
2469 static void
2470 slhci_callback_schedule(struct slhci_softc *sc)
2471 {
2472 struct slhci_transfers *t;
2473
2474 t = &sc->sc_transfers;
2475
2476 SLHCI_LOCKASSERT(sc, locked, unlocked);
2477
2478 if (t->flags & F_ACTIVE)
2479 slhci_do_callback_schedule(sc);
2480 }
2481
2482 static void
2483 slhci_do_callback_schedule(struct slhci_softc *sc)
2484 {
2485 struct slhci_transfers *t;
2486
2487 t = &sc->sc_transfers;
2488
2489 SLHCI_LOCKASSERT(sc, locked, unlocked);
2490
2491 if (!(t->flags & F_CALLBACK)) {
2492 t->flags |= F_CALLBACK;
2493 softint_schedule(sc->sc_cb_softintr);
2494 }
2495 }
2496
2497 #if 0
2498 /* must be called with lock taken from splsoftusb */
2499 /* XXX static */ void
2500 slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer, int *s)
2501 {
2502 SLHCI_LOCKASSERT(sc, locked, unlocked);
2503 slhci_dotransfer(sc);
2504 do {
2505 slhci_dointr(sc);
2506 } while (xfer->status == USBD_IN_PROGRESS);
2507 slhci_do_callback(sc, xfer, s);
2508 }
2509 #endif
2510
2511 static usbd_status
2512 slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2513 usbd_xfer *xfer)
2514 {
2515 slhci_waitintr(sc, 0);
2516
2517 return USBD_NORMAL_COMPLETION;
2518 }
2519
2520 static usbd_status
2521 slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2522 usbd_xfer *xfer)
2523 {
2524 struct slhci_transfers *t;
2525
2526 t = &sc->sc_transfers;
2527
2528 if (!(t->flags & F_LSVH_WARNED)) {
2529 printf("%s: Low speed device via hub disabled, "
2530 "see slhci(4)\n", SC_NAME(sc));
2531 DDOLOG("%s: Low speed device via hub disabled, "
2532 "see slhci(4)\n", SC_NAME(sc), 0,0,0);
2533 t->flags |= F_LSVH_WARNED;
2534 }
2535 return USBD_INVAL;
2536 }
2537
2538 static usbd_status
2539 slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2540 usbd_xfer *xfer)
2541 {
2542 struct slhci_transfers *t;
2543
2544 t = &sc->sc_transfers;
2545
2546 if (!(t->flags & F_ISOC_WARNED)) {
2547 printf("%s: ISOC transfer not supported "
2548 "(see slhci(4))\n", SC_NAME(sc));
2549 DDOLOG("%s: ISOC transfer not supported "
2550 "(see slhci(4))\n", SC_NAME(sc), 0,0,0);
2551 t->flags |= F_ISOC_WARNED;
2552 }
2553 return USBD_INVAL;
2554 }
2555
2556 static usbd_status
2557 slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2558 usbd_xfer *xfer)
2559 {
2560 struct slhci_transfers *t;
2561 struct usbd_pipe *pipe;
2562
2563 t = &sc->sc_transfers;
2564 pipe = &spipe->pipe;
2565
2566 if (t->flags & F_DISABLED)
2567 return USBD_CANCELLED;
2568 else if (pipe->interval && !slhci_reserve_bustime(sc, spipe, 1))
2569 return USBD_PENDING_REQUESTS;
2570 else {
2571 enter_all_pipes(t, spipe);
2572 return USBD_NORMAL_COMPLETION;
2573 }
2574 }
2575
2576 static usbd_status
2577 slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2578 usbd_xfer *xfer)
2579 {
2580 struct slhci_transfers *t;
2581 struct usbd_pipe *pipe;
2582
2583 t = &sc->sc_transfers;
2584 pipe = &spipe->pipe;
2585
2586 if (pipe->interval && spipe->ptype != PT_ROOT_INTR)
2587 slhci_reserve_bustime(sc, spipe, 0);
2588 gcq_remove(&spipe->ap);
2589 return USBD_NORMAL_COMPLETION;
2590 }
2591
2592 static usbd_status
2593 slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2594 usbd_xfer *xfer)
2595 {
2596 struct slhci_transfers *t;
2597
2598 t = &sc->sc_transfers;
2599
2600 SLHCI_MAINLOCKASSERT(sc);
2601
2602 if (spipe->xfer == xfer) {
2603 if (spipe->ptype == PT_ROOT_INTR) {
2604 if (t->rootintr == spipe->xfer) /* XXX assert? */
2605 t->rootintr = NULL;
2606 } else {
2607 gcq_remove(&spipe->to);
2608 gcq_remove(&spipe->xq);
2609
2610 if (t->spipe[A] == spipe) {
2611 t->spipe[A] = NULL;
2612 if (!(t->flags & F_AINPROG))
2613 t->len[A] = -1;
2614 } else if (t->spipe[B] == spipe) {
2615 t->spipe[B] = NULL;
2616 if (!(t->flags & F_BINPROG))
2617 t->len[B] = -1;
2618 }
2619 }
2620
2621 if (xfer->status != USBD_TIMEOUT) {
2622 spipe->xfer = NULL;
2623 spipe->pipe.repeat = 0; /* XXX timeout? */
2624 }
2625 }
2626
2627 return USBD_NORMAL_COMPLETION;
2628 }
2629
2630 static usbd_status
2631 slhci_do_attach(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2632 usbd_xfer *xfer)
2633 {
2634 struct slhci_transfers *t;
2635 const char *rev;
2636
2637 t = &sc->sc_transfers;
2638
2639 SLHCI_LOCKASSERT(sc, locked, unlocked);
2640
2641 /* Detect and check the controller type */
2642 t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV));
2643
2644 /* SL11H not supported */
2645 if (!slhci_supported_rev(t->sltype)) {
2646 if (t->sltype == SLTYPE_SL11H)
2647 printf("%s: SL11H unsupported or bus error!\n",
2648 SC_NAME(sc));
2649 else
2650 printf("%s: Unknown chip revision!\n", SC_NAME(sc));
2651 return USBD_INVAL;
2652 }
2653
2654 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
2655 callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc);
2656
2657 /* It is not safe to call the soft interrupt directly as
2658 * usb_schedsoftintr does in the use_polling case (due to locking).
2659 */
2660 sc->sc_cb_softintr = softint_establish(SOFTINT_NET,
2661 slhci_callback_entry, sc);
2662
2663 #ifdef SLHCI_DEBUG
2664 ssc = sc;
2665 #ifdef USB_DEBUG
2666 if (slhci_usbdebug >= 0)
2667 usbdebug = slhci_usbdebug;
2668 #endif
2669 #endif
2670
2671 if (t->sltype == SLTYPE_SL811HS_R12)
2672 rev = " (rev 1.2)";
2673 else if (t->sltype == SLTYPE_SL811HS_R14)
2674 rev = " (rev 1.4 or 1.5)";
2675 else
2676 rev = " (unknown revision)";
2677
2678 aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n",
2679 SC_NAME(sc), rev);
2680
2681 aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n",
2682 SC_NAME(sc), t->max_current * 2);
2683
2684 #if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \
2685 defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER)
2686 aprint_normal("%s: driver options:"
2687 #ifdef SLHCI_DEBUG
2688 " SLHCI_DEBUG"
2689 #endif
2690 #ifdef SLHCI_TRY_LSVH
2691 " SLHCI_TRY_LSVH"
2692 #endif
2693 #ifdef SLHCI_NO_OVERTIME
2694 " SLHCI_NO_OVERTIME"
2695 #endif
2696 #ifdef SLHCI_PROFILE_TRANSFER
2697 " SLHCI_PROFILE_TRANSFER"
2698 #endif
2699 "\n", SC_NAME(sc));
2700 #endif
2701 sc->sc_bus.usbrev = USBREV_1_1;
2702 sc->sc_bus.methods = __UNCONST(&slhci_bus_methods);
2703 sc->sc_bus.pipe_size = sizeof(struct slhci_pipe);
2704
2705 if (!sc->sc_enable_power)
2706 t->flags |= F_REALPOWER;
2707
2708 t->flags |= F_ACTIVE;
2709
2710 return USBD_NORMAL_COMPLETION;
2711 }
2712
2713 /* Called to deactivate or stop use of the controller instead of panicing.
2714 * Will cancel the xfer correctly even when not on a list.
2715 */
2716 static usbd_status
2717 slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer
2718 *xfer)
2719 {
2720 struct slhci_transfers *t;
2721
2722 SLHCI_LOCKASSERT(sc, locked, unlocked);
2723
2724 t = &sc->sc_transfers;
2725
2726 DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0);
2727
2728 if (spipe != NULL)
2729 slhci_log_spipe(spipe);
2730
2731 if (xfer != NULL)
2732 slhci_log_xfer(xfer);
2733
2734 if (spipe != NULL && xfer != NULL && spipe->xfer == xfer &&
2735 !gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] !=
2736 spipe) {
2737 xfer->status = USBD_CANCELLED;
2738 enter_callback(t, spipe);
2739 }
2740
2741 if (t->flags & F_ACTIVE) {
2742 slhci_intrchange(sc, 0);
2743 /* leave power on when halting in case flash devices or disks
2744 * are attached, which may be writing and could be damaged
2745 * by abrupt power loss. The root hub clear power feature
2746 * should still work after halting.
2747 */
2748 }
2749
2750 t->flags &= ~F_ACTIVE;
2751 t->flags |= F_UDISABLED;
2752 if (!(t->flags & F_NODEV))
2753 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
2754 slhci_drain(sc);
2755
2756 /* One last callback for the drain and device removal. */
2757 slhci_do_callback_schedule(sc);
2758
2759 return USBD_NORMAL_COMPLETION;
2760 }
2761
2762 /* There are three interrupt states: no interrupts during reset and after
2763 * device deactivation, INSERT only for no device present but power on, and
2764 * SOF, INSERT, ADONE, and BDONE when device is present.
2765 */
2766 static void
2767 slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier)
2768 {
2769 SLHCI_MAINLOCKASSERT(sc);
2770 if (sc->sc_ier != new_ier) {
2771 sc->sc_ier = new_ier;
2772 slhci_write(sc, SL11_IER, new_ier);
2773 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
2774 }
2775 }
2776
2777 /* Drain: cancel all pending transfers and put them on the callback list and
2778 * set the UDISABLED flag. UDISABLED is cleared only by reset. */
2779 static void
2780 slhci_drain(struct slhci_softc *sc)
2781 {
2782 struct slhci_transfers *t;
2783 struct slhci_pipe *spipe;
2784 struct gcq *q;
2785 int i;
2786
2787 SLHCI_LOCKASSERT(sc, locked, unlocked);
2788
2789 t = &sc->sc_transfers;
2790
2791 DLOG(D_MSG, "DRAIN flags %#x", t->flags, 0,0,0);
2792
2793 t->pend = INT_MAX;
2794
2795 for (i=0; i<=1; i++) {
2796 t->len[i] = -1;
2797 if (t->spipe[i] != NULL) {
2798 enter_callback(t, t->spipe[i]);
2799 t->spipe[i] = NULL;
2800 }
2801 }
2802
2803 /* Merge the queues into the callback queue. */
2804 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]);
2805 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]);
2806 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed);
2807
2808 /* Cancel all pipes. Note that not all of these may be on the
2809 * callback queue yet; some could be in slhci_start, for example. */
2810 FOREACH_AP(q, t, spipe) {
2811 spipe->pflags |= PF_GONE;
2812 spipe->pipe.repeat = 0;
2813 spipe->pipe.aborting = 1;
2814 if (spipe->xfer != NULL)
2815 spipe->xfer->status = USBD_CANCELLED;
2816 }
2817
2818 gcq_remove_all(&t->to);
2819
2820 t->flags |= F_UDISABLED;
2821 t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED);
2822 }
2823
2824 /* RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms
2825 * reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF)
2826 * check attached device speed.
2827 * must wait 100ms before USB transaction according to app note, 10ms
2828 * by spec. uhub does this delay
2829 *
2830 * Started from root hub set feature reset, which does step one.
2831 * use_polling will call slhci_reset directly, otherwise the callout goes
2832 * through slhci_reset_entry.
2833 */
2834 void
2835 slhci_reset(struct slhci_softc *sc)
2836 {
2837 struct slhci_transfers *t;
2838 struct slhci_pipe *spipe;
2839 struct gcq *q;
2840 uint8_t r, pol, ctrl;
2841
2842 t = &sc->sc_transfers;
2843 SLHCI_MAINLOCKASSERT(sc);
2844
2845 stop_cc_time(&t_delay);
2846
2847 KASSERT(t->flags & F_ACTIVE);
2848
2849 start_cc_time(&t_delay, 0);
2850 stop_cc_time(&t_delay);
2851
2852 slhci_write(sc, SL11_CTRL, 0);
2853 start_cc_time(&t_delay, 3);
2854 DELAY(3);
2855 stop_cc_time(&t_delay);
2856 slhci_write(sc, SL11_ISR, 0xff);
2857
2858 r = slhci_read(sc, SL11_ISR);
2859
2860 if (r & SL11_ISR_INSERT)
2861 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
2862
2863 if (r & SL11_ISR_NODEV) {
2864 DLOG(D_MSG, "NC", 0,0,0,0);
2865 /* Normally, the hard interrupt insert routine will issue
2866 * CCONNECT, however we need to do it here if the detach
2867 * happened during reset. */
2868 if (!(t->flags & F_NODEV))
2869 t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV;
2870 slhci_intrchange(sc, SL11_IER_INSERT);
2871 } else {
2872 if (t->flags & F_NODEV)
2873 t->flags |= F_CCONNECT;
2874 t->flags &= ~(F_NODEV|F_LOWSPEED);
2875 if (r & SL11_ISR_DATA) {
2876 DLOG(D_MSG, "FS", 0,0,0,0);
2877 pol = ctrl = 0;
2878 } else {
2879 DLOG(D_MSG, "LS", 0,0,0,0);
2880 pol = SL811_CSOF_POLARITY;
2881 ctrl = SL11_CTRL_LOWSPEED;
2882 t->flags |= F_LOWSPEED;
2883 }
2884
2885 /* Enable SOF auto-generation */
2886 t->frame = 0; /* write to SL811_CSOF will reset frame */
2887 slhci_write(sc, SL11_SOFTIME, 0xe0);
2888 slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e);
2889 slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF);
2890
2891 /* According to the app note, ARM must be set
2892 * for SOF generation to work. We initialize all
2893 * USBA registers here for current_tregs. */
2894 slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START);
2895 slhci_write(sc, SL11_E0LEN, 0);
2896 slhci_write(sc, SL11_E0PID, SL11_PID_SOF);
2897 slhci_write(sc, SL11_E0DEV, 0);
2898 slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM);
2899
2900 /* Initialize B registers. This can't be done earlier since
2901 * they are not valid until the SL811_CSOF register is written
2902 * above due to SL11H compatability. */
2903 slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8);
2904 slhci_write(sc, SL11_E1LEN, 0);
2905 slhci_write(sc, SL11_E1PID, 0);
2906 slhci_write(sc, SL11_E1DEV, 0);
2907
2908 t->current_tregs[0][ADR] = SL11_BUFFER_START;
2909 t->current_tregs[0][LEN] = 0;
2910 t->current_tregs[0][PID] = SL11_PID_SOF;
2911 t->current_tregs[0][DEV] = 0;
2912 t->current_tregs[1][ADR] = SL11_BUFFER_END - 8;
2913 t->current_tregs[1][LEN] = 0;
2914 t->current_tregs[1][PID] = 0;
2915 t->current_tregs[1][DEV] = 0;
2916
2917 /* SOF start will produce USBA interrupt */
2918 t->len[A] = 0;
2919 t->flags |= F_AINPROG;
2920
2921 slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS);
2922 }
2923
2924 t->flags &= ~(F_UDISABLED|F_RESET);
2925 t->flags |= F_CRESET|F_ROOTINTR;
2926 FOREACH_AP(q, t, spipe) {
2927 spipe->pflags &= ~PF_GONE;
2928 spipe->pipe.aborting = 0;
2929 }
2930 DLOG(D_MSG, "RESET done flags %#x", t->flags, 0,0,0);
2931 }
2932
2933 /* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */
2934 static int
2935 slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int
2936 reserve)
2937 {
2938 struct slhci_transfers *t;
2939 int bustime, max_packet;
2940
2941 SLHCI_LOCKASSERT(sc, locked, unlocked);
2942
2943 t = &sc->sc_transfers;
2944 max_packet = UGETW(spipe->pipe.endpoint->edesc->wMaxPacketSize);
2945
2946 if (spipe->pflags & PF_LS)
2947 bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet);
2948 else
2949 bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet);
2950
2951 if (!reserve) {
2952 t->reserved_bustime -= bustime;
2953 #ifdef DIAGNOSTIC
2954 if (t->reserved_bustime < 0) {
2955 printf("%s: reserved_bustime %d < 0!\n",
2956 SC_NAME(sc), t->reserved_bustime);
2957 DDOLOG("%s: reserved_bustime %d < 0!\n",
2958 SC_NAME(sc), t->reserved_bustime, 0,0);
2959 t->reserved_bustime = 0;
2960 }
2961 #endif
2962 return 1;
2963 }
2964
2965 if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) {
2966 if (ratecheck(&sc->sc_reserved_warn_rate,
2967 &reserved_warn_rate))
2968 #ifdef SLHCI_NO_OVERTIME
2969 {
2970 printf("%s: Max reserved bus time exceeded! "
2971 "Erroring request.\n", SC_NAME(sc));
2972 DDOLOG("%s: Max reserved bus time exceeded! "
2973 "Erroring request.\n", SC_NAME(sc), 0,0,0);
2974 }
2975 return 0;
2976 #else
2977 {
2978 printf("%s: Reserved bus time exceeds %d!\n",
2979 SC_NAME(sc), SLHCI_RESERVED_BUSTIME);
2980 DDOLOG("%s: Reserved bus time exceeds %d!\n",
2981 SC_NAME(sc), SLHCI_RESERVED_BUSTIME, 0,0);
2982 }
2983 #endif
2984 }
2985
2986 t->reserved_bustime += bustime;
2987 return 1;
2988 }
2989
2990 /* Device insertion/removal interrupt */
2991 static void
2992 slhci_insert(struct slhci_softc *sc)
2993 {
2994 struct slhci_transfers *t;
2995
2996 t = &sc->sc_transfers;
2997
2998 SLHCI_LOCKASSERT(sc, locked, unlocked);
2999
3000 if (t->flags & F_NODEV)
3001 slhci_intrchange(sc, 0);
3002 else {
3003 slhci_drain(sc);
3004 slhci_intrchange(sc, SL11_IER_INSERT);
3005 }
3006 t->flags ^= F_NODEV;
3007 t->flags |= F_ROOTINTR|F_CCONNECT;
3008 DLOG(D_MSG, "INSERT intr: flags after %#x", t->flags, 0,0,0);
3009 }
3010
3011 /*
3012 * Data structures and routines to emulate the root hub.
3013 */
3014 static const usb_device_descriptor_t slhci_devd = {
3015 USB_DEVICE_DESCRIPTOR_SIZE,
3016 UDESC_DEVICE, /* type */
3017 {0x01, 0x01}, /* USB version */
3018 UDCLASS_HUB, /* class */
3019 UDSUBCLASS_HUB, /* subclass */
3020 0, /* protocol */
3021 64, /* max packet */
3022 {USB_VENDOR_SCANLOGIC & 0xff, /* vendor ID (low) */
3023 USB_VENDOR_SCANLOGIC >> 8 }, /* vendor ID (high) */
3024 {0} /* ? */, /* product ID */
3025 {0}, /* device */
3026 1, /* index to manufacturer */
3027 2, /* index to product */
3028 0, /* index to serial number */
3029 1 /* number of configurations */
3030 };
3031
3032 static const struct slhci_confd_t {
3033 const usb_config_descriptor_t confd;
3034 const usb_interface_descriptor_t ifcd;
3035 const usb_endpoint_descriptor_t endpd;
3036 } UPACKED slhci_confd = {
3037 { /* Configuration */
3038 USB_CONFIG_DESCRIPTOR_SIZE,
3039 UDESC_CONFIG,
3040 {USB_CONFIG_DESCRIPTOR_SIZE +
3041 USB_INTERFACE_DESCRIPTOR_SIZE +
3042 USB_ENDPOINT_DESCRIPTOR_SIZE},
3043 1, /* number of interfaces */
3044 1, /* configuration value */
3045 0, /* index to configuration */
3046 UC_SELF_POWERED, /* attributes */
3047 0 /* max current, filled in later */
3048 }, { /* Interface */
3049 USB_INTERFACE_DESCRIPTOR_SIZE,
3050 UDESC_INTERFACE,
3051 0, /* interface number */
3052 0, /* alternate setting */
3053 1, /* number of endpoint */
3054 UICLASS_HUB, /* class */
3055 UISUBCLASS_HUB, /* subclass */
3056 0, /* protocol */
3057 0 /* index to interface */
3058 }, { /* Endpoint */
3059 USB_ENDPOINT_DESCRIPTOR_SIZE,
3060 UDESC_ENDPOINT,
3061 UE_DIR_IN | ROOT_INTR_ENDPT, /* endpoint address */
3062 UE_INTERRUPT, /* attributes */
3063 {240, 0}, /* max packet size */
3064 255 /* interval */
3065 }
3066 };
3067
3068 static const usb_hub_descriptor_t slhci_hubd = {
3069 USB_HUB_DESCRIPTOR_SIZE,
3070 UDESC_HUB,
3071 1, /* number of ports */
3072 {UHD_PWR_INDIVIDUAL | UHD_OC_NONE, 0}, /* hub characteristics */
3073 50, /* 5:power on to power good, units of 2ms */
3074 0, /* 6:maximum current, filled in later */
3075 { 0x00 }, /* port is removable */
3076 { 0x00 } /* port power control mask */
3077 };
3078
3079 static usbd_status
3080 slhci_clear_feature(struct slhci_softc *sc, unsigned int what)
3081 {
3082 struct slhci_transfers *t;
3083 usbd_status error;
3084
3085 t = &sc->sc_transfers;
3086 error = USBD_NORMAL_COMPLETION;
3087
3088 SLHCI_LOCKASSERT(sc, locked, unlocked);
3089
3090 if (what == UHF_PORT_POWER) {
3091 DLOG(D_MSG, "POWER_OFF", 0,0,0,0);
3092 t->flags &= ~F_POWER;
3093 if (!(t->flags & F_NODEV))
3094 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
3095 /* for x68k Nereid USB controller */
3096 if (sc->sc_enable_power && (t->flags & F_REALPOWER)) {
3097 t->flags &= ~F_REALPOWER;
3098 sc->sc_enable_power(sc, POWER_OFF);
3099 }
3100 slhci_intrchange(sc, 0);
3101 slhci_drain(sc);
3102 } else if (what == UHF_C_PORT_CONNECTION) {
3103 t->flags &= ~F_CCONNECT;
3104 } else if (what == UHF_C_PORT_RESET) {
3105 t->flags &= ~F_CRESET;
3106 } else if (what == UHF_PORT_ENABLE) {
3107 slhci_drain(sc);
3108 } else if (what != UHF_PORT_SUSPEND) {
3109 DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0);
3110 error = USBD_IOERROR;
3111 }
3112
3113 return error;
3114 }
3115
3116 static usbd_status
3117 slhci_set_feature(struct slhci_softc *sc, unsigned int what)
3118 {
3119 struct slhci_transfers *t;
3120 uint8_t r;
3121
3122 t = &sc->sc_transfers;
3123
3124 SLHCI_LOCKASSERT(sc, locked, unlocked);
3125
3126 if (what == UHF_PORT_RESET) {
3127 if (!(t->flags & F_ACTIVE)) {
3128 DDOLOG("SET PORT_RESET when not ACTIVE!",
3129 0,0,0,0);
3130 return USBD_INVAL;
3131 }
3132 if (!(t->flags & F_POWER)) {
3133 DDOLOG("SET PORT_RESET without PORT_POWER! flags %p",
3134 t->flags, 0,0,0);
3135 return USBD_INVAL;
3136 }
3137 if (t->flags & F_RESET)
3138 return USBD_NORMAL_COMPLETION;
3139 DLOG(D_MSG, "RESET flags %#x", t->flags, 0,0,0);
3140 slhci_intrchange(sc, 0);
3141 slhci_drain(sc);
3142 slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE);
3143 /* usb spec says delay >= 10ms, app note 50ms */
3144 start_cc_time(&t_delay, 50000);
3145 if (sc->sc_bus.use_polling) {
3146 DELAY(50000);
3147 slhci_reset(sc);
3148 } else {
3149 t->flags |= F_RESET;
3150 callout_schedule(&sc->sc_timer, max(mstohz(50), 2));
3151 }
3152 } else if (what == UHF_PORT_SUSPEND) {
3153 printf("%s: USB Suspend not implemented!\n", SC_NAME(sc));
3154 DDOLOG("%s: USB Suspend not implemented!\n", SC_NAME(sc),
3155 0,0,0);
3156 } else if (what == UHF_PORT_POWER) {
3157 DLOG(D_MSG, "PORT_POWER", 0,0,0,0);
3158 /* for x68k Nereid USB controller */
3159 if (!(t->flags & F_ACTIVE))
3160 return USBD_INVAL;
3161 if (t->flags & F_POWER)
3162 return USBD_NORMAL_COMPLETION;
3163 if (!(t->flags & F_REALPOWER)) {
3164 if (sc->sc_enable_power)
3165 sc->sc_enable_power(sc, POWER_ON);
3166 t->flags |= F_REALPOWER;
3167 }
3168 t->flags |= F_POWER;
3169 r = slhci_read(sc, SL11_ISR);
3170 if (r & SL11_ISR_INSERT)
3171 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
3172 if (r & SL11_ISR_NODEV) {
3173 slhci_intrchange(sc, SL11_IER_INSERT);
3174 t->flags |= F_NODEV;
3175 } else {
3176 t->flags &= ~F_NODEV;
3177 t->flags |= F_CCONNECT|F_ROOTINTR;
3178 }
3179 } else {
3180 DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0);
3181 return USBD_IOERROR;
3182 }
3183
3184 return USBD_NORMAL_COMPLETION;
3185 }
3186
3187 static void
3188 slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps)
3189 {
3190 struct slhci_transfers *t;
3191 unsigned int status, change;
3192
3193 t = &sc->sc_transfers;
3194
3195 SLHCI_LOCKASSERT(sc, locked, unlocked);
3196
3197 /* We do not have a way to detect over current or bable and
3198 * suspend is currently not implemented, so connect and reset
3199 * are the only changes that need to be reported. */
3200 change = 0;
3201 if (t->flags & F_CCONNECT)
3202 change |= UPS_C_CONNECT_STATUS;
3203 if (t->flags & F_CRESET)
3204 change |= UPS_C_PORT_RESET;
3205
3206 status = 0;
3207 if (!(t->flags & F_NODEV))
3208 status |= UPS_CURRENT_CONNECT_STATUS;
3209 if (!(t->flags & F_UDISABLED))
3210 status |= UPS_PORT_ENABLED;
3211 if (t->flags & F_RESET)
3212 status |= UPS_RESET;
3213 if (t->flags & F_POWER)
3214 status |= UPS_PORT_POWER;
3215 if (t->flags & F_LOWSPEED)
3216 status |= UPS_LOW_SPEED;
3217 USETW(ps->wPortStatus, status);
3218 USETW(ps->wPortChange, change);
3219 DLOG(D_ROOT, "status=%#.4x, change=%#.4x", status, change, 0,0);
3220 }
3221
3222 static usbd_status
3223 slhci_root(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer
3224 *xfer)
3225 {
3226 struct slhci_transfers *t;
3227 usb_device_request_t *req;
3228 unsigned int len, value, index, actlen, type;
3229 uint8_t *buf;
3230 usbd_status error;
3231
3232 t = &sc->sc_transfers;
3233 buf = NULL;
3234
3235 LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return
3236 USBD_CANCELLED);
3237
3238 DLOG(D_TRACE, "%s start", pnames(SLHCI_XFER_TYPE(xfer)), 0,0,0);
3239 SLHCI_LOCKASSERT(sc, locked, unlocked);
3240
3241 if (spipe->ptype == PT_ROOT_INTR) {
3242 LK_SLASSERT(t->rootintr == NULL, sc, spipe, xfer, return
3243 USBD_CANCELLED);
3244 t->rootintr = xfer;
3245 if (t->flags & F_CHANGE)
3246 t->flags |= F_ROOTINTR;
3247 return USBD_IN_PROGRESS;
3248 }
3249
3250 error = USBD_IOERROR; /* XXX should be STALL */
3251 actlen = 0;
3252 req = &xfer->request;
3253
3254 len = UGETW(req->wLength);
3255 value = UGETW(req->wValue);
3256 index = UGETW(req->wIndex);
3257
3258 type = req->bmRequestType;
3259
3260 if (len)
3261 buf = KERNADDR(&xfer->dmabuf, 0);
3262
3263 SLHCI_DEXEC(D_TRACE, slhci_log_req_hub(req));
3264
3265 /*
3266 * USB requests for hubs have two basic types, standard and class.
3267 * Each could potentially have recipients of device, interface,
3268 * endpoint, or other. For the hub class, CLASS_OTHER means the port
3269 * and CLASS_DEVICE means the hub. For standard requests, OTHER
3270 * is not used. Standard request are described in section 9.4 of the
3271 * standard, hub class requests in 11.16. Each request is either read
3272 * or write.
3273 *
3274 * Clear Feature, Set Feature, and Status are defined for each of the
3275 * used recipients. Get Descriptor and Set Descriptor are defined for
3276 * both standard and hub class types with different descriptors.
3277 * Other requests have only one defined recipient and type. These
3278 * include: Get/Set Address, Get/Set Configuration, Get/Set Interface,
3279 * and Synch Frame for standard requests and Get Bus State for hub
3280 * class.
3281 *
3282 * When a device is first powered up it has address 0 until the
3283 * address is set.
3284 *
3285 * Hubs are only allowed to support one interface and may not have
3286 * isochronous endpoints. The results of the related requests are
3287 * undefined.
3288 *
3289 * The standard requires invalid or unsupported requests to return
3290 * STALL in the data stage, however this does not work well with
3291 * current error handling. XXX
3292 *
3293 * Some unsupported fields:
3294 * Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT
3295 * Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP
3296 * Get Bus State is optional sample of D- and D+ at EOF2
3297 */
3298
3299 switch (req->bRequest) {
3300 /* Write Requests */
3301 case UR_CLEAR_FEATURE:
3302 if (type == UT_WRITE_CLASS_OTHER) {
3303 if (index == 1 /* Port */)
3304 error = slhci_clear_feature(sc, value);
3305 else
3306 DLOG(D_ROOT, "Clear Port Feature "
3307 "index = %#.4x", index, 0,0,0);
3308 }
3309 break;
3310 case UR_SET_FEATURE:
3311 if (type == UT_WRITE_CLASS_OTHER) {
3312 if (index == 1 /* Port */)
3313 error = slhci_set_feature(sc, value);
3314 else
3315 DLOG(D_ROOT, "Set Port Feature "
3316 "index = %#.4x", index, 0,0,0);
3317 } else if (type != UT_WRITE_CLASS_DEVICE)
3318 DLOG(D_ROOT, "Set Device Feature "
3319 "ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP "
3320 "not supported", 0,0,0,0);
3321 break;
3322 case UR_SET_ADDRESS:
3323 if (type == UT_WRITE_DEVICE) {
3324 DLOG(D_ROOT, "Set Address %#.4x", value, 0,0,0);
3325 if (value < USB_MAX_DEVICES) {
3326 t->rootaddr = value;
3327 error = USBD_NORMAL_COMPLETION;
3328 }
3329 }
3330 break;
3331 case UR_SET_CONFIG:
3332 if (type == UT_WRITE_DEVICE) {
3333 DLOG(D_ROOT, "Set Config %#.4x", value, 0,0,0);
3334 if (value == 0 || value == 1) {
3335 t->rootconf = value;
3336 error = USBD_NORMAL_COMPLETION;
3337 }
3338 }
3339 break;
3340 /* Read Requests */
3341 case UR_GET_STATUS:
3342 if (type == UT_READ_CLASS_OTHER) {
3343 if (index == 1 /* Port */ && len == /* XXX >=? */
3344 sizeof(usb_port_status_t)) {
3345 slhci_get_status(sc, (usb_port_status_t *)
3346 buf);
3347 actlen = sizeof(usb_port_status_t);
3348 error = USBD_NORMAL_COMPLETION;
3349 } else
3350 DLOG(D_ROOT, "Get Port Status index = %#.4x "
3351 "len = %#.4x", index, len, 0,0);
3352 } else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */
3353 if (len == sizeof(usb_hub_status_t)) {
3354 DLOG(D_ROOT, "Get Hub Status",
3355 0,0,0,0);
3356 actlen = sizeof(usb_hub_status_t);
3357 memset(buf, 0, actlen);
3358 error = USBD_NORMAL_COMPLETION;
3359 } else
3360 DLOG(D_ROOT, "Get Hub Status bad len %#.4x",
3361 len, 0,0,0);
3362 } else if (type == UT_READ_DEVICE) {
3363 if (len >= 2) {
3364 USETW(((usb_status_t *)buf)->wStatus, UDS_SELF_POWERED);
3365 actlen = 2;
3366 error = USBD_NORMAL_COMPLETION;
3367 }
3368 } else if (type == (UT_READ_INTERFACE|UT_READ_ENDPOINT)) {
3369 if (len >= 2) {
3370 USETW(((usb_status_t *)buf)->wStatus, 0);
3371 actlen = 2;
3372 error = USBD_NORMAL_COMPLETION;
3373 }
3374 }
3375 break;
3376 case UR_GET_CONFIG:
3377 if (type == UT_READ_DEVICE) {
3378 DLOG(D_ROOT, "Get Config", 0,0,0,0);
3379 if (len > 0) {
3380 *buf = t->rootconf;
3381 actlen = 1;
3382 error = USBD_NORMAL_COMPLETION;
3383 }
3384 }
3385 break;
3386 case UR_GET_INTERFACE:
3387 if (type == UT_READ_INTERFACE) {
3388 if (len > 0) {
3389 *buf = 0;
3390 actlen = 1;
3391 error = USBD_NORMAL_COMPLETION;
3392 }
3393 }
3394 break;
3395 case UR_GET_DESCRIPTOR:
3396 if (type == UT_READ_DEVICE) {
3397 /* value is type (&0xff00) and index (0xff) */
3398 if (value == (UDESC_DEVICE<<8)) {
3399 actlen = min(len, sizeof(slhci_devd));
3400 memcpy(buf, &slhci_devd, actlen);
3401 error = USBD_NORMAL_COMPLETION;
3402 } else if (value == (UDESC_CONFIG<<8)) {
3403 actlen = min(len, sizeof(slhci_confd));
3404 memcpy(buf, &slhci_confd, actlen);
3405 if (actlen > offsetof(usb_config_descriptor_t,
3406 bMaxPower))
3407 ((usb_config_descriptor_t *)
3408 buf)->bMaxPower = t->max_current;
3409 /* 2 mA units */
3410 error = USBD_NORMAL_COMPLETION;
3411 } else if (value == (UDESC_STRING<<8)) {
3412 /* language table XXX */
3413 } else if (value == ((UDESC_STRING<<8)|1)) {
3414 /* Vendor */
3415 actlen = usb_makestrdesc((usb_string_descriptor_t *)
3416 buf, len, "ScanLogic/Cypress");
3417 error = USBD_NORMAL_COMPLETION;
3418 } else if (value == ((UDESC_STRING<<8)|2)) {
3419 /* Product */
3420 actlen = usb_makestrdesc((usb_string_descriptor_t *)
3421 buf, len, "SL811HS/T root hub");
3422 error = USBD_NORMAL_COMPLETION;
3423 } else
3424 DDOLOG("Unknown Get Descriptor %#.4x",
3425 value, 0,0,0);
3426 } else if (type == UT_READ_CLASS_DEVICE) {
3427 /* Descriptor number is 0 */
3428 if (value == (UDESC_HUB<<8)) {
3429 actlen = min(len, sizeof(slhci_hubd));
3430 memcpy(buf, &slhci_hubd, actlen);
3431 if (actlen > offsetof(usb_config_descriptor_t,
3432 bMaxPower))
3433 ((usb_hub_descriptor_t *)
3434 buf)->bHubContrCurrent = 500 -
3435 t->max_current;
3436 error = USBD_NORMAL_COMPLETION;
3437 } else
3438 DDOLOG("Unknown Get Hub Descriptor %#.4x",
3439 value, 0,0,0);
3440 }
3441 break;
3442 }
3443
3444 if (error == USBD_NORMAL_COMPLETION)
3445 xfer->actlen = actlen;
3446 xfer->status = error;
3447 KASSERT(spipe->xfer == NULL);
3448 spipe->xfer = xfer;
3449 enter_callback(t, spipe);
3450
3451 return USBD_IN_PROGRESS;
3452 }
3453
3454 /* End in lock functions. Start debug functions. */
3455
3456 #ifdef SLHCI_DEBUG
3457 void
3458 slhci_log_buffer(struct usbd_xfer *xfer)
3459 {
3460 u_char *buf;
3461
3462 if(xfer->length > 0 &&
3463 UE_GET_DIR(xfer->pipe->endpoint->edesc->bEndpointAddress) ==
3464 UE_DIR_IN) {
3465 buf = KERNADDR(&xfer->dmabuf, 0);
3466 DDOLOGBUF(buf, xfer->actlen);
3467 DDOLOG("len %d actlen %d short %d", xfer->length,
3468 xfer->actlen, xfer->length - xfer->actlen, 0);
3469 }
3470 }
3471
3472 void
3473 slhci_log_req(usb_device_request_t *r)
3474 {
3475 static const char *xmes[]={
3476 "GETSTAT",
3477 "CLRFEAT",
3478 "res",
3479 "SETFEAT",
3480 "res",
3481 "SETADDR",
3482 "GETDESC",
3483 "SETDESC",
3484 "GETCONF",
3485 "SETCONF",
3486 "GETIN/F",
3487 "SETIN/F",
3488 "SYNC_FR",
3489 "UNKNOWN"
3490 };
3491 int req, mreq, type, value, index, len;
3492
3493 req = r->bRequest;
3494 mreq = (req > 13) ? 13 : req;
3495 type = r->bmRequestType;
3496 value = UGETW(r->wValue);
3497 index = UGETW(r->wIndex);
3498 len = UGETW(r->wLength);
3499
3500 DDOLOG("request: %s %#x", xmes[mreq], type, 0,0);
3501 DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len);
3502 }
3503
3504 void
3505 slhci_log_req_hub(usb_device_request_t *r)
3506 {
3507 static const struct {
3508 int req;
3509 int type;
3510 const char *str;
3511 } conf[] = {
3512 { 1, 0x20, "ClrHubFeat" },
3513 { 1, 0x23, "ClrPortFeat" },
3514 { 2, 0xa3, "GetBusState" },
3515 { 6, 0xa0, "GetHubDesc" },
3516 { 0, 0xa0, "GetHubStat" },
3517 { 0, 0xa3, "GetPortStat" },
3518 { 7, 0x20, "SetHubDesc" },
3519 { 3, 0x20, "SetHubFeat" },
3520 { 3, 0x23, "SetPortFeat" },
3521 {-1, 0, NULL},
3522 };
3523 int i;
3524 int value, index, len;
3525 const char *str;
3526
3527 value = UGETW(r->wValue);
3528 index = UGETW(r->wIndex);
3529 len = UGETW(r->wLength);
3530 for (i = 0; ; i++) {
3531 if (conf[i].req == -1 ) {
3532 slhci_log_req(r);
3533 return;
3534 }
3535 if (r->bmRequestType == conf[i].type && r->bRequest == conf[i].req) {
3536 str = conf[i].str;
3537 break;
3538 }
3539 }
3540 DDOLOG("hub request: %s v=%d,i=%d,l=%d ", str, value, index, len);
3541 }
3542
3543 void
3544 slhci_log_dumpreg(void)
3545 {
3546 uint8_t r;
3547 unsigned int aaddr, alen, baddr, blen;
3548 static u_char buf[240];
3549
3550 r = slhci_read(ssc, SL11_E0CTRL);
3551 DDOLOG("USB A Host Control = %#.2x", r, 0,0,0);
3552 DDOLOGFLAG8("E0CTRL=", r, "Preamble", "Data Toggle", "SOF Sync",
3553 "ISOC", "res", "Out", "Enable", "Arm");
3554 aaddr = slhci_read(ssc, SL11_E0ADDR);
3555 DDOLOG("USB A Base Address = %u", aaddr, 0,0,0);
3556 alen = slhci_read(ssc, SL11_E0LEN);
3557 DDOLOG("USB A Length = %u", alen, 0,0,0);
3558 r = slhci_read(ssc, SL11_E0STAT);
3559 DDOLOG("USB A Status = %#.2x", r, 0,0,0);
3560 DDOLOGFLAG8("E0STAT=", r, "STALL", "NAK", "Overflow", "Setup",
3561 "Data Toggle", "Timeout", "Error", "ACK");
3562 r = slhci_read(ssc, SL11_E0CONT);
3563 DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0);
3564 r = slhci_read(ssc, SL11_E1CTRL);
3565 DDOLOG("USB B Host Control = %#.2x", r, 0,0,0);
3566 DDOLOGFLAG8("E1CTRL=", r, "Preamble", "Data Toggle", "SOF Sync",
3567 "ISOC", "res", "Out", "Enable", "Arm");
3568 baddr = slhci_read(ssc, SL11_E1ADDR);
3569 DDOLOG("USB B Base Address = %u", baddr, 0,0,0);
3570 blen = slhci_read(ssc, SL11_E1LEN);
3571 DDOLOG("USB B Length = %u", blen, 0,0,0);
3572 r = slhci_read(ssc, SL11_E1STAT);
3573 DDOLOG("USB B Status = %#.2x", r, 0,0,0);
3574 DDOLOGFLAG8("E1STAT=", r, "STALL", "NAK", "Overflow", "Setup",
3575 "Data Toggle", "Timeout", "Error", "ACK");
3576 r = slhci_read(ssc, SL11_E1CONT);
3577 DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0);
3578
3579 r = slhci_read(ssc, SL11_CTRL);
3580 DDOLOG("Control = %#.2x", r, 0,0,0);
3581 DDOLOGFLAG8("CTRL=", r, "res", "Suspend", "LOW Speed",
3582 "J-K State Force", "Reset", "res", "res", "SOF");
3583 r = slhci_read(ssc, SL11_IER);
3584 DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0);
3585 DDOLOGFLAG8("IER=", r, "D+ **IER!**", "Device Detect/Resume",
3586 "Insert/Remove", "SOF", "res", "res", "USBB", "USBA");
3587 r = slhci_read(ssc, SL11_ISR);
3588 DDOLOG("Interrupt Status = %#.2x", r, 0,0,0);
3589 DDOLOGFLAG8("ISR=", r, "D+", "Device Detect/Resume",
3590 "Insert/Remove", "SOF", "res", "res", "USBB", "USBA");
3591 r = slhci_read(ssc, SL11_REV);
3592 DDOLOG("Revision = %#.2x", r, 0,0,0);
3593 r = slhci_read(ssc, SL811_CSOF);
3594 DDOLOG("SOF Counter = %#.2x", r, 0,0,0);
3595
3596 if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END &&
3597 alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) {
3598 slhci_read_multi(ssc, aaddr, buf, alen);
3599 DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0);
3600 DDOLOGBUF(buf, alen);
3601 } else if (alen)
3602 DDOLOG("USBA Buffer Invalid", 0,0,0,0);
3603
3604 if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END &&
3605 blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) {
3606 slhci_read_multi(ssc, baddr, buf, blen);
3607 DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0);
3608 DDOLOGBUF(buf, blen);
3609 } else if (blen)
3610 DDOLOG("USBB Buffer Invalid", 0,0,0,0);
3611 }
3612
3613 void
3614 slhci_log_xfer(struct usbd_xfer *xfer)
3615 {
3616 DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,",
3617 xfer->length, xfer->actlen, xfer->flags, xfer->timeout);
3618 if (xfer->dmabuf.block)
3619 DDOLOG("buffer=%p", KERNADDR(&xfer->dmabuf, 0), 0,0,0);
3620 slhci_log_req_hub(&xfer->request);
3621 }
3622
3623 void
3624 slhci_log_spipe(struct slhci_pipe *spipe)
3625 {
3626 DDOLOG("spipe %p onlists: %s %s %s", spipe, gcq_onlist(&spipe->ap) ?
3627 "AP" : "", gcq_onlist(&spipe->to) ? "TO" : "",
3628 gcq_onlist(&spipe->xq) ? "XQ" : "");
3629 DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %s",
3630 spipe->xfer, spipe->buffer, spipe->pflags, pnames(spipe->ptype));
3631 }
3632
3633 void
3634 slhci_print_intr(void)
3635 {
3636 unsigned int ier, isr;
3637 ier = slhci_read(ssc, SL11_IER);
3638 isr = slhci_read(ssc, SL11_ISR);
3639 printf("IER: %#x ISR: %#x \n", ier, isr);
3640 }
3641
3642 #if 0
3643 void
3644 slhci_log_sc(void)
3645 {
3646 struct slhci_transfers *t;
3647 int i;
3648
3649 t = &ssc->sc_transfers;
3650
3651 DDOLOG("Flags=%#x", t->flags, 0,0,0);
3652 DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0],
3653 t->spipe[1], t->len[1]);
3654
3655 for (i=0; i<=Q_MAX; i++)
3656 DDOLOG("Q %d: %p", i, gcq_first(&t->q[i]), 0,0);
3657
3658 DDOLOG("TIMED: %p", GCQ_ITEM(gcq_first(&t->to),
3659 struct slhci_pipe, to), 0,0,0);
3660
3661 DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0);
3662
3663 DDOLOG("use_polling=%d intr_context=%d", ssc->sc_bus.use_polling,
3664 ssc->sc_bus.intr_context, 0,0);
3665 }
3666
3667 void
3668 slhci_log_slreq(struct slhci_pipe *r)
3669 {
3670 DDOLOG("next: %p", r->q.next.sqe_next, 0,0,0);
3671 DDOLOG("xfer: %p", r->xfer, 0,0,0);
3672 DDOLOG("buffer: %p", r->buffer, 0,0,0);
3673 DDOLOG("bustime: %u", r->bustime, 0,0,0);
3674 DDOLOG("control: %#x", r->control, 0,0,0);
3675 DDOLOGFLAG8("control=", r->control, "Preamble", "Data Toggle",
3676 "SOF Sync", "ISOC", "res", "Out", "Enable", "Arm");
3677 DDOLOG("pid: %#x", r->tregs[PID], 0,0,0);
3678 DDOLOG("dev: %u", r->tregs[DEV], 0,0,0);
3679 DDOLOG("len: %u", r->tregs[LEN], 0,0,0);
3680
3681 if (r->xfer)
3682 slhci_log_xfer(r->xfer);
3683 }
3684 #endif
3685 #endif /* SLHCI_DEBUG */
3686 /* End debug functions. */
3687