sl811hs.c revision 1.76 1 /* $NetBSD: sl811hs.c,v 1.76 2016/05/17 03:20:58 martin Exp $ */
2
3 /*
4 * Not (c) 2007 Matthew Orgass
5 * This file is public domain, meaning anyone can make any use of part or all
6 * of this file including copying into other works without credit. Any use,
7 * modified or not, is solely the responsibility of the user. If this file is
8 * part of a collection then use in the collection is governed by the terms of
9 * the collection.
10 */
11
12 /*
13 * Cypress/ScanLogic SL811HS/T USB Host Controller
14 * Datasheet, Errata, and App Note available at www.cypress.com
15 *
16 * Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid X68k USB HC, ISA
17 * HCs. The Ratoc CFU2 uses a different chip.
18 *
19 * This chip puts the serial in USB. It implements USB by means of an eight
20 * bit I/O interface. It can be used for ISA, PCMCIA/CF, parallel port,
21 * serial port, or any eight bit interface. It has 256 bytes of memory, the
22 * first 16 of which are used for register access. There are two sets of
23 * registers for sending individual bus transactions. Because USB is polled,
24 * this organization means that some amount of card access must often be made
25 * when devices are attached, even if when they are not directly being used.
26 * A per-ms frame interrupt is necessary and many devices will poll with a
27 * per-frame bulk transfer.
28 *
29 * It is possible to write a little over two bytes to the chip (auto
30 * incremented) per full speed byte time on the USB. Unfortunately,
31 * auto-increment does not work reliably so write and bus speed is
32 * approximately the same for full speed devices.
33 *
34 * In addition to the 240 byte packet size limit for isochronous transfers,
35 * this chip has no means of determining the current frame number other than
36 * getting all 1ms SOF interrupts, which is not always possible even on a fast
37 * system. Isochronous transfers guarantee that transfers will never be
38 * retried in a later frame, so this can cause problems with devices beyond
39 * the difficulty in actually performing the transfer most frames. I tried
40 * implementing isoc transfers and was able to play CD-derrived audio via an
41 * iMic on a 2GHz PC, however it would still be interrupted at times and
42 * once interrupted, would stay out of sync. All isoc support has been
43 * removed.
44 *
45 * BUGS: all chip revisions have problems with low speed devices through hubs.
46 * The chip stops generating SOF with hubs that send SE0 during SOF. See
47 * comment in dointr(). All performance enhancing features of this chip seem
48 * not to work properly, most confirmed buggy in errata doc.
49 *
50 */
51
52 /*
53 * The hard interrupt is the main entry point. Start, callbacks, and repeat
54 * are the only others called frequently.
55 *
56 * Since this driver attaches to pcmcia, card removal at any point should be
57 * expected and not cause panics or infinite loops.
58 */
59
60 /*
61 * XXX TODO:
62 * copy next output packet while transfering
63 * usb suspend
64 * could keep track of known values of all buffer space?
65 * combined print/log function for errors
66 *
67 * ub_usepolling support is untested and may not work
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.76 2016/05/17 03:20:58 martin Exp $");
72
73 #include "opt_slhci.h"
74
75 #ifdef _KERNEL_OPT
76 #include "opt_usb.h"
77 #endif
78
79 #include <sys/param.h>
80
81 #include <sys/bus.h>
82 #include <sys/cpu.h>
83 #include <sys/device.h>
84 #include <sys/gcq.h>
85 #include <sys/intr.h>
86 #include <sys/kernel.h>
87 #include <sys/kmem.h>
88 #include <sys/proc.h>
89 #include <sys/queue.h>
90 #include <sys/sysctl.h>
91 #include <sys/systm.h>
92
93 #include <dev/usb/usb.h>
94 #include <dev/usb/usbdi.h>
95 #include <dev/usb/usbdivar.h>
96 #include <dev/usb/usbhist.h>
97 #include <dev/usb/usb_mem.h>
98 #include <dev/usb/usbdevs.h>
99 #include <dev/usb/usbroothub.h>
100
101 #include <dev/ic/sl811hsreg.h>
102 #include <dev/ic/sl811hsvar.h>
103
104 #define Q_CB 0 /* Control/Bulk */
105 #define Q_NEXT_CB 1
106 #define Q_MAX_XFER Q_CB
107 #define Q_CALLBACKS 2
108 #define Q_MAX Q_CALLBACKS
109
110 #define F_AREADY (0x00000001)
111 #define F_BREADY (0x00000002)
112 #define F_AINPROG (0x00000004)
113 #define F_BINPROG (0x00000008)
114 #define F_LOWSPEED (0x00000010)
115 #define F_UDISABLED (0x00000020) /* Consider disabled for USB */
116 #define F_NODEV (0x00000040)
117 #define F_ROOTINTR (0x00000080)
118 #define F_REALPOWER (0x00000100) /* Actual power state */
119 #define F_POWER (0x00000200) /* USB reported power state */
120 #define F_ACTIVE (0x00000400)
121 #define F_CALLBACK (0x00000800) /* Callback scheduled */
122 #define F_SOFCHECK1 (0x00001000)
123 #define F_SOFCHECK2 (0x00002000)
124 #define F_CRESET (0x00004000) /* Reset done not reported */
125 #define F_CCONNECT (0x00008000) /* Connect change not reported */
126 #define F_RESET (0x00010000)
127 #define F_ISOC_WARNED (0x00020000)
128 #define F_LSVH_WARNED (0x00040000)
129
130 #define F_DISABLED (F_NODEV|F_UDISABLED)
131 #define F_CHANGE (F_CRESET|F_CCONNECT)
132
133 #ifdef SLHCI_TRY_LSVH
134 unsigned int slhci_try_lsvh = 1;
135 #else
136 unsigned int slhci_try_lsvh = 0;
137 #endif
138
139 #define ADR 0
140 #define LEN 1
141 #define PID 2
142 #define DEV 3
143 #define STAT 2
144 #define CONT 3
145
146 #define A 0
147 #define B 1
148
149 static const uint8_t slhci_tregs[2][4] =
150 {{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV },
151 {SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }};
152
153 #define PT_ROOT_CTRL 0
154 #define PT_ROOT_INTR 1
155 #define PT_CTRL_SETUP 2
156 #define PT_CTRL_DATA 3
157 #define PT_CTRL_STATUS 4
158 #define PT_INTR 5
159 #define PT_BULK 6
160 #define PT_MAX 6
161
162 #ifdef SLHCI_DEBUG
163 #define SLHCI_MEM_ACCOUNTING
164 static const char *
165 pnames(int ptype)
166 {
167 static const char * const names[] = { "ROOT Ctrl", "ROOT Intr",
168 "Control (setup)", "Control (data)", "Control (status)",
169 "Interrupt", "Bulk", "BAD PTYPE" };
170
171 KASSERT(sizeof(names) / sizeof(names[0]) == PT_MAX + 2);
172 if (ptype > PT_MAX)
173 ptype = PT_MAX + 1;
174 return names[ptype];
175 }
176 #endif
177
178 /*
179 * Maximum allowable reserved bus time. Since intr/isoc transfers have
180 * unconditional priority, this is all that ensures control and bulk transfers
181 * get a chance. It is a single value for all frames since all transfers can
182 * use multiple consecutive frames if an error is encountered. Note that it
183 * is not really possible to fill the bus with transfers, so this value should
184 * be on the low side. Defaults to giving a warning unless SLHCI_NO_OVERTIME
185 * is defined. Full time is 12000 - END_BUSTIME.
186 */
187 #ifndef SLHCI_RESERVED_BUSTIME
188 #define SLHCI_RESERVED_BUSTIME 5000
189 #endif
190
191 /*
192 * Rate for "exceeds reserved bus time" warnings (default) or errors.
193 * Warnings only happen when an endpoint open causes the time to go above
194 * SLHCI_RESERVED_BUSTIME, not if it is already above.
195 */
196 #ifndef SLHCI_OVERTIME_WARNING_RATE
197 #define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */
198 #endif
199 static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE;
200
201 /* Rate for overflow warnings */
202 #ifndef SLHCI_OVERFLOW_WARNING_RATE
203 #define SLHCI_OVERFLOW_WARNING_RATE { 60, 0 } /* 60 seconds */
204 #endif
205 static const struct timeval overflow_warn_rate = SLHCI_OVERFLOW_WARNING_RATE;
206
207 /*
208 * For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of
209 * 20 bit times. By default leave 66 bit times to start the transfer beyond
210 * the required time. Units are full-speed bit times (a bit over 5us per 64).
211 * Only multiples of 64 are significant.
212 */
213 #define SLHCI_STANDARD_END_BUSTIME 128
214 #ifndef SLHCI_EXTRA_END_BUSTIME
215 #define SLHCI_EXTRA_END_BUSTIME 0
216 #endif
217
218 #define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME)
219
220 /*
221 * This is an approximation of the USB worst-case timings presented on p. 54 of
222 * the USB 1.1 spec translated to full speed bit times.
223 * FS = full speed with handshake, FSII = isoc in, FSIO = isoc out,
224 * FSI = isoc (worst case), LS = low speed
225 */
226 #define SLHCI_FS_CONST 114
227 #define SLHCI_FSII_CONST 92
228 #define SLHCI_FSIO_CONST 80
229 #define SLHCI_FSI_CONST 92
230 #define SLHCI_LS_CONST 804
231 #ifndef SLHCI_PRECICE_BUSTIME
232 /*
233 * These values are < 3% too high (compared to the multiply and divide) for
234 * max sized packets.
235 */
236 #define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1))
237 #define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4))
238 #else
239 #define SLHCI_FS_DATA_TIME(len) (56*(len)/6)
240 #define SLHCI_LS_DATA_TIME(len) (449*(len)/6)
241 #endif
242
243 /*
244 * Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer
245 * to poll for after starting a transfer. 64 gets all full speed transfers.
246 * Note that even if 0 polling will occur if data equal or greater than the
247 * transfer size is copied to the chip while the transfer is in progress.
248 * Setting SLHCI_WAIT_TIME to -12000 will disable polling.
249 */
250 #ifndef SLHCI_WAIT_SIZE
251 #define SLHCI_WAIT_SIZE 8
252 #endif
253 #ifndef SLHCI_WAIT_TIME
254 #define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \
255 SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE))
256 #endif
257 const int slhci_wait_time = SLHCI_WAIT_TIME;
258
259 #ifndef SLHCI_MAX_RETRIES
260 #define SLHCI_MAX_RETRIES 3
261 #endif
262
263 /* Check IER values for corruption after this many unrecognized interrupts. */
264 #ifndef SLHCI_IER_CHECK_FREQUENCY
265 #ifdef SLHCI_DEBUG
266 #define SLHCI_IER_CHECK_FREQUENCY 1
267 #else
268 #define SLHCI_IER_CHECK_FREQUENCY 100
269 #endif
270 #endif
271
272 /* Note that buffer points to the start of the buffer for this transfer. */
273 struct slhci_pipe {
274 struct usbd_pipe pipe;
275 struct usbd_xfer *xfer; /* xfer in progress */
276 uint8_t *buffer; /* I/O buffer (if needed) */
277 struct gcq ap; /* All pipes */
278 struct gcq to; /* Timeout list */
279 struct gcq xq; /* Xfer queues */
280 unsigned int pflags; /* Pipe flags */
281 #define PF_GONE (0x01) /* Pipe is on disabled device */
282 #define PF_TOGGLE (0x02) /* Data toggle status */
283 #define PF_LS (0x04) /* Pipe is low speed */
284 #define PF_PREAMBLE (0x08) /* Needs preamble */
285 Frame to_frame; /* Frame number for timeout */
286 Frame frame; /* Frame number for intr xfer */
287 Frame lastframe; /* Previous frame number for intr */
288 uint16_t bustime; /* Worst case bus time usage */
289 uint16_t newbustime[2]; /* new bustimes (see index below) */
290 uint8_t tregs[4]; /* ADR, LEN, PID, DEV */
291 uint8_t newlen[2]; /* 0 = short data, 1 = ctrl data */
292 uint8_t newpid; /* for ctrl */
293 uint8_t wantshort; /* last xfer must be short */
294 uint8_t control; /* Host control register settings */
295 uint8_t nerrs; /* Current number of errors */
296 uint8_t ptype; /* Pipe type */
297 };
298
299 #define SLHCI_BUS2SC(bus) ((bus)->ub_hcpriv)
300 #define SLHCI_PIPE2SC(pipe) SLHCI_BUS2SC((pipe)->up_dev->ud_bus)
301 #define SLHCI_XFER2SC(xfer) SLHCI_BUS2SC((xfer)->ux_bus)
302
303 #define SLHCI_PIPE2SPIPE(pipe) ((struct slhci_pipe *)(pipe))
304 #define SLHCI_XFER2SPIPE(xfer) SLHCI_PIPE2SPIPE((xfer)->ux_pipe)
305
306 #define SLHCI_XFER_TYPE(x) (SLHCI_XFER2SPIPE(xfer)->ptype)
307
308 #ifdef SLHCI_PROFILE_TRANSFER
309 #if defined(__mips__)
310 /*
311 * MIPS cycle counter does not directly count cpu cycles but is a different
312 * fraction of cpu cycles depending on the cpu.
313 */
314 typedef uint32_t cc_type;
315 #define CC_TYPE_FMT "%u"
316 #define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \
317 : [cc] "=r"(x))
318 #elif defined(__i386__)
319 typedef uint64_t cc_type;
320 #define CC_TYPE_FMT "%llu"
321 #define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x))
322 #else
323 #error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)"
324 #endif
325 struct slhci_cc_time {
326 cc_type start;
327 cc_type stop;
328 unsigned int miscdata;
329 };
330 #ifndef SLHCI_N_TIMES
331 #define SLHCI_N_TIMES 200
332 #endif
333 struct slhci_cc_times {
334 struct slhci_cc_time times[SLHCI_N_TIMES];
335 int current;
336 int wraparound;
337 };
338
339 static struct slhci_cc_times t_ab[2];
340 static struct slhci_cc_times t_abdone;
341 static struct slhci_cc_times t_copy_to_dev;
342 static struct slhci_cc_times t_copy_from_dev;
343 static struct slhci_cc_times t_intr;
344 static struct slhci_cc_times t_lock;
345 static struct slhci_cc_times t_delay;
346 static struct slhci_cc_times t_hard_int;
347 static struct slhci_cc_times t_callback;
348
349 static inline void
350 start_cc_time(struct slhci_cc_times *times, unsigned int misc) {
351 times->times[times->current].miscdata = misc;
352 slhci_cc_set(times->times[times->current].start);
353 }
354 static inline void
355 stop_cc_time(struct slhci_cc_times *times) {
356 slhci_cc_set(times->times[times->current].stop);
357 if (++times->current >= SLHCI_N_TIMES) {
358 times->current = 0;
359 times->wraparound = 1;
360 }
361 }
362
363 void slhci_dump_cc_times(int);
364
365 void
366 slhci_dump_cc_times(int n) {
367 struct slhci_cc_times *times;
368 int i;
369
370 switch (n) {
371 default:
372 case 0:
373 printf("USBA start transfer to intr:\n");
374 times = &t_ab[A];
375 break;
376 case 1:
377 printf("USBB start transfer to intr:\n");
378 times = &t_ab[B];
379 break;
380 case 2:
381 printf("abdone:\n");
382 times = &t_abdone;
383 break;
384 case 3:
385 printf("copy to device:\n");
386 times = &t_copy_to_dev;
387 break;
388 case 4:
389 printf("copy from device:\n");
390 times = &t_copy_from_dev;
391 break;
392 case 5:
393 printf("intr to intr:\n");
394 times = &t_intr;
395 break;
396 case 6:
397 printf("lock to release:\n");
398 times = &t_lock;
399 break;
400 case 7:
401 printf("delay time:\n");
402 times = &t_delay;
403 break;
404 case 8:
405 printf("hard interrupt enter to exit:\n");
406 times = &t_hard_int;
407 break;
408 case 9:
409 printf("callback:\n");
410 times = &t_callback;
411 break;
412 }
413
414 if (times->wraparound)
415 for (i = times->current + 1; i < SLHCI_N_TIMES; i++)
416 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
417 " difference %8i miscdata %#x\n",
418 times->times[i].start, times->times[i].stop,
419 (int)(times->times[i].stop -
420 times->times[i].start), times->times[i].miscdata);
421
422 for (i = 0; i < times->current; i++)
423 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
424 " difference %8i miscdata %#x\n", times->times[i].start,
425 times->times[i].stop, (int)(times->times[i].stop -
426 times->times[i].start), times->times[i].miscdata);
427 }
428 #else
429 #define start_cc_time(x, y)
430 #define stop_cc_time(x)
431 #endif /* SLHCI_PROFILE_TRANSFER */
432
433 typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe
434 *, struct usbd_xfer *);
435
436 struct usbd_xfer * slhci_allocx(struct usbd_bus *, unsigned int);
437 void slhci_freex(struct usbd_bus *, struct usbd_xfer *);
438 static void slhci_get_lock(struct usbd_bus *, kmutex_t **);
439
440 usbd_status slhci_transfer(struct usbd_xfer *);
441 usbd_status slhci_start(struct usbd_xfer *);
442 usbd_status slhci_root_start(struct usbd_xfer *);
443 usbd_status slhci_open(struct usbd_pipe *);
444
445 static int slhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
446 void *, int);
447
448 /*
449 * slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach,
450 * slhci_activate
451 */
452
453 void slhci_abort(struct usbd_xfer *);
454 void slhci_close(struct usbd_pipe *);
455 void slhci_clear_toggle(struct usbd_pipe *);
456 void slhci_poll(struct usbd_bus *);
457 void slhci_done(struct usbd_xfer *);
458 void slhci_void(void *);
459
460 /* lock entry functions */
461
462 #ifdef SLHCI_MEM_ACCOUNTING
463 void slhci_mem_use(struct usbd_bus *, int);
464 #endif
465
466 void slhci_reset_entry(void *);
467 usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc,
468 struct slhci_pipe *, struct usbd_xfer *);
469 void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *);
470 void slhci_callback_entry(void *arg);
471 void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *);
472
473 /* slhci_intr */
474
475 void slhci_main(struct slhci_softc *);
476
477 /* in lock functions */
478
479 static void slhci_write(struct slhci_softc *, uint8_t, uint8_t);
480 static uint8_t slhci_read(struct slhci_softc *, uint8_t);
481 static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
482 static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
483
484 static void slhci_waitintr(struct slhci_softc *, int);
485 static int slhci_dointr(struct slhci_softc *);
486 static void slhci_abdone(struct slhci_softc *, int);
487 static void slhci_tstart(struct slhci_softc *);
488 static void slhci_dotransfer(struct slhci_softc *);
489
490 static void slhci_callback(struct slhci_softc *);
491 static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *);
492 static void slhci_enter_xfers(struct slhci_softc *);
493 static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *);
494 static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *);
495
496 static void slhci_callback_schedule(struct slhci_softc *);
497 static void slhci_do_callback_schedule(struct slhci_softc *);
498 #if 0
499 void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *); /* XXX */
500 #endif
501
502 static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *,
503 struct usbd_xfer *);
504 static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *,
505 struct usbd_xfer *);
506 static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *,
507 struct usbd_xfer *);
508 static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *,
509 struct usbd_xfer *);
510 static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *,
511 struct usbd_xfer *);
512 static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *,
513 struct usbd_xfer *);
514 static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *,
515 struct usbd_xfer *);
516
517 static void slhci_intrchange(struct slhci_softc *, uint8_t);
518 static void slhci_drain(struct slhci_softc *);
519 static void slhci_reset(struct slhci_softc *);
520 static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *,
521 int);
522 static void slhci_insert(struct slhci_softc *);
523
524 static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int);
525 static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int);
526 static void slhci_get_status(struct slhci_softc *, usb_port_status_t *);
527
528 #define SLHCIHIST_FUNC() USBHIST_FUNC()
529 #define SLHCIHIST_CALLED() USBHIST_CALLED(slhcidebug)
530
531 #ifdef SLHCI_DEBUG
532 void slhci_log_buffer(struct usbd_xfer *);
533 void slhci_log_req(usb_device_request_t *);
534 void slhci_log_req_hub(usb_device_request_t *);
535 void slhci_log_dumpreg(void);
536 void slhci_log_xfer(struct usbd_xfer *);
537 void slhci_log_spipe(struct slhci_pipe *);
538 void slhci_print_intr(void);
539 void slhci_log_sc(void);
540 void slhci_log_slreq(struct slhci_pipe *);
541
542 /* Constified so you can read the values from ddb */
543 const int SLHCI_D_TRACE = 0x0001;
544 const int SLHCI_D_MSG = 0x0002;
545 const int SLHCI_D_XFER = 0x0004;
546 const int SLHCI_D_MEM = 0x0008;
547 const int SLHCI_D_INTR = 0x0010;
548 const int SLHCI_D_SXFER = 0x0020;
549 const int SLHCI_D_ERR = 0x0080;
550 const int SLHCI_D_BUF = 0x0100;
551 const int SLHCI_D_SOFT = 0x0200;
552 const int SLHCI_D_WAIT = 0x0400;
553 const int SLHCI_D_ROOT = 0x0800;
554 /* SOF/NAK alone normally ignored, SOF also needs D_INTR */
555 const int SLHCI_D_SOF = 0x1000;
556 const int SLHCI_D_NAK = 0x2000;
557
558 int slhcidebug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */
559
560 SYSCTL_SETUP(sysctl_hw_slhci_setup, "sysctl hw.slhci setup")
561 {
562 int err;
563 const struct sysctlnode *rnode;
564 const struct sysctlnode *cnode;
565
566 err = sysctl_createv(clog, 0, NULL, &rnode,
567 CTLFLAG_PERMANENT, CTLTYPE_NODE, "slhci",
568 SYSCTL_DESCR("slhci global controls"),
569 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
570
571 if (err)
572 goto fail;
573
574 /* control debugging printfs */
575 err = sysctl_createv(clog, 0, &rnode, &cnode,
576 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
577 "debug", SYSCTL_DESCR("Enable debugging output"),
578 NULL, 0, &slhcidebug, sizeof(slhcidebug), CTL_CREATE, CTL_EOL);
579 if (err)
580 goto fail;
581
582 return;
583 fail:
584 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
585 }
586
587 struct slhci_softc *ssc;
588
589 #define SLHCI_DEXEC(x, y) do { if ((slhcidebug & SLHCI_ ## x)) { y; } \
590 } while (/*CONSTCOND*/ 0)
591 #define DDOLOG(f, a, b, c, d) do { KERNHIST_LOG(usbhist, f, a, b, c, d); \
592 } while (/*CONSTCOND*/0)
593 #define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d))
594 /*
595 * DLOGFLAG8 is a macro not a function so that flag name expressions are not
596 * evaluated unless the flag bit is set (which could save a register read).
597 * x is debug mask, y is flag identifier, z is flag variable,
598 * a-h are flag names (must evaluate to string constants, msb first).
599 */
600 #define DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h) do { uint8_t _DLF8 = (z); \
601 if (_DLF8 & 0xf0) KERNHIST_LOG(usbhist, y " %s %s %s %s", _DLF8 & 0x80 ? \
602 (a) : "", _DLF8 & 0x40 ? (b) : "", _DLF8 & 0x20 ? (c) : "", _DLF8 & 0x10 ? \
603 (d) : ""); if (_DLF8 & 0x0f) KERNHIST_LOG(usbhist, y " %s %s %s %s", \
604 _DLF8 & 0x08 ? (e) : "", _DLF8 & 0x04 ? (f) : "", _DLF8 & 0x02 ? (g) : "", \
605 _DLF8 & 0x01 ? (h) : ""); \
606 } while (/*CONSTCOND*/ 0)
607 #define DLOGFLAG8(x, y, z, a, b, c, d, e, f, g, h) \
608 SLHCI_DEXEC(x, DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h))
609 /*
610 * DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we
611 * can make it a real function.
612 */
613 static void
614 DDOLOGBUF(uint8_t *buf, unsigned int length)
615 {
616 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
617 int i;
618
619 for(i=0; i+8 <= length; i+=8)
620 DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
621 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
622 (buf[i+6] << 8) | buf[i+7]);
623 if (length == i+7)
624 DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
625 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
626 buf[i+6]);
627 else if (length == i+6)
628 DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
629 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0);
630 else if (length == i+5)
631 DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
632 (buf[i+2] << 8) | buf[i+3], buf[i+4], 0);
633 else if (length == i+4)
634 DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1],
635 (buf[i+2] << 8) | buf[i+3], 0,0);
636 else if (length == i+3)
637 DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0);
638 else if (length == i+2)
639 DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0);
640 else if (length == i+1)
641 DDOLOG("%.2x", buf[i], 0,0,0);
642 }
643 #define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l))
644 #else /* now !SLHCI_DEBUG */
645 #define slhcidebug 0
646 #define slhci_log_spipe(spipe) ((void)0)
647 #define slhci_log_xfer(xfer) ((void)0)
648 #define SLHCI_DEXEC(x, y) ((void)0)
649 #define DDOLOG(f, a, b, c, d) ((void)0)
650 #define DLOG(x, f, a, b, c, d) ((void)0)
651 #define DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h) ((void)0)
652 #define DLOGFLAG8(x, y, z, a, b, c, d, e, f, g, h) ((void)0)
653 #define DDOLOGBUF(b, l) ((void)0)
654 #define DLOGBUF(x, b, l) ((void)0)
655 #endif /* SLHCI_DEBUG */
656
657 #ifdef DIAGNOSTIC
658 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) do { \
659 if (!(exp)) { \
660 printf("%s: assertion %s failed line %u function %s!" \
661 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
662 DDOLOG("%s: assertion %s failed line %u function %s!" \
663 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
664 slhci_halt(sc, spipe, xfer); \
665 ext; \
666 } \
667 } while (/*CONSTCOND*/0)
668 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) do { \
669 if (!(exp)) { \
670 printf("%s: assertion %s failed line %u function %s!" \
671 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \
672 DDOLOG("%s: assertion %s failed line %u function %s!" \
673 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \
674 slhci_lock_call(sc, &slhci_halt, spipe, xfer); \
675 ext; \
676 } \
677 } while (/*CONSTCOND*/0)
678 #else
679 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
680 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
681 #endif
682
683 const struct usbd_bus_methods slhci_bus_methods = {
684 .ubm_open = slhci_open,
685 .ubm_softint= slhci_void,
686 .ubm_dopoll = slhci_poll,
687 .ubm_allocx = slhci_allocx,
688 .ubm_freex = slhci_freex,
689 .ubm_getlock = slhci_get_lock,
690 .ubm_rhctrl = slhci_roothub_ctrl,
691 };
692
693 const struct usbd_pipe_methods slhci_pipe_methods = {
694 .upm_transfer = slhci_transfer,
695 .upm_start = slhci_start,
696 .upm_abort = slhci_abort,
697 .upm_close = slhci_close,
698 .upm_cleartoggle = slhci_clear_toggle,
699 .upm_done = slhci_done,
700 };
701
702 const struct usbd_pipe_methods slhci_root_methods = {
703 .upm_transfer = slhci_transfer,
704 .upm_start = slhci_root_start,
705 .upm_abort = slhci_abort,
706 .upm_close = (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */
707 .upm_cleartoggle = slhci_clear_toggle,
708 .upm_done = slhci_done,
709 };
710
711 /* Queue inlines */
712
713 #define GOT_FIRST_TO(tvar, t) \
714 GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to)
715
716 #define FIND_TO(var, t, tvar, cond) \
717 GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond)
718
719 #define FOREACH_AP(var, t, tvar) \
720 GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap)
721
722 #define GOT_FIRST_TIMED_COND(tvar, t, cond) \
723 GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond)
724
725 #define GOT_FIRST_CB(tvar, t) \
726 GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq)
727
728 #define DEQUEUED_CALLBACK(tvar, t) \
729 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq)
730
731 #define FIND_TIMED(var, t, tvar, cond) \
732 GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond)
733
734 #define DEQUEUED_WAITQ(tvar, sc) \
735 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq)
736
737 static inline void
738 enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe)
739 {
740 gcq_insert_tail(&sc->sc_waitq, &spipe->xq);
741 }
742
743 static inline void
744 enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i)
745 {
746 gcq_insert_tail(&t->q[i], &spipe->xq);
747 }
748
749 static inline void
750 enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe)
751 {
752 gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq);
753 }
754
755 static inline void
756 enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe)
757 {
758 gcq_insert_tail(&t->ap, &spipe->ap);
759 }
760
761 /* Start out of lock functions. */
762
763 struct usbd_xfer *
764 slhci_allocx(struct usbd_bus *bus, unsigned int nframes)
765 {
766 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
767 struct usbd_xfer *xfer;
768
769 xfer = kmem_zalloc(sizeof(*xfer), KM_SLEEP);
770
771 DLOG(D_MEM, "allocx %p", xfer, 0,0,0);
772
773 #ifdef SLHCI_MEM_ACCOUNTING
774 slhci_mem_use(bus, 1);
775 #endif
776 #ifdef DIAGNOSTIC
777 if (xfer != NULL)
778 xfer->ux_state = XFER_BUSY;
779 #endif
780 return xfer;
781 }
782
783 void
784 slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
785 {
786 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
787 DLOG(D_MEM, "freex xfer %p spipe %p", xfer, xfer->ux_pipe,0,0);
788
789 #ifdef SLHCI_MEM_ACCOUNTING
790 slhci_mem_use(bus, -1);
791 #endif
792 #ifdef DIAGNOSTIC
793 if (xfer->ux_state != XFER_BUSY) {
794 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
795 printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
796 SC_NAME(sc), xfer, xfer->ux_state);
797 DDOLOG("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
798 SC_NAME(sc), xfer, xfer->ux_state, 0);
799 slhci_lock_call(sc, &slhci_halt, NULL, NULL);
800 return;
801 }
802 xfer->ux_state = XFER_FREE;
803 #endif
804
805 kmem_free(xfer, sizeof(*xfer));
806 }
807
808 static void
809 slhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
810 {
811 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
812
813 *lock = &sc->sc_lock;
814 }
815
816 usbd_status
817 slhci_transfer(struct usbd_xfer *xfer)
818 {
819 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
820 struct slhci_softc *sc = SLHCI_XFER2SC(xfer);
821 usbd_status error;
822
823 DLOG(D_TRACE, "%s transfer xfer %p spipe %p ",
824 pnames(SLHCI_XFER_TYPE(xfer)), xfer, xfer->ux_pipe,0);
825
826 /* Insert last in queue */
827 mutex_enter(&sc->sc_lock);
828 error = usb_insert_transfer(xfer);
829 mutex_exit(&sc->sc_lock);
830 if (error) {
831 if (error != USBD_IN_PROGRESS)
832 DLOG(D_ERR, "usb_insert_transfer returns %d!", error,
833 0,0,0);
834 return error;
835 }
836
837 /*
838 * Pipe isn't running (otherwise error would be USBD_INPROG),
839 * so start it first.
840 */
841
842 /*
843 * Start will take the lock.
844 */
845 error = xfer->ux_pipe->up_methods->upm_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
846
847 return error;
848 }
849
850 /* It is not safe for start to return anything other than USBD_INPROG. */
851 usbd_status
852 slhci_start(struct usbd_xfer *xfer)
853 {
854 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
855 struct slhci_softc *sc = SLHCI_XFER2SC(xfer);
856 struct usbd_pipe *pipe = xfer->ux_pipe;
857 struct slhci_pipe *spipe = SLHCI_PIPE2SPIPE(pipe);
858 struct slhci_transfers *t = &sc->sc_transfers;
859 usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
860 unsigned int max_packet;
861
862 mutex_enter(&sc->sc_lock);
863
864 max_packet = UGETW(ed->wMaxPacketSize);
865
866 DLOG(D_TRACE, "%s start xfer %p spipe %p length %d",
867 pnames(spipe->ptype), xfer, spipe, xfer->ux_length);
868
869 /* root transfers use slhci_root_start */
870
871 KASSERT(spipe->xfer == NULL); /* not SLASSERT */
872
873 xfer->ux_actlen = 0;
874 xfer->ux_status = USBD_IN_PROGRESS;
875
876 spipe->xfer = xfer;
877
878 spipe->nerrs = 0;
879 spipe->frame = t->frame;
880 spipe->control = SL11_EPCTRL_ARM_ENABLE;
881 spipe->tregs[DEV] = pipe->up_dev->ud_addr;
882 spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress)
883 | (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN :
884 SL11_PID_OUT);
885 spipe->newlen[0] = xfer->ux_length % max_packet;
886 spipe->newlen[1] = min(xfer->ux_length, max_packet);
887
888 if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) {
889 if (spipe->pflags & PF_TOGGLE)
890 spipe->control |= SL11_EPCTRL_DATATOGGLE;
891 spipe->tregs[LEN] = spipe->newlen[1];
892 if (spipe->tregs[LEN])
893 spipe->buffer = xfer->ux_buf;
894 else
895 spipe->buffer = NULL;
896 spipe->lastframe = t->frame;
897 #if defined(DEBUG) || defined(SLHCI_DEBUG)
898 if (__predict_false(spipe->ptype == PT_INTR &&
899 xfer->ux_length > spipe->tregs[LEN])) {
900 printf("%s: Long INTR transfer not supported!\n",
901 SC_NAME(sc));
902 DDOLOG("%s: Long INTR transfer not supported!\n",
903 SC_NAME(sc), 0,0,0);
904 xfer->ux_status = USBD_INVAL;
905 }
906 #endif
907 } else {
908 /* ptype may be currently set to any control transfer type. */
909 SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer));
910
911 /* SETUP contains IN/OUT bits also */
912 spipe->tregs[PID] |= SL11_PID_SETUP;
913 spipe->tregs[LEN] = 8;
914 spipe->buffer = (uint8_t *)&xfer->ux_request;
915 DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]);
916 spipe->ptype = PT_CTRL_SETUP;
917 spipe->newpid &= ~SL11_PID_BITS;
918 if (xfer->ux_length == 0 || (xfer->ux_request.bmRequestType &
919 UT_READ))
920 spipe->newpid |= SL11_PID_IN;
921 else
922 spipe->newpid |= SL11_PID_OUT;
923 }
924
925 if (xfer->ux_flags & USBD_FORCE_SHORT_XFER && spipe->tregs[LEN] ==
926 max_packet && (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT)
927 spipe->wantshort = 1;
928 else
929 spipe->wantshort = 0;
930
931 /*
932 * The goal of newbustime and newlen is to avoid bustime calculation
933 * in the interrupt. The calculations are not too complex, but they
934 * complicate the conditional logic somewhat and doing them all in the
935 * same place shares constants. Index 0 is "short length" for bulk and
936 * ctrl data and 1 is "full length" for ctrl data (bulk/intr are
937 * already set to full length).
938 */
939 if (spipe->pflags & PF_LS) {
940 /*
941 * Setting PREAMBLE for directly connected LS devices will
942 * lock up the chip.
943 */
944 if (spipe->pflags & PF_PREAMBLE)
945 spipe->control |= SL11_EPCTRL_PREAMBLE;
946 if (max_packet <= 8) {
947 spipe->bustime = SLHCI_LS_CONST +
948 SLHCI_LS_DATA_TIME(spipe->tregs[LEN]);
949 spipe->newbustime[0] = SLHCI_LS_CONST +
950 SLHCI_LS_DATA_TIME(spipe->newlen[0]);
951 spipe->newbustime[1] = SLHCI_LS_CONST +
952 SLHCI_LS_DATA_TIME(spipe->newlen[1]);
953 } else
954 xfer->ux_status = USBD_INVAL;
955 } else {
956 UL_SLASSERT(pipe->up_dev->ud_speed == USB_SPEED_FULL, sc,
957 spipe, xfer, return USBD_IN_PROGRESS);
958 if (max_packet <= SL11_MAX_PACKET_SIZE) {
959 spipe->bustime = SLHCI_FS_CONST +
960 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
961 spipe->newbustime[0] = SLHCI_FS_CONST +
962 SLHCI_FS_DATA_TIME(spipe->newlen[0]);
963 spipe->newbustime[1] = SLHCI_FS_CONST +
964 SLHCI_FS_DATA_TIME(spipe->newlen[1]);
965 } else
966 xfer->ux_status = USBD_INVAL;
967 }
968
969 /*
970 * The datasheet incorrectly indicates that DIRECTION is for
971 * "transmit to host". It is for OUT and SETUP. The app note
972 * describes its use correctly.
973 */
974 if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN)
975 spipe->control |= SL11_EPCTRL_DIRECTION;
976
977 slhci_start_entry(sc, spipe);
978
979 mutex_exit(&sc->sc_lock);
980
981 return USBD_IN_PROGRESS;
982 }
983
984 usbd_status
985 slhci_root_start(struct usbd_xfer *xfer)
986 {
987 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
988 struct slhci_softc *sc;
989 struct slhci_pipe *spipe __diagused;
990
991 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe);
992 sc = SLHCI_XFER2SC(xfer);
993
994 struct slhci_transfers *t = &sc->sc_transfers;
995
996 LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return
997 USBD_CANCELLED);
998
999 DLOG(D_TRACE, "%s start", pnames(SLHCI_XFER_TYPE(xfer)), 0,0,0);
1000
1001 KASSERT(spipe->ptype == PT_ROOT_INTR);
1002
1003 mutex_enter(&sc->sc_intr_lock);
1004 t->rootintr = xfer;
1005 mutex_exit(&sc->sc_intr_lock);
1006
1007 return USBD_IN_PROGRESS;
1008 }
1009
1010 usbd_status
1011 slhci_open(struct usbd_pipe *pipe)
1012 {
1013 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1014 struct usbd_device *dev;
1015 struct slhci_softc *sc;
1016 struct slhci_pipe *spipe;
1017 usb_endpoint_descriptor_t *ed;
1018 unsigned int max_packet, pmaxpkt;
1019 uint8_t rhaddr;
1020
1021 dev = pipe->up_dev;
1022 sc = SLHCI_PIPE2SC(pipe);
1023 spipe = SLHCI_PIPE2SPIPE(pipe);
1024 ed = pipe->up_endpoint->ue_edesc;
1025 rhaddr = dev->ud_bus->ub_rhaddr;
1026
1027 DLOG(D_TRACE, "slhci_open(addr=%d,ep=%d,rootaddr=%d)",
1028 dev->ud_addr, ed->bEndpointAddress, rhaddr, 0);
1029
1030 spipe->pflags = 0;
1031 spipe->frame = 0;
1032 spipe->lastframe = 0;
1033 spipe->xfer = NULL;
1034 spipe->buffer = NULL;
1035
1036 gcq_init(&spipe->ap);
1037 gcq_init(&spipe->to);
1038 gcq_init(&spipe->xq);
1039
1040 /*
1041 * The endpoint descriptor will not have been set up yet in the case
1042 * of the standard control pipe, so the max packet checks are also
1043 * necessary in start.
1044 */
1045
1046 max_packet = UGETW(ed->wMaxPacketSize);
1047
1048 if (dev->ud_speed == USB_SPEED_LOW) {
1049 spipe->pflags |= PF_LS;
1050 if (dev->ud_myhub->ud_addr != rhaddr) {
1051 spipe->pflags |= PF_PREAMBLE;
1052 if (!slhci_try_lsvh)
1053 return slhci_lock_call(sc, &slhci_lsvh_warn,
1054 spipe, NULL);
1055 }
1056 pmaxpkt = 8;
1057 } else
1058 pmaxpkt = SL11_MAX_PACKET_SIZE;
1059
1060 if (max_packet > pmaxpkt) {
1061 DLOG(D_ERR, "packet too large! size %d spipe %p", max_packet,
1062 spipe, 0,0);
1063 return USBD_INVAL;
1064 }
1065
1066 if (dev->ud_addr == rhaddr) {
1067 switch (ed->bEndpointAddress) {
1068 case USB_CONTROL_ENDPOINT:
1069 spipe->ptype = PT_ROOT_CTRL;
1070 pipe->up_interval = 0;
1071 pipe->up_methods = &roothub_ctrl_methods;
1072 break;
1073 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
1074 spipe->ptype = PT_ROOT_INTR;
1075 pipe->up_interval = 1;
1076 pipe->up_methods = &slhci_root_methods;
1077 break;
1078 default:
1079 printf("%s: Invalid root endpoint!\n", SC_NAME(sc));
1080 DDOLOG("%s: Invalid root endpoint!\n", SC_NAME(sc),
1081 0,0,0);
1082 return USBD_INVAL;
1083 }
1084 return USBD_NORMAL_COMPLETION;
1085 } else {
1086 switch (ed->bmAttributes & UE_XFERTYPE) {
1087 case UE_CONTROL:
1088 spipe->ptype = PT_CTRL_SETUP;
1089 pipe->up_interval = 0;
1090 break;
1091 case UE_INTERRUPT:
1092 spipe->ptype = PT_INTR;
1093 if (pipe->up_interval == USBD_DEFAULT_INTERVAL)
1094 pipe->up_interval = ed->bInterval;
1095 break;
1096 case UE_ISOCHRONOUS:
1097 return slhci_lock_call(sc, &slhci_isoc_warn, spipe,
1098 NULL);
1099 case UE_BULK:
1100 spipe->ptype = PT_BULK;
1101 pipe->up_interval = 0;
1102 break;
1103 }
1104
1105 DLOG(D_MSG, "open pipe %s interval %d", pnames(spipe->ptype),
1106 pipe->up_interval, 0,0);
1107
1108 pipe->up_methods = __UNCONST(&slhci_pipe_methods);
1109
1110 return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL);
1111 }
1112 }
1113
1114 int
1115 slhci_supported_rev(uint8_t rev)
1116 {
1117 return rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15;
1118 }
1119
1120 /*
1121 * Must be called before the ISR is registered. Interrupts can be shared so
1122 * slhci_intr could be called as soon as the ISR is registered.
1123 * Note max_current argument is actual current, but stored as current/2
1124 */
1125 void
1126 slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot,
1127 bus_space_handle_t ioh, uint16_t max_current, uint32_t stride)
1128 {
1129 struct slhci_transfers *t;
1130 int i;
1131
1132 t = &sc->sc_transfers;
1133
1134 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1135 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
1136
1137 /* sc->sc_ier = 0; */
1138 /* t->rootintr = NULL; */
1139 t->flags = F_NODEV|F_UDISABLED;
1140 t->pend = INT_MAX;
1141 KASSERT(slhci_wait_time != INT_MAX);
1142 t->len[0] = t->len[1] = -1;
1143 if (max_current > 500)
1144 max_current = 500;
1145 t->max_current = (uint8_t)(max_current / 2);
1146 sc->sc_enable_power = pow;
1147 sc->sc_iot = iot;
1148 sc->sc_ioh = ioh;
1149 sc->sc_stride = stride;
1150
1151 KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0]));
1152
1153 for (i = 0; i <= Q_MAX; i++)
1154 gcq_init_head(&t->q[i]);
1155 gcq_init_head(&t->timed);
1156 gcq_init_head(&t->to);
1157 gcq_init_head(&t->ap);
1158 gcq_init_head(&sc->sc_waitq);
1159 }
1160
1161 int
1162 slhci_attach(struct slhci_softc *sc)
1163 {
1164 struct slhci_transfers *t;
1165 const char *rev;
1166
1167 t = &sc->sc_transfers;
1168
1169 /* Detect and check the controller type */
1170 t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV));
1171
1172 /* SL11H not supported */
1173 if (!slhci_supported_rev(t->sltype)) {
1174 if (t->sltype == SLTYPE_SL11H)
1175 printf("%s: SL11H unsupported or bus error!\n",
1176 SC_NAME(sc));
1177 else
1178 printf("%s: Unknown chip revision!\n", SC_NAME(sc));
1179 return -1;
1180 }
1181
1182 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
1183 callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc);
1184
1185 /*
1186 * It is not safe to call the soft interrupt directly as
1187 * usb_schedsoftintr does in the ub_usepolling case (due to locking).
1188 */
1189 sc->sc_cb_softintr = softint_establish(SOFTINT_NET,
1190 slhci_callback_entry, sc);
1191
1192 #ifdef SLHCI_DEBUG
1193 ssc = sc;
1194 #endif
1195
1196 if (t->sltype == SLTYPE_SL811HS_R12)
1197 rev = "(rev 1.2)";
1198 else if (t->sltype == SLTYPE_SL811HS_R14)
1199 rev = "(rev 1.4 or 1.5)";
1200 else
1201 rev = "(unknown revision)";
1202
1203 aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n",
1204 SC_NAME(sc), rev);
1205
1206 aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n",
1207 SC_NAME(sc), t->max_current * 2);
1208
1209 #if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \
1210 defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER)
1211 aprint_normal("%s: driver options:"
1212 #ifdef SLHCI_DEBUG
1213 " SLHCI_DEBUG"
1214 #endif
1215 #ifdef SLHCI_TRY_LSVH
1216 " SLHCI_TRY_LSVH"
1217 #endif
1218 #ifdef SLHCI_NO_OVERTIME
1219 " SLHCI_NO_OVERTIME"
1220 #endif
1221 #ifdef SLHCI_PROFILE_TRANSFER
1222 " SLHCI_PROFILE_TRANSFER"
1223 #endif
1224 "\n", SC_NAME(sc));
1225 #endif
1226 sc->sc_bus.ub_revision = USBREV_1_1;
1227 sc->sc_bus.ub_methods = __UNCONST(&slhci_bus_methods);
1228 sc->sc_bus.ub_pipesize = sizeof(struct slhci_pipe);
1229 sc->sc_bus.ub_usedma = false;
1230
1231 if (!sc->sc_enable_power)
1232 t->flags |= F_REALPOWER;
1233
1234 t->flags |= F_ACTIVE;
1235
1236 /* Attach usb and uhub. */
1237 sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint);
1238
1239 if (!sc->sc_child)
1240 return -1;
1241 else
1242 return 0;
1243 }
1244
1245 int
1246 slhci_detach(struct slhci_softc *sc, int flags)
1247 {
1248 struct slhci_transfers *t;
1249 int ret;
1250
1251 t = &sc->sc_transfers;
1252
1253 /* By this point bus access is no longer allowed. */
1254
1255 KASSERT(!(t->flags & F_ACTIVE));
1256
1257 /*
1258 * To be MPSAFE is not sufficient to cancel callouts and soft
1259 * interrupts and assume they are dead since the code could already be
1260 * running or about to run. Wait until they are known to be done.
1261 */
1262 while (t->flags & (F_RESET|F_CALLBACK))
1263 tsleep(&sc, PPAUSE, "slhci_detach", hz);
1264
1265 softint_disestablish(sc->sc_cb_softintr);
1266
1267 mutex_destroy(&sc->sc_lock);
1268 mutex_destroy(&sc->sc_intr_lock);
1269
1270 ret = 0;
1271
1272 if (sc->sc_child)
1273 ret = config_detach(sc->sc_child, flags);
1274
1275 #ifdef SLHCI_MEM_ACCOUNTING
1276 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1277 if (sc->sc_mem_use) {
1278 printf("%s: Memory still in use after detach! mem_use (count)"
1279 " = %d\n", SC_NAME(sc), sc->sc_mem_use);
1280 DDOLOG("%s: Memory still in use after detach! mem_use (count)"
1281 " = %d\n", SC_NAME(sc), sc->sc_mem_use, 0,0);
1282 }
1283 #endif
1284
1285 return ret;
1286 }
1287
1288 int
1289 slhci_activate(device_t self, enum devact act)
1290 {
1291 struct slhci_softc *sc = device_private(self);
1292
1293 switch (act) {
1294 case DVACT_DEACTIVATE:
1295 slhci_lock_call(sc, &slhci_halt, NULL, NULL);
1296 return 0;
1297 default:
1298 return EOPNOTSUPP;
1299 }
1300 }
1301
1302 void
1303 slhci_abort(struct usbd_xfer *xfer)
1304 {
1305 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1306 struct slhci_softc *sc;
1307 struct slhci_pipe *spipe;
1308
1309 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe);
1310
1311 if (spipe == NULL)
1312 goto callback;
1313
1314 sc = SLHCI_XFER2SC(xfer);
1315 KASSERT(mutex_owned(&sc->sc_lock));
1316
1317 DLOG(D_TRACE, "%s abort xfer %p spipe %p spipe->xfer %p",
1318 pnames(spipe->ptype), xfer, spipe, spipe->xfer);
1319
1320 slhci_lock_call(sc, &slhci_do_abort, spipe, xfer);
1321
1322 callback:
1323 xfer->ux_status = USBD_CANCELLED;
1324 usb_transfer_complete(xfer);
1325 }
1326
1327 void
1328 slhci_close(struct usbd_pipe *pipe)
1329 {
1330 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1331 struct slhci_softc *sc;
1332 struct slhci_pipe *spipe;
1333
1334 sc = SLHCI_PIPE2SC(pipe);
1335 spipe = SLHCI_PIPE2SPIPE(pipe);
1336
1337 DLOG(D_TRACE, "%s close spipe %p spipe->xfer %p",
1338 pnames(spipe->ptype), spipe, spipe->xfer, 0);
1339
1340 slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL);
1341 }
1342
1343 void
1344 slhci_clear_toggle(struct usbd_pipe *pipe)
1345 {
1346 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1347 struct slhci_pipe *spipe;
1348
1349 spipe = SLHCI_PIPE2SPIPE(pipe);
1350
1351 DLOG(D_TRACE, "%s toggle spipe %p", pnames(spipe->ptype),
1352 spipe,0,0);
1353
1354 spipe->pflags &= ~PF_TOGGLE;
1355
1356 #ifdef DIAGNOSTIC
1357 if (spipe->xfer != NULL) {
1358 struct slhci_softc *sc = (struct slhci_softc
1359 *)pipe->up_dev->ud_bus;
1360
1361 printf("%s: Clear toggle on transfer in progress! halted\n",
1362 SC_NAME(sc));
1363 DDOLOG("%s: Clear toggle on transfer in progress! halted\n",
1364 SC_NAME(sc), 0,0,0);
1365 slhci_halt(sc, NULL, NULL);
1366 }
1367 #endif
1368 }
1369
1370 void
1371 slhci_poll(struct usbd_bus *bus) /* XXX necessary? */
1372 {
1373 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1374 struct slhci_softc *sc;
1375
1376 sc = SLHCI_BUS2SC(bus);
1377
1378 DLOG(D_TRACE, "slhci_poll", 0,0,0,0);
1379
1380 slhci_lock_call(sc, &slhci_do_poll, NULL, NULL);
1381 }
1382
1383 void
1384 slhci_done(struct usbd_xfer *xfer)
1385 {
1386 }
1387
1388 void
1389 slhci_void(void *v) {}
1390
1391 /* End out of lock functions. Start lock entry functions. */
1392
1393 #ifdef SLHCI_MEM_ACCOUNTING
1394 void
1395 slhci_mem_use(struct usbd_bus *bus, int val)
1396 {
1397 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
1398
1399 mutex_enter(&sc->sc_intr_lock);
1400 sc->sc_mem_use += val;
1401 mutex_exit(&sc->sc_intr_lock);
1402 }
1403 #endif
1404
1405 void
1406 slhci_reset_entry(void *arg)
1407 {
1408 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1409 struct slhci_softc *sc = arg;
1410
1411 mutex_enter(&sc->sc_intr_lock);
1412 slhci_reset(sc);
1413 /*
1414 * We cannot call the callback directly since we could then be reset
1415 * again before finishing and need the callout delay for timing.
1416 * Scheduling the callout again before we exit would defeat the reap
1417 * mechanism since we could be unlocked while the reset flag is not
1418 * set. The callback code will check the wait queue.
1419 */
1420 slhci_callback_schedule(sc);
1421 mutex_exit(&sc->sc_intr_lock);
1422 }
1423
1424 usbd_status
1425 slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe
1426 *spipe, struct usbd_xfer *xfer)
1427 {
1428 usbd_status ret;
1429
1430 mutex_enter(&sc->sc_intr_lock);
1431 ret = (*lcf)(sc, spipe, xfer);
1432 slhci_main(sc);
1433 mutex_exit(&sc->sc_intr_lock);
1434
1435 return ret;
1436 }
1437
1438 void
1439 slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe)
1440 {
1441 struct slhci_transfers *t;
1442
1443 mutex_enter(&sc->sc_intr_lock);
1444 t = &sc->sc_transfers;
1445
1446 if (!(t->flags & (F_AINPROG|F_BINPROG))) {
1447 slhci_enter_xfer(sc, spipe);
1448 slhci_dotransfer(sc);
1449 slhci_main(sc);
1450 } else {
1451 enter_waitq(sc, spipe);
1452 }
1453 mutex_exit(&sc->sc_intr_lock);
1454 }
1455
1456 void
1457 slhci_callback_entry(void *arg)
1458 {
1459 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1460 struct slhci_softc *sc;
1461 struct slhci_transfers *t;
1462
1463 sc = (struct slhci_softc *)arg;
1464
1465 mutex_enter(&sc->sc_intr_lock);
1466 t = &sc->sc_transfers;
1467 DLOG(D_SOFT, "callback_entry flags %#x", t->flags, 0,0,0);
1468
1469 repeat:
1470 slhci_callback(sc);
1471
1472 if (!gcq_empty(&sc->sc_waitq)) {
1473 slhci_enter_xfers(sc);
1474 slhci_dotransfer(sc);
1475 slhci_waitintr(sc, 0);
1476 goto repeat;
1477 }
1478
1479 t->flags &= ~F_CALLBACK;
1480 mutex_exit(&sc->sc_intr_lock);
1481 }
1482
1483 void
1484 slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer)
1485 {
1486 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1487 KASSERT(mutex_owned(&sc->sc_intr_lock));
1488
1489 start_cc_time(&t_callback, (u_int)xfer);
1490 mutex_exit(&sc->sc_intr_lock);
1491
1492 mutex_enter(&sc->sc_lock);
1493 usb_transfer_complete(xfer);
1494 mutex_exit(&sc->sc_lock);
1495
1496 mutex_enter(&sc->sc_intr_lock);
1497 stop_cc_time(&t_callback);
1498 }
1499
1500 int
1501 slhci_intr(void *arg)
1502 {
1503 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1504 struct slhci_softc *sc = arg;
1505 int ret;
1506
1507 start_cc_time(&t_hard_int, (unsigned int)arg);
1508 mutex_enter(&sc->sc_intr_lock);
1509
1510 ret = slhci_dointr(sc);
1511 slhci_main(sc);
1512 mutex_exit(&sc->sc_intr_lock);
1513
1514 stop_cc_time(&t_hard_int);
1515 return ret;
1516 }
1517
1518 /* called with main lock only held, returns with locks released. */
1519 void
1520 slhci_main(struct slhci_softc *sc)
1521 {
1522 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1523 struct slhci_transfers *t;
1524
1525 t = &sc->sc_transfers;
1526
1527 KASSERT(mutex_owned(&sc->sc_intr_lock));
1528
1529 waitcheck:
1530 slhci_waitintr(sc, slhci_wait_time);
1531
1532 /*
1533 * The direct call is needed in the ub_usepolling and disabled cases
1534 * since the soft interrupt is not available. In the disabled case,
1535 * this code can be reached from the usb detach, after the reaping of
1536 * the soft interrupt. That test could be !F_ACTIVE, but there is no
1537 * reason not to make the callbacks directly in the other DISABLED
1538 * cases.
1539 */
1540 if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) {
1541 if (__predict_false(sc->sc_bus.ub_usepolling ||
1542 t->flags & F_DISABLED))
1543 slhci_callback(sc);
1544 else
1545 slhci_callback_schedule(sc);
1546 }
1547
1548 if (!gcq_empty(&sc->sc_waitq)) {
1549 slhci_enter_xfers(sc);
1550 slhci_dotransfer(sc);
1551 goto waitcheck;
1552 }
1553 }
1554
1555 /* End lock entry functions. Start in lock function. */
1556
1557 /* Register read/write routines and barriers. */
1558 #ifdef SLHCI_BUS_SPACE_BARRIERS
1559 #define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e)
1560 #define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_SYNC)
1561 #else /* now !SLHCI_BUS_SPACE_BARRIERS */
1562 #define BSB(a, b, c, d, e) __USE(d)
1563 #define BSB_SYNC(a, b, c, d)
1564 #endif /* SLHCI_BUS_SPACE_BARRIERS */
1565
1566 static void
1567 slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data)
1568 {
1569 bus_size_t paddr, pdata, pst, psz;
1570 bus_space_tag_t iot;
1571 bus_space_handle_t ioh;
1572
1573 paddr = pst = 0;
1574 pdata = sc->sc_stride;
1575 psz = pdata * 2;
1576 iot = sc->sc_iot;
1577 ioh = sc->sc_ioh;
1578
1579 bus_space_write_1(iot, ioh, paddr, addr);
1580 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1581 bus_space_write_1(iot, ioh, pdata, data);
1582 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1583 }
1584
1585 static uint8_t
1586 slhci_read(struct slhci_softc *sc, uint8_t addr)
1587 {
1588 bus_size_t paddr, pdata, pst, psz;
1589 bus_space_tag_t iot;
1590 bus_space_handle_t ioh;
1591 uint8_t data;
1592
1593 paddr = pst = 0;
1594 pdata = sc->sc_stride;
1595 psz = pdata * 2;
1596 iot = sc->sc_iot;
1597 ioh = sc->sc_ioh;
1598
1599 bus_space_write_1(iot, ioh, paddr, addr);
1600 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1601 data = bus_space_read_1(iot, ioh, pdata);
1602 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1603 return data;
1604 }
1605
1606 #if 0 /* auto-increment mode broken, see errata doc */
1607 static void
1608 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1609 {
1610 bus_size_t paddr, pdata, pst, psz;
1611 bus_space_tag_t iot;
1612 bus_space_handle_t ioh;
1613
1614 paddr = pst = 0;
1615 pdata = sc->sc_stride;
1616 psz = pdata * 2;
1617 iot = sc->sc_iot;
1618 ioh = sc->sc_ioh;
1619
1620 bus_space_write_1(iot, ioh, paddr, addr);
1621 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1622 bus_space_write_multi_1(iot, ioh, pdata, buf, l);
1623 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1624 }
1625
1626 static void
1627 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1628 {
1629 bus_size_t paddr, pdata, pst, psz;
1630 bus_space_tag_t iot;
1631 bus_space_handle_t ioh;
1632
1633 paddr = pst = 0;
1634 pdata = sc->sc_stride;
1635 psz = pdata * 2;
1636 iot = sc->sc_iot;
1637 ioh = sc->sc_ioh;
1638
1639 bus_space_write_1(iot, ioh, paddr, addr);
1640 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1641 bus_space_read_multi_1(iot, ioh, pdata, buf, l);
1642 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1643 }
1644 #else
1645 static void
1646 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1647 {
1648 #if 1
1649 for (; l; addr++, buf++, l--)
1650 slhci_write(sc, addr, *buf);
1651 #else
1652 bus_size_t paddr, pdata, pst, psz;
1653 bus_space_tag_t iot;
1654 bus_space_handle_t ioh;
1655
1656 paddr = pst = 0;
1657 pdata = sc->sc_stride;
1658 psz = pdata * 2;
1659 iot = sc->sc_iot;
1660 ioh = sc->sc_ioh;
1661
1662 for (; l; addr++, buf++, l--) {
1663 bus_space_write_1(iot, ioh, paddr, addr);
1664 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1665 bus_space_write_1(iot, ioh, pdata, *buf);
1666 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1667 }
1668 #endif
1669 }
1670
1671 static void
1672 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1673 {
1674 #if 1
1675 for (; l; addr++, buf++, l--)
1676 *buf = slhci_read(sc, addr);
1677 #else
1678 bus_size_t paddr, pdata, pst, psz;
1679 bus_space_tag_t iot;
1680 bus_space_handle_t ioh;
1681
1682 paddr = pst = 0;
1683 pdata = sc->sc_stride;
1684 psz = pdata * 2;
1685 iot = sc->sc_iot;
1686 ioh = sc->sc_ioh;
1687
1688 for (; l; addr++, buf++, l--) {
1689 bus_space_write_1(iot, ioh, paddr, addr);
1690 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1691 *buf = bus_space_read_1(iot, ioh, pdata);
1692 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1693 }
1694 #endif
1695 }
1696 #endif
1697
1698 /*
1699 * After calling waitintr it is necessary to either call slhci_callback or
1700 * schedule the callback if necessary. The callback cannot be called directly
1701 * from the hard interrupt since it interrupts at a high IPL and callbacks
1702 * can do copyout and such.
1703 */
1704 static void
1705 slhci_waitintr(struct slhci_softc *sc, int wait_time)
1706 {
1707 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1708 struct slhci_transfers *t;
1709
1710 t = &sc->sc_transfers;
1711
1712 KASSERT(mutex_owned(&sc->sc_intr_lock));
1713
1714 if (__predict_false(sc->sc_bus.ub_usepolling))
1715 wait_time = 12000;
1716
1717 while (t->pend <= wait_time) {
1718 DLOG(D_WAIT, "waiting... frame %d pend %d flags %#x",
1719 t->frame, t->pend, t->flags, 0);
1720 LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return);
1721 LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL,
1722 return);
1723 slhci_dointr(sc);
1724 }
1725 }
1726
1727 static int
1728 slhci_dointr(struct slhci_softc *sc)
1729 {
1730 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1731 struct slhci_transfers *t;
1732 struct slhci_pipe *tosp;
1733 uint8_t r;
1734
1735 t = &sc->sc_transfers;
1736
1737 KASSERT(mutex_owned(&sc->sc_intr_lock));
1738
1739 DLOG(D_INTR, "Flags %#x sc_ier %#x ISR=%#x", t->flags, sc->sc_ier,
1740 slhci_read(sc, SL11_ISR), 0);
1741
1742 if (sc->sc_ier == 0)
1743 return 0;
1744
1745 r = slhci_read(sc, SL11_ISR);
1746
1747 #ifdef SLHCI_DEBUG
1748 if (slhcidebug & SLHCI_D_INTR && r & sc->sc_ier &&
1749 ((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhcidebug &
1750 SLHCI_D_SOF)) {
1751 uint8_t e, f;
1752
1753 e = slhci_read(sc, SL11_IER);
1754 f = slhci_read(sc, SL11_CTRL);
1755 DDOLOG("Flags=%#x IER=%#x ISR=%#x", t->flags, e, r, 0);
1756 DDOLOGFLAG8("Status=", r, "D+", (f & SL11_CTRL_SUSPEND) ?
1757 "RESUME" : "NODEV", "INSERT", "SOF", "res", "BABBLE",
1758 "USBB", "USBA");
1759 }
1760 #endif
1761
1762 /*
1763 * check IER for corruption occasionally. Assume that the above
1764 * sc_ier == 0 case works correctly.
1765 */
1766 if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) {
1767 sc->sc_ier_check = 0;
1768 if (sc->sc_ier != slhci_read(sc, SL11_IER)) {
1769 printf("%s: IER value corrupted! halted\n",
1770 SC_NAME(sc));
1771 DDOLOG("%s: IER value corrupted! halted\n",
1772 SC_NAME(sc), 0,0,0);
1773 slhci_halt(sc, NULL, NULL);
1774 return 1;
1775 }
1776 }
1777
1778 r &= sc->sc_ier;
1779
1780 if (r == 0)
1781 return 0;
1782
1783 sc->sc_ier_check = 0;
1784
1785 slhci_write(sc, SL11_ISR, r);
1786 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
1787
1788 /* If we have an insertion event we do not care about anything else. */
1789 if (__predict_false(r & SL11_ISR_INSERT)) {
1790 slhci_insert(sc);
1791 return 1;
1792 }
1793
1794 stop_cc_time(&t_intr);
1795 start_cc_time(&t_intr, r);
1796
1797 if (r & SL11_ISR_SOF) {
1798 t->frame++;
1799
1800 gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]);
1801
1802 /*
1803 * SOFCHECK flags are cleared in tstart. Two flags are needed
1804 * since the first SOF interrupt processed after the transfer
1805 * is started might have been generated before the transfer
1806 * was started.
1807 */
1808 if (__predict_false(t->flags & F_SOFCHECK2 && t->flags &
1809 (F_AINPROG|F_BINPROG))) {
1810 printf("%s: Missed transfer completion. halted\n",
1811 SC_NAME(sc));
1812 DDOLOG("%s: Missed transfer completion. halted\n",
1813 SC_NAME(sc), 0,0,0);
1814 slhci_halt(sc, NULL, NULL);
1815 return 1;
1816 } else if (t->flags & F_SOFCHECK1) {
1817 t->flags |= F_SOFCHECK2;
1818 } else
1819 t->flags |= F_SOFCHECK1;
1820
1821 if (t->flags & F_CHANGE)
1822 t->flags |= F_ROOTINTR;
1823
1824 while (__predict_true(GOT_FIRST_TO(tosp, t)) &&
1825 __predict_false(tosp->to_frame <= t->frame)) {
1826 tosp->xfer->ux_status = USBD_TIMEOUT;
1827 slhci_do_abort(sc, tosp, tosp->xfer);
1828 enter_callback(t, tosp);
1829 }
1830
1831 /*
1832 * Start any waiting transfers right away. If none, we will
1833 * start any new transfers later.
1834 */
1835 slhci_tstart(sc);
1836 }
1837
1838 if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) {
1839 int ab;
1840
1841 if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) ==
1842 (SL11_ISR_USBA|SL11_ISR_USBB)) {
1843 if (!(t->flags & (F_AINPROG|F_BINPROG)))
1844 return 1; /* presume card pulled */
1845
1846 LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) !=
1847 (F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1);
1848
1849 /*
1850 * This should never happen (unless card removal just
1851 * occurred) but appeared frequently when both
1852 * transfers were started at the same time and was
1853 * accompanied by data corruption. It still happens
1854 * at times. I have not seen data correption except
1855 * when the STATUS bit gets set, which now causes the
1856 * driver to halt, however this should still not
1857 * happen so the warning is kept. See comment in
1858 * abdone, below.
1859 */
1860 printf("%s: Transfer reported done but not started! "
1861 "Verify data integrity if not detaching. "
1862 " flags %#x r %x\n", SC_NAME(sc), t->flags, r);
1863
1864 if (!(t->flags & F_AINPROG))
1865 r &= ~SL11_ISR_USBA;
1866 else
1867 r &= ~SL11_ISR_USBB;
1868 }
1869 t->pend = INT_MAX;
1870
1871 if (r & SL11_ISR_USBA)
1872 ab = A;
1873 else
1874 ab = B;
1875
1876 /*
1877 * This happens when a low speed device is attached to
1878 * a hub with chip rev 1.5. SOF stops, but a few transfers
1879 * still work before causing this error.
1880 */
1881 if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) {
1882 printf("%s: %s done but not in progress! halted\n",
1883 SC_NAME(sc), ab ? "B" : "A");
1884 DDOLOG("%s: %s done but not in progress! halted\n",
1885 SC_NAME(sc), ab ? "B" : "A", 0,0);
1886 slhci_halt(sc, NULL, NULL);
1887 return 1;
1888 }
1889
1890 t->flags &= ~(ab ? F_BINPROG : F_AINPROG);
1891 slhci_tstart(sc);
1892 stop_cc_time(&t_ab[ab]);
1893 start_cc_time(&t_abdone, t->flags);
1894 slhci_abdone(sc, ab);
1895 stop_cc_time(&t_abdone);
1896 }
1897
1898 slhci_dotransfer(sc);
1899
1900 return 1;
1901 }
1902
1903 static void
1904 slhci_abdone(struct slhci_softc *sc, int ab)
1905 {
1906 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1907 struct slhci_transfers *t;
1908 struct slhci_pipe *spipe;
1909 struct usbd_xfer *xfer;
1910 uint8_t status, buf_start;
1911 uint8_t *target_buf;
1912 unsigned int actlen;
1913 int head;
1914
1915 t = &sc->sc_transfers;
1916
1917 KASSERT(mutex_owned(&sc->sc_intr_lock));
1918
1919 DLOG(D_TRACE, "ABDONE flags %#x", t->flags, 0,0,0);
1920
1921 DLOG(D_MSG, "DONE %s spipe %p len %d xfer %p", ab ? "B" : "A",
1922 t->spipe[ab], t->len[ab], t->spipe[ab] ?
1923 t->spipe[ab]->xfer : NULL);
1924
1925 spipe = t->spipe[ab];
1926
1927 /*
1928 * skip this one if aborted; do not call return from the rest of the
1929 * function unless halting, else t->len will not be cleared.
1930 */
1931 if (spipe == NULL)
1932 goto done;
1933
1934 t->spipe[ab] = NULL;
1935
1936 xfer = spipe->xfer;
1937
1938 gcq_remove(&spipe->to);
1939
1940 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
1941
1942 status = slhci_read(sc, slhci_tregs[ab][STAT]);
1943
1944 /*
1945 * I saw no status or remaining length greater than the requested
1946 * length in early driver versions in circumstances I assumed caused
1947 * excess power draw. I am no longer able to reproduce this when
1948 * causing excess power draw circumstances.
1949 *
1950 * Disabling a power check and attaching aue to a keyboard and hub
1951 * that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard
1952 * 98mA) sometimes works and sometimes fails to configure. After
1953 * removing the aue and attaching a self-powered umass dvd reader
1954 * (unknown if it draws power from the host also) soon a single Error
1955 * status occurs then only timeouts. The controller soon halts freeing
1956 * memory due to being ONQU instead of BUSY. This may be the same
1957 * basic sequence that caused the no status/bad length errors. The
1958 * umass device seems to work (better at least) with the keyboard hub
1959 * when not first attaching aue (tested once reading an approximately
1960 * 200MB file).
1961 *
1962 * Overflow can indicate that the device and host disagree about how
1963 * much data has been transfered. This may indicate a problem at any
1964 * point during the transfer, not just when the error occurs. It may
1965 * indicate data corruption. A warning message is printed.
1966 *
1967 * Trying to use both A and B transfers at the same time results in
1968 * incorrect transfer completion ISR reports and the status will then
1969 * include SL11_EPSTAT_SETUP, which is apparently set while the
1970 * transfer is in progress. I also noticed data corruption, even
1971 * after waiting for the transfer to complete. The driver now avoids
1972 * trying to start both at the same time.
1973 *
1974 * I had accidently initialized the B registers before they were valid
1975 * in some driver versions. Since every other performance enhancing
1976 * feature has been confirmed buggy in the errata doc, I have not
1977 * tried both transfers at once again with the documented
1978 * initialization order.
1979 *
1980 * However, I have seen this problem again ("done but not started"
1981 * errors), which in some cases cases the SETUP status bit to remain
1982 * set on future transfers. In other cases, the SETUP bit is not set
1983 * and no data corruption occurs. This occured while using both umass
1984 * and aue on a powered hub (maybe triggered by some local activity
1985 * also) and needs several reads of the 200MB file to trigger. The
1986 * driver now halts if SETUP is detected.
1987 */
1988
1989 actlen = 0;
1990
1991 if (__predict_false(!status)) {
1992 DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0);
1993 printf("%s: no status! halted\n", SC_NAME(sc));
1994 slhci_halt(sc, spipe, xfer);
1995 return;
1996 }
1997
1998 #ifdef SLHCI_DEBUG
1999 if (slhcidebug & SLHCI_D_NAK || (status & SL11_EPSTAT_ERRBITS) !=
2000 SL11_EPSTAT_NAK)
2001 DLOGFLAG8(D_XFER, "STATUS=", status, "STALL", "NAK",
2002 "Overflow", "Setup", "Data Toggle", "Timeout", "Error",
2003 "ACK");
2004 #endif
2005
2006 if (!(status & SL11_EPSTAT_ERRBITS)) {
2007 unsigned int cont;
2008 cont = slhci_read(sc, slhci_tregs[ab][CONT]);
2009 if (cont != 0)
2010 DLOG(D_XFER, "cont %d len %d", cont,
2011 spipe->tregs[LEN], 0,0);
2012 if (__predict_false(cont > spipe->tregs[LEN])) {
2013 DDOLOG("cont > len! cont %d len %d xfer->ux_length %d "
2014 "spipe %p", cont, spipe->tregs[LEN], xfer->ux_length,
2015 spipe);
2016 printf("%s: cont > len! cont %d len %d xfer->ux_length "
2017 "%d", SC_NAME(sc), cont, spipe->tregs[LEN],
2018 xfer->ux_length);
2019 slhci_halt(sc, spipe, xfer);
2020 return;
2021 } else {
2022 spipe->nerrs = 0;
2023 actlen = spipe->tregs[LEN] - cont;
2024 }
2025 }
2026
2027 /* Actual copyin done after starting next transfer. */
2028 if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) {
2029 target_buf = spipe->buffer;
2030 buf_start = spipe->tregs[ADR];
2031 } else {
2032 target_buf = NULL;
2033 buf_start = 0; /* XXX gcc uninitialized warnings */
2034 }
2035
2036 if (status & SL11_EPSTAT_ERRBITS) {
2037 status &= SL11_EPSTAT_ERRBITS;
2038 if (status & SL11_EPSTAT_SETUP) {
2039 printf("%s: Invalid controller state detected! "
2040 "halted\n", SC_NAME(sc));
2041 DDOLOG("%s: Invalid controller state detected! "
2042 "halted\n", SC_NAME(sc), 0,0,0);
2043 slhci_halt(sc, spipe, xfer);
2044 return;
2045 } else if (__predict_false(sc->sc_bus.ub_usepolling)) {
2046 if (status == SL11_EPSTAT_STALL)
2047 xfer->ux_status = USBD_STALLED;
2048 else if (status == SL11_EPSTAT_TIMEOUT)
2049 xfer->ux_status = USBD_TIMEOUT;
2050 else if (status == SL11_EPSTAT_NAK)
2051 xfer->ux_status = USBD_TIMEOUT; /*XXX*/
2052 else
2053 xfer->ux_status = USBD_IOERROR;
2054 head = Q_CALLBACKS;
2055 } else if (status == SL11_EPSTAT_NAK) {
2056 if (spipe->pipe.up_interval) {
2057 spipe->lastframe = spipe->frame =
2058 t->frame + spipe->pipe.up_interval;
2059 slhci_queue_timed(sc, spipe);
2060 goto queued;
2061 }
2062 head = Q_NEXT_CB;
2063 } else if (++spipe->nerrs > SLHCI_MAX_RETRIES ||
2064 status == SL11_EPSTAT_STALL) {
2065 if (status == SL11_EPSTAT_STALL)
2066 xfer->ux_status = USBD_STALLED;
2067 else if (status == SL11_EPSTAT_TIMEOUT)
2068 xfer->ux_status = USBD_TIMEOUT;
2069 else
2070 xfer->ux_status = USBD_IOERROR;
2071
2072 DLOG(D_ERR, "Max retries reached! status %#x "
2073 "xfer->ux_status %#x", status, xfer->ux_status, 0,0);
2074 DLOGFLAG8(D_ERR, "STATUS=", status, "STALL",
2075 "NAK", "Overflow", "Setup", "Data Toggle",
2076 "Timeout", "Error", "ACK");
2077
2078 if (status == SL11_EPSTAT_OVERFLOW &&
2079 ratecheck(&sc->sc_overflow_warn_rate,
2080 &overflow_warn_rate)) {
2081 printf("%s: Overflow condition: "
2082 "data corruption possible\n",
2083 SC_NAME(sc));
2084 DDOLOG("%s: Overflow condition: "
2085 "data corruption possible\n",
2086 SC_NAME(sc), 0,0,0);
2087 }
2088 head = Q_CALLBACKS;
2089 } else {
2090 head = Q_NEXT_CB;
2091 }
2092 } else if (spipe->ptype == PT_CTRL_SETUP) {
2093 spipe->tregs[PID] = spipe->newpid;
2094
2095 if (xfer->ux_length) {
2096 LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer,
2097 return);
2098 spipe->tregs[LEN] = spipe->newlen[1];
2099 spipe->bustime = spipe->newbustime[1];
2100 spipe->buffer = xfer->ux_buf;
2101 spipe->ptype = PT_CTRL_DATA;
2102 } else {
2103 status_setup:
2104 /* CTRL_DATA swaps direction in PID then jumps here */
2105 spipe->tregs[LEN] = 0;
2106 if (spipe->pflags & PF_LS)
2107 spipe->bustime = SLHCI_LS_CONST;
2108 else
2109 spipe->bustime = SLHCI_FS_CONST;
2110 spipe->ptype = PT_CTRL_STATUS;
2111 spipe->buffer = NULL;
2112 }
2113
2114 /* Status or first data packet must be DATA1. */
2115 spipe->control |= SL11_EPCTRL_DATATOGGLE;
2116 if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN)
2117 spipe->control &= ~SL11_EPCTRL_DIRECTION;
2118 else
2119 spipe->control |= SL11_EPCTRL_DIRECTION;
2120
2121 head = Q_CB;
2122 } else if (spipe->ptype == PT_CTRL_STATUS) {
2123 head = Q_CALLBACKS;
2124 } else { /* bulk, intr, control data */
2125 xfer->ux_actlen += actlen;
2126 spipe->control ^= SL11_EPCTRL_DATATOGGLE;
2127
2128 if (actlen == spipe->tregs[LEN] && (xfer->ux_length >
2129 xfer->ux_actlen || spipe->wantshort)) {
2130 spipe->buffer += actlen;
2131 LK_SLASSERT(xfer->ux_length >= xfer->ux_actlen, sc,
2132 spipe, xfer, return);
2133 if (xfer->ux_length - xfer->ux_actlen < actlen) {
2134 spipe->wantshort = 0;
2135 spipe->tregs[LEN] = spipe->newlen[0];
2136 spipe->bustime = spipe->newbustime[0];
2137 LK_SLASSERT(xfer->ux_actlen +
2138 spipe->tregs[LEN] == xfer->ux_length, sc,
2139 spipe, xfer, return);
2140 }
2141 head = Q_CB;
2142 } else if (spipe->ptype == PT_CTRL_DATA) {
2143 spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT;
2144 goto status_setup;
2145 } else {
2146 if (spipe->ptype == PT_INTR) {
2147 spipe->lastframe +=
2148 spipe->pipe.up_interval;
2149 /*
2150 * If ack, we try to keep the
2151 * interrupt rate by using lastframe
2152 * instead of the current frame.
2153 */
2154 spipe->frame = spipe->lastframe +
2155 spipe->pipe.up_interval;
2156 }
2157
2158 /*
2159 * Set the toggle for the next transfer. It
2160 * has already been toggled above, so the
2161 * current setting will apply to the next
2162 * transfer.
2163 */
2164 if (spipe->control & SL11_EPCTRL_DATATOGGLE)
2165 spipe->pflags |= PF_TOGGLE;
2166 else
2167 spipe->pflags &= ~PF_TOGGLE;
2168
2169 head = Q_CALLBACKS;
2170 }
2171 }
2172
2173 if (head == Q_CALLBACKS) {
2174 gcq_remove(&spipe->to);
2175
2176 if (xfer->ux_status == USBD_IN_PROGRESS) {
2177 LK_SLASSERT(xfer->ux_actlen <= xfer->ux_length, sc,
2178 spipe, xfer, return);
2179 xfer->ux_status = USBD_NORMAL_COMPLETION;
2180 #if 0 /* usb_transfer_complete will do this */
2181 if (xfer->ux_length == xfer->ux_actlen || xfer->ux_flags &
2182 USBD_SHORT_XFER_OK)
2183 xfer->ux_status = USBD_NORMAL_COMPLETION;
2184 else
2185 xfer->ux_status = USBD_SHORT_XFER;
2186 #endif
2187 }
2188 }
2189
2190 enter_q(t, spipe, head);
2191
2192 queued:
2193 if (target_buf != NULL) {
2194 slhci_dotransfer(sc);
2195 start_cc_time(&t_copy_from_dev, actlen);
2196 slhci_read_multi(sc, buf_start, target_buf, actlen);
2197 stop_cc_time(&t_copy_from_dev);
2198 DLOGBUF(D_BUF, target_buf, actlen);
2199 t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen);
2200 }
2201
2202 done:
2203 t->len[ab] = -1;
2204 }
2205
2206 static void
2207 slhci_tstart(struct slhci_softc *sc)
2208 {
2209 struct slhci_transfers *t;
2210 struct slhci_pipe *spipe;
2211 int remaining_bustime;
2212
2213 t = &sc->sc_transfers;
2214
2215 KASSERT(mutex_owned(&sc->sc_intr_lock));
2216
2217 if (!(t->flags & (F_AREADY|F_BREADY)))
2218 return;
2219
2220 if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED))
2221 return;
2222
2223 /*
2224 * We have about 6 us to get from the bus time check to
2225 * starting the transfer or we might babble or the chip might fail to
2226 * signal transfer complete. This leaves no time for any other
2227 * interrupts.
2228 */
2229 remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6;
2230 remaining_bustime -= SLHCI_END_BUSTIME;
2231
2232 /*
2233 * Start one transfer only, clearing any aborted transfers that are
2234 * not yet in progress and skipping missed isoc. It is easier to copy
2235 * & paste most of the A/B sections than to make the logic work
2236 * otherwise and this allows better constant use.
2237 */
2238 if (t->flags & F_AREADY) {
2239 spipe = t->spipe[A];
2240 if (spipe == NULL) {
2241 t->flags &= ~F_AREADY;
2242 t->len[A] = -1;
2243 } else if (remaining_bustime >= spipe->bustime) {
2244 t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2);
2245 t->flags |= F_AINPROG;
2246 start_cc_time(&t_ab[A], spipe->tregs[LEN]);
2247 slhci_write(sc, SL11_E0CTRL, spipe->control);
2248 goto pend;
2249 }
2250 }
2251 if (t->flags & F_BREADY) {
2252 spipe = t->spipe[B];
2253 if (spipe == NULL) {
2254 t->flags &= ~F_BREADY;
2255 t->len[B] = -1;
2256 } else if (remaining_bustime >= spipe->bustime) {
2257 t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2);
2258 t->flags |= F_BINPROG;
2259 start_cc_time(&t_ab[B], spipe->tregs[LEN]);
2260 slhci_write(sc, SL11_E1CTRL, spipe->control);
2261 pend:
2262 t->pend = spipe->bustime;
2263 }
2264 }
2265 }
2266
2267 static void
2268 slhci_dotransfer(struct slhci_softc *sc)
2269 {
2270 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2271 struct slhci_transfers *t;
2272 struct slhci_pipe *spipe;
2273 int ab, i;
2274
2275 t = &sc->sc_transfers;
2276
2277 KASSERT(mutex_owned(&sc->sc_intr_lock));
2278
2279 while ((t->len[A] == -1 || t->len[B] == -1) &&
2280 (GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) ||
2281 GOT_FIRST_CB(spipe, t))) {
2282 LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return);
2283 LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype !=
2284 PT_ROOT_INTR, sc, spipe, NULL, return);
2285
2286 /* Check that this transfer can fit in the remaining memory. */
2287 if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 >
2288 SL11_MAX_PACKET_SIZE) {
2289 DLOG(D_XFER, "Transfer does not fit. alen %d blen %d "
2290 "len %d", t->len[A], t->len[B], spipe->tregs[LEN],
2291 0);
2292 return;
2293 }
2294
2295 gcq_remove(&spipe->xq);
2296
2297 if (t->len[A] == -1) {
2298 ab = A;
2299 spipe->tregs[ADR] = SL11_BUFFER_START;
2300 } else {
2301 ab = B;
2302 spipe->tregs[ADR] = SL11_BUFFER_END -
2303 spipe->tregs[LEN];
2304 }
2305
2306 t->len[ab] = spipe->tregs[LEN];
2307
2308 if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS)
2309 != SL11_PID_IN) {
2310 start_cc_time(&t_copy_to_dev,
2311 spipe->tregs[LEN]);
2312 slhci_write_multi(sc, spipe->tregs[ADR],
2313 spipe->buffer, spipe->tregs[LEN]);
2314 stop_cc_time(&t_copy_to_dev);
2315 t->pend -= SLHCI_FS_CONST +
2316 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
2317 }
2318
2319 DLOG(D_MSG, "NEW TRANSFER %s flags %#x alen %d blen %d",
2320 ab ? "B" : "A", t->flags, t->len[0], t->len[1]);
2321
2322 if (spipe->tregs[LEN])
2323 i = 0;
2324 else
2325 i = 1;
2326
2327 for (; i <= 3; i++)
2328 if (t->current_tregs[ab][i] != spipe->tregs[i]) {
2329 t->current_tregs[ab][i] = spipe->tregs[i];
2330 slhci_write(sc, slhci_tregs[ab][i],
2331 spipe->tregs[i]);
2332 }
2333
2334 DLOG(D_SXFER, "Transfer len %d pid %#x dev %d type %s",
2335 spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV],
2336 pnames(spipe->ptype));
2337
2338 t->spipe[ab] = spipe;
2339 t->flags |= ab ? F_BREADY : F_AREADY;
2340
2341 slhci_tstart(sc);
2342 }
2343 }
2344
2345 /*
2346 * slhci_callback is called after the lock is taken.
2347 */
2348 static void
2349 slhci_callback(struct slhci_softc *sc)
2350 {
2351 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2352 struct slhci_transfers *t;
2353 struct slhci_pipe *spipe;
2354 struct usbd_xfer *xfer;
2355
2356 t = &sc->sc_transfers;
2357
2358 KASSERT(mutex_owned(&sc->sc_intr_lock));
2359
2360 DLOG(D_SOFT, "CB flags %#x", t->flags, 0,0,0);
2361 for (;;) {
2362 if (__predict_false(t->flags & F_ROOTINTR)) {
2363 t->flags &= ~F_ROOTINTR;
2364 if (t->rootintr != NULL) {
2365 u_char *p;
2366
2367 p = t->rootintr->ux_buf;
2368 p[0] = 2;
2369 t->rootintr->ux_actlen = 1;
2370 t->rootintr->ux_status = USBD_NORMAL_COMPLETION;
2371 xfer = t->rootintr;
2372 goto do_callback;
2373 }
2374 }
2375
2376
2377 if (!DEQUEUED_CALLBACK(spipe, t))
2378 return;
2379
2380 xfer = spipe->xfer;
2381 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
2382 spipe->xfer = NULL;
2383 DLOG(D_XFER, "xfer callback length %d actlen %d spipe %x "
2384 "type %s", xfer->ux_length, xfer->ux_actlen, spipe,
2385 pnames(spipe->ptype));
2386 do_callback:
2387 slhci_do_callback(sc, xfer);
2388 }
2389 }
2390
2391 static void
2392 slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2393 {
2394 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2395 struct slhci_transfers *t;
2396
2397 t = &sc->sc_transfers;
2398
2399 KASSERT(mutex_owned(&sc->sc_intr_lock));
2400
2401 if (__predict_false(t->flags & F_DISABLED) ||
2402 __predict_false(spipe->pflags & PF_GONE)) {
2403 DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0);
2404 spipe->xfer->ux_status = USBD_CANCELLED;
2405 }
2406
2407 if (spipe->xfer->ux_status == USBD_IN_PROGRESS) {
2408 if (spipe->xfer->ux_timeout) {
2409 spipe->to_frame = t->frame + spipe->xfer->ux_timeout;
2410 slhci_xfer_timer(sc, spipe);
2411 }
2412 if (spipe->pipe.up_interval)
2413 slhci_queue_timed(sc, spipe);
2414 else
2415 enter_q(t, spipe, Q_CB);
2416 } else
2417 enter_callback(t, spipe);
2418 }
2419
2420 static void
2421 slhci_enter_xfers(struct slhci_softc *sc)
2422 {
2423 struct slhci_pipe *spipe;
2424
2425 KASSERT(mutex_owned(&sc->sc_intr_lock));
2426
2427 while (DEQUEUED_WAITQ(spipe, sc))
2428 slhci_enter_xfer(sc, spipe);
2429 }
2430
2431 static void
2432 slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe)
2433 {
2434 struct slhci_transfers *t;
2435 struct gcq *q;
2436 struct slhci_pipe *spp;
2437
2438 t = &sc->sc_transfers;
2439
2440 KASSERT(mutex_owned(&sc->sc_intr_lock));
2441
2442 FIND_TIMED(q, t, spp, spp->frame > spipe->frame);
2443 gcq_insert_before(q, &spipe->xq);
2444 }
2445
2446 static void
2447 slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2448 {
2449 struct slhci_transfers *t;
2450 struct gcq *q;
2451 struct slhci_pipe *spp;
2452
2453 t = &sc->sc_transfers;
2454
2455 KASSERT(mutex_owned(&sc->sc_intr_lock));
2456
2457 FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame);
2458 gcq_insert_before(q, &spipe->to);
2459 }
2460
2461 static void
2462 slhci_callback_schedule(struct slhci_softc *sc)
2463 {
2464 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2465 struct slhci_transfers *t;
2466
2467 t = &sc->sc_transfers;
2468
2469 KASSERT(mutex_owned(&sc->sc_intr_lock));
2470
2471 if (t->flags & F_ACTIVE)
2472 slhci_do_callback_schedule(sc);
2473 }
2474
2475 static void
2476 slhci_do_callback_schedule(struct slhci_softc *sc)
2477 {
2478 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2479 struct slhci_transfers *t;
2480
2481 t = &sc->sc_transfers;
2482
2483 KASSERT(mutex_owned(&sc->sc_intr_lock));
2484
2485 DLOG(D_MSG, "flags %#x", t->flags, 0, 0, 0);
2486 if (!(t->flags & F_CALLBACK)) {
2487 t->flags |= F_CALLBACK;
2488 softint_schedule(sc->sc_cb_softintr);
2489 }
2490 }
2491
2492 #if 0
2493 /* must be called with lock taken. */
2494 /* XXX static */ void
2495 slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer)
2496 {
2497 KASSERT(mutex_owned(&sc->sc_intr_lock));
2498 slhci_dotransfer(sc);
2499 do {
2500 slhci_dointr(sc);
2501 } while (xfer->ux_status == USBD_IN_PROGRESS);
2502 slhci_do_callback(sc, xfer);
2503 }
2504 #endif
2505
2506 static usbd_status
2507 slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2508 usbd_xfer *xfer)
2509 {
2510 slhci_waitintr(sc, 0);
2511
2512 return USBD_NORMAL_COMPLETION;
2513 }
2514
2515 static usbd_status
2516 slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2517 usbd_xfer *xfer)
2518 {
2519 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2520 struct slhci_transfers *t;
2521
2522 t = &sc->sc_transfers;
2523
2524 if (!(t->flags & F_LSVH_WARNED)) {
2525 printf("%s: Low speed device via hub disabled, "
2526 "see slhci(4)\n", SC_NAME(sc));
2527 DDOLOG("%s: Low speed device via hub disabled, "
2528 "see slhci(4)\n", SC_NAME(sc), 0,0,0);
2529 t->flags |= F_LSVH_WARNED;
2530 }
2531 return USBD_INVAL;
2532 }
2533
2534 static usbd_status
2535 slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2536 usbd_xfer *xfer)
2537 {
2538 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2539 struct slhci_transfers *t;
2540
2541 t = &sc->sc_transfers;
2542
2543 if (!(t->flags & F_ISOC_WARNED)) {
2544 printf("%s: ISOC transfer not supported "
2545 "(see slhci(4))\n", SC_NAME(sc));
2546 DDOLOG("%s: ISOC transfer not supported "
2547 "(see slhci(4))\n", SC_NAME(sc), 0,0,0);
2548 t->flags |= F_ISOC_WARNED;
2549 }
2550 return USBD_INVAL;
2551 }
2552
2553 static usbd_status
2554 slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2555 usbd_xfer *xfer)
2556 {
2557 struct slhci_transfers *t;
2558 struct usbd_pipe *pipe;
2559
2560 t = &sc->sc_transfers;
2561 pipe = &spipe->pipe;
2562
2563 if (t->flags & F_DISABLED)
2564 return USBD_CANCELLED;
2565 else if (pipe->up_interval && !slhci_reserve_bustime(sc, spipe, 1))
2566 return USBD_PENDING_REQUESTS;
2567 else {
2568 enter_all_pipes(t, spipe);
2569 return USBD_NORMAL_COMPLETION;
2570 }
2571 }
2572
2573 static usbd_status
2574 slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2575 usbd_xfer *xfer)
2576 {
2577 struct usbd_pipe *pipe;
2578
2579 pipe = &spipe->pipe;
2580
2581 if (pipe->up_interval && spipe->ptype != PT_ROOT_INTR)
2582 slhci_reserve_bustime(sc, spipe, 0);
2583 gcq_remove(&spipe->ap);
2584 return USBD_NORMAL_COMPLETION;
2585 }
2586
2587 static usbd_status
2588 slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2589 usbd_xfer *xfer)
2590 {
2591 struct slhci_transfers *t;
2592
2593 t = &sc->sc_transfers;
2594
2595 KASSERT(mutex_owned(&sc->sc_intr_lock));
2596
2597 if (spipe->xfer == xfer) {
2598 if (spipe->ptype == PT_ROOT_INTR) {
2599 if (t->rootintr == spipe->xfer) /* XXX assert? */
2600 t->rootintr = NULL;
2601 } else {
2602 gcq_remove(&spipe->to);
2603 gcq_remove(&spipe->xq);
2604
2605 if (t->spipe[A] == spipe) {
2606 t->spipe[A] = NULL;
2607 if (!(t->flags & F_AINPROG))
2608 t->len[A] = -1;
2609 } else if (t->spipe[B] == spipe) {
2610 t->spipe[B] = NULL;
2611 if (!(t->flags & F_BINPROG))
2612 t->len[B] = -1;
2613 }
2614 }
2615
2616 if (xfer->ux_status != USBD_TIMEOUT) {
2617 spipe->xfer = NULL;
2618 spipe->pipe.up_repeat = 0; /* XXX timeout? */
2619 }
2620 }
2621
2622 return USBD_NORMAL_COMPLETION;
2623 }
2624
2625 /*
2626 * Called to deactivate or stop use of the controller instead of panicking.
2627 * Will cancel the xfer correctly even when not on a list.
2628 */
2629 static usbd_status
2630 slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe,
2631 struct usbd_xfer *xfer)
2632 {
2633 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2634 struct slhci_transfers *t;
2635
2636 KASSERT(mutex_owned(&sc->sc_intr_lock));
2637
2638 t = &sc->sc_transfers;
2639
2640 DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0);
2641
2642 if (spipe != NULL)
2643 slhci_log_spipe(spipe);
2644
2645 if (xfer != NULL)
2646 slhci_log_xfer(xfer);
2647
2648 if (spipe != NULL && xfer != NULL && spipe->xfer == xfer &&
2649 !gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] !=
2650 spipe) {
2651 xfer->ux_status = USBD_CANCELLED;
2652 enter_callback(t, spipe);
2653 }
2654
2655 if (t->flags & F_ACTIVE) {
2656 slhci_intrchange(sc, 0);
2657 /*
2658 * leave power on when halting in case flash devices or disks
2659 * are attached, which may be writing and could be damaged
2660 * by abrupt power loss. The root hub clear power feature
2661 * should still work after halting.
2662 */
2663 }
2664
2665 t->flags &= ~F_ACTIVE;
2666 t->flags |= F_UDISABLED;
2667 if (!(t->flags & F_NODEV))
2668 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
2669 slhci_drain(sc);
2670
2671 /* One last callback for the drain and device removal. */
2672 slhci_do_callback_schedule(sc);
2673
2674 return USBD_NORMAL_COMPLETION;
2675 }
2676
2677 /*
2678 * There are three interrupt states: no interrupts during reset and after
2679 * device deactivation, INSERT only for no device present but power on, and
2680 * SOF, INSERT, ADONE, and BDONE when device is present.
2681 */
2682 static void
2683 slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier)
2684 {
2685 KASSERT(mutex_owned(&sc->sc_intr_lock));
2686 if (sc->sc_ier != new_ier) {
2687 sc->sc_ier = new_ier;
2688 slhci_write(sc, SL11_IER, new_ier);
2689 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
2690 }
2691 }
2692
2693 /*
2694 * Drain: cancel all pending transfers and put them on the callback list and
2695 * set the UDISABLED flag. UDISABLED is cleared only by reset.
2696 */
2697 static void
2698 slhci_drain(struct slhci_softc *sc)
2699 {
2700 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2701 struct slhci_transfers *t;
2702 struct slhci_pipe *spipe;
2703 struct gcq *q;
2704 int i;
2705
2706 KASSERT(mutex_owned(&sc->sc_intr_lock));
2707
2708 t = &sc->sc_transfers;
2709
2710 DLOG(D_MSG, "DRAIN flags %#x", t->flags, 0,0,0);
2711
2712 t->pend = INT_MAX;
2713
2714 for (i=0; i<=1; i++) {
2715 t->len[i] = -1;
2716 if (t->spipe[i] != NULL) {
2717 enter_callback(t, t->spipe[i]);
2718 t->spipe[i] = NULL;
2719 }
2720 }
2721
2722 /* Merge the queues into the callback queue. */
2723 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]);
2724 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]);
2725 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed);
2726
2727 /*
2728 * Cancel all pipes. Note that not all of these may be on the
2729 * callback queue yet; some could be in slhci_start, for example.
2730 */
2731 FOREACH_AP(q, t, spipe) {
2732 spipe->pflags |= PF_GONE;
2733 spipe->pipe.up_repeat = 0;
2734 spipe->pipe.up_aborting = 1;
2735 if (spipe->xfer != NULL)
2736 spipe->xfer->ux_status = USBD_CANCELLED;
2737 }
2738
2739 gcq_remove_all(&t->to);
2740
2741 t->flags |= F_UDISABLED;
2742 t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED);
2743 }
2744
2745 /*
2746 * RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms
2747 * reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF)
2748 * check attached device speed.
2749 * must wait 100ms before USB transaction according to app note, 10ms
2750 * by spec. uhub does this delay
2751 *
2752 * Started from root hub set feature reset, which does step one.
2753 * ub_usepolling will call slhci_reset directly, otherwise the callout goes
2754 * through slhci_reset_entry.
2755 */
2756 void
2757 slhci_reset(struct slhci_softc *sc)
2758 {
2759 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2760 struct slhci_transfers *t;
2761 struct slhci_pipe *spipe;
2762 struct gcq *q;
2763 uint8_t r, pol, ctrl;
2764
2765 t = &sc->sc_transfers;
2766 KASSERT(mutex_owned(&sc->sc_intr_lock));
2767
2768 stop_cc_time(&t_delay);
2769
2770 KASSERT(t->flags & F_ACTIVE);
2771
2772 start_cc_time(&t_delay, 0);
2773 stop_cc_time(&t_delay);
2774
2775 slhci_write(sc, SL11_CTRL, 0);
2776 start_cc_time(&t_delay, 3);
2777 DELAY(3);
2778 stop_cc_time(&t_delay);
2779 slhci_write(sc, SL11_ISR, 0xff);
2780
2781 r = slhci_read(sc, SL11_ISR);
2782
2783 if (r & SL11_ISR_INSERT)
2784 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
2785
2786 if (r & SL11_ISR_NODEV) {
2787 DLOG(D_MSG, "NC", 0,0,0,0);
2788 /*
2789 * Normally, the hard interrupt insert routine will issue
2790 * CCONNECT, however we need to do it here if the detach
2791 * happened during reset.
2792 */
2793 if (!(t->flags & F_NODEV))
2794 t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV;
2795 slhci_intrchange(sc, SL11_IER_INSERT);
2796 } else {
2797 if (t->flags & F_NODEV)
2798 t->flags |= F_CCONNECT;
2799 t->flags &= ~(F_NODEV|F_LOWSPEED);
2800 if (r & SL11_ISR_DATA) {
2801 DLOG(D_MSG, "FS", 0,0,0,0);
2802 pol = ctrl = 0;
2803 } else {
2804 DLOG(D_MSG, "LS", 0,0,0,0);
2805 pol = SL811_CSOF_POLARITY;
2806 ctrl = SL11_CTRL_LOWSPEED;
2807 t->flags |= F_LOWSPEED;
2808 }
2809
2810 /* Enable SOF auto-generation */
2811 t->frame = 0; /* write to SL811_CSOF will reset frame */
2812 slhci_write(sc, SL11_SOFTIME, 0xe0);
2813 slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e);
2814 slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF);
2815
2816 /*
2817 * According to the app note, ARM must be set
2818 * for SOF generation to work. We initialize all
2819 * USBA registers here for current_tregs.
2820 */
2821 slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START);
2822 slhci_write(sc, SL11_E0LEN, 0);
2823 slhci_write(sc, SL11_E0PID, SL11_PID_SOF);
2824 slhci_write(sc, SL11_E0DEV, 0);
2825 slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM);
2826
2827 /*
2828 * Initialize B registers. This can't be done earlier since
2829 * they are not valid until the SL811_CSOF register is written
2830 * above due to SL11H compatability.
2831 */
2832 slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8);
2833 slhci_write(sc, SL11_E1LEN, 0);
2834 slhci_write(sc, SL11_E1PID, 0);
2835 slhci_write(sc, SL11_E1DEV, 0);
2836
2837 t->current_tregs[0][ADR] = SL11_BUFFER_START;
2838 t->current_tregs[0][LEN] = 0;
2839 t->current_tregs[0][PID] = SL11_PID_SOF;
2840 t->current_tregs[0][DEV] = 0;
2841 t->current_tregs[1][ADR] = SL11_BUFFER_END - 8;
2842 t->current_tregs[1][LEN] = 0;
2843 t->current_tregs[1][PID] = 0;
2844 t->current_tregs[1][DEV] = 0;
2845
2846 /* SOF start will produce USBA interrupt */
2847 t->len[A] = 0;
2848 t->flags |= F_AINPROG;
2849
2850 slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS);
2851 }
2852
2853 t->flags &= ~(F_UDISABLED|F_RESET);
2854 t->flags |= F_CRESET|F_ROOTINTR;
2855 FOREACH_AP(q, t, spipe) {
2856 spipe->pflags &= ~PF_GONE;
2857 spipe->pipe.up_aborting = 0;
2858 }
2859 DLOG(D_MSG, "RESET done flags %#x", t->flags, 0,0,0);
2860 }
2861
2862 /* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */
2863 static int
2864 slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int
2865 reserve)
2866 {
2867 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2868 struct slhci_transfers *t;
2869 int bustime, max_packet;
2870
2871 KASSERT(mutex_owned(&sc->sc_intr_lock));
2872
2873 t = &sc->sc_transfers;
2874 max_packet = UGETW(spipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize);
2875
2876 if (spipe->pflags & PF_LS)
2877 bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet);
2878 else
2879 bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet);
2880
2881 if (!reserve) {
2882 t->reserved_bustime -= bustime;
2883 #ifdef DIAGNOSTIC
2884 if (t->reserved_bustime < 0) {
2885 printf("%s: reserved_bustime %d < 0!\n",
2886 SC_NAME(sc), t->reserved_bustime);
2887 DDOLOG("%s: reserved_bustime %d < 0!\n",
2888 SC_NAME(sc), t->reserved_bustime, 0,0);
2889 t->reserved_bustime = 0;
2890 }
2891 #endif
2892 return 1;
2893 }
2894
2895 if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) {
2896 if (ratecheck(&sc->sc_reserved_warn_rate,
2897 &reserved_warn_rate))
2898 #ifdef SLHCI_NO_OVERTIME
2899 {
2900 printf("%s: Max reserved bus time exceeded! "
2901 "Erroring request.\n", SC_NAME(sc));
2902 DDOLOG("%s: Max reserved bus time exceeded! "
2903 "Erroring request.\n", SC_NAME(sc), 0,0,0);
2904 }
2905 return 0;
2906 #else
2907 {
2908 printf("%s: Reserved bus time exceeds %d!\n",
2909 SC_NAME(sc), SLHCI_RESERVED_BUSTIME);
2910 DDOLOG("%s: Reserved bus time exceeds %d!\n",
2911 SC_NAME(sc), SLHCI_RESERVED_BUSTIME, 0,0);
2912 }
2913 #endif
2914 }
2915
2916 t->reserved_bustime += bustime;
2917 return 1;
2918 }
2919
2920 /* Device insertion/removal interrupt */
2921 static void
2922 slhci_insert(struct slhci_softc *sc)
2923 {
2924 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2925 struct slhci_transfers *t;
2926
2927 t = &sc->sc_transfers;
2928
2929 KASSERT(mutex_owned(&sc->sc_intr_lock));
2930
2931 if (t->flags & F_NODEV)
2932 slhci_intrchange(sc, 0);
2933 else {
2934 slhci_drain(sc);
2935 slhci_intrchange(sc, SL11_IER_INSERT);
2936 }
2937 t->flags ^= F_NODEV;
2938 t->flags |= F_ROOTINTR|F_CCONNECT;
2939 DLOG(D_MSG, "INSERT intr: flags after %#x", t->flags, 0,0,0);
2940 }
2941
2942 /*
2943 * Data structures and routines to emulate the root hub.
2944 */
2945
2946 static usbd_status
2947 slhci_clear_feature(struct slhci_softc *sc, unsigned int what)
2948 {
2949 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2950 struct slhci_transfers *t;
2951 usbd_status error;
2952
2953 t = &sc->sc_transfers;
2954 error = USBD_NORMAL_COMPLETION;
2955
2956 KASSERT(mutex_owned(&sc->sc_intr_lock));
2957
2958 if (what == UHF_PORT_POWER) {
2959 DLOG(D_MSG, "POWER_OFF", 0,0,0,0);
2960 t->flags &= ~F_POWER;
2961 if (!(t->flags & F_NODEV))
2962 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
2963 /* for x68k Nereid USB controller */
2964 if (sc->sc_enable_power && (t->flags & F_REALPOWER)) {
2965 t->flags &= ~F_REALPOWER;
2966 sc->sc_enable_power(sc, POWER_OFF);
2967 }
2968 slhci_intrchange(sc, 0);
2969 slhci_drain(sc);
2970 } else if (what == UHF_C_PORT_CONNECTION) {
2971 t->flags &= ~F_CCONNECT;
2972 } else if (what == UHF_C_PORT_RESET) {
2973 t->flags &= ~F_CRESET;
2974 } else if (what == UHF_PORT_ENABLE) {
2975 slhci_drain(sc);
2976 } else if (what != UHF_PORT_SUSPEND) {
2977 DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0);
2978 error = USBD_IOERROR;
2979 }
2980
2981 return error;
2982 }
2983
2984 static usbd_status
2985 slhci_set_feature(struct slhci_softc *sc, unsigned int what)
2986 {
2987 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2988 struct slhci_transfers *t;
2989 uint8_t r;
2990
2991 t = &sc->sc_transfers;
2992
2993 KASSERT(mutex_owned(&sc->sc_intr_lock));
2994
2995 if (what == UHF_PORT_RESET) {
2996 if (!(t->flags & F_ACTIVE)) {
2997 DDOLOG("SET PORT_RESET when not ACTIVE!",
2998 0,0,0,0);
2999 return USBD_INVAL;
3000 }
3001 if (!(t->flags & F_POWER)) {
3002 DDOLOG("SET PORT_RESET without PORT_POWER! flags %p",
3003 t->flags, 0,0,0);
3004 return USBD_INVAL;
3005 }
3006 if (t->flags & F_RESET)
3007 return USBD_NORMAL_COMPLETION;
3008 DLOG(D_MSG, "RESET flags %#x", t->flags, 0,0,0);
3009 slhci_intrchange(sc, 0);
3010 slhci_drain(sc);
3011 slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE);
3012 /* usb spec says delay >= 10ms, app note 50ms */
3013 start_cc_time(&t_delay, 50000);
3014 if (sc->sc_bus.ub_usepolling) {
3015 DELAY(50000);
3016 slhci_reset(sc);
3017 } else {
3018 t->flags |= F_RESET;
3019 callout_schedule(&sc->sc_timer, max(mstohz(50), 2));
3020 }
3021 } else if (what == UHF_PORT_SUSPEND) {
3022 printf("%s: USB Suspend not implemented!\n", SC_NAME(sc));
3023 DDOLOG("%s: USB Suspend not implemented!\n", SC_NAME(sc),
3024 0,0,0);
3025 } else if (what == UHF_PORT_POWER) {
3026 DLOG(D_MSG, "PORT_POWER", 0,0,0,0);
3027 /* for x68k Nereid USB controller */
3028 if (!(t->flags & F_ACTIVE))
3029 return USBD_INVAL;
3030 if (t->flags & F_POWER)
3031 return USBD_NORMAL_COMPLETION;
3032 if (!(t->flags & F_REALPOWER)) {
3033 if (sc->sc_enable_power)
3034 sc->sc_enable_power(sc, POWER_ON);
3035 t->flags |= F_REALPOWER;
3036 }
3037 t->flags |= F_POWER;
3038 r = slhci_read(sc, SL11_ISR);
3039 if (r & SL11_ISR_INSERT)
3040 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
3041 if (r & SL11_ISR_NODEV) {
3042 slhci_intrchange(sc, SL11_IER_INSERT);
3043 t->flags |= F_NODEV;
3044 } else {
3045 t->flags &= ~F_NODEV;
3046 t->flags |= F_CCONNECT|F_ROOTINTR;
3047 }
3048 } else {
3049 DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0);
3050 return USBD_IOERROR;
3051 }
3052
3053 return USBD_NORMAL_COMPLETION;
3054 }
3055
3056 static void
3057 slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps)
3058 {
3059 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3060 struct slhci_transfers *t;
3061 unsigned int status, change;
3062
3063 t = &sc->sc_transfers;
3064
3065 KASSERT(mutex_owned(&sc->sc_intr_lock));
3066
3067 /*
3068 * We do not have a way to detect over current or babble and
3069 * suspend is currently not implemented, so connect and reset
3070 * are the only changes that need to be reported.
3071 */
3072 change = 0;
3073 if (t->flags & F_CCONNECT)
3074 change |= UPS_C_CONNECT_STATUS;
3075 if (t->flags & F_CRESET)
3076 change |= UPS_C_PORT_RESET;
3077
3078 status = 0;
3079 if (!(t->flags & F_NODEV))
3080 status |= UPS_CURRENT_CONNECT_STATUS;
3081 if (!(t->flags & F_UDISABLED))
3082 status |= UPS_PORT_ENABLED;
3083 if (t->flags & F_RESET)
3084 status |= UPS_RESET;
3085 if (t->flags & F_POWER)
3086 status |= UPS_PORT_POWER;
3087 if (t->flags & F_LOWSPEED)
3088 status |= UPS_LOW_SPEED;
3089 USETW(ps->wPortStatus, status);
3090 USETW(ps->wPortChange, change);
3091 DLOG(D_ROOT, "status=%#.4x, change=%#.4x", status, change, 0,0);
3092 }
3093
3094 static int
3095 slhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
3096 void *buf, int buflen)
3097 {
3098 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3099 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
3100 struct slhci_transfers *t = &sc->sc_transfers;
3101 usbd_status error = USBD_IOERROR; /* XXX should be STALL */
3102 uint16_t len, value, index;
3103 uint8_t type;
3104 int actlen = 0;
3105
3106 len = UGETW(req->wLength);
3107 value = UGETW(req->wValue);
3108 index = UGETW(req->wIndex);
3109
3110 type = req->bmRequestType;
3111
3112 SLHCI_DEXEC(D_TRACE, slhci_log_req_hub(req));
3113
3114 /*
3115 * USB requests for hubs have two basic types, standard and class.
3116 * Each could potentially have recipients of device, interface,
3117 * endpoint, or other. For the hub class, CLASS_OTHER means the port
3118 * and CLASS_DEVICE means the hub. For standard requests, OTHER
3119 * is not used. Standard request are described in section 9.4 of the
3120 * standard, hub class requests in 11.16. Each request is either read
3121 * or write.
3122 *
3123 * Clear Feature, Set Feature, and Status are defined for each of the
3124 * used recipients. Get Descriptor and Set Descriptor are defined for
3125 * both standard and hub class types with different descriptors.
3126 * Other requests have only one defined recipient and type. These
3127 * include: Get/Set Address, Get/Set Configuration, Get/Set Interface,
3128 * and Synch Frame for standard requests and Get Bus State for hub
3129 * class.
3130 *
3131 * When a device is first powered up it has address 0 until the
3132 * address is set.
3133 *
3134 * Hubs are only allowed to support one interface and may not have
3135 * isochronous endpoints. The results of the related requests are
3136 * undefined.
3137 *
3138 * The standard requires invalid or unsupported requests to return
3139 * STALL in the data stage, however this does not work well with
3140 * current error handling. XXX
3141 *
3142 * Some unsupported fields:
3143 * Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT
3144 * Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP
3145 * Get Bus State is optional sample of D- and D+ at EOF2
3146 */
3147
3148 switch (req->bRequest) {
3149 /* Write Requests */
3150 case UR_CLEAR_FEATURE:
3151 if (type == UT_WRITE_CLASS_OTHER) {
3152 if (index == 1 /* Port */) {
3153 mutex_enter(&sc->sc_intr_lock);
3154 error = slhci_clear_feature(sc, value);
3155 mutex_exit(&sc->sc_intr_lock);
3156 } else
3157 DLOG(D_ROOT, "Clear Port Feature "
3158 "index = %#.4x", index, 0,0,0);
3159 }
3160 break;
3161 case UR_SET_FEATURE:
3162 if (type == UT_WRITE_CLASS_OTHER) {
3163 if (index == 1 /* Port */) {
3164 mutex_enter(&sc->sc_intr_lock);
3165 error = slhci_set_feature(sc, value);
3166 mutex_exit(&sc->sc_intr_lock);
3167 } else
3168 DLOG(D_ROOT, "Set Port Feature "
3169 "index = %#.4x", index, 0,0,0);
3170 } else if (type != UT_WRITE_CLASS_DEVICE)
3171 DLOG(D_ROOT, "Set Device Feature "
3172 "ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP "
3173 "not supported", 0,0,0,0);
3174 break;
3175
3176 /* Read Requests */
3177 case UR_GET_STATUS:
3178 if (type == UT_READ_CLASS_OTHER) {
3179 if (index == 1 /* Port */ && len == /* XXX >=? */
3180 sizeof(usb_port_status_t)) {
3181 mutex_enter(&sc->sc_intr_lock);
3182 slhci_get_status(sc, (usb_port_status_t *)
3183 buf);
3184 mutex_exit(&sc->sc_intr_lock);
3185 actlen = sizeof(usb_port_status_t);
3186 error = USBD_NORMAL_COMPLETION;
3187 } else
3188 DLOG(D_ROOT, "Get Port Status index = %#.4x "
3189 "len = %#.4x", index, len, 0,0);
3190 } else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */
3191 if (len == sizeof(usb_hub_status_t)) {
3192 DLOG(D_ROOT, "Get Hub Status",
3193 0,0,0,0);
3194 actlen = sizeof(usb_hub_status_t);
3195 memset(buf, 0, actlen);
3196 error = USBD_NORMAL_COMPLETION;
3197 } else
3198 DLOG(D_ROOT, "Get Hub Status bad len %#.4x",
3199 len, 0,0,0);
3200 }
3201 break;
3202 case UR_GET_DESCRIPTOR:
3203 if (type == UT_READ_DEVICE) {
3204 /* value is type (&0xff00) and index (0xff) */
3205 if (value == (UDESC_DEVICE<<8)) {
3206 usb_device_descriptor_t devd;
3207
3208 actlen = min(buflen, sizeof(devd));
3209 memcpy(&devd, buf, actlen);
3210 USETW(devd.idVendor, USB_VENDOR_SCANLOGIC);
3211 memcpy(buf, &devd, actlen);
3212 error = USBD_NORMAL_COMPLETION;
3213 } else if (value == (UDESC_CONFIG<<8)) {
3214 struct usb_roothub_descriptors confd;
3215
3216 actlen = min(buflen, sizeof(confd));
3217 memcpy(&confd, buf, actlen);
3218
3219 /* 2 mA units */
3220 confd.urh_confd.bMaxPower = t->max_current;
3221 memcpy(buf, &confd, actlen);
3222 error = USBD_NORMAL_COMPLETION;
3223 } else if (value == ((UDESC_STRING<<8)|1)) {
3224 /* Vendor */
3225 actlen = usb_makestrdesc((usb_string_descriptor_t *)
3226 buf, len, "ScanLogic/Cypress");
3227 error = USBD_NORMAL_COMPLETION;
3228 } else if (value == ((UDESC_STRING<<8)|2)) {
3229 /* Product */
3230 actlen = usb_makestrdesc((usb_string_descriptor_t *)
3231 buf, len, "SL811HS/T root hub");
3232 error = USBD_NORMAL_COMPLETION;
3233 } else
3234 DDOLOG("Unknown Get Descriptor %#.4x",
3235 value, 0,0,0);
3236 } else if (type == UT_READ_CLASS_DEVICE) {
3237 /* Descriptor number is 0 */
3238 if (value == (UDESC_HUB<<8)) {
3239 usb_hub_descriptor_t hubd;
3240
3241 actlen = min(buflen, sizeof(hubd));
3242 memcpy(&hubd, buf, actlen);
3243 hubd.bHubContrCurrent =
3244 500 - t->max_current;
3245 memcpy(buf, &hubd, actlen);
3246 error = USBD_NORMAL_COMPLETION;
3247 } else
3248 DDOLOG("Unknown Get Hub Descriptor %#.4x",
3249 value, 0,0,0);
3250 }
3251 break;
3252 default:
3253 /* default from usbroothub */
3254 return buflen;
3255 }
3256
3257 if (error == USBD_NORMAL_COMPLETION)
3258 return actlen;
3259
3260 return -1;
3261 }
3262
3263 /* End in lock functions. Start debug functions. */
3264
3265 #ifdef SLHCI_DEBUG
3266 void
3267 slhci_log_buffer(struct usbd_xfer *xfer)
3268 {
3269 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3270 u_char *buf;
3271
3272 if(xfer->ux_length > 0 &&
3273 UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) ==
3274 UE_DIR_IN) {
3275 buf = xfer->ux_buf;
3276 DDOLOGBUF(buf, xfer->ux_actlen);
3277 DDOLOG("len %d actlen %d short %d", xfer->ux_length,
3278 xfer->ux_actlen, xfer->ux_length - xfer->ux_actlen, 0);
3279 }
3280 }
3281
3282 void
3283 slhci_log_req(usb_device_request_t *r)
3284 {
3285 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3286 static const char *xmes[]={
3287 "GETSTAT",
3288 "CLRFEAT",
3289 "res",
3290 "SETFEAT",
3291 "res",
3292 "SETADDR",
3293 "GETDESC",
3294 "SETDESC",
3295 "GETCONF",
3296 "SETCONF",
3297 "GETIN/F",
3298 "SETIN/F",
3299 "SYNC_FR",
3300 "UNKNOWN"
3301 };
3302 int req, mreq, type, value, index, len;
3303
3304 req = r->bRequest;
3305 mreq = (req > 13) ? 13 : req;
3306 type = r->bmRequestType;
3307 value = UGETW(r->wValue);
3308 index = UGETW(r->wIndex);
3309 len = UGETW(r->wLength);
3310
3311 DDOLOG("request: %s %#x", xmes[mreq], type, 0,0);
3312 DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len);
3313 }
3314
3315 void
3316 slhci_log_req_hub(usb_device_request_t *r)
3317 {
3318 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3319 static const struct {
3320 int req;
3321 int type;
3322 const char *str;
3323 } conf[] = {
3324 { 1, 0x20, "ClrHubFeat" },
3325 { 1, 0x23, "ClrPortFeat" },
3326 { 2, 0xa3, "GetBusState" },
3327 { 6, 0xa0, "GetHubDesc" },
3328 { 0, 0xa0, "GetHubStat" },
3329 { 0, 0xa3, "GetPortStat" },
3330 { 7, 0x20, "SetHubDesc" },
3331 { 3, 0x20, "SetHubFeat" },
3332 { 3, 0x23, "SetPortFeat" },
3333 {-1, 0, NULL},
3334 };
3335 int i;
3336 int value, index, len;
3337 const char *str;
3338
3339 value = UGETW(r->wValue);
3340 index = UGETW(r->wIndex);
3341 len = UGETW(r->wLength);
3342 for (i = 0; ; i++) {
3343 if (conf[i].req == -1 ) {
3344 slhci_log_req(r);
3345 return;
3346 }
3347 if (r->bmRequestType == conf[i].type && r->bRequest == conf[i].req) {
3348 str = conf[i].str;
3349 break;
3350 }
3351 }
3352 DDOLOG("hub request: %s v=%d,i=%d,l=%d ", str, value, index, len);
3353 }
3354
3355 void
3356 slhci_log_dumpreg(void)
3357 {
3358 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3359 uint8_t r;
3360 unsigned int aaddr, alen, baddr, blen;
3361 static u_char buf[240];
3362
3363 r = slhci_read(ssc, SL11_E0CTRL);
3364 DDOLOG("USB A Host Control = %#.2x", r, 0,0,0);
3365 DDOLOGFLAG8("E0CTRL=", r, "Preamble", "Data Toggle", "SOF Sync",
3366 "ISOC", "res", "Out", "Enable", "Arm");
3367 aaddr = slhci_read(ssc, SL11_E0ADDR);
3368 DDOLOG("USB A Base Address = %u", aaddr, 0,0,0);
3369 alen = slhci_read(ssc, SL11_E0LEN);
3370 DDOLOG("USB A Length = %u", alen, 0,0,0);
3371 r = slhci_read(ssc, SL11_E0STAT);
3372 DDOLOG("USB A Status = %#.2x", r, 0,0,0);
3373 DDOLOGFLAG8("E0STAT=", r, "STALL", "NAK", "Overflow", "Setup",
3374 "Data Toggle", "Timeout", "Error", "ACK");
3375 r = slhci_read(ssc, SL11_E0CONT);
3376 DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0);
3377 r = slhci_read(ssc, SL11_E1CTRL);
3378 DDOLOG("USB B Host Control = %#.2x", r, 0,0,0);
3379 DDOLOGFLAG8("E1CTRL=", r, "Preamble", "Data Toggle", "SOF Sync",
3380 "ISOC", "res", "Out", "Enable", "Arm");
3381 baddr = slhci_read(ssc, SL11_E1ADDR);
3382 DDOLOG("USB B Base Address = %u", baddr, 0,0,0);
3383 blen = slhci_read(ssc, SL11_E1LEN);
3384 DDOLOG("USB B Length = %u", blen, 0,0,0);
3385 r = slhci_read(ssc, SL11_E1STAT);
3386 DDOLOG("USB B Status = %#.2x", r, 0,0,0);
3387 DDOLOGFLAG8("E1STAT=", r, "STALL", "NAK", "Overflow", "Setup",
3388 "Data Toggle", "Timeout", "Error", "ACK");
3389 r = slhci_read(ssc, SL11_E1CONT);
3390 DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0);
3391
3392 r = slhci_read(ssc, SL11_CTRL);
3393 DDOLOG("Control = %#.2x", r, 0,0,0);
3394 DDOLOGFLAG8("CTRL=", r, "res", "Suspend", "LOW Speed",
3395 "J-K State Force", "Reset", "res", "res", "SOF");
3396 r = slhci_read(ssc, SL11_IER);
3397 DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0);
3398 DDOLOGFLAG8("IER=", r, "D+ **IER!**", "Device Detect/Resume",
3399 "Insert/Remove", "SOF", "res", "res", "USBB", "USBA");
3400 r = slhci_read(ssc, SL11_ISR);
3401 DDOLOG("Interrupt Status = %#.2x", r, 0,0,0);
3402 DDOLOGFLAG8("ISR=", r, "D+", "Device Detect/Resume",
3403 "Insert/Remove", "SOF", "res", "res", "USBB", "USBA");
3404 r = slhci_read(ssc, SL11_REV);
3405 DDOLOG("Revision = %#.2x", r, 0,0,0);
3406 r = slhci_read(ssc, SL811_CSOF);
3407 DDOLOG("SOF Counter = %#.2x", r, 0,0,0);
3408
3409 if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END &&
3410 alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) {
3411 slhci_read_multi(ssc, aaddr, buf, alen);
3412 DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0);
3413 DDOLOGBUF(buf, alen);
3414 } else if (alen)
3415 DDOLOG("USBA Buffer Invalid", 0,0,0,0);
3416
3417 if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END &&
3418 blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) {
3419 slhci_read_multi(ssc, baddr, buf, blen);
3420 DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0);
3421 DDOLOGBUF(buf, blen);
3422 } else if (blen)
3423 DDOLOG("USBB Buffer Invalid", 0,0,0,0);
3424 }
3425
3426 void
3427 slhci_log_xfer(struct usbd_xfer *xfer)
3428 {
3429 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3430 DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,",
3431 xfer->ux_length, xfer->ux_actlen, xfer->ux_flags, xfer->ux_timeout);
3432 DDOLOG("buffer=%p", xfer->ux_buf, 0,0,0);
3433 slhci_log_req_hub(&xfer->ux_request);
3434 }
3435
3436 void
3437 slhci_log_spipe(struct slhci_pipe *spipe)
3438 {
3439 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3440 DDOLOG("spipe %p onlists: %s %s %s", spipe, gcq_onlist(&spipe->ap) ?
3441 "AP" : "", gcq_onlist(&spipe->to) ? "TO" : "",
3442 gcq_onlist(&spipe->xq) ? "XQ" : "");
3443 DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %s",
3444 spipe->xfer, spipe->buffer, spipe->pflags, pnames(spipe->ptype));
3445 }
3446
3447 void
3448 slhci_print_intr(void)
3449 {
3450 unsigned int ier, isr;
3451 ier = slhci_read(ssc, SL11_IER);
3452 isr = slhci_read(ssc, SL11_ISR);
3453 printf("IER: %#x ISR: %#x \n", ier, isr);
3454 }
3455
3456 #if 0
3457 void
3458 slhci_log_sc(void)
3459 {
3460 struct slhci_transfers *t;
3461 int i;
3462
3463 t = &ssc->sc_transfers;
3464
3465 DDOLOG("Flags=%#x", t->flags, 0,0,0);
3466 DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0],
3467 t->spipe[1], t->len[1]);
3468
3469 for (i=0; i<=Q_MAX; i++)
3470 DDOLOG("Q %d: %p", i, gcq_first(&t->q[i]), 0,0);
3471
3472 DDOLOG("TIMED: %p", GCQ_ITEM(gcq_first(&t->to),
3473 struct slhci_pipe, to), 0,0,0);
3474
3475 DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0);
3476
3477 DDOLOG("ub_usepolling=%d", ssc->sc_bus.ub_usepolling, 0, 0, 0);
3478 }
3479
3480 void
3481 slhci_log_slreq(struct slhci_pipe *r)
3482 {
3483 DDOLOG("next: %p", r->q.next.sqe_next, 0,0,0);
3484 DDOLOG("xfer: %p", r->xfer, 0,0,0);
3485 DDOLOG("buffer: %p", r->buffer, 0,0,0);
3486 DDOLOG("bustime: %u", r->bustime, 0,0,0);
3487 DDOLOG("control: %#x", r->control, 0,0,0);
3488 DDOLOGFLAG8("control=", r->control, "Preamble", "Data Toggle",
3489 "SOF Sync", "ISOC", "res", "Out", "Enable", "Arm");
3490 DDOLOG("pid: %#x", r->tregs[PID], 0,0,0);
3491 DDOLOG("dev: %u", r->tregs[DEV], 0,0,0);
3492 DDOLOG("len: %u", r->tregs[LEN], 0,0,0);
3493
3494 if (r->xfer)
3495 slhci_log_xfer(r->xfer);
3496 }
3497 #endif
3498 #endif /* SLHCI_DEBUG */
3499 /* End debug functions. */
3500