sl811hs.c revision 1.79 1 /* $NetBSD: sl811hs.c,v 1.79 2016/06/18 19:30:24 skrll Exp $ */
2
3 /*
4 * Not (c) 2007 Matthew Orgass
5 * This file is public domain, meaning anyone can make any use of part or all
6 * of this file including copying into other works without credit. Any use,
7 * modified or not, is solely the responsibility of the user. If this file is
8 * part of a collection then use in the collection is governed by the terms of
9 * the collection.
10 */
11
12 /*
13 * Cypress/ScanLogic SL811HS/T USB Host Controller
14 * Datasheet, Errata, and App Note available at www.cypress.com
15 *
16 * Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid X68k USB HC, ISA
17 * HCs. The Ratoc CFU2 uses a different chip.
18 *
19 * This chip puts the serial in USB. It implements USB by means of an eight
20 * bit I/O interface. It can be used for ISA, PCMCIA/CF, parallel port,
21 * serial port, or any eight bit interface. It has 256 bytes of memory, the
22 * first 16 of which are used for register access. There are two sets of
23 * registers for sending individual bus transactions. Because USB is polled,
24 * this organization means that some amount of card access must often be made
25 * when devices are attached, even if when they are not directly being used.
26 * A per-ms frame interrupt is necessary and many devices will poll with a
27 * per-frame bulk transfer.
28 *
29 * It is possible to write a little over two bytes to the chip (auto
30 * incremented) per full speed byte time on the USB. Unfortunately,
31 * auto-increment does not work reliably so write and bus speed is
32 * approximately the same for full speed devices.
33 *
34 * In addition to the 240 byte packet size limit for isochronous transfers,
35 * this chip has no means of determining the current frame number other than
36 * getting all 1ms SOF interrupts, which is not always possible even on a fast
37 * system. Isochronous transfers guarantee that transfers will never be
38 * retried in a later frame, so this can cause problems with devices beyond
39 * the difficulty in actually performing the transfer most frames. I tried
40 * implementing isoc transfers and was able to play CD-derrived audio via an
41 * iMic on a 2GHz PC, however it would still be interrupted at times and
42 * once interrupted, would stay out of sync. All isoc support has been
43 * removed.
44 *
45 * BUGS: all chip revisions have problems with low speed devices through hubs.
46 * The chip stops generating SOF with hubs that send SE0 during SOF. See
47 * comment in dointr(). All performance enhancing features of this chip seem
48 * not to work properly, most confirmed buggy in errata doc.
49 *
50 */
51
52 /*
53 * The hard interrupt is the main entry point. Start, callbacks, and repeat
54 * are the only others called frequently.
55 *
56 * Since this driver attaches to pcmcia, card removal at any point should be
57 * expected and not cause panics or infinite loops.
58 */
59
60 /*
61 * XXX TODO:
62 * copy next output packet while transfering
63 * usb suspend
64 * could keep track of known values of all buffer space?
65 * combined print/log function for errors
66 *
67 * ub_usepolling support is untested and may not work
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.79 2016/06/18 19:30:24 skrll Exp $");
72
73 #ifdef _KERNEL_OPT
74 #include "opt_slhci.h"
75 #include "opt_usb.h"
76 #endif
77
78 #include <sys/param.h>
79
80 #include <sys/bus.h>
81 #include <sys/cpu.h>
82 #include <sys/device.h>
83 #include <sys/gcq.h>
84 #include <sys/intr.h>
85 #include <sys/kernel.h>
86 #include <sys/kmem.h>
87 #include <sys/proc.h>
88 #include <sys/queue.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91
92 #include <dev/usb/usb.h>
93 #include <dev/usb/usbdi.h>
94 #include <dev/usb/usbdivar.h>
95 #include <dev/usb/usbhist.h>
96 #include <dev/usb/usb_mem.h>
97 #include <dev/usb/usbdevs.h>
98 #include <dev/usb/usbroothub.h>
99
100 #include <dev/ic/sl811hsreg.h>
101 #include <dev/ic/sl811hsvar.h>
102
103 #define Q_CB 0 /* Control/Bulk */
104 #define Q_NEXT_CB 1
105 #define Q_MAX_XFER Q_CB
106 #define Q_CALLBACKS 2
107 #define Q_MAX Q_CALLBACKS
108
109 #define F_AREADY (0x00000001)
110 #define F_BREADY (0x00000002)
111 #define F_AINPROG (0x00000004)
112 #define F_BINPROG (0x00000008)
113 #define F_LOWSPEED (0x00000010)
114 #define F_UDISABLED (0x00000020) /* Consider disabled for USB */
115 #define F_NODEV (0x00000040)
116 #define F_ROOTINTR (0x00000080)
117 #define F_REALPOWER (0x00000100) /* Actual power state */
118 #define F_POWER (0x00000200) /* USB reported power state */
119 #define F_ACTIVE (0x00000400)
120 #define F_CALLBACK (0x00000800) /* Callback scheduled */
121 #define F_SOFCHECK1 (0x00001000)
122 #define F_SOFCHECK2 (0x00002000)
123 #define F_CRESET (0x00004000) /* Reset done not reported */
124 #define F_CCONNECT (0x00008000) /* Connect change not reported */
125 #define F_RESET (0x00010000)
126 #define F_ISOC_WARNED (0x00020000)
127 #define F_LSVH_WARNED (0x00040000)
128
129 #define F_DISABLED (F_NODEV|F_UDISABLED)
130 #define F_CHANGE (F_CRESET|F_CCONNECT)
131
132 #ifdef SLHCI_TRY_LSVH
133 unsigned int slhci_try_lsvh = 1;
134 #else
135 unsigned int slhci_try_lsvh = 0;
136 #endif
137
138 #define ADR 0
139 #define LEN 1
140 #define PID 2
141 #define DEV 3
142 #define STAT 2
143 #define CONT 3
144
145 #define A 0
146 #define B 1
147
148 static const uint8_t slhci_tregs[2][4] =
149 {{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV },
150 {SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }};
151
152 #define PT_ROOT_CTRL 0
153 #define PT_ROOT_INTR 1
154 #define PT_CTRL_SETUP 2
155 #define PT_CTRL_DATA 3
156 #define PT_CTRL_STATUS 4
157 #define PT_INTR 5
158 #define PT_BULK 6
159 #define PT_MAX 6
160
161 #ifdef SLHCI_DEBUG
162 #define SLHCI_MEM_ACCOUNTING
163
164 #define DDOLOGCTRL(x) do { \
165 DDOLOG("CTRL suspend=%d", !!((x) & SL11_CTRL_SUSPEND), 0, 0, 0); \
166 DDOLOG("CTRL ls =%d jk =%d reset =%d sof =%d", \
167 !!((x) & SL11_CTRL_LOWSPEED), !!((x) & SL11_CTRL_JKSTATE), \
168 !!((x) & SL11_CTRL_RESETENGINE), !!((x) & SL11_CTRL_ENABLESOF));\
169 } while (0)
170
171 #define DDOLOGISR(r) do { \
172 DDOLOG("ISR data =%d det/res=%d insert =%d sof =%d", \
173 !!((r) & SL11_ISR_DATA), !!((r) & SL11_ISR_RESUME), \
174 !!((r) & SL11_ISR_INSERT), !!!!((r) & SL11_ISR_SOF)); \
175 DDOLOG("ISR babble =%d usbb =%d usba =%d", \
176 !!((r) & SL11_ISR_BABBLE), !!((r) & SL11_ISR_USBB), \
177 !!((r) & SL11_ISR_USBA), 0); \
178 } while (0)
179
180 #define DDOLOGIER(r) do { \
181 DDOLOG("IER det/res=%d insert =%d sof =%d", \
182 !!((r) & SL11_IER_RESUME), \
183 !!((r) & SL11_IER_INSERT), !!!!((r) & SL11_IER_SOF), 0); \
184 DDOLOG("IER babble =%d usbb =%d usba =%d", \
185 !!((r) & SL11_IER_BABBLE), !!((r) & SL11_IER_USBB), \
186 !!((r) & SL11_IER_USBA), 0); \
187 } while (0)
188
189 #define DDLOGSTATUS(s) do { \
190 DDOLOG("STAT stall =%d nak =%d overflow =%d setup =%d", \
191 !!((s) & SL11_EPSTAT_STALL), !!((s) & SL11_EPSTAT_NAK), \
192 !!((s) & SL11_EPSTAT_OVERFLOW), !!((s) & SL11_EPSTAT_SETUP)); \
193 DDOLOG("STAT sequence=%d timeout =%d error =%d ack =%d", \
194 !!((s) & SL11_EPSTAT_SEQUENCE), !!((s) & SL11_EPSTAT_TIMEOUT), \
195 !!((s) & SL11_EPSTAT_ERROR), !!((s) & SL11_EPSTAT_ACK)); \
196 } while (0)
197
198 #define DDLOGEPCTRL(r) do { \
199 DDOLOG("CTRL preamble=%d toggle =%d sof =%d iso =%d", \
200 !!((r) & SL11_EPCTRL_PREAMBLE), !!((r) & SL11_EPCTRL_DATATOGGLE),\
201 !!((r) & SL11_EPCTRL_SOF), !!((r) & SL11_EPCTRL_ISO)); \
202 DDOLOG("CTRL out =%d enable =%d arm =%d", \
203 !!((r) & SL11_EPCTRL_DIRECTION), \
204 !!((r) & SL11_EPCTRL_ENABLE), !!((r) & SL11_EPCTRL_ARM), 0); \
205 } while (0)
206
207 #define DDLOGEPSTAT(r) do { \
208 DDOLOG("STAT stall =%d nak =%d overflow =%d setup =%d", \
209 !!((r) & SL11_EPSTAT_STALL), !!((r) & SL11_EPSTAT_NAK), \
210 !!((r) & SL11_EPSTAT_OVERFLOW), !!((r) & SL11_EPSTAT_SETUP)); \
211 DDOLOG("STAT sequence=%d timeout =%d error =%d ack =%d", \
212 !!((r) & SL11_EPSTAT_SEQUENCE), !!((r) & SL11_EPSTAT_TIMEOUT), \
213 !!((r) & SL11_EPSTAT_ERROR), !!((r) & SL11_EPSTAT_ACK)); \
214 } while (0)
215
216 #endif
217
218 /*
219 * Maximum allowable reserved bus time. Since intr/isoc transfers have
220 * unconditional priority, this is all that ensures control and bulk transfers
221 * get a chance. It is a single value for all frames since all transfers can
222 * use multiple consecutive frames if an error is encountered. Note that it
223 * is not really possible to fill the bus with transfers, so this value should
224 * be on the low side. Defaults to giving a warning unless SLHCI_NO_OVERTIME
225 * is defined. Full time is 12000 - END_BUSTIME.
226 */
227 #ifndef SLHCI_RESERVED_BUSTIME
228 #define SLHCI_RESERVED_BUSTIME 5000
229 #endif
230
231 /*
232 * Rate for "exceeds reserved bus time" warnings (default) or errors.
233 * Warnings only happen when an endpoint open causes the time to go above
234 * SLHCI_RESERVED_BUSTIME, not if it is already above.
235 */
236 #ifndef SLHCI_OVERTIME_WARNING_RATE
237 #define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */
238 #endif
239 static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE;
240
241 /* Rate for overflow warnings */
242 #ifndef SLHCI_OVERFLOW_WARNING_RATE
243 #define SLHCI_OVERFLOW_WARNING_RATE { 60, 0 } /* 60 seconds */
244 #endif
245 static const struct timeval overflow_warn_rate = SLHCI_OVERFLOW_WARNING_RATE;
246
247 /*
248 * For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of
249 * 20 bit times. By default leave 66 bit times to start the transfer beyond
250 * the required time. Units are full-speed bit times (a bit over 5us per 64).
251 * Only multiples of 64 are significant.
252 */
253 #define SLHCI_STANDARD_END_BUSTIME 128
254 #ifndef SLHCI_EXTRA_END_BUSTIME
255 #define SLHCI_EXTRA_END_BUSTIME 0
256 #endif
257
258 #define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME)
259
260 /*
261 * This is an approximation of the USB worst-case timings presented on p. 54 of
262 * the USB 1.1 spec translated to full speed bit times.
263 * FS = full speed with handshake, FSII = isoc in, FSIO = isoc out,
264 * FSI = isoc (worst case), LS = low speed
265 */
266 #define SLHCI_FS_CONST 114
267 #define SLHCI_FSII_CONST 92
268 #define SLHCI_FSIO_CONST 80
269 #define SLHCI_FSI_CONST 92
270 #define SLHCI_LS_CONST 804
271 #ifndef SLHCI_PRECICE_BUSTIME
272 /*
273 * These values are < 3% too high (compared to the multiply and divide) for
274 * max sized packets.
275 */
276 #define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1))
277 #define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4))
278 #else
279 #define SLHCI_FS_DATA_TIME(len) (56*(len)/6)
280 #define SLHCI_LS_DATA_TIME(len) (449*(len)/6)
281 #endif
282
283 /*
284 * Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer
285 * to poll for after starting a transfer. 64 gets all full speed transfers.
286 * Note that even if 0 polling will occur if data equal or greater than the
287 * transfer size is copied to the chip while the transfer is in progress.
288 * Setting SLHCI_WAIT_TIME to -12000 will disable polling.
289 */
290 #ifndef SLHCI_WAIT_SIZE
291 #define SLHCI_WAIT_SIZE 8
292 #endif
293 #ifndef SLHCI_WAIT_TIME
294 #define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \
295 SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE))
296 #endif
297 const int slhci_wait_time = SLHCI_WAIT_TIME;
298
299 #ifndef SLHCI_MAX_RETRIES
300 #define SLHCI_MAX_RETRIES 3
301 #endif
302
303 /* Check IER values for corruption after this many unrecognized interrupts. */
304 #ifndef SLHCI_IER_CHECK_FREQUENCY
305 #ifdef SLHCI_DEBUG
306 #define SLHCI_IER_CHECK_FREQUENCY 1
307 #else
308 #define SLHCI_IER_CHECK_FREQUENCY 100
309 #endif
310 #endif
311
312 /* Note that buffer points to the start of the buffer for this transfer. */
313 struct slhci_pipe {
314 struct usbd_pipe pipe;
315 struct usbd_xfer *xfer; /* xfer in progress */
316 uint8_t *buffer; /* I/O buffer (if needed) */
317 struct gcq ap; /* All pipes */
318 struct gcq to; /* Timeout list */
319 struct gcq xq; /* Xfer queues */
320 unsigned int pflags; /* Pipe flags */
321 #define PF_GONE (0x01) /* Pipe is on disabled device */
322 #define PF_TOGGLE (0x02) /* Data toggle status */
323 #define PF_LS (0x04) /* Pipe is low speed */
324 #define PF_PREAMBLE (0x08) /* Needs preamble */
325 Frame to_frame; /* Frame number for timeout */
326 Frame frame; /* Frame number for intr xfer */
327 Frame lastframe; /* Previous frame number for intr */
328 uint16_t bustime; /* Worst case bus time usage */
329 uint16_t newbustime[2]; /* new bustimes (see index below) */
330 uint8_t tregs[4]; /* ADR, LEN, PID, DEV */
331 uint8_t newlen[2]; /* 0 = short data, 1 = ctrl data */
332 uint8_t newpid; /* for ctrl */
333 uint8_t wantshort; /* last xfer must be short */
334 uint8_t control; /* Host control register settings */
335 uint8_t nerrs; /* Current number of errors */
336 uint8_t ptype; /* Pipe type */
337 };
338
339 #define SLHCI_BUS2SC(bus) ((bus)->ub_hcpriv)
340 #define SLHCI_PIPE2SC(pipe) SLHCI_BUS2SC((pipe)->up_dev->ud_bus)
341 #define SLHCI_XFER2SC(xfer) SLHCI_BUS2SC((xfer)->ux_bus)
342
343 #define SLHCI_PIPE2SPIPE(pipe) ((struct slhci_pipe *)(pipe))
344 #define SLHCI_XFER2SPIPE(xfer) SLHCI_PIPE2SPIPE((xfer)->ux_pipe)
345
346 #define SLHCI_XFER_TYPE(x) (SLHCI_XFER2SPIPE(xfer)->ptype)
347
348 #ifdef SLHCI_PROFILE_TRANSFER
349 #if defined(__mips__)
350 /*
351 * MIPS cycle counter does not directly count cpu cycles but is a different
352 * fraction of cpu cycles depending on the cpu.
353 */
354 typedef uint32_t cc_type;
355 #define CC_TYPE_FMT "%u"
356 #define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \
357 : [cc] "=r"(x))
358 #elif defined(__i386__)
359 typedef uint64_t cc_type;
360 #define CC_TYPE_FMT "%llu"
361 #define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x))
362 #else
363 #error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)"
364 #endif
365 struct slhci_cc_time {
366 cc_type start;
367 cc_type stop;
368 unsigned int miscdata;
369 };
370 #ifndef SLHCI_N_TIMES
371 #define SLHCI_N_TIMES 200
372 #endif
373 struct slhci_cc_times {
374 struct slhci_cc_time times[SLHCI_N_TIMES];
375 int current;
376 int wraparound;
377 };
378
379 static struct slhci_cc_times t_ab[2];
380 static struct slhci_cc_times t_abdone;
381 static struct slhci_cc_times t_copy_to_dev;
382 static struct slhci_cc_times t_copy_from_dev;
383 static struct slhci_cc_times t_intr;
384 static struct slhci_cc_times t_lock;
385 static struct slhci_cc_times t_delay;
386 static struct slhci_cc_times t_hard_int;
387 static struct slhci_cc_times t_callback;
388
389 static inline void
390 start_cc_time(struct slhci_cc_times *times, unsigned int misc) {
391 times->times[times->current].miscdata = misc;
392 slhci_cc_set(times->times[times->current].start);
393 }
394 static inline void
395 stop_cc_time(struct slhci_cc_times *times) {
396 slhci_cc_set(times->times[times->current].stop);
397 if (++times->current >= SLHCI_N_TIMES) {
398 times->current = 0;
399 times->wraparound = 1;
400 }
401 }
402
403 void slhci_dump_cc_times(int);
404
405 void
406 slhci_dump_cc_times(int n) {
407 struct slhci_cc_times *times;
408 int i;
409
410 switch (n) {
411 default:
412 case 0:
413 printf("USBA start transfer to intr:\n");
414 times = &t_ab[A];
415 break;
416 case 1:
417 printf("USBB start transfer to intr:\n");
418 times = &t_ab[B];
419 break;
420 case 2:
421 printf("abdone:\n");
422 times = &t_abdone;
423 break;
424 case 3:
425 printf("copy to device:\n");
426 times = &t_copy_to_dev;
427 break;
428 case 4:
429 printf("copy from device:\n");
430 times = &t_copy_from_dev;
431 break;
432 case 5:
433 printf("intr to intr:\n");
434 times = &t_intr;
435 break;
436 case 6:
437 printf("lock to release:\n");
438 times = &t_lock;
439 break;
440 case 7:
441 printf("delay time:\n");
442 times = &t_delay;
443 break;
444 case 8:
445 printf("hard interrupt enter to exit:\n");
446 times = &t_hard_int;
447 break;
448 case 9:
449 printf("callback:\n");
450 times = &t_callback;
451 break;
452 }
453
454 if (times->wraparound)
455 for (i = times->current + 1; i < SLHCI_N_TIMES; i++)
456 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
457 " difference %8i miscdata %#x\n",
458 times->times[i].start, times->times[i].stop,
459 (int)(times->times[i].stop -
460 times->times[i].start), times->times[i].miscdata);
461
462 for (i = 0; i < times->current; i++)
463 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
464 " difference %8i miscdata %#x\n", times->times[i].start,
465 times->times[i].stop, (int)(times->times[i].stop -
466 times->times[i].start), times->times[i].miscdata);
467 }
468 #else
469 #define start_cc_time(x, y)
470 #define stop_cc_time(x)
471 #endif /* SLHCI_PROFILE_TRANSFER */
472
473 typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe
474 *, struct usbd_xfer *);
475
476 struct usbd_xfer * slhci_allocx(struct usbd_bus *, unsigned int);
477 void slhci_freex(struct usbd_bus *, struct usbd_xfer *);
478 static void slhci_get_lock(struct usbd_bus *, kmutex_t **);
479
480 usbd_status slhci_transfer(struct usbd_xfer *);
481 usbd_status slhci_start(struct usbd_xfer *);
482 usbd_status slhci_root_start(struct usbd_xfer *);
483 usbd_status slhci_open(struct usbd_pipe *);
484
485 static int slhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
486 void *, int);
487
488 /*
489 * slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach,
490 * slhci_activate
491 */
492
493 void slhci_abort(struct usbd_xfer *);
494 void slhci_close(struct usbd_pipe *);
495 void slhci_clear_toggle(struct usbd_pipe *);
496 void slhci_poll(struct usbd_bus *);
497 void slhci_done(struct usbd_xfer *);
498 void slhci_void(void *);
499
500 /* lock entry functions */
501
502 #ifdef SLHCI_MEM_ACCOUNTING
503 void slhci_mem_use(struct usbd_bus *, int);
504 #endif
505
506 void slhci_reset_entry(void *);
507 usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc,
508 struct slhci_pipe *, struct usbd_xfer *);
509 void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *);
510 void slhci_callback_entry(void *arg);
511 void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *);
512
513 /* slhci_intr */
514
515 void slhci_main(struct slhci_softc *);
516
517 /* in lock functions */
518
519 static void slhci_write(struct slhci_softc *, uint8_t, uint8_t);
520 static uint8_t slhci_read(struct slhci_softc *, uint8_t);
521 static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
522 static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
523
524 static void slhci_waitintr(struct slhci_softc *, int);
525 static int slhci_dointr(struct slhci_softc *);
526 static void slhci_abdone(struct slhci_softc *, int);
527 static void slhci_tstart(struct slhci_softc *);
528 static void slhci_dotransfer(struct slhci_softc *);
529
530 static void slhci_callback(struct slhci_softc *);
531 static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *);
532 static void slhci_enter_xfers(struct slhci_softc *);
533 static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *);
534 static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *);
535
536 static void slhci_callback_schedule(struct slhci_softc *);
537 static void slhci_do_callback_schedule(struct slhci_softc *);
538 #if 0
539 void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *); /* XXX */
540 #endif
541
542 static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *,
543 struct usbd_xfer *);
544 static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *,
545 struct usbd_xfer *);
546 static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *,
547 struct usbd_xfer *);
548 static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *,
549 struct usbd_xfer *);
550 static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *,
551 struct usbd_xfer *);
552 static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *,
553 struct usbd_xfer *);
554 static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *,
555 struct usbd_xfer *);
556
557 static void slhci_intrchange(struct slhci_softc *, uint8_t);
558 static void slhci_drain(struct slhci_softc *);
559 static void slhci_reset(struct slhci_softc *);
560 static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *,
561 int);
562 static void slhci_insert(struct slhci_softc *);
563
564 static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int);
565 static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int);
566 static void slhci_get_status(struct slhci_softc *, usb_port_status_t *);
567
568 #define SLHCIHIST_FUNC() USBHIST_FUNC()
569 #define SLHCIHIST_CALLED() USBHIST_CALLED(slhcidebug)
570
571 #ifdef SLHCI_DEBUG
572 void slhci_log_buffer(struct usbd_xfer *);
573 void slhci_log_req(usb_device_request_t *);
574 void slhci_log_dumpreg(void);
575 void slhci_log_xfer(struct usbd_xfer *);
576 void slhci_log_spipe(struct slhci_pipe *);
577 void slhci_print_intr(void);
578 void slhci_log_sc(void);
579 void slhci_log_slreq(struct slhci_pipe *);
580
581 /* Constified so you can read the values from ddb */
582 const int SLHCI_D_TRACE = 0x0001;
583 const int SLHCI_D_MSG = 0x0002;
584 const int SLHCI_D_XFER = 0x0004;
585 const int SLHCI_D_MEM = 0x0008;
586 const int SLHCI_D_INTR = 0x0010;
587 const int SLHCI_D_SXFER = 0x0020;
588 const int SLHCI_D_ERR = 0x0080;
589 const int SLHCI_D_BUF = 0x0100;
590 const int SLHCI_D_SOFT = 0x0200;
591 const int SLHCI_D_WAIT = 0x0400;
592 const int SLHCI_D_ROOT = 0x0800;
593 /* SOF/NAK alone normally ignored, SOF also needs D_INTR */
594 const int SLHCI_D_SOF = 0x1000;
595 const int SLHCI_D_NAK = 0x2000;
596
597 int slhcidebug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */
598
599 SYSCTL_SETUP(sysctl_hw_slhci_setup, "sysctl hw.slhci setup")
600 {
601 int err;
602 const struct sysctlnode *rnode;
603 const struct sysctlnode *cnode;
604
605 err = sysctl_createv(clog, 0, NULL, &rnode,
606 CTLFLAG_PERMANENT, CTLTYPE_NODE, "slhci",
607 SYSCTL_DESCR("slhci global controls"),
608 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
609
610 if (err)
611 goto fail;
612
613 /* control debugging printfs */
614 err = sysctl_createv(clog, 0, &rnode, &cnode,
615 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
616 "debug", SYSCTL_DESCR("Enable debugging output"),
617 NULL, 0, &slhcidebug, sizeof(slhcidebug), CTL_CREATE, CTL_EOL);
618 if (err)
619 goto fail;
620
621 return;
622 fail:
623 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
624 }
625
626 struct slhci_softc *ssc;
627
628 #define SLHCI_DEXEC(x, y) do { if ((slhcidebug & SLHCI_ ## x)) { y; } \
629 } while (/*CONSTCOND*/ 0)
630 #define DDOLOG(f, a, b, c, d) do { KERNHIST_LOG(usbhist, f, a, b, c, d); \
631 } while (/*CONSTCOND*/0)
632 #define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d))
633
634 /*
635 * DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we
636 * can make it a real function.
637 */
638 static void
639 DDOLOGBUF(uint8_t *buf, unsigned int length)
640 {
641 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
642 int i;
643
644 for(i=0; i+8 <= length; i+=8)
645 DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
646 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
647 (buf[i+6] << 8) | buf[i+7]);
648 if (length == i+7)
649 DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
650 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
651 buf[i+6]);
652 else if (length == i+6)
653 DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
654 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0);
655 else if (length == i+5)
656 DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
657 (buf[i+2] << 8) | buf[i+3], buf[i+4], 0);
658 else if (length == i+4)
659 DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1],
660 (buf[i+2] << 8) | buf[i+3], 0,0);
661 else if (length == i+3)
662 DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0);
663 else if (length == i+2)
664 DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0);
665 else if (length == i+1)
666 DDOLOG("%.2x", buf[i], 0,0,0);
667 }
668 #define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l))
669 #else /* now !SLHCI_DEBUG */
670 #define slhcidebug 0
671 #define slhci_log_spipe(spipe) ((void)0)
672 #define slhci_log_xfer(xfer) ((void)0)
673 #define SLHCI_DEXEC(x, y) ((void)0)
674 #define DDOLOG(f, a, b, c, d) ((void)0)
675 #define DLOG(x, f, a, b, c, d) ((void)0)
676 #define DDOLOGBUF(b, l) ((void)0)
677 #define DLOGBUF(x, b, l) ((void)0)
678 #endif /* SLHCI_DEBUG */
679
680 #ifdef DIAGNOSTIC
681 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) do { \
682 if (!(exp)) { \
683 printf("%s: assertion %s failed line %u function %s!" \
684 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
685 slhci_halt(sc, spipe, xfer); \
686 ext; \
687 } \
688 } while (/*CONSTCOND*/0)
689 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) do { \
690 if (!(exp)) { \
691 printf("%s: assertion %s failed line %u function %s!" \
692 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \
693 slhci_lock_call(sc, &slhci_halt, spipe, xfer); \
694 ext; \
695 } \
696 } while (/*CONSTCOND*/0)
697 #else
698 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
699 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
700 #endif
701
702 const struct usbd_bus_methods slhci_bus_methods = {
703 .ubm_open = slhci_open,
704 .ubm_softint= slhci_void,
705 .ubm_dopoll = slhci_poll,
706 .ubm_allocx = slhci_allocx,
707 .ubm_freex = slhci_freex,
708 .ubm_getlock = slhci_get_lock,
709 .ubm_rhctrl = slhci_roothub_ctrl,
710 };
711
712 const struct usbd_pipe_methods slhci_pipe_methods = {
713 .upm_transfer = slhci_transfer,
714 .upm_start = slhci_start,
715 .upm_abort = slhci_abort,
716 .upm_close = slhci_close,
717 .upm_cleartoggle = slhci_clear_toggle,
718 .upm_done = slhci_done,
719 };
720
721 const struct usbd_pipe_methods slhci_root_methods = {
722 .upm_transfer = slhci_transfer,
723 .upm_start = slhci_root_start,
724 .upm_abort = slhci_abort,
725 .upm_close = (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */
726 .upm_cleartoggle = slhci_clear_toggle,
727 .upm_done = slhci_done,
728 };
729
730 /* Queue inlines */
731
732 #define GOT_FIRST_TO(tvar, t) \
733 GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to)
734
735 #define FIND_TO(var, t, tvar, cond) \
736 GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond)
737
738 #define FOREACH_AP(var, t, tvar) \
739 GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap)
740
741 #define GOT_FIRST_TIMED_COND(tvar, t, cond) \
742 GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond)
743
744 #define GOT_FIRST_CB(tvar, t) \
745 GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq)
746
747 #define DEQUEUED_CALLBACK(tvar, t) \
748 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq)
749
750 #define FIND_TIMED(var, t, tvar, cond) \
751 GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond)
752
753 #define DEQUEUED_WAITQ(tvar, sc) \
754 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq)
755
756 static inline void
757 enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe)
758 {
759 gcq_insert_tail(&sc->sc_waitq, &spipe->xq);
760 }
761
762 static inline void
763 enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i)
764 {
765 gcq_insert_tail(&t->q[i], &spipe->xq);
766 }
767
768 static inline void
769 enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe)
770 {
771 gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq);
772 }
773
774 static inline void
775 enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe)
776 {
777 gcq_insert_tail(&t->ap, &spipe->ap);
778 }
779
780 /* Start out of lock functions. */
781
782 struct usbd_xfer *
783 slhci_allocx(struct usbd_bus *bus, unsigned int nframes)
784 {
785 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
786 struct usbd_xfer *xfer;
787
788 xfer = kmem_zalloc(sizeof(*xfer), KM_SLEEP);
789
790 DLOG(D_MEM, "allocx %p", xfer, 0,0,0);
791
792 #ifdef SLHCI_MEM_ACCOUNTING
793 slhci_mem_use(bus, 1);
794 #endif
795 #ifdef DIAGNOSTIC
796 if (xfer != NULL)
797 xfer->ux_state = XFER_BUSY;
798 #endif
799 return xfer;
800 }
801
802 void
803 slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
804 {
805 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
806 DLOG(D_MEM, "freex xfer %p spipe %p", xfer, xfer->ux_pipe,0,0);
807
808 #ifdef SLHCI_MEM_ACCOUNTING
809 slhci_mem_use(bus, -1);
810 #endif
811 #ifdef DIAGNOSTIC
812 if (xfer->ux_state != XFER_BUSY) {
813 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
814 printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
815 SC_NAME(sc), xfer, xfer->ux_state);
816 DDOLOG("xfer=%p not busy, %#08x halted\n", xfer,
817 xfer->ux_state, 0, 0);
818 slhci_lock_call(sc, &slhci_halt, NULL, NULL);
819 return;
820 }
821 xfer->ux_state = XFER_FREE;
822 #endif
823
824 kmem_free(xfer, sizeof(*xfer));
825 }
826
827 static void
828 slhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
829 {
830 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
831
832 *lock = &sc->sc_lock;
833 }
834
835 usbd_status
836 slhci_transfer(struct usbd_xfer *xfer)
837 {
838 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
839 struct slhci_softc *sc = SLHCI_XFER2SC(xfer);
840 usbd_status error;
841
842 DLOG(D_TRACE, "transfer type %d xfer %p spipe %p ",
843 SLHCI_XFER_TYPE(xfer), xfer, xfer->ux_pipe, 0);
844
845 /* Insert last in queue */
846 mutex_enter(&sc->sc_lock);
847 error = usb_insert_transfer(xfer);
848 mutex_exit(&sc->sc_lock);
849 if (error) {
850 if (error != USBD_IN_PROGRESS)
851 DLOG(D_ERR, "usb_insert_transfer returns %d!", error,
852 0,0,0);
853 return error;
854 }
855
856 /*
857 * Pipe isn't running (otherwise error would be USBD_INPROG),
858 * so start it first.
859 */
860
861 /*
862 * Start will take the lock.
863 */
864 error = xfer->ux_pipe->up_methods->upm_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
865
866 return error;
867 }
868
869 /* It is not safe for start to return anything other than USBD_INPROG. */
870 usbd_status
871 slhci_start(struct usbd_xfer *xfer)
872 {
873 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
874 struct slhci_softc *sc = SLHCI_XFER2SC(xfer);
875 struct usbd_pipe *pipe = xfer->ux_pipe;
876 struct slhci_pipe *spipe = SLHCI_PIPE2SPIPE(pipe);
877 struct slhci_transfers *t = &sc->sc_transfers;
878 usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
879 unsigned int max_packet;
880
881 mutex_enter(&sc->sc_lock);
882
883 max_packet = UGETW(ed->wMaxPacketSize);
884
885 DLOG(D_TRACE, "transfer type %d start xfer %p spipe %p length %d",
886 spipe->ptype, xfer, spipe, xfer->ux_length);
887
888 /* root transfers use slhci_root_start */
889
890 KASSERT(spipe->xfer == NULL); /* not SLASSERT */
891
892 xfer->ux_actlen = 0;
893 xfer->ux_status = USBD_IN_PROGRESS;
894
895 spipe->xfer = xfer;
896
897 spipe->nerrs = 0;
898 spipe->frame = t->frame;
899 spipe->control = SL11_EPCTRL_ARM_ENABLE;
900 spipe->tregs[DEV] = pipe->up_dev->ud_addr;
901 spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress)
902 | (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN :
903 SL11_PID_OUT);
904 spipe->newlen[0] = xfer->ux_length % max_packet;
905 spipe->newlen[1] = min(xfer->ux_length, max_packet);
906
907 if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) {
908 if (spipe->pflags & PF_TOGGLE)
909 spipe->control |= SL11_EPCTRL_DATATOGGLE;
910 spipe->tregs[LEN] = spipe->newlen[1];
911 if (spipe->tregs[LEN])
912 spipe->buffer = xfer->ux_buf;
913 else
914 spipe->buffer = NULL;
915 spipe->lastframe = t->frame;
916 #if defined(DEBUG) || defined(SLHCI_DEBUG)
917 if (__predict_false(spipe->ptype == PT_INTR &&
918 xfer->ux_length > spipe->tregs[LEN])) {
919 printf("%s: Long INTR transfer not supported!\n",
920 SC_NAME(sc));
921 DDOLOG("Long INTR transfer not supported!", 0, 0, 0, 0);
922 xfer->ux_status = USBD_INVAL;
923 }
924 #endif
925 } else {
926 /* ptype may be currently set to any control transfer type. */
927 SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer));
928
929 /* SETUP contains IN/OUT bits also */
930 spipe->tregs[PID] |= SL11_PID_SETUP;
931 spipe->tregs[LEN] = 8;
932 spipe->buffer = (uint8_t *)&xfer->ux_request;
933 DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]);
934 spipe->ptype = PT_CTRL_SETUP;
935 spipe->newpid &= ~SL11_PID_BITS;
936 if (xfer->ux_length == 0 || (xfer->ux_request.bmRequestType &
937 UT_READ))
938 spipe->newpid |= SL11_PID_IN;
939 else
940 spipe->newpid |= SL11_PID_OUT;
941 }
942
943 if (xfer->ux_flags & USBD_FORCE_SHORT_XFER && spipe->tregs[LEN] ==
944 max_packet && (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT)
945 spipe->wantshort = 1;
946 else
947 spipe->wantshort = 0;
948
949 /*
950 * The goal of newbustime and newlen is to avoid bustime calculation
951 * in the interrupt. The calculations are not too complex, but they
952 * complicate the conditional logic somewhat and doing them all in the
953 * same place shares constants. Index 0 is "short length" for bulk and
954 * ctrl data and 1 is "full length" for ctrl data (bulk/intr are
955 * already set to full length).
956 */
957 if (spipe->pflags & PF_LS) {
958 /*
959 * Setting PREAMBLE for directly connected LS devices will
960 * lock up the chip.
961 */
962 if (spipe->pflags & PF_PREAMBLE)
963 spipe->control |= SL11_EPCTRL_PREAMBLE;
964 if (max_packet <= 8) {
965 spipe->bustime = SLHCI_LS_CONST +
966 SLHCI_LS_DATA_TIME(spipe->tregs[LEN]);
967 spipe->newbustime[0] = SLHCI_LS_CONST +
968 SLHCI_LS_DATA_TIME(spipe->newlen[0]);
969 spipe->newbustime[1] = SLHCI_LS_CONST +
970 SLHCI_LS_DATA_TIME(spipe->newlen[1]);
971 } else
972 xfer->ux_status = USBD_INVAL;
973 } else {
974 UL_SLASSERT(pipe->up_dev->ud_speed == USB_SPEED_FULL, sc,
975 spipe, xfer, return USBD_IN_PROGRESS);
976 if (max_packet <= SL11_MAX_PACKET_SIZE) {
977 spipe->bustime = SLHCI_FS_CONST +
978 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
979 spipe->newbustime[0] = SLHCI_FS_CONST +
980 SLHCI_FS_DATA_TIME(spipe->newlen[0]);
981 spipe->newbustime[1] = SLHCI_FS_CONST +
982 SLHCI_FS_DATA_TIME(spipe->newlen[1]);
983 } else
984 xfer->ux_status = USBD_INVAL;
985 }
986
987 /*
988 * The datasheet incorrectly indicates that DIRECTION is for
989 * "transmit to host". It is for OUT and SETUP. The app note
990 * describes its use correctly.
991 */
992 if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN)
993 spipe->control |= SL11_EPCTRL_DIRECTION;
994
995 slhci_start_entry(sc, spipe);
996
997 mutex_exit(&sc->sc_lock);
998
999 return USBD_IN_PROGRESS;
1000 }
1001
1002 usbd_status
1003 slhci_root_start(struct usbd_xfer *xfer)
1004 {
1005 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1006 struct slhci_softc *sc;
1007 struct slhci_pipe *spipe __diagused;
1008
1009 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe);
1010 sc = SLHCI_XFER2SC(xfer);
1011
1012 struct slhci_transfers *t = &sc->sc_transfers;
1013
1014 LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return
1015 USBD_CANCELLED);
1016
1017 DLOG(D_TRACE, "transfer type %d start", SLHCI_XFER_TYPE(xfer), 0, 0, 0);
1018
1019 KASSERT(spipe->ptype == PT_ROOT_INTR);
1020
1021 mutex_enter(&sc->sc_intr_lock);
1022 t->rootintr = xfer;
1023 mutex_exit(&sc->sc_intr_lock);
1024
1025 return USBD_IN_PROGRESS;
1026 }
1027
1028 usbd_status
1029 slhci_open(struct usbd_pipe *pipe)
1030 {
1031 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1032 struct usbd_device *dev;
1033 struct slhci_softc *sc;
1034 struct slhci_pipe *spipe;
1035 usb_endpoint_descriptor_t *ed;
1036 unsigned int max_packet, pmaxpkt;
1037 uint8_t rhaddr;
1038
1039 dev = pipe->up_dev;
1040 sc = SLHCI_PIPE2SC(pipe);
1041 spipe = SLHCI_PIPE2SPIPE(pipe);
1042 ed = pipe->up_endpoint->ue_edesc;
1043 rhaddr = dev->ud_bus->ub_rhaddr;
1044
1045 DLOG(D_TRACE, "slhci_open(addr=%d,ep=%d,rootaddr=%d)",
1046 dev->ud_addr, ed->bEndpointAddress, rhaddr, 0);
1047
1048 spipe->pflags = 0;
1049 spipe->frame = 0;
1050 spipe->lastframe = 0;
1051 spipe->xfer = NULL;
1052 spipe->buffer = NULL;
1053
1054 gcq_init(&spipe->ap);
1055 gcq_init(&spipe->to);
1056 gcq_init(&spipe->xq);
1057
1058 /*
1059 * The endpoint descriptor will not have been set up yet in the case
1060 * of the standard control pipe, so the max packet checks are also
1061 * necessary in start.
1062 */
1063
1064 max_packet = UGETW(ed->wMaxPacketSize);
1065
1066 if (dev->ud_speed == USB_SPEED_LOW) {
1067 spipe->pflags |= PF_LS;
1068 if (dev->ud_myhub->ud_addr != rhaddr) {
1069 spipe->pflags |= PF_PREAMBLE;
1070 if (!slhci_try_lsvh)
1071 return slhci_lock_call(sc, &slhci_lsvh_warn,
1072 spipe, NULL);
1073 }
1074 pmaxpkt = 8;
1075 } else
1076 pmaxpkt = SL11_MAX_PACKET_SIZE;
1077
1078 if (max_packet > pmaxpkt) {
1079 DLOG(D_ERR, "packet too large! size %d spipe %p", max_packet,
1080 spipe, 0,0);
1081 return USBD_INVAL;
1082 }
1083
1084 if (dev->ud_addr == rhaddr) {
1085 switch (ed->bEndpointAddress) {
1086 case USB_CONTROL_ENDPOINT:
1087 spipe->ptype = PT_ROOT_CTRL;
1088 pipe->up_interval = 0;
1089 pipe->up_methods = &roothub_ctrl_methods;
1090 break;
1091 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
1092 spipe->ptype = PT_ROOT_INTR;
1093 pipe->up_interval = 1;
1094 pipe->up_methods = &slhci_root_methods;
1095 break;
1096 default:
1097 printf("%s: Invalid root endpoint!\n", SC_NAME(sc));
1098 DDOLOG("Invalid root endpoint", 0, 0, 0, 0);
1099 return USBD_INVAL;
1100 }
1101 return USBD_NORMAL_COMPLETION;
1102 } else {
1103 switch (ed->bmAttributes & UE_XFERTYPE) {
1104 case UE_CONTROL:
1105 spipe->ptype = PT_CTRL_SETUP;
1106 pipe->up_interval = 0;
1107 break;
1108 case UE_INTERRUPT:
1109 spipe->ptype = PT_INTR;
1110 if (pipe->up_interval == USBD_DEFAULT_INTERVAL)
1111 pipe->up_interval = ed->bInterval;
1112 break;
1113 case UE_ISOCHRONOUS:
1114 return slhci_lock_call(sc, &slhci_isoc_warn, spipe,
1115 NULL);
1116 case UE_BULK:
1117 spipe->ptype = PT_BULK;
1118 pipe->up_interval = 0;
1119 break;
1120 }
1121
1122 DLOG(D_MSG, "open pipe type %d interval %d", spipe->ptype,
1123 pipe->up_interval, 0,0);
1124
1125 pipe->up_methods = __UNCONST(&slhci_pipe_methods);
1126
1127 return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL);
1128 }
1129 }
1130
1131 int
1132 slhci_supported_rev(uint8_t rev)
1133 {
1134 return rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15;
1135 }
1136
1137 /*
1138 * Must be called before the ISR is registered. Interrupts can be shared so
1139 * slhci_intr could be called as soon as the ISR is registered.
1140 * Note max_current argument is actual current, but stored as current/2
1141 */
1142 void
1143 slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot,
1144 bus_space_handle_t ioh, uint16_t max_current, uint32_t stride)
1145 {
1146 struct slhci_transfers *t;
1147 int i;
1148
1149 t = &sc->sc_transfers;
1150
1151 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1152 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
1153
1154 /* sc->sc_ier = 0; */
1155 /* t->rootintr = NULL; */
1156 t->flags = F_NODEV|F_UDISABLED;
1157 t->pend = INT_MAX;
1158 KASSERT(slhci_wait_time != INT_MAX);
1159 t->len[0] = t->len[1] = -1;
1160 if (max_current > 500)
1161 max_current = 500;
1162 t->max_current = (uint8_t)(max_current / 2);
1163 sc->sc_enable_power = pow;
1164 sc->sc_iot = iot;
1165 sc->sc_ioh = ioh;
1166 sc->sc_stride = stride;
1167
1168 KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0]));
1169
1170 for (i = 0; i <= Q_MAX; i++)
1171 gcq_init_head(&t->q[i]);
1172 gcq_init_head(&t->timed);
1173 gcq_init_head(&t->to);
1174 gcq_init_head(&t->ap);
1175 gcq_init_head(&sc->sc_waitq);
1176 }
1177
1178 int
1179 slhci_attach(struct slhci_softc *sc)
1180 {
1181 struct slhci_transfers *t;
1182 const char *rev;
1183
1184 t = &sc->sc_transfers;
1185
1186 /* Detect and check the controller type */
1187 t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV));
1188
1189 /* SL11H not supported */
1190 if (!slhci_supported_rev(t->sltype)) {
1191 if (t->sltype == SLTYPE_SL11H)
1192 printf("%s: SL11H unsupported or bus error!\n",
1193 SC_NAME(sc));
1194 else
1195 printf("%s: Unknown chip revision!\n", SC_NAME(sc));
1196 return -1;
1197 }
1198
1199 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
1200 callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc);
1201
1202 /*
1203 * It is not safe to call the soft interrupt directly as
1204 * usb_schedsoftintr does in the ub_usepolling case (due to locking).
1205 */
1206 sc->sc_cb_softintr = softint_establish(SOFTINT_NET,
1207 slhci_callback_entry, sc);
1208
1209 #ifdef SLHCI_DEBUG
1210 ssc = sc;
1211 #endif
1212
1213 if (t->sltype == SLTYPE_SL811HS_R12)
1214 rev = "(rev 1.2)";
1215 else if (t->sltype == SLTYPE_SL811HS_R14)
1216 rev = "(rev 1.4 or 1.5)";
1217 else
1218 rev = "(unknown revision)";
1219
1220 aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n",
1221 SC_NAME(sc), rev);
1222
1223 aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n",
1224 SC_NAME(sc), t->max_current * 2);
1225
1226 #if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \
1227 defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER)
1228 aprint_normal("%s: driver options:"
1229 #ifdef SLHCI_DEBUG
1230 " SLHCI_DEBUG"
1231 #endif
1232 #ifdef SLHCI_TRY_LSVH
1233 " SLHCI_TRY_LSVH"
1234 #endif
1235 #ifdef SLHCI_NO_OVERTIME
1236 " SLHCI_NO_OVERTIME"
1237 #endif
1238 #ifdef SLHCI_PROFILE_TRANSFER
1239 " SLHCI_PROFILE_TRANSFER"
1240 #endif
1241 "\n", SC_NAME(sc));
1242 #endif
1243 sc->sc_bus.ub_revision = USBREV_1_1;
1244 sc->sc_bus.ub_methods = __UNCONST(&slhci_bus_methods);
1245 sc->sc_bus.ub_pipesize = sizeof(struct slhci_pipe);
1246 sc->sc_bus.ub_usedma = false;
1247
1248 if (!sc->sc_enable_power)
1249 t->flags |= F_REALPOWER;
1250
1251 t->flags |= F_ACTIVE;
1252
1253 /* Attach usb and uhub. */
1254 sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint);
1255
1256 if (!sc->sc_child)
1257 return -1;
1258 else
1259 return 0;
1260 }
1261
1262 int
1263 slhci_detach(struct slhci_softc *sc, int flags)
1264 {
1265 struct slhci_transfers *t;
1266 int ret;
1267
1268 t = &sc->sc_transfers;
1269
1270 /* By this point bus access is no longer allowed. */
1271
1272 KASSERT(!(t->flags & F_ACTIVE));
1273
1274 /*
1275 * To be MPSAFE is not sufficient to cancel callouts and soft
1276 * interrupts and assume they are dead since the code could already be
1277 * running or about to run. Wait until they are known to be done.
1278 */
1279 while (t->flags & (F_RESET|F_CALLBACK))
1280 tsleep(&sc, PPAUSE, "slhci_detach", hz);
1281
1282 softint_disestablish(sc->sc_cb_softintr);
1283
1284 mutex_destroy(&sc->sc_lock);
1285 mutex_destroy(&sc->sc_intr_lock);
1286
1287 ret = 0;
1288
1289 if (sc->sc_child)
1290 ret = config_detach(sc->sc_child, flags);
1291
1292 #ifdef SLHCI_MEM_ACCOUNTING
1293 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1294 if (sc->sc_mem_use) {
1295 printf("%s: Memory still in use after detach! mem_use (count)"
1296 " = %d\n", SC_NAME(sc), sc->sc_mem_use);
1297 DDOLOG("Memory still in use after detach! mem_use (count)"
1298 " = %d", sc->sc_mem_use, 0, 0, 0);
1299 }
1300 #endif
1301
1302 return ret;
1303 }
1304
1305 int
1306 slhci_activate(device_t self, enum devact act)
1307 {
1308 struct slhci_softc *sc = device_private(self);
1309
1310 switch (act) {
1311 case DVACT_DEACTIVATE:
1312 slhci_lock_call(sc, &slhci_halt, NULL, NULL);
1313 return 0;
1314 default:
1315 return EOPNOTSUPP;
1316 }
1317 }
1318
1319 void
1320 slhci_abort(struct usbd_xfer *xfer)
1321 {
1322 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1323 struct slhci_softc *sc;
1324 struct slhci_pipe *spipe;
1325
1326 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe);
1327
1328 if (spipe == NULL)
1329 goto callback;
1330
1331 sc = SLHCI_XFER2SC(xfer);
1332 KASSERT(mutex_owned(&sc->sc_lock));
1333
1334 DLOG(D_TRACE, "transfer type %d abort xfer %p spipe %p spipe->xfer %p",
1335 spipe->ptype, xfer, spipe, spipe->xfer);
1336
1337 slhci_lock_call(sc, &slhci_do_abort, spipe, xfer);
1338
1339 callback:
1340 xfer->ux_status = USBD_CANCELLED;
1341 usb_transfer_complete(xfer);
1342 }
1343
1344 void
1345 slhci_close(struct usbd_pipe *pipe)
1346 {
1347 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1348 struct slhci_softc *sc;
1349 struct slhci_pipe *spipe;
1350
1351 sc = SLHCI_PIPE2SC(pipe);
1352 spipe = SLHCI_PIPE2SPIPE(pipe);
1353
1354 DLOG(D_TRACE, "transfer type %d close spipe %p spipe->xfer %p",
1355 spipe->ptype, spipe, spipe->xfer, 0);
1356
1357 slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL);
1358 }
1359
1360 void
1361 slhci_clear_toggle(struct usbd_pipe *pipe)
1362 {
1363 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1364 struct slhci_pipe *spipe;
1365
1366 spipe = SLHCI_PIPE2SPIPE(pipe);
1367
1368 DLOG(D_TRACE, "transfer type %d toggle spipe %p", spipe->ptype,
1369 spipe,0,0);
1370
1371 spipe->pflags &= ~PF_TOGGLE;
1372
1373 #ifdef DIAGNOSTIC
1374 if (spipe->xfer != NULL) {
1375 struct slhci_softc *sc = (struct slhci_softc
1376 *)pipe->up_dev->ud_bus;
1377
1378 printf("%s: Clear toggle on transfer in progress! halted\n",
1379 SC_NAME(sc));
1380 DDOLOG("Clear toggle on transfer in progress! halted",
1381 0, 0, 0, 0);
1382 slhci_halt(sc, NULL, NULL);
1383 }
1384 #endif
1385 }
1386
1387 void
1388 slhci_poll(struct usbd_bus *bus) /* XXX necessary? */
1389 {
1390 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1391 struct slhci_softc *sc;
1392
1393 sc = SLHCI_BUS2SC(bus);
1394
1395 DLOG(D_TRACE, "slhci_poll", 0,0,0,0);
1396
1397 slhci_lock_call(sc, &slhci_do_poll, NULL, NULL);
1398 }
1399
1400 void
1401 slhci_done(struct usbd_xfer *xfer)
1402 {
1403 }
1404
1405 void
1406 slhci_void(void *v) {}
1407
1408 /* End out of lock functions. Start lock entry functions. */
1409
1410 #ifdef SLHCI_MEM_ACCOUNTING
1411 void
1412 slhci_mem_use(struct usbd_bus *bus, int val)
1413 {
1414 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
1415
1416 mutex_enter(&sc->sc_intr_lock);
1417 sc->sc_mem_use += val;
1418 mutex_exit(&sc->sc_intr_lock);
1419 }
1420 #endif
1421
1422 void
1423 slhci_reset_entry(void *arg)
1424 {
1425 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1426 struct slhci_softc *sc = arg;
1427
1428 mutex_enter(&sc->sc_intr_lock);
1429 slhci_reset(sc);
1430 /*
1431 * We cannot call the callback directly since we could then be reset
1432 * again before finishing and need the callout delay for timing.
1433 * Scheduling the callout again before we exit would defeat the reap
1434 * mechanism since we could be unlocked while the reset flag is not
1435 * set. The callback code will check the wait queue.
1436 */
1437 slhci_callback_schedule(sc);
1438 mutex_exit(&sc->sc_intr_lock);
1439 }
1440
1441 usbd_status
1442 slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe
1443 *spipe, struct usbd_xfer *xfer)
1444 {
1445 usbd_status ret;
1446
1447 mutex_enter(&sc->sc_intr_lock);
1448 ret = (*lcf)(sc, spipe, xfer);
1449 slhci_main(sc);
1450 mutex_exit(&sc->sc_intr_lock);
1451
1452 return ret;
1453 }
1454
1455 void
1456 slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe)
1457 {
1458 struct slhci_transfers *t;
1459
1460 mutex_enter(&sc->sc_intr_lock);
1461 t = &sc->sc_transfers;
1462
1463 if (!(t->flags & (F_AINPROG|F_BINPROG))) {
1464 slhci_enter_xfer(sc, spipe);
1465 slhci_dotransfer(sc);
1466 slhci_main(sc);
1467 } else {
1468 enter_waitq(sc, spipe);
1469 }
1470 mutex_exit(&sc->sc_intr_lock);
1471 }
1472
1473 void
1474 slhci_callback_entry(void *arg)
1475 {
1476 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1477 struct slhci_softc *sc;
1478 struct slhci_transfers *t;
1479
1480 sc = (struct slhci_softc *)arg;
1481
1482 mutex_enter(&sc->sc_intr_lock);
1483 t = &sc->sc_transfers;
1484 DLOG(D_SOFT, "callback_entry flags %#x", t->flags, 0,0,0);
1485
1486 repeat:
1487 slhci_callback(sc);
1488
1489 if (!gcq_empty(&sc->sc_waitq)) {
1490 slhci_enter_xfers(sc);
1491 slhci_dotransfer(sc);
1492 slhci_waitintr(sc, 0);
1493 goto repeat;
1494 }
1495
1496 t->flags &= ~F_CALLBACK;
1497 mutex_exit(&sc->sc_intr_lock);
1498 }
1499
1500 void
1501 slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer)
1502 {
1503 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1504 KASSERT(mutex_owned(&sc->sc_intr_lock));
1505
1506 start_cc_time(&t_callback, (u_int)xfer);
1507 mutex_exit(&sc->sc_intr_lock);
1508
1509 mutex_enter(&sc->sc_lock);
1510 usb_transfer_complete(xfer);
1511 mutex_exit(&sc->sc_lock);
1512
1513 mutex_enter(&sc->sc_intr_lock);
1514 stop_cc_time(&t_callback);
1515 }
1516
1517 int
1518 slhci_intr(void *arg)
1519 {
1520 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1521 struct slhci_softc *sc = arg;
1522 int ret;
1523
1524 start_cc_time(&t_hard_int, (unsigned int)arg);
1525 mutex_enter(&sc->sc_intr_lock);
1526
1527 ret = slhci_dointr(sc);
1528 slhci_main(sc);
1529 mutex_exit(&sc->sc_intr_lock);
1530
1531 stop_cc_time(&t_hard_int);
1532 return ret;
1533 }
1534
1535 /* called with main lock only held, returns with locks released. */
1536 void
1537 slhci_main(struct slhci_softc *sc)
1538 {
1539 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1540 struct slhci_transfers *t;
1541
1542 t = &sc->sc_transfers;
1543
1544 KASSERT(mutex_owned(&sc->sc_intr_lock));
1545
1546 waitcheck:
1547 slhci_waitintr(sc, slhci_wait_time);
1548
1549 /*
1550 * The direct call is needed in the ub_usepolling and disabled cases
1551 * since the soft interrupt is not available. In the disabled case,
1552 * this code can be reached from the usb detach, after the reaping of
1553 * the soft interrupt. That test could be !F_ACTIVE, but there is no
1554 * reason not to make the callbacks directly in the other DISABLED
1555 * cases.
1556 */
1557 if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) {
1558 if (__predict_false(sc->sc_bus.ub_usepolling ||
1559 t->flags & F_DISABLED))
1560 slhci_callback(sc);
1561 else
1562 slhci_callback_schedule(sc);
1563 }
1564
1565 if (!gcq_empty(&sc->sc_waitq)) {
1566 slhci_enter_xfers(sc);
1567 slhci_dotransfer(sc);
1568 goto waitcheck;
1569 }
1570 DLOG(D_INTR, "... done", 0, 0, 0, 0);
1571 }
1572
1573 /* End lock entry functions. Start in lock function. */
1574
1575 /* Register read/write routines and barriers. */
1576 #ifdef SLHCI_BUS_SPACE_BARRIERS
1577 #define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e)
1578 #define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_SYNC)
1579 #else /* now !SLHCI_BUS_SPACE_BARRIERS */
1580 #define BSB(a, b, c, d, e) __USE(d)
1581 #define BSB_SYNC(a, b, c, d)
1582 #endif /* SLHCI_BUS_SPACE_BARRIERS */
1583
1584 static void
1585 slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data)
1586 {
1587 bus_size_t paddr, pdata, pst, psz;
1588 bus_space_tag_t iot;
1589 bus_space_handle_t ioh;
1590
1591 paddr = pst = 0;
1592 pdata = sc->sc_stride;
1593 psz = pdata * 2;
1594 iot = sc->sc_iot;
1595 ioh = sc->sc_ioh;
1596
1597 bus_space_write_1(iot, ioh, paddr, addr);
1598 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1599 bus_space_write_1(iot, ioh, pdata, data);
1600 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1601 }
1602
1603 static uint8_t
1604 slhci_read(struct slhci_softc *sc, uint8_t addr)
1605 {
1606 bus_size_t paddr, pdata, pst, psz;
1607 bus_space_tag_t iot;
1608 bus_space_handle_t ioh;
1609 uint8_t data;
1610
1611 paddr = pst = 0;
1612 pdata = sc->sc_stride;
1613 psz = pdata * 2;
1614 iot = sc->sc_iot;
1615 ioh = sc->sc_ioh;
1616
1617 bus_space_write_1(iot, ioh, paddr, addr);
1618 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1619 data = bus_space_read_1(iot, ioh, pdata);
1620 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1621 return data;
1622 }
1623
1624 #if 0 /* auto-increment mode broken, see errata doc */
1625 static void
1626 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1627 {
1628 bus_size_t paddr, pdata, pst, psz;
1629 bus_space_tag_t iot;
1630 bus_space_handle_t ioh;
1631
1632 paddr = pst = 0;
1633 pdata = sc->sc_stride;
1634 psz = pdata * 2;
1635 iot = sc->sc_iot;
1636 ioh = sc->sc_ioh;
1637
1638 bus_space_write_1(iot, ioh, paddr, addr);
1639 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1640 bus_space_write_multi_1(iot, ioh, pdata, buf, l);
1641 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1642 }
1643
1644 static void
1645 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1646 {
1647 bus_size_t paddr, pdata, pst, psz;
1648 bus_space_tag_t iot;
1649 bus_space_handle_t ioh;
1650
1651 paddr = pst = 0;
1652 pdata = sc->sc_stride;
1653 psz = pdata * 2;
1654 iot = sc->sc_iot;
1655 ioh = sc->sc_ioh;
1656
1657 bus_space_write_1(iot, ioh, paddr, addr);
1658 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1659 bus_space_read_multi_1(iot, ioh, pdata, buf, l);
1660 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1661 }
1662 #else
1663 static void
1664 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1665 {
1666 #if 1
1667 for (; l; addr++, buf++, l--)
1668 slhci_write(sc, addr, *buf);
1669 #else
1670 bus_size_t paddr, pdata, pst, psz;
1671 bus_space_tag_t iot;
1672 bus_space_handle_t ioh;
1673
1674 paddr = pst = 0;
1675 pdata = sc->sc_stride;
1676 psz = pdata * 2;
1677 iot = sc->sc_iot;
1678 ioh = sc->sc_ioh;
1679
1680 for (; l; addr++, buf++, l--) {
1681 bus_space_write_1(iot, ioh, paddr, addr);
1682 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1683 bus_space_write_1(iot, ioh, pdata, *buf);
1684 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1685 }
1686 #endif
1687 }
1688
1689 static void
1690 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1691 {
1692 #if 1
1693 for (; l; addr++, buf++, l--)
1694 *buf = slhci_read(sc, addr);
1695 #else
1696 bus_size_t paddr, pdata, pst, psz;
1697 bus_space_tag_t iot;
1698 bus_space_handle_t ioh;
1699
1700 paddr = pst = 0;
1701 pdata = sc->sc_stride;
1702 psz = pdata * 2;
1703 iot = sc->sc_iot;
1704 ioh = sc->sc_ioh;
1705
1706 for (; l; addr++, buf++, l--) {
1707 bus_space_write_1(iot, ioh, paddr, addr);
1708 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1709 *buf = bus_space_read_1(iot, ioh, pdata);
1710 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1711 }
1712 #endif
1713 }
1714 #endif
1715
1716 /*
1717 * After calling waitintr it is necessary to either call slhci_callback or
1718 * schedule the callback if necessary. The callback cannot be called directly
1719 * from the hard interrupt since it interrupts at a high IPL and callbacks
1720 * can do copyout and such.
1721 */
1722 static void
1723 slhci_waitintr(struct slhci_softc *sc, int wait_time)
1724 {
1725 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1726 struct slhci_transfers *t;
1727
1728 t = &sc->sc_transfers;
1729
1730 KASSERT(mutex_owned(&sc->sc_intr_lock));
1731
1732 if (__predict_false(sc->sc_bus.ub_usepolling))
1733 wait_time = 12000;
1734
1735 while (t->pend <= wait_time) {
1736 DLOG(D_WAIT, "waiting... frame %d pend %d flags %#x",
1737 t->frame, t->pend, t->flags, 0);
1738 LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return);
1739 LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL,
1740 return);
1741 slhci_dointr(sc);
1742 }
1743 }
1744
1745 static int
1746 slhci_dointr(struct slhci_softc *sc)
1747 {
1748 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1749 struct slhci_transfers *t;
1750 struct slhci_pipe *tosp;
1751 uint8_t r;
1752
1753 t = &sc->sc_transfers;
1754
1755 KASSERT(mutex_owned(&sc->sc_intr_lock));
1756
1757 if (sc->sc_ier == 0) {
1758 DLOG(D_INTR, "sc_ier is zero", 0, 0, 0, 0);
1759 return 0;
1760 }
1761
1762 r = slhci_read(sc, SL11_ISR);
1763
1764 #ifdef SLHCI_DEBUG
1765 if (slhcidebug & SLHCI_D_INTR && r & sc->sc_ier &&
1766 ((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhcidebug &
1767 SLHCI_D_SOF)) {
1768 uint8_t e, f;
1769
1770 e = slhci_read(sc, SL11_IER);
1771 f = slhci_read(sc, SL11_CTRL);
1772 DDOLOG("Flags=%#x IER=%#x ISR=%#x CTRL=%#x", t->flags, e, r, f);
1773 DDOLOGCTRL(f);
1774 DDOLOGISR(r);
1775 }
1776 #endif
1777
1778 /*
1779 * check IER for corruption occasionally. Assume that the above
1780 * sc_ier == 0 case works correctly.
1781 */
1782 if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) {
1783 sc->sc_ier_check = 0;
1784 if (sc->sc_ier != slhci_read(sc, SL11_IER)) {
1785 printf("%s: IER value corrupted! halted\n",
1786 SC_NAME(sc));
1787 DDOLOG("IER value corrupted! halted", 0, 0, 0, 0);
1788 slhci_halt(sc, NULL, NULL);
1789 return 1;
1790 }
1791 }
1792
1793 r &= sc->sc_ier;
1794
1795 if (r == 0) {
1796 DLOG(D_INTR, "r is zero", 0, 0, 0, 0);
1797 return 0;
1798 }
1799
1800 sc->sc_ier_check = 0;
1801
1802 slhci_write(sc, SL11_ISR, r);
1803 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
1804
1805 /* If we have an insertion event we do not care about anything else. */
1806 if (__predict_false(r & SL11_ISR_INSERT)) {
1807 slhci_insert(sc);
1808 DLOG(D_INTR, "... done", 0, 0, 0, 0);
1809 return 1;
1810 }
1811
1812 stop_cc_time(&t_intr);
1813 start_cc_time(&t_intr, r);
1814
1815 if (r & SL11_ISR_SOF) {
1816 t->frame++;
1817
1818 gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]);
1819
1820 /*
1821 * SOFCHECK flags are cleared in tstart. Two flags are needed
1822 * since the first SOF interrupt processed after the transfer
1823 * is started might have been generated before the transfer
1824 * was started.
1825 */
1826 if (__predict_false(t->flags & F_SOFCHECK2 && t->flags &
1827 (F_AINPROG|F_BINPROG))) {
1828 printf("%s: Missed transfer completion. halted\n",
1829 SC_NAME(sc));
1830 DDOLOG("Missed transfer completion. halted", 0, 0, 0,
1831 0);
1832 slhci_halt(sc, NULL, NULL);
1833 return 1;
1834 } else if (t->flags & F_SOFCHECK1) {
1835 t->flags |= F_SOFCHECK2;
1836 } else
1837 t->flags |= F_SOFCHECK1;
1838
1839 if (t->flags & F_CHANGE)
1840 t->flags |= F_ROOTINTR;
1841
1842 while (__predict_true(GOT_FIRST_TO(tosp, t)) &&
1843 __predict_false(tosp->to_frame <= t->frame)) {
1844 tosp->xfer->ux_status = USBD_TIMEOUT;
1845 slhci_do_abort(sc, tosp, tosp->xfer);
1846 enter_callback(t, tosp);
1847 }
1848
1849 /*
1850 * Start any waiting transfers right away. If none, we will
1851 * start any new transfers later.
1852 */
1853 slhci_tstart(sc);
1854 }
1855
1856 if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) {
1857 int ab;
1858
1859 if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) ==
1860 (SL11_ISR_USBA|SL11_ISR_USBB)) {
1861 if (!(t->flags & (F_AINPROG|F_BINPROG)))
1862 return 1; /* presume card pulled */
1863
1864 LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) !=
1865 (F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1);
1866
1867 /*
1868 * This should never happen (unless card removal just
1869 * occurred) but appeared frequently when both
1870 * transfers were started at the same time and was
1871 * accompanied by data corruption. It still happens
1872 * at times. I have not seen data correption except
1873 * when the STATUS bit gets set, which now causes the
1874 * driver to halt, however this should still not
1875 * happen so the warning is kept. See comment in
1876 * abdone, below.
1877 */
1878 printf("%s: Transfer reported done but not started! "
1879 "Verify data integrity if not detaching. "
1880 " flags %#x r %x\n", SC_NAME(sc), t->flags, r);
1881
1882 if (!(t->flags & F_AINPROG))
1883 r &= ~SL11_ISR_USBA;
1884 else
1885 r &= ~SL11_ISR_USBB;
1886 }
1887 t->pend = INT_MAX;
1888
1889 if (r & SL11_ISR_USBA)
1890 ab = A;
1891 else
1892 ab = B;
1893
1894 /*
1895 * This happens when a low speed device is attached to
1896 * a hub with chip rev 1.5. SOF stops, but a few transfers
1897 * still work before causing this error.
1898 */
1899 if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) {
1900 printf("%s: %s done but not in progress! halted\n",
1901 SC_NAME(sc), ab ? "B" : "A");
1902 DDOLOG("AB=%d done but not in progress! halted", ab,
1903 0, 0, 0);
1904 slhci_halt(sc, NULL, NULL);
1905 return 1;
1906 }
1907
1908 t->flags &= ~(ab ? F_BINPROG : F_AINPROG);
1909 slhci_tstart(sc);
1910 stop_cc_time(&t_ab[ab]);
1911 start_cc_time(&t_abdone, t->flags);
1912 slhci_abdone(sc, ab);
1913 stop_cc_time(&t_abdone);
1914 }
1915
1916 slhci_dotransfer(sc);
1917
1918 DLOG(D_INTR, "... done", 0, 0, 0, 0);
1919
1920 return 1;
1921 }
1922
1923 static void
1924 slhci_abdone(struct slhci_softc *sc, int ab)
1925 {
1926 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1927 struct slhci_transfers *t;
1928 struct slhci_pipe *spipe;
1929 struct usbd_xfer *xfer;
1930 uint8_t status, buf_start;
1931 uint8_t *target_buf;
1932 unsigned int actlen;
1933 int head;
1934
1935 t = &sc->sc_transfers;
1936
1937 KASSERT(mutex_owned(&sc->sc_intr_lock));
1938
1939 DLOG(D_TRACE, "ABDONE flags %#x", t->flags, 0,0,0);
1940
1941 DLOG(D_MSG, "DONE AB=%d spipe %p len %d xfer %p", ab, t->spipe[ab],
1942 t->len[ab], t->spipe[ab] ? t->spipe[ab]->xfer : NULL);
1943
1944 spipe = t->spipe[ab];
1945
1946 /*
1947 * skip this one if aborted; do not call return from the rest of the
1948 * function unless halting, else t->len will not be cleared.
1949 */
1950 if (spipe == NULL)
1951 goto done;
1952
1953 t->spipe[ab] = NULL;
1954
1955 xfer = spipe->xfer;
1956
1957 gcq_remove(&spipe->to);
1958
1959 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
1960
1961 status = slhci_read(sc, slhci_tregs[ab][STAT]);
1962
1963 /*
1964 * I saw no status or remaining length greater than the requested
1965 * length in early driver versions in circumstances I assumed caused
1966 * excess power draw. I am no longer able to reproduce this when
1967 * causing excess power draw circumstances.
1968 *
1969 * Disabling a power check and attaching aue to a keyboard and hub
1970 * that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard
1971 * 98mA) sometimes works and sometimes fails to configure. After
1972 * removing the aue and attaching a self-powered umass dvd reader
1973 * (unknown if it draws power from the host also) soon a single Error
1974 * status occurs then only timeouts. The controller soon halts freeing
1975 * memory due to being ONQU instead of BUSY. This may be the same
1976 * basic sequence that caused the no status/bad length errors. The
1977 * umass device seems to work (better at least) with the keyboard hub
1978 * when not first attaching aue (tested once reading an approximately
1979 * 200MB file).
1980 *
1981 * Overflow can indicate that the device and host disagree about how
1982 * much data has been transfered. This may indicate a problem at any
1983 * point during the transfer, not just when the error occurs. It may
1984 * indicate data corruption. A warning message is printed.
1985 *
1986 * Trying to use both A and B transfers at the same time results in
1987 * incorrect transfer completion ISR reports and the status will then
1988 * include SL11_EPSTAT_SETUP, which is apparently set while the
1989 * transfer is in progress. I also noticed data corruption, even
1990 * after waiting for the transfer to complete. The driver now avoids
1991 * trying to start both at the same time.
1992 *
1993 * I had accidently initialized the B registers before they were valid
1994 * in some driver versions. Since every other performance enhancing
1995 * feature has been confirmed buggy in the errata doc, I have not
1996 * tried both transfers at once again with the documented
1997 * initialization order.
1998 *
1999 * However, I have seen this problem again ("done but not started"
2000 * errors), which in some cases cases the SETUP status bit to remain
2001 * set on future transfers. In other cases, the SETUP bit is not set
2002 * and no data corruption occurs. This occured while using both umass
2003 * and aue on a powered hub (maybe triggered by some local activity
2004 * also) and needs several reads of the 200MB file to trigger. The
2005 * driver now halts if SETUP is detected.
2006 */
2007
2008 actlen = 0;
2009
2010 if (__predict_false(!status)) {
2011 DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0);
2012 printf("%s: no status! halted\n", SC_NAME(sc));
2013 slhci_halt(sc, spipe, xfer);
2014 return;
2015 }
2016
2017 #ifdef SLHCI_DEBUG
2018 if ((slhcidebug & SLHCI_D_NAK) ||
2019 (status & SL11_EPSTAT_ERRBITS) != SL11_EPSTAT_NAK) {
2020 DDOLOG("USB Status = %#.2x", status, 0, 0, 0);
2021 DDLOGSTATUS(status);
2022 }
2023 #endif
2024
2025 if (!(status & SL11_EPSTAT_ERRBITS)) {
2026 unsigned int cont;
2027 cont = slhci_read(sc, slhci_tregs[ab][CONT]);
2028 if (cont != 0)
2029 DLOG(D_XFER, "cont %d len %d", cont,
2030 spipe->tregs[LEN], 0,0);
2031 if (__predict_false(cont > spipe->tregs[LEN])) {
2032 DDOLOG("cont > len! cont %d len %d xfer->ux_length %d "
2033 "spipe %p", cont, spipe->tregs[LEN], xfer->ux_length,
2034 spipe);
2035 printf("%s: cont > len! cont %d len %d xfer->ux_length "
2036 "%d", SC_NAME(sc), cont, spipe->tregs[LEN],
2037 xfer->ux_length);
2038 slhci_halt(sc, spipe, xfer);
2039 return;
2040 } else {
2041 spipe->nerrs = 0;
2042 actlen = spipe->tregs[LEN] - cont;
2043 }
2044 }
2045
2046 /* Actual copyin done after starting next transfer. */
2047 if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) {
2048 target_buf = spipe->buffer;
2049 buf_start = spipe->tregs[ADR];
2050 } else {
2051 target_buf = NULL;
2052 buf_start = 0; /* XXX gcc uninitialized warnings */
2053 }
2054
2055 if (status & SL11_EPSTAT_ERRBITS) {
2056 status &= SL11_EPSTAT_ERRBITS;
2057 if (status & SL11_EPSTAT_SETUP) {
2058 printf("%s: Invalid controller state detected! "
2059 "halted\n", SC_NAME(sc));
2060 DDOLOG("Invalid controller state detected! "
2061 "halted", 0, 0, 0, 0);
2062 slhci_halt(sc, spipe, xfer);
2063 return;
2064 } else if (__predict_false(sc->sc_bus.ub_usepolling)) {
2065 if (status == SL11_EPSTAT_STALL)
2066 xfer->ux_status = USBD_STALLED;
2067 else if (status == SL11_EPSTAT_TIMEOUT)
2068 xfer->ux_status = USBD_TIMEOUT;
2069 else if (status == SL11_EPSTAT_NAK)
2070 xfer->ux_status = USBD_TIMEOUT; /*XXX*/
2071 else
2072 xfer->ux_status = USBD_IOERROR;
2073 head = Q_CALLBACKS;
2074 } else if (status == SL11_EPSTAT_NAK) {
2075 if (spipe->pipe.up_interval) {
2076 spipe->lastframe = spipe->frame =
2077 t->frame + spipe->pipe.up_interval;
2078 slhci_queue_timed(sc, spipe);
2079 goto queued;
2080 }
2081 head = Q_NEXT_CB;
2082 } else if (++spipe->nerrs > SLHCI_MAX_RETRIES ||
2083 status == SL11_EPSTAT_STALL) {
2084 if (status == SL11_EPSTAT_STALL)
2085 xfer->ux_status = USBD_STALLED;
2086 else if (status == SL11_EPSTAT_TIMEOUT)
2087 xfer->ux_status = USBD_TIMEOUT;
2088 else
2089 xfer->ux_status = USBD_IOERROR;
2090
2091 DLOG(D_ERR, "Max retries reached! status %#x "
2092 "xfer->ux_status %#x", status, xfer->ux_status, 0,
2093 0);
2094 DDLOGSTATUS(status);
2095
2096 if (status == SL11_EPSTAT_OVERFLOW &&
2097 ratecheck(&sc->sc_overflow_warn_rate,
2098 &overflow_warn_rate)) {
2099 printf("%s: Overflow condition: "
2100 "data corruption possible\n",
2101 SC_NAME(sc));
2102 DDOLOG("Overflow condition: "
2103 "data corruption possible",
2104 0, 0, 0, 0);
2105 }
2106 head = Q_CALLBACKS;
2107 } else {
2108 head = Q_NEXT_CB;
2109 }
2110 } else if (spipe->ptype == PT_CTRL_SETUP) {
2111 spipe->tregs[PID] = spipe->newpid;
2112
2113 if (xfer->ux_length) {
2114 LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer,
2115 return);
2116 spipe->tregs[LEN] = spipe->newlen[1];
2117 spipe->bustime = spipe->newbustime[1];
2118 spipe->buffer = xfer->ux_buf;
2119 spipe->ptype = PT_CTRL_DATA;
2120 } else {
2121 status_setup:
2122 /* CTRL_DATA swaps direction in PID then jumps here */
2123 spipe->tregs[LEN] = 0;
2124 if (spipe->pflags & PF_LS)
2125 spipe->bustime = SLHCI_LS_CONST;
2126 else
2127 spipe->bustime = SLHCI_FS_CONST;
2128 spipe->ptype = PT_CTRL_STATUS;
2129 spipe->buffer = NULL;
2130 }
2131
2132 /* Status or first data packet must be DATA1. */
2133 spipe->control |= SL11_EPCTRL_DATATOGGLE;
2134 if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN)
2135 spipe->control &= ~SL11_EPCTRL_DIRECTION;
2136 else
2137 spipe->control |= SL11_EPCTRL_DIRECTION;
2138
2139 head = Q_CB;
2140 } else if (spipe->ptype == PT_CTRL_STATUS) {
2141 head = Q_CALLBACKS;
2142 } else { /* bulk, intr, control data */
2143 xfer->ux_actlen += actlen;
2144 spipe->control ^= SL11_EPCTRL_DATATOGGLE;
2145
2146 if (actlen == spipe->tregs[LEN] && (xfer->ux_length >
2147 xfer->ux_actlen || spipe->wantshort)) {
2148 spipe->buffer += actlen;
2149 LK_SLASSERT(xfer->ux_length >= xfer->ux_actlen, sc,
2150 spipe, xfer, return);
2151 if (xfer->ux_length - xfer->ux_actlen < actlen) {
2152 spipe->wantshort = 0;
2153 spipe->tregs[LEN] = spipe->newlen[0];
2154 spipe->bustime = spipe->newbustime[0];
2155 LK_SLASSERT(xfer->ux_actlen +
2156 spipe->tregs[LEN] == xfer->ux_length, sc,
2157 spipe, xfer, return);
2158 }
2159 head = Q_CB;
2160 } else if (spipe->ptype == PT_CTRL_DATA) {
2161 spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT;
2162 goto status_setup;
2163 } else {
2164 if (spipe->ptype == PT_INTR) {
2165 spipe->lastframe +=
2166 spipe->pipe.up_interval;
2167 /*
2168 * If ack, we try to keep the
2169 * interrupt rate by using lastframe
2170 * instead of the current frame.
2171 */
2172 spipe->frame = spipe->lastframe +
2173 spipe->pipe.up_interval;
2174 }
2175
2176 /*
2177 * Set the toggle for the next transfer. It
2178 * has already been toggled above, so the
2179 * current setting will apply to the next
2180 * transfer.
2181 */
2182 if (spipe->control & SL11_EPCTRL_DATATOGGLE)
2183 spipe->pflags |= PF_TOGGLE;
2184 else
2185 spipe->pflags &= ~PF_TOGGLE;
2186
2187 head = Q_CALLBACKS;
2188 }
2189 }
2190
2191 if (head == Q_CALLBACKS) {
2192 gcq_remove(&spipe->to);
2193
2194 if (xfer->ux_status == USBD_IN_PROGRESS) {
2195 LK_SLASSERT(xfer->ux_actlen <= xfer->ux_length, sc,
2196 spipe, xfer, return);
2197 xfer->ux_status = USBD_NORMAL_COMPLETION;
2198 #if 0 /* usb_transfer_complete will do this */
2199 if (xfer->ux_length == xfer->ux_actlen || xfer->ux_flags &
2200 USBD_SHORT_XFER_OK)
2201 xfer->ux_status = USBD_NORMAL_COMPLETION;
2202 else
2203 xfer->ux_status = USBD_SHORT_XFER;
2204 #endif
2205 }
2206 }
2207
2208 enter_q(t, spipe, head);
2209
2210 queued:
2211 if (target_buf != NULL) {
2212 slhci_dotransfer(sc);
2213 start_cc_time(&t_copy_from_dev, actlen);
2214 slhci_read_multi(sc, buf_start, target_buf, actlen);
2215 stop_cc_time(&t_copy_from_dev);
2216 DLOGBUF(D_BUF, target_buf, actlen);
2217 t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen);
2218 }
2219
2220 done:
2221 t->len[ab] = -1;
2222 }
2223
2224 static void
2225 slhci_tstart(struct slhci_softc *sc)
2226 {
2227 struct slhci_transfers *t;
2228 struct slhci_pipe *spipe;
2229 int remaining_bustime;
2230
2231 t = &sc->sc_transfers;
2232
2233 KASSERT(mutex_owned(&sc->sc_intr_lock));
2234
2235 if (!(t->flags & (F_AREADY|F_BREADY)))
2236 return;
2237
2238 if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED))
2239 return;
2240
2241 /*
2242 * We have about 6 us to get from the bus time check to
2243 * starting the transfer or we might babble or the chip might fail to
2244 * signal transfer complete. This leaves no time for any other
2245 * interrupts.
2246 */
2247 remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6;
2248 remaining_bustime -= SLHCI_END_BUSTIME;
2249
2250 /*
2251 * Start one transfer only, clearing any aborted transfers that are
2252 * not yet in progress and skipping missed isoc. It is easier to copy
2253 * & paste most of the A/B sections than to make the logic work
2254 * otherwise and this allows better constant use.
2255 */
2256 if (t->flags & F_AREADY) {
2257 spipe = t->spipe[A];
2258 if (spipe == NULL) {
2259 t->flags &= ~F_AREADY;
2260 t->len[A] = -1;
2261 } else if (remaining_bustime >= spipe->bustime) {
2262 t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2);
2263 t->flags |= F_AINPROG;
2264 start_cc_time(&t_ab[A], spipe->tregs[LEN]);
2265 slhci_write(sc, SL11_E0CTRL, spipe->control);
2266 goto pend;
2267 }
2268 }
2269 if (t->flags & F_BREADY) {
2270 spipe = t->spipe[B];
2271 if (spipe == NULL) {
2272 t->flags &= ~F_BREADY;
2273 t->len[B] = -1;
2274 } else if (remaining_bustime >= spipe->bustime) {
2275 t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2);
2276 t->flags |= F_BINPROG;
2277 start_cc_time(&t_ab[B], spipe->tregs[LEN]);
2278 slhci_write(sc, SL11_E1CTRL, spipe->control);
2279 pend:
2280 t->pend = spipe->bustime;
2281 }
2282 }
2283 }
2284
2285 static void
2286 slhci_dotransfer(struct slhci_softc *sc)
2287 {
2288 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2289 struct slhci_transfers *t;
2290 struct slhci_pipe *spipe;
2291 int ab, i;
2292
2293 t = &sc->sc_transfers;
2294
2295 KASSERT(mutex_owned(&sc->sc_intr_lock));
2296
2297 while ((t->len[A] == -1 || t->len[B] == -1) &&
2298 (GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) ||
2299 GOT_FIRST_CB(spipe, t))) {
2300 LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return);
2301 LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype !=
2302 PT_ROOT_INTR, sc, spipe, NULL, return);
2303
2304 /* Check that this transfer can fit in the remaining memory. */
2305 if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 >
2306 SL11_MAX_PACKET_SIZE) {
2307 DLOG(D_XFER, "Transfer does not fit. alen %d blen %d "
2308 "len %d", t->len[A], t->len[B], spipe->tregs[LEN],
2309 0);
2310 return;
2311 }
2312
2313 gcq_remove(&spipe->xq);
2314
2315 if (t->len[A] == -1) {
2316 ab = A;
2317 spipe->tregs[ADR] = SL11_BUFFER_START;
2318 } else {
2319 ab = B;
2320 spipe->tregs[ADR] = SL11_BUFFER_END -
2321 spipe->tregs[LEN];
2322 }
2323
2324 t->len[ab] = spipe->tregs[LEN];
2325
2326 if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS)
2327 != SL11_PID_IN) {
2328 start_cc_time(&t_copy_to_dev,
2329 spipe->tregs[LEN]);
2330 slhci_write_multi(sc, spipe->tregs[ADR],
2331 spipe->buffer, spipe->tregs[LEN]);
2332 stop_cc_time(&t_copy_to_dev);
2333 t->pend -= SLHCI_FS_CONST +
2334 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
2335 }
2336
2337 DLOG(D_MSG, "NEW TRANSFER AB=%d flags %#x alen %d blen %d",
2338 ab, t->flags, t->len[0], t->len[1]);
2339
2340 if (spipe->tregs[LEN])
2341 i = 0;
2342 else
2343 i = 1;
2344
2345 for (; i <= 3; i++)
2346 if (t->current_tregs[ab][i] != spipe->tregs[i]) {
2347 t->current_tregs[ab][i] = spipe->tregs[i];
2348 slhci_write(sc, slhci_tregs[ab][i],
2349 spipe->tregs[i]);
2350 }
2351
2352 DLOG(D_SXFER, "Transfer len %d pid %#x dev %d type %d",
2353 spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV],
2354 spipe->ptype);
2355
2356 t->spipe[ab] = spipe;
2357 t->flags |= ab ? F_BREADY : F_AREADY;
2358
2359 slhci_tstart(sc);
2360 }
2361 }
2362
2363 /*
2364 * slhci_callback is called after the lock is taken.
2365 */
2366 static void
2367 slhci_callback(struct slhci_softc *sc)
2368 {
2369 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2370 struct slhci_transfers *t;
2371 struct slhci_pipe *spipe;
2372 struct usbd_xfer *xfer;
2373
2374 t = &sc->sc_transfers;
2375
2376 KASSERT(mutex_owned(&sc->sc_intr_lock));
2377
2378 DLOG(D_SOFT, "CB flags %#x", t->flags, 0,0,0);
2379 for (;;) {
2380 if (__predict_false(t->flags & F_ROOTINTR)) {
2381 t->flags &= ~F_ROOTINTR;
2382 if (t->rootintr != NULL) {
2383 u_char *p;
2384
2385 p = t->rootintr->ux_buf;
2386 p[0] = 2;
2387 t->rootintr->ux_actlen = 1;
2388 t->rootintr->ux_status = USBD_NORMAL_COMPLETION;
2389 xfer = t->rootintr;
2390 goto do_callback;
2391 }
2392 }
2393
2394
2395 if (!DEQUEUED_CALLBACK(spipe, t))
2396 return;
2397
2398 xfer = spipe->xfer;
2399 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
2400 spipe->xfer = NULL;
2401 DLOG(D_XFER, "xfer callback length %d actlen %d spipe %d "
2402 "type %d", xfer->ux_length, xfer->ux_actlen, spipe,
2403 spipe->ptype);
2404 do_callback:
2405 slhci_do_callback(sc, xfer);
2406 }
2407 }
2408
2409 static void
2410 slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2411 {
2412 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2413 struct slhci_transfers *t;
2414
2415 t = &sc->sc_transfers;
2416
2417 KASSERT(mutex_owned(&sc->sc_intr_lock));
2418
2419 if (__predict_false(t->flags & F_DISABLED) ||
2420 __predict_false(spipe->pflags & PF_GONE)) {
2421 DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0);
2422 spipe->xfer->ux_status = USBD_CANCELLED;
2423 }
2424
2425 if (spipe->xfer->ux_status == USBD_IN_PROGRESS) {
2426 if (spipe->xfer->ux_timeout) {
2427 spipe->to_frame = t->frame + spipe->xfer->ux_timeout;
2428 slhci_xfer_timer(sc, spipe);
2429 }
2430 if (spipe->pipe.up_interval)
2431 slhci_queue_timed(sc, spipe);
2432 else
2433 enter_q(t, spipe, Q_CB);
2434 } else
2435 enter_callback(t, spipe);
2436 }
2437
2438 static void
2439 slhci_enter_xfers(struct slhci_softc *sc)
2440 {
2441 struct slhci_pipe *spipe;
2442
2443 KASSERT(mutex_owned(&sc->sc_intr_lock));
2444
2445 while (DEQUEUED_WAITQ(spipe, sc))
2446 slhci_enter_xfer(sc, spipe);
2447 }
2448
2449 static void
2450 slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe)
2451 {
2452 struct slhci_transfers *t;
2453 struct gcq *q;
2454 struct slhci_pipe *spp;
2455
2456 t = &sc->sc_transfers;
2457
2458 KASSERT(mutex_owned(&sc->sc_intr_lock));
2459
2460 FIND_TIMED(q, t, spp, spp->frame > spipe->frame);
2461 gcq_insert_before(q, &spipe->xq);
2462 }
2463
2464 static void
2465 slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2466 {
2467 struct slhci_transfers *t;
2468 struct gcq *q;
2469 struct slhci_pipe *spp;
2470
2471 t = &sc->sc_transfers;
2472
2473 KASSERT(mutex_owned(&sc->sc_intr_lock));
2474
2475 FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame);
2476 gcq_insert_before(q, &spipe->to);
2477 }
2478
2479 static void
2480 slhci_callback_schedule(struct slhci_softc *sc)
2481 {
2482 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2483 struct slhci_transfers *t;
2484
2485 t = &sc->sc_transfers;
2486
2487 KASSERT(mutex_owned(&sc->sc_intr_lock));
2488
2489 if (t->flags & F_ACTIVE)
2490 slhci_do_callback_schedule(sc);
2491 }
2492
2493 static void
2494 slhci_do_callback_schedule(struct slhci_softc *sc)
2495 {
2496 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2497 struct slhci_transfers *t;
2498
2499 t = &sc->sc_transfers;
2500
2501 KASSERT(mutex_owned(&sc->sc_intr_lock));
2502
2503 DLOG(D_MSG, "flags %#x", t->flags, 0, 0, 0);
2504 if (!(t->flags & F_CALLBACK)) {
2505 t->flags |= F_CALLBACK;
2506 softint_schedule(sc->sc_cb_softintr);
2507 }
2508 }
2509
2510 #if 0
2511 /* must be called with lock taken. */
2512 /* XXX static */ void
2513 slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer)
2514 {
2515 KASSERT(mutex_owned(&sc->sc_intr_lock));
2516 slhci_dotransfer(sc);
2517 do {
2518 slhci_dointr(sc);
2519 } while (xfer->ux_status == USBD_IN_PROGRESS);
2520 slhci_do_callback(sc, xfer);
2521 }
2522 #endif
2523
2524 static usbd_status
2525 slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2526 usbd_xfer *xfer)
2527 {
2528 slhci_waitintr(sc, 0);
2529
2530 return USBD_NORMAL_COMPLETION;
2531 }
2532
2533 static usbd_status
2534 slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2535 usbd_xfer *xfer)
2536 {
2537 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2538 struct slhci_transfers *t;
2539
2540 t = &sc->sc_transfers;
2541
2542 if (!(t->flags & F_LSVH_WARNED)) {
2543 printf("%s: Low speed device via hub disabled, "
2544 "see slhci(4)\n", SC_NAME(sc));
2545 DDOLOG("Low speed device via hub disabled, "
2546 "see slhci(4)", SC_NAME(sc), 0,0,0);
2547 t->flags |= F_LSVH_WARNED;
2548 }
2549 return USBD_INVAL;
2550 }
2551
2552 static usbd_status
2553 slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2554 usbd_xfer *xfer)
2555 {
2556 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2557 struct slhci_transfers *t;
2558
2559 t = &sc->sc_transfers;
2560
2561 if (!(t->flags & F_ISOC_WARNED)) {
2562 printf("%s: ISOC transfer not supported "
2563 "(see slhci(4))\n", SC_NAME(sc));
2564 DDOLOG("ISOC transfer not supported "
2565 "(see slhci(4))", 0, 0, 0, 0);
2566 t->flags |= F_ISOC_WARNED;
2567 }
2568 return USBD_INVAL;
2569 }
2570
2571 static usbd_status
2572 slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2573 usbd_xfer *xfer)
2574 {
2575 struct slhci_transfers *t;
2576 struct usbd_pipe *pipe;
2577
2578 t = &sc->sc_transfers;
2579 pipe = &spipe->pipe;
2580
2581 if (t->flags & F_DISABLED)
2582 return USBD_CANCELLED;
2583 else if (pipe->up_interval && !slhci_reserve_bustime(sc, spipe, 1))
2584 return USBD_PENDING_REQUESTS;
2585 else {
2586 enter_all_pipes(t, spipe);
2587 return USBD_NORMAL_COMPLETION;
2588 }
2589 }
2590
2591 static usbd_status
2592 slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2593 usbd_xfer *xfer)
2594 {
2595 struct usbd_pipe *pipe;
2596
2597 pipe = &spipe->pipe;
2598
2599 if (pipe->up_interval && spipe->ptype != PT_ROOT_INTR)
2600 slhci_reserve_bustime(sc, spipe, 0);
2601 gcq_remove(&spipe->ap);
2602 return USBD_NORMAL_COMPLETION;
2603 }
2604
2605 static usbd_status
2606 slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2607 usbd_xfer *xfer)
2608 {
2609 struct slhci_transfers *t;
2610
2611 t = &sc->sc_transfers;
2612
2613 KASSERT(mutex_owned(&sc->sc_intr_lock));
2614
2615 if (spipe->xfer == xfer) {
2616 if (spipe->ptype == PT_ROOT_INTR) {
2617 if (t->rootintr == spipe->xfer) /* XXX assert? */
2618 t->rootintr = NULL;
2619 } else {
2620 gcq_remove(&spipe->to);
2621 gcq_remove(&spipe->xq);
2622
2623 if (t->spipe[A] == spipe) {
2624 t->spipe[A] = NULL;
2625 if (!(t->flags & F_AINPROG))
2626 t->len[A] = -1;
2627 } else if (t->spipe[B] == spipe) {
2628 t->spipe[B] = NULL;
2629 if (!(t->flags & F_BINPROG))
2630 t->len[B] = -1;
2631 }
2632 }
2633
2634 if (xfer->ux_status != USBD_TIMEOUT) {
2635 spipe->xfer = NULL;
2636 spipe->pipe.up_repeat = 0; /* XXX timeout? */
2637 }
2638 }
2639
2640 return USBD_NORMAL_COMPLETION;
2641 }
2642
2643 /*
2644 * Called to deactivate or stop use of the controller instead of panicking.
2645 * Will cancel the xfer correctly even when not on a list.
2646 */
2647 static usbd_status
2648 slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe,
2649 struct usbd_xfer *xfer)
2650 {
2651 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2652 struct slhci_transfers *t;
2653
2654 KASSERT(mutex_owned(&sc->sc_intr_lock));
2655
2656 t = &sc->sc_transfers;
2657
2658 DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0);
2659
2660 if (spipe != NULL)
2661 slhci_log_spipe(spipe);
2662
2663 if (xfer != NULL)
2664 slhci_log_xfer(xfer);
2665
2666 if (spipe != NULL && xfer != NULL && spipe->xfer == xfer &&
2667 !gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] !=
2668 spipe) {
2669 xfer->ux_status = USBD_CANCELLED;
2670 enter_callback(t, spipe);
2671 }
2672
2673 if (t->flags & F_ACTIVE) {
2674 slhci_intrchange(sc, 0);
2675 /*
2676 * leave power on when halting in case flash devices or disks
2677 * are attached, which may be writing and could be damaged
2678 * by abrupt power loss. The root hub clear power feature
2679 * should still work after halting.
2680 */
2681 }
2682
2683 t->flags &= ~F_ACTIVE;
2684 t->flags |= F_UDISABLED;
2685 if (!(t->flags & F_NODEV))
2686 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
2687 slhci_drain(sc);
2688
2689 /* One last callback for the drain and device removal. */
2690 slhci_do_callback_schedule(sc);
2691
2692 return USBD_NORMAL_COMPLETION;
2693 }
2694
2695 /*
2696 * There are three interrupt states: no interrupts during reset and after
2697 * device deactivation, INSERT only for no device present but power on, and
2698 * SOF, INSERT, ADONE, and BDONE when device is present.
2699 */
2700 static void
2701 slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier)
2702 {
2703 KASSERT(mutex_owned(&sc->sc_intr_lock));
2704 if (sc->sc_ier != new_ier) {
2705 sc->sc_ier = new_ier;
2706 slhci_write(sc, SL11_IER, new_ier);
2707 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
2708 }
2709 }
2710
2711 /*
2712 * Drain: cancel all pending transfers and put them on the callback list and
2713 * set the UDISABLED flag. UDISABLED is cleared only by reset.
2714 */
2715 static void
2716 slhci_drain(struct slhci_softc *sc)
2717 {
2718 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2719 struct slhci_transfers *t;
2720 struct slhci_pipe *spipe;
2721 struct gcq *q;
2722 int i;
2723
2724 KASSERT(mutex_owned(&sc->sc_intr_lock));
2725
2726 t = &sc->sc_transfers;
2727
2728 DLOG(D_MSG, "DRAIN flags %#x", t->flags, 0,0,0);
2729
2730 t->pend = INT_MAX;
2731
2732 for (i=0; i<=1; i++) {
2733 t->len[i] = -1;
2734 if (t->spipe[i] != NULL) {
2735 enter_callback(t, t->spipe[i]);
2736 t->spipe[i] = NULL;
2737 }
2738 }
2739
2740 /* Merge the queues into the callback queue. */
2741 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]);
2742 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]);
2743 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed);
2744
2745 /*
2746 * Cancel all pipes. Note that not all of these may be on the
2747 * callback queue yet; some could be in slhci_start, for example.
2748 */
2749 FOREACH_AP(q, t, spipe) {
2750 spipe->pflags |= PF_GONE;
2751 spipe->pipe.up_repeat = 0;
2752 spipe->pipe.up_aborting = 1;
2753 if (spipe->xfer != NULL)
2754 spipe->xfer->ux_status = USBD_CANCELLED;
2755 }
2756
2757 gcq_remove_all(&t->to);
2758
2759 t->flags |= F_UDISABLED;
2760 t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED);
2761 }
2762
2763 /*
2764 * RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms
2765 * reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF)
2766 * check attached device speed.
2767 * must wait 100ms before USB transaction according to app note, 10ms
2768 * by spec. uhub does this delay
2769 *
2770 * Started from root hub set feature reset, which does step one.
2771 * ub_usepolling will call slhci_reset directly, otherwise the callout goes
2772 * through slhci_reset_entry.
2773 */
2774 void
2775 slhci_reset(struct slhci_softc *sc)
2776 {
2777 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2778 struct slhci_transfers *t;
2779 struct slhci_pipe *spipe;
2780 struct gcq *q;
2781 uint8_t r, pol, ctrl;
2782
2783 t = &sc->sc_transfers;
2784 KASSERT(mutex_owned(&sc->sc_intr_lock));
2785
2786 stop_cc_time(&t_delay);
2787
2788 KASSERT(t->flags & F_ACTIVE);
2789
2790 start_cc_time(&t_delay, 0);
2791 stop_cc_time(&t_delay);
2792
2793 slhci_write(sc, SL11_CTRL, 0);
2794 start_cc_time(&t_delay, 3);
2795 DELAY(3);
2796 stop_cc_time(&t_delay);
2797 slhci_write(sc, SL11_ISR, 0xff);
2798
2799 r = slhci_read(sc, SL11_ISR);
2800
2801 if (r & SL11_ISR_INSERT)
2802 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
2803
2804 if (r & SL11_ISR_NODEV) {
2805 DLOG(D_MSG, "NC", 0,0,0,0);
2806 /*
2807 * Normally, the hard interrupt insert routine will issue
2808 * CCONNECT, however we need to do it here if the detach
2809 * happened during reset.
2810 */
2811 if (!(t->flags & F_NODEV))
2812 t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV;
2813 slhci_intrchange(sc, SL11_IER_INSERT);
2814 } else {
2815 if (t->flags & F_NODEV)
2816 t->flags |= F_CCONNECT;
2817 t->flags &= ~(F_NODEV|F_LOWSPEED);
2818 if (r & SL11_ISR_DATA) {
2819 DLOG(D_MSG, "FS", 0,0,0,0);
2820 pol = ctrl = 0;
2821 } else {
2822 DLOG(D_MSG, "LS", 0,0,0,0);
2823 pol = SL811_CSOF_POLARITY;
2824 ctrl = SL11_CTRL_LOWSPEED;
2825 t->flags |= F_LOWSPEED;
2826 }
2827
2828 /* Enable SOF auto-generation */
2829 t->frame = 0; /* write to SL811_CSOF will reset frame */
2830 slhci_write(sc, SL11_SOFTIME, 0xe0);
2831 slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e);
2832 slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF);
2833
2834 /*
2835 * According to the app note, ARM must be set
2836 * for SOF generation to work. We initialize all
2837 * USBA registers here for current_tregs.
2838 */
2839 slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START);
2840 slhci_write(sc, SL11_E0LEN, 0);
2841 slhci_write(sc, SL11_E0PID, SL11_PID_SOF);
2842 slhci_write(sc, SL11_E0DEV, 0);
2843 slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM);
2844
2845 /*
2846 * Initialize B registers. This can't be done earlier since
2847 * they are not valid until the SL811_CSOF register is written
2848 * above due to SL11H compatability.
2849 */
2850 slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8);
2851 slhci_write(sc, SL11_E1LEN, 0);
2852 slhci_write(sc, SL11_E1PID, 0);
2853 slhci_write(sc, SL11_E1DEV, 0);
2854
2855 t->current_tregs[0][ADR] = SL11_BUFFER_START;
2856 t->current_tregs[0][LEN] = 0;
2857 t->current_tregs[0][PID] = SL11_PID_SOF;
2858 t->current_tregs[0][DEV] = 0;
2859 t->current_tregs[1][ADR] = SL11_BUFFER_END - 8;
2860 t->current_tregs[1][LEN] = 0;
2861 t->current_tregs[1][PID] = 0;
2862 t->current_tregs[1][DEV] = 0;
2863
2864 /* SOF start will produce USBA interrupt */
2865 t->len[A] = 0;
2866 t->flags |= F_AINPROG;
2867
2868 slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS);
2869 }
2870
2871 t->flags &= ~(F_UDISABLED|F_RESET);
2872 t->flags |= F_CRESET|F_ROOTINTR;
2873 FOREACH_AP(q, t, spipe) {
2874 spipe->pflags &= ~PF_GONE;
2875 spipe->pipe.up_aborting = 0;
2876 }
2877 DLOG(D_MSG, "RESET done flags %#x", t->flags, 0,0,0);
2878 }
2879
2880 /* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */
2881 static int
2882 slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int
2883 reserve)
2884 {
2885 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2886 struct slhci_transfers *t;
2887 int bustime, max_packet;
2888
2889 KASSERT(mutex_owned(&sc->sc_intr_lock));
2890
2891 t = &sc->sc_transfers;
2892 max_packet = UGETW(spipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize);
2893
2894 if (spipe->pflags & PF_LS)
2895 bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet);
2896 else
2897 bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet);
2898
2899 if (!reserve) {
2900 t->reserved_bustime -= bustime;
2901 #ifdef DIAGNOSTIC
2902 if (t->reserved_bustime < 0) {
2903 printf("%s: reserved_bustime %d < 0!\n",
2904 SC_NAME(sc), t->reserved_bustime);
2905 DDOLOG("reserved_bustime %d < 0!",
2906 t->reserved_bustime, 0, 0, 0);
2907 t->reserved_bustime = 0;
2908 }
2909 #endif
2910 return 1;
2911 }
2912
2913 if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) {
2914 if (ratecheck(&sc->sc_reserved_warn_rate,
2915 &reserved_warn_rate))
2916 #ifdef SLHCI_NO_OVERTIME
2917 {
2918 printf("%s: Max reserved bus time exceeded! "
2919 "Erroring request.\n", SC_NAME(sc));
2920 DDOLOG("%s: Max reserved bus time exceeded! "
2921 "Erroring request.", 0, 0, 0, 0);
2922 }
2923 return 0;
2924 #else
2925 {
2926 printf("%s: Reserved bus time exceeds %d!\n",
2927 SC_NAME(sc), SLHCI_RESERVED_BUSTIME);
2928 DDOLOG("Reserved bus time exceeds %d!",
2929 SLHCI_RESERVED_BUSTIME, 0, 0, 0);
2930 }
2931 #endif
2932 }
2933
2934 t->reserved_bustime += bustime;
2935 return 1;
2936 }
2937
2938 /* Device insertion/removal interrupt */
2939 static void
2940 slhci_insert(struct slhci_softc *sc)
2941 {
2942 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2943 struct slhci_transfers *t;
2944
2945 t = &sc->sc_transfers;
2946
2947 KASSERT(mutex_owned(&sc->sc_intr_lock));
2948
2949 if (t->flags & F_NODEV)
2950 slhci_intrchange(sc, 0);
2951 else {
2952 slhci_drain(sc);
2953 slhci_intrchange(sc, SL11_IER_INSERT);
2954 }
2955 t->flags ^= F_NODEV;
2956 t->flags |= F_ROOTINTR|F_CCONNECT;
2957 DLOG(D_MSG, "INSERT intr: flags after %#x", t->flags, 0,0,0);
2958 }
2959
2960 /*
2961 * Data structures and routines to emulate the root hub.
2962 */
2963
2964 static usbd_status
2965 slhci_clear_feature(struct slhci_softc *sc, unsigned int what)
2966 {
2967 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2968 struct slhci_transfers *t;
2969 usbd_status error;
2970
2971 t = &sc->sc_transfers;
2972 error = USBD_NORMAL_COMPLETION;
2973
2974 KASSERT(mutex_owned(&sc->sc_intr_lock));
2975
2976 if (what == UHF_PORT_POWER) {
2977 DLOG(D_MSG, "POWER_OFF", 0,0,0,0);
2978 t->flags &= ~F_POWER;
2979 if (!(t->flags & F_NODEV))
2980 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
2981 /* for x68k Nereid USB controller */
2982 if (sc->sc_enable_power && (t->flags & F_REALPOWER)) {
2983 t->flags &= ~F_REALPOWER;
2984 sc->sc_enable_power(sc, POWER_OFF);
2985 }
2986 slhci_intrchange(sc, 0);
2987 slhci_drain(sc);
2988 } else if (what == UHF_C_PORT_CONNECTION) {
2989 t->flags &= ~F_CCONNECT;
2990 } else if (what == UHF_C_PORT_RESET) {
2991 t->flags &= ~F_CRESET;
2992 } else if (what == UHF_PORT_ENABLE) {
2993 slhci_drain(sc);
2994 } else if (what != UHF_PORT_SUSPEND) {
2995 DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0);
2996 error = USBD_IOERROR;
2997 }
2998
2999 return error;
3000 }
3001
3002 static usbd_status
3003 slhci_set_feature(struct slhci_softc *sc, unsigned int what)
3004 {
3005 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3006 struct slhci_transfers *t;
3007 uint8_t r;
3008
3009 t = &sc->sc_transfers;
3010
3011 KASSERT(mutex_owned(&sc->sc_intr_lock));
3012
3013 if (what == UHF_PORT_RESET) {
3014 if (!(t->flags & F_ACTIVE)) {
3015 DDOLOG("SET PORT_RESET when not ACTIVE!",
3016 0,0,0,0);
3017 return USBD_INVAL;
3018 }
3019 if (!(t->flags & F_POWER)) {
3020 DDOLOG("SET PORT_RESET without PORT_POWER! flags %p",
3021 t->flags, 0,0,0);
3022 return USBD_INVAL;
3023 }
3024 if (t->flags & F_RESET)
3025 return USBD_NORMAL_COMPLETION;
3026 DLOG(D_MSG, "RESET flags %#x", t->flags, 0,0,0);
3027 slhci_intrchange(sc, 0);
3028 slhci_drain(sc);
3029 slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE);
3030 /* usb spec says delay >= 10ms, app note 50ms */
3031 start_cc_time(&t_delay, 50000);
3032 if (sc->sc_bus.ub_usepolling) {
3033 DELAY(50000);
3034 slhci_reset(sc);
3035 } else {
3036 t->flags |= F_RESET;
3037 callout_schedule(&sc->sc_timer, max(mstohz(50), 2));
3038 }
3039 } else if (what == UHF_PORT_SUSPEND) {
3040 printf("%s: USB Suspend not implemented!\n", SC_NAME(sc));
3041 DDOLOG("USB Suspend not implemented!", 0, 0, 0, 0);
3042 } else if (what == UHF_PORT_POWER) {
3043 DLOG(D_MSG, "PORT_POWER", 0,0,0,0);
3044 /* for x68k Nereid USB controller */
3045 if (!(t->flags & F_ACTIVE))
3046 return USBD_INVAL;
3047 if (t->flags & F_POWER)
3048 return USBD_NORMAL_COMPLETION;
3049 if (!(t->flags & F_REALPOWER)) {
3050 if (sc->sc_enable_power)
3051 sc->sc_enable_power(sc, POWER_ON);
3052 t->flags |= F_REALPOWER;
3053 }
3054 t->flags |= F_POWER;
3055 r = slhci_read(sc, SL11_ISR);
3056 if (r & SL11_ISR_INSERT)
3057 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
3058 if (r & SL11_ISR_NODEV) {
3059 slhci_intrchange(sc, SL11_IER_INSERT);
3060 t->flags |= F_NODEV;
3061 } else {
3062 t->flags &= ~F_NODEV;
3063 t->flags |= F_CCONNECT|F_ROOTINTR;
3064 }
3065 } else {
3066 DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0);
3067 return USBD_IOERROR;
3068 }
3069
3070 return USBD_NORMAL_COMPLETION;
3071 }
3072
3073 static void
3074 slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps)
3075 {
3076 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3077 struct slhci_transfers *t;
3078 unsigned int status, change;
3079
3080 t = &sc->sc_transfers;
3081
3082 KASSERT(mutex_owned(&sc->sc_intr_lock));
3083
3084 /*
3085 * We do not have a way to detect over current or babble and
3086 * suspend is currently not implemented, so connect and reset
3087 * are the only changes that need to be reported.
3088 */
3089 change = 0;
3090 if (t->flags & F_CCONNECT)
3091 change |= UPS_C_CONNECT_STATUS;
3092 if (t->flags & F_CRESET)
3093 change |= UPS_C_PORT_RESET;
3094
3095 status = 0;
3096 if (!(t->flags & F_NODEV))
3097 status |= UPS_CURRENT_CONNECT_STATUS;
3098 if (!(t->flags & F_UDISABLED))
3099 status |= UPS_PORT_ENABLED;
3100 if (t->flags & F_RESET)
3101 status |= UPS_RESET;
3102 if (t->flags & F_POWER)
3103 status |= UPS_PORT_POWER;
3104 if (t->flags & F_LOWSPEED)
3105 status |= UPS_LOW_SPEED;
3106 USETW(ps->wPortStatus, status);
3107 USETW(ps->wPortChange, change);
3108 DLOG(D_ROOT, "status=%#.4x, change=%#.4x", status, change, 0,0);
3109 }
3110
3111 static int
3112 slhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
3113 void *buf, int buflen)
3114 {
3115 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3116 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
3117 struct slhci_transfers *t = &sc->sc_transfers;
3118 usbd_status error = USBD_IOERROR; /* XXX should be STALL */
3119 uint16_t len, value, index;
3120 uint8_t type;
3121 int actlen = 0;
3122
3123 len = UGETW(req->wLength);
3124 value = UGETW(req->wValue);
3125 index = UGETW(req->wIndex);
3126
3127 type = req->bmRequestType;
3128
3129 SLHCI_DEXEC(D_TRACE, slhci_log_req(req));
3130
3131 /*
3132 * USB requests for hubs have two basic types, standard and class.
3133 * Each could potentially have recipients of device, interface,
3134 * endpoint, or other. For the hub class, CLASS_OTHER means the port
3135 * and CLASS_DEVICE means the hub. For standard requests, OTHER
3136 * is not used. Standard request are described in section 9.4 of the
3137 * standard, hub class requests in 11.16. Each request is either read
3138 * or write.
3139 *
3140 * Clear Feature, Set Feature, and Status are defined for each of the
3141 * used recipients. Get Descriptor and Set Descriptor are defined for
3142 * both standard and hub class types with different descriptors.
3143 * Other requests have only one defined recipient and type. These
3144 * include: Get/Set Address, Get/Set Configuration, Get/Set Interface,
3145 * and Synch Frame for standard requests and Get Bus State for hub
3146 * class.
3147 *
3148 * When a device is first powered up it has address 0 until the
3149 * address is set.
3150 *
3151 * Hubs are only allowed to support one interface and may not have
3152 * isochronous endpoints. The results of the related requests are
3153 * undefined.
3154 *
3155 * The standard requires invalid or unsupported requests to return
3156 * STALL in the data stage, however this does not work well with
3157 * current error handling. XXX
3158 *
3159 * Some unsupported fields:
3160 * Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT
3161 * Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP
3162 * Get Bus State is optional sample of D- and D+ at EOF2
3163 */
3164
3165 switch (req->bRequest) {
3166 /* Write Requests */
3167 case UR_CLEAR_FEATURE:
3168 if (type == UT_WRITE_CLASS_OTHER) {
3169 if (index == 1 /* Port */) {
3170 mutex_enter(&sc->sc_intr_lock);
3171 error = slhci_clear_feature(sc, value);
3172 mutex_exit(&sc->sc_intr_lock);
3173 } else
3174 DLOG(D_ROOT, "Clear Port Feature "
3175 "index = %#.4x", index, 0,0,0);
3176 }
3177 break;
3178 case UR_SET_FEATURE:
3179 if (type == UT_WRITE_CLASS_OTHER) {
3180 if (index == 1 /* Port */) {
3181 mutex_enter(&sc->sc_intr_lock);
3182 error = slhci_set_feature(sc, value);
3183 mutex_exit(&sc->sc_intr_lock);
3184 } else
3185 DLOG(D_ROOT, "Set Port Feature "
3186 "index = %#.4x", index, 0,0,0);
3187 } else if (type != UT_WRITE_CLASS_DEVICE)
3188 DLOG(D_ROOT, "Set Device Feature "
3189 "ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP "
3190 "not supported", 0,0,0,0);
3191 break;
3192
3193 /* Read Requests */
3194 case UR_GET_STATUS:
3195 if (type == UT_READ_CLASS_OTHER) {
3196 if (index == 1 /* Port */ && len == /* XXX >=? */
3197 sizeof(usb_port_status_t)) {
3198 mutex_enter(&sc->sc_intr_lock);
3199 slhci_get_status(sc, (usb_port_status_t *)
3200 buf);
3201 mutex_exit(&sc->sc_intr_lock);
3202 actlen = sizeof(usb_port_status_t);
3203 error = USBD_NORMAL_COMPLETION;
3204 } else
3205 DLOG(D_ROOT, "Get Port Status index = %#.4x "
3206 "len = %#.4x", index, len, 0,0);
3207 } else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */
3208 if (len == sizeof(usb_hub_status_t)) {
3209 DLOG(D_ROOT, "Get Hub Status",
3210 0,0,0,0);
3211 actlen = sizeof(usb_hub_status_t);
3212 memset(buf, 0, actlen);
3213 error = USBD_NORMAL_COMPLETION;
3214 } else
3215 DLOG(D_ROOT, "Get Hub Status bad len %#.4x",
3216 len, 0,0,0);
3217 }
3218 break;
3219 case UR_GET_DESCRIPTOR:
3220 if (type == UT_READ_DEVICE) {
3221 /* value is type (&0xff00) and index (0xff) */
3222 if (value == (UDESC_DEVICE<<8)) {
3223 usb_device_descriptor_t devd;
3224
3225 actlen = min(buflen, sizeof(devd));
3226 memcpy(&devd, buf, actlen);
3227 USETW(devd.idVendor, USB_VENDOR_SCANLOGIC);
3228 memcpy(buf, &devd, actlen);
3229 error = USBD_NORMAL_COMPLETION;
3230 } else if (value == (UDESC_CONFIG<<8)) {
3231 struct usb_roothub_descriptors confd;
3232
3233 actlen = min(buflen, sizeof(confd));
3234 memcpy(&confd, buf, actlen);
3235
3236 /* 2 mA units */
3237 confd.urh_confd.bMaxPower = t->max_current;
3238 memcpy(buf, &confd, actlen);
3239 error = USBD_NORMAL_COMPLETION;
3240 } else if (value == ((UDESC_STRING<<8)|1)) {
3241 /* Vendor */
3242 actlen = usb_makestrdesc((usb_string_descriptor_t *)
3243 buf, len, "ScanLogic/Cypress");
3244 error = USBD_NORMAL_COMPLETION;
3245 } else if (value == ((UDESC_STRING<<8)|2)) {
3246 /* Product */
3247 actlen = usb_makestrdesc((usb_string_descriptor_t *)
3248 buf, len, "SL811HS/T root hub");
3249 error = USBD_NORMAL_COMPLETION;
3250 } else
3251 DDOLOG("Unknown Get Descriptor %#.4x",
3252 value, 0,0,0);
3253 } else if (type == UT_READ_CLASS_DEVICE) {
3254 /* Descriptor number is 0 */
3255 if (value == (UDESC_HUB<<8)) {
3256 usb_hub_descriptor_t hubd;
3257
3258 actlen = min(buflen, sizeof(hubd));
3259 memcpy(&hubd, buf, actlen);
3260 hubd.bHubContrCurrent =
3261 500 - t->max_current;
3262 memcpy(buf, &hubd, actlen);
3263 error = USBD_NORMAL_COMPLETION;
3264 } else
3265 DDOLOG("Unknown Get Hub Descriptor %#.4x",
3266 value, 0,0,0);
3267 }
3268 break;
3269 default:
3270 /* default from usbroothub */
3271 return buflen;
3272 }
3273
3274 if (error == USBD_NORMAL_COMPLETION)
3275 return actlen;
3276
3277 return -1;
3278 }
3279
3280 /* End in lock functions. Start debug functions. */
3281
3282 #ifdef SLHCI_DEBUG
3283 void
3284 slhci_log_buffer(struct usbd_xfer *xfer)
3285 {
3286 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3287 u_char *buf;
3288
3289 if(xfer->ux_length > 0 &&
3290 UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) ==
3291 UE_DIR_IN) {
3292 buf = xfer->ux_buf;
3293 DDOLOGBUF(buf, xfer->ux_actlen);
3294 DDOLOG("len %d actlen %d short %d", xfer->ux_length,
3295 xfer->ux_actlen, xfer->ux_length - xfer->ux_actlen, 0);
3296 }
3297 }
3298
3299 void
3300 slhci_log_req(usb_device_request_t *r)
3301 {
3302 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3303 int req, type, value, index, len;
3304
3305 req = r->bRequest;
3306 type = r->bmRequestType;
3307 value = UGETW(r->wValue);
3308 index = UGETW(r->wIndex);
3309 len = UGETW(r->wLength);
3310
3311 DDOLOG("request: type %#x", type, 0, 0, 0);
3312 DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len);
3313 }
3314
3315 void
3316 slhci_log_dumpreg(void)
3317 {
3318 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3319 uint8_t r;
3320 unsigned int aaddr, alen, baddr, blen;
3321 static u_char buf[240];
3322
3323 r = slhci_read(ssc, SL11_E0CTRL);
3324 DDOLOG("USB A Host Control = %#.2x", r, 0, 0, 0);
3325 DDLOGEPCTRL(r);
3326
3327 aaddr = slhci_read(ssc, SL11_E0ADDR);
3328 DDOLOG("USB A Base Address = %u", aaddr, 0,0,0);
3329 alen = slhci_read(ssc, SL11_E0LEN);
3330 DDOLOG("USB A Length = %u", alen, 0,0,0);
3331 r = slhci_read(ssc, SL11_E0STAT);
3332 DDOLOG("USB A Status = %#.2x", r, 0,0,0);
3333 DDLOGEPSTAT(r);
3334
3335 r = slhci_read(ssc, SL11_E0CONT);
3336 DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0);
3337 r = slhci_read(ssc, SL11_E1CTRL);
3338 DDOLOG("USB B Host Control = %#.2x", r, 0,0,0);
3339 DDLOGEPCTRL(r);
3340
3341 baddr = slhci_read(ssc, SL11_E1ADDR);
3342 DDOLOG("USB B Base Address = %u", baddr, 0,0,0);
3343 blen = slhci_read(ssc, SL11_E1LEN);
3344 DDOLOG("USB B Length = %u", blen, 0,0,0);
3345 r = slhci_read(ssc, SL11_E1STAT);
3346 DDOLOG("USB B Status = %#.2x", r, 0,0,0);
3347 DDLOGEPSTAT(r);
3348
3349 r = slhci_read(ssc, SL11_E1CONT);
3350 DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0);
3351
3352 r = slhci_read(ssc, SL11_CTRL);
3353 DDOLOG("Control = %#.2x", r, 0,0,0);
3354 DDOLOGCTRL(r);
3355
3356 r = slhci_read(ssc, SL11_IER);
3357 DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0);
3358 DDOLOGIER(r);
3359
3360 r = slhci_read(ssc, SL11_ISR);
3361 DDOLOG("Interrupt Status = %#.2x", r, 0,0,0);
3362 DDOLOGISR(r);
3363
3364 r = slhci_read(ssc, SL11_REV);
3365 DDOLOG("Revision = %#.2x", r, 0,0,0);
3366 r = slhci_read(ssc, SL811_CSOF);
3367 DDOLOG("SOF Counter = %#.2x", r, 0,0,0);
3368
3369 if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END &&
3370 alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) {
3371 slhci_read_multi(ssc, aaddr, buf, alen);
3372 DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0);
3373 DDOLOGBUF(buf, alen);
3374 } else if (alen)
3375 DDOLOG("USBA Buffer Invalid", 0,0,0,0);
3376
3377 if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END &&
3378 blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) {
3379 slhci_read_multi(ssc, baddr, buf, blen);
3380 DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0);
3381 DDOLOGBUF(buf, blen);
3382 } else if (blen)
3383 DDOLOG("USBB Buffer Invalid", 0,0,0,0);
3384 }
3385
3386 void
3387 slhci_log_xfer(struct usbd_xfer *xfer)
3388 {
3389 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3390 DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,",
3391 xfer->ux_length, xfer->ux_actlen, xfer->ux_flags, xfer->ux_timeout);
3392 DDOLOG("buffer=%p", xfer->ux_buf, 0,0,0);
3393 slhci_log_req(&xfer->ux_request);
3394 }
3395
3396 void
3397 slhci_log_spipe(struct slhci_pipe *spipe)
3398 {
3399 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3400 DDOLOG("spipe %p onlists: AP=%d TO=%d XQ=%d", spipe,
3401 gcq_onlist(&spipe->ap) ? 1 : 0,
3402 gcq_onlist(&spipe->to) ? 1 : 0,
3403 gcq_onlist(&spipe->xq) ? 1 : 0);
3404 DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %d",
3405 spipe->xfer, spipe->buffer, spipe->pflags, spipe->ptype);
3406 }
3407
3408 void
3409 slhci_print_intr(void)
3410 {
3411 unsigned int ier, isr;
3412 ier = slhci_read(ssc, SL11_IER);
3413 isr = slhci_read(ssc, SL11_ISR);
3414 printf("IER: %#x ISR: %#x \n", ier, isr);
3415 }
3416
3417 #if 0
3418 void
3419 slhci_log_sc(void)
3420 {
3421 struct slhci_transfers *t;
3422 int i;
3423
3424 t = &ssc->sc_transfers;
3425
3426 DDOLOG("Flags=%#x", t->flags, 0,0,0);
3427 DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0],
3428 t->spipe[1], t->len[1]);
3429
3430 for (i=0; i<=Q_MAX; i++)
3431 DDOLOG("Q %d: %p", i, gcq_first(&t->q[i]), 0,0);
3432
3433 DDOLOG("TIMED: %p", GCQ_ITEM(gcq_first(&t->to),
3434 struct slhci_pipe, to), 0,0,0);
3435
3436 DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0);
3437
3438 DDOLOG("ub_usepolling=%d", ssc->sc_bus.ub_usepolling, 0, 0, 0);
3439 }
3440
3441 void
3442 slhci_log_slreq(struct slhci_pipe *r)
3443 {
3444 DDOLOG("next: %p", r->q.next.sqe_next, 0,0,0);
3445 DDOLOG("xfer: %p", r->xfer, 0,0,0);
3446 DDOLOG("buffer: %p", r->buffer, 0,0,0);
3447 DDOLOG("bustime: %u", r->bustime, 0,0,0);
3448 DDOLOG("control: %#x", r->control, 0,0,0);
3449 DDOLOGFLAG8("control=", r->control, "Preamble", "Data Toggle",
3450 "SOF Sync", "ISOC", "res", "Out", "Enable", "Arm");
3451 DDOLOG("pid: %#x", r->tregs[PID], 0,0,0);
3452 DDOLOG("dev: %u", r->tregs[DEV], 0,0,0);
3453 DDOLOG("len: %u", r->tregs[LEN], 0,0,0);
3454
3455 if (r->xfer)
3456 slhci_log_xfer(r->xfer);
3457 }
3458 #endif
3459 #endif /* SLHCI_DEBUG */
3460 /* End debug functions. */
3461