sl811hs.c revision 1.77 1 /* $NetBSD: sl811hs.c,v 1.77 2016/06/17 15:57:08 skrll Exp $ */
2
3 /*
4 * Not (c) 2007 Matthew Orgass
5 * This file is public domain, meaning anyone can make any use of part or all
6 * of this file including copying into other works without credit. Any use,
7 * modified or not, is solely the responsibility of the user. If this file is
8 * part of a collection then use in the collection is governed by the terms of
9 * the collection.
10 */
11
12 /*
13 * Cypress/ScanLogic SL811HS/T USB Host Controller
14 * Datasheet, Errata, and App Note available at www.cypress.com
15 *
16 * Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid X68k USB HC, ISA
17 * HCs. The Ratoc CFU2 uses a different chip.
18 *
19 * This chip puts the serial in USB. It implements USB by means of an eight
20 * bit I/O interface. It can be used for ISA, PCMCIA/CF, parallel port,
21 * serial port, or any eight bit interface. It has 256 bytes of memory, the
22 * first 16 of which are used for register access. There are two sets of
23 * registers for sending individual bus transactions. Because USB is polled,
24 * this organization means that some amount of card access must often be made
25 * when devices are attached, even if when they are not directly being used.
26 * A per-ms frame interrupt is necessary and many devices will poll with a
27 * per-frame bulk transfer.
28 *
29 * It is possible to write a little over two bytes to the chip (auto
30 * incremented) per full speed byte time on the USB. Unfortunately,
31 * auto-increment does not work reliably so write and bus speed is
32 * approximately the same for full speed devices.
33 *
34 * In addition to the 240 byte packet size limit for isochronous transfers,
35 * this chip has no means of determining the current frame number other than
36 * getting all 1ms SOF interrupts, which is not always possible even on a fast
37 * system. Isochronous transfers guarantee that transfers will never be
38 * retried in a later frame, so this can cause problems with devices beyond
39 * the difficulty in actually performing the transfer most frames. I tried
40 * implementing isoc transfers and was able to play CD-derrived audio via an
41 * iMic on a 2GHz PC, however it would still be interrupted at times and
42 * once interrupted, would stay out of sync. All isoc support has been
43 * removed.
44 *
45 * BUGS: all chip revisions have problems with low speed devices through hubs.
46 * The chip stops generating SOF with hubs that send SE0 during SOF. See
47 * comment in dointr(). All performance enhancing features of this chip seem
48 * not to work properly, most confirmed buggy in errata doc.
49 *
50 */
51
52 /*
53 * The hard interrupt is the main entry point. Start, callbacks, and repeat
54 * are the only others called frequently.
55 *
56 * Since this driver attaches to pcmcia, card removal at any point should be
57 * expected and not cause panics or infinite loops.
58 */
59
60 /*
61 * XXX TODO:
62 * copy next output packet while transfering
63 * usb suspend
64 * could keep track of known values of all buffer space?
65 * combined print/log function for errors
66 *
67 * ub_usepolling support is untested and may not work
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.77 2016/06/17 15:57:08 skrll Exp $");
72
73 #ifdef _KERNEL_OPT
74 #include "opt_slhci.h"
75 #include "opt_usb.h"
76 #endif
77
78 #include <sys/param.h>
79
80 #include <sys/bus.h>
81 #include <sys/cpu.h>
82 #include <sys/device.h>
83 #include <sys/gcq.h>
84 #include <sys/intr.h>
85 #include <sys/kernel.h>
86 #include <sys/kmem.h>
87 #include <sys/proc.h>
88 #include <sys/queue.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91
92 #include <dev/usb/usb.h>
93 #include <dev/usb/usbdi.h>
94 #include <dev/usb/usbdivar.h>
95 #include <dev/usb/usbhist.h>
96 #include <dev/usb/usb_mem.h>
97 #include <dev/usb/usbdevs.h>
98 #include <dev/usb/usbroothub.h>
99
100 #include <dev/ic/sl811hsreg.h>
101 #include <dev/ic/sl811hsvar.h>
102
103 #define Q_CB 0 /* Control/Bulk */
104 #define Q_NEXT_CB 1
105 #define Q_MAX_XFER Q_CB
106 #define Q_CALLBACKS 2
107 #define Q_MAX Q_CALLBACKS
108
109 #define F_AREADY (0x00000001)
110 #define F_BREADY (0x00000002)
111 #define F_AINPROG (0x00000004)
112 #define F_BINPROG (0x00000008)
113 #define F_LOWSPEED (0x00000010)
114 #define F_UDISABLED (0x00000020) /* Consider disabled for USB */
115 #define F_NODEV (0x00000040)
116 #define F_ROOTINTR (0x00000080)
117 #define F_REALPOWER (0x00000100) /* Actual power state */
118 #define F_POWER (0x00000200) /* USB reported power state */
119 #define F_ACTIVE (0x00000400)
120 #define F_CALLBACK (0x00000800) /* Callback scheduled */
121 #define F_SOFCHECK1 (0x00001000)
122 #define F_SOFCHECK2 (0x00002000)
123 #define F_CRESET (0x00004000) /* Reset done not reported */
124 #define F_CCONNECT (0x00008000) /* Connect change not reported */
125 #define F_RESET (0x00010000)
126 #define F_ISOC_WARNED (0x00020000)
127 #define F_LSVH_WARNED (0x00040000)
128
129 #define F_DISABLED (F_NODEV|F_UDISABLED)
130 #define F_CHANGE (F_CRESET|F_CCONNECT)
131
132 #ifdef SLHCI_TRY_LSVH
133 unsigned int slhci_try_lsvh = 1;
134 #else
135 unsigned int slhci_try_lsvh = 0;
136 #endif
137
138 #define ADR 0
139 #define LEN 1
140 #define PID 2
141 #define DEV 3
142 #define STAT 2
143 #define CONT 3
144
145 #define A 0
146 #define B 1
147
148 static const uint8_t slhci_tregs[2][4] =
149 {{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV },
150 {SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }};
151
152 #define PT_ROOT_CTRL 0
153 #define PT_ROOT_INTR 1
154 #define PT_CTRL_SETUP 2
155 #define PT_CTRL_DATA 3
156 #define PT_CTRL_STATUS 4
157 #define PT_INTR 5
158 #define PT_BULK 6
159 #define PT_MAX 6
160
161 #ifdef SLHCI_DEBUG
162 #define SLHCI_MEM_ACCOUNTING
163 static const char *
164 pnames(int ptype)
165 {
166 static const char * const names[] = { "ROOT Ctrl", "ROOT Intr",
167 "Control (setup)", "Control (data)", "Control (status)",
168 "Interrupt", "Bulk", "BAD PTYPE" };
169
170 KASSERT(sizeof(names) / sizeof(names[0]) == PT_MAX + 2);
171 if (ptype > PT_MAX)
172 ptype = PT_MAX + 1;
173 return names[ptype];
174 }
175 #endif
176
177 /*
178 * Maximum allowable reserved bus time. Since intr/isoc transfers have
179 * unconditional priority, this is all that ensures control and bulk transfers
180 * get a chance. It is a single value for all frames since all transfers can
181 * use multiple consecutive frames if an error is encountered. Note that it
182 * is not really possible to fill the bus with transfers, so this value should
183 * be on the low side. Defaults to giving a warning unless SLHCI_NO_OVERTIME
184 * is defined. Full time is 12000 - END_BUSTIME.
185 */
186 #ifndef SLHCI_RESERVED_BUSTIME
187 #define SLHCI_RESERVED_BUSTIME 5000
188 #endif
189
190 /*
191 * Rate for "exceeds reserved bus time" warnings (default) or errors.
192 * Warnings only happen when an endpoint open causes the time to go above
193 * SLHCI_RESERVED_BUSTIME, not if it is already above.
194 */
195 #ifndef SLHCI_OVERTIME_WARNING_RATE
196 #define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */
197 #endif
198 static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE;
199
200 /* Rate for overflow warnings */
201 #ifndef SLHCI_OVERFLOW_WARNING_RATE
202 #define SLHCI_OVERFLOW_WARNING_RATE { 60, 0 } /* 60 seconds */
203 #endif
204 static const struct timeval overflow_warn_rate = SLHCI_OVERFLOW_WARNING_RATE;
205
206 /*
207 * For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of
208 * 20 bit times. By default leave 66 bit times to start the transfer beyond
209 * the required time. Units are full-speed bit times (a bit over 5us per 64).
210 * Only multiples of 64 are significant.
211 */
212 #define SLHCI_STANDARD_END_BUSTIME 128
213 #ifndef SLHCI_EXTRA_END_BUSTIME
214 #define SLHCI_EXTRA_END_BUSTIME 0
215 #endif
216
217 #define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME)
218
219 /*
220 * This is an approximation of the USB worst-case timings presented on p. 54 of
221 * the USB 1.1 spec translated to full speed bit times.
222 * FS = full speed with handshake, FSII = isoc in, FSIO = isoc out,
223 * FSI = isoc (worst case), LS = low speed
224 */
225 #define SLHCI_FS_CONST 114
226 #define SLHCI_FSII_CONST 92
227 #define SLHCI_FSIO_CONST 80
228 #define SLHCI_FSI_CONST 92
229 #define SLHCI_LS_CONST 804
230 #ifndef SLHCI_PRECICE_BUSTIME
231 /*
232 * These values are < 3% too high (compared to the multiply and divide) for
233 * max sized packets.
234 */
235 #define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1))
236 #define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4))
237 #else
238 #define SLHCI_FS_DATA_TIME(len) (56*(len)/6)
239 #define SLHCI_LS_DATA_TIME(len) (449*(len)/6)
240 #endif
241
242 /*
243 * Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer
244 * to poll for after starting a transfer. 64 gets all full speed transfers.
245 * Note that even if 0 polling will occur if data equal or greater than the
246 * transfer size is copied to the chip while the transfer is in progress.
247 * Setting SLHCI_WAIT_TIME to -12000 will disable polling.
248 */
249 #ifndef SLHCI_WAIT_SIZE
250 #define SLHCI_WAIT_SIZE 8
251 #endif
252 #ifndef SLHCI_WAIT_TIME
253 #define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \
254 SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE))
255 #endif
256 const int slhci_wait_time = SLHCI_WAIT_TIME;
257
258 #ifndef SLHCI_MAX_RETRIES
259 #define SLHCI_MAX_RETRIES 3
260 #endif
261
262 /* Check IER values for corruption after this many unrecognized interrupts. */
263 #ifndef SLHCI_IER_CHECK_FREQUENCY
264 #ifdef SLHCI_DEBUG
265 #define SLHCI_IER_CHECK_FREQUENCY 1
266 #else
267 #define SLHCI_IER_CHECK_FREQUENCY 100
268 #endif
269 #endif
270
271 /* Note that buffer points to the start of the buffer for this transfer. */
272 struct slhci_pipe {
273 struct usbd_pipe pipe;
274 struct usbd_xfer *xfer; /* xfer in progress */
275 uint8_t *buffer; /* I/O buffer (if needed) */
276 struct gcq ap; /* All pipes */
277 struct gcq to; /* Timeout list */
278 struct gcq xq; /* Xfer queues */
279 unsigned int pflags; /* Pipe flags */
280 #define PF_GONE (0x01) /* Pipe is on disabled device */
281 #define PF_TOGGLE (0x02) /* Data toggle status */
282 #define PF_LS (0x04) /* Pipe is low speed */
283 #define PF_PREAMBLE (0x08) /* Needs preamble */
284 Frame to_frame; /* Frame number for timeout */
285 Frame frame; /* Frame number for intr xfer */
286 Frame lastframe; /* Previous frame number for intr */
287 uint16_t bustime; /* Worst case bus time usage */
288 uint16_t newbustime[2]; /* new bustimes (see index below) */
289 uint8_t tregs[4]; /* ADR, LEN, PID, DEV */
290 uint8_t newlen[2]; /* 0 = short data, 1 = ctrl data */
291 uint8_t newpid; /* for ctrl */
292 uint8_t wantshort; /* last xfer must be short */
293 uint8_t control; /* Host control register settings */
294 uint8_t nerrs; /* Current number of errors */
295 uint8_t ptype; /* Pipe type */
296 };
297
298 #define SLHCI_BUS2SC(bus) ((bus)->ub_hcpriv)
299 #define SLHCI_PIPE2SC(pipe) SLHCI_BUS2SC((pipe)->up_dev->ud_bus)
300 #define SLHCI_XFER2SC(xfer) SLHCI_BUS2SC((xfer)->ux_bus)
301
302 #define SLHCI_PIPE2SPIPE(pipe) ((struct slhci_pipe *)(pipe))
303 #define SLHCI_XFER2SPIPE(xfer) SLHCI_PIPE2SPIPE((xfer)->ux_pipe)
304
305 #define SLHCI_XFER_TYPE(x) (SLHCI_XFER2SPIPE(xfer)->ptype)
306
307 #ifdef SLHCI_PROFILE_TRANSFER
308 #if defined(__mips__)
309 /*
310 * MIPS cycle counter does not directly count cpu cycles but is a different
311 * fraction of cpu cycles depending on the cpu.
312 */
313 typedef uint32_t cc_type;
314 #define CC_TYPE_FMT "%u"
315 #define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \
316 : [cc] "=r"(x))
317 #elif defined(__i386__)
318 typedef uint64_t cc_type;
319 #define CC_TYPE_FMT "%llu"
320 #define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x))
321 #else
322 #error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)"
323 #endif
324 struct slhci_cc_time {
325 cc_type start;
326 cc_type stop;
327 unsigned int miscdata;
328 };
329 #ifndef SLHCI_N_TIMES
330 #define SLHCI_N_TIMES 200
331 #endif
332 struct slhci_cc_times {
333 struct slhci_cc_time times[SLHCI_N_TIMES];
334 int current;
335 int wraparound;
336 };
337
338 static struct slhci_cc_times t_ab[2];
339 static struct slhci_cc_times t_abdone;
340 static struct slhci_cc_times t_copy_to_dev;
341 static struct slhci_cc_times t_copy_from_dev;
342 static struct slhci_cc_times t_intr;
343 static struct slhci_cc_times t_lock;
344 static struct slhci_cc_times t_delay;
345 static struct slhci_cc_times t_hard_int;
346 static struct slhci_cc_times t_callback;
347
348 static inline void
349 start_cc_time(struct slhci_cc_times *times, unsigned int misc) {
350 times->times[times->current].miscdata = misc;
351 slhci_cc_set(times->times[times->current].start);
352 }
353 static inline void
354 stop_cc_time(struct slhci_cc_times *times) {
355 slhci_cc_set(times->times[times->current].stop);
356 if (++times->current >= SLHCI_N_TIMES) {
357 times->current = 0;
358 times->wraparound = 1;
359 }
360 }
361
362 void slhci_dump_cc_times(int);
363
364 void
365 slhci_dump_cc_times(int n) {
366 struct slhci_cc_times *times;
367 int i;
368
369 switch (n) {
370 default:
371 case 0:
372 printf("USBA start transfer to intr:\n");
373 times = &t_ab[A];
374 break;
375 case 1:
376 printf("USBB start transfer to intr:\n");
377 times = &t_ab[B];
378 break;
379 case 2:
380 printf("abdone:\n");
381 times = &t_abdone;
382 break;
383 case 3:
384 printf("copy to device:\n");
385 times = &t_copy_to_dev;
386 break;
387 case 4:
388 printf("copy from device:\n");
389 times = &t_copy_from_dev;
390 break;
391 case 5:
392 printf("intr to intr:\n");
393 times = &t_intr;
394 break;
395 case 6:
396 printf("lock to release:\n");
397 times = &t_lock;
398 break;
399 case 7:
400 printf("delay time:\n");
401 times = &t_delay;
402 break;
403 case 8:
404 printf("hard interrupt enter to exit:\n");
405 times = &t_hard_int;
406 break;
407 case 9:
408 printf("callback:\n");
409 times = &t_callback;
410 break;
411 }
412
413 if (times->wraparound)
414 for (i = times->current + 1; i < SLHCI_N_TIMES; i++)
415 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
416 " difference %8i miscdata %#x\n",
417 times->times[i].start, times->times[i].stop,
418 (int)(times->times[i].stop -
419 times->times[i].start), times->times[i].miscdata);
420
421 for (i = 0; i < times->current; i++)
422 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
423 " difference %8i miscdata %#x\n", times->times[i].start,
424 times->times[i].stop, (int)(times->times[i].stop -
425 times->times[i].start), times->times[i].miscdata);
426 }
427 #else
428 #define start_cc_time(x, y)
429 #define stop_cc_time(x)
430 #endif /* SLHCI_PROFILE_TRANSFER */
431
432 typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe
433 *, struct usbd_xfer *);
434
435 struct usbd_xfer * slhci_allocx(struct usbd_bus *, unsigned int);
436 void slhci_freex(struct usbd_bus *, struct usbd_xfer *);
437 static void slhci_get_lock(struct usbd_bus *, kmutex_t **);
438
439 usbd_status slhci_transfer(struct usbd_xfer *);
440 usbd_status slhci_start(struct usbd_xfer *);
441 usbd_status slhci_root_start(struct usbd_xfer *);
442 usbd_status slhci_open(struct usbd_pipe *);
443
444 static int slhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
445 void *, int);
446
447 /*
448 * slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach,
449 * slhci_activate
450 */
451
452 void slhci_abort(struct usbd_xfer *);
453 void slhci_close(struct usbd_pipe *);
454 void slhci_clear_toggle(struct usbd_pipe *);
455 void slhci_poll(struct usbd_bus *);
456 void slhci_done(struct usbd_xfer *);
457 void slhci_void(void *);
458
459 /* lock entry functions */
460
461 #ifdef SLHCI_MEM_ACCOUNTING
462 void slhci_mem_use(struct usbd_bus *, int);
463 #endif
464
465 void slhci_reset_entry(void *);
466 usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc,
467 struct slhci_pipe *, struct usbd_xfer *);
468 void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *);
469 void slhci_callback_entry(void *arg);
470 void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *);
471
472 /* slhci_intr */
473
474 void slhci_main(struct slhci_softc *);
475
476 /* in lock functions */
477
478 static void slhci_write(struct slhci_softc *, uint8_t, uint8_t);
479 static uint8_t slhci_read(struct slhci_softc *, uint8_t);
480 static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
481 static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
482
483 static void slhci_waitintr(struct slhci_softc *, int);
484 static int slhci_dointr(struct slhci_softc *);
485 static void slhci_abdone(struct slhci_softc *, int);
486 static void slhci_tstart(struct slhci_softc *);
487 static void slhci_dotransfer(struct slhci_softc *);
488
489 static void slhci_callback(struct slhci_softc *);
490 static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *);
491 static void slhci_enter_xfers(struct slhci_softc *);
492 static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *);
493 static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *);
494
495 static void slhci_callback_schedule(struct slhci_softc *);
496 static void slhci_do_callback_schedule(struct slhci_softc *);
497 #if 0
498 void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *); /* XXX */
499 #endif
500
501 static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *,
502 struct usbd_xfer *);
503 static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *,
504 struct usbd_xfer *);
505 static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *,
506 struct usbd_xfer *);
507 static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *,
508 struct usbd_xfer *);
509 static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *,
510 struct usbd_xfer *);
511 static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *,
512 struct usbd_xfer *);
513 static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *,
514 struct usbd_xfer *);
515
516 static void slhci_intrchange(struct slhci_softc *, uint8_t);
517 static void slhci_drain(struct slhci_softc *);
518 static void slhci_reset(struct slhci_softc *);
519 static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *,
520 int);
521 static void slhci_insert(struct slhci_softc *);
522
523 static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int);
524 static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int);
525 static void slhci_get_status(struct slhci_softc *, usb_port_status_t *);
526
527 #define SLHCIHIST_FUNC() USBHIST_FUNC()
528 #define SLHCIHIST_CALLED() USBHIST_CALLED(slhcidebug)
529
530 #ifdef SLHCI_DEBUG
531 void slhci_log_buffer(struct usbd_xfer *);
532 void slhci_log_req(usb_device_request_t *);
533 void slhci_log_req_hub(usb_device_request_t *);
534 void slhci_log_dumpreg(void);
535 void slhci_log_xfer(struct usbd_xfer *);
536 void slhci_log_spipe(struct slhci_pipe *);
537 void slhci_print_intr(void);
538 void slhci_log_sc(void);
539 void slhci_log_slreq(struct slhci_pipe *);
540
541 /* Constified so you can read the values from ddb */
542 const int SLHCI_D_TRACE = 0x0001;
543 const int SLHCI_D_MSG = 0x0002;
544 const int SLHCI_D_XFER = 0x0004;
545 const int SLHCI_D_MEM = 0x0008;
546 const int SLHCI_D_INTR = 0x0010;
547 const int SLHCI_D_SXFER = 0x0020;
548 const int SLHCI_D_ERR = 0x0080;
549 const int SLHCI_D_BUF = 0x0100;
550 const int SLHCI_D_SOFT = 0x0200;
551 const int SLHCI_D_WAIT = 0x0400;
552 const int SLHCI_D_ROOT = 0x0800;
553 /* SOF/NAK alone normally ignored, SOF also needs D_INTR */
554 const int SLHCI_D_SOF = 0x1000;
555 const int SLHCI_D_NAK = 0x2000;
556
557 int slhcidebug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */
558
559 SYSCTL_SETUP(sysctl_hw_slhci_setup, "sysctl hw.slhci setup")
560 {
561 int err;
562 const struct sysctlnode *rnode;
563 const struct sysctlnode *cnode;
564
565 err = sysctl_createv(clog, 0, NULL, &rnode,
566 CTLFLAG_PERMANENT, CTLTYPE_NODE, "slhci",
567 SYSCTL_DESCR("slhci global controls"),
568 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
569
570 if (err)
571 goto fail;
572
573 /* control debugging printfs */
574 err = sysctl_createv(clog, 0, &rnode, &cnode,
575 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
576 "debug", SYSCTL_DESCR("Enable debugging output"),
577 NULL, 0, &slhcidebug, sizeof(slhcidebug), CTL_CREATE, CTL_EOL);
578 if (err)
579 goto fail;
580
581 return;
582 fail:
583 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
584 }
585
586 struct slhci_softc *ssc;
587
588 #define SLHCI_DEXEC(x, y) do { if ((slhcidebug & SLHCI_ ## x)) { y; } \
589 } while (/*CONSTCOND*/ 0)
590 #define DDOLOG(f, a, b, c, d) do { KERNHIST_LOG(usbhist, f, a, b, c, d); \
591 } while (/*CONSTCOND*/0)
592 #define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d))
593 /*
594 * DLOGFLAG8 is a macro not a function so that flag name expressions are not
595 * evaluated unless the flag bit is set (which could save a register read).
596 * x is debug mask, y is flag identifier, z is flag variable,
597 * a-h are flag names (must evaluate to string constants, msb first).
598 */
599 #define DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h) do { uint8_t _DLF8 = (z); \
600 if (_DLF8 & 0xf0) KERNHIST_LOG(usbhist, y " %s %s %s %s", _DLF8 & 0x80 ? \
601 (a) : "", _DLF8 & 0x40 ? (b) : "", _DLF8 & 0x20 ? (c) : "", _DLF8 & 0x10 ? \
602 (d) : ""); if (_DLF8 & 0x0f) KERNHIST_LOG(usbhist, y " %s %s %s %s", \
603 _DLF8 & 0x08 ? (e) : "", _DLF8 & 0x04 ? (f) : "", _DLF8 & 0x02 ? (g) : "", \
604 _DLF8 & 0x01 ? (h) : ""); \
605 } while (/*CONSTCOND*/ 0)
606 #define DLOGFLAG8(x, y, z, a, b, c, d, e, f, g, h) \
607 SLHCI_DEXEC(x, DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h))
608 /*
609 * DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we
610 * can make it a real function.
611 */
612 static void
613 DDOLOGBUF(uint8_t *buf, unsigned int length)
614 {
615 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
616 int i;
617
618 for(i=0; i+8 <= length; i+=8)
619 DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
620 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
621 (buf[i+6] << 8) | buf[i+7]);
622 if (length == i+7)
623 DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
624 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
625 buf[i+6]);
626 else if (length == i+6)
627 DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
628 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0);
629 else if (length == i+5)
630 DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
631 (buf[i+2] << 8) | buf[i+3], buf[i+4], 0);
632 else if (length == i+4)
633 DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1],
634 (buf[i+2] << 8) | buf[i+3], 0,0);
635 else if (length == i+3)
636 DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0);
637 else if (length == i+2)
638 DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0);
639 else if (length == i+1)
640 DDOLOG("%.2x", buf[i], 0,0,0);
641 }
642 #define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l))
643 #else /* now !SLHCI_DEBUG */
644 #define slhcidebug 0
645 #define slhci_log_spipe(spipe) ((void)0)
646 #define slhci_log_xfer(xfer) ((void)0)
647 #define SLHCI_DEXEC(x, y) ((void)0)
648 #define DDOLOG(f, a, b, c, d) ((void)0)
649 #define DLOG(x, f, a, b, c, d) ((void)0)
650 #define DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h) ((void)0)
651 #define DLOGFLAG8(x, y, z, a, b, c, d, e, f, g, h) ((void)0)
652 #define DDOLOGBUF(b, l) ((void)0)
653 #define DLOGBUF(x, b, l) ((void)0)
654 #endif /* SLHCI_DEBUG */
655
656 #ifdef DIAGNOSTIC
657 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) do { \
658 if (!(exp)) { \
659 printf("%s: assertion %s failed line %u function %s!" \
660 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
661 DDOLOG("%s: assertion %s failed line %u function %s!" \
662 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
663 slhci_halt(sc, spipe, xfer); \
664 ext; \
665 } \
666 } while (/*CONSTCOND*/0)
667 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) do { \
668 if (!(exp)) { \
669 printf("%s: assertion %s failed line %u function %s!" \
670 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \
671 DDOLOG("%s: assertion %s failed line %u function %s!" \
672 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \
673 slhci_lock_call(sc, &slhci_halt, spipe, xfer); \
674 ext; \
675 } \
676 } while (/*CONSTCOND*/0)
677 #else
678 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
679 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
680 #endif
681
682 const struct usbd_bus_methods slhci_bus_methods = {
683 .ubm_open = slhci_open,
684 .ubm_softint= slhci_void,
685 .ubm_dopoll = slhci_poll,
686 .ubm_allocx = slhci_allocx,
687 .ubm_freex = slhci_freex,
688 .ubm_getlock = slhci_get_lock,
689 .ubm_rhctrl = slhci_roothub_ctrl,
690 };
691
692 const struct usbd_pipe_methods slhci_pipe_methods = {
693 .upm_transfer = slhci_transfer,
694 .upm_start = slhci_start,
695 .upm_abort = slhci_abort,
696 .upm_close = slhci_close,
697 .upm_cleartoggle = slhci_clear_toggle,
698 .upm_done = slhci_done,
699 };
700
701 const struct usbd_pipe_methods slhci_root_methods = {
702 .upm_transfer = slhci_transfer,
703 .upm_start = slhci_root_start,
704 .upm_abort = slhci_abort,
705 .upm_close = (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */
706 .upm_cleartoggle = slhci_clear_toggle,
707 .upm_done = slhci_done,
708 };
709
710 /* Queue inlines */
711
712 #define GOT_FIRST_TO(tvar, t) \
713 GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to)
714
715 #define FIND_TO(var, t, tvar, cond) \
716 GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond)
717
718 #define FOREACH_AP(var, t, tvar) \
719 GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap)
720
721 #define GOT_FIRST_TIMED_COND(tvar, t, cond) \
722 GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond)
723
724 #define GOT_FIRST_CB(tvar, t) \
725 GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq)
726
727 #define DEQUEUED_CALLBACK(tvar, t) \
728 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq)
729
730 #define FIND_TIMED(var, t, tvar, cond) \
731 GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond)
732
733 #define DEQUEUED_WAITQ(tvar, sc) \
734 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq)
735
736 static inline void
737 enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe)
738 {
739 gcq_insert_tail(&sc->sc_waitq, &spipe->xq);
740 }
741
742 static inline void
743 enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i)
744 {
745 gcq_insert_tail(&t->q[i], &spipe->xq);
746 }
747
748 static inline void
749 enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe)
750 {
751 gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq);
752 }
753
754 static inline void
755 enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe)
756 {
757 gcq_insert_tail(&t->ap, &spipe->ap);
758 }
759
760 /* Start out of lock functions. */
761
762 struct usbd_xfer *
763 slhci_allocx(struct usbd_bus *bus, unsigned int nframes)
764 {
765 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
766 struct usbd_xfer *xfer;
767
768 xfer = kmem_zalloc(sizeof(*xfer), KM_SLEEP);
769
770 DLOG(D_MEM, "allocx %p", xfer, 0,0,0);
771
772 #ifdef SLHCI_MEM_ACCOUNTING
773 slhci_mem_use(bus, 1);
774 #endif
775 #ifdef DIAGNOSTIC
776 if (xfer != NULL)
777 xfer->ux_state = XFER_BUSY;
778 #endif
779 return xfer;
780 }
781
782 void
783 slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
784 {
785 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
786 DLOG(D_MEM, "freex xfer %p spipe %p", xfer, xfer->ux_pipe,0,0);
787
788 #ifdef SLHCI_MEM_ACCOUNTING
789 slhci_mem_use(bus, -1);
790 #endif
791 #ifdef DIAGNOSTIC
792 if (xfer->ux_state != XFER_BUSY) {
793 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
794 printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
795 SC_NAME(sc), xfer, xfer->ux_state);
796 DDOLOG("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
797 SC_NAME(sc), xfer, xfer->ux_state, 0);
798 slhci_lock_call(sc, &slhci_halt, NULL, NULL);
799 return;
800 }
801 xfer->ux_state = XFER_FREE;
802 #endif
803
804 kmem_free(xfer, sizeof(*xfer));
805 }
806
807 static void
808 slhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
809 {
810 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
811
812 *lock = &sc->sc_lock;
813 }
814
815 usbd_status
816 slhci_transfer(struct usbd_xfer *xfer)
817 {
818 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
819 struct slhci_softc *sc = SLHCI_XFER2SC(xfer);
820 usbd_status error;
821
822 DLOG(D_TRACE, "%s transfer xfer %p spipe %p ",
823 pnames(SLHCI_XFER_TYPE(xfer)), xfer, xfer->ux_pipe,0);
824
825 /* Insert last in queue */
826 mutex_enter(&sc->sc_lock);
827 error = usb_insert_transfer(xfer);
828 mutex_exit(&sc->sc_lock);
829 if (error) {
830 if (error != USBD_IN_PROGRESS)
831 DLOG(D_ERR, "usb_insert_transfer returns %d!", error,
832 0,0,0);
833 return error;
834 }
835
836 /*
837 * Pipe isn't running (otherwise error would be USBD_INPROG),
838 * so start it first.
839 */
840
841 /*
842 * Start will take the lock.
843 */
844 error = xfer->ux_pipe->up_methods->upm_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
845
846 return error;
847 }
848
849 /* It is not safe for start to return anything other than USBD_INPROG. */
850 usbd_status
851 slhci_start(struct usbd_xfer *xfer)
852 {
853 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
854 struct slhci_softc *sc = SLHCI_XFER2SC(xfer);
855 struct usbd_pipe *pipe = xfer->ux_pipe;
856 struct slhci_pipe *spipe = SLHCI_PIPE2SPIPE(pipe);
857 struct slhci_transfers *t = &sc->sc_transfers;
858 usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
859 unsigned int max_packet;
860
861 mutex_enter(&sc->sc_lock);
862
863 max_packet = UGETW(ed->wMaxPacketSize);
864
865 DLOG(D_TRACE, "%s start xfer %p spipe %p length %d",
866 pnames(spipe->ptype), xfer, spipe, xfer->ux_length);
867
868 /* root transfers use slhci_root_start */
869
870 KASSERT(spipe->xfer == NULL); /* not SLASSERT */
871
872 xfer->ux_actlen = 0;
873 xfer->ux_status = USBD_IN_PROGRESS;
874
875 spipe->xfer = xfer;
876
877 spipe->nerrs = 0;
878 spipe->frame = t->frame;
879 spipe->control = SL11_EPCTRL_ARM_ENABLE;
880 spipe->tregs[DEV] = pipe->up_dev->ud_addr;
881 spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress)
882 | (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN :
883 SL11_PID_OUT);
884 spipe->newlen[0] = xfer->ux_length % max_packet;
885 spipe->newlen[1] = min(xfer->ux_length, max_packet);
886
887 if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) {
888 if (spipe->pflags & PF_TOGGLE)
889 spipe->control |= SL11_EPCTRL_DATATOGGLE;
890 spipe->tregs[LEN] = spipe->newlen[1];
891 if (spipe->tregs[LEN])
892 spipe->buffer = xfer->ux_buf;
893 else
894 spipe->buffer = NULL;
895 spipe->lastframe = t->frame;
896 #if defined(DEBUG) || defined(SLHCI_DEBUG)
897 if (__predict_false(spipe->ptype == PT_INTR &&
898 xfer->ux_length > spipe->tregs[LEN])) {
899 printf("%s: Long INTR transfer not supported!\n",
900 SC_NAME(sc));
901 DDOLOG("%s: Long INTR transfer not supported!\n",
902 SC_NAME(sc), 0,0,0);
903 xfer->ux_status = USBD_INVAL;
904 }
905 #endif
906 } else {
907 /* ptype may be currently set to any control transfer type. */
908 SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer));
909
910 /* SETUP contains IN/OUT bits also */
911 spipe->tregs[PID] |= SL11_PID_SETUP;
912 spipe->tregs[LEN] = 8;
913 spipe->buffer = (uint8_t *)&xfer->ux_request;
914 DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]);
915 spipe->ptype = PT_CTRL_SETUP;
916 spipe->newpid &= ~SL11_PID_BITS;
917 if (xfer->ux_length == 0 || (xfer->ux_request.bmRequestType &
918 UT_READ))
919 spipe->newpid |= SL11_PID_IN;
920 else
921 spipe->newpid |= SL11_PID_OUT;
922 }
923
924 if (xfer->ux_flags & USBD_FORCE_SHORT_XFER && spipe->tregs[LEN] ==
925 max_packet && (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT)
926 spipe->wantshort = 1;
927 else
928 spipe->wantshort = 0;
929
930 /*
931 * The goal of newbustime and newlen is to avoid bustime calculation
932 * in the interrupt. The calculations are not too complex, but they
933 * complicate the conditional logic somewhat and doing them all in the
934 * same place shares constants. Index 0 is "short length" for bulk and
935 * ctrl data and 1 is "full length" for ctrl data (bulk/intr are
936 * already set to full length).
937 */
938 if (spipe->pflags & PF_LS) {
939 /*
940 * Setting PREAMBLE for directly connected LS devices will
941 * lock up the chip.
942 */
943 if (spipe->pflags & PF_PREAMBLE)
944 spipe->control |= SL11_EPCTRL_PREAMBLE;
945 if (max_packet <= 8) {
946 spipe->bustime = SLHCI_LS_CONST +
947 SLHCI_LS_DATA_TIME(spipe->tregs[LEN]);
948 spipe->newbustime[0] = SLHCI_LS_CONST +
949 SLHCI_LS_DATA_TIME(spipe->newlen[0]);
950 spipe->newbustime[1] = SLHCI_LS_CONST +
951 SLHCI_LS_DATA_TIME(spipe->newlen[1]);
952 } else
953 xfer->ux_status = USBD_INVAL;
954 } else {
955 UL_SLASSERT(pipe->up_dev->ud_speed == USB_SPEED_FULL, sc,
956 spipe, xfer, return USBD_IN_PROGRESS);
957 if (max_packet <= SL11_MAX_PACKET_SIZE) {
958 spipe->bustime = SLHCI_FS_CONST +
959 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
960 spipe->newbustime[0] = SLHCI_FS_CONST +
961 SLHCI_FS_DATA_TIME(spipe->newlen[0]);
962 spipe->newbustime[1] = SLHCI_FS_CONST +
963 SLHCI_FS_DATA_TIME(spipe->newlen[1]);
964 } else
965 xfer->ux_status = USBD_INVAL;
966 }
967
968 /*
969 * The datasheet incorrectly indicates that DIRECTION is for
970 * "transmit to host". It is for OUT and SETUP. The app note
971 * describes its use correctly.
972 */
973 if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN)
974 spipe->control |= SL11_EPCTRL_DIRECTION;
975
976 slhci_start_entry(sc, spipe);
977
978 mutex_exit(&sc->sc_lock);
979
980 return USBD_IN_PROGRESS;
981 }
982
983 usbd_status
984 slhci_root_start(struct usbd_xfer *xfer)
985 {
986 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
987 struct slhci_softc *sc;
988 struct slhci_pipe *spipe __diagused;
989
990 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe);
991 sc = SLHCI_XFER2SC(xfer);
992
993 struct slhci_transfers *t = &sc->sc_transfers;
994
995 LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return
996 USBD_CANCELLED);
997
998 DLOG(D_TRACE, "%s start", pnames(SLHCI_XFER_TYPE(xfer)), 0,0,0);
999
1000 KASSERT(spipe->ptype == PT_ROOT_INTR);
1001
1002 mutex_enter(&sc->sc_intr_lock);
1003 t->rootintr = xfer;
1004 mutex_exit(&sc->sc_intr_lock);
1005
1006 return USBD_IN_PROGRESS;
1007 }
1008
1009 usbd_status
1010 slhci_open(struct usbd_pipe *pipe)
1011 {
1012 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1013 struct usbd_device *dev;
1014 struct slhci_softc *sc;
1015 struct slhci_pipe *spipe;
1016 usb_endpoint_descriptor_t *ed;
1017 unsigned int max_packet, pmaxpkt;
1018 uint8_t rhaddr;
1019
1020 dev = pipe->up_dev;
1021 sc = SLHCI_PIPE2SC(pipe);
1022 spipe = SLHCI_PIPE2SPIPE(pipe);
1023 ed = pipe->up_endpoint->ue_edesc;
1024 rhaddr = dev->ud_bus->ub_rhaddr;
1025
1026 DLOG(D_TRACE, "slhci_open(addr=%d,ep=%d,rootaddr=%d)",
1027 dev->ud_addr, ed->bEndpointAddress, rhaddr, 0);
1028
1029 spipe->pflags = 0;
1030 spipe->frame = 0;
1031 spipe->lastframe = 0;
1032 spipe->xfer = NULL;
1033 spipe->buffer = NULL;
1034
1035 gcq_init(&spipe->ap);
1036 gcq_init(&spipe->to);
1037 gcq_init(&spipe->xq);
1038
1039 /*
1040 * The endpoint descriptor will not have been set up yet in the case
1041 * of the standard control pipe, so the max packet checks are also
1042 * necessary in start.
1043 */
1044
1045 max_packet = UGETW(ed->wMaxPacketSize);
1046
1047 if (dev->ud_speed == USB_SPEED_LOW) {
1048 spipe->pflags |= PF_LS;
1049 if (dev->ud_myhub->ud_addr != rhaddr) {
1050 spipe->pflags |= PF_PREAMBLE;
1051 if (!slhci_try_lsvh)
1052 return slhci_lock_call(sc, &slhci_lsvh_warn,
1053 spipe, NULL);
1054 }
1055 pmaxpkt = 8;
1056 } else
1057 pmaxpkt = SL11_MAX_PACKET_SIZE;
1058
1059 if (max_packet > pmaxpkt) {
1060 DLOG(D_ERR, "packet too large! size %d spipe %p", max_packet,
1061 spipe, 0,0);
1062 return USBD_INVAL;
1063 }
1064
1065 if (dev->ud_addr == rhaddr) {
1066 switch (ed->bEndpointAddress) {
1067 case USB_CONTROL_ENDPOINT:
1068 spipe->ptype = PT_ROOT_CTRL;
1069 pipe->up_interval = 0;
1070 pipe->up_methods = &roothub_ctrl_methods;
1071 break;
1072 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
1073 spipe->ptype = PT_ROOT_INTR;
1074 pipe->up_interval = 1;
1075 pipe->up_methods = &slhci_root_methods;
1076 break;
1077 default:
1078 printf("%s: Invalid root endpoint!\n", SC_NAME(sc));
1079 DDOLOG("%s: Invalid root endpoint!\n", SC_NAME(sc),
1080 0,0,0);
1081 return USBD_INVAL;
1082 }
1083 return USBD_NORMAL_COMPLETION;
1084 } else {
1085 switch (ed->bmAttributes & UE_XFERTYPE) {
1086 case UE_CONTROL:
1087 spipe->ptype = PT_CTRL_SETUP;
1088 pipe->up_interval = 0;
1089 break;
1090 case UE_INTERRUPT:
1091 spipe->ptype = PT_INTR;
1092 if (pipe->up_interval == USBD_DEFAULT_INTERVAL)
1093 pipe->up_interval = ed->bInterval;
1094 break;
1095 case UE_ISOCHRONOUS:
1096 return slhci_lock_call(sc, &slhci_isoc_warn, spipe,
1097 NULL);
1098 case UE_BULK:
1099 spipe->ptype = PT_BULK;
1100 pipe->up_interval = 0;
1101 break;
1102 }
1103
1104 DLOG(D_MSG, "open pipe %s interval %d", pnames(spipe->ptype),
1105 pipe->up_interval, 0,0);
1106
1107 pipe->up_methods = __UNCONST(&slhci_pipe_methods);
1108
1109 return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL);
1110 }
1111 }
1112
1113 int
1114 slhci_supported_rev(uint8_t rev)
1115 {
1116 return rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15;
1117 }
1118
1119 /*
1120 * Must be called before the ISR is registered. Interrupts can be shared so
1121 * slhci_intr could be called as soon as the ISR is registered.
1122 * Note max_current argument is actual current, but stored as current/2
1123 */
1124 void
1125 slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot,
1126 bus_space_handle_t ioh, uint16_t max_current, uint32_t stride)
1127 {
1128 struct slhci_transfers *t;
1129 int i;
1130
1131 t = &sc->sc_transfers;
1132
1133 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1134 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
1135
1136 /* sc->sc_ier = 0; */
1137 /* t->rootintr = NULL; */
1138 t->flags = F_NODEV|F_UDISABLED;
1139 t->pend = INT_MAX;
1140 KASSERT(slhci_wait_time != INT_MAX);
1141 t->len[0] = t->len[1] = -1;
1142 if (max_current > 500)
1143 max_current = 500;
1144 t->max_current = (uint8_t)(max_current / 2);
1145 sc->sc_enable_power = pow;
1146 sc->sc_iot = iot;
1147 sc->sc_ioh = ioh;
1148 sc->sc_stride = stride;
1149
1150 KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0]));
1151
1152 for (i = 0; i <= Q_MAX; i++)
1153 gcq_init_head(&t->q[i]);
1154 gcq_init_head(&t->timed);
1155 gcq_init_head(&t->to);
1156 gcq_init_head(&t->ap);
1157 gcq_init_head(&sc->sc_waitq);
1158 }
1159
1160 int
1161 slhci_attach(struct slhci_softc *sc)
1162 {
1163 struct slhci_transfers *t;
1164 const char *rev;
1165
1166 t = &sc->sc_transfers;
1167
1168 /* Detect and check the controller type */
1169 t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV));
1170
1171 /* SL11H not supported */
1172 if (!slhci_supported_rev(t->sltype)) {
1173 if (t->sltype == SLTYPE_SL11H)
1174 printf("%s: SL11H unsupported or bus error!\n",
1175 SC_NAME(sc));
1176 else
1177 printf("%s: Unknown chip revision!\n", SC_NAME(sc));
1178 return -1;
1179 }
1180
1181 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
1182 callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc);
1183
1184 /*
1185 * It is not safe to call the soft interrupt directly as
1186 * usb_schedsoftintr does in the ub_usepolling case (due to locking).
1187 */
1188 sc->sc_cb_softintr = softint_establish(SOFTINT_NET,
1189 slhci_callback_entry, sc);
1190
1191 #ifdef SLHCI_DEBUG
1192 ssc = sc;
1193 #endif
1194
1195 if (t->sltype == SLTYPE_SL811HS_R12)
1196 rev = "(rev 1.2)";
1197 else if (t->sltype == SLTYPE_SL811HS_R14)
1198 rev = "(rev 1.4 or 1.5)";
1199 else
1200 rev = "(unknown revision)";
1201
1202 aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n",
1203 SC_NAME(sc), rev);
1204
1205 aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n",
1206 SC_NAME(sc), t->max_current * 2);
1207
1208 #if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \
1209 defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER)
1210 aprint_normal("%s: driver options:"
1211 #ifdef SLHCI_DEBUG
1212 " SLHCI_DEBUG"
1213 #endif
1214 #ifdef SLHCI_TRY_LSVH
1215 " SLHCI_TRY_LSVH"
1216 #endif
1217 #ifdef SLHCI_NO_OVERTIME
1218 " SLHCI_NO_OVERTIME"
1219 #endif
1220 #ifdef SLHCI_PROFILE_TRANSFER
1221 " SLHCI_PROFILE_TRANSFER"
1222 #endif
1223 "\n", SC_NAME(sc));
1224 #endif
1225 sc->sc_bus.ub_revision = USBREV_1_1;
1226 sc->sc_bus.ub_methods = __UNCONST(&slhci_bus_methods);
1227 sc->sc_bus.ub_pipesize = sizeof(struct slhci_pipe);
1228 sc->sc_bus.ub_usedma = false;
1229
1230 if (!sc->sc_enable_power)
1231 t->flags |= F_REALPOWER;
1232
1233 t->flags |= F_ACTIVE;
1234
1235 /* Attach usb and uhub. */
1236 sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint);
1237
1238 if (!sc->sc_child)
1239 return -1;
1240 else
1241 return 0;
1242 }
1243
1244 int
1245 slhci_detach(struct slhci_softc *sc, int flags)
1246 {
1247 struct slhci_transfers *t;
1248 int ret;
1249
1250 t = &sc->sc_transfers;
1251
1252 /* By this point bus access is no longer allowed. */
1253
1254 KASSERT(!(t->flags & F_ACTIVE));
1255
1256 /*
1257 * To be MPSAFE is not sufficient to cancel callouts and soft
1258 * interrupts and assume they are dead since the code could already be
1259 * running or about to run. Wait until they are known to be done.
1260 */
1261 while (t->flags & (F_RESET|F_CALLBACK))
1262 tsleep(&sc, PPAUSE, "slhci_detach", hz);
1263
1264 softint_disestablish(sc->sc_cb_softintr);
1265
1266 mutex_destroy(&sc->sc_lock);
1267 mutex_destroy(&sc->sc_intr_lock);
1268
1269 ret = 0;
1270
1271 if (sc->sc_child)
1272 ret = config_detach(sc->sc_child, flags);
1273
1274 #ifdef SLHCI_MEM_ACCOUNTING
1275 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1276 if (sc->sc_mem_use) {
1277 printf("%s: Memory still in use after detach! mem_use (count)"
1278 " = %d\n", SC_NAME(sc), sc->sc_mem_use);
1279 DDOLOG("%s: Memory still in use after detach! mem_use (count)"
1280 " = %d\n", SC_NAME(sc), sc->sc_mem_use, 0,0);
1281 }
1282 #endif
1283
1284 return ret;
1285 }
1286
1287 int
1288 slhci_activate(device_t self, enum devact act)
1289 {
1290 struct slhci_softc *sc = device_private(self);
1291
1292 switch (act) {
1293 case DVACT_DEACTIVATE:
1294 slhci_lock_call(sc, &slhci_halt, NULL, NULL);
1295 return 0;
1296 default:
1297 return EOPNOTSUPP;
1298 }
1299 }
1300
1301 void
1302 slhci_abort(struct usbd_xfer *xfer)
1303 {
1304 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1305 struct slhci_softc *sc;
1306 struct slhci_pipe *spipe;
1307
1308 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe);
1309
1310 if (spipe == NULL)
1311 goto callback;
1312
1313 sc = SLHCI_XFER2SC(xfer);
1314 KASSERT(mutex_owned(&sc->sc_lock));
1315
1316 DLOG(D_TRACE, "%s abort xfer %p spipe %p spipe->xfer %p",
1317 pnames(spipe->ptype), xfer, spipe, spipe->xfer);
1318
1319 slhci_lock_call(sc, &slhci_do_abort, spipe, xfer);
1320
1321 callback:
1322 xfer->ux_status = USBD_CANCELLED;
1323 usb_transfer_complete(xfer);
1324 }
1325
1326 void
1327 slhci_close(struct usbd_pipe *pipe)
1328 {
1329 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1330 struct slhci_softc *sc;
1331 struct slhci_pipe *spipe;
1332
1333 sc = SLHCI_PIPE2SC(pipe);
1334 spipe = SLHCI_PIPE2SPIPE(pipe);
1335
1336 DLOG(D_TRACE, "%s close spipe %p spipe->xfer %p",
1337 pnames(spipe->ptype), spipe, spipe->xfer, 0);
1338
1339 slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL);
1340 }
1341
1342 void
1343 slhci_clear_toggle(struct usbd_pipe *pipe)
1344 {
1345 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1346 struct slhci_pipe *spipe;
1347
1348 spipe = SLHCI_PIPE2SPIPE(pipe);
1349
1350 DLOG(D_TRACE, "%s toggle spipe %p", pnames(spipe->ptype),
1351 spipe,0,0);
1352
1353 spipe->pflags &= ~PF_TOGGLE;
1354
1355 #ifdef DIAGNOSTIC
1356 if (spipe->xfer != NULL) {
1357 struct slhci_softc *sc = (struct slhci_softc
1358 *)pipe->up_dev->ud_bus;
1359
1360 printf("%s: Clear toggle on transfer in progress! halted\n",
1361 SC_NAME(sc));
1362 DDOLOG("%s: Clear toggle on transfer in progress! halted\n",
1363 SC_NAME(sc), 0,0,0);
1364 slhci_halt(sc, NULL, NULL);
1365 }
1366 #endif
1367 }
1368
1369 void
1370 slhci_poll(struct usbd_bus *bus) /* XXX necessary? */
1371 {
1372 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1373 struct slhci_softc *sc;
1374
1375 sc = SLHCI_BUS2SC(bus);
1376
1377 DLOG(D_TRACE, "slhci_poll", 0,0,0,0);
1378
1379 slhci_lock_call(sc, &slhci_do_poll, NULL, NULL);
1380 }
1381
1382 void
1383 slhci_done(struct usbd_xfer *xfer)
1384 {
1385 }
1386
1387 void
1388 slhci_void(void *v) {}
1389
1390 /* End out of lock functions. Start lock entry functions. */
1391
1392 #ifdef SLHCI_MEM_ACCOUNTING
1393 void
1394 slhci_mem_use(struct usbd_bus *bus, int val)
1395 {
1396 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
1397
1398 mutex_enter(&sc->sc_intr_lock);
1399 sc->sc_mem_use += val;
1400 mutex_exit(&sc->sc_intr_lock);
1401 }
1402 #endif
1403
1404 void
1405 slhci_reset_entry(void *arg)
1406 {
1407 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1408 struct slhci_softc *sc = arg;
1409
1410 mutex_enter(&sc->sc_intr_lock);
1411 slhci_reset(sc);
1412 /*
1413 * We cannot call the callback directly since we could then be reset
1414 * again before finishing and need the callout delay for timing.
1415 * Scheduling the callout again before we exit would defeat the reap
1416 * mechanism since we could be unlocked while the reset flag is not
1417 * set. The callback code will check the wait queue.
1418 */
1419 slhci_callback_schedule(sc);
1420 mutex_exit(&sc->sc_intr_lock);
1421 }
1422
1423 usbd_status
1424 slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe
1425 *spipe, struct usbd_xfer *xfer)
1426 {
1427 usbd_status ret;
1428
1429 mutex_enter(&sc->sc_intr_lock);
1430 ret = (*lcf)(sc, spipe, xfer);
1431 slhci_main(sc);
1432 mutex_exit(&sc->sc_intr_lock);
1433
1434 return ret;
1435 }
1436
1437 void
1438 slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe)
1439 {
1440 struct slhci_transfers *t;
1441
1442 mutex_enter(&sc->sc_intr_lock);
1443 t = &sc->sc_transfers;
1444
1445 if (!(t->flags & (F_AINPROG|F_BINPROG))) {
1446 slhci_enter_xfer(sc, spipe);
1447 slhci_dotransfer(sc);
1448 slhci_main(sc);
1449 } else {
1450 enter_waitq(sc, spipe);
1451 }
1452 mutex_exit(&sc->sc_intr_lock);
1453 }
1454
1455 void
1456 slhci_callback_entry(void *arg)
1457 {
1458 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1459 struct slhci_softc *sc;
1460 struct slhci_transfers *t;
1461
1462 sc = (struct slhci_softc *)arg;
1463
1464 mutex_enter(&sc->sc_intr_lock);
1465 t = &sc->sc_transfers;
1466 DLOG(D_SOFT, "callback_entry flags %#x", t->flags, 0,0,0);
1467
1468 repeat:
1469 slhci_callback(sc);
1470
1471 if (!gcq_empty(&sc->sc_waitq)) {
1472 slhci_enter_xfers(sc);
1473 slhci_dotransfer(sc);
1474 slhci_waitintr(sc, 0);
1475 goto repeat;
1476 }
1477
1478 t->flags &= ~F_CALLBACK;
1479 mutex_exit(&sc->sc_intr_lock);
1480 }
1481
1482 void
1483 slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer)
1484 {
1485 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1486 KASSERT(mutex_owned(&sc->sc_intr_lock));
1487
1488 start_cc_time(&t_callback, (u_int)xfer);
1489 mutex_exit(&sc->sc_intr_lock);
1490
1491 mutex_enter(&sc->sc_lock);
1492 usb_transfer_complete(xfer);
1493 mutex_exit(&sc->sc_lock);
1494
1495 mutex_enter(&sc->sc_intr_lock);
1496 stop_cc_time(&t_callback);
1497 }
1498
1499 int
1500 slhci_intr(void *arg)
1501 {
1502 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1503 struct slhci_softc *sc = arg;
1504 int ret;
1505
1506 start_cc_time(&t_hard_int, (unsigned int)arg);
1507 mutex_enter(&sc->sc_intr_lock);
1508
1509 ret = slhci_dointr(sc);
1510 slhci_main(sc);
1511 mutex_exit(&sc->sc_intr_lock);
1512
1513 stop_cc_time(&t_hard_int);
1514 return ret;
1515 }
1516
1517 /* called with main lock only held, returns with locks released. */
1518 void
1519 slhci_main(struct slhci_softc *sc)
1520 {
1521 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1522 struct slhci_transfers *t;
1523
1524 t = &sc->sc_transfers;
1525
1526 KASSERT(mutex_owned(&sc->sc_intr_lock));
1527
1528 waitcheck:
1529 slhci_waitintr(sc, slhci_wait_time);
1530
1531 /*
1532 * The direct call is needed in the ub_usepolling and disabled cases
1533 * since the soft interrupt is not available. In the disabled case,
1534 * this code can be reached from the usb detach, after the reaping of
1535 * the soft interrupt. That test could be !F_ACTIVE, but there is no
1536 * reason not to make the callbacks directly in the other DISABLED
1537 * cases.
1538 */
1539 if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) {
1540 if (__predict_false(sc->sc_bus.ub_usepolling ||
1541 t->flags & F_DISABLED))
1542 slhci_callback(sc);
1543 else
1544 slhci_callback_schedule(sc);
1545 }
1546
1547 if (!gcq_empty(&sc->sc_waitq)) {
1548 slhci_enter_xfers(sc);
1549 slhci_dotransfer(sc);
1550 goto waitcheck;
1551 }
1552 }
1553
1554 /* End lock entry functions. Start in lock function. */
1555
1556 /* Register read/write routines and barriers. */
1557 #ifdef SLHCI_BUS_SPACE_BARRIERS
1558 #define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e)
1559 #define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_SYNC)
1560 #else /* now !SLHCI_BUS_SPACE_BARRIERS */
1561 #define BSB(a, b, c, d, e) __USE(d)
1562 #define BSB_SYNC(a, b, c, d)
1563 #endif /* SLHCI_BUS_SPACE_BARRIERS */
1564
1565 static void
1566 slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data)
1567 {
1568 bus_size_t paddr, pdata, pst, psz;
1569 bus_space_tag_t iot;
1570 bus_space_handle_t ioh;
1571
1572 paddr = pst = 0;
1573 pdata = sc->sc_stride;
1574 psz = pdata * 2;
1575 iot = sc->sc_iot;
1576 ioh = sc->sc_ioh;
1577
1578 bus_space_write_1(iot, ioh, paddr, addr);
1579 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1580 bus_space_write_1(iot, ioh, pdata, data);
1581 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1582 }
1583
1584 static uint8_t
1585 slhci_read(struct slhci_softc *sc, uint8_t addr)
1586 {
1587 bus_size_t paddr, pdata, pst, psz;
1588 bus_space_tag_t iot;
1589 bus_space_handle_t ioh;
1590 uint8_t data;
1591
1592 paddr = pst = 0;
1593 pdata = sc->sc_stride;
1594 psz = pdata * 2;
1595 iot = sc->sc_iot;
1596 ioh = sc->sc_ioh;
1597
1598 bus_space_write_1(iot, ioh, paddr, addr);
1599 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1600 data = bus_space_read_1(iot, ioh, pdata);
1601 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1602 return data;
1603 }
1604
1605 #if 0 /* auto-increment mode broken, see errata doc */
1606 static void
1607 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1608 {
1609 bus_size_t paddr, pdata, pst, psz;
1610 bus_space_tag_t iot;
1611 bus_space_handle_t ioh;
1612
1613 paddr = pst = 0;
1614 pdata = sc->sc_stride;
1615 psz = pdata * 2;
1616 iot = sc->sc_iot;
1617 ioh = sc->sc_ioh;
1618
1619 bus_space_write_1(iot, ioh, paddr, addr);
1620 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1621 bus_space_write_multi_1(iot, ioh, pdata, buf, l);
1622 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1623 }
1624
1625 static void
1626 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1627 {
1628 bus_size_t paddr, pdata, pst, psz;
1629 bus_space_tag_t iot;
1630 bus_space_handle_t ioh;
1631
1632 paddr = pst = 0;
1633 pdata = sc->sc_stride;
1634 psz = pdata * 2;
1635 iot = sc->sc_iot;
1636 ioh = sc->sc_ioh;
1637
1638 bus_space_write_1(iot, ioh, paddr, addr);
1639 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1640 bus_space_read_multi_1(iot, ioh, pdata, buf, l);
1641 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1642 }
1643 #else
1644 static void
1645 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1646 {
1647 #if 1
1648 for (; l; addr++, buf++, l--)
1649 slhci_write(sc, addr, *buf);
1650 #else
1651 bus_size_t paddr, pdata, pst, psz;
1652 bus_space_tag_t iot;
1653 bus_space_handle_t ioh;
1654
1655 paddr = pst = 0;
1656 pdata = sc->sc_stride;
1657 psz = pdata * 2;
1658 iot = sc->sc_iot;
1659 ioh = sc->sc_ioh;
1660
1661 for (; l; addr++, buf++, l--) {
1662 bus_space_write_1(iot, ioh, paddr, addr);
1663 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1664 bus_space_write_1(iot, ioh, pdata, *buf);
1665 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1666 }
1667 #endif
1668 }
1669
1670 static void
1671 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1672 {
1673 #if 1
1674 for (; l; addr++, buf++, l--)
1675 *buf = slhci_read(sc, addr);
1676 #else
1677 bus_size_t paddr, pdata, pst, psz;
1678 bus_space_tag_t iot;
1679 bus_space_handle_t ioh;
1680
1681 paddr = pst = 0;
1682 pdata = sc->sc_stride;
1683 psz = pdata * 2;
1684 iot = sc->sc_iot;
1685 ioh = sc->sc_ioh;
1686
1687 for (; l; addr++, buf++, l--) {
1688 bus_space_write_1(iot, ioh, paddr, addr);
1689 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1690 *buf = bus_space_read_1(iot, ioh, pdata);
1691 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1692 }
1693 #endif
1694 }
1695 #endif
1696
1697 /*
1698 * After calling waitintr it is necessary to either call slhci_callback or
1699 * schedule the callback if necessary. The callback cannot be called directly
1700 * from the hard interrupt since it interrupts at a high IPL and callbacks
1701 * can do copyout and such.
1702 */
1703 static void
1704 slhci_waitintr(struct slhci_softc *sc, int wait_time)
1705 {
1706 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1707 struct slhci_transfers *t;
1708
1709 t = &sc->sc_transfers;
1710
1711 KASSERT(mutex_owned(&sc->sc_intr_lock));
1712
1713 if (__predict_false(sc->sc_bus.ub_usepolling))
1714 wait_time = 12000;
1715
1716 while (t->pend <= wait_time) {
1717 DLOG(D_WAIT, "waiting... frame %d pend %d flags %#x",
1718 t->frame, t->pend, t->flags, 0);
1719 LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return);
1720 LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL,
1721 return);
1722 slhci_dointr(sc);
1723 }
1724 }
1725
1726 static int
1727 slhci_dointr(struct slhci_softc *sc)
1728 {
1729 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1730 struct slhci_transfers *t;
1731 struct slhci_pipe *tosp;
1732 uint8_t r;
1733
1734 t = &sc->sc_transfers;
1735
1736 KASSERT(mutex_owned(&sc->sc_intr_lock));
1737
1738 DLOG(D_INTR, "Flags %#x sc_ier %#x ISR=%#x", t->flags, sc->sc_ier,
1739 slhci_read(sc, SL11_ISR), 0);
1740
1741 if (sc->sc_ier == 0)
1742 return 0;
1743
1744 r = slhci_read(sc, SL11_ISR);
1745
1746 #ifdef SLHCI_DEBUG
1747 if (slhcidebug & SLHCI_D_INTR && r & sc->sc_ier &&
1748 ((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhcidebug &
1749 SLHCI_D_SOF)) {
1750 uint8_t e, f;
1751
1752 e = slhci_read(sc, SL11_IER);
1753 f = slhci_read(sc, SL11_CTRL);
1754 DDOLOG("Flags=%#x IER=%#x ISR=%#x", t->flags, e, r, 0);
1755 DDOLOGFLAG8("Status=", r, "D+", (f & SL11_CTRL_SUSPEND) ?
1756 "RESUME" : "NODEV", "INSERT", "SOF", "res", "BABBLE",
1757 "USBB", "USBA");
1758 }
1759 #endif
1760
1761 /*
1762 * check IER for corruption occasionally. Assume that the above
1763 * sc_ier == 0 case works correctly.
1764 */
1765 if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) {
1766 sc->sc_ier_check = 0;
1767 if (sc->sc_ier != slhci_read(sc, SL11_IER)) {
1768 printf("%s: IER value corrupted! halted\n",
1769 SC_NAME(sc));
1770 DDOLOG("%s: IER value corrupted! halted\n",
1771 SC_NAME(sc), 0,0,0);
1772 slhci_halt(sc, NULL, NULL);
1773 return 1;
1774 }
1775 }
1776
1777 r &= sc->sc_ier;
1778
1779 if (r == 0)
1780 return 0;
1781
1782 sc->sc_ier_check = 0;
1783
1784 slhci_write(sc, SL11_ISR, r);
1785 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
1786
1787 /* If we have an insertion event we do not care about anything else. */
1788 if (__predict_false(r & SL11_ISR_INSERT)) {
1789 slhci_insert(sc);
1790 return 1;
1791 }
1792
1793 stop_cc_time(&t_intr);
1794 start_cc_time(&t_intr, r);
1795
1796 if (r & SL11_ISR_SOF) {
1797 t->frame++;
1798
1799 gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]);
1800
1801 /*
1802 * SOFCHECK flags are cleared in tstart. Two flags are needed
1803 * since the first SOF interrupt processed after the transfer
1804 * is started might have been generated before the transfer
1805 * was started.
1806 */
1807 if (__predict_false(t->flags & F_SOFCHECK2 && t->flags &
1808 (F_AINPROG|F_BINPROG))) {
1809 printf("%s: Missed transfer completion. halted\n",
1810 SC_NAME(sc));
1811 DDOLOG("%s: Missed transfer completion. halted\n",
1812 SC_NAME(sc), 0,0,0);
1813 slhci_halt(sc, NULL, NULL);
1814 return 1;
1815 } else if (t->flags & F_SOFCHECK1) {
1816 t->flags |= F_SOFCHECK2;
1817 } else
1818 t->flags |= F_SOFCHECK1;
1819
1820 if (t->flags & F_CHANGE)
1821 t->flags |= F_ROOTINTR;
1822
1823 while (__predict_true(GOT_FIRST_TO(tosp, t)) &&
1824 __predict_false(tosp->to_frame <= t->frame)) {
1825 tosp->xfer->ux_status = USBD_TIMEOUT;
1826 slhci_do_abort(sc, tosp, tosp->xfer);
1827 enter_callback(t, tosp);
1828 }
1829
1830 /*
1831 * Start any waiting transfers right away. If none, we will
1832 * start any new transfers later.
1833 */
1834 slhci_tstart(sc);
1835 }
1836
1837 if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) {
1838 int ab;
1839
1840 if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) ==
1841 (SL11_ISR_USBA|SL11_ISR_USBB)) {
1842 if (!(t->flags & (F_AINPROG|F_BINPROG)))
1843 return 1; /* presume card pulled */
1844
1845 LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) !=
1846 (F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1);
1847
1848 /*
1849 * This should never happen (unless card removal just
1850 * occurred) but appeared frequently when both
1851 * transfers were started at the same time and was
1852 * accompanied by data corruption. It still happens
1853 * at times. I have not seen data correption except
1854 * when the STATUS bit gets set, which now causes the
1855 * driver to halt, however this should still not
1856 * happen so the warning is kept. See comment in
1857 * abdone, below.
1858 */
1859 printf("%s: Transfer reported done but not started! "
1860 "Verify data integrity if not detaching. "
1861 " flags %#x r %x\n", SC_NAME(sc), t->flags, r);
1862
1863 if (!(t->flags & F_AINPROG))
1864 r &= ~SL11_ISR_USBA;
1865 else
1866 r &= ~SL11_ISR_USBB;
1867 }
1868 t->pend = INT_MAX;
1869
1870 if (r & SL11_ISR_USBA)
1871 ab = A;
1872 else
1873 ab = B;
1874
1875 /*
1876 * This happens when a low speed device is attached to
1877 * a hub with chip rev 1.5. SOF stops, but a few transfers
1878 * still work before causing this error.
1879 */
1880 if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) {
1881 printf("%s: %s done but not in progress! halted\n",
1882 SC_NAME(sc), ab ? "B" : "A");
1883 DDOLOG("%s: %s done but not in progress! halted\n",
1884 SC_NAME(sc), ab ? "B" : "A", 0,0);
1885 slhci_halt(sc, NULL, NULL);
1886 return 1;
1887 }
1888
1889 t->flags &= ~(ab ? F_BINPROG : F_AINPROG);
1890 slhci_tstart(sc);
1891 stop_cc_time(&t_ab[ab]);
1892 start_cc_time(&t_abdone, t->flags);
1893 slhci_abdone(sc, ab);
1894 stop_cc_time(&t_abdone);
1895 }
1896
1897 slhci_dotransfer(sc);
1898
1899 return 1;
1900 }
1901
1902 static void
1903 slhci_abdone(struct slhci_softc *sc, int ab)
1904 {
1905 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1906 struct slhci_transfers *t;
1907 struct slhci_pipe *spipe;
1908 struct usbd_xfer *xfer;
1909 uint8_t status, buf_start;
1910 uint8_t *target_buf;
1911 unsigned int actlen;
1912 int head;
1913
1914 t = &sc->sc_transfers;
1915
1916 KASSERT(mutex_owned(&sc->sc_intr_lock));
1917
1918 DLOG(D_TRACE, "ABDONE flags %#x", t->flags, 0,0,0);
1919
1920 DLOG(D_MSG, "DONE %s spipe %p len %d xfer %p", ab ? "B" : "A",
1921 t->spipe[ab], t->len[ab], t->spipe[ab] ?
1922 t->spipe[ab]->xfer : NULL);
1923
1924 spipe = t->spipe[ab];
1925
1926 /*
1927 * skip this one if aborted; do not call return from the rest of the
1928 * function unless halting, else t->len will not be cleared.
1929 */
1930 if (spipe == NULL)
1931 goto done;
1932
1933 t->spipe[ab] = NULL;
1934
1935 xfer = spipe->xfer;
1936
1937 gcq_remove(&spipe->to);
1938
1939 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
1940
1941 status = slhci_read(sc, slhci_tregs[ab][STAT]);
1942
1943 /*
1944 * I saw no status or remaining length greater than the requested
1945 * length in early driver versions in circumstances I assumed caused
1946 * excess power draw. I am no longer able to reproduce this when
1947 * causing excess power draw circumstances.
1948 *
1949 * Disabling a power check and attaching aue to a keyboard and hub
1950 * that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard
1951 * 98mA) sometimes works and sometimes fails to configure. After
1952 * removing the aue and attaching a self-powered umass dvd reader
1953 * (unknown if it draws power from the host also) soon a single Error
1954 * status occurs then only timeouts. The controller soon halts freeing
1955 * memory due to being ONQU instead of BUSY. This may be the same
1956 * basic sequence that caused the no status/bad length errors. The
1957 * umass device seems to work (better at least) with the keyboard hub
1958 * when not first attaching aue (tested once reading an approximately
1959 * 200MB file).
1960 *
1961 * Overflow can indicate that the device and host disagree about how
1962 * much data has been transfered. This may indicate a problem at any
1963 * point during the transfer, not just when the error occurs. It may
1964 * indicate data corruption. A warning message is printed.
1965 *
1966 * Trying to use both A and B transfers at the same time results in
1967 * incorrect transfer completion ISR reports and the status will then
1968 * include SL11_EPSTAT_SETUP, which is apparently set while the
1969 * transfer is in progress. I also noticed data corruption, even
1970 * after waiting for the transfer to complete. The driver now avoids
1971 * trying to start both at the same time.
1972 *
1973 * I had accidently initialized the B registers before they were valid
1974 * in some driver versions. Since every other performance enhancing
1975 * feature has been confirmed buggy in the errata doc, I have not
1976 * tried both transfers at once again with the documented
1977 * initialization order.
1978 *
1979 * However, I have seen this problem again ("done but not started"
1980 * errors), which in some cases cases the SETUP status bit to remain
1981 * set on future transfers. In other cases, the SETUP bit is not set
1982 * and no data corruption occurs. This occured while using both umass
1983 * and aue on a powered hub (maybe triggered by some local activity
1984 * also) and needs several reads of the 200MB file to trigger. The
1985 * driver now halts if SETUP is detected.
1986 */
1987
1988 actlen = 0;
1989
1990 if (__predict_false(!status)) {
1991 DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0);
1992 printf("%s: no status! halted\n", SC_NAME(sc));
1993 slhci_halt(sc, spipe, xfer);
1994 return;
1995 }
1996
1997 #ifdef SLHCI_DEBUG
1998 if (slhcidebug & SLHCI_D_NAK || (status & SL11_EPSTAT_ERRBITS) !=
1999 SL11_EPSTAT_NAK)
2000 DLOGFLAG8(D_XFER, "STATUS=", status, "STALL", "NAK",
2001 "Overflow", "Setup", "Data Toggle", "Timeout", "Error",
2002 "ACK");
2003 #endif
2004
2005 if (!(status & SL11_EPSTAT_ERRBITS)) {
2006 unsigned int cont;
2007 cont = slhci_read(sc, slhci_tregs[ab][CONT]);
2008 if (cont != 0)
2009 DLOG(D_XFER, "cont %d len %d", cont,
2010 spipe->tregs[LEN], 0,0);
2011 if (__predict_false(cont > spipe->tregs[LEN])) {
2012 DDOLOG("cont > len! cont %d len %d xfer->ux_length %d "
2013 "spipe %p", cont, spipe->tregs[LEN], xfer->ux_length,
2014 spipe);
2015 printf("%s: cont > len! cont %d len %d xfer->ux_length "
2016 "%d", SC_NAME(sc), cont, spipe->tregs[LEN],
2017 xfer->ux_length);
2018 slhci_halt(sc, spipe, xfer);
2019 return;
2020 } else {
2021 spipe->nerrs = 0;
2022 actlen = spipe->tregs[LEN] - cont;
2023 }
2024 }
2025
2026 /* Actual copyin done after starting next transfer. */
2027 if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) {
2028 target_buf = spipe->buffer;
2029 buf_start = spipe->tregs[ADR];
2030 } else {
2031 target_buf = NULL;
2032 buf_start = 0; /* XXX gcc uninitialized warnings */
2033 }
2034
2035 if (status & SL11_EPSTAT_ERRBITS) {
2036 status &= SL11_EPSTAT_ERRBITS;
2037 if (status & SL11_EPSTAT_SETUP) {
2038 printf("%s: Invalid controller state detected! "
2039 "halted\n", SC_NAME(sc));
2040 DDOLOG("%s: Invalid controller state detected! "
2041 "halted\n", SC_NAME(sc), 0,0,0);
2042 slhci_halt(sc, spipe, xfer);
2043 return;
2044 } else if (__predict_false(sc->sc_bus.ub_usepolling)) {
2045 if (status == SL11_EPSTAT_STALL)
2046 xfer->ux_status = USBD_STALLED;
2047 else if (status == SL11_EPSTAT_TIMEOUT)
2048 xfer->ux_status = USBD_TIMEOUT;
2049 else if (status == SL11_EPSTAT_NAK)
2050 xfer->ux_status = USBD_TIMEOUT; /*XXX*/
2051 else
2052 xfer->ux_status = USBD_IOERROR;
2053 head = Q_CALLBACKS;
2054 } else if (status == SL11_EPSTAT_NAK) {
2055 if (spipe->pipe.up_interval) {
2056 spipe->lastframe = spipe->frame =
2057 t->frame + spipe->pipe.up_interval;
2058 slhci_queue_timed(sc, spipe);
2059 goto queued;
2060 }
2061 head = Q_NEXT_CB;
2062 } else if (++spipe->nerrs > SLHCI_MAX_RETRIES ||
2063 status == SL11_EPSTAT_STALL) {
2064 if (status == SL11_EPSTAT_STALL)
2065 xfer->ux_status = USBD_STALLED;
2066 else if (status == SL11_EPSTAT_TIMEOUT)
2067 xfer->ux_status = USBD_TIMEOUT;
2068 else
2069 xfer->ux_status = USBD_IOERROR;
2070
2071 DLOG(D_ERR, "Max retries reached! status %#x "
2072 "xfer->ux_status %#x", status, xfer->ux_status, 0,0);
2073 DLOGFLAG8(D_ERR, "STATUS=", status, "STALL",
2074 "NAK", "Overflow", "Setup", "Data Toggle",
2075 "Timeout", "Error", "ACK");
2076
2077 if (status == SL11_EPSTAT_OVERFLOW &&
2078 ratecheck(&sc->sc_overflow_warn_rate,
2079 &overflow_warn_rate)) {
2080 printf("%s: Overflow condition: "
2081 "data corruption possible\n",
2082 SC_NAME(sc));
2083 DDOLOG("%s: Overflow condition: "
2084 "data corruption possible\n",
2085 SC_NAME(sc), 0,0,0);
2086 }
2087 head = Q_CALLBACKS;
2088 } else {
2089 head = Q_NEXT_CB;
2090 }
2091 } else if (spipe->ptype == PT_CTRL_SETUP) {
2092 spipe->tregs[PID] = spipe->newpid;
2093
2094 if (xfer->ux_length) {
2095 LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer,
2096 return);
2097 spipe->tregs[LEN] = spipe->newlen[1];
2098 spipe->bustime = spipe->newbustime[1];
2099 spipe->buffer = xfer->ux_buf;
2100 spipe->ptype = PT_CTRL_DATA;
2101 } else {
2102 status_setup:
2103 /* CTRL_DATA swaps direction in PID then jumps here */
2104 spipe->tregs[LEN] = 0;
2105 if (spipe->pflags & PF_LS)
2106 spipe->bustime = SLHCI_LS_CONST;
2107 else
2108 spipe->bustime = SLHCI_FS_CONST;
2109 spipe->ptype = PT_CTRL_STATUS;
2110 spipe->buffer = NULL;
2111 }
2112
2113 /* Status or first data packet must be DATA1. */
2114 spipe->control |= SL11_EPCTRL_DATATOGGLE;
2115 if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN)
2116 spipe->control &= ~SL11_EPCTRL_DIRECTION;
2117 else
2118 spipe->control |= SL11_EPCTRL_DIRECTION;
2119
2120 head = Q_CB;
2121 } else if (spipe->ptype == PT_CTRL_STATUS) {
2122 head = Q_CALLBACKS;
2123 } else { /* bulk, intr, control data */
2124 xfer->ux_actlen += actlen;
2125 spipe->control ^= SL11_EPCTRL_DATATOGGLE;
2126
2127 if (actlen == spipe->tregs[LEN] && (xfer->ux_length >
2128 xfer->ux_actlen || spipe->wantshort)) {
2129 spipe->buffer += actlen;
2130 LK_SLASSERT(xfer->ux_length >= xfer->ux_actlen, sc,
2131 spipe, xfer, return);
2132 if (xfer->ux_length - xfer->ux_actlen < actlen) {
2133 spipe->wantshort = 0;
2134 spipe->tregs[LEN] = spipe->newlen[0];
2135 spipe->bustime = spipe->newbustime[0];
2136 LK_SLASSERT(xfer->ux_actlen +
2137 spipe->tregs[LEN] == xfer->ux_length, sc,
2138 spipe, xfer, return);
2139 }
2140 head = Q_CB;
2141 } else if (spipe->ptype == PT_CTRL_DATA) {
2142 spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT;
2143 goto status_setup;
2144 } else {
2145 if (spipe->ptype == PT_INTR) {
2146 spipe->lastframe +=
2147 spipe->pipe.up_interval;
2148 /*
2149 * If ack, we try to keep the
2150 * interrupt rate by using lastframe
2151 * instead of the current frame.
2152 */
2153 spipe->frame = spipe->lastframe +
2154 spipe->pipe.up_interval;
2155 }
2156
2157 /*
2158 * Set the toggle for the next transfer. It
2159 * has already been toggled above, so the
2160 * current setting will apply to the next
2161 * transfer.
2162 */
2163 if (spipe->control & SL11_EPCTRL_DATATOGGLE)
2164 spipe->pflags |= PF_TOGGLE;
2165 else
2166 spipe->pflags &= ~PF_TOGGLE;
2167
2168 head = Q_CALLBACKS;
2169 }
2170 }
2171
2172 if (head == Q_CALLBACKS) {
2173 gcq_remove(&spipe->to);
2174
2175 if (xfer->ux_status == USBD_IN_PROGRESS) {
2176 LK_SLASSERT(xfer->ux_actlen <= xfer->ux_length, sc,
2177 spipe, xfer, return);
2178 xfer->ux_status = USBD_NORMAL_COMPLETION;
2179 #if 0 /* usb_transfer_complete will do this */
2180 if (xfer->ux_length == xfer->ux_actlen || xfer->ux_flags &
2181 USBD_SHORT_XFER_OK)
2182 xfer->ux_status = USBD_NORMAL_COMPLETION;
2183 else
2184 xfer->ux_status = USBD_SHORT_XFER;
2185 #endif
2186 }
2187 }
2188
2189 enter_q(t, spipe, head);
2190
2191 queued:
2192 if (target_buf != NULL) {
2193 slhci_dotransfer(sc);
2194 start_cc_time(&t_copy_from_dev, actlen);
2195 slhci_read_multi(sc, buf_start, target_buf, actlen);
2196 stop_cc_time(&t_copy_from_dev);
2197 DLOGBUF(D_BUF, target_buf, actlen);
2198 t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen);
2199 }
2200
2201 done:
2202 t->len[ab] = -1;
2203 }
2204
2205 static void
2206 slhci_tstart(struct slhci_softc *sc)
2207 {
2208 struct slhci_transfers *t;
2209 struct slhci_pipe *spipe;
2210 int remaining_bustime;
2211
2212 t = &sc->sc_transfers;
2213
2214 KASSERT(mutex_owned(&sc->sc_intr_lock));
2215
2216 if (!(t->flags & (F_AREADY|F_BREADY)))
2217 return;
2218
2219 if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED))
2220 return;
2221
2222 /*
2223 * We have about 6 us to get from the bus time check to
2224 * starting the transfer or we might babble or the chip might fail to
2225 * signal transfer complete. This leaves no time for any other
2226 * interrupts.
2227 */
2228 remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6;
2229 remaining_bustime -= SLHCI_END_BUSTIME;
2230
2231 /*
2232 * Start one transfer only, clearing any aborted transfers that are
2233 * not yet in progress and skipping missed isoc. It is easier to copy
2234 * & paste most of the A/B sections than to make the logic work
2235 * otherwise and this allows better constant use.
2236 */
2237 if (t->flags & F_AREADY) {
2238 spipe = t->spipe[A];
2239 if (spipe == NULL) {
2240 t->flags &= ~F_AREADY;
2241 t->len[A] = -1;
2242 } else if (remaining_bustime >= spipe->bustime) {
2243 t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2);
2244 t->flags |= F_AINPROG;
2245 start_cc_time(&t_ab[A], spipe->tregs[LEN]);
2246 slhci_write(sc, SL11_E0CTRL, spipe->control);
2247 goto pend;
2248 }
2249 }
2250 if (t->flags & F_BREADY) {
2251 spipe = t->spipe[B];
2252 if (spipe == NULL) {
2253 t->flags &= ~F_BREADY;
2254 t->len[B] = -1;
2255 } else if (remaining_bustime >= spipe->bustime) {
2256 t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2);
2257 t->flags |= F_BINPROG;
2258 start_cc_time(&t_ab[B], spipe->tregs[LEN]);
2259 slhci_write(sc, SL11_E1CTRL, spipe->control);
2260 pend:
2261 t->pend = spipe->bustime;
2262 }
2263 }
2264 }
2265
2266 static void
2267 slhci_dotransfer(struct slhci_softc *sc)
2268 {
2269 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2270 struct slhci_transfers *t;
2271 struct slhci_pipe *spipe;
2272 int ab, i;
2273
2274 t = &sc->sc_transfers;
2275
2276 KASSERT(mutex_owned(&sc->sc_intr_lock));
2277
2278 while ((t->len[A] == -1 || t->len[B] == -1) &&
2279 (GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) ||
2280 GOT_FIRST_CB(spipe, t))) {
2281 LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return);
2282 LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype !=
2283 PT_ROOT_INTR, sc, spipe, NULL, return);
2284
2285 /* Check that this transfer can fit in the remaining memory. */
2286 if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 >
2287 SL11_MAX_PACKET_SIZE) {
2288 DLOG(D_XFER, "Transfer does not fit. alen %d blen %d "
2289 "len %d", t->len[A], t->len[B], spipe->tregs[LEN],
2290 0);
2291 return;
2292 }
2293
2294 gcq_remove(&spipe->xq);
2295
2296 if (t->len[A] == -1) {
2297 ab = A;
2298 spipe->tregs[ADR] = SL11_BUFFER_START;
2299 } else {
2300 ab = B;
2301 spipe->tregs[ADR] = SL11_BUFFER_END -
2302 spipe->tregs[LEN];
2303 }
2304
2305 t->len[ab] = spipe->tregs[LEN];
2306
2307 if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS)
2308 != SL11_PID_IN) {
2309 start_cc_time(&t_copy_to_dev,
2310 spipe->tregs[LEN]);
2311 slhci_write_multi(sc, spipe->tregs[ADR],
2312 spipe->buffer, spipe->tregs[LEN]);
2313 stop_cc_time(&t_copy_to_dev);
2314 t->pend -= SLHCI_FS_CONST +
2315 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
2316 }
2317
2318 DLOG(D_MSG, "NEW TRANSFER %s flags %#x alen %d blen %d",
2319 ab ? "B" : "A", t->flags, t->len[0], t->len[1]);
2320
2321 if (spipe->tregs[LEN])
2322 i = 0;
2323 else
2324 i = 1;
2325
2326 for (; i <= 3; i++)
2327 if (t->current_tregs[ab][i] != spipe->tregs[i]) {
2328 t->current_tregs[ab][i] = spipe->tregs[i];
2329 slhci_write(sc, slhci_tregs[ab][i],
2330 spipe->tregs[i]);
2331 }
2332
2333 DLOG(D_SXFER, "Transfer len %d pid %#x dev %d type %s",
2334 spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV],
2335 pnames(spipe->ptype));
2336
2337 t->spipe[ab] = spipe;
2338 t->flags |= ab ? F_BREADY : F_AREADY;
2339
2340 slhci_tstart(sc);
2341 }
2342 }
2343
2344 /*
2345 * slhci_callback is called after the lock is taken.
2346 */
2347 static void
2348 slhci_callback(struct slhci_softc *sc)
2349 {
2350 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2351 struct slhci_transfers *t;
2352 struct slhci_pipe *spipe;
2353 struct usbd_xfer *xfer;
2354
2355 t = &sc->sc_transfers;
2356
2357 KASSERT(mutex_owned(&sc->sc_intr_lock));
2358
2359 DLOG(D_SOFT, "CB flags %#x", t->flags, 0,0,0);
2360 for (;;) {
2361 if (__predict_false(t->flags & F_ROOTINTR)) {
2362 t->flags &= ~F_ROOTINTR;
2363 if (t->rootintr != NULL) {
2364 u_char *p;
2365
2366 p = t->rootintr->ux_buf;
2367 p[0] = 2;
2368 t->rootintr->ux_actlen = 1;
2369 t->rootintr->ux_status = USBD_NORMAL_COMPLETION;
2370 xfer = t->rootintr;
2371 goto do_callback;
2372 }
2373 }
2374
2375
2376 if (!DEQUEUED_CALLBACK(spipe, t))
2377 return;
2378
2379 xfer = spipe->xfer;
2380 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
2381 spipe->xfer = NULL;
2382 DLOG(D_XFER, "xfer callback length %d actlen %d spipe %x "
2383 "type %s", xfer->ux_length, xfer->ux_actlen, spipe,
2384 pnames(spipe->ptype));
2385 do_callback:
2386 slhci_do_callback(sc, xfer);
2387 }
2388 }
2389
2390 static void
2391 slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2392 {
2393 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2394 struct slhci_transfers *t;
2395
2396 t = &sc->sc_transfers;
2397
2398 KASSERT(mutex_owned(&sc->sc_intr_lock));
2399
2400 if (__predict_false(t->flags & F_DISABLED) ||
2401 __predict_false(spipe->pflags & PF_GONE)) {
2402 DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0);
2403 spipe->xfer->ux_status = USBD_CANCELLED;
2404 }
2405
2406 if (spipe->xfer->ux_status == USBD_IN_PROGRESS) {
2407 if (spipe->xfer->ux_timeout) {
2408 spipe->to_frame = t->frame + spipe->xfer->ux_timeout;
2409 slhci_xfer_timer(sc, spipe);
2410 }
2411 if (spipe->pipe.up_interval)
2412 slhci_queue_timed(sc, spipe);
2413 else
2414 enter_q(t, spipe, Q_CB);
2415 } else
2416 enter_callback(t, spipe);
2417 }
2418
2419 static void
2420 slhci_enter_xfers(struct slhci_softc *sc)
2421 {
2422 struct slhci_pipe *spipe;
2423
2424 KASSERT(mutex_owned(&sc->sc_intr_lock));
2425
2426 while (DEQUEUED_WAITQ(spipe, sc))
2427 slhci_enter_xfer(sc, spipe);
2428 }
2429
2430 static void
2431 slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe)
2432 {
2433 struct slhci_transfers *t;
2434 struct gcq *q;
2435 struct slhci_pipe *spp;
2436
2437 t = &sc->sc_transfers;
2438
2439 KASSERT(mutex_owned(&sc->sc_intr_lock));
2440
2441 FIND_TIMED(q, t, spp, spp->frame > spipe->frame);
2442 gcq_insert_before(q, &spipe->xq);
2443 }
2444
2445 static void
2446 slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2447 {
2448 struct slhci_transfers *t;
2449 struct gcq *q;
2450 struct slhci_pipe *spp;
2451
2452 t = &sc->sc_transfers;
2453
2454 KASSERT(mutex_owned(&sc->sc_intr_lock));
2455
2456 FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame);
2457 gcq_insert_before(q, &spipe->to);
2458 }
2459
2460 static void
2461 slhci_callback_schedule(struct slhci_softc *sc)
2462 {
2463 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2464 struct slhci_transfers *t;
2465
2466 t = &sc->sc_transfers;
2467
2468 KASSERT(mutex_owned(&sc->sc_intr_lock));
2469
2470 if (t->flags & F_ACTIVE)
2471 slhci_do_callback_schedule(sc);
2472 }
2473
2474 static void
2475 slhci_do_callback_schedule(struct slhci_softc *sc)
2476 {
2477 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2478 struct slhci_transfers *t;
2479
2480 t = &sc->sc_transfers;
2481
2482 KASSERT(mutex_owned(&sc->sc_intr_lock));
2483
2484 DLOG(D_MSG, "flags %#x", t->flags, 0, 0, 0);
2485 if (!(t->flags & F_CALLBACK)) {
2486 t->flags |= F_CALLBACK;
2487 softint_schedule(sc->sc_cb_softintr);
2488 }
2489 }
2490
2491 #if 0
2492 /* must be called with lock taken. */
2493 /* XXX static */ void
2494 slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer)
2495 {
2496 KASSERT(mutex_owned(&sc->sc_intr_lock));
2497 slhci_dotransfer(sc);
2498 do {
2499 slhci_dointr(sc);
2500 } while (xfer->ux_status == USBD_IN_PROGRESS);
2501 slhci_do_callback(sc, xfer);
2502 }
2503 #endif
2504
2505 static usbd_status
2506 slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2507 usbd_xfer *xfer)
2508 {
2509 slhci_waitintr(sc, 0);
2510
2511 return USBD_NORMAL_COMPLETION;
2512 }
2513
2514 static usbd_status
2515 slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2516 usbd_xfer *xfer)
2517 {
2518 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2519 struct slhci_transfers *t;
2520
2521 t = &sc->sc_transfers;
2522
2523 if (!(t->flags & F_LSVH_WARNED)) {
2524 printf("%s: Low speed device via hub disabled, "
2525 "see slhci(4)\n", SC_NAME(sc));
2526 DDOLOG("%s: Low speed device via hub disabled, "
2527 "see slhci(4)\n", SC_NAME(sc), 0,0,0);
2528 t->flags |= F_LSVH_WARNED;
2529 }
2530 return USBD_INVAL;
2531 }
2532
2533 static usbd_status
2534 slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2535 usbd_xfer *xfer)
2536 {
2537 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2538 struct slhci_transfers *t;
2539
2540 t = &sc->sc_transfers;
2541
2542 if (!(t->flags & F_ISOC_WARNED)) {
2543 printf("%s: ISOC transfer not supported "
2544 "(see slhci(4))\n", SC_NAME(sc));
2545 DDOLOG("%s: ISOC transfer not supported "
2546 "(see slhci(4))\n", SC_NAME(sc), 0,0,0);
2547 t->flags |= F_ISOC_WARNED;
2548 }
2549 return USBD_INVAL;
2550 }
2551
2552 static usbd_status
2553 slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2554 usbd_xfer *xfer)
2555 {
2556 struct slhci_transfers *t;
2557 struct usbd_pipe *pipe;
2558
2559 t = &sc->sc_transfers;
2560 pipe = &spipe->pipe;
2561
2562 if (t->flags & F_DISABLED)
2563 return USBD_CANCELLED;
2564 else if (pipe->up_interval && !slhci_reserve_bustime(sc, spipe, 1))
2565 return USBD_PENDING_REQUESTS;
2566 else {
2567 enter_all_pipes(t, spipe);
2568 return USBD_NORMAL_COMPLETION;
2569 }
2570 }
2571
2572 static usbd_status
2573 slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2574 usbd_xfer *xfer)
2575 {
2576 struct usbd_pipe *pipe;
2577
2578 pipe = &spipe->pipe;
2579
2580 if (pipe->up_interval && spipe->ptype != PT_ROOT_INTR)
2581 slhci_reserve_bustime(sc, spipe, 0);
2582 gcq_remove(&spipe->ap);
2583 return USBD_NORMAL_COMPLETION;
2584 }
2585
2586 static usbd_status
2587 slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2588 usbd_xfer *xfer)
2589 {
2590 struct slhci_transfers *t;
2591
2592 t = &sc->sc_transfers;
2593
2594 KASSERT(mutex_owned(&sc->sc_intr_lock));
2595
2596 if (spipe->xfer == xfer) {
2597 if (spipe->ptype == PT_ROOT_INTR) {
2598 if (t->rootintr == spipe->xfer) /* XXX assert? */
2599 t->rootintr = NULL;
2600 } else {
2601 gcq_remove(&spipe->to);
2602 gcq_remove(&spipe->xq);
2603
2604 if (t->spipe[A] == spipe) {
2605 t->spipe[A] = NULL;
2606 if (!(t->flags & F_AINPROG))
2607 t->len[A] = -1;
2608 } else if (t->spipe[B] == spipe) {
2609 t->spipe[B] = NULL;
2610 if (!(t->flags & F_BINPROG))
2611 t->len[B] = -1;
2612 }
2613 }
2614
2615 if (xfer->ux_status != USBD_TIMEOUT) {
2616 spipe->xfer = NULL;
2617 spipe->pipe.up_repeat = 0; /* XXX timeout? */
2618 }
2619 }
2620
2621 return USBD_NORMAL_COMPLETION;
2622 }
2623
2624 /*
2625 * Called to deactivate or stop use of the controller instead of panicking.
2626 * Will cancel the xfer correctly even when not on a list.
2627 */
2628 static usbd_status
2629 slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe,
2630 struct usbd_xfer *xfer)
2631 {
2632 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2633 struct slhci_transfers *t;
2634
2635 KASSERT(mutex_owned(&sc->sc_intr_lock));
2636
2637 t = &sc->sc_transfers;
2638
2639 DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0);
2640
2641 if (spipe != NULL)
2642 slhci_log_spipe(spipe);
2643
2644 if (xfer != NULL)
2645 slhci_log_xfer(xfer);
2646
2647 if (spipe != NULL && xfer != NULL && spipe->xfer == xfer &&
2648 !gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] !=
2649 spipe) {
2650 xfer->ux_status = USBD_CANCELLED;
2651 enter_callback(t, spipe);
2652 }
2653
2654 if (t->flags & F_ACTIVE) {
2655 slhci_intrchange(sc, 0);
2656 /*
2657 * leave power on when halting in case flash devices or disks
2658 * are attached, which may be writing and could be damaged
2659 * by abrupt power loss. The root hub clear power feature
2660 * should still work after halting.
2661 */
2662 }
2663
2664 t->flags &= ~F_ACTIVE;
2665 t->flags |= F_UDISABLED;
2666 if (!(t->flags & F_NODEV))
2667 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
2668 slhci_drain(sc);
2669
2670 /* One last callback for the drain and device removal. */
2671 slhci_do_callback_schedule(sc);
2672
2673 return USBD_NORMAL_COMPLETION;
2674 }
2675
2676 /*
2677 * There are three interrupt states: no interrupts during reset and after
2678 * device deactivation, INSERT only for no device present but power on, and
2679 * SOF, INSERT, ADONE, and BDONE when device is present.
2680 */
2681 static void
2682 slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier)
2683 {
2684 KASSERT(mutex_owned(&sc->sc_intr_lock));
2685 if (sc->sc_ier != new_ier) {
2686 sc->sc_ier = new_ier;
2687 slhci_write(sc, SL11_IER, new_ier);
2688 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
2689 }
2690 }
2691
2692 /*
2693 * Drain: cancel all pending transfers and put them on the callback list and
2694 * set the UDISABLED flag. UDISABLED is cleared only by reset.
2695 */
2696 static void
2697 slhci_drain(struct slhci_softc *sc)
2698 {
2699 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2700 struct slhci_transfers *t;
2701 struct slhci_pipe *spipe;
2702 struct gcq *q;
2703 int i;
2704
2705 KASSERT(mutex_owned(&sc->sc_intr_lock));
2706
2707 t = &sc->sc_transfers;
2708
2709 DLOG(D_MSG, "DRAIN flags %#x", t->flags, 0,0,0);
2710
2711 t->pend = INT_MAX;
2712
2713 for (i=0; i<=1; i++) {
2714 t->len[i] = -1;
2715 if (t->spipe[i] != NULL) {
2716 enter_callback(t, t->spipe[i]);
2717 t->spipe[i] = NULL;
2718 }
2719 }
2720
2721 /* Merge the queues into the callback queue. */
2722 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]);
2723 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]);
2724 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed);
2725
2726 /*
2727 * Cancel all pipes. Note that not all of these may be on the
2728 * callback queue yet; some could be in slhci_start, for example.
2729 */
2730 FOREACH_AP(q, t, spipe) {
2731 spipe->pflags |= PF_GONE;
2732 spipe->pipe.up_repeat = 0;
2733 spipe->pipe.up_aborting = 1;
2734 if (spipe->xfer != NULL)
2735 spipe->xfer->ux_status = USBD_CANCELLED;
2736 }
2737
2738 gcq_remove_all(&t->to);
2739
2740 t->flags |= F_UDISABLED;
2741 t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED);
2742 }
2743
2744 /*
2745 * RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms
2746 * reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF)
2747 * check attached device speed.
2748 * must wait 100ms before USB transaction according to app note, 10ms
2749 * by spec. uhub does this delay
2750 *
2751 * Started from root hub set feature reset, which does step one.
2752 * ub_usepolling will call slhci_reset directly, otherwise the callout goes
2753 * through slhci_reset_entry.
2754 */
2755 void
2756 slhci_reset(struct slhci_softc *sc)
2757 {
2758 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2759 struct slhci_transfers *t;
2760 struct slhci_pipe *spipe;
2761 struct gcq *q;
2762 uint8_t r, pol, ctrl;
2763
2764 t = &sc->sc_transfers;
2765 KASSERT(mutex_owned(&sc->sc_intr_lock));
2766
2767 stop_cc_time(&t_delay);
2768
2769 KASSERT(t->flags & F_ACTIVE);
2770
2771 start_cc_time(&t_delay, 0);
2772 stop_cc_time(&t_delay);
2773
2774 slhci_write(sc, SL11_CTRL, 0);
2775 start_cc_time(&t_delay, 3);
2776 DELAY(3);
2777 stop_cc_time(&t_delay);
2778 slhci_write(sc, SL11_ISR, 0xff);
2779
2780 r = slhci_read(sc, SL11_ISR);
2781
2782 if (r & SL11_ISR_INSERT)
2783 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
2784
2785 if (r & SL11_ISR_NODEV) {
2786 DLOG(D_MSG, "NC", 0,0,0,0);
2787 /*
2788 * Normally, the hard interrupt insert routine will issue
2789 * CCONNECT, however we need to do it here if the detach
2790 * happened during reset.
2791 */
2792 if (!(t->flags & F_NODEV))
2793 t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV;
2794 slhci_intrchange(sc, SL11_IER_INSERT);
2795 } else {
2796 if (t->flags & F_NODEV)
2797 t->flags |= F_CCONNECT;
2798 t->flags &= ~(F_NODEV|F_LOWSPEED);
2799 if (r & SL11_ISR_DATA) {
2800 DLOG(D_MSG, "FS", 0,0,0,0);
2801 pol = ctrl = 0;
2802 } else {
2803 DLOG(D_MSG, "LS", 0,0,0,0);
2804 pol = SL811_CSOF_POLARITY;
2805 ctrl = SL11_CTRL_LOWSPEED;
2806 t->flags |= F_LOWSPEED;
2807 }
2808
2809 /* Enable SOF auto-generation */
2810 t->frame = 0; /* write to SL811_CSOF will reset frame */
2811 slhci_write(sc, SL11_SOFTIME, 0xe0);
2812 slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e);
2813 slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF);
2814
2815 /*
2816 * According to the app note, ARM must be set
2817 * for SOF generation to work. We initialize all
2818 * USBA registers here for current_tregs.
2819 */
2820 slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START);
2821 slhci_write(sc, SL11_E0LEN, 0);
2822 slhci_write(sc, SL11_E0PID, SL11_PID_SOF);
2823 slhci_write(sc, SL11_E0DEV, 0);
2824 slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM);
2825
2826 /*
2827 * Initialize B registers. This can't be done earlier since
2828 * they are not valid until the SL811_CSOF register is written
2829 * above due to SL11H compatability.
2830 */
2831 slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8);
2832 slhci_write(sc, SL11_E1LEN, 0);
2833 slhci_write(sc, SL11_E1PID, 0);
2834 slhci_write(sc, SL11_E1DEV, 0);
2835
2836 t->current_tregs[0][ADR] = SL11_BUFFER_START;
2837 t->current_tregs[0][LEN] = 0;
2838 t->current_tregs[0][PID] = SL11_PID_SOF;
2839 t->current_tregs[0][DEV] = 0;
2840 t->current_tregs[1][ADR] = SL11_BUFFER_END - 8;
2841 t->current_tregs[1][LEN] = 0;
2842 t->current_tregs[1][PID] = 0;
2843 t->current_tregs[1][DEV] = 0;
2844
2845 /* SOF start will produce USBA interrupt */
2846 t->len[A] = 0;
2847 t->flags |= F_AINPROG;
2848
2849 slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS);
2850 }
2851
2852 t->flags &= ~(F_UDISABLED|F_RESET);
2853 t->flags |= F_CRESET|F_ROOTINTR;
2854 FOREACH_AP(q, t, spipe) {
2855 spipe->pflags &= ~PF_GONE;
2856 spipe->pipe.up_aborting = 0;
2857 }
2858 DLOG(D_MSG, "RESET done flags %#x", t->flags, 0,0,0);
2859 }
2860
2861 /* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */
2862 static int
2863 slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int
2864 reserve)
2865 {
2866 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2867 struct slhci_transfers *t;
2868 int bustime, max_packet;
2869
2870 KASSERT(mutex_owned(&sc->sc_intr_lock));
2871
2872 t = &sc->sc_transfers;
2873 max_packet = UGETW(spipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize);
2874
2875 if (spipe->pflags & PF_LS)
2876 bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet);
2877 else
2878 bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet);
2879
2880 if (!reserve) {
2881 t->reserved_bustime -= bustime;
2882 #ifdef DIAGNOSTIC
2883 if (t->reserved_bustime < 0) {
2884 printf("%s: reserved_bustime %d < 0!\n",
2885 SC_NAME(sc), t->reserved_bustime);
2886 DDOLOG("%s: reserved_bustime %d < 0!\n",
2887 SC_NAME(sc), t->reserved_bustime, 0,0);
2888 t->reserved_bustime = 0;
2889 }
2890 #endif
2891 return 1;
2892 }
2893
2894 if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) {
2895 if (ratecheck(&sc->sc_reserved_warn_rate,
2896 &reserved_warn_rate))
2897 #ifdef SLHCI_NO_OVERTIME
2898 {
2899 printf("%s: Max reserved bus time exceeded! "
2900 "Erroring request.\n", SC_NAME(sc));
2901 DDOLOG("%s: Max reserved bus time exceeded! "
2902 "Erroring request.\n", SC_NAME(sc), 0,0,0);
2903 }
2904 return 0;
2905 #else
2906 {
2907 printf("%s: Reserved bus time exceeds %d!\n",
2908 SC_NAME(sc), SLHCI_RESERVED_BUSTIME);
2909 DDOLOG("%s: Reserved bus time exceeds %d!\n",
2910 SC_NAME(sc), SLHCI_RESERVED_BUSTIME, 0,0);
2911 }
2912 #endif
2913 }
2914
2915 t->reserved_bustime += bustime;
2916 return 1;
2917 }
2918
2919 /* Device insertion/removal interrupt */
2920 static void
2921 slhci_insert(struct slhci_softc *sc)
2922 {
2923 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2924 struct slhci_transfers *t;
2925
2926 t = &sc->sc_transfers;
2927
2928 KASSERT(mutex_owned(&sc->sc_intr_lock));
2929
2930 if (t->flags & F_NODEV)
2931 slhci_intrchange(sc, 0);
2932 else {
2933 slhci_drain(sc);
2934 slhci_intrchange(sc, SL11_IER_INSERT);
2935 }
2936 t->flags ^= F_NODEV;
2937 t->flags |= F_ROOTINTR|F_CCONNECT;
2938 DLOG(D_MSG, "INSERT intr: flags after %#x", t->flags, 0,0,0);
2939 }
2940
2941 /*
2942 * Data structures and routines to emulate the root hub.
2943 */
2944
2945 static usbd_status
2946 slhci_clear_feature(struct slhci_softc *sc, unsigned int what)
2947 {
2948 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2949 struct slhci_transfers *t;
2950 usbd_status error;
2951
2952 t = &sc->sc_transfers;
2953 error = USBD_NORMAL_COMPLETION;
2954
2955 KASSERT(mutex_owned(&sc->sc_intr_lock));
2956
2957 if (what == UHF_PORT_POWER) {
2958 DLOG(D_MSG, "POWER_OFF", 0,0,0,0);
2959 t->flags &= ~F_POWER;
2960 if (!(t->flags & F_NODEV))
2961 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
2962 /* for x68k Nereid USB controller */
2963 if (sc->sc_enable_power && (t->flags & F_REALPOWER)) {
2964 t->flags &= ~F_REALPOWER;
2965 sc->sc_enable_power(sc, POWER_OFF);
2966 }
2967 slhci_intrchange(sc, 0);
2968 slhci_drain(sc);
2969 } else if (what == UHF_C_PORT_CONNECTION) {
2970 t->flags &= ~F_CCONNECT;
2971 } else if (what == UHF_C_PORT_RESET) {
2972 t->flags &= ~F_CRESET;
2973 } else if (what == UHF_PORT_ENABLE) {
2974 slhci_drain(sc);
2975 } else if (what != UHF_PORT_SUSPEND) {
2976 DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0);
2977 error = USBD_IOERROR;
2978 }
2979
2980 return error;
2981 }
2982
2983 static usbd_status
2984 slhci_set_feature(struct slhci_softc *sc, unsigned int what)
2985 {
2986 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2987 struct slhci_transfers *t;
2988 uint8_t r;
2989
2990 t = &sc->sc_transfers;
2991
2992 KASSERT(mutex_owned(&sc->sc_intr_lock));
2993
2994 if (what == UHF_PORT_RESET) {
2995 if (!(t->flags & F_ACTIVE)) {
2996 DDOLOG("SET PORT_RESET when not ACTIVE!",
2997 0,0,0,0);
2998 return USBD_INVAL;
2999 }
3000 if (!(t->flags & F_POWER)) {
3001 DDOLOG("SET PORT_RESET without PORT_POWER! flags %p",
3002 t->flags, 0,0,0);
3003 return USBD_INVAL;
3004 }
3005 if (t->flags & F_RESET)
3006 return USBD_NORMAL_COMPLETION;
3007 DLOG(D_MSG, "RESET flags %#x", t->flags, 0,0,0);
3008 slhci_intrchange(sc, 0);
3009 slhci_drain(sc);
3010 slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE);
3011 /* usb spec says delay >= 10ms, app note 50ms */
3012 start_cc_time(&t_delay, 50000);
3013 if (sc->sc_bus.ub_usepolling) {
3014 DELAY(50000);
3015 slhci_reset(sc);
3016 } else {
3017 t->flags |= F_RESET;
3018 callout_schedule(&sc->sc_timer, max(mstohz(50), 2));
3019 }
3020 } else if (what == UHF_PORT_SUSPEND) {
3021 printf("%s: USB Suspend not implemented!\n", SC_NAME(sc));
3022 DDOLOG("%s: USB Suspend not implemented!\n", SC_NAME(sc),
3023 0,0,0);
3024 } else if (what == UHF_PORT_POWER) {
3025 DLOG(D_MSG, "PORT_POWER", 0,0,0,0);
3026 /* for x68k Nereid USB controller */
3027 if (!(t->flags & F_ACTIVE))
3028 return USBD_INVAL;
3029 if (t->flags & F_POWER)
3030 return USBD_NORMAL_COMPLETION;
3031 if (!(t->flags & F_REALPOWER)) {
3032 if (sc->sc_enable_power)
3033 sc->sc_enable_power(sc, POWER_ON);
3034 t->flags |= F_REALPOWER;
3035 }
3036 t->flags |= F_POWER;
3037 r = slhci_read(sc, SL11_ISR);
3038 if (r & SL11_ISR_INSERT)
3039 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
3040 if (r & SL11_ISR_NODEV) {
3041 slhci_intrchange(sc, SL11_IER_INSERT);
3042 t->flags |= F_NODEV;
3043 } else {
3044 t->flags &= ~F_NODEV;
3045 t->flags |= F_CCONNECT|F_ROOTINTR;
3046 }
3047 } else {
3048 DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0);
3049 return USBD_IOERROR;
3050 }
3051
3052 return USBD_NORMAL_COMPLETION;
3053 }
3054
3055 static void
3056 slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps)
3057 {
3058 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3059 struct slhci_transfers *t;
3060 unsigned int status, change;
3061
3062 t = &sc->sc_transfers;
3063
3064 KASSERT(mutex_owned(&sc->sc_intr_lock));
3065
3066 /*
3067 * We do not have a way to detect over current or babble and
3068 * suspend is currently not implemented, so connect and reset
3069 * are the only changes that need to be reported.
3070 */
3071 change = 0;
3072 if (t->flags & F_CCONNECT)
3073 change |= UPS_C_CONNECT_STATUS;
3074 if (t->flags & F_CRESET)
3075 change |= UPS_C_PORT_RESET;
3076
3077 status = 0;
3078 if (!(t->flags & F_NODEV))
3079 status |= UPS_CURRENT_CONNECT_STATUS;
3080 if (!(t->flags & F_UDISABLED))
3081 status |= UPS_PORT_ENABLED;
3082 if (t->flags & F_RESET)
3083 status |= UPS_RESET;
3084 if (t->flags & F_POWER)
3085 status |= UPS_PORT_POWER;
3086 if (t->flags & F_LOWSPEED)
3087 status |= UPS_LOW_SPEED;
3088 USETW(ps->wPortStatus, status);
3089 USETW(ps->wPortChange, change);
3090 DLOG(D_ROOT, "status=%#.4x, change=%#.4x", status, change, 0,0);
3091 }
3092
3093 static int
3094 slhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
3095 void *buf, int buflen)
3096 {
3097 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3098 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
3099 struct slhci_transfers *t = &sc->sc_transfers;
3100 usbd_status error = USBD_IOERROR; /* XXX should be STALL */
3101 uint16_t len, value, index;
3102 uint8_t type;
3103 int actlen = 0;
3104
3105 len = UGETW(req->wLength);
3106 value = UGETW(req->wValue);
3107 index = UGETW(req->wIndex);
3108
3109 type = req->bmRequestType;
3110
3111 SLHCI_DEXEC(D_TRACE, slhci_log_req_hub(req));
3112
3113 /*
3114 * USB requests for hubs have two basic types, standard and class.
3115 * Each could potentially have recipients of device, interface,
3116 * endpoint, or other. For the hub class, CLASS_OTHER means the port
3117 * and CLASS_DEVICE means the hub. For standard requests, OTHER
3118 * is not used. Standard request are described in section 9.4 of the
3119 * standard, hub class requests in 11.16. Each request is either read
3120 * or write.
3121 *
3122 * Clear Feature, Set Feature, and Status are defined for each of the
3123 * used recipients. Get Descriptor and Set Descriptor are defined for
3124 * both standard and hub class types with different descriptors.
3125 * Other requests have only one defined recipient and type. These
3126 * include: Get/Set Address, Get/Set Configuration, Get/Set Interface,
3127 * and Synch Frame for standard requests and Get Bus State for hub
3128 * class.
3129 *
3130 * When a device is first powered up it has address 0 until the
3131 * address is set.
3132 *
3133 * Hubs are only allowed to support one interface and may not have
3134 * isochronous endpoints. The results of the related requests are
3135 * undefined.
3136 *
3137 * The standard requires invalid or unsupported requests to return
3138 * STALL in the data stage, however this does not work well with
3139 * current error handling. XXX
3140 *
3141 * Some unsupported fields:
3142 * Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT
3143 * Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP
3144 * Get Bus State is optional sample of D- and D+ at EOF2
3145 */
3146
3147 switch (req->bRequest) {
3148 /* Write Requests */
3149 case UR_CLEAR_FEATURE:
3150 if (type == UT_WRITE_CLASS_OTHER) {
3151 if (index == 1 /* Port */) {
3152 mutex_enter(&sc->sc_intr_lock);
3153 error = slhci_clear_feature(sc, value);
3154 mutex_exit(&sc->sc_intr_lock);
3155 } else
3156 DLOG(D_ROOT, "Clear Port Feature "
3157 "index = %#.4x", index, 0,0,0);
3158 }
3159 break;
3160 case UR_SET_FEATURE:
3161 if (type == UT_WRITE_CLASS_OTHER) {
3162 if (index == 1 /* Port */) {
3163 mutex_enter(&sc->sc_intr_lock);
3164 error = slhci_set_feature(sc, value);
3165 mutex_exit(&sc->sc_intr_lock);
3166 } else
3167 DLOG(D_ROOT, "Set Port Feature "
3168 "index = %#.4x", index, 0,0,0);
3169 } else if (type != UT_WRITE_CLASS_DEVICE)
3170 DLOG(D_ROOT, "Set Device Feature "
3171 "ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP "
3172 "not supported", 0,0,0,0);
3173 break;
3174
3175 /* Read Requests */
3176 case UR_GET_STATUS:
3177 if (type == UT_READ_CLASS_OTHER) {
3178 if (index == 1 /* Port */ && len == /* XXX >=? */
3179 sizeof(usb_port_status_t)) {
3180 mutex_enter(&sc->sc_intr_lock);
3181 slhci_get_status(sc, (usb_port_status_t *)
3182 buf);
3183 mutex_exit(&sc->sc_intr_lock);
3184 actlen = sizeof(usb_port_status_t);
3185 error = USBD_NORMAL_COMPLETION;
3186 } else
3187 DLOG(D_ROOT, "Get Port Status index = %#.4x "
3188 "len = %#.4x", index, len, 0,0);
3189 } else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */
3190 if (len == sizeof(usb_hub_status_t)) {
3191 DLOG(D_ROOT, "Get Hub Status",
3192 0,0,0,0);
3193 actlen = sizeof(usb_hub_status_t);
3194 memset(buf, 0, actlen);
3195 error = USBD_NORMAL_COMPLETION;
3196 } else
3197 DLOG(D_ROOT, "Get Hub Status bad len %#.4x",
3198 len, 0,0,0);
3199 }
3200 break;
3201 case UR_GET_DESCRIPTOR:
3202 if (type == UT_READ_DEVICE) {
3203 /* value is type (&0xff00) and index (0xff) */
3204 if (value == (UDESC_DEVICE<<8)) {
3205 usb_device_descriptor_t devd;
3206
3207 actlen = min(buflen, sizeof(devd));
3208 memcpy(&devd, buf, actlen);
3209 USETW(devd.idVendor, USB_VENDOR_SCANLOGIC);
3210 memcpy(buf, &devd, actlen);
3211 error = USBD_NORMAL_COMPLETION;
3212 } else if (value == (UDESC_CONFIG<<8)) {
3213 struct usb_roothub_descriptors confd;
3214
3215 actlen = min(buflen, sizeof(confd));
3216 memcpy(&confd, buf, actlen);
3217
3218 /* 2 mA units */
3219 confd.urh_confd.bMaxPower = t->max_current;
3220 memcpy(buf, &confd, actlen);
3221 error = USBD_NORMAL_COMPLETION;
3222 } else if (value == ((UDESC_STRING<<8)|1)) {
3223 /* Vendor */
3224 actlen = usb_makestrdesc((usb_string_descriptor_t *)
3225 buf, len, "ScanLogic/Cypress");
3226 error = USBD_NORMAL_COMPLETION;
3227 } else if (value == ((UDESC_STRING<<8)|2)) {
3228 /* Product */
3229 actlen = usb_makestrdesc((usb_string_descriptor_t *)
3230 buf, len, "SL811HS/T root hub");
3231 error = USBD_NORMAL_COMPLETION;
3232 } else
3233 DDOLOG("Unknown Get Descriptor %#.4x",
3234 value, 0,0,0);
3235 } else if (type == UT_READ_CLASS_DEVICE) {
3236 /* Descriptor number is 0 */
3237 if (value == (UDESC_HUB<<8)) {
3238 usb_hub_descriptor_t hubd;
3239
3240 actlen = min(buflen, sizeof(hubd));
3241 memcpy(&hubd, buf, actlen);
3242 hubd.bHubContrCurrent =
3243 500 - t->max_current;
3244 memcpy(buf, &hubd, actlen);
3245 error = USBD_NORMAL_COMPLETION;
3246 } else
3247 DDOLOG("Unknown Get Hub Descriptor %#.4x",
3248 value, 0,0,0);
3249 }
3250 break;
3251 default:
3252 /* default from usbroothub */
3253 return buflen;
3254 }
3255
3256 if (error == USBD_NORMAL_COMPLETION)
3257 return actlen;
3258
3259 return -1;
3260 }
3261
3262 /* End in lock functions. Start debug functions. */
3263
3264 #ifdef SLHCI_DEBUG
3265 void
3266 slhci_log_buffer(struct usbd_xfer *xfer)
3267 {
3268 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3269 u_char *buf;
3270
3271 if(xfer->ux_length > 0 &&
3272 UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) ==
3273 UE_DIR_IN) {
3274 buf = xfer->ux_buf;
3275 DDOLOGBUF(buf, xfer->ux_actlen);
3276 DDOLOG("len %d actlen %d short %d", xfer->ux_length,
3277 xfer->ux_actlen, xfer->ux_length - xfer->ux_actlen, 0);
3278 }
3279 }
3280
3281 void
3282 slhci_log_req(usb_device_request_t *r)
3283 {
3284 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3285 static const char *xmes[]={
3286 "GETSTAT",
3287 "CLRFEAT",
3288 "res",
3289 "SETFEAT",
3290 "res",
3291 "SETADDR",
3292 "GETDESC",
3293 "SETDESC",
3294 "GETCONF",
3295 "SETCONF",
3296 "GETIN/F",
3297 "SETIN/F",
3298 "SYNC_FR",
3299 "UNKNOWN"
3300 };
3301 int req, mreq, type, value, index, len;
3302
3303 req = r->bRequest;
3304 mreq = (req > 13) ? 13 : req;
3305 type = r->bmRequestType;
3306 value = UGETW(r->wValue);
3307 index = UGETW(r->wIndex);
3308 len = UGETW(r->wLength);
3309
3310 DDOLOG("request: %s %#x", xmes[mreq], type, 0,0);
3311 DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len);
3312 }
3313
3314 void
3315 slhci_log_req_hub(usb_device_request_t *r)
3316 {
3317 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3318 static const struct {
3319 int req;
3320 int type;
3321 const char *str;
3322 } conf[] = {
3323 { 1, 0x20, "ClrHubFeat" },
3324 { 1, 0x23, "ClrPortFeat" },
3325 { 2, 0xa3, "GetBusState" },
3326 { 6, 0xa0, "GetHubDesc" },
3327 { 0, 0xa0, "GetHubStat" },
3328 { 0, 0xa3, "GetPortStat" },
3329 { 7, 0x20, "SetHubDesc" },
3330 { 3, 0x20, "SetHubFeat" },
3331 { 3, 0x23, "SetPortFeat" },
3332 {-1, 0, NULL},
3333 };
3334 int i;
3335 int value, index, len;
3336 const char *str;
3337
3338 value = UGETW(r->wValue);
3339 index = UGETW(r->wIndex);
3340 len = UGETW(r->wLength);
3341 for (i = 0; ; i++) {
3342 if (conf[i].req == -1 ) {
3343 slhci_log_req(r);
3344 return;
3345 }
3346 if (r->bmRequestType == conf[i].type && r->bRequest == conf[i].req) {
3347 str = conf[i].str;
3348 break;
3349 }
3350 }
3351 DDOLOG("hub request: %s v=%d,i=%d,l=%d ", str, value, index, len);
3352 }
3353
3354 void
3355 slhci_log_dumpreg(void)
3356 {
3357 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3358 uint8_t r;
3359 unsigned int aaddr, alen, baddr, blen;
3360 static u_char buf[240];
3361
3362 r = slhci_read(ssc, SL11_E0CTRL);
3363 DDOLOG("USB A Host Control = %#.2x", r, 0,0,0);
3364 DDOLOGFLAG8("E0CTRL=", r, "Preamble", "Data Toggle", "SOF Sync",
3365 "ISOC", "res", "Out", "Enable", "Arm");
3366 aaddr = slhci_read(ssc, SL11_E0ADDR);
3367 DDOLOG("USB A Base Address = %u", aaddr, 0,0,0);
3368 alen = slhci_read(ssc, SL11_E0LEN);
3369 DDOLOG("USB A Length = %u", alen, 0,0,0);
3370 r = slhci_read(ssc, SL11_E0STAT);
3371 DDOLOG("USB A Status = %#.2x", r, 0,0,0);
3372 DDOLOGFLAG8("E0STAT=", r, "STALL", "NAK", "Overflow", "Setup",
3373 "Data Toggle", "Timeout", "Error", "ACK");
3374 r = slhci_read(ssc, SL11_E0CONT);
3375 DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0);
3376 r = slhci_read(ssc, SL11_E1CTRL);
3377 DDOLOG("USB B Host Control = %#.2x", r, 0,0,0);
3378 DDOLOGFLAG8("E1CTRL=", r, "Preamble", "Data Toggle", "SOF Sync",
3379 "ISOC", "res", "Out", "Enable", "Arm");
3380 baddr = slhci_read(ssc, SL11_E1ADDR);
3381 DDOLOG("USB B Base Address = %u", baddr, 0,0,0);
3382 blen = slhci_read(ssc, SL11_E1LEN);
3383 DDOLOG("USB B Length = %u", blen, 0,0,0);
3384 r = slhci_read(ssc, SL11_E1STAT);
3385 DDOLOG("USB B Status = %#.2x", r, 0,0,0);
3386 DDOLOGFLAG8("E1STAT=", r, "STALL", "NAK", "Overflow", "Setup",
3387 "Data Toggle", "Timeout", "Error", "ACK");
3388 r = slhci_read(ssc, SL11_E1CONT);
3389 DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0);
3390
3391 r = slhci_read(ssc, SL11_CTRL);
3392 DDOLOG("Control = %#.2x", r, 0,0,0);
3393 DDOLOGFLAG8("CTRL=", r, "res", "Suspend", "LOW Speed",
3394 "J-K State Force", "Reset", "res", "res", "SOF");
3395 r = slhci_read(ssc, SL11_IER);
3396 DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0);
3397 DDOLOGFLAG8("IER=", r, "D+ **IER!**", "Device Detect/Resume",
3398 "Insert/Remove", "SOF", "res", "res", "USBB", "USBA");
3399 r = slhci_read(ssc, SL11_ISR);
3400 DDOLOG("Interrupt Status = %#.2x", r, 0,0,0);
3401 DDOLOGFLAG8("ISR=", r, "D+", "Device Detect/Resume",
3402 "Insert/Remove", "SOF", "res", "res", "USBB", "USBA");
3403 r = slhci_read(ssc, SL11_REV);
3404 DDOLOG("Revision = %#.2x", r, 0,0,0);
3405 r = slhci_read(ssc, SL811_CSOF);
3406 DDOLOG("SOF Counter = %#.2x", r, 0,0,0);
3407
3408 if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END &&
3409 alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) {
3410 slhci_read_multi(ssc, aaddr, buf, alen);
3411 DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0);
3412 DDOLOGBUF(buf, alen);
3413 } else if (alen)
3414 DDOLOG("USBA Buffer Invalid", 0,0,0,0);
3415
3416 if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END &&
3417 blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) {
3418 slhci_read_multi(ssc, baddr, buf, blen);
3419 DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0);
3420 DDOLOGBUF(buf, blen);
3421 } else if (blen)
3422 DDOLOG("USBB Buffer Invalid", 0,0,0,0);
3423 }
3424
3425 void
3426 slhci_log_xfer(struct usbd_xfer *xfer)
3427 {
3428 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3429 DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,",
3430 xfer->ux_length, xfer->ux_actlen, xfer->ux_flags, xfer->ux_timeout);
3431 DDOLOG("buffer=%p", xfer->ux_buf, 0,0,0);
3432 slhci_log_req_hub(&xfer->ux_request);
3433 }
3434
3435 void
3436 slhci_log_spipe(struct slhci_pipe *spipe)
3437 {
3438 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3439 DDOLOG("spipe %p onlists: %s %s %s", spipe, gcq_onlist(&spipe->ap) ?
3440 "AP" : "", gcq_onlist(&spipe->to) ? "TO" : "",
3441 gcq_onlist(&spipe->xq) ? "XQ" : "");
3442 DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %s",
3443 spipe->xfer, spipe->buffer, spipe->pflags, pnames(spipe->ptype));
3444 }
3445
3446 void
3447 slhci_print_intr(void)
3448 {
3449 unsigned int ier, isr;
3450 ier = slhci_read(ssc, SL11_IER);
3451 isr = slhci_read(ssc, SL11_ISR);
3452 printf("IER: %#x ISR: %#x \n", ier, isr);
3453 }
3454
3455 #if 0
3456 void
3457 slhci_log_sc(void)
3458 {
3459 struct slhci_transfers *t;
3460 int i;
3461
3462 t = &ssc->sc_transfers;
3463
3464 DDOLOG("Flags=%#x", t->flags, 0,0,0);
3465 DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0],
3466 t->spipe[1], t->len[1]);
3467
3468 for (i=0; i<=Q_MAX; i++)
3469 DDOLOG("Q %d: %p", i, gcq_first(&t->q[i]), 0,0);
3470
3471 DDOLOG("TIMED: %p", GCQ_ITEM(gcq_first(&t->to),
3472 struct slhci_pipe, to), 0,0,0);
3473
3474 DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0);
3475
3476 DDOLOG("ub_usepolling=%d", ssc->sc_bus.ub_usepolling, 0, 0, 0);
3477 }
3478
3479 void
3480 slhci_log_slreq(struct slhci_pipe *r)
3481 {
3482 DDOLOG("next: %p", r->q.next.sqe_next, 0,0,0);
3483 DDOLOG("xfer: %p", r->xfer, 0,0,0);
3484 DDOLOG("buffer: %p", r->buffer, 0,0,0);
3485 DDOLOG("bustime: %u", r->bustime, 0,0,0);
3486 DDOLOG("control: %#x", r->control, 0,0,0);
3487 DDOLOGFLAG8("control=", r->control, "Preamble", "Data Toggle",
3488 "SOF Sync", "ISOC", "res", "Out", "Enable", "Arm");
3489 DDOLOG("pid: %#x", r->tregs[PID], 0,0,0);
3490 DDOLOG("dev: %u", r->tregs[DEV], 0,0,0);
3491 DDOLOG("len: %u", r->tregs[LEN], 0,0,0);
3492
3493 if (r->xfer)
3494 slhci_log_xfer(r->xfer);
3495 }
3496 #endif
3497 #endif /* SLHCI_DEBUG */
3498 /* End debug functions. */
3499