sl811hs.c revision 1.43 1 /* $NetBSD: sl811hs.c,v 1.43 2013/10/02 23:24:58 skrll Exp $ */
2
3 /*
4 * Not (c) 2007 Matthew Orgass
5 * This file is public domain, meaning anyone can make any use of part or all
6 * of this file including copying into other works without credit. Any use,
7 * modified or not, is solely the responsibility of the user. If this file is
8 * part of a collection then use in the collection is governed by the terms of
9 * the collection.
10 */
11
12 /*
13 * Cypress/ScanLogic SL811HS/T USB Host Controller
14 * Datasheet, Errata, and App Note available at www.cypress.com
15 *
16 * Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid X68k USB HC, ISA
17 * HCs. The Ratoc CFU2 uses a different chip.
18 *
19 * This chip puts the serial in USB. It implements USB by means of an eight
20 * bit I/O interface. It can be used for ISA, PCMCIA/CF, parallel port,
21 * serial port, or any eight bit interface. It has 256 bytes of memory, the
22 * first 16 of which are used for register access. There are two sets of
23 * registers for sending individual bus transactions. Because USB is polled,
24 * this organization means that some amount of card access must often be made
25 * when devices are attached, even if when they are not directly being used.
26 * A per-ms frame interrupt is necessary and many devices will poll with a
27 * per-frame bulk transfer.
28 *
29 * It is possible to write a little over two bytes to the chip (auto
30 * incremented) per full speed byte time on the USB. Unfortunately,
31 * auto-increment does not work reliably so write and bus speed is
32 * approximately the same for full speed devices.
33 *
34 * In addition to the 240 byte packet size limit for isochronous transfers,
35 * this chip has no means of determining the current frame number other than
36 * getting all 1ms SOF interrupts, which is not always possible even on a fast
37 * system. Isochronous transfers guarantee that transfers will never be
38 * retried in a later frame, so this can cause problems with devices beyond
39 * the difficulty in actually performing the transfer most frames. I tried
40 * implementing isoc transfers and was able to play CD-derrived audio via an
41 * iMic on a 2GHz PC, however it would still be interrupted at times and
42 * once interrupted, would stay out of sync. All isoc support has been
43 * removed.
44 *
45 * BUGS: all chip revisions have problems with low speed devices through hubs.
46 * The chip stops generating SOF with hubs that send SE0 during SOF. See
47 * comment in dointr(). All performance enhancing features of this chip seem
48 * not to work properly, most confirmed buggy in errata doc.
49 *
50 */
51
52 /*
53 * The hard interrupt is the main entry point. Start, callbacks, and repeat
54 * are the only others called frequently.
55 *
56 * Since this driver attaches to pcmcia, card removal at any point should be
57 * expected and not cause panics or infinite loops.
58 */
59
60 /*
61 * XXX TODO:
62 * copy next output packet while transfering
63 * usb suspend
64 * could keep track of known values of all buffer space?
65 * combined print/log function for errors
66 *
67 * use_polling support is untested and may not work
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.43 2013/10/02 23:24:58 skrll Exp $");
72
73 #include "opt_slhci.h"
74
75 #include <sys/cdefs.h>
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/proc.h>
80 #include <sys/device.h>
81 #include <sys/malloc.h>
82 #include <sys/queue.h>
83 #include <sys/gcq.h>
84 #include <sys/intr.h>
85 #include <sys/cpu.h>
86 #include <sys/bus.h>
87
88 #include <dev/usb/usb.h>
89 #include <dev/usb/usbdi.h>
90 #include <dev/usb/usbdivar.h>
91 #include <dev/usb/usb_mem.h>
92 #include <dev/usb/usbdevs.h>
93 #include <dev/usb/usbroothub_subr.h>
94
95 #include <dev/ic/sl811hsreg.h>
96 #include <dev/ic/sl811hsvar.h>
97
98 #define Q_CB 0 /* Control/Bulk */
99 #define Q_NEXT_CB 1
100 #define Q_MAX_XFER Q_CB
101 #define Q_CALLBACKS 2
102 #define Q_MAX Q_CALLBACKS
103
104 #define F_AREADY (0x00000001)
105 #define F_BREADY (0x00000002)
106 #define F_AINPROG (0x00000004)
107 #define F_BINPROG (0x00000008)
108 #define F_LOWSPEED (0x00000010)
109 #define F_UDISABLED (0x00000020) /* Consider disabled for USB */
110 #define F_NODEV (0x00000040)
111 #define F_ROOTINTR (0x00000080)
112 #define F_REALPOWER (0x00000100) /* Actual power state */
113 #define F_POWER (0x00000200) /* USB reported power state */
114 #define F_ACTIVE (0x00000400)
115 #define F_CALLBACK (0x00000800) /* Callback scheduled */
116 #define F_SOFCHECK1 (0x00001000)
117 #define F_SOFCHECK2 (0x00002000)
118 #define F_CRESET (0x00004000) /* Reset done not reported */
119 #define F_CCONNECT (0x00008000) /* Connect change not reported */
120 #define F_RESET (0x00010000)
121 #define F_ISOC_WARNED (0x00020000)
122 #define F_LSVH_WARNED (0x00040000)
123
124 #define F_DISABLED (F_NODEV|F_UDISABLED)
125 #define F_CHANGE (F_CRESET|F_CCONNECT)
126
127 #ifdef SLHCI_TRY_LSVH
128 unsigned int slhci_try_lsvh = 1;
129 #else
130 unsigned int slhci_try_lsvh = 0;
131 #endif
132
133 #define ADR 0
134 #define LEN 1
135 #define PID 2
136 #define DEV 3
137 #define STAT 2
138 #define CONT 3
139
140 #define A 0
141 #define B 1
142
143 static const uint8_t slhci_tregs[2][4] =
144 {{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV },
145 {SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }};
146
147 #define PT_ROOT_CTRL 0
148 #define PT_ROOT_INTR 1
149 #define PT_CTRL_SETUP 2
150 #define PT_CTRL_DATA 3
151 #define PT_CTRL_STATUS 4
152 #define PT_INTR 5
153 #define PT_BULK 6
154 #define PT_MAX 6
155
156 #ifdef SLHCI_DEBUG
157 #define SLHCI_MEM_ACCOUNTING
158 static const char *
159 pnames(int ptype)
160 {
161 static const char * const names[] = { "ROOT Ctrl", "ROOT Intr",
162 "Control (setup)", "Control (data)", "Control (status)",
163 "Interrupt", "Bulk", "BAD PTYPE" };
164
165 KASSERT(sizeof(names) / sizeof(names[0]) == PT_MAX + 2);
166 if (ptype > PT_MAX)
167 ptype = PT_MAX + 1;
168 return names[ptype];
169 }
170 #endif
171
172 #define SLHCI_XFER_TYPE(x) (((struct slhci_pipe *)((x)->pipe))->ptype)
173
174 /*
175 * Maximum allowable reserved bus time. Since intr/isoc transfers have
176 * unconditional priority, this is all that ensures control and bulk transfers
177 * get a chance. It is a single value for all frames since all transfers can
178 * use multiple consecutive frames if an error is encountered. Note that it
179 * is not really possible to fill the bus with transfers, so this value should
180 * be on the low side. Defaults to giving a warning unless SLHCI_NO_OVERTIME
181 * is defined. Full time is 12000 - END_BUSTIME.
182 */
183 #ifndef SLHCI_RESERVED_BUSTIME
184 #define SLHCI_RESERVED_BUSTIME 5000
185 #endif
186
187 /*
188 * Rate for "exceeds reserved bus time" warnings (default) or errors.
189 * Warnings only happen when an endpoint open causes the time to go above
190 * SLHCI_RESERVED_BUSTIME, not if it is already above.
191 */
192 #ifndef SLHCI_OVERTIME_WARNING_RATE
193 #define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */
194 #endif
195 static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE;
196
197 /* Rate for overflow warnings */
198 #ifndef SLHCI_OVERFLOW_WARNING_RATE
199 #define SLHCI_OVERFLOW_WARNING_RATE { 60, 0 } /* 60 seconds */
200 #endif
201 static const struct timeval overflow_warn_rate = SLHCI_OVERFLOW_WARNING_RATE;
202
203 /*
204 * For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of
205 * 20 bit times. By default leave 66 bit times to start the transfer beyond
206 * the required time. Units are full-speed bit times (a bit over 5us per 64).
207 * Only multiples of 64 are significant.
208 */
209 #define SLHCI_STANDARD_END_BUSTIME 128
210 #ifndef SLHCI_EXTRA_END_BUSTIME
211 #define SLHCI_EXTRA_END_BUSTIME 0
212 #endif
213
214 #define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME)
215
216 /*
217 * This is an approximation of the USB worst-case timings presented on p. 54 of
218 * the USB 1.1 spec translated to full speed bit times.
219 * FS = full speed with handshake, FSII = isoc in, FSIO = isoc out,
220 * FSI = isoc (worst case), LS = low speed
221 */
222 #define SLHCI_FS_CONST 114
223 #define SLHCI_FSII_CONST 92
224 #define SLHCI_FSIO_CONST 80
225 #define SLHCI_FSI_CONST 92
226 #define SLHCI_LS_CONST 804
227 #ifndef SLHCI_PRECICE_BUSTIME
228 /*
229 * These values are < 3% too high (compared to the multiply and divide) for
230 * max sized packets.
231 */
232 #define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1))
233 #define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4))
234 #else
235 #define SLHCI_FS_DATA_TIME(len) (56*(len)/6)
236 #define SLHCI_LS_DATA_TIME(len) (449*(len)/6)
237 #endif
238
239 /*
240 * Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer
241 * to poll for after starting a transfer. 64 gets all full speed transfers.
242 * Note that even if 0 polling will occur if data equal or greater than the
243 * transfer size is copied to the chip while the transfer is in progress.
244 * Setting SLHCI_WAIT_TIME to -12000 will disable polling.
245 */
246 #ifndef SLHCI_WAIT_SIZE
247 #define SLHCI_WAIT_SIZE 8
248 #endif
249 #ifndef SLHCI_WAIT_TIME
250 #define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \
251 SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE))
252 #endif
253 const int slhci_wait_time = SLHCI_WAIT_TIME;
254
255 /* Root hub intr endpoint */
256 #define ROOT_INTR_ENDPT 1
257
258 #ifndef SLHCI_MAX_RETRIES
259 #define SLHCI_MAX_RETRIES 3
260 #endif
261
262 /* Check IER values for corruption after this many unrecognized interrupts. */
263 #ifndef SLHCI_IER_CHECK_FREQUENCY
264 #ifdef SLHCI_DEBUG
265 #define SLHCI_IER_CHECK_FREQUENCY 1
266 #else
267 #define SLHCI_IER_CHECK_FREQUENCY 100
268 #endif
269 #endif
270
271 /* Note that buffer points to the start of the buffer for this transfer. */
272 struct slhci_pipe {
273 struct usbd_pipe pipe;
274 struct usbd_xfer *xfer; /* xfer in progress */
275 uint8_t *buffer; /* I/O buffer (if needed) */
276 struct gcq ap; /* All pipes */
277 struct gcq to; /* Timeout list */
278 struct gcq xq; /* Xfer queues */
279 unsigned int pflags; /* Pipe flags */
280 #define PF_GONE (0x01) /* Pipe is on disabled device */
281 #define PF_TOGGLE (0x02) /* Data toggle status */
282 #define PF_LS (0x04) /* Pipe is low speed */
283 #define PF_PREAMBLE (0x08) /* Needs preamble */
284 Frame to_frame; /* Frame number for timeout */
285 Frame frame; /* Frame number for intr xfer */
286 Frame lastframe; /* Previous frame number for intr */
287 uint16_t bustime; /* Worst case bus time usage */
288 uint16_t newbustime[2]; /* new bustimes (see index below) */
289 uint8_t tregs[4]; /* ADR, LEN, PID, DEV */
290 uint8_t newlen[2]; /* 0 = short data, 1 = ctrl data */
291 uint8_t newpid; /* for ctrl */
292 uint8_t wantshort; /* last xfer must be short */
293 uint8_t control; /* Host control register settings */
294 uint8_t nerrs; /* Current number of errors */
295 uint8_t ptype; /* Pipe type */
296 };
297
298 #ifdef SLHCI_PROFILE_TRANSFER
299 #if defined(__mips__)
300 /*
301 * MIPS cycle counter does not directly count cpu cycles but is a different
302 * fraction of cpu cycles depending on the cpu.
303 */
304 typedef u_int32_t cc_type;
305 #define CC_TYPE_FMT "%u"
306 #define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \
307 : [cc] "=r"(x))
308 #elif defined(__i386__)
309 typedef u_int64_t cc_type;
310 #define CC_TYPE_FMT "%llu"
311 #define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x))
312 #else
313 #error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)"
314 #endif
315 struct slhci_cc_time {
316 cc_type start;
317 cc_type stop;
318 unsigned int miscdata;
319 };
320 #ifndef SLHCI_N_TIMES
321 #define SLHCI_N_TIMES 200
322 #endif
323 struct slhci_cc_times {
324 struct slhci_cc_time times[SLHCI_N_TIMES];
325 int current;
326 int wraparound;
327 };
328
329 static struct slhci_cc_times t_ab[2];
330 static struct slhci_cc_times t_abdone;
331 static struct slhci_cc_times t_copy_to_dev;
332 static struct slhci_cc_times t_copy_from_dev;
333 static struct slhci_cc_times t_intr;
334 static struct slhci_cc_times t_lock;
335 static struct slhci_cc_times t_delay;
336 static struct slhci_cc_times t_hard_int;
337 static struct slhci_cc_times t_callback;
338
339 static inline void
340 start_cc_time(struct slhci_cc_times *times, unsigned int misc) {
341 times->times[times->current].miscdata = misc;
342 slhci_cc_set(times->times[times->current].start);
343 }
344 static inline void
345 stop_cc_time(struct slhci_cc_times *times) {
346 slhci_cc_set(times->times[times->current].stop);
347 if (++times->current >= SLHCI_N_TIMES) {
348 times->current = 0;
349 times->wraparound = 1;
350 }
351 }
352
353 void slhci_dump_cc_times(int);
354
355 void
356 slhci_dump_cc_times(int n) {
357 struct slhci_cc_times *times;
358 int i;
359
360 switch (n) {
361 default:
362 case 0:
363 printf("USBA start transfer to intr:\n");
364 times = &t_ab[A];
365 break;
366 case 1:
367 printf("USBB start transfer to intr:\n");
368 times = &t_ab[B];
369 break;
370 case 2:
371 printf("abdone:\n");
372 times = &t_abdone;
373 break;
374 case 3:
375 printf("copy to device:\n");
376 times = &t_copy_to_dev;
377 break;
378 case 4:
379 printf("copy from device:\n");
380 times = &t_copy_from_dev;
381 break;
382 case 5:
383 printf("intr to intr:\n");
384 times = &t_intr;
385 break;
386 case 6:
387 printf("lock to release:\n");
388 times = &t_lock;
389 break;
390 case 7:
391 printf("delay time:\n");
392 times = &t_delay;
393 break;
394 case 8:
395 printf("hard interrupt enter to exit:\n");
396 times = &t_hard_int;
397 break;
398 case 9:
399 printf("callback:\n");
400 times = &t_callback;
401 break;
402 }
403
404 if (times->wraparound)
405 for (i = times->current + 1; i < SLHCI_N_TIMES; i++)
406 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
407 " difference %8i miscdata %#x\n",
408 times->times[i].start, times->times[i].stop,
409 (int)(times->times[i].stop -
410 times->times[i].start), times->times[i].miscdata);
411
412 for (i = 0; i < times->current; i++)
413 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
414 " difference %8i miscdata %#x\n", times->times[i].start,
415 times->times[i].stop, (int)(times->times[i].stop -
416 times->times[i].start), times->times[i].miscdata);
417 }
418 #else
419 #define start_cc_time(x, y)
420 #define stop_cc_time(x)
421 #endif /* SLHCI_PROFILE_TRANSFER */
422
423 typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe
424 *, struct usbd_xfer *);
425
426 usbd_status slhci_allocm(struct usbd_bus *, usb_dma_t *, u_int32_t);
427 void slhci_freem(struct usbd_bus *, usb_dma_t *);
428 struct usbd_xfer * slhci_allocx(struct usbd_bus *);
429 void slhci_freex(struct usbd_bus *, struct usbd_xfer *);
430 static void slhci_get_lock(struct usbd_bus *, kmutex_t **);
431
432 usbd_status slhci_transfer(struct usbd_xfer *);
433 usbd_status slhci_start(struct usbd_xfer *);
434 usbd_status slhci_root_start(struct usbd_xfer *);
435 usbd_status slhci_open(struct usbd_pipe *);
436
437 /*
438 * slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach,
439 * slhci_activate
440 */
441
442 void slhci_abort(struct usbd_xfer *);
443 void slhci_close(struct usbd_pipe *);
444 void slhci_clear_toggle(struct usbd_pipe *);
445 void slhci_poll(struct usbd_bus *);
446 void slhci_done(struct usbd_xfer *);
447 void slhci_void(void *);
448
449 /* lock entry functions */
450
451 #ifdef SLHCI_MEM_ACCOUNTING
452 void slhci_mem_use(struct usbd_bus *, int);
453 #endif
454
455 void slhci_reset_entry(void *);
456 usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc,
457 struct slhci_pipe *, struct usbd_xfer *);
458 void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *);
459 void slhci_callback_entry(void *arg);
460 void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *);
461
462 /* slhci_intr */
463
464 void slhci_main(struct slhci_softc *);
465
466 /* in lock functions */
467
468 static void slhci_write(struct slhci_softc *, uint8_t, uint8_t);
469 static uint8_t slhci_read(struct slhci_softc *, uint8_t);
470 static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
471 static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
472
473 static void slhci_waitintr(struct slhci_softc *, int);
474 static int slhci_dointr(struct slhci_softc *);
475 static void slhci_abdone(struct slhci_softc *, int);
476 static void slhci_tstart(struct slhci_softc *);
477 static void slhci_dotransfer(struct slhci_softc *);
478
479 static void slhci_callback(struct slhci_softc *);
480 static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *);
481 static void slhci_enter_xfers(struct slhci_softc *);
482 static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *);
483 static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *);
484
485 static void slhci_do_repeat(struct slhci_softc *, struct usbd_xfer *);
486 static void slhci_callback_schedule(struct slhci_softc *);
487 static void slhci_do_callback_schedule(struct slhci_softc *);
488 #if 0
489 void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *); /* XXX */
490 #endif
491
492 static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *,
493 struct usbd_xfer *);
494 static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *,
495 struct usbd_xfer *);
496 static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *,
497 struct usbd_xfer *);
498 static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *,
499 struct usbd_xfer *);
500 static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *,
501 struct usbd_xfer *);
502 static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *,
503 struct usbd_xfer *);
504 static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *,
505 struct usbd_xfer *);
506
507 static void slhci_intrchange(struct slhci_softc *, uint8_t);
508 static void slhci_drain(struct slhci_softc *);
509 static void slhci_reset(struct slhci_softc *);
510 static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *,
511 int);
512 static void slhci_insert(struct slhci_softc *);
513
514 static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int);
515 static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int);
516 static void slhci_get_status(struct slhci_softc *, usb_port_status_t *);
517 static usbd_status slhci_root(struct slhci_softc *, struct slhci_pipe *,
518 struct usbd_xfer *);
519
520 #ifdef SLHCI_DEBUG
521 void slhci_log_buffer(struct usbd_xfer *);
522 void slhci_log_req(usb_device_request_t *);
523 void slhci_log_req_hub(usb_device_request_t *);
524 void slhci_log_dumpreg(void);
525 void slhci_log_xfer(struct usbd_xfer *);
526 void slhci_log_spipe(struct slhci_pipe *);
527 void slhci_print_intr(void);
528 void slhci_log_sc(void);
529 void slhci_log_slreq(struct slhci_pipe *);
530
531 extern int usbdebug;
532
533 /* Constified so you can read the values from ddb */
534 const int SLHCI_D_TRACE = 0x0001;
535 const int SLHCI_D_MSG = 0x0002;
536 const int SLHCI_D_XFER = 0x0004;
537 const int SLHCI_D_MEM = 0x0008;
538 const int SLHCI_D_INTR = 0x0010;
539 const int SLHCI_D_SXFER = 0x0020;
540 const int SLHCI_D_ERR = 0x0080;
541 const int SLHCI_D_BUF = 0x0100;
542 const int SLHCI_D_SOFT = 0x0200;
543 const int SLHCI_D_WAIT = 0x0400;
544 const int SLHCI_D_ROOT = 0x0800;
545 /* SOF/NAK alone normally ignored, SOF also needs D_INTR */
546 const int SLHCI_D_SOF = 0x1000;
547 const int SLHCI_D_NAK = 0x2000;
548
549 int slhci_debug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */
550 struct slhci_softc *ssc;
551 #ifdef USB_DEBUG
552 int slhci_usbdebug = -1; /* value to set usbdebug on attach, -1 = leave alone */
553 #endif
554
555 /*
556 * XXXMRG the SLHCI UVMHIST code has been converted to KERNHIST, but it has
557 * not been tested. the extra instructions to enable it can probably be
558 * commited to the kernhist code, and these instructions reduced to simply
559 * enabling SLHCI_DEBUG.
560 */
561
562 /*
563 * Add KERNHIST history for debugging:
564 *
565 * Before kern_hist in sys/kern/subr_kernhist.c add:
566 * KERNHIST_DECL(slhcihist);
567 *
568 * In kern_hist add:
569 * if ((bitmask & KERNHIST_SLHCI))
570 * hists[i++] = &slhcihist;
571 *
572 * In sys/sys/kernhist.h add KERNHIST_SLHCI define.
573 */
574
575 #include <sys/kernhist.h>
576 KERNHIST_DECL(slhcihist);
577
578 #if !defined(KERNHIST) || !defined(KERNHIST_SLHCI)
579 #error "SLHCI_DEBUG requires KERNHIST (with modifications, see sys/dev/ic/sl81hs.c)"
580 #endif
581
582 #ifndef SLHCI_NHIST
583 #define SLHCI_NHIST 409600
584 #endif
585 const unsigned int SLHCI_HISTMASK = KERNHIST_SLHCI;
586 struct kern_history_ent slhci_he[SLHCI_NHIST];
587
588 #define SLHCI_DEXEC(x, y) do { if ((slhci_debug & SLHCI_ ## x)) { y; } \
589 } while (/*CONSTCOND*/ 0)
590 #define DDOLOG(f, a, b, c, d) do { const char *_kernhist_name = __func__; \
591 u_long _kernhist_call = 0; KERNHIST_LOG(slhcihist, f, a, b, c, d); \
592 } while (/*CONSTCOND*/0)
593 #define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d))
594 /*
595 * DLOGFLAG8 is a macro not a function so that flag name expressions are not
596 * evaluated unless the flag bit is set (which could save a register read).
597 * x is debug mask, y is flag identifier, z is flag variable,
598 * a-h are flag names (must evaluate to string constants, msb first).
599 */
600 #define DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h) do { uint8_t _DLF8 = (z); \
601 const char *_kernhist_name = __func__; u_long _kernhist_call = 0; \
602 if (_DLF8 & 0xf0) KERNHIST_LOG(slhcihist, y " %s %s %s %s", _DLF8 & 0x80 ? \
603 (a) : "", _DLF8 & 0x40 ? (b) : "", _DLF8 & 0x20 ? (c) : "", _DLF8 & 0x10 ? \
604 (d) : ""); if (_DLF8 & 0x0f) KERNHIST_LOG(slhcihist, y " %s %s %s %s", \
605 _DLF8 & 0x08 ? (e) : "", _DLF8 & 0x04 ? (f) : "", _DLF8 & 0x02 ? (g) : "", \
606 _DLF8 & 0x01 ? (h) : ""); \
607 } while (/*CONSTCOND*/ 0)
608 #define DLOGFLAG8(x, y, z, a, b, c, d, e, f, g, h) \
609 SLHCI_DEXEC(x, DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h))
610 /*
611 * DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we
612 * can make it a real function.
613 */
614 static void
615 DDOLOGBUF(uint8_t *buf, unsigned int length)
616 {
617 int i;
618
619 for(i=0; i+8 <= length; i+=8)
620 DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
621 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
622 (buf[i+6] << 8) | buf[i+7]);
623 if (length == i+7)
624 DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
625 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
626 buf[i+6]);
627 else if (length == i+6)
628 DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
629 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0);
630 else if (length == i+5)
631 DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
632 (buf[i+2] << 8) | buf[i+3], buf[i+4], 0);
633 else if (length == i+4)
634 DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1],
635 (buf[i+2] << 8) | buf[i+3], 0,0);
636 else if (length == i+3)
637 DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0);
638 else if (length == i+2)
639 DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0);
640 else if (length == i+1)
641 DDOLOG("%.2x", buf[i], 0,0,0);
642 }
643 #define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l))
644 #else /* now !SLHCI_DEBUG */
645 #define slhci_log_spipe(spipe) ((void)0)
646 #define slhci_log_xfer(xfer) ((void)0)
647 #define SLHCI_DEXEC(x, y) ((void)0)
648 #define DDOLOG(f, a, b, c, d) ((void)0)
649 #define DLOG(x, f, a, b, c, d) ((void)0)
650 #define DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h) ((void)0)
651 #define DLOGFLAG8(x, y, z, a, b, c, d, e, f, g, h) ((void)0)
652 #define DDOLOGBUF(b, l) ((void)0)
653 #define DLOGBUF(x, b, l) ((void)0)
654 #endif /* SLHCI_DEBUG */
655
656 #ifdef DIAGNOSTIC
657 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) do { \
658 if (!(exp)) { \
659 printf("%s: assertion %s failed line %u function %s!" \
660 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
661 DDOLOG("%s: assertion %s failed line %u function %s!" \
662 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
663 slhci_halt(sc, spipe, xfer); \
664 ext; \
665 } \
666 } while (/*CONSTCOND*/0)
667 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) do { \
668 if (!(exp)) { \
669 printf("%s: assertion %s failed line %u function %s!" \
670 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \
671 DDOLOG("%s: assertion %s failed line %u function %s!" \
672 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \
673 slhci_lock_call(sc, &slhci_halt, spipe, xfer); \
674 ext; \
675 } \
676 } while (/*CONSTCOND*/0)
677 #else
678 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
679 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
680 #endif
681
682 const struct usbd_bus_methods slhci_bus_methods = {
683 .open_pipe = slhci_open,
684 .soft_intr = slhci_void,
685 .do_poll = slhci_poll,
686 .allocm = slhci_allocm,
687 .freem = slhci_freem,
688 .allocx = slhci_allocx,
689 .freex = slhci_freex,
690 .get_lock = slhci_get_lock,
691 NULL, /* new_device */
692 };
693
694 const struct usbd_pipe_methods slhci_pipe_methods = {
695 .transfer = slhci_transfer,
696 .start = slhci_start,
697 .abort = slhci_abort,
698 .close = slhci_close,
699 .cleartoggle = slhci_clear_toggle,
700 .done = slhci_done,
701 };
702
703 const struct usbd_pipe_methods slhci_root_methods = {
704 .transfer = slhci_transfer,
705 .start = slhci_root_start,
706 .abort = slhci_abort,
707 .close = (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */
708 .cleartoggle = slhci_clear_toggle,
709 .done = slhci_done,
710 };
711
712 /* Queue inlines */
713
714 #define GOT_FIRST_TO(tvar, t) \
715 GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to)
716
717 #define FIND_TO(var, t, tvar, cond) \
718 GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond)
719
720 #define FOREACH_AP(var, t, tvar) \
721 GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap)
722
723 #define GOT_FIRST_TIMED_COND(tvar, t, cond) \
724 GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond)
725
726 #define GOT_FIRST_CB(tvar, t) \
727 GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq)
728
729 #define DEQUEUED_CALLBACK(tvar, t) \
730 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq)
731
732 #define FIND_TIMED(var, t, tvar, cond) \
733 GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond)
734
735 #define DEQUEUED_WAITQ(tvar, sc) \
736 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq)
737
738 static inline void
739 enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe)
740 {
741 gcq_insert_tail(&sc->sc_waitq, &spipe->xq);
742 }
743
744 static inline void
745 enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i)
746 {
747 gcq_insert_tail(&t->q[i], &spipe->xq);
748 }
749
750 static inline void
751 enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe)
752 {
753 gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq);
754 }
755
756 static inline void
757 enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe)
758 {
759 gcq_insert_tail(&t->ap, &spipe->ap);
760 }
761
762 /* Start out of lock functions. */
763
764 struct slhci_mem {
765 usb_dma_block_t block;
766 uint8_t data[];
767 };
768
769 /*
770 * The SL811HS does not do DMA as a host controller, but NetBSD's USB interface
771 * assumes DMA is used. So we fake the DMA block.
772 */
773 usbd_status
774 slhci_allocm(struct usbd_bus *bus, usb_dma_t *dma, u_int32_t size)
775 {
776 struct slhci_mem *mem;
777
778 mem = malloc(sizeof(struct slhci_mem) + size, M_USB, M_NOWAIT|M_ZERO);
779
780 DLOG(D_MEM, "allocm %p", mem, 0,0,0);
781
782 if (mem == NULL)
783 return USBD_NOMEM;
784
785 dma->block = &mem->block;
786 dma->block->kaddr = mem->data;
787
788 /* dma->offs = 0; */
789 dma->block->nsegs = 1;
790 dma->block->size = size;
791 dma->block->align = size;
792 dma->block->flags |= USB_DMA_FULLBLOCK;
793
794 #ifdef SLHCI_MEM_ACCOUNTING
795 slhci_mem_use(bus, 1);
796 #endif
797
798 return USBD_NORMAL_COMPLETION;
799 }
800
801 void
802 slhci_freem(struct usbd_bus *bus, usb_dma_t *dma)
803 {
804 DLOG(D_MEM, "freem %p", dma->block, 0,0,0);
805
806 #ifdef SLHCI_MEM_ACCOUNTING
807 slhci_mem_use(bus, -1);
808 #endif
809
810 free(dma->block, M_USB);
811 }
812
813 struct usbd_xfer *
814 slhci_allocx(struct usbd_bus *bus)
815 {
816 struct usbd_xfer *xfer;
817
818 xfer = malloc(sizeof(*xfer), M_USB, M_NOWAIT|M_ZERO);
819
820 DLOG(D_MEM, "allocx %p", xfer, 0,0,0);
821
822 #ifdef SLHCI_MEM_ACCOUNTING
823 slhci_mem_use(bus, 1);
824 #endif
825 #ifdef DIAGNOSTIC
826 if (xfer != NULL)
827 xfer->busy_free = XFER_BUSY;
828 #endif
829 return xfer;
830 }
831
832 void
833 slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
834 {
835 DLOG(D_MEM, "freex xfer %p spipe %p", xfer, xfer->pipe,0,0);
836
837 #ifdef SLHCI_MEM_ACCOUNTING
838 slhci_mem_use(bus, -1);
839 #endif
840 #ifdef DIAGNOSTIC
841 if (xfer->busy_free != XFER_BUSY) {
842 struct slhci_softc *sc = bus->hci_private;
843 printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
844 SC_NAME(sc), xfer, xfer->busy_free);
845 DDOLOG("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
846 SC_NAME(sc), xfer, xfer->busy_free, 0);
847 slhci_lock_call(sc, &slhci_halt, NULL, NULL);
848 return;
849 }
850 xfer->busy_free = XFER_FREE;
851 #endif
852
853 free(xfer, M_USB);
854 }
855
856 static void
857 slhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
858 {
859 struct slhci_softc *sc = bus->hci_private;
860
861 *lock = &sc->sc_lock;
862 }
863
864 usbd_status
865 slhci_transfer(struct usbd_xfer *xfer)
866 {
867 struct slhci_softc *sc = xfer->pipe->device->bus->hci_private;
868 usbd_status error;
869
870 DLOG(D_TRACE, "%s transfer xfer %p spipe %p ",
871 pnames(SLHCI_XFER_TYPE(xfer)), xfer, xfer->pipe,0);
872
873 /* Insert last in queue */
874 mutex_enter(&sc->sc_lock);
875 error = usb_insert_transfer(xfer);
876 mutex_exit(&sc->sc_lock);
877 if (error) {
878 if (error != USBD_IN_PROGRESS)
879 DLOG(D_ERR, "usb_insert_transfer returns %d!", error,
880 0,0,0);
881 return error;
882 }
883
884 /*
885 * Pipe isn't running (otherwise error would be USBD_INPROG),
886 * so start it first.
887 */
888
889 /*
890 * Start will take the lock.
891 */
892 error = xfer->pipe->methods->start(SIMPLEQ_FIRST(&xfer->pipe->queue));
893
894 return error;
895 }
896
897 /* It is not safe for start to return anything other than USBD_INPROG. */
898 usbd_status
899 slhci_start(struct usbd_xfer *xfer)
900 {
901 struct slhci_softc *sc = xfer->pipe->device->bus->hci_private;
902 struct usbd_pipe *pipe = xfer->pipe;
903 struct slhci_pipe *spipe = (struct slhci_pipe *)pipe;
904 struct slhci_transfers *t = &sc->sc_transfers;
905 ; usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc;
906 unsigned int max_packet;
907
908 mutex_enter(&sc->sc_lock);
909
910 max_packet = UGETW(ed->wMaxPacketSize);
911
912 DLOG(D_TRACE, "%s start xfer %p spipe %p length %d",
913 pnames(spipe->ptype), xfer, spipe, xfer->length);
914
915 /* root transfers use slhci_root_start */
916
917 KASSERT(spipe->xfer == NULL); /* not SLASSERT */
918
919 xfer->actlen = 0;
920 xfer->status = USBD_IN_PROGRESS;
921
922 spipe->xfer = xfer;
923
924 spipe->nerrs = 0;
925 spipe->frame = t->frame;
926 spipe->control = SL11_EPCTRL_ARM_ENABLE;
927 spipe->tregs[DEV] = pipe->device->address;
928 spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress)
929 | (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN :
930 SL11_PID_OUT);
931 spipe->newlen[0] = xfer->length % max_packet;
932 spipe->newlen[1] = min(xfer->length, max_packet);
933
934 if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) {
935 if (spipe->pflags & PF_TOGGLE)
936 spipe->control |= SL11_EPCTRL_DATATOGGLE;
937 spipe->tregs[LEN] = spipe->newlen[1];
938 if (spipe->tregs[LEN])
939 spipe->buffer = KERNADDR(&xfer->dmabuf, 0);
940 else
941 spipe->buffer = NULL;
942 spipe->lastframe = t->frame;
943 #if defined(DEBUG) || defined(SLHCI_DEBUG)
944 if (__predict_false(spipe->ptype == PT_INTR &&
945 xfer->length > spipe->tregs[LEN])) {
946 printf("%s: Long INTR transfer not supported!\n",
947 SC_NAME(sc));
948 DDOLOG("%s: Long INTR transfer not supported!\n",
949 SC_NAME(sc), 0,0,0);
950 xfer->status = USBD_INVAL;
951 }
952 #endif
953 } else {
954 /* ptype may be currently set to any control transfer type. */
955 SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer));
956
957 /* SETUP contains IN/OUT bits also */
958 spipe->tregs[PID] |= SL11_PID_SETUP;
959 spipe->tregs[LEN] = 8;
960 spipe->buffer = (uint8_t *)&xfer->request;
961 DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]);
962 spipe->ptype = PT_CTRL_SETUP;
963 spipe->newpid &= ~SL11_PID_BITS;
964 if (xfer->length == 0 || (xfer->request.bmRequestType &
965 UT_READ))
966 spipe->newpid |= SL11_PID_IN;
967 else
968 spipe->newpid |= SL11_PID_OUT;
969 }
970
971 if (xfer->flags & USBD_FORCE_SHORT_XFER && spipe->tregs[LEN] ==
972 max_packet && (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT)
973 spipe->wantshort = 1;
974 else
975 spipe->wantshort = 0;
976
977 /*
978 * The goal of newbustime and newlen is to avoid bustime calculation
979 * in the interrupt. The calculations are not too complex, but they
980 * complicate the conditional logic somewhat and doing them all in the
981 * same place shares constants. Index 0 is "short length" for bulk and
982 * ctrl data and 1 is "full length" for ctrl data (bulk/intr are
983 * already set to full length).
984 */
985 if (spipe->pflags & PF_LS) {
986 /*
987 * Setting PREAMBLE for directly connnected LS devices will
988 * lock up the chip.
989 */
990 if (spipe->pflags & PF_PREAMBLE)
991 spipe->control |= SL11_EPCTRL_PREAMBLE;
992 if (max_packet <= 8) {
993 spipe->bustime = SLHCI_LS_CONST +
994 SLHCI_LS_DATA_TIME(spipe->tregs[LEN]);
995 spipe->newbustime[0] = SLHCI_LS_CONST +
996 SLHCI_LS_DATA_TIME(spipe->newlen[0]);
997 spipe->newbustime[1] = SLHCI_LS_CONST +
998 SLHCI_LS_DATA_TIME(spipe->newlen[1]);
999 } else
1000 xfer->status = USBD_INVAL;
1001 } else {
1002 UL_SLASSERT(pipe->device->speed == USB_SPEED_FULL, sc,
1003 spipe, xfer, return USBD_IN_PROGRESS);
1004 if (max_packet <= SL11_MAX_PACKET_SIZE) {
1005 spipe->bustime = SLHCI_FS_CONST +
1006 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
1007 spipe->newbustime[0] = SLHCI_FS_CONST +
1008 SLHCI_FS_DATA_TIME(spipe->newlen[0]);
1009 spipe->newbustime[1] = SLHCI_FS_CONST +
1010 SLHCI_FS_DATA_TIME(spipe->newlen[1]);
1011 } else
1012 xfer->status = USBD_INVAL;
1013 }
1014
1015 /*
1016 * The datasheet incorrectly indicates that DIRECTION is for
1017 * "transmit to host". It is for OUT and SETUP. The app note
1018 * describes its use correctly.
1019 */
1020 if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN)
1021 spipe->control |= SL11_EPCTRL_DIRECTION;
1022
1023 slhci_start_entry(sc, spipe);
1024
1025 mutex_exit(&sc->sc_lock);
1026
1027 return USBD_IN_PROGRESS;
1028 }
1029
1030 usbd_status
1031 slhci_root_start(struct usbd_xfer *xfer)
1032 {
1033 struct slhci_softc *sc;
1034 struct slhci_pipe *spipe;
1035
1036 spipe = (struct slhci_pipe *)xfer->pipe;
1037 sc = xfer->pipe->device->bus->hci_private;
1038
1039 return slhci_lock_call(sc, &slhci_root, spipe, xfer);
1040 }
1041
1042 usbd_status
1043 slhci_open(struct usbd_pipe *pipe)
1044 {
1045 struct usbd_device *dev;
1046 struct slhci_softc *sc;
1047 struct slhci_pipe *spipe;
1048 usb_endpoint_descriptor_t *ed;
1049 struct slhci_transfers *t;
1050 unsigned int max_packet, pmaxpkt;
1051
1052 dev = pipe->device;
1053 sc = dev->bus->hci_private;
1054 spipe = (struct slhci_pipe *)pipe;
1055 ed = pipe->endpoint->edesc;
1056 t = &sc->sc_transfers;
1057
1058 DLOG(D_TRACE, "slhci_open(addr=%d,ep=%d,rootaddr=%d)",
1059 dev->address, ed->bEndpointAddress, t->rootaddr, 0);
1060
1061 spipe->pflags = 0;
1062 spipe->frame = 0;
1063 spipe->lastframe = 0;
1064 spipe->xfer = NULL;
1065 spipe->buffer = NULL;
1066
1067 gcq_init(&spipe->ap);
1068 gcq_init(&spipe->to);
1069 gcq_init(&spipe->xq);
1070
1071 /*
1072 * The endpoint descriptor will not have been set up yet in the case
1073 * of the standard control pipe, so the max packet checks are also
1074 * necessary in start.
1075 */
1076
1077 max_packet = UGETW(ed->wMaxPacketSize);
1078
1079 if (dev->speed == USB_SPEED_LOW) {
1080 spipe->pflags |= PF_LS;
1081 if (dev->myhub->address != t->rootaddr) {
1082 spipe->pflags |= PF_PREAMBLE;
1083 if (!slhci_try_lsvh)
1084 return slhci_lock_call(sc, &slhci_lsvh_warn,
1085 spipe, NULL);
1086 }
1087 pmaxpkt = 8;
1088 } else
1089 pmaxpkt = SL11_MAX_PACKET_SIZE;
1090
1091 if (max_packet > pmaxpkt) {
1092 DLOG(D_ERR, "packet too large! size %d spipe %p", max_packet,
1093 spipe, 0,0);
1094 return USBD_INVAL;
1095 }
1096
1097 if (dev->address == t->rootaddr) {
1098 switch (ed->bEndpointAddress) {
1099 case USB_CONTROL_ENDPOINT:
1100 spipe->ptype = PT_ROOT_CTRL;
1101 pipe->interval = 0;
1102 break;
1103 case UE_DIR_IN | ROOT_INTR_ENDPT:
1104 spipe->ptype = PT_ROOT_INTR;
1105 pipe->interval = 1;
1106 break;
1107 default:
1108 printf("%s: Invalid root endpoint!\n", SC_NAME(sc));
1109 DDOLOG("%s: Invalid root endpoint!\n", SC_NAME(sc),
1110 0,0,0);
1111 return USBD_INVAL;
1112 }
1113 pipe->methods = __UNCONST(&slhci_root_methods);
1114 return USBD_NORMAL_COMPLETION;
1115 } else {
1116 switch (ed->bmAttributes & UE_XFERTYPE) {
1117 case UE_CONTROL:
1118 spipe->ptype = PT_CTRL_SETUP;
1119 pipe->interval = 0;
1120 break;
1121 case UE_INTERRUPT:
1122 spipe->ptype = PT_INTR;
1123 if (pipe->interval == USBD_DEFAULT_INTERVAL)
1124 pipe->interval = ed->bInterval;
1125 break;
1126 case UE_ISOCHRONOUS:
1127 return slhci_lock_call(sc, &slhci_isoc_warn, spipe,
1128 NULL);
1129 case UE_BULK:
1130 spipe->ptype = PT_BULK;
1131 pipe->interval = 0;
1132 break;
1133 }
1134
1135 DLOG(D_MSG, "open pipe %s interval %d", pnames(spipe->ptype),
1136 pipe->interval, 0,0);
1137
1138 pipe->methods = __UNCONST(&slhci_pipe_methods);
1139
1140 return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL);
1141 }
1142 }
1143
1144 int
1145 slhci_supported_rev(uint8_t rev)
1146 {
1147 return (rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15);
1148 }
1149
1150 /*
1151 * Must be called before the ISR is registered. Interrupts can be shared so
1152 * slhci_intr could be called as soon as the ISR is registered.
1153 * Note max_current argument is actual current, but stored as current/2
1154 */
1155 void
1156 slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot,
1157 bus_space_handle_t ioh, uint16_t max_current, uint32_t stride)
1158 {
1159 struct slhci_transfers *t;
1160 int i;
1161
1162 t = &sc->sc_transfers;
1163
1164 #ifdef SLHCI_DEBUG
1165 KERNHIST_INIT_STATIC(slhcihist, slhci_he);
1166 #endif
1167 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1168 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED);
1169
1170 /* sc->sc_ier = 0; */
1171 /* t->rootintr = NULL; */
1172 t->flags = F_NODEV|F_UDISABLED;
1173 t->pend = INT_MAX;
1174 KASSERT(slhci_wait_time != INT_MAX);
1175 t->len[0] = t->len[1] = -1;
1176 if (max_current > 500)
1177 max_current = 500;
1178 t->max_current = (uint8_t)(max_current / 2);
1179 sc->sc_enable_power = pow;
1180 sc->sc_iot = iot;
1181 sc->sc_ioh = ioh;
1182 sc->sc_stride = stride;
1183
1184 KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0]));
1185
1186 for (i = 0; i <= Q_MAX; i++)
1187 gcq_init_head(&t->q[i]);
1188 gcq_init_head(&t->timed);
1189 gcq_init_head(&t->to);
1190 gcq_init_head(&t->ap);
1191 gcq_init_head(&sc->sc_waitq);
1192 }
1193
1194 int
1195 slhci_attach(struct slhci_softc *sc)
1196 {
1197 struct slhci_transfers *t;
1198 const char *rev;
1199
1200 t = &sc->sc_transfers;
1201
1202 /* Detect and check the controller type */
1203 t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV));
1204
1205 /* SL11H not supported */
1206 if (!slhci_supported_rev(t->sltype)) {
1207 if (t->sltype == SLTYPE_SL11H)
1208 printf("%s: SL11H unsupported or bus error!\n",
1209 SC_NAME(sc));
1210 else
1211 printf("%s: Unknown chip revision!\n", SC_NAME(sc));
1212 return -1;
1213 }
1214
1215 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
1216 callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc);
1217
1218 /*
1219 * It is not safe to call the soft interrupt directly as
1220 * usb_schedsoftintr does in the use_polling case (due to locking).
1221 */
1222 sc->sc_cb_softintr = softint_establish(SOFTINT_NET,
1223 slhci_callback_entry, sc);
1224
1225 #ifdef SLHCI_DEBUG
1226 ssc = sc;
1227 #ifdef USB_DEBUG
1228 if (slhci_usbdebug >= 0)
1229 usbdebug = slhci_usbdebug;
1230 #endif
1231 #endif
1232
1233 if (t->sltype == SLTYPE_SL811HS_R12)
1234 rev = " (rev 1.2)";
1235 else if (t->sltype == SLTYPE_SL811HS_R14)
1236 rev = " (rev 1.4 or 1.5)";
1237 else
1238 rev = " (unknown revision)";
1239
1240 aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n",
1241 SC_NAME(sc), rev);
1242
1243 aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n",
1244 SC_NAME(sc), t->max_current * 2);
1245
1246 #if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \
1247 defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER)
1248 aprint_normal("%s: driver options:"
1249 #ifdef SLHCI_DEBUG
1250 " SLHCI_DEBUG"
1251 #endif
1252 #ifdef SLHCI_TRY_LSVH
1253 " SLHCI_TRY_LSVH"
1254 #endif
1255 #ifdef SLHCI_NO_OVERTIME
1256 " SLHCI_NO_OVERTIME"
1257 #endif
1258 #ifdef SLHCI_PROFILE_TRANSFER
1259 " SLHCI_PROFILE_TRANSFER"
1260 #endif
1261 "\n", SC_NAME(sc));
1262 #endif
1263 sc->sc_bus.usbrev = USBREV_1_1;
1264 sc->sc_bus.methods = __UNCONST(&slhci_bus_methods);
1265 sc->sc_bus.pipe_size = sizeof(struct slhci_pipe);
1266
1267 if (!sc->sc_enable_power)
1268 t->flags |= F_REALPOWER;
1269
1270 t->flags |= F_ACTIVE;
1271
1272 /* Attach usb and uhub. */
1273 sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint);
1274
1275 if (!sc->sc_child)
1276 return -1;
1277 else
1278 return 0;
1279 }
1280
1281 int
1282 slhci_detach(struct slhci_softc *sc, int flags)
1283 {
1284 struct slhci_transfers *t;
1285 int ret;
1286
1287 t = &sc->sc_transfers;
1288
1289 /* By this point bus access is no longer allowed. */
1290
1291 KASSERT(!(t->flags & F_ACTIVE));
1292
1293 /*
1294 * To be MPSAFE is not sufficient to cancel callouts and soft
1295 * interrupts and assume they are dead since the code could already be
1296 * running or about to run. Wait until they are known to be done.
1297 */
1298 while (t->flags & (F_RESET|F_CALLBACK))
1299 tsleep(&sc, PPAUSE, "slhci_detach", hz);
1300
1301 softint_disestablish(sc->sc_cb_softintr);
1302
1303 mutex_destroy(&sc->sc_lock);
1304 mutex_destroy(&sc->sc_intr_lock);
1305
1306 ret = 0;
1307
1308 if (sc->sc_child)
1309 ret = config_detach(sc->sc_child, flags);
1310
1311 #ifdef SLHCI_MEM_ACCOUNTING
1312 if (sc->sc_mem_use) {
1313 printf("%s: Memory still in use after detach! mem_use (count)"
1314 " = %d\n", SC_NAME(sc), sc->sc_mem_use);
1315 DDOLOG("%s: Memory still in use after detach! mem_use (count)"
1316 " = %d\n", SC_NAME(sc), sc->sc_mem_use, 0,0);
1317 }
1318 #endif
1319
1320 return ret;
1321 }
1322
1323 int
1324 slhci_activate(device_t self, enum devact act)
1325 {
1326 struct slhci_softc *sc = device_private(self);
1327
1328 switch (act) {
1329 case DVACT_DEACTIVATE:
1330 slhci_lock_call(sc, &slhci_halt, NULL, NULL);
1331 return 0;
1332 default:
1333 return EOPNOTSUPP;
1334 }
1335 }
1336
1337 void
1338 slhci_abort(struct usbd_xfer *xfer)
1339 {
1340 struct slhci_softc *sc;
1341 struct slhci_pipe *spipe;
1342
1343 KASSERT(mutex_owned(&sc->sc_lock));
1344
1345 spipe = (struct slhci_pipe *)xfer->pipe;
1346
1347 if (spipe == NULL)
1348 goto callback;
1349
1350 sc = spipe->pipe.device->bus->hci_private;
1351
1352 DLOG(D_TRACE, "%s abort xfer %p spipe %p spipe->xfer %p",
1353 pnames(spipe->ptype), xfer, spipe, spipe->xfer);
1354
1355 slhci_lock_call(sc, &slhci_do_abort, spipe, xfer);
1356
1357 callback:
1358 xfer->status = USBD_CANCELLED;
1359 /* Abort happens at IPL_USB. */
1360 usb_transfer_complete(xfer);
1361 }
1362
1363 void
1364 slhci_close(struct usbd_pipe *pipe)
1365 {
1366 struct slhci_softc *sc;
1367 struct slhci_pipe *spipe;
1368 struct slhci_transfers *t;
1369
1370 sc = pipe->device->bus->hci_private;
1371 spipe = (struct slhci_pipe *)pipe;
1372 t = &sc->sc_transfers;
1373
1374 DLOG(D_TRACE, "%s close spipe %p spipe->xfer %p",
1375 pnames(spipe->ptype), spipe, spipe->xfer, 0);
1376
1377 slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL);
1378 }
1379
1380 void
1381 slhci_clear_toggle(struct usbd_pipe *pipe)
1382 {
1383 struct slhci_pipe *spipe;
1384
1385 spipe = (struct slhci_pipe *)pipe;
1386
1387 DLOG(D_TRACE, "%s toggle spipe %p", pnames(spipe->ptype),
1388 spipe,0,0);
1389
1390 spipe->pflags &= ~PF_TOGGLE;
1391
1392 #ifdef DIAGNOSTIC
1393 if (spipe->xfer != NULL) {
1394 struct slhci_softc *sc = (struct slhci_softc
1395 *)pipe->device->bus;
1396
1397 printf("%s: Clear toggle on transfer in progress! halted\n",
1398 SC_NAME(sc));
1399 DDOLOG("%s: Clear toggle on transfer in progress! halted\n",
1400 SC_NAME(sc), 0,0,0);
1401 slhci_halt(sc, NULL, NULL);
1402 }
1403 #endif
1404 }
1405
1406 void
1407 slhci_poll(struct usbd_bus *bus) /* XXX necessary? */
1408 {
1409 struct slhci_softc *sc;
1410
1411 sc = bus->hci_private;
1412
1413 DLOG(D_TRACE, "slhci_poll", 0,0,0,0);
1414
1415 slhci_lock_call(sc, &slhci_do_poll, NULL, NULL);
1416 }
1417
1418 void
1419 slhci_done(struct usbd_xfer *xfer)
1420 {
1421 /* xfer may not be valid here */
1422 }
1423
1424 void
1425 slhci_void(void *v) {}
1426
1427 /* End out of lock functions. Start lock entry functions. */
1428
1429 #ifdef SLHCI_MEM_ACCOUNTING
1430 void
1431 slhci_mem_use(struct usbd_bus *bus, int val)
1432 {
1433 struct slhci_softc *sc = bus->hci_private;
1434 int s;
1435
1436 mutex_enter(&sc->sc_intr_lock);
1437 sc->sc_mem_use += val;
1438 mutex_exit(&sc->sc_intr_lock);
1439 }
1440 #endif
1441
1442 void
1443 slhci_reset_entry(void *arg)
1444 {
1445 struct slhci_softc *sc = arg;
1446
1447 mutex_enter(&sc->sc_intr_lock);
1448 slhci_reset(sc);
1449 /*
1450 * We cannot call the callback directly since we could then be reset
1451 * again before finishing and need the callout delay for timing.
1452 * Scheduling the callout again before we exit would defeat the reap
1453 * mechanism since we could be unlocked while the reset flag is not
1454 * set. The callback code will check the wait queue.
1455 */
1456 slhci_callback_schedule(sc);
1457 mutex_exit(&sc->sc_intr_lock);
1458 }
1459
1460 usbd_status
1461 slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe
1462 *spipe, struct usbd_xfer *xfer)
1463 {
1464 usbd_status ret;
1465
1466 mutex_enter(&sc->sc_intr_lock);
1467 ret = (*lcf)(sc, spipe, xfer);
1468 slhci_main(sc);
1469 mutex_exit(&sc->sc_intr_lock);
1470
1471 return ret;
1472 }
1473
1474 void
1475 slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe)
1476 {
1477 struct slhci_transfers *t;
1478
1479 mutex_enter(&sc->sc_intr_lock);
1480 t = &sc->sc_transfers;
1481
1482 if (!(t->flags & (F_AINPROG|F_BINPROG))) {
1483 slhci_enter_xfer(sc, spipe);
1484 slhci_dotransfer(sc);
1485 slhci_main(sc);
1486 } else {
1487 enter_waitq(sc, spipe);
1488 }
1489 mutex_exit(&sc->sc_intr_lock);
1490 }
1491
1492 void
1493 slhci_callback_entry(void *arg)
1494 {
1495 struct slhci_softc *sc;
1496 struct slhci_transfers *t;
1497
1498 sc = (struct slhci_softc *)arg;
1499
1500 KASSERT(mutex_owned(&sc->sc_lock));
1501
1502 mutex_enter(&sc->sc_intr_lock);
1503 t = &sc->sc_transfers;
1504 DLOG(D_SOFT, "callback_entry flags %#x", t->flags, 0,0,0);
1505
1506 repeat:
1507 slhci_callback(sc);
1508
1509 if (!gcq_empty(&sc->sc_waitq)) {
1510 slhci_enter_xfers(sc);
1511 slhci_dotransfer(sc);
1512 slhci_waitintr(sc, 0);
1513 goto repeat;
1514 }
1515
1516 t->flags &= ~F_CALLBACK;
1517 mutex_exit(&sc->sc_intr_lock);
1518 }
1519
1520 void
1521 slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer)
1522 {
1523 KASSERT(mutex_owned(&sc->sc_intr_lock));
1524
1525 int repeat;
1526
1527 start_cc_time(&t_callback, (u_int)xfer);
1528 mutex_exit(&sc->sc_intr_lock);
1529
1530 mutex_enter(&sc->sc_lock);
1531 repeat = xfer->pipe->repeat;
1532 usb_transfer_complete(xfer);
1533 mutex_exit(&sc->sc_lock);
1534
1535 mutex_enter(&sc->sc_intr_lock);
1536 stop_cc_time(&t_callback);
1537
1538 if (repeat && !sc->sc_bus.use_polling)
1539 slhci_do_repeat(sc, xfer);
1540 }
1541
1542 int
1543 slhci_intr(void *arg)
1544 {
1545 struct slhci_softc *sc = arg;
1546 int ret;
1547
1548 start_cc_time(&t_hard_int, (unsigned int)arg);
1549 mutex_enter(&sc->sc_intr_lock);
1550
1551 ret = slhci_dointr(sc);
1552 slhci_main(sc);
1553 mutex_exit(&sc->sc_intr_lock);
1554
1555 stop_cc_time(&t_hard_int);
1556 return ret;
1557 }
1558
1559 /* called with main lock only held, returns with locks released. */
1560 void
1561 slhci_main(struct slhci_softc *sc)
1562 {
1563 struct slhci_transfers *t;
1564
1565 t = &sc->sc_transfers;
1566
1567 KASSERT(mutex_locked(&sc->sc_intr_lock));
1568
1569 waitcheck:
1570 slhci_waitintr(sc, slhci_wait_time);
1571
1572 /*
1573 * The direct call is needed in the use_polling and disabled cases
1574 * since the soft interrupt is not available. In the disabled case,
1575 * this code can be reached from the usb detach, after the reaping of
1576 * the soft interrupt. That test could be !F_ACTIVE, but there is no
1577 * reason not to make the callbacks directly in the other DISABLED
1578 * cases.
1579 */
1580 if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) {
1581 if (__predict_false(sc->sc_bus.use_polling ||
1582 t->flags & F_DISABLED))
1583 slhci_callback(sc);
1584 else
1585 slhci_callback_schedule(sc);
1586 }
1587
1588 if (!gcq_empty(&sc->sc_waitq)) {
1589 slhci_enter_xfers(sc);
1590 slhci_dotransfer(sc);
1591 goto waitcheck;
1592 }
1593 }
1594
1595 /* End lock entry functions. Start in lock function. */
1596
1597 /* Register read/write routines and barriers. */
1598 #ifdef SLHCI_BUS_SPACE_BARRIERS
1599 #define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e)
1600 #define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_SYNC)
1601 #else /* now !SLHCI_BUS_SPACE_BARRIERS */
1602 #define BSB(a, b, c, d, e)
1603 #define BSB_SYNC(a, b, c, d)
1604 #endif /* SLHCI_BUS_SPACE_BARRIERS */
1605
1606 static void
1607 slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data)
1608 {
1609 bus_size_t paddr, pdata, pst, psz;
1610 bus_space_tag_t iot;
1611 bus_space_handle_t ioh;
1612
1613 paddr = pst = 0;
1614 pdata = sc->sc_stride;
1615 psz = pdata * 2;
1616 iot = sc->sc_iot;
1617 ioh = sc->sc_ioh;
1618
1619 bus_space_write_1(iot, ioh, paddr, addr);
1620 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1621 bus_space_write_1(iot, ioh, pdata, data);
1622 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1623 }
1624
1625 static uint8_t
1626 slhci_read(struct slhci_softc *sc, uint8_t addr)
1627 {
1628 bus_size_t paddr, pdata, pst, psz;
1629 bus_space_tag_t iot;
1630 bus_space_handle_t ioh;
1631 uint8_t data;
1632
1633 paddr = pst = 0;
1634 pdata = sc->sc_stride;
1635 psz = pdata * 2;
1636 iot = sc->sc_iot;
1637 ioh = sc->sc_ioh;
1638
1639 bus_space_write_1(iot, ioh, paddr, addr);
1640 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1641 data = bus_space_read_1(iot, ioh, pdata);
1642 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1643 return data;
1644 }
1645
1646 #if 0 /* auto-increment mode broken, see errata doc */
1647 static void
1648 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1649 {
1650 bus_size_t paddr, pdata, pst, psz;
1651 bus_space_tag_t iot;
1652 bus_space_handle_t ioh;
1653
1654 paddr = pst = 0;
1655 pdata = sc->sc_stride;
1656 psz = pdata * 2;
1657 iot = sc->sc_iot;
1658 ioh = sc->sc_ioh;
1659
1660 bus_space_write_1(iot, ioh, paddr, addr);
1661 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1662 bus_space_write_multi_1(iot, ioh, pdata, buf, l);
1663 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1664 }
1665
1666 static void
1667 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1668 {
1669 bus_size_t paddr, pdata, pst, psz;
1670 bus_space_tag_t iot;
1671 bus_space_handle_t ioh;
1672
1673 paddr = pst = 0;
1674 pdata = sc->sc_stride;
1675 psz = pdata * 2;
1676 iot = sc->sc_iot;
1677 ioh = sc->sc_ioh;
1678
1679 bus_space_write_1(iot, ioh, paddr, addr);
1680 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1681 bus_space_read_multi_1(iot, ioh, pdata, buf, l);
1682 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1683 }
1684 #else
1685 static void
1686 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1687 {
1688 #if 1
1689 for (; l; addr++, buf++, l--)
1690 slhci_write(sc, addr, *buf);
1691 #else
1692 bus_size_t paddr, pdata, pst, psz;
1693 bus_space_tag_t iot;
1694 bus_space_handle_t ioh;
1695
1696 paddr = pst = 0;
1697 pdata = sc->sc_stride;
1698 psz = pdata * 2;
1699 iot = sc->sc_iot;
1700 ioh = sc->sc_ioh;
1701
1702 for (; l; addr++, buf++, l--) {
1703 bus_space_write_1(iot, ioh, paddr, addr);
1704 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1705 bus_space_write_1(iot, ioh, pdata, *buf);
1706 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1707 }
1708 #endif
1709 }
1710
1711 static void
1712 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1713 {
1714 #if 1
1715 for (; l; addr++, buf++, l--)
1716 *buf = slhci_read(sc, addr);
1717 #else
1718 bus_size_t paddr, pdata, pst, psz;
1719 bus_space_tag_t iot;
1720 bus_space_handle_t ioh;
1721
1722 paddr = pst = 0;
1723 pdata = sc->sc_stride;
1724 psz = pdata * 2;
1725 iot = sc->sc_iot;
1726 ioh = sc->sc_ioh;
1727
1728 for (; l; addr++, buf++, l--) {
1729 bus_space_write_1(iot, ioh, paddr, addr);
1730 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1731 *buf = bus_space_read_1(iot, ioh, pdata);
1732 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1733 }
1734 #endif
1735 }
1736 #endif
1737
1738 /*
1739 * After calling waitintr it is necessary to either call slhci_callback or
1740 * schedule the callback if necessary. The callback cannot be called directly
1741 * from the hard interrupt since it interrupts at a high IPL and callbacks
1742 * can do copyout and such.
1743 */
1744 static void
1745 slhci_waitintr(struct slhci_softc *sc, int wait_time)
1746 {
1747 struct slhci_transfers *t;
1748
1749 t = &sc->sc_transfers;
1750
1751 KASSERT(mutex_locked(&sc->sc_intr_lock));
1752
1753 if (__predict_false(sc->sc_bus.use_polling))
1754 wait_time = 12000;
1755
1756 while (t->pend <= wait_time) {
1757 DLOG(D_WAIT, "waiting... frame %d pend %d flags %#x",
1758 t->frame, t->pend, t->flags, 0);
1759 LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return);
1760 LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL,
1761 return);
1762 slhci_dointr(sc);
1763 }
1764 }
1765
1766 static int
1767 slhci_dointr(struct slhci_softc *sc)
1768 {
1769 struct slhci_transfers *t;
1770 struct slhci_pipe *tosp;
1771 uint8_t r;
1772
1773 t = &sc->sc_transfers;
1774
1775 KASSERT(mutex_locked(&sc->sc_intr_lock));
1776
1777 if (sc->sc_ier == 0)
1778 return 0;
1779
1780 r = slhci_read(sc, SL11_ISR);
1781
1782 #ifdef SLHCI_DEBUG
1783 if (slhci_debug & SLHCI_D_INTR && r & sc->sc_ier &&
1784 ((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhci_debug &
1785 SLHCI_D_SOF)) {
1786 uint8_t e, f;
1787
1788 e = slhci_read(sc, SL11_IER);
1789 f = slhci_read(sc, SL11_CTRL);
1790 DDOLOG("Flags=%#x IER=%#x ISR=%#x", t->flags, e, r, 0);
1791 DDOLOGFLAG8("Status=", r, "D+", (f & SL11_CTRL_SUSPEND) ?
1792 "RESUME" : "NODEV", "INSERT", "SOF", "res", "BABBLE",
1793 "USBB", "USBA");
1794 }
1795 #endif
1796
1797 /*
1798 * check IER for corruption occasionally. Assume that the above
1799 * sc_ier == 0 case works correctly.
1800 */
1801 if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) {
1802 sc->sc_ier_check = 0;
1803 if (sc->sc_ier != slhci_read(sc, SL11_IER)) {
1804 printf("%s: IER value corrupted! halted\n",
1805 SC_NAME(sc));
1806 DDOLOG("%s: IER value corrupted! halted\n",
1807 SC_NAME(sc), 0,0,0);
1808 slhci_halt(sc, NULL, NULL);
1809 return 1;
1810 }
1811 }
1812
1813 r &= sc->sc_ier;
1814
1815 if (r == 0)
1816 return 0;
1817
1818 sc->sc_ier_check = 0;
1819
1820 slhci_write(sc, SL11_ISR, r);
1821 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
1822
1823 /* If we have an insertion event we do not care about anything else. */
1824 if (__predict_false(r & SL11_ISR_INSERT)) {
1825 slhci_insert(sc);
1826 return 1;
1827 }
1828
1829 stop_cc_time(&t_intr);
1830 start_cc_time(&t_intr, r);
1831
1832 if (r & SL11_ISR_SOF) {
1833 t->frame++;
1834
1835 gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]);
1836
1837 /*
1838 * SOFCHECK flags are cleared in tstart. Two flags are needed
1839 * since the first SOF interrupt processed after the transfer
1840 * is started might have been generated before the transfer
1841 * was started.
1842 */
1843 if (__predict_false(t->flags & F_SOFCHECK2 && t->flags &
1844 (F_AINPROG|F_BINPROG))) {
1845 printf("%s: Missed transfer completion. halted\n",
1846 SC_NAME(sc));
1847 DDOLOG("%s: Missed transfer completion. halted\n",
1848 SC_NAME(sc), 0,0,0);
1849 slhci_halt(sc, NULL, NULL);
1850 return 1;
1851 } else if (t->flags & F_SOFCHECK1) {
1852 t->flags |= F_SOFCHECK2;
1853 } else
1854 t->flags |= F_SOFCHECK1;
1855
1856 if (t->flags & F_CHANGE)
1857 t->flags |= F_ROOTINTR;
1858
1859 while (__predict_true(GOT_FIRST_TO(tosp, t)) &&
1860 __predict_false(tosp->to_frame <= t->frame)) {
1861 tosp->xfer->status = USBD_TIMEOUT;
1862 slhci_do_abort(sc, tosp, tosp->xfer);
1863 enter_callback(t, tosp);
1864 }
1865
1866 /*
1867 * Start any waiting transfers right away. If none, we will
1868 * start any new transfers later.
1869 */
1870 slhci_tstart(sc);
1871 }
1872
1873 if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) {
1874 int ab;
1875
1876 if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) ==
1877 (SL11_ISR_USBA|SL11_ISR_USBB)) {
1878 if (!(t->flags & (F_AINPROG|F_BINPROG)))
1879 return 1; /* presume card pulled */
1880
1881 LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) !=
1882 (F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1);
1883
1884 /*
1885 * This should never happen (unless card removal just
1886 * occurred) but appeared frequently when both
1887 * transfers were started at the same time and was
1888 * accompanied by data corruption. It still happens
1889 * at times. I have not seen data correption except
1890 * when the STATUS bit gets set, which now causes the
1891 * driver to halt, however this should still not
1892 * happen so the warning is kept. See comment in
1893 * abdone, below.
1894 */
1895 printf("%s: Transfer reported done but not started! "
1896 "Verify data integrity if not detaching. "
1897 " flags %#x r %x\n", SC_NAME(sc), t->flags, r);
1898
1899 if (!(t->flags & F_AINPROG))
1900 r &= ~SL11_ISR_USBA;
1901 else
1902 r &= ~SL11_ISR_USBB;
1903 }
1904 t->pend = INT_MAX;
1905
1906 if (r & SL11_ISR_USBA)
1907 ab = A;
1908 else
1909 ab = B;
1910
1911 /*
1912 * This happens when a low speed device is attached to
1913 * a hub with chip rev 1.5. SOF stops, but a few transfers
1914 * still work before causing this error.
1915 */
1916 if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) {
1917 printf("%s: %s done but not in progress! halted\n",
1918 SC_NAME(sc), ab ? "B" : "A");
1919 DDOLOG("%s: %s done but not in progress! halted\n",
1920 SC_NAME(sc), ab ? "B" : "A", 0,0);
1921 slhci_halt(sc, NULL, NULL);
1922 return 1;
1923 }
1924
1925 t->flags &= ~(ab ? F_BINPROG : F_AINPROG);
1926 slhci_tstart(sc);
1927 stop_cc_time(&t_ab[ab]);
1928 start_cc_time(&t_abdone, t->flags);
1929 slhci_abdone(sc, ab);
1930 stop_cc_time(&t_abdone);
1931 }
1932
1933 slhci_dotransfer(sc);
1934
1935 return 1;
1936 }
1937
1938 static void
1939 slhci_abdone(struct slhci_softc *sc, int ab)
1940 {
1941 struct slhci_transfers *t;
1942 struct slhci_pipe *spipe;
1943 struct usbd_xfer *xfer;
1944 uint8_t status, buf_start;
1945 uint8_t *target_buf;
1946 unsigned int actlen;
1947 int head;
1948
1949 t = &sc->sc_transfers;
1950
1951 KASSERT(mutex_locked(&sc->sc_intr_lock));
1952
1953 DLOG(D_TRACE, "ABDONE flags %#x", t->flags, 0,0,0);
1954
1955 DLOG(D_MSG, "DONE %s spipe %p len %d xfer %p", ab ? "B" : "A",
1956 t->spipe[ab], t->len[ab], t->spipe[ab] ?
1957 t->spipe[ab]->xfer : NULL);
1958
1959 spipe = t->spipe[ab];
1960
1961 /*
1962 * skip this one if aborted; do not call return from the rest of the
1963 * function unless halting, else t->len will not be cleared.
1964 */
1965 if (spipe == NULL)
1966 goto done;
1967
1968 t->spipe[ab] = NULL;
1969
1970 xfer = spipe->xfer;
1971
1972 gcq_remove(&spipe->to);
1973
1974 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
1975
1976 status = slhci_read(sc, slhci_tregs[ab][STAT]);
1977
1978 /*
1979 * I saw no status or remaining length greater than the requested
1980 * length in early driver versions in circumstances I assumed caused
1981 * excess power draw. I am no longer able to reproduce this when
1982 * causing excess power draw circumstances.
1983 *
1984 * Disabling a power check and attaching aue to a keyboard and hub
1985 * that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard
1986 * 98mA) sometimes works and sometimes fails to configure. After
1987 * removing the aue and attaching a self-powered umass dvd reader
1988 * (unknown if it draws power from the host also) soon a single Error
1989 * status occurs then only timeouts. The controller soon halts freeing
1990 * memory due to being ONQU instead of BUSY. This may be the same
1991 * basic sequence that caused the no status/bad length errors. The
1992 * umass device seems to work (better at least) with the keyboard hub
1993 * when not first attaching aue (tested once reading an approximately
1994 * 200MB file).
1995 *
1996 * Overflow can indicate that the device and host disagree about how
1997 * much data has been transfered. This may indicate a problem at any
1998 * point during the transfer, not just when the error occurs. It may
1999 * indicate data corruption. A warning message is printed.
2000 *
2001 * Trying to use both A and B transfers at the same time results in
2002 * incorrect transfer completion ISR reports and the status will then
2003 * include SL11_EPSTAT_SETUP, which is apparently set while the
2004 * transfer is in progress. I also noticed data corruption, even
2005 * after waiting for the transfer to complete. The driver now avoids
2006 * trying to start both at the same time.
2007 *
2008 * I had accidently initialized the B registers before they were valid
2009 * in some driver versions. Since every other performance enhancing
2010 * feature has been confirmed buggy in the errata doc, I have not
2011 * tried both transfers at once again with the documented
2012 * initialization order.
2013 *
2014 * However, I have seen this problem again ("done but not started"
2015 * errors), which in some cases cases the SETUP status bit to remain
2016 * set on future transfers. In other cases, the SETUP bit is not set
2017 * and no data corruption occurs. This occured while using both umass
2018 * and aue on a powered hub (maybe triggered by some local activity
2019 * also) and needs several reads of the 200MB file to trigger. The
2020 * driver now halts if SETUP is detected.
2021 */
2022
2023 actlen = 0;
2024
2025 if (__predict_false(!status)) {
2026 DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0);
2027 printf("%s: no status! halted\n", SC_NAME(sc));
2028 slhci_halt(sc, spipe, xfer);
2029 return;
2030 }
2031
2032 #ifdef SLHCI_DEBUG
2033 if (slhci_debug & SLHCI_D_NAK || (status & SL11_EPSTAT_ERRBITS) !=
2034 SL11_EPSTAT_NAK)
2035 DLOGFLAG8(D_XFER, "STATUS=", status, "STALL", "NAK",
2036 "Overflow", "Setup", "Data Toggle", "Timeout", "Error",
2037 "ACK");
2038 #endif
2039
2040 if (!(status & SL11_EPSTAT_ERRBITS)) {
2041 unsigned int cont;
2042 cont = slhci_read(sc, slhci_tregs[ab][CONT]);
2043 if (cont != 0)
2044 DLOG(D_XFER, "cont %d len %d", cont,
2045 spipe->tregs[LEN], 0,0);
2046 if (__predict_false(cont > spipe->tregs[LEN])) {
2047 DDOLOG("cont > len! cont %d len %d xfer->length %d "
2048 "spipe %p", cont, spipe->tregs[LEN], xfer->length,
2049 spipe);
2050 printf("%s: cont > len! cont %d len %d xfer->length "
2051 "%d", SC_NAME(sc), cont, spipe->tregs[LEN],
2052 xfer->length);
2053 slhci_halt(sc, spipe, xfer);
2054 return;
2055 } else {
2056 spipe->nerrs = 0;
2057 actlen = spipe->tregs[LEN] - cont;
2058 }
2059 }
2060
2061 /* Actual copyin done after starting next transfer. */
2062 if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) {
2063 target_buf = spipe->buffer;
2064 buf_start = spipe->tregs[ADR];
2065 } else {
2066 target_buf = NULL;
2067 buf_start = 0; /* XXX gcc uninitialized warnings */
2068 }
2069
2070 if (status & SL11_EPSTAT_ERRBITS) {
2071 status &= SL11_EPSTAT_ERRBITS;
2072 if (status & SL11_EPSTAT_SETUP) {
2073 printf("%s: Invalid controller state detected! "
2074 "halted\n", SC_NAME(sc));
2075 DDOLOG("%s: Invalid controller state detected! "
2076 "halted\n", SC_NAME(sc), 0,0,0);
2077 slhci_halt(sc, spipe, xfer);
2078 return;
2079 } else if (__predict_false(sc->sc_bus.use_polling)) {
2080 if (status == SL11_EPSTAT_STALL)
2081 xfer->status = USBD_STALLED;
2082 else if (status == SL11_EPSTAT_TIMEOUT)
2083 xfer->status = USBD_TIMEOUT;
2084 else if (status == SL11_EPSTAT_NAK)
2085 xfer->status = USBD_TIMEOUT; /*XXX*/
2086 else
2087 xfer->status = USBD_IOERROR;
2088 head = Q_CALLBACKS;
2089 } else if (status == SL11_EPSTAT_NAK) {
2090 if (spipe->pipe.interval) {
2091 spipe->lastframe = spipe->frame =
2092 t->frame + spipe->pipe.interval;
2093 slhci_queue_timed(sc, spipe);
2094 goto queued;
2095 }
2096 head = Q_NEXT_CB;
2097 } else if (++spipe->nerrs > SLHCI_MAX_RETRIES ||
2098 status == SL11_EPSTAT_STALL) {
2099 if (status == SL11_EPSTAT_STALL)
2100 xfer->status = USBD_STALLED;
2101 else if (status == SL11_EPSTAT_TIMEOUT)
2102 xfer->status = USBD_TIMEOUT;
2103 else
2104 xfer->status = USBD_IOERROR;
2105
2106 DLOG(D_ERR, "Max retries reached! status %#x "
2107 "xfer->status %#x", status, xfer->status, 0,0);
2108 DLOGFLAG8(D_ERR, "STATUS=", status, "STALL",
2109 "NAK", "Overflow", "Setup", "Data Toggle",
2110 "Timeout", "Error", "ACK");
2111
2112 if (status == SL11_EPSTAT_OVERFLOW &&
2113 ratecheck(&sc->sc_overflow_warn_rate,
2114 &overflow_warn_rate)) {
2115 printf("%s: Overflow condition: "
2116 "data corruption possible\n",
2117 SC_NAME(sc));
2118 DDOLOG("%s: Overflow condition: "
2119 "data corruption possible\n",
2120 SC_NAME(sc), 0,0,0);
2121 }
2122 head = Q_CALLBACKS;
2123 } else {
2124 head = Q_NEXT_CB;
2125 }
2126 } else if (spipe->ptype == PT_CTRL_SETUP) {
2127 spipe->tregs[PID] = spipe->newpid;
2128
2129 if (xfer->length) {
2130 LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer,
2131 return);
2132 spipe->tregs[LEN] = spipe->newlen[1];
2133 spipe->bustime = spipe->newbustime[1];
2134 spipe->buffer = KERNADDR(&xfer->dmabuf, 0);
2135 spipe->ptype = PT_CTRL_DATA;
2136 } else {
2137 status_setup:
2138 /* CTRL_DATA swaps direction in PID then jumps here */
2139 spipe->tregs[LEN] = 0;
2140 if (spipe->pflags & PF_LS)
2141 spipe->bustime = SLHCI_LS_CONST;
2142 else
2143 spipe->bustime = SLHCI_FS_CONST;
2144 spipe->ptype = PT_CTRL_STATUS;
2145 spipe->buffer = NULL;
2146 }
2147
2148 /* Status or first data packet must be DATA1. */
2149 spipe->control |= SL11_EPCTRL_DATATOGGLE;
2150 if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN)
2151 spipe->control &= ~SL11_EPCTRL_DIRECTION;
2152 else
2153 spipe->control |= SL11_EPCTRL_DIRECTION;
2154
2155 head = Q_CB;
2156 } else if (spipe->ptype == PT_CTRL_STATUS) {
2157 head = Q_CALLBACKS;
2158 } else { /* bulk, intr, control data */
2159 xfer->actlen += actlen;
2160 spipe->control ^= SL11_EPCTRL_DATATOGGLE;
2161
2162 if (actlen == spipe->tregs[LEN] && (xfer->length >
2163 xfer->actlen || spipe->wantshort)) {
2164 spipe->buffer += actlen;
2165 LK_SLASSERT(xfer->length >= xfer->actlen, sc,
2166 spipe, xfer, return);
2167 if (xfer->length - xfer->actlen < actlen) {
2168 spipe->wantshort = 0;
2169 spipe->tregs[LEN] = spipe->newlen[0];
2170 spipe->bustime = spipe->newbustime[0];
2171 LK_SLASSERT(xfer->actlen +
2172 spipe->tregs[LEN] == xfer->length, sc,
2173 spipe, xfer, return);
2174 }
2175 head = Q_CB;
2176 } else if (spipe->ptype == PT_CTRL_DATA) {
2177 spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT;
2178 goto status_setup;
2179 } else {
2180 if (spipe->ptype == PT_INTR) {
2181 spipe->lastframe +=
2182 spipe->pipe.interval;
2183 /*
2184 * If ack, we try to keep the
2185 * interrupt rate by using lastframe
2186 * instead of the current frame.
2187 */
2188 spipe->frame = spipe->lastframe +
2189 spipe->pipe.interval;
2190 }
2191
2192 /*
2193 * Set the toggle for the next transfer. It
2194 * has already been toggled above, so the
2195 * current setting will apply to the next
2196 * transfer.
2197 */
2198 if (spipe->control & SL11_EPCTRL_DATATOGGLE)
2199 spipe->pflags |= PF_TOGGLE;
2200 else
2201 spipe->pflags &= ~PF_TOGGLE;
2202
2203 head = Q_CALLBACKS;
2204 }
2205 }
2206
2207 if (head == Q_CALLBACKS) {
2208 gcq_remove(&spipe->to);
2209
2210 if (xfer->status == USBD_IN_PROGRESS) {
2211 LK_SLASSERT(xfer->actlen <= xfer->length, sc,
2212 spipe, xfer, return);
2213 xfer->status = USBD_NORMAL_COMPLETION;
2214 #if 0 /* usb_transfer_complete will do this */
2215 if (xfer->length == xfer->actlen || xfer->flags &
2216 USBD_SHORT_XFER_OK)
2217 xfer->status = USBD_NORMAL_COMPLETION;
2218 else
2219 xfer->status = USBD_SHORT_XFER;
2220 #endif
2221 }
2222 }
2223
2224 enter_q(t, spipe, head);
2225
2226 queued:
2227 if (target_buf != NULL) {
2228 slhci_dotransfer(sc);
2229 start_cc_time(&t_copy_from_dev, actlen);
2230 slhci_read_multi(sc, buf_start, target_buf, actlen);
2231 stop_cc_time(&t_copy_from_dev);
2232 DLOGBUF(D_BUF, target_buf, actlen);
2233 t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen);
2234 }
2235
2236 done:
2237 t->len[ab] = -1;
2238 }
2239
2240 static void
2241 slhci_tstart(struct slhci_softc *sc)
2242 {
2243 struct slhci_transfers *t;
2244 struct slhci_pipe *spipe;
2245 int remaining_bustime;
2246
2247 t = &sc->sc_transfers;
2248
2249 KASSERT(mutex_locked(&sc->sc_intr_lock));
2250
2251 if (!(t->flags & (F_AREADY|F_BREADY)))
2252 return;
2253
2254 if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED))
2255 return;
2256
2257 /*
2258 * We have about 6 us to get from the bus time check to
2259 * starting the transfer or we might babble or the chip might fail to
2260 * signal transfer complete. This leaves no time for any other
2261 * interrupts.
2262 */
2263 remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6;
2264 remaining_bustime -= SLHCI_END_BUSTIME;
2265
2266 /*
2267 * Start one transfer only, clearing any aborted transfers that are
2268 * not yet in progress and skipping missed isoc. It is easier to copy
2269 * & paste most of the A/B sections than to make the logic work
2270 * otherwise and this allows better constant use.
2271 */
2272 if (t->flags & F_AREADY) {
2273 spipe = t->spipe[A];
2274 if (spipe == NULL) {
2275 t->flags &= ~F_AREADY;
2276 t->len[A] = -1;
2277 } else if (remaining_bustime >= spipe->bustime) {
2278 t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2);
2279 t->flags |= F_AINPROG;
2280 start_cc_time(&t_ab[A], spipe->tregs[LEN]);
2281 slhci_write(sc, SL11_E0CTRL, spipe->control);
2282 goto pend;
2283 }
2284 }
2285 if (t->flags & F_BREADY) {
2286 spipe = t->spipe[B];
2287 if (spipe == NULL) {
2288 t->flags &= ~F_BREADY;
2289 t->len[B] = -1;
2290 } else if (remaining_bustime >= spipe->bustime) {
2291 t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2);
2292 t->flags |= F_BINPROG;
2293 start_cc_time(&t_ab[B], spipe->tregs[LEN]);
2294 slhci_write(sc, SL11_E1CTRL, spipe->control);
2295 pend:
2296 t->pend = spipe->bustime;
2297 }
2298 }
2299 }
2300
2301 static void
2302 slhci_dotransfer(struct slhci_softc *sc)
2303 {
2304 struct slhci_transfers *t;
2305 struct slhci_pipe *spipe;
2306 int ab, i;
2307
2308 t = &sc->sc_transfers;
2309
2310 KASSERT(mutex_locked(&sc->sc_intr_lock));
2311
2312 while ((t->len[A] == -1 || t->len[B] == -1) &&
2313 (GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) ||
2314 GOT_FIRST_CB(spipe, t))) {
2315 LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return);
2316 LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype !=
2317 PT_ROOT_INTR, sc, spipe, NULL, return);
2318
2319 /* Check that this transfer can fit in the remaining memory. */
2320 if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 >
2321 SL11_MAX_PACKET_SIZE) {
2322 DLOG(D_XFER, "Transfer does not fit. alen %d blen %d "
2323 "len %d", t->len[A], t->len[B], spipe->tregs[LEN],
2324 0);
2325 return;
2326 }
2327
2328 gcq_remove(&spipe->xq);
2329
2330 if (t->len[A] == -1) {
2331 ab = A;
2332 spipe->tregs[ADR] = SL11_BUFFER_START;
2333 } else {
2334 ab = B;
2335 spipe->tregs[ADR] = SL11_BUFFER_END -
2336 spipe->tregs[LEN];
2337 }
2338
2339 t->len[ab] = spipe->tregs[LEN];
2340
2341 if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS)
2342 != SL11_PID_IN) {
2343 start_cc_time(&t_copy_to_dev,
2344 spipe->tregs[LEN]);
2345 slhci_write_multi(sc, spipe->tregs[ADR],
2346 spipe->buffer, spipe->tregs[LEN]);
2347 stop_cc_time(&t_copy_to_dev);
2348 t->pend -= SLHCI_FS_CONST +
2349 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
2350 }
2351
2352 DLOG(D_MSG, "NEW TRANSFER %s flags %#x alen %d blen %d",
2353 ab ? "B" : "A", t->flags, t->len[0], t->len[1]);
2354
2355 if (spipe->tregs[LEN])
2356 i = 0;
2357 else
2358 i = 1;
2359
2360 for (; i <= 3; i++)
2361 if (t->current_tregs[ab][i] != spipe->tregs[i]) {
2362 t->current_tregs[ab][i] = spipe->tregs[i];
2363 slhci_write(sc, slhci_tregs[ab][i],
2364 spipe->tregs[i]);
2365 }
2366
2367 DLOG(D_SXFER, "Transfer len %d pid %#x dev %d type %s",
2368 spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV],
2369 pnames(spipe->ptype));
2370
2371 t->spipe[ab] = spipe;
2372 t->flags |= ab ? F_BREADY : F_AREADY;
2373
2374 slhci_tstart(sc);
2375 }
2376 }
2377
2378 /*
2379 * slhci_callback is called after the lock is taken from splusb.
2380 */
2381 static void
2382 slhci_callback(struct slhci_softc *sc)
2383 {
2384 struct slhci_transfers *t;
2385 struct slhci_pipe *spipe;
2386 struct usbd_xfer *xfer;
2387
2388 t = &sc->sc_transfers;
2389
2390 KASSERT(mutex_locked(&sc->sc_intr_lock));
2391
2392 DLOG(D_SOFT, "CB flags %#x", t->flags, 0,0,0);
2393 for (;;) {
2394 if (__predict_false(t->flags & F_ROOTINTR)) {
2395 t->flags &= ~F_ROOTINTR;
2396 if (t->rootintr != NULL) {
2397 u_char *p;
2398
2399 p = KERNADDR(&t->rootintr->dmabuf, 0);
2400 p[0] = 2;
2401 t->rootintr->actlen = 1;
2402 t->rootintr->status = USBD_NORMAL_COMPLETION;
2403 xfer = t->rootintr;
2404 goto do_callback;
2405 }
2406 }
2407
2408
2409 if (!DEQUEUED_CALLBACK(spipe, t))
2410 return;
2411
2412 xfer = spipe->xfer;
2413 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
2414 spipe->xfer = NULL;
2415 DLOG(D_XFER, "xfer callback length %d actlen %d spipe %x "
2416 "type %s", xfer->length, xfer->actlen, spipe,
2417 pnames(spipe->ptype));
2418 do_callback:
2419 slhci_do_callback(sc, xfer);
2420 }
2421 }
2422
2423 static void
2424 slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2425 {
2426 struct slhci_transfers *t;
2427
2428 t = &sc->sc_transfers;
2429
2430 KASSERT(mutex_owned(&sc->sc_intr_lock));
2431
2432 if (__predict_false(t->flags & F_DISABLED) ||
2433 __predict_false(spipe->pflags & PF_GONE)) {
2434 DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0);
2435 spipe->xfer->status = USBD_CANCELLED;
2436 }
2437
2438 if (spipe->xfer->status == USBD_IN_PROGRESS) {
2439 if (spipe->xfer->timeout) {
2440 spipe->to_frame = t->frame + spipe->xfer->timeout;
2441 slhci_xfer_timer(sc, spipe);
2442 }
2443 if (spipe->pipe.interval)
2444 slhci_queue_timed(sc, spipe);
2445 else
2446 enter_q(t, spipe, Q_CB);
2447 } else
2448 enter_callback(t, spipe);
2449 }
2450
2451 static void
2452 slhci_enter_xfers(struct slhci_softc *sc)
2453 {
2454 struct slhci_pipe *spipe;
2455
2456 KASSERT(mutex_locked(&sc->sc_intr_lock));
2457
2458 while (DEQUEUED_WAITQ(spipe, sc))
2459 slhci_enter_xfer(sc, spipe);
2460 }
2461
2462 static void
2463 slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe)
2464 {
2465 struct slhci_transfers *t;
2466 struct gcq *q;
2467 struct slhci_pipe *spp;
2468
2469 t = &sc->sc_transfers;
2470
2471 KASSERT(mutex_owned(&sc->sc_intr_lock));
2472
2473 FIND_TIMED(q, t, spp, spp->frame > spipe->frame);
2474 gcq_insert_before(q, &spipe->xq);
2475 }
2476
2477 static void
2478 slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2479 {
2480 struct slhci_transfers *t;
2481 struct gcq *q;
2482 struct slhci_pipe *spp;
2483
2484 t = &sc->sc_transfers;
2485
2486 KASSERT(mutex_owned(&sc->sc_intr_lock));
2487
2488 FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame);
2489 gcq_insert_before(q, &spipe->to);
2490 }
2491
2492 static void
2493 slhci_do_repeat(struct slhci_softc *sc, struct usbd_xfer *xfer)
2494 {
2495 struct slhci_transfers *t;
2496 struct slhci_pipe *spipe;
2497
2498 t = &sc->sc_transfers;
2499 spipe = (struct slhci_pipe *)xfer->pipe;
2500
2501 if (xfer == t->rootintr)
2502 return;
2503
2504 DLOG(D_TRACE, "REPEAT: xfer %p actlen %d frame %u now %u",
2505 xfer, xfer->actlen, spipe->frame, sc->sc_transfers.frame);
2506
2507 xfer->actlen = 0;
2508 spipe->xfer = xfer;
2509 if (spipe->tregs[LEN])
2510 KASSERT(spipe->buffer == KERNADDR(&xfer->dmabuf, 0));
2511 slhci_queue_timed(sc, spipe);
2512 slhci_dotransfer(sc);
2513 }
2514
2515 static void
2516 slhci_callback_schedule(struct slhci_softc *sc)
2517 {
2518 struct slhci_transfers *t;
2519
2520 t = &sc->sc_transfers;
2521
2522 KASSERT(mutex_locked(&sc->sc_intr_lock));
2523
2524 if (t->flags & F_ACTIVE)
2525 slhci_do_callback_schedule(sc);
2526 }
2527
2528 static void
2529 slhci_do_callback_schedule(struct slhci_softc *sc)
2530 {
2531 struct slhci_transfers *t;
2532
2533 t = &sc->sc_transfers;
2534
2535 KASSERT(mutex_locked(&sc->sc_intr_lock));
2536
2537 if (!(t->flags & F_CALLBACK)) {
2538 t->flags |= F_CALLBACK;
2539 softint_schedule(sc->sc_cb_softintr);
2540 }
2541 }
2542
2543 #if 0
2544 /* must be called with lock taken from IPL_USB */
2545 /* XXX static */ void
2546 slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer)
2547 {
2548 KASSERT(mutex_locked(&sc->sc_intr_lock));
2549 slhci_dotransfer(sc);
2550 do {
2551 slhci_dointr(sc);
2552 } while (xfer->status == USBD_IN_PROGRESS);
2553 slhci_do_callback(sc, xfer);
2554 }
2555 #endif
2556
2557 static usbd_status
2558 slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2559 usbd_xfer *xfer)
2560 {
2561 slhci_waitintr(sc, 0);
2562
2563 return USBD_NORMAL_COMPLETION;
2564 }
2565
2566 static usbd_status
2567 slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2568 usbd_xfer *xfer)
2569 {
2570 struct slhci_transfers *t;
2571
2572 t = &sc->sc_transfers;
2573
2574 if (!(t->flags & F_LSVH_WARNED)) {
2575 printf("%s: Low speed device via hub disabled, "
2576 "see slhci(4)\n", SC_NAME(sc));
2577 DDOLOG("%s: Low speed device via hub disabled, "
2578 "see slhci(4)\n", SC_NAME(sc), 0,0,0);
2579 t->flags |= F_LSVH_WARNED;
2580 }
2581 return USBD_INVAL;
2582 }
2583
2584 static usbd_status
2585 slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2586 usbd_xfer *xfer)
2587 {
2588 struct slhci_transfers *t;
2589
2590 t = &sc->sc_transfers;
2591
2592 if (!(t->flags & F_ISOC_WARNED)) {
2593 printf("%s: ISOC transfer not supported "
2594 "(see slhci(4))\n", SC_NAME(sc));
2595 DDOLOG("%s: ISOC transfer not supported "
2596 "(see slhci(4))\n", SC_NAME(sc), 0,0,0);
2597 t->flags |= F_ISOC_WARNED;
2598 }
2599 return USBD_INVAL;
2600 }
2601
2602 static usbd_status
2603 slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2604 usbd_xfer *xfer)
2605 {
2606 struct slhci_transfers *t;
2607 struct usbd_pipe *pipe;
2608
2609 t = &sc->sc_transfers;
2610 pipe = &spipe->pipe;
2611
2612 if (t->flags & F_DISABLED)
2613 return USBD_CANCELLED;
2614 else if (pipe->interval && !slhci_reserve_bustime(sc, spipe, 1))
2615 return USBD_PENDING_REQUESTS;
2616 else {
2617 enter_all_pipes(t, spipe);
2618 return USBD_NORMAL_COMPLETION;
2619 }
2620 }
2621
2622 static usbd_status
2623 slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2624 usbd_xfer *xfer)
2625 {
2626 struct slhci_transfers *t;
2627 struct usbd_pipe *pipe;
2628
2629 t = &sc->sc_transfers;
2630 pipe = &spipe->pipe;
2631
2632 if (pipe->interval && spipe->ptype != PT_ROOT_INTR)
2633 slhci_reserve_bustime(sc, spipe, 0);
2634 gcq_remove(&spipe->ap);
2635 return USBD_NORMAL_COMPLETION;
2636 }
2637
2638 static usbd_status
2639 slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2640 usbd_xfer *xfer)
2641 {
2642 struct slhci_transfers *t;
2643
2644 t = &sc->sc_transfers;
2645
2646 KASSERT(mutex_owned(&sc->sc_intr_lock));
2647
2648 if (spipe->xfer == xfer) {
2649 if (spipe->ptype == PT_ROOT_INTR) {
2650 if (t->rootintr == spipe->xfer) /* XXX assert? */
2651 t->rootintr = NULL;
2652 } else {
2653 gcq_remove(&spipe->to);
2654 gcq_remove(&spipe->xq);
2655
2656 if (t->spipe[A] == spipe) {
2657 t->spipe[A] = NULL;
2658 if (!(t->flags & F_AINPROG))
2659 t->len[A] = -1;
2660 } else if (t->spipe[B] == spipe) {
2661 t->spipe[B] = NULL;
2662 if (!(t->flags & F_BINPROG))
2663 t->len[B] = -1;
2664 }
2665 }
2666
2667 if (xfer->status != USBD_TIMEOUT) {
2668 spipe->xfer = NULL;
2669 spipe->pipe.repeat = 0; /* XXX timeout? */
2670 }
2671 }
2672
2673 return USBD_NORMAL_COMPLETION;
2674 }
2675
2676 /*
2677 * Called to deactivate or stop use of the controller instead of panicking.
2678 * Will cancel the xfer correctly even when not on a list.
2679 */
2680 static usbd_status
2681 slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer
2682 *xfer)
2683 {
2684 struct slhci_transfers *t;
2685
2686 KASSERT(mutex_locked(&sc->sc_intr_lock));
2687
2688 t = &sc->sc_transfers;
2689
2690 DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0);
2691
2692 if (spipe != NULL)
2693 slhci_log_spipe(spipe);
2694
2695 if (xfer != NULL)
2696 slhci_log_xfer(xfer);
2697
2698 if (spipe != NULL && xfer != NULL && spipe->xfer == xfer &&
2699 !gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] !=
2700 spipe) {
2701 xfer->status = USBD_CANCELLED;
2702 enter_callback(t, spipe);
2703 }
2704
2705 if (t->flags & F_ACTIVE) {
2706 slhci_intrchange(sc, 0);
2707 /*
2708 * leave power on when halting in case flash devices or disks
2709 * are attached, which may be writing and could be damaged
2710 * by abrupt power loss. The root hub clear power feature
2711 * should still work after halting.
2712 */
2713 }
2714
2715 t->flags &= ~F_ACTIVE;
2716 t->flags |= F_UDISABLED;
2717 if (!(t->flags & F_NODEV))
2718 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
2719 slhci_drain(sc);
2720
2721 /* One last callback for the drain and device removal. */
2722 slhci_do_callback_schedule(sc);
2723
2724 return USBD_NORMAL_COMPLETION;
2725 }
2726
2727 /*
2728 * There are three interrupt states: no interrupts during reset and after
2729 * device deactivation, INSERT only for no device present but power on, and
2730 * SOF, INSERT, ADONE, and BDONE when device is present.
2731 */
2732 static void
2733 slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier)
2734 {
2735 KASSERT(mutex_owned(&sc->sc_intr_lock));
2736 if (sc->sc_ier != new_ier) {
2737 sc->sc_ier = new_ier;
2738 slhci_write(sc, SL11_IER, new_ier);
2739 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
2740 }
2741 }
2742
2743 /*
2744 * Drain: cancel all pending transfers and put them on the callback list and
2745 * set the UDISABLED flag. UDISABLED is cleared only by reset.
2746 */
2747 static void
2748 slhci_drain(struct slhci_softc *sc)
2749 {
2750 struct slhci_transfers *t;
2751 struct slhci_pipe *spipe;
2752 struct gcq *q;
2753 int i;
2754
2755 KASSERT(mutex_locked(&sc->sc_intr_lock));
2756
2757 t = &sc->sc_transfers;
2758
2759 DLOG(D_MSG, "DRAIN flags %#x", t->flags, 0,0,0);
2760
2761 t->pend = INT_MAX;
2762
2763 for (i=0; i<=1; i++) {
2764 t->len[i] = -1;
2765 if (t->spipe[i] != NULL) {
2766 enter_callback(t, t->spipe[i]);
2767 t->spipe[i] = NULL;
2768 }
2769 }
2770
2771 /* Merge the queues into the callback queue. */
2772 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]);
2773 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]);
2774 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed);
2775
2776 /*
2777 * Cancel all pipes. Note that not all of these may be on the
2778 * callback queue yet; some could be in slhci_start, for example.
2779 */
2780 FOREACH_AP(q, t, spipe) {
2781 spipe->pflags |= PF_GONE;
2782 spipe->pipe.repeat = 0;
2783 spipe->pipe.aborting = 1;
2784 if (spipe->xfer != NULL)
2785 spipe->xfer->status = USBD_CANCELLED;
2786 }
2787
2788 gcq_remove_all(&t->to);
2789
2790 t->flags |= F_UDISABLED;
2791 t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED);
2792 }
2793
2794 /*
2795 * RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms
2796 * reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF)
2797 * check attached device speed.
2798 * must wait 100ms before USB transaction according to app note, 10ms
2799 * by spec. uhub does this delay
2800 *
2801 * Started from root hub set feature reset, which does step one.
2802 * use_polling will call slhci_reset directly, otherwise the callout goes
2803 * through slhci_reset_entry.
2804 */
2805 void
2806 slhci_reset(struct slhci_softc *sc)
2807 {
2808 struct slhci_transfers *t;
2809 struct slhci_pipe *spipe;
2810 struct gcq *q;
2811 uint8_t r, pol, ctrl;
2812
2813 t = &sc->sc_transfers;
2814 KASSERT(mutex_owned(&sc->sc_intr_lock));
2815
2816 stop_cc_time(&t_delay);
2817
2818 KASSERT(t->flags & F_ACTIVE);
2819
2820 start_cc_time(&t_delay, 0);
2821 stop_cc_time(&t_delay);
2822
2823 slhci_write(sc, SL11_CTRL, 0);
2824 start_cc_time(&t_delay, 3);
2825 DELAY(3);
2826 stop_cc_time(&t_delay);
2827 slhci_write(sc, SL11_ISR, 0xff);
2828
2829 r = slhci_read(sc, SL11_ISR);
2830
2831 if (r & SL11_ISR_INSERT)
2832 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
2833
2834 if (r & SL11_ISR_NODEV) {
2835 DLOG(D_MSG, "NC", 0,0,0,0);
2836 /*
2837 * Normally, the hard interrupt insert routine will issue
2838 * CCONNECT, however we need to do it here if the detach
2839 * happened during reset.
2840 */
2841 if (!(t->flags & F_NODEV))
2842 t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV;
2843 slhci_intrchange(sc, SL11_IER_INSERT);
2844 } else {
2845 if (t->flags & F_NODEV)
2846 t->flags |= F_CCONNECT;
2847 t->flags &= ~(F_NODEV|F_LOWSPEED);
2848 if (r & SL11_ISR_DATA) {
2849 DLOG(D_MSG, "FS", 0,0,0,0);
2850 pol = ctrl = 0;
2851 } else {
2852 DLOG(D_MSG, "LS", 0,0,0,0);
2853 pol = SL811_CSOF_POLARITY;
2854 ctrl = SL11_CTRL_LOWSPEED;
2855 t->flags |= F_LOWSPEED;
2856 }
2857
2858 /* Enable SOF auto-generation */
2859 t->frame = 0; /* write to SL811_CSOF will reset frame */
2860 slhci_write(sc, SL11_SOFTIME, 0xe0);
2861 slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e);
2862 slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF);
2863
2864 /*
2865 * According to the app note, ARM must be set
2866 * for SOF generation to work. We initialize all
2867 * USBA registers here for current_tregs.
2868 */
2869 slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START);
2870 slhci_write(sc, SL11_E0LEN, 0);
2871 slhci_write(sc, SL11_E0PID, SL11_PID_SOF);
2872 slhci_write(sc, SL11_E0DEV, 0);
2873 slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM);
2874
2875 /*
2876 * Initialize B registers. This can't be done earlier since
2877 * they are not valid until the SL811_CSOF register is written
2878 * above due to SL11H compatability.
2879 */
2880 slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8);
2881 slhci_write(sc, SL11_E1LEN, 0);
2882 slhci_write(sc, SL11_E1PID, 0);
2883 slhci_write(sc, SL11_E1DEV, 0);
2884
2885 t->current_tregs[0][ADR] = SL11_BUFFER_START;
2886 t->current_tregs[0][LEN] = 0;
2887 t->current_tregs[0][PID] = SL11_PID_SOF;
2888 t->current_tregs[0][DEV] = 0;
2889 t->current_tregs[1][ADR] = SL11_BUFFER_END - 8;
2890 t->current_tregs[1][LEN] = 0;
2891 t->current_tregs[1][PID] = 0;
2892 t->current_tregs[1][DEV] = 0;
2893
2894 /* SOF start will produce USBA interrupt */
2895 t->len[A] = 0;
2896 t->flags |= F_AINPROG;
2897
2898 slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS);
2899 }
2900
2901 t->flags &= ~(F_UDISABLED|F_RESET);
2902 t->flags |= F_CRESET|F_ROOTINTR;
2903 FOREACH_AP(q, t, spipe) {
2904 spipe->pflags &= ~PF_GONE;
2905 spipe->pipe.aborting = 0;
2906 }
2907 DLOG(D_MSG, "RESET done flags %#x", t->flags, 0,0,0);
2908 }
2909
2910 /* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */
2911 static int
2912 slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int
2913 reserve)
2914 {
2915 struct slhci_transfers *t;
2916 int bustime, max_packet;
2917
2918 KASSERT(mutex_locked(&sc->sc_intr_lock));
2919
2920 t = &sc->sc_transfers;
2921 max_packet = UGETW(spipe->pipe.endpoint->edesc->wMaxPacketSize);
2922
2923 if (spipe->pflags & PF_LS)
2924 bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet);
2925 else
2926 bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet);
2927
2928 if (!reserve) {
2929 t->reserved_bustime -= bustime;
2930 #ifdef DIAGNOSTIC
2931 if (t->reserved_bustime < 0) {
2932 printf("%s: reserved_bustime %d < 0!\n",
2933 SC_NAME(sc), t->reserved_bustime);
2934 DDOLOG("%s: reserved_bustime %d < 0!\n",
2935 SC_NAME(sc), t->reserved_bustime, 0,0);
2936 t->reserved_bustime = 0;
2937 }
2938 #endif
2939 return 1;
2940 }
2941
2942 if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) {
2943 if (ratecheck(&sc->sc_reserved_warn_rate,
2944 &reserved_warn_rate))
2945 #ifdef SLHCI_NO_OVERTIME
2946 {
2947 printf("%s: Max reserved bus time exceeded! "
2948 "Erroring request.\n", SC_NAME(sc));
2949 DDOLOG("%s: Max reserved bus time exceeded! "
2950 "Erroring request.\n", SC_NAME(sc), 0,0,0);
2951 }
2952 return 0;
2953 #else
2954 {
2955 printf("%s: Reserved bus time exceeds %d!\n",
2956 SC_NAME(sc), SLHCI_RESERVED_BUSTIME);
2957 DDOLOG("%s: Reserved bus time exceeds %d!\n",
2958 SC_NAME(sc), SLHCI_RESERVED_BUSTIME, 0,0);
2959 }
2960 #endif
2961 }
2962
2963 t->reserved_bustime += bustime;
2964 return 1;
2965 }
2966
2967 /* Device insertion/removal interrupt */
2968 static void
2969 slhci_insert(struct slhci_softc *sc)
2970 {
2971 struct slhci_transfers *t;
2972
2973 t = &sc->sc_transfers;
2974
2975 KASSERT(mutex_locked(&sc->sc_intr_lock));
2976
2977 if (t->flags & F_NODEV)
2978 slhci_intrchange(sc, 0);
2979 else {
2980 slhci_drain(sc);
2981 slhci_intrchange(sc, SL11_IER_INSERT);
2982 }
2983 t->flags ^= F_NODEV;
2984 t->flags |= F_ROOTINTR|F_CCONNECT;
2985 DLOG(D_MSG, "INSERT intr: flags after %#x", t->flags, 0,0,0);
2986 }
2987
2988 /*
2989 * Data structures and routines to emulate the root hub.
2990 */
2991 static const usb_device_descriptor_t slhci_devd = {
2992 USB_DEVICE_DESCRIPTOR_SIZE,
2993 UDESC_DEVICE, /* type */
2994 {0x01, 0x01}, /* USB version */
2995 UDCLASS_HUB, /* class */
2996 UDSUBCLASS_HUB, /* subclass */
2997 0, /* protocol */
2998 64, /* max packet */
2999 {USB_VENDOR_SCANLOGIC & 0xff, /* vendor ID (low) */
3000 USB_VENDOR_SCANLOGIC >> 8 }, /* vendor ID (high) */
3001 {0} /* ? */, /* product ID */
3002 {0}, /* device */
3003 1, /* index to manufacturer */
3004 2, /* index to product */
3005 0, /* index to serial number */
3006 1 /* number of configurations */
3007 };
3008
3009 static const struct slhci_confd_t {
3010 const usb_config_descriptor_t confd;
3011 const usb_interface_descriptor_t ifcd;
3012 const usb_endpoint_descriptor_t endpd;
3013 } UPACKED slhci_confd = {
3014 { /* Configuration */
3015 USB_CONFIG_DESCRIPTOR_SIZE,
3016 UDESC_CONFIG,
3017 {USB_CONFIG_DESCRIPTOR_SIZE +
3018 USB_INTERFACE_DESCRIPTOR_SIZE +
3019 USB_ENDPOINT_DESCRIPTOR_SIZE},
3020 1, /* number of interfaces */
3021 1, /* configuration value */
3022 0, /* index to configuration */
3023 UC_SELF_POWERED, /* attributes */
3024 0 /* max current, filled in later */
3025 }, { /* Interface */
3026 USB_INTERFACE_DESCRIPTOR_SIZE,
3027 UDESC_INTERFACE,
3028 0, /* interface number */
3029 0, /* alternate setting */
3030 1, /* number of endpoint */
3031 UICLASS_HUB, /* class */
3032 UISUBCLASS_HUB, /* subclass */
3033 0, /* protocol */
3034 0 /* index to interface */
3035 }, { /* Endpoint */
3036 USB_ENDPOINT_DESCRIPTOR_SIZE,
3037 UDESC_ENDPOINT,
3038 UE_DIR_IN | ROOT_INTR_ENDPT, /* endpoint address */
3039 UE_INTERRUPT, /* attributes */
3040 {240, 0}, /* max packet size */
3041 255 /* interval */
3042 }
3043 };
3044
3045 static const usb_hub_descriptor_t slhci_hubd = {
3046 USB_HUB_DESCRIPTOR_SIZE,
3047 UDESC_HUB,
3048 1, /* number of ports */
3049 {UHD_PWR_INDIVIDUAL | UHD_OC_NONE, 0}, /* hub characteristics */
3050 50, /* 5:power on to power good, units of 2ms */
3051 0, /* 6:maximum current, filled in later */
3052 { 0x00 }, /* port is removable */
3053 { 0x00 } /* port power control mask */
3054 };
3055
3056 static usbd_status
3057 slhci_clear_feature(struct slhci_softc *sc, unsigned int what)
3058 {
3059 struct slhci_transfers *t;
3060 usbd_status error;
3061
3062 t = &sc->sc_transfers;
3063 error = USBD_NORMAL_COMPLETION;
3064
3065 KASSERT(mutex_locked(&sc->sc_intr_lock));
3066
3067 if (what == UHF_PORT_POWER) {
3068 DLOG(D_MSG, "POWER_OFF", 0,0,0,0);
3069 t->flags &= ~F_POWER;
3070 if (!(t->flags & F_NODEV))
3071 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
3072 /* for x68k Nereid USB controller */
3073 if (sc->sc_enable_power && (t->flags & F_REALPOWER)) {
3074 t->flags &= ~F_REALPOWER;
3075 sc->sc_enable_power(sc, POWER_OFF);
3076 }
3077 slhci_intrchange(sc, 0);
3078 slhci_drain(sc);
3079 } else if (what == UHF_C_PORT_CONNECTION) {
3080 t->flags &= ~F_CCONNECT;
3081 } else if (what == UHF_C_PORT_RESET) {
3082 t->flags &= ~F_CRESET;
3083 } else if (what == UHF_PORT_ENABLE) {
3084 slhci_drain(sc);
3085 } else if (what != UHF_PORT_SUSPEND) {
3086 DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0);
3087 error = USBD_IOERROR;
3088 }
3089
3090 return error;
3091 }
3092
3093 static usbd_status
3094 slhci_set_feature(struct slhci_softc *sc, unsigned int what)
3095 {
3096 struct slhci_transfers *t;
3097 uint8_t r;
3098
3099 t = &sc->sc_transfers;
3100
3101 KASSERT(mutex_locked(&sc->sc_intr_lock));
3102
3103 if (what == UHF_PORT_RESET) {
3104 if (!(t->flags & F_ACTIVE)) {
3105 DDOLOG("SET PORT_RESET when not ACTIVE!",
3106 0,0,0,0);
3107 return USBD_INVAL;
3108 }
3109 if (!(t->flags & F_POWER)) {
3110 DDOLOG("SET PORT_RESET without PORT_POWER! flags %p",
3111 t->flags, 0,0,0);
3112 return USBD_INVAL;
3113 }
3114 if (t->flags & F_RESET)
3115 return USBD_NORMAL_COMPLETION;
3116 DLOG(D_MSG, "RESET flags %#x", t->flags, 0,0,0);
3117 slhci_intrchange(sc, 0);
3118 slhci_drain(sc);
3119 slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE);
3120 /* usb spec says delay >= 10ms, app note 50ms */
3121 start_cc_time(&t_delay, 50000);
3122 if (sc->sc_bus.use_polling) {
3123 DELAY(50000);
3124 slhci_reset(sc);
3125 } else {
3126 t->flags |= F_RESET;
3127 callout_schedule(&sc->sc_timer, max(mstohz(50), 2));
3128 }
3129 } else if (what == UHF_PORT_SUSPEND) {
3130 printf("%s: USB Suspend not implemented!\n", SC_NAME(sc));
3131 DDOLOG("%s: USB Suspend not implemented!\n", SC_NAME(sc),
3132 0,0,0);
3133 } else if (what == UHF_PORT_POWER) {
3134 DLOG(D_MSG, "PORT_POWER", 0,0,0,0);
3135 /* for x68k Nereid USB controller */
3136 if (!(t->flags & F_ACTIVE))
3137 return USBD_INVAL;
3138 if (t->flags & F_POWER)
3139 return USBD_NORMAL_COMPLETION;
3140 if (!(t->flags & F_REALPOWER)) {
3141 if (sc->sc_enable_power)
3142 sc->sc_enable_power(sc, POWER_ON);
3143 t->flags |= F_REALPOWER;
3144 }
3145 t->flags |= F_POWER;
3146 r = slhci_read(sc, SL11_ISR);
3147 if (r & SL11_ISR_INSERT)
3148 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
3149 if (r & SL11_ISR_NODEV) {
3150 slhci_intrchange(sc, SL11_IER_INSERT);
3151 t->flags |= F_NODEV;
3152 } else {
3153 t->flags &= ~F_NODEV;
3154 t->flags |= F_CCONNECT|F_ROOTINTR;
3155 }
3156 } else {
3157 DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0);
3158 return USBD_IOERROR;
3159 }
3160
3161 return USBD_NORMAL_COMPLETION;
3162 }
3163
3164 static void
3165 slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps)
3166 {
3167 struct slhci_transfers *t;
3168 unsigned int status, change;
3169
3170 t = &sc->sc_transfers;
3171
3172 KASSERT(mutex_locked(&sc->sc_intr_lock));
3173
3174 /*
3175 * We do not have a way to detect over current or bable and
3176 * suspend is currently not implemented, so connect and reset
3177 * are the only changes that need to be reported.
3178 */
3179 change = 0;
3180 if (t->flags & F_CCONNECT)
3181 change |= UPS_C_CONNECT_STATUS;
3182 if (t->flags & F_CRESET)
3183 change |= UPS_C_PORT_RESET;
3184
3185 status = 0;
3186 if (!(t->flags & F_NODEV))
3187 status |= UPS_CURRENT_CONNECT_STATUS;
3188 if (!(t->flags & F_UDISABLED))
3189 status |= UPS_PORT_ENABLED;
3190 if (t->flags & F_RESET)
3191 status |= UPS_RESET;
3192 if (t->flags & F_POWER)
3193 status |= UPS_PORT_POWER;
3194 if (t->flags & F_LOWSPEED)
3195 status |= UPS_LOW_SPEED;
3196 USETW(ps->wPortStatus, status);
3197 USETW(ps->wPortChange, change);
3198 DLOG(D_ROOT, "status=%#.4x, change=%#.4x", status, change, 0,0);
3199 }
3200
3201 static usbd_status
3202 slhci_root(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer
3203 *xfer)
3204 {
3205 struct slhci_transfers *t;
3206 usb_device_request_t *req;
3207 unsigned int len, value, index, actlen, type;
3208 uint8_t *buf;
3209 usbd_status error;
3210
3211 t = &sc->sc_transfers;
3212 buf = NULL;
3213
3214 LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return
3215 USBD_CANCELLED);
3216
3217 DLOG(D_TRACE, "%s start", pnames(SLHCI_XFER_TYPE(xfer)), 0,0,0);
3218 KASSERT(mutex_locked(&sc->sc_intr_lock));
3219
3220 if (spipe->ptype == PT_ROOT_INTR) {
3221 LK_SLASSERT(t->rootintr == NULL, sc, spipe, xfer, return
3222 USBD_CANCELLED);
3223 t->rootintr = xfer;
3224 if (t->flags & F_CHANGE)
3225 t->flags |= F_ROOTINTR;
3226 return USBD_IN_PROGRESS;
3227 }
3228
3229 error = USBD_IOERROR; /* XXX should be STALL */
3230 actlen = 0;
3231 req = &xfer->request;
3232
3233 len = UGETW(req->wLength);
3234 value = UGETW(req->wValue);
3235 index = UGETW(req->wIndex);
3236
3237 type = req->bmRequestType;
3238
3239 if (len)
3240 buf = KERNADDR(&xfer->dmabuf, 0);
3241
3242 SLHCI_DEXEC(D_TRACE, slhci_log_req_hub(req));
3243
3244 /*
3245 * USB requests for hubs have two basic types, standard and class.
3246 * Each could potentially have recipients of device, interface,
3247 * endpoint, or other. For the hub class, CLASS_OTHER means the port
3248 * and CLASS_DEVICE means the hub. For standard requests, OTHER
3249 * is not used. Standard request are described in section 9.4 of the
3250 * standard, hub class requests in 11.16. Each request is either read
3251 * or write.
3252 *
3253 * Clear Feature, Set Feature, and Status are defined for each of the
3254 * used recipients. Get Descriptor and Set Descriptor are defined for
3255 * both standard and hub class types with different descriptors.
3256 * Other requests have only one defined recipient and type. These
3257 * include: Get/Set Address, Get/Set Configuration, Get/Set Interface,
3258 * and Synch Frame for standard requests and Get Bus State for hub
3259 * class.
3260 *
3261 * When a device is first powered up it has address 0 until the
3262 * address is set.
3263 *
3264 * Hubs are only allowed to support one interface and may not have
3265 * isochronous endpoints. The results of the related requests are
3266 * undefined.
3267 *
3268 * The standard requires invalid or unsupported requests to return
3269 * STALL in the data stage, however this does not work well with
3270 * current error handling. XXX
3271 *
3272 * Some unsupported fields:
3273 * Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT
3274 * Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP
3275 * Get Bus State is optional sample of D- and D+ at EOF2
3276 */
3277
3278 switch (req->bRequest) {
3279 /* Write Requests */
3280 case UR_CLEAR_FEATURE:
3281 if (type == UT_WRITE_CLASS_OTHER) {
3282 if (index == 1 /* Port */)
3283 error = slhci_clear_feature(sc, value);
3284 else
3285 DLOG(D_ROOT, "Clear Port Feature "
3286 "index = %#.4x", index, 0,0,0);
3287 }
3288 break;
3289 case UR_SET_FEATURE:
3290 if (type == UT_WRITE_CLASS_OTHER) {
3291 if (index == 1 /* Port */)
3292 error = slhci_set_feature(sc, value);
3293 else
3294 DLOG(D_ROOT, "Set Port Feature "
3295 "index = %#.4x", index, 0,0,0);
3296 } else if (type != UT_WRITE_CLASS_DEVICE)
3297 DLOG(D_ROOT, "Set Device Feature "
3298 "ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP "
3299 "not supported", 0,0,0,0);
3300 break;
3301 case UR_SET_ADDRESS:
3302 if (type == UT_WRITE_DEVICE) {
3303 DLOG(D_ROOT, "Set Address %#.4x", value, 0,0,0);
3304 if (value < USB_MAX_DEVICES) {
3305 t->rootaddr = value;
3306 error = USBD_NORMAL_COMPLETION;
3307 }
3308 }
3309 break;
3310 case UR_SET_CONFIG:
3311 if (type == UT_WRITE_DEVICE) {
3312 DLOG(D_ROOT, "Set Config %#.4x", value, 0,0,0);
3313 if (value == 0 || value == 1) {
3314 t->rootconf = value;
3315 error = USBD_NORMAL_COMPLETION;
3316 }
3317 }
3318 break;
3319 /* Read Requests */
3320 case UR_GET_STATUS:
3321 if (type == UT_READ_CLASS_OTHER) {
3322 if (index == 1 /* Port */ && len == /* XXX >=? */
3323 sizeof(usb_port_status_t)) {
3324 slhci_get_status(sc, (usb_port_status_t *)
3325 buf);
3326 actlen = sizeof(usb_port_status_t);
3327 error = USBD_NORMAL_COMPLETION;
3328 } else
3329 DLOG(D_ROOT, "Get Port Status index = %#.4x "
3330 "len = %#.4x", index, len, 0,0);
3331 } else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */
3332 if (len == sizeof(usb_hub_status_t)) {
3333 DLOG(D_ROOT, "Get Hub Status",
3334 0,0,0,0);
3335 actlen = sizeof(usb_hub_status_t);
3336 memset(buf, 0, actlen);
3337 error = USBD_NORMAL_COMPLETION;
3338 } else
3339 DLOG(D_ROOT, "Get Hub Status bad len %#.4x",
3340 len, 0,0,0);
3341 } else if (type == UT_READ_DEVICE) {
3342 if (len >= 2) {
3343 USETW(((usb_status_t *)buf)->wStatus, UDS_SELF_POWERED);
3344 actlen = 2;
3345 error = USBD_NORMAL_COMPLETION;
3346 }
3347 } else if (type == (UT_READ_INTERFACE|UT_READ_ENDPOINT)) {
3348 if (len >= 2) {
3349 USETW(((usb_status_t *)buf)->wStatus, 0);
3350 actlen = 2;
3351 error = USBD_NORMAL_COMPLETION;
3352 }
3353 }
3354 break;
3355 case UR_GET_CONFIG:
3356 if (type == UT_READ_DEVICE) {
3357 DLOG(D_ROOT, "Get Config", 0,0,0,0);
3358 if (len > 0) {
3359 *buf = t->rootconf;
3360 actlen = 1;
3361 error = USBD_NORMAL_COMPLETION;
3362 }
3363 }
3364 break;
3365 case UR_GET_INTERFACE:
3366 if (type == UT_READ_INTERFACE) {
3367 if (len > 0) {
3368 *buf = 0;
3369 actlen = 1;
3370 error = USBD_NORMAL_COMPLETION;
3371 }
3372 }
3373 break;
3374 case UR_GET_DESCRIPTOR:
3375 if (type == UT_READ_DEVICE) {
3376 /* value is type (&0xff00) and index (0xff) */
3377 if (value == (UDESC_DEVICE<<8)) {
3378 actlen = min(len, sizeof(slhci_devd));
3379 memcpy(buf, &slhci_devd, actlen);
3380 error = USBD_NORMAL_COMPLETION;
3381 } else if (value == (UDESC_CONFIG<<8)) {
3382 actlen = min(len, sizeof(slhci_confd));
3383 memcpy(buf, &slhci_confd, actlen);
3384 if (actlen > offsetof(usb_config_descriptor_t,
3385 bMaxPower))
3386 ((usb_config_descriptor_t *)
3387 buf)->bMaxPower = t->max_current;
3388 /* 2 mA units */
3389 error = USBD_NORMAL_COMPLETION;
3390 } else if (value == (UDESC_STRING<<8)) {
3391 /* language table XXX */
3392 } else if (value == ((UDESC_STRING<<8)|1)) {
3393 /* Vendor */
3394 actlen = usb_makestrdesc((usb_string_descriptor_t *)
3395 buf, len, "ScanLogic/Cypress");
3396 error = USBD_NORMAL_COMPLETION;
3397 } else if (value == ((UDESC_STRING<<8)|2)) {
3398 /* Product */
3399 actlen = usb_makestrdesc((usb_string_descriptor_t *)
3400 buf, len, "SL811HS/T root hub");
3401 error = USBD_NORMAL_COMPLETION;
3402 } else
3403 DDOLOG("Unknown Get Descriptor %#.4x",
3404 value, 0,0,0);
3405 } else if (type == UT_READ_CLASS_DEVICE) {
3406 /* Descriptor number is 0 */
3407 if (value == (UDESC_HUB<<8)) {
3408 actlen = min(len, sizeof(slhci_hubd));
3409 memcpy(buf, &slhci_hubd, actlen);
3410 if (actlen > offsetof(usb_config_descriptor_t,
3411 bMaxPower))
3412 ((usb_hub_descriptor_t *)
3413 buf)->bHubContrCurrent = 500 -
3414 t->max_current;
3415 error = USBD_NORMAL_COMPLETION;
3416 } else
3417 DDOLOG("Unknown Get Hub Descriptor %#.4x",
3418 value, 0,0,0);
3419 }
3420 break;
3421 }
3422
3423 if (error == USBD_NORMAL_COMPLETION)
3424 xfer->actlen = actlen;
3425 xfer->status = error;
3426 KASSERT(spipe->xfer == NULL);
3427 spipe->xfer = xfer;
3428 enter_callback(t, spipe);
3429
3430 return USBD_IN_PROGRESS;
3431 }
3432
3433 /* End in lock functions. Start debug functions. */
3434
3435 #ifdef SLHCI_DEBUG
3436 void
3437 slhci_log_buffer(struct usbd_xfer *xfer)
3438 {
3439 u_char *buf;
3440
3441 if(xfer->length > 0 &&
3442 UE_GET_DIR(xfer->pipe->endpoint->edesc->bEndpointAddress) ==
3443 UE_DIR_IN) {
3444 buf = KERNADDR(&xfer->dmabuf, 0);
3445 DDOLOGBUF(buf, xfer->actlen);
3446 DDOLOG("len %d actlen %d short %d", xfer->length,
3447 xfer->actlen, xfer->length - xfer->actlen, 0);
3448 }
3449 }
3450
3451 void
3452 slhci_log_req(usb_device_request_t *r)
3453 {
3454 static const char *xmes[]={
3455 "GETSTAT",
3456 "CLRFEAT",
3457 "res",
3458 "SETFEAT",
3459 "res",
3460 "SETADDR",
3461 "GETDESC",
3462 "SETDESC",
3463 "GETCONF",
3464 "SETCONF",
3465 "GETIN/F",
3466 "SETIN/F",
3467 "SYNC_FR",
3468 "UNKNOWN"
3469 };
3470 int req, mreq, type, value, index, len;
3471
3472 req = r->bRequest;
3473 mreq = (req > 13) ? 13 : req;
3474 type = r->bmRequestType;
3475 value = UGETW(r->wValue);
3476 index = UGETW(r->wIndex);
3477 len = UGETW(r->wLength);
3478
3479 DDOLOG("request: %s %#x", xmes[mreq], type, 0,0);
3480 DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len);
3481 }
3482
3483 void
3484 slhci_log_req_hub(usb_device_request_t *r)
3485 {
3486 static const struct {
3487 int req;
3488 int type;
3489 const char *str;
3490 } conf[] = {
3491 { 1, 0x20, "ClrHubFeat" },
3492 { 1, 0x23, "ClrPortFeat" },
3493 { 2, 0xa3, "GetBusState" },
3494 { 6, 0xa0, "GetHubDesc" },
3495 { 0, 0xa0, "GetHubStat" },
3496 { 0, 0xa3, "GetPortStat" },
3497 { 7, 0x20, "SetHubDesc" },
3498 { 3, 0x20, "SetHubFeat" },
3499 { 3, 0x23, "SetPortFeat" },
3500 {-1, 0, NULL},
3501 };
3502 int i;
3503 int value, index, len;
3504 const char *str;
3505
3506 value = UGETW(r->wValue);
3507 index = UGETW(r->wIndex);
3508 len = UGETW(r->wLength);
3509 for (i = 0; ; i++) {
3510 if (conf[i].req == -1 ) {
3511 slhci_log_req(r);
3512 return;
3513 }
3514 if (r->bmRequestType == conf[i].type && r->bRequest == conf[i].req) {
3515 str = conf[i].str;
3516 break;
3517 }
3518 }
3519 DDOLOG("hub request: %s v=%d,i=%d,l=%d ", str, value, index, len);
3520 }
3521
3522 void
3523 slhci_log_dumpreg(void)
3524 {
3525 uint8_t r;
3526 unsigned int aaddr, alen, baddr, blen;
3527 static u_char buf[240];
3528
3529 r = slhci_read(ssc, SL11_E0CTRL);
3530 DDOLOG("USB A Host Control = %#.2x", r, 0,0,0);
3531 DDOLOGFLAG8("E0CTRL=", r, "Preamble", "Data Toggle", "SOF Sync",
3532 "ISOC", "res", "Out", "Enable", "Arm");
3533 aaddr = slhci_read(ssc, SL11_E0ADDR);
3534 DDOLOG("USB A Base Address = %u", aaddr, 0,0,0);
3535 alen = slhci_read(ssc, SL11_E0LEN);
3536 DDOLOG("USB A Length = %u", alen, 0,0,0);
3537 r = slhci_read(ssc, SL11_E0STAT);
3538 DDOLOG("USB A Status = %#.2x", r, 0,0,0);
3539 DDOLOGFLAG8("E0STAT=", r, "STALL", "NAK", "Overflow", "Setup",
3540 "Data Toggle", "Timeout", "Error", "ACK");
3541 r = slhci_read(ssc, SL11_E0CONT);
3542 DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0);
3543 r = slhci_read(ssc, SL11_E1CTRL);
3544 DDOLOG("USB B Host Control = %#.2x", r, 0,0,0);
3545 DDOLOGFLAG8("E1CTRL=", r, "Preamble", "Data Toggle", "SOF Sync",
3546 "ISOC", "res", "Out", "Enable", "Arm");
3547 baddr = slhci_read(ssc, SL11_E1ADDR);
3548 DDOLOG("USB B Base Address = %u", baddr, 0,0,0);
3549 blen = slhci_read(ssc, SL11_E1LEN);
3550 DDOLOG("USB B Length = %u", blen, 0,0,0);
3551 r = slhci_read(ssc, SL11_E1STAT);
3552 DDOLOG("USB B Status = %#.2x", r, 0,0,0);
3553 DDOLOGFLAG8("E1STAT=", r, "STALL", "NAK", "Overflow", "Setup",
3554 "Data Toggle", "Timeout", "Error", "ACK");
3555 r = slhci_read(ssc, SL11_E1CONT);
3556 DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0);
3557
3558 r = slhci_read(ssc, SL11_CTRL);
3559 DDOLOG("Control = %#.2x", r, 0,0,0);
3560 DDOLOGFLAG8("CTRL=", r, "res", "Suspend", "LOW Speed",
3561 "J-K State Force", "Reset", "res", "res", "SOF");
3562 r = slhci_read(ssc, SL11_IER);
3563 DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0);
3564 DDOLOGFLAG8("IER=", r, "D+ **IER!**", "Device Detect/Resume",
3565 "Insert/Remove", "SOF", "res", "res", "USBB", "USBA");
3566 r = slhci_read(ssc, SL11_ISR);
3567 DDOLOG("Interrupt Status = %#.2x", r, 0,0,0);
3568 DDOLOGFLAG8("ISR=", r, "D+", "Device Detect/Resume",
3569 "Insert/Remove", "SOF", "res", "res", "USBB", "USBA");
3570 r = slhci_read(ssc, SL11_REV);
3571 DDOLOG("Revision = %#.2x", r, 0,0,0);
3572 r = slhci_read(ssc, SL811_CSOF);
3573 DDOLOG("SOF Counter = %#.2x", r, 0,0,0);
3574
3575 if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END &&
3576 alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) {
3577 slhci_read_multi(ssc, aaddr, buf, alen);
3578 DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0);
3579 DDOLOGBUF(buf, alen);
3580 } else if (alen)
3581 DDOLOG("USBA Buffer Invalid", 0,0,0,0);
3582
3583 if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END &&
3584 blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) {
3585 slhci_read_multi(ssc, baddr, buf, blen);
3586 DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0);
3587 DDOLOGBUF(buf, blen);
3588 } else if (blen)
3589 DDOLOG("USBB Buffer Invalid", 0,0,0,0);
3590 }
3591
3592 void
3593 slhci_log_xfer(struct usbd_xfer *xfer)
3594 {
3595 DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,",
3596 xfer->length, xfer->actlen, xfer->flags, xfer->timeout);
3597 if (xfer->dmabuf.block)
3598 DDOLOG("buffer=%p", KERNADDR(&xfer->dmabuf, 0), 0,0,0);
3599 slhci_log_req_hub(&xfer->request);
3600 }
3601
3602 void
3603 slhci_log_spipe(struct slhci_pipe *spipe)
3604 {
3605 DDOLOG("spipe %p onlists: %s %s %s", spipe, gcq_onlist(&spipe->ap) ?
3606 "AP" : "", gcq_onlist(&spipe->to) ? "TO" : "",
3607 gcq_onlist(&spipe->xq) ? "XQ" : "");
3608 DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %s",
3609 spipe->xfer, spipe->buffer, spipe->pflags, pnames(spipe->ptype));
3610 }
3611
3612 void
3613 slhci_print_intr(void)
3614 {
3615 unsigned int ier, isr;
3616 ier = slhci_read(ssc, SL11_IER);
3617 isr = slhci_read(ssc, SL11_ISR);
3618 printf("IER: %#x ISR: %#x \n", ier, isr);
3619 }
3620
3621 #if 0
3622 void
3623 slhci_log_sc(void)
3624 {
3625 struct slhci_transfers *t;
3626 int i;
3627
3628 t = &ssc->sc_transfers;
3629
3630 DDOLOG("Flags=%#x", t->flags, 0,0,0);
3631 DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0],
3632 t->spipe[1], t->len[1]);
3633
3634 for (i=0; i<=Q_MAX; i++)
3635 DDOLOG("Q %d: %p", i, gcq_first(&t->q[i]), 0,0);
3636
3637 DDOLOG("TIMED: %p", GCQ_ITEM(gcq_first(&t->to),
3638 struct slhci_pipe, to), 0,0,0);
3639
3640 DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0);
3641
3642 DDOLOG("use_polling=%d", ssc->sc_bus.use_polling, 0, 0, 0);
3643 }
3644
3645 void
3646 slhci_log_slreq(struct slhci_pipe *r)
3647 {
3648 DDOLOG("next: %p", r->q.next.sqe_next, 0,0,0);
3649 DDOLOG("xfer: %p", r->xfer, 0,0,0);
3650 DDOLOG("buffer: %p", r->buffer, 0,0,0);
3651 DDOLOG("bustime: %u", r->bustime, 0,0,0);
3652 DDOLOG("control: %#x", r->control, 0,0,0);
3653 DDOLOGFLAG8("control=", r->control, "Preamble", "Data Toggle",
3654 "SOF Sync", "ISOC", "res", "Out", "Enable", "Arm");
3655 DDOLOG("pid: %#x", r->tregs[PID], 0,0,0);
3656 DDOLOG("dev: %u", r->tregs[DEV], 0,0,0);
3657 DDOLOG("len: %u", r->tregs[LEN], 0,0,0);
3658
3659 if (r->xfer)
3660 slhci_log_xfer(r->xfer);
3661 }
3662 #endif
3663 #endif /* SLHCI_DEBUG */
3664 /* End debug functions. */
3665