sl811hs.c revision 1.88 1 /* $NetBSD: sl811hs.c,v 1.88 2016/07/01 05:39:24 skrll Exp $ */
2
3 /*
4 * Not (c) 2007 Matthew Orgass
5 * This file is public domain, meaning anyone can make any use of part or all
6 * of this file including copying into other works without credit. Any use,
7 * modified or not, is solely the responsibility of the user. If this file is
8 * part of a collection then use in the collection is governed by the terms of
9 * the collection.
10 */
11
12 /*
13 * Cypress/ScanLogic SL811HS/T USB Host Controller
14 * Datasheet, Errata, and App Note available at www.cypress.com
15 *
16 * Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid X68k USB HC, ISA
17 * HCs. The Ratoc CFU2 uses a different chip.
18 *
19 * This chip puts the serial in USB. It implements USB by means of an eight
20 * bit I/O interface. It can be used for ISA, PCMCIA/CF, parallel port,
21 * serial port, or any eight bit interface. It has 256 bytes of memory, the
22 * first 16 of which are used for register access. There are two sets of
23 * registers for sending individual bus transactions. Because USB is polled,
24 * this organization means that some amount of card access must often be made
25 * when devices are attached, even if when they are not directly being used.
26 * A per-ms frame interrupt is necessary and many devices will poll with a
27 * per-frame bulk transfer.
28 *
29 * It is possible to write a little over two bytes to the chip (auto
30 * incremented) per full speed byte time on the USB. Unfortunately,
31 * auto-increment does not work reliably so write and bus speed is
32 * approximately the same for full speed devices.
33 *
34 * In addition to the 240 byte packet size limit for isochronous transfers,
35 * this chip has no means of determining the current frame number other than
36 * getting all 1ms SOF interrupts, which is not always possible even on a fast
37 * system. Isochronous transfers guarantee that transfers will never be
38 * retried in a later frame, so this can cause problems with devices beyond
39 * the difficulty in actually performing the transfer most frames. I tried
40 * implementing isoc transfers and was able to play CD-derrived audio via an
41 * iMic on a 2GHz PC, however it would still be interrupted at times and
42 * once interrupted, would stay out of sync. All isoc support has been
43 * removed.
44 *
45 * BUGS: all chip revisions have problems with low speed devices through hubs.
46 * The chip stops generating SOF with hubs that send SE0 during SOF. See
47 * comment in dointr(). All performance enhancing features of this chip seem
48 * not to work properly, most confirmed buggy in errata doc.
49 *
50 */
51
52 /*
53 * The hard interrupt is the main entry point. Start, callbacks, and repeat
54 * are the only others called frequently.
55 *
56 * Since this driver attaches to pcmcia, card removal at any point should be
57 * expected and not cause panics or infinite loops.
58 */
59
60 /*
61 * XXX TODO:
62 * copy next output packet while transfering
63 * usb suspend
64 * could keep track of known values of all buffer space?
65 * combined print/log function for errors
66 *
67 * ub_usepolling support is untested and may not work
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.88 2016/07/01 05:39:24 skrll Exp $");
72
73 #ifdef _KERNEL_OPT
74 #include "opt_slhci.h"
75 #include "opt_usb.h"
76 #endif
77
78 #include <sys/param.h>
79
80 #include <sys/bus.h>
81 #include <sys/cpu.h>
82 #include <sys/device.h>
83 #include <sys/gcq.h>
84 #include <sys/intr.h>
85 #include <sys/kernel.h>
86 #include <sys/kmem.h>
87 #include <sys/proc.h>
88 #include <sys/queue.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91
92 #include <dev/usb/usb.h>
93 #include <dev/usb/usbdi.h>
94 #include <dev/usb/usbdivar.h>
95 #include <dev/usb/usbhist.h>
96 #include <dev/usb/usb_mem.h>
97 #include <dev/usb/usbdevs.h>
98 #include <dev/usb/usbroothub.h>
99
100 #include <dev/ic/sl811hsreg.h>
101 #include <dev/ic/sl811hsvar.h>
102
103 #define Q_CB 0 /* Control/Bulk */
104 #define Q_NEXT_CB 1
105 #define Q_MAX_XFER Q_CB
106 #define Q_CALLBACKS 2
107 #define Q_MAX Q_CALLBACKS
108
109 #define F_AREADY (0x00000001)
110 #define F_BREADY (0x00000002)
111 #define F_AINPROG (0x00000004)
112 #define F_BINPROG (0x00000008)
113 #define F_LOWSPEED (0x00000010)
114 #define F_UDISABLED (0x00000020) /* Consider disabled for USB */
115 #define F_NODEV (0x00000040)
116 #define F_ROOTINTR (0x00000080)
117 #define F_REALPOWER (0x00000100) /* Actual power state */
118 #define F_POWER (0x00000200) /* USB reported power state */
119 #define F_ACTIVE (0x00000400)
120 #define F_CALLBACK (0x00000800) /* Callback scheduled */
121 #define F_SOFCHECK1 (0x00001000)
122 #define F_SOFCHECK2 (0x00002000)
123 #define F_CRESET (0x00004000) /* Reset done not reported */
124 #define F_CCONNECT (0x00008000) /* Connect change not reported */
125 #define F_RESET (0x00010000)
126 #define F_ISOC_WARNED (0x00020000)
127 #define F_LSVH_WARNED (0x00040000)
128
129 #define F_DISABLED (F_NODEV|F_UDISABLED)
130 #define F_CHANGE (F_CRESET|F_CCONNECT)
131
132 #ifdef SLHCI_TRY_LSVH
133 unsigned int slhci_try_lsvh = 1;
134 #else
135 unsigned int slhci_try_lsvh = 0;
136 #endif
137
138 #define ADR 0
139 #define LEN 1
140 #define PID 2
141 #define DEV 3
142 #define STAT 2
143 #define CONT 3
144
145 #define A 0
146 #define B 1
147
148 static const uint8_t slhci_tregs[2][4] =
149 {{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV },
150 {SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }};
151
152 #define PT_ROOT_CTRL 0
153 #define PT_ROOT_INTR 1
154 #define PT_CTRL_SETUP 2
155 #define PT_CTRL_DATA 3
156 #define PT_CTRL_STATUS 4
157 #define PT_INTR 5
158 #define PT_BULK 6
159 #define PT_MAX 6
160
161 #ifdef SLHCI_DEBUG
162 #define SLHCI_MEM_ACCOUNTING
163 #endif
164
165 /*
166 * Maximum allowable reserved bus time. Since intr/isoc transfers have
167 * unconditional priority, this is all that ensures control and bulk transfers
168 * get a chance. It is a single value for all frames since all transfers can
169 * use multiple consecutive frames if an error is encountered. Note that it
170 * is not really possible to fill the bus with transfers, so this value should
171 * be on the low side. Defaults to giving a warning unless SLHCI_NO_OVERTIME
172 * is defined. Full time is 12000 - END_BUSTIME.
173 */
174 #ifndef SLHCI_RESERVED_BUSTIME
175 #define SLHCI_RESERVED_BUSTIME 5000
176 #endif
177
178 /*
179 * Rate for "exceeds reserved bus time" warnings (default) or errors.
180 * Warnings only happen when an endpoint open causes the time to go above
181 * SLHCI_RESERVED_BUSTIME, not if it is already above.
182 */
183 #ifndef SLHCI_OVERTIME_WARNING_RATE
184 #define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */
185 #endif
186 static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE;
187
188 /* Rate for overflow warnings */
189 #ifndef SLHCI_OVERFLOW_WARNING_RATE
190 #define SLHCI_OVERFLOW_WARNING_RATE { 60, 0 } /* 60 seconds */
191 #endif
192 static const struct timeval overflow_warn_rate = SLHCI_OVERFLOW_WARNING_RATE;
193
194 /*
195 * For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of
196 * 20 bit times. By default leave 66 bit times to start the transfer beyond
197 * the required time. Units are full-speed bit times (a bit over 5us per 64).
198 * Only multiples of 64 are significant.
199 */
200 #define SLHCI_STANDARD_END_BUSTIME 128
201 #ifndef SLHCI_EXTRA_END_BUSTIME
202 #define SLHCI_EXTRA_END_BUSTIME 0
203 #endif
204
205 #define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME)
206
207 /*
208 * This is an approximation of the USB worst-case timings presented on p. 54 of
209 * the USB 1.1 spec translated to full speed bit times.
210 * FS = full speed with handshake, FSII = isoc in, FSIO = isoc out,
211 * FSI = isoc (worst case), LS = low speed
212 */
213 #define SLHCI_FS_CONST 114
214 #define SLHCI_FSII_CONST 92
215 #define SLHCI_FSIO_CONST 80
216 #define SLHCI_FSI_CONST 92
217 #define SLHCI_LS_CONST 804
218 #ifndef SLHCI_PRECICE_BUSTIME
219 /*
220 * These values are < 3% too high (compared to the multiply and divide) for
221 * max sized packets.
222 */
223 #define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1))
224 #define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4))
225 #else
226 #define SLHCI_FS_DATA_TIME(len) (56*(len)/6)
227 #define SLHCI_LS_DATA_TIME(len) (449*(len)/6)
228 #endif
229
230 /*
231 * Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer
232 * to poll for after starting a transfer. 64 gets all full speed transfers.
233 * Note that even if 0 polling will occur if data equal or greater than the
234 * transfer size is copied to the chip while the transfer is in progress.
235 * Setting SLHCI_WAIT_TIME to -12000 will disable polling.
236 */
237 #ifndef SLHCI_WAIT_SIZE
238 #define SLHCI_WAIT_SIZE 8
239 #endif
240 #ifndef SLHCI_WAIT_TIME
241 #define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \
242 SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE))
243 #endif
244 const int slhci_wait_time = SLHCI_WAIT_TIME;
245
246 #ifndef SLHCI_MAX_RETRIES
247 #define SLHCI_MAX_RETRIES 3
248 #endif
249
250 /* Check IER values for corruption after this many unrecognized interrupts. */
251 #ifndef SLHCI_IER_CHECK_FREQUENCY
252 #ifdef SLHCI_DEBUG
253 #define SLHCI_IER_CHECK_FREQUENCY 1
254 #else
255 #define SLHCI_IER_CHECK_FREQUENCY 100
256 #endif
257 #endif
258
259 /* Note that buffer points to the start of the buffer for this transfer. */
260 struct slhci_pipe {
261 struct usbd_pipe pipe;
262 struct usbd_xfer *xfer; /* xfer in progress */
263 uint8_t *buffer; /* I/O buffer (if needed) */
264 struct gcq ap; /* All pipes */
265 struct gcq to; /* Timeout list */
266 struct gcq xq; /* Xfer queues */
267 unsigned int pflags; /* Pipe flags */
268 #define PF_GONE (0x01) /* Pipe is on disabled device */
269 #define PF_TOGGLE (0x02) /* Data toggle status */
270 #define PF_LS (0x04) /* Pipe is low speed */
271 #define PF_PREAMBLE (0x08) /* Needs preamble */
272 Frame to_frame; /* Frame number for timeout */
273 Frame frame; /* Frame number for intr xfer */
274 Frame lastframe; /* Previous frame number for intr */
275 uint16_t bustime; /* Worst case bus time usage */
276 uint16_t newbustime[2]; /* new bustimes (see index below) */
277 uint8_t tregs[4]; /* ADR, LEN, PID, DEV */
278 uint8_t newlen[2]; /* 0 = short data, 1 = ctrl data */
279 uint8_t newpid; /* for ctrl */
280 uint8_t wantshort; /* last xfer must be short */
281 uint8_t control; /* Host control register settings */
282 uint8_t nerrs; /* Current number of errors */
283 uint8_t ptype; /* Pipe type */
284 };
285
286 #define SLHCI_BUS2SC(bus) ((bus)->ub_hcpriv)
287 #define SLHCI_PIPE2SC(pipe) SLHCI_BUS2SC((pipe)->up_dev->ud_bus)
288 #define SLHCI_XFER2SC(xfer) SLHCI_BUS2SC((xfer)->ux_bus)
289
290 #define SLHCI_PIPE2SPIPE(pipe) ((struct slhci_pipe *)(pipe))
291 #define SLHCI_XFER2SPIPE(xfer) SLHCI_PIPE2SPIPE((xfer)->ux_pipe)
292
293 #define SLHCI_XFER_TYPE(x) (SLHCI_XFER2SPIPE(xfer)->ptype)
294
295 #ifdef SLHCI_PROFILE_TRANSFER
296 #if defined(__mips__)
297 /*
298 * MIPS cycle counter does not directly count cpu cycles but is a different
299 * fraction of cpu cycles depending on the cpu.
300 */
301 typedef uint32_t cc_type;
302 #define CC_TYPE_FMT "%u"
303 #define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \
304 : [cc] "=r"(x))
305 #elif defined(__i386__)
306 typedef uint64_t cc_type;
307 #define CC_TYPE_FMT "%llu"
308 #define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x))
309 #else
310 #error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)"
311 #endif
312 struct slhci_cc_time {
313 cc_type start;
314 cc_type stop;
315 unsigned int miscdata;
316 };
317 #ifndef SLHCI_N_TIMES
318 #define SLHCI_N_TIMES 200
319 #endif
320 struct slhci_cc_times {
321 struct slhci_cc_time times[SLHCI_N_TIMES];
322 int current;
323 int wraparound;
324 };
325
326 static struct slhci_cc_times t_ab[2];
327 static struct slhci_cc_times t_abdone;
328 static struct slhci_cc_times t_copy_to_dev;
329 static struct slhci_cc_times t_copy_from_dev;
330 static struct slhci_cc_times t_intr;
331 static struct slhci_cc_times t_lock;
332 static struct slhci_cc_times t_delay;
333 static struct slhci_cc_times t_hard_int;
334 static struct slhci_cc_times t_callback;
335
336 static inline void
337 start_cc_time(struct slhci_cc_times *times, unsigned int misc) {
338 times->times[times->current].miscdata = misc;
339 slhci_cc_set(times->times[times->current].start);
340 }
341 static inline void
342 stop_cc_time(struct slhci_cc_times *times) {
343 slhci_cc_set(times->times[times->current].stop);
344 if (++times->current >= SLHCI_N_TIMES) {
345 times->current = 0;
346 times->wraparound = 1;
347 }
348 }
349
350 void slhci_dump_cc_times(int);
351
352 void
353 slhci_dump_cc_times(int n) {
354 struct slhci_cc_times *times;
355 int i;
356
357 switch (n) {
358 default:
359 case 0:
360 printf("USBA start transfer to intr:\n");
361 times = &t_ab[A];
362 break;
363 case 1:
364 printf("USBB start transfer to intr:\n");
365 times = &t_ab[B];
366 break;
367 case 2:
368 printf("abdone:\n");
369 times = &t_abdone;
370 break;
371 case 3:
372 printf("copy to device:\n");
373 times = &t_copy_to_dev;
374 break;
375 case 4:
376 printf("copy from device:\n");
377 times = &t_copy_from_dev;
378 break;
379 case 5:
380 printf("intr to intr:\n");
381 times = &t_intr;
382 break;
383 case 6:
384 printf("lock to release:\n");
385 times = &t_lock;
386 break;
387 case 7:
388 printf("delay time:\n");
389 times = &t_delay;
390 break;
391 case 8:
392 printf("hard interrupt enter to exit:\n");
393 times = &t_hard_int;
394 break;
395 case 9:
396 printf("callback:\n");
397 times = &t_callback;
398 break;
399 }
400
401 if (times->wraparound)
402 for (i = times->current + 1; i < SLHCI_N_TIMES; i++)
403 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
404 " difference %8i miscdata %#x\n",
405 times->times[i].start, times->times[i].stop,
406 (int)(times->times[i].stop -
407 times->times[i].start), times->times[i].miscdata);
408
409 for (i = 0; i < times->current; i++)
410 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
411 " difference %8i miscdata %#x\n", times->times[i].start,
412 times->times[i].stop, (int)(times->times[i].stop -
413 times->times[i].start), times->times[i].miscdata);
414 }
415 #else
416 #define start_cc_time(x, y)
417 #define stop_cc_time(x)
418 #endif /* SLHCI_PROFILE_TRANSFER */
419
420 typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe
421 *, struct usbd_xfer *);
422
423 struct usbd_xfer * slhci_allocx(struct usbd_bus *, unsigned int);
424 void slhci_freex(struct usbd_bus *, struct usbd_xfer *);
425 static void slhci_get_lock(struct usbd_bus *, kmutex_t **);
426
427 usbd_status slhci_transfer(struct usbd_xfer *);
428 usbd_status slhci_start(struct usbd_xfer *);
429 usbd_status slhci_root_start(struct usbd_xfer *);
430 usbd_status slhci_open(struct usbd_pipe *);
431
432 static int slhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
433 void *, int);
434
435 /*
436 * slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach,
437 * slhci_activate
438 */
439
440 void slhci_abort(struct usbd_xfer *);
441 void slhci_close(struct usbd_pipe *);
442 void slhci_clear_toggle(struct usbd_pipe *);
443 void slhci_poll(struct usbd_bus *);
444 void slhci_done(struct usbd_xfer *);
445 void slhci_void(void *);
446
447 /* lock entry functions */
448
449 #ifdef SLHCI_MEM_ACCOUNTING
450 void slhci_mem_use(struct usbd_bus *, int);
451 #endif
452
453 void slhci_reset_entry(void *);
454 usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc,
455 struct slhci_pipe *, struct usbd_xfer *);
456 void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *);
457 void slhci_callback_entry(void *arg);
458 void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *);
459
460 /* slhci_intr */
461
462 void slhci_main(struct slhci_softc *);
463
464 /* in lock functions */
465
466 static void slhci_write(struct slhci_softc *, uint8_t, uint8_t);
467 static uint8_t slhci_read(struct slhci_softc *, uint8_t);
468 static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
469 static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
470
471 static void slhci_waitintr(struct slhci_softc *, int);
472 static int slhci_dointr(struct slhci_softc *);
473 static void slhci_abdone(struct slhci_softc *, int);
474 static void slhci_tstart(struct slhci_softc *);
475 static void slhci_dotransfer(struct slhci_softc *);
476
477 static void slhci_callback(struct slhci_softc *);
478 static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *);
479 static void slhci_enter_xfers(struct slhci_softc *);
480 static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *);
481 static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *);
482
483 static void slhci_callback_schedule(struct slhci_softc *);
484 static void slhci_do_callback_schedule(struct slhci_softc *);
485 #if 0
486 void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *); /* XXX */
487 #endif
488
489 static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *,
490 struct usbd_xfer *);
491 static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *,
492 struct usbd_xfer *);
493 static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *,
494 struct usbd_xfer *);
495 static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *,
496 struct usbd_xfer *);
497 static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *,
498 struct usbd_xfer *);
499 static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *,
500 struct usbd_xfer *);
501 static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *,
502 struct usbd_xfer *);
503
504 static void slhci_intrchange(struct slhci_softc *, uint8_t);
505 static void slhci_drain(struct slhci_softc *);
506 static void slhci_reset(struct slhci_softc *);
507 static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *,
508 int);
509 static void slhci_insert(struct slhci_softc *);
510
511 static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int);
512 static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int);
513 static void slhci_get_status(struct slhci_softc *, usb_port_status_t *);
514
515 #define SLHCIHIST_FUNC() USBHIST_FUNC()
516 #define SLHCIHIST_CALLED() USBHIST_CALLED(slhcidebug)
517
518 #ifdef SLHCI_DEBUG
519 static int slhci_memtest(struct slhci_softc *);
520
521 void slhci_log_buffer(struct usbd_xfer *);
522 void slhci_log_req(usb_device_request_t *);
523 void slhci_log_dumpreg(void);
524 void slhci_log_xfer(struct usbd_xfer *);
525 void slhci_log_spipe(struct slhci_pipe *);
526 void slhci_print_intr(void);
527 void slhci_log_sc(void);
528 void slhci_log_slreq(struct slhci_pipe *);
529
530 /* Constified so you can read the values from ddb */
531 const int SLHCI_D_TRACE = 0x0001;
532 const int SLHCI_D_MSG = 0x0002;
533 const int SLHCI_D_XFER = 0x0004;
534 const int SLHCI_D_MEM = 0x0008;
535 const int SLHCI_D_INTR = 0x0010;
536 const int SLHCI_D_SXFER = 0x0020;
537 const int SLHCI_D_ERR = 0x0080;
538 const int SLHCI_D_BUF = 0x0100;
539 const int SLHCI_D_SOFT = 0x0200;
540 const int SLHCI_D_WAIT = 0x0400;
541 const int SLHCI_D_ROOT = 0x0800;
542 /* SOF/NAK alone normally ignored, SOF also needs D_INTR */
543 const int SLHCI_D_SOF = 0x1000;
544 const int SLHCI_D_NAK = 0x2000;
545
546 int slhcidebug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */
547
548 SYSCTL_SETUP(sysctl_hw_slhci_setup, "sysctl hw.slhci setup")
549 {
550 int err;
551 const struct sysctlnode *rnode;
552 const struct sysctlnode *cnode;
553
554 err = sysctl_createv(clog, 0, NULL, &rnode,
555 CTLFLAG_PERMANENT, CTLTYPE_NODE, "slhci",
556 SYSCTL_DESCR("slhci global controls"),
557 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
558
559 if (err)
560 goto fail;
561
562 /* control debugging printfs */
563 err = sysctl_createv(clog, 0, &rnode, &cnode,
564 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
565 "debug", SYSCTL_DESCR("Enable debugging output"),
566 NULL, 0, &slhcidebug, sizeof(slhcidebug), CTL_CREATE, CTL_EOL);
567 if (err)
568 goto fail;
569
570 return;
571 fail:
572 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
573 }
574
575 struct slhci_softc *ssc;
576
577 #define SLHCI_DEXEC(x, y) do { if ((slhcidebug & SLHCI_ ## x)) { y; } \
578 } while (/*CONSTCOND*/ 0)
579 #define DDOLOG(f, a, b, c, d) do { KERNHIST_LOG(usbhist, f, a, b, c, d); \
580 } while (/*CONSTCOND*/0)
581 #define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d))
582
583 /*
584 * DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we
585 * can make it a real function.
586 */
587 static void
588 DDOLOGBUF(uint8_t *buf, unsigned int length)
589 {
590 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
591 int i;
592
593 for(i=0; i+8 <= length; i+=8)
594 DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
595 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
596 (buf[i+6] << 8) | buf[i+7]);
597 if (length == i+7)
598 DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
599 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
600 buf[i+6]);
601 else if (length == i+6)
602 DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
603 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0);
604 else if (length == i+5)
605 DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
606 (buf[i+2] << 8) | buf[i+3], buf[i+4], 0);
607 else if (length == i+4)
608 DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1],
609 (buf[i+2] << 8) | buf[i+3], 0,0);
610 else if (length == i+3)
611 DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0);
612 else if (length == i+2)
613 DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0);
614 else if (length == i+1)
615 DDOLOG("%.2x", buf[i], 0,0,0);
616 }
617 #define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l))
618
619 #define DDOLOGCTRL(x) do { \
620 DDOLOG("CTRL suspend=%d", !!((x) & SL11_CTRL_SUSPEND), 0, 0, 0); \
621 DDOLOG("CTRL ls =%d jk =%d reset =%d sof =%d", \
622 !!((x) & SL11_CTRL_LOWSPEED), !!((x) & SL11_CTRL_JKSTATE), \
623 !!((x) & SL11_CTRL_RESETENGINE), !!((x) & SL11_CTRL_ENABLESOF));\
624 } while (0)
625
626 #define DDOLOGISR(r) do { \
627 DDOLOG("ISR data =%d det/res=%d insert =%d sof =%d", \
628 !!((r) & SL11_ISR_DATA), !!((r) & SL11_ISR_RESUME), \
629 !!((r) & SL11_ISR_INSERT), !!!!((r) & SL11_ISR_SOF)); \
630 DDOLOG("ISR babble =%d usbb =%d usba =%d", \
631 !!((r) & SL11_ISR_BABBLE), !!((r) & SL11_ISR_USBB), \
632 !!((r) & SL11_ISR_USBA), 0); \
633 } while (0)
634
635 #define DDOLOGIER(r) do { \
636 DDOLOG("IER det/res=%d insert =%d sof =%d", \
637 !!((r) & SL11_IER_RESUME), \
638 !!((r) & SL11_IER_INSERT), !!!!((r) & SL11_IER_SOF), 0); \
639 DDOLOG("IER babble =%d usbb =%d usba =%d", \
640 !!((r) & SL11_IER_BABBLE), !!((r) & SL11_IER_USBB), \
641 !!((r) & SL11_IER_USBA), 0); \
642 } while (0)
643
644 #define DDOLOGSTATUS(s) do { \
645 DDOLOG("STAT stall =%d nak =%d overflow =%d setup =%d", \
646 !!((s) & SL11_EPSTAT_STALL), !!((s) & SL11_EPSTAT_NAK), \
647 !!((s) & SL11_EPSTAT_OVERFLOW), !!((s) & SL11_EPSTAT_SETUP)); \
648 DDOLOG("STAT sequence=%d timeout =%d error =%d ack =%d", \
649 !!((s) & SL11_EPSTAT_SEQUENCE), !!((s) & SL11_EPSTAT_TIMEOUT), \
650 !!((s) & SL11_EPSTAT_ERROR), !!((s) & SL11_EPSTAT_ACK)); \
651 } while (0)
652
653 #define DDOLOGEPCTRL(r) do { \
654 DDOLOG("CTRL preamble=%d toggle =%d sof =%d iso =%d", \
655 !!((r) & SL11_EPCTRL_PREAMBLE), !!((r) & SL11_EPCTRL_DATATOGGLE),\
656 !!((r) & SL11_EPCTRL_SOF), !!((r) & SL11_EPCTRL_ISO)); \
657 DDOLOG("CTRL out =%d enable =%d arm =%d", \
658 !!((r) & SL11_EPCTRL_DIRECTION), \
659 !!((r) & SL11_EPCTRL_ENABLE), !!((r) & SL11_EPCTRL_ARM), 0); \
660 } while (0)
661
662 #define DDOLOGEPSTAT(r) do { \
663 DDOLOG("STAT stall =%d nak =%d overflow =%d setup =%d", \
664 !!((r) & SL11_EPSTAT_STALL), !!((r) & SL11_EPSTAT_NAK), \
665 !!((r) & SL11_EPSTAT_OVERFLOW), !!((r) & SL11_EPSTAT_SETUP)); \
666 DDOLOG("STAT sequence=%d timeout =%d error =%d ack =%d", \
667 !!((r) & SL11_EPSTAT_SEQUENCE), !!((r) & SL11_EPSTAT_TIMEOUT), \
668 !!((r) & SL11_EPSTAT_ERROR), !!((r) & SL11_EPSTAT_ACK)); \
669 } while (0)
670 #else /* now !SLHCI_DEBUG */
671 #define slhcidebug 0
672 #define slhci_log_spipe(spipe) ((void)0)
673 #define slhci_log_xfer(xfer) ((void)0)
674 #define SLHCI_DEXEC(x, y) ((void)0)
675 #define DDOLOG(f, a, b, c, d) ((void)0)
676 #define DLOG(x, f, a, b, c, d) ((void)0)
677 #define DDOLOGBUF(b, l) ((void)0)
678 #define DLOGBUF(x, b, l) ((void)0)
679 #define DDOLOGCTRL(x) ((void)0)
680 #define DDOLOGISR(r) ((void)0)
681 #define DDOLOGIER(r) ((void)0)
682 #define DDOLOGSTATUS(s) ((void)0)
683 #define DDOLOGEPCTRL(r) ((void)0)
684 #define DDOLOGEPSTAT(r) ((void)0)
685 #endif /* SLHCI_DEBUG */
686
687 #ifdef DIAGNOSTIC
688 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) do { \
689 if (!(exp)) { \
690 printf("%s: assertion %s failed line %u function %s!" \
691 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
692 slhci_halt(sc, spipe, xfer); \
693 ext; \
694 } \
695 } while (/*CONSTCOND*/0)
696 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) do { \
697 if (!(exp)) { \
698 printf("%s: assertion %s failed line %u function %s!" \
699 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \
700 slhci_lock_call(sc, &slhci_halt, spipe, xfer); \
701 ext; \
702 } \
703 } while (/*CONSTCOND*/0)
704 #else
705 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
706 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
707 #endif
708
709 const struct usbd_bus_methods slhci_bus_methods = {
710 .ubm_open = slhci_open,
711 .ubm_softint= slhci_void,
712 .ubm_dopoll = slhci_poll,
713 .ubm_allocx = slhci_allocx,
714 .ubm_freex = slhci_freex,
715 .ubm_getlock = slhci_get_lock,
716 .ubm_rhctrl = slhci_roothub_ctrl,
717 };
718
719 const struct usbd_pipe_methods slhci_pipe_methods = {
720 .upm_transfer = slhci_transfer,
721 .upm_start = slhci_start,
722 .upm_abort = slhci_abort,
723 .upm_close = slhci_close,
724 .upm_cleartoggle = slhci_clear_toggle,
725 .upm_done = slhci_done,
726 };
727
728 const struct usbd_pipe_methods slhci_root_methods = {
729 .upm_transfer = slhci_transfer,
730 .upm_start = slhci_root_start,
731 .upm_abort = slhci_abort,
732 .upm_close = (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */
733 .upm_cleartoggle = slhci_clear_toggle,
734 .upm_done = slhci_done,
735 };
736
737 /* Queue inlines */
738
739 #define GOT_FIRST_TO(tvar, t) \
740 GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to)
741
742 #define FIND_TO(var, t, tvar, cond) \
743 GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond)
744
745 #define FOREACH_AP(var, t, tvar) \
746 GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap)
747
748 #define GOT_FIRST_TIMED_COND(tvar, t, cond) \
749 GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond)
750
751 #define GOT_FIRST_CB(tvar, t) \
752 GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq)
753
754 #define DEQUEUED_CALLBACK(tvar, t) \
755 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq)
756
757 #define FIND_TIMED(var, t, tvar, cond) \
758 GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond)
759
760 #define DEQUEUED_WAITQ(tvar, sc) \
761 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq)
762
763 static inline void
764 enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe)
765 {
766 gcq_insert_tail(&sc->sc_waitq, &spipe->xq);
767 }
768
769 static inline void
770 enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i)
771 {
772 gcq_insert_tail(&t->q[i], &spipe->xq);
773 }
774
775 static inline void
776 enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe)
777 {
778 gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq);
779 }
780
781 static inline void
782 enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe)
783 {
784 gcq_insert_tail(&t->ap, &spipe->ap);
785 }
786
787 /* Start out of lock functions. */
788
789 struct usbd_xfer *
790 slhci_allocx(struct usbd_bus *bus, unsigned int nframes)
791 {
792 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
793 struct usbd_xfer *xfer;
794
795 xfer = kmem_zalloc(sizeof(*xfer), KM_SLEEP);
796
797 DLOG(D_MEM, "allocx %p", xfer, 0,0,0);
798
799 #ifdef SLHCI_MEM_ACCOUNTING
800 slhci_mem_use(bus, 1);
801 #endif
802 #ifdef DIAGNOSTIC
803 if (xfer != NULL)
804 xfer->ux_state = XFER_BUSY;
805 #endif
806 return xfer;
807 }
808
809 void
810 slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
811 {
812 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
813 DLOG(D_MEM, "freex xfer %p spipe %p", xfer, xfer->ux_pipe,0,0);
814
815 #ifdef SLHCI_MEM_ACCOUNTING
816 slhci_mem_use(bus, -1);
817 #endif
818 #ifdef DIAGNOSTIC
819 if (xfer->ux_state != XFER_BUSY) {
820 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
821 printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
822 SC_NAME(sc), xfer, xfer->ux_state);
823 DDOLOG("xfer=%p not busy, %#08x halted\n", xfer,
824 xfer->ux_state, 0, 0);
825 slhci_lock_call(sc, &slhci_halt, NULL, NULL);
826 return;
827 }
828 xfer->ux_state = XFER_FREE;
829 #endif
830
831 kmem_free(xfer, sizeof(*xfer));
832 }
833
834 static void
835 slhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
836 {
837 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
838
839 *lock = &sc->sc_lock;
840 }
841
842 usbd_status
843 slhci_transfer(struct usbd_xfer *xfer)
844 {
845 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
846 struct slhci_softc *sc = SLHCI_XFER2SC(xfer);
847 usbd_status error;
848
849 DLOG(D_TRACE, "transfer type %d xfer %p spipe %p ",
850 SLHCI_XFER_TYPE(xfer), xfer, xfer->ux_pipe, 0);
851
852 /* Insert last in queue */
853 mutex_enter(&sc->sc_lock);
854 error = usb_insert_transfer(xfer);
855 mutex_exit(&sc->sc_lock);
856 if (error) {
857 if (error != USBD_IN_PROGRESS)
858 DLOG(D_ERR, "usb_insert_transfer returns %d!", error,
859 0,0,0);
860 return error;
861 }
862
863 /*
864 * Pipe isn't running (otherwise error would be USBD_INPROG),
865 * so start it first.
866 */
867
868 /*
869 * Start will take the lock.
870 */
871 error = xfer->ux_pipe->up_methods->upm_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
872
873 return error;
874 }
875
876 /* It is not safe for start to return anything other than USBD_INPROG. */
877 usbd_status
878 slhci_start(struct usbd_xfer *xfer)
879 {
880 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
881 struct slhci_softc *sc = SLHCI_XFER2SC(xfer);
882 struct usbd_pipe *pipe = xfer->ux_pipe;
883 struct slhci_pipe *spipe = SLHCI_PIPE2SPIPE(pipe);
884 struct slhci_transfers *t = &sc->sc_transfers;
885 usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
886 unsigned int max_packet;
887
888 mutex_enter(&sc->sc_lock);
889
890 max_packet = UGETW(ed->wMaxPacketSize);
891
892 DLOG(D_TRACE, "transfer type %d start xfer %p spipe %p length %d",
893 spipe->ptype, xfer, spipe, xfer->ux_length);
894
895 /* root transfers use slhci_root_start */
896
897 KASSERT(spipe->xfer == NULL); /* not SLASSERT */
898
899 xfer->ux_actlen = 0;
900 xfer->ux_status = USBD_IN_PROGRESS;
901
902 spipe->xfer = xfer;
903
904 spipe->nerrs = 0;
905 spipe->frame = t->frame;
906 spipe->control = SL11_EPCTRL_ARM_ENABLE;
907 spipe->tregs[DEV] = pipe->up_dev->ud_addr;
908 spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress)
909 | (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN :
910 SL11_PID_OUT);
911 spipe->newlen[0] = xfer->ux_length % max_packet;
912 spipe->newlen[1] = min(xfer->ux_length, max_packet);
913
914 if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) {
915 if (spipe->pflags & PF_TOGGLE)
916 spipe->control |= SL11_EPCTRL_DATATOGGLE;
917 spipe->tregs[LEN] = spipe->newlen[1];
918 if (spipe->tregs[LEN])
919 spipe->buffer = xfer->ux_buf;
920 else
921 spipe->buffer = NULL;
922 spipe->lastframe = t->frame;
923 #if defined(DEBUG) || defined(SLHCI_DEBUG)
924 if (__predict_false(spipe->ptype == PT_INTR &&
925 xfer->ux_length > spipe->tregs[LEN])) {
926 printf("%s: Long INTR transfer not supported!\n",
927 SC_NAME(sc));
928 DDOLOG("Long INTR transfer not supported!", 0, 0, 0, 0);
929 xfer->ux_status = USBD_INVAL;
930 }
931 #endif
932 } else {
933 /* ptype may be currently set to any control transfer type. */
934 SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer));
935
936 /* SETUP contains IN/OUT bits also */
937 spipe->tregs[PID] |= SL11_PID_SETUP;
938 spipe->tregs[LEN] = 8;
939 spipe->buffer = (uint8_t *)&xfer->ux_request;
940 DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]);
941 spipe->ptype = PT_CTRL_SETUP;
942 spipe->newpid &= ~SL11_PID_BITS;
943 if (xfer->ux_length == 0 || (xfer->ux_request.bmRequestType &
944 UT_READ))
945 spipe->newpid |= SL11_PID_IN;
946 else
947 spipe->newpid |= SL11_PID_OUT;
948 }
949
950 if (xfer->ux_flags & USBD_FORCE_SHORT_XFER && spipe->tregs[LEN] ==
951 max_packet && (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT)
952 spipe->wantshort = 1;
953 else
954 spipe->wantshort = 0;
955
956 /*
957 * The goal of newbustime and newlen is to avoid bustime calculation
958 * in the interrupt. The calculations are not too complex, but they
959 * complicate the conditional logic somewhat and doing them all in the
960 * same place shares constants. Index 0 is "short length" for bulk and
961 * ctrl data and 1 is "full length" for ctrl data (bulk/intr are
962 * already set to full length).
963 */
964 if (spipe->pflags & PF_LS) {
965 /*
966 * Setting PREAMBLE for directly connected LS devices will
967 * lock up the chip.
968 */
969 if (spipe->pflags & PF_PREAMBLE)
970 spipe->control |= SL11_EPCTRL_PREAMBLE;
971 if (max_packet <= 8) {
972 spipe->bustime = SLHCI_LS_CONST +
973 SLHCI_LS_DATA_TIME(spipe->tregs[LEN]);
974 spipe->newbustime[0] = SLHCI_LS_CONST +
975 SLHCI_LS_DATA_TIME(spipe->newlen[0]);
976 spipe->newbustime[1] = SLHCI_LS_CONST +
977 SLHCI_LS_DATA_TIME(spipe->newlen[1]);
978 } else
979 xfer->ux_status = USBD_INVAL;
980 } else {
981 UL_SLASSERT(pipe->up_dev->ud_speed == USB_SPEED_FULL, sc,
982 spipe, xfer, return USBD_IN_PROGRESS);
983 if (max_packet <= SL11_MAX_PACKET_SIZE) {
984 spipe->bustime = SLHCI_FS_CONST +
985 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
986 spipe->newbustime[0] = SLHCI_FS_CONST +
987 SLHCI_FS_DATA_TIME(spipe->newlen[0]);
988 spipe->newbustime[1] = SLHCI_FS_CONST +
989 SLHCI_FS_DATA_TIME(spipe->newlen[1]);
990 } else
991 xfer->ux_status = USBD_INVAL;
992 }
993
994 /*
995 * The datasheet incorrectly indicates that DIRECTION is for
996 * "transmit to host". It is for OUT and SETUP. The app note
997 * describes its use correctly.
998 */
999 if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN)
1000 spipe->control |= SL11_EPCTRL_DIRECTION;
1001
1002 slhci_start_entry(sc, spipe);
1003
1004 mutex_exit(&sc->sc_lock);
1005
1006 return USBD_IN_PROGRESS;
1007 }
1008
1009 usbd_status
1010 slhci_root_start(struct usbd_xfer *xfer)
1011 {
1012 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1013 struct slhci_softc *sc;
1014 struct slhci_pipe *spipe __diagused;
1015
1016 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe);
1017 sc = SLHCI_XFER2SC(xfer);
1018
1019 struct slhci_transfers *t = &sc->sc_transfers;
1020
1021 LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return
1022 USBD_CANCELLED);
1023
1024 DLOG(D_TRACE, "transfer type %d start", SLHCI_XFER_TYPE(xfer), 0, 0, 0);
1025
1026 KASSERT(spipe->ptype == PT_ROOT_INTR);
1027
1028 mutex_enter(&sc->sc_intr_lock);
1029 t->rootintr = xfer;
1030 mutex_exit(&sc->sc_intr_lock);
1031
1032 return USBD_IN_PROGRESS;
1033 }
1034
1035 usbd_status
1036 slhci_open(struct usbd_pipe *pipe)
1037 {
1038 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1039 struct usbd_device *dev;
1040 struct slhci_softc *sc;
1041 struct slhci_pipe *spipe;
1042 usb_endpoint_descriptor_t *ed;
1043 unsigned int max_packet, pmaxpkt;
1044 uint8_t rhaddr;
1045
1046 dev = pipe->up_dev;
1047 sc = SLHCI_PIPE2SC(pipe);
1048 spipe = SLHCI_PIPE2SPIPE(pipe);
1049 ed = pipe->up_endpoint->ue_edesc;
1050 rhaddr = dev->ud_bus->ub_rhaddr;
1051
1052 DLOG(D_TRACE, "slhci_open(addr=%d,ep=%d,rootaddr=%d)",
1053 dev->ud_addr, ed->bEndpointAddress, rhaddr, 0);
1054
1055 spipe->pflags = 0;
1056 spipe->frame = 0;
1057 spipe->lastframe = 0;
1058 spipe->xfer = NULL;
1059 spipe->buffer = NULL;
1060
1061 gcq_init(&spipe->ap);
1062 gcq_init(&spipe->to);
1063 gcq_init(&spipe->xq);
1064
1065 /*
1066 * The endpoint descriptor will not have been set up yet in the case
1067 * of the standard control pipe, so the max packet checks are also
1068 * necessary in start.
1069 */
1070
1071 max_packet = UGETW(ed->wMaxPacketSize);
1072
1073 if (dev->ud_speed == USB_SPEED_LOW) {
1074 spipe->pflags |= PF_LS;
1075 if (dev->ud_myhub->ud_addr != rhaddr) {
1076 spipe->pflags |= PF_PREAMBLE;
1077 if (!slhci_try_lsvh)
1078 return slhci_lock_call(sc, &slhci_lsvh_warn,
1079 spipe, NULL);
1080 }
1081 pmaxpkt = 8;
1082 } else
1083 pmaxpkt = SL11_MAX_PACKET_SIZE;
1084
1085 if (max_packet > pmaxpkt) {
1086 DLOG(D_ERR, "packet too large! size %d spipe %p", max_packet,
1087 spipe, 0,0);
1088 return USBD_INVAL;
1089 }
1090
1091 if (dev->ud_addr == rhaddr) {
1092 switch (ed->bEndpointAddress) {
1093 case USB_CONTROL_ENDPOINT:
1094 spipe->ptype = PT_ROOT_CTRL;
1095 pipe->up_interval = 0;
1096 pipe->up_methods = &roothub_ctrl_methods;
1097 break;
1098 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
1099 spipe->ptype = PT_ROOT_INTR;
1100 pipe->up_interval = 1;
1101 pipe->up_methods = &slhci_root_methods;
1102 break;
1103 default:
1104 printf("%s: Invalid root endpoint!\n", SC_NAME(sc));
1105 DDOLOG("Invalid root endpoint", 0, 0, 0, 0);
1106 return USBD_INVAL;
1107 }
1108 return USBD_NORMAL_COMPLETION;
1109 } else {
1110 switch (ed->bmAttributes & UE_XFERTYPE) {
1111 case UE_CONTROL:
1112 spipe->ptype = PT_CTRL_SETUP;
1113 pipe->up_interval = 0;
1114 break;
1115 case UE_INTERRUPT:
1116 spipe->ptype = PT_INTR;
1117 if (pipe->up_interval == USBD_DEFAULT_INTERVAL)
1118 pipe->up_interval = ed->bInterval;
1119 break;
1120 case UE_ISOCHRONOUS:
1121 return slhci_lock_call(sc, &slhci_isoc_warn, spipe,
1122 NULL);
1123 case UE_BULK:
1124 spipe->ptype = PT_BULK;
1125 pipe->up_interval = 0;
1126 break;
1127 }
1128
1129 DLOG(D_MSG, "open pipe type %d interval %d", spipe->ptype,
1130 pipe->up_interval, 0,0);
1131
1132 pipe->up_methods = __UNCONST(&slhci_pipe_methods);
1133
1134 return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL);
1135 }
1136 }
1137
1138 int
1139 slhci_supported_rev(uint8_t rev)
1140 {
1141 return rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15;
1142 }
1143
1144 /*
1145 * Must be called before the ISR is registered. Interrupts can be shared so
1146 * slhci_intr could be called as soon as the ISR is registered.
1147 * Note max_current argument is actual current, but stored as current/2
1148 */
1149 void
1150 slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot,
1151 bus_space_handle_t ioh, uint16_t max_current, uint32_t stride)
1152 {
1153 struct slhci_transfers *t;
1154 int i;
1155
1156 t = &sc->sc_transfers;
1157
1158 #ifdef SLHCI_DEBUG
1159 ssc = sc;
1160 #endif
1161
1162 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1163 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
1164
1165 /* sc->sc_ier = 0; */
1166 /* t->rootintr = NULL; */
1167 t->flags = F_NODEV|F_UDISABLED;
1168 t->pend = INT_MAX;
1169 KASSERT(slhci_wait_time != INT_MAX);
1170 t->len[0] = t->len[1] = -1;
1171 if (max_current > 500)
1172 max_current = 500;
1173 t->max_current = (uint8_t)(max_current / 2);
1174 sc->sc_enable_power = pow;
1175 sc->sc_iot = iot;
1176 sc->sc_ioh = ioh;
1177 sc->sc_stride = stride;
1178
1179 KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0]));
1180
1181 for (i = 0; i <= Q_MAX; i++)
1182 gcq_init_head(&t->q[i]);
1183 gcq_init_head(&t->timed);
1184 gcq_init_head(&t->to);
1185 gcq_init_head(&t->ap);
1186 gcq_init_head(&sc->sc_waitq);
1187 }
1188
1189 int
1190 slhci_attach(struct slhci_softc *sc)
1191 {
1192 struct slhci_transfers *t;
1193 const char *rev;
1194
1195 t = &sc->sc_transfers;
1196
1197 /* Detect and check the controller type */
1198 t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV));
1199
1200 /* SL11H not supported */
1201 if (!slhci_supported_rev(t->sltype)) {
1202 if (t->sltype == SLTYPE_SL11H)
1203 printf("%s: SL11H unsupported or bus error!\n",
1204 SC_NAME(sc));
1205 else
1206 printf("%s: Unknown chip revision!\n", SC_NAME(sc));
1207 return -1;
1208 }
1209
1210 #ifdef SLHCI_DEBUG
1211 if (slhci_memtest(sc)) {
1212 printf("%s: memory/bus error!\n", SC_NAME(sc));
1213 return -1;
1214 }
1215 #endif
1216
1217 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
1218 callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc);
1219
1220 /*
1221 * It is not safe to call the soft interrupt directly as
1222 * usb_schedsoftintr does in the ub_usepolling case (due to locking).
1223 */
1224 sc->sc_cb_softintr = softint_establish(SOFTINT_NET,
1225 slhci_callback_entry, sc);
1226
1227 if (t->sltype == SLTYPE_SL811HS_R12)
1228 rev = "(rev 1.2)";
1229 else if (t->sltype == SLTYPE_SL811HS_R14)
1230 rev = "(rev 1.4 or 1.5)";
1231 else
1232 rev = "(unknown revision)";
1233
1234 aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n",
1235 SC_NAME(sc), rev);
1236
1237 aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n",
1238 SC_NAME(sc), t->max_current * 2);
1239
1240 #if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \
1241 defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER)
1242 aprint_normal("%s: driver options:"
1243 #ifdef SLHCI_DEBUG
1244 " SLHCI_DEBUG"
1245 #endif
1246 #ifdef SLHCI_TRY_LSVH
1247 " SLHCI_TRY_LSVH"
1248 #endif
1249 #ifdef SLHCI_NO_OVERTIME
1250 " SLHCI_NO_OVERTIME"
1251 #endif
1252 #ifdef SLHCI_PROFILE_TRANSFER
1253 " SLHCI_PROFILE_TRANSFER"
1254 #endif
1255 "\n", SC_NAME(sc));
1256 #endif
1257 sc->sc_bus.ub_revision = USBREV_1_1;
1258 sc->sc_bus.ub_methods = __UNCONST(&slhci_bus_methods);
1259 sc->sc_bus.ub_pipesize = sizeof(struct slhci_pipe);
1260 sc->sc_bus.ub_usedma = false;
1261
1262 if (!sc->sc_enable_power)
1263 t->flags |= F_REALPOWER;
1264
1265 t->flags |= F_ACTIVE;
1266
1267 /* Attach usb and uhub. */
1268 sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint);
1269
1270 if (!sc->sc_child)
1271 return -1;
1272 else
1273 return 0;
1274 }
1275
1276 int
1277 slhci_detach(struct slhci_softc *sc, int flags)
1278 {
1279 struct slhci_transfers *t;
1280 int ret;
1281
1282 t = &sc->sc_transfers;
1283
1284 /* By this point bus access is no longer allowed. */
1285
1286 KASSERT(!(t->flags & F_ACTIVE));
1287
1288 /*
1289 * To be MPSAFE is not sufficient to cancel callouts and soft
1290 * interrupts and assume they are dead since the code could already be
1291 * running or about to run. Wait until they are known to be done.
1292 */
1293 while (t->flags & (F_RESET|F_CALLBACK))
1294 tsleep(&sc, PPAUSE, "slhci_detach", hz);
1295
1296 softint_disestablish(sc->sc_cb_softintr);
1297
1298 mutex_destroy(&sc->sc_lock);
1299 mutex_destroy(&sc->sc_intr_lock);
1300
1301 ret = 0;
1302
1303 if (sc->sc_child)
1304 ret = config_detach(sc->sc_child, flags);
1305
1306 #ifdef SLHCI_MEM_ACCOUNTING
1307 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1308 if (sc->sc_mem_use) {
1309 printf("%s: Memory still in use after detach! mem_use (count)"
1310 " = %d\n", SC_NAME(sc), sc->sc_mem_use);
1311 DDOLOG("Memory still in use after detach! mem_use (count)"
1312 " = %d", sc->sc_mem_use, 0, 0, 0);
1313 }
1314 #endif
1315
1316 return ret;
1317 }
1318
1319 int
1320 slhci_activate(device_t self, enum devact act)
1321 {
1322 struct slhci_softc *sc = device_private(self);
1323
1324 switch (act) {
1325 case DVACT_DEACTIVATE:
1326 slhci_lock_call(sc, &slhci_halt, NULL, NULL);
1327 return 0;
1328 default:
1329 return EOPNOTSUPP;
1330 }
1331 }
1332
1333 void
1334 slhci_abort(struct usbd_xfer *xfer)
1335 {
1336 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1337 struct slhci_softc *sc;
1338 struct slhci_pipe *spipe;
1339
1340 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe);
1341
1342 if (spipe == NULL)
1343 goto callback;
1344
1345 sc = SLHCI_XFER2SC(xfer);
1346 KASSERT(mutex_owned(&sc->sc_lock));
1347
1348 DLOG(D_TRACE, "transfer type %d abort xfer %p spipe %p spipe->xfer %p",
1349 spipe->ptype, xfer, spipe, spipe->xfer);
1350
1351 slhci_lock_call(sc, &slhci_do_abort, spipe, xfer);
1352
1353 callback:
1354 xfer->ux_status = USBD_CANCELLED;
1355 usb_transfer_complete(xfer);
1356 }
1357
1358 void
1359 slhci_close(struct usbd_pipe *pipe)
1360 {
1361 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1362 struct slhci_softc *sc;
1363 struct slhci_pipe *spipe;
1364
1365 sc = SLHCI_PIPE2SC(pipe);
1366 spipe = SLHCI_PIPE2SPIPE(pipe);
1367
1368 DLOG(D_TRACE, "transfer type %d close spipe %p spipe->xfer %p",
1369 spipe->ptype, spipe, spipe->xfer, 0);
1370
1371 slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL);
1372 }
1373
1374 void
1375 slhci_clear_toggle(struct usbd_pipe *pipe)
1376 {
1377 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1378 struct slhci_pipe *spipe;
1379
1380 spipe = SLHCI_PIPE2SPIPE(pipe);
1381
1382 DLOG(D_TRACE, "transfer type %d toggle spipe %p", spipe->ptype,
1383 spipe,0,0);
1384
1385 spipe->pflags &= ~PF_TOGGLE;
1386
1387 #ifdef DIAGNOSTIC
1388 if (spipe->xfer != NULL) {
1389 struct slhci_softc *sc = (struct slhci_softc
1390 *)pipe->up_dev->ud_bus;
1391
1392 printf("%s: Clear toggle on transfer in progress! halted\n",
1393 SC_NAME(sc));
1394 DDOLOG("Clear toggle on transfer in progress! halted",
1395 0, 0, 0, 0);
1396 slhci_halt(sc, NULL, NULL);
1397 }
1398 #endif
1399 }
1400
1401 void
1402 slhci_poll(struct usbd_bus *bus) /* XXX necessary? */
1403 {
1404 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1405 struct slhci_softc *sc;
1406
1407 sc = SLHCI_BUS2SC(bus);
1408
1409 DLOG(D_TRACE, "slhci_poll", 0,0,0,0);
1410
1411 slhci_lock_call(sc, &slhci_do_poll, NULL, NULL);
1412 }
1413
1414 void
1415 slhci_done(struct usbd_xfer *xfer)
1416 {
1417 }
1418
1419 void
1420 slhci_void(void *v) {}
1421
1422 /* End out of lock functions. Start lock entry functions. */
1423
1424 #ifdef SLHCI_MEM_ACCOUNTING
1425 void
1426 slhci_mem_use(struct usbd_bus *bus, int val)
1427 {
1428 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
1429
1430 mutex_enter(&sc->sc_intr_lock);
1431 sc->sc_mem_use += val;
1432 mutex_exit(&sc->sc_intr_lock);
1433 }
1434 #endif
1435
1436 void
1437 slhci_reset_entry(void *arg)
1438 {
1439 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1440 struct slhci_softc *sc = arg;
1441
1442 mutex_enter(&sc->sc_intr_lock);
1443 slhci_reset(sc);
1444 /*
1445 * We cannot call the callback directly since we could then be reset
1446 * again before finishing and need the callout delay for timing.
1447 * Scheduling the callout again before we exit would defeat the reap
1448 * mechanism since we could be unlocked while the reset flag is not
1449 * set. The callback code will check the wait queue.
1450 */
1451 slhci_callback_schedule(sc);
1452 mutex_exit(&sc->sc_intr_lock);
1453 }
1454
1455 usbd_status
1456 slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe
1457 *spipe, struct usbd_xfer *xfer)
1458 {
1459 usbd_status ret;
1460
1461 mutex_enter(&sc->sc_intr_lock);
1462 ret = (*lcf)(sc, spipe, xfer);
1463 slhci_main(sc);
1464 mutex_exit(&sc->sc_intr_lock);
1465
1466 return ret;
1467 }
1468
1469 void
1470 slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe)
1471 {
1472 struct slhci_transfers *t;
1473
1474 mutex_enter(&sc->sc_intr_lock);
1475 t = &sc->sc_transfers;
1476
1477 if (!(t->flags & (F_AINPROG|F_BINPROG))) {
1478 slhci_enter_xfer(sc, spipe);
1479 slhci_dotransfer(sc);
1480 slhci_main(sc);
1481 } else {
1482 enter_waitq(sc, spipe);
1483 }
1484 mutex_exit(&sc->sc_intr_lock);
1485 }
1486
1487 void
1488 slhci_callback_entry(void *arg)
1489 {
1490 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1491 struct slhci_softc *sc;
1492 struct slhci_transfers *t;
1493
1494 sc = (struct slhci_softc *)arg;
1495
1496 mutex_enter(&sc->sc_intr_lock);
1497 t = &sc->sc_transfers;
1498 DLOG(D_SOFT, "callback_entry flags %#x", t->flags, 0,0,0);
1499
1500 repeat:
1501 slhci_callback(sc);
1502
1503 if (!gcq_empty(&sc->sc_waitq)) {
1504 slhci_enter_xfers(sc);
1505 slhci_dotransfer(sc);
1506 slhci_waitintr(sc, 0);
1507 goto repeat;
1508 }
1509
1510 t->flags &= ~F_CALLBACK;
1511 mutex_exit(&sc->sc_intr_lock);
1512 }
1513
1514 void
1515 slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer)
1516 {
1517 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1518 KASSERT(mutex_owned(&sc->sc_intr_lock));
1519
1520 start_cc_time(&t_callback, (u_int)xfer);
1521 mutex_exit(&sc->sc_intr_lock);
1522
1523 mutex_enter(&sc->sc_lock);
1524 usb_transfer_complete(xfer);
1525 mutex_exit(&sc->sc_lock);
1526
1527 mutex_enter(&sc->sc_intr_lock);
1528 stop_cc_time(&t_callback);
1529 }
1530
1531 int
1532 slhci_intr(void *arg)
1533 {
1534 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1535 struct slhci_softc *sc = arg;
1536 int ret;
1537
1538 start_cc_time(&t_hard_int, (unsigned int)arg);
1539 mutex_enter(&sc->sc_intr_lock);
1540
1541 ret = slhci_dointr(sc);
1542 slhci_main(sc);
1543 mutex_exit(&sc->sc_intr_lock);
1544
1545 stop_cc_time(&t_hard_int);
1546 return ret;
1547 }
1548
1549 /* called with interrupt lock only held. */
1550 void
1551 slhci_main(struct slhci_softc *sc)
1552 {
1553 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1554 struct slhci_transfers *t;
1555
1556 t = &sc->sc_transfers;
1557
1558 KASSERT(mutex_owned(&sc->sc_intr_lock));
1559
1560 waitcheck:
1561 slhci_waitintr(sc, slhci_wait_time);
1562
1563 /*
1564 * The direct call is needed in the ub_usepolling and disabled cases
1565 * since the soft interrupt is not available. In the disabled case,
1566 * this code can be reached from the usb detach, after the reaping of
1567 * the soft interrupt. That test could be !F_ACTIVE, but there is no
1568 * reason not to make the callbacks directly in the other DISABLED
1569 * cases.
1570 */
1571 if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) {
1572 if (__predict_false(sc->sc_bus.ub_usepolling ||
1573 t->flags & F_DISABLED))
1574 slhci_callback(sc);
1575 else
1576 slhci_callback_schedule(sc);
1577 }
1578
1579 if (!gcq_empty(&sc->sc_waitq)) {
1580 slhci_enter_xfers(sc);
1581 slhci_dotransfer(sc);
1582 goto waitcheck;
1583 }
1584 DLOG(D_INTR, "... done", 0, 0, 0, 0);
1585 }
1586
1587 /* End lock entry functions. Start in lock function. */
1588
1589 /* Register read/write routines and barriers. */
1590 #ifdef SLHCI_BUS_SPACE_BARRIERS
1591 #define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e)
1592 #define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_SYNC)
1593 #else /* now !SLHCI_BUS_SPACE_BARRIERS */
1594 #define BSB(a, b, c, d, e) __USE(d)
1595 #define BSB_SYNC(a, b, c, d)
1596 #endif /* SLHCI_BUS_SPACE_BARRIERS */
1597
1598 static void
1599 slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data)
1600 {
1601 bus_size_t paddr, pdata, pst, psz;
1602 bus_space_tag_t iot;
1603 bus_space_handle_t ioh;
1604
1605 paddr = pst = 0;
1606 pdata = sc->sc_stride;
1607 psz = pdata * 2;
1608 iot = sc->sc_iot;
1609 ioh = sc->sc_ioh;
1610
1611 bus_space_write_1(iot, ioh, paddr, addr);
1612 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1613 bus_space_write_1(iot, ioh, pdata, data);
1614 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1615 }
1616
1617 static uint8_t
1618 slhci_read(struct slhci_softc *sc, uint8_t addr)
1619 {
1620 bus_size_t paddr, pdata, pst, psz;
1621 bus_space_tag_t iot;
1622 bus_space_handle_t ioh;
1623 uint8_t data;
1624
1625 paddr = pst = 0;
1626 pdata = sc->sc_stride;
1627 psz = pdata * 2;
1628 iot = sc->sc_iot;
1629 ioh = sc->sc_ioh;
1630
1631 bus_space_write_1(iot, ioh, paddr, addr);
1632 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1633 data = bus_space_read_1(iot, ioh, pdata);
1634 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1635 return data;
1636 }
1637
1638 #if 0 /* auto-increment mode broken, see errata doc */
1639 static void
1640 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1641 {
1642 bus_size_t paddr, pdata, pst, psz;
1643 bus_space_tag_t iot;
1644 bus_space_handle_t ioh;
1645
1646 paddr = pst = 0;
1647 pdata = sc->sc_stride;
1648 psz = pdata * 2;
1649 iot = sc->sc_iot;
1650 ioh = sc->sc_ioh;
1651
1652 bus_space_write_1(iot, ioh, paddr, addr);
1653 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1654 bus_space_write_multi_1(iot, ioh, pdata, buf, l);
1655 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1656 }
1657
1658 static void
1659 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1660 {
1661 bus_size_t paddr, pdata, pst, psz;
1662 bus_space_tag_t iot;
1663 bus_space_handle_t ioh;
1664
1665 paddr = pst = 0;
1666 pdata = sc->sc_stride;
1667 psz = pdata * 2;
1668 iot = sc->sc_iot;
1669 ioh = sc->sc_ioh;
1670
1671 bus_space_write_1(iot, ioh, paddr, addr);
1672 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1673 bus_space_read_multi_1(iot, ioh, pdata, buf, l);
1674 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1675 }
1676 #else
1677 static void
1678 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1679 {
1680 #if 1
1681 for (; l; addr++, buf++, l--)
1682 slhci_write(sc, addr, *buf);
1683 #else
1684 bus_size_t paddr, pdata, pst, psz;
1685 bus_space_tag_t iot;
1686 bus_space_handle_t ioh;
1687
1688 paddr = pst = 0;
1689 pdata = sc->sc_stride;
1690 psz = pdata * 2;
1691 iot = sc->sc_iot;
1692 ioh = sc->sc_ioh;
1693
1694 for (; l; addr++, buf++, l--) {
1695 bus_space_write_1(iot, ioh, paddr, addr);
1696 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1697 bus_space_write_1(iot, ioh, pdata, *buf);
1698 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1699 }
1700 #endif
1701 }
1702
1703 static void
1704 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1705 {
1706 #if 1
1707 for (; l; addr++, buf++, l--)
1708 *buf = slhci_read(sc, addr);
1709 #else
1710 bus_size_t paddr, pdata, pst, psz;
1711 bus_space_tag_t iot;
1712 bus_space_handle_t ioh;
1713
1714 paddr = pst = 0;
1715 pdata = sc->sc_stride;
1716 psz = pdata * 2;
1717 iot = sc->sc_iot;
1718 ioh = sc->sc_ioh;
1719
1720 for (; l; addr++, buf++, l--) {
1721 bus_space_write_1(iot, ioh, paddr, addr);
1722 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1723 *buf = bus_space_read_1(iot, ioh, pdata);
1724 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1725 }
1726 #endif
1727 }
1728 #endif
1729
1730 /*
1731 * After calling waitintr it is necessary to either call slhci_callback or
1732 * schedule the callback if necessary. The callback cannot be called directly
1733 * from the hard interrupt since it interrupts at a high IPL and callbacks
1734 * can do copyout and such.
1735 */
1736 static void
1737 slhci_waitintr(struct slhci_softc *sc, int wait_time)
1738 {
1739 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1740 struct slhci_transfers *t;
1741
1742 t = &sc->sc_transfers;
1743
1744 KASSERT(mutex_owned(&sc->sc_intr_lock));
1745
1746 if (__predict_false(sc->sc_bus.ub_usepolling))
1747 wait_time = 12000;
1748
1749 while (t->pend <= wait_time) {
1750 DLOG(D_WAIT, "waiting... frame %d pend %d flags %#x",
1751 t->frame, t->pend, t->flags, 0);
1752 LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return);
1753 LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL,
1754 return);
1755 slhci_dointr(sc);
1756 }
1757 DLOG(D_WAIT, "... done", 0, 0, 0, 0);
1758 }
1759
1760 static int
1761 slhci_dointr(struct slhci_softc *sc)
1762 {
1763 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1764 struct slhci_transfers *t;
1765 struct slhci_pipe *tosp;
1766 uint8_t r;
1767
1768 t = &sc->sc_transfers;
1769
1770 KASSERT(mutex_owned(&sc->sc_intr_lock));
1771
1772 if (sc->sc_ier == 0) {
1773 DLOG(D_INTR, "sc_ier is zero", 0, 0, 0, 0);
1774 return 0;
1775 }
1776
1777 r = slhci_read(sc, SL11_ISR);
1778
1779 #ifdef SLHCI_DEBUG
1780 if (slhcidebug & SLHCI_D_INTR && r & sc->sc_ier &&
1781 ((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhcidebug & SLHCI_D_SOF)) {
1782 uint8_t e, f;
1783
1784 e = slhci_read(sc, SL11_IER);
1785 f = slhci_read(sc, SL11_CTRL);
1786 DDOLOG("Flags=%#x IER=%#x ISR=%#x CTRL=%#x", t->flags, e, r, f);
1787 DDOLOGCTRL(f);
1788 DDOLOGISR(r);
1789 }
1790 #endif
1791
1792 /*
1793 * check IER for corruption occasionally. Assume that the above
1794 * sc_ier == 0 case works correctly.
1795 */
1796 if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) {
1797 sc->sc_ier_check = 0;
1798 if (sc->sc_ier != slhci_read(sc, SL11_IER)) {
1799 printf("%s: IER value corrupted! halted\n",
1800 SC_NAME(sc));
1801 DDOLOG("IER value corrupted! halted", 0, 0, 0, 0);
1802 slhci_halt(sc, NULL, NULL);
1803 return 1;
1804 }
1805 }
1806
1807 r &= sc->sc_ier;
1808
1809 if (r == 0) {
1810 DLOG(D_INTR, "r is zero", 0, 0, 0, 0);
1811 return 0;
1812 }
1813
1814 sc->sc_ier_check = 0;
1815
1816 slhci_write(sc, SL11_ISR, r);
1817 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
1818
1819 /* If we have an insertion event we do not care about anything else. */
1820 if (__predict_false(r & SL11_ISR_INSERT)) {
1821 slhci_insert(sc);
1822 DLOG(D_INTR, "... done", 0, 0, 0, 0);
1823 return 1;
1824 }
1825
1826 stop_cc_time(&t_intr);
1827 start_cc_time(&t_intr, r);
1828
1829 if (r & SL11_ISR_SOF) {
1830 t->frame++;
1831
1832 gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]);
1833
1834 /*
1835 * SOFCHECK flags are cleared in tstart. Two flags are needed
1836 * since the first SOF interrupt processed after the transfer
1837 * is started might have been generated before the transfer
1838 * was started.
1839 */
1840 if (__predict_false(t->flags & F_SOFCHECK2 && t->flags &
1841 (F_AINPROG|F_BINPROG))) {
1842 printf("%s: Missed transfer completion. halted\n",
1843 SC_NAME(sc));
1844 DDOLOG("Missed transfer completion. halted", 0, 0, 0,
1845 0);
1846 slhci_halt(sc, NULL, NULL);
1847 return 1;
1848 } else if (t->flags & F_SOFCHECK1) {
1849 t->flags |= F_SOFCHECK2;
1850 } else
1851 t->flags |= F_SOFCHECK1;
1852
1853 if (t->flags & F_CHANGE)
1854 t->flags |= F_ROOTINTR;
1855
1856 while (__predict_true(GOT_FIRST_TO(tosp, t)) &&
1857 __predict_false(tosp->to_frame <= t->frame)) {
1858 tosp->xfer->ux_status = USBD_TIMEOUT;
1859 slhci_do_abort(sc, tosp, tosp->xfer);
1860 enter_callback(t, tosp);
1861 }
1862
1863 /*
1864 * Start any waiting transfers right away. If none, we will
1865 * start any new transfers later.
1866 */
1867 slhci_tstart(sc);
1868 }
1869
1870 if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) {
1871 int ab;
1872
1873 if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) ==
1874 (SL11_ISR_USBA|SL11_ISR_USBB)) {
1875 if (!(t->flags & (F_AINPROG|F_BINPROG)))
1876 return 1; /* presume card pulled */
1877
1878 LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) !=
1879 (F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1);
1880
1881 /*
1882 * This should never happen (unless card removal just
1883 * occurred) but appeared frequently when both
1884 * transfers were started at the same time and was
1885 * accompanied by data corruption. It still happens
1886 * at times. I have not seen data correption except
1887 * when the STATUS bit gets set, which now causes the
1888 * driver to halt, however this should still not
1889 * happen so the warning is kept. See comment in
1890 * abdone, below.
1891 */
1892 printf("%s: Transfer reported done but not started! "
1893 "Verify data integrity if not detaching. "
1894 " flags %#x r %x\n", SC_NAME(sc), t->flags, r);
1895
1896 if (!(t->flags & F_AINPROG))
1897 r &= ~SL11_ISR_USBA;
1898 else
1899 r &= ~SL11_ISR_USBB;
1900 }
1901 t->pend = INT_MAX;
1902
1903 if (r & SL11_ISR_USBA)
1904 ab = A;
1905 else
1906 ab = B;
1907
1908 /*
1909 * This happens when a low speed device is attached to
1910 * a hub with chip rev 1.5. SOF stops, but a few transfers
1911 * still work before causing this error.
1912 */
1913 if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) {
1914 printf("%s: %s done but not in progress! halted\n",
1915 SC_NAME(sc), ab ? "B" : "A");
1916 DDOLOG("AB=%d done but not in progress! halted", ab,
1917 0, 0, 0);
1918 slhci_halt(sc, NULL, NULL);
1919 return 1;
1920 }
1921
1922 t->flags &= ~(ab ? F_BINPROG : F_AINPROG);
1923 slhci_tstart(sc);
1924 stop_cc_time(&t_ab[ab]);
1925 start_cc_time(&t_abdone, t->flags);
1926 slhci_abdone(sc, ab);
1927 stop_cc_time(&t_abdone);
1928 }
1929
1930 slhci_dotransfer(sc);
1931
1932 DLOG(D_INTR, "... done", 0, 0, 0, 0);
1933
1934 return 1;
1935 }
1936
1937 static void
1938 slhci_abdone(struct slhci_softc *sc, int ab)
1939 {
1940 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1941 struct slhci_transfers *t;
1942 struct slhci_pipe *spipe;
1943 struct usbd_xfer *xfer;
1944 uint8_t status, buf_start;
1945 uint8_t *target_buf;
1946 unsigned int actlen;
1947 int head;
1948
1949 t = &sc->sc_transfers;
1950
1951 KASSERT(mutex_owned(&sc->sc_intr_lock));
1952
1953 DLOG(D_TRACE, "ABDONE flags %#x", t->flags, 0,0,0);
1954
1955 DLOG(D_MSG, "DONE AB=%d spipe %p len %d xfer %p", ab, t->spipe[ab],
1956 t->len[ab], t->spipe[ab] ? t->spipe[ab]->xfer : NULL);
1957
1958 spipe = t->spipe[ab];
1959
1960 /*
1961 * skip this one if aborted; do not call return from the rest of the
1962 * function unless halting, else t->len will not be cleared.
1963 */
1964 if (spipe == NULL)
1965 goto done;
1966
1967 t->spipe[ab] = NULL;
1968
1969 xfer = spipe->xfer;
1970
1971 gcq_remove(&spipe->to);
1972
1973 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
1974
1975 status = slhci_read(sc, slhci_tregs[ab][STAT]);
1976
1977 /*
1978 * I saw no status or remaining length greater than the requested
1979 * length in early driver versions in circumstances I assumed caused
1980 * excess power draw. I am no longer able to reproduce this when
1981 * causing excess power draw circumstances.
1982 *
1983 * Disabling a power check and attaching aue to a keyboard and hub
1984 * that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard
1985 * 98mA) sometimes works and sometimes fails to configure. After
1986 * removing the aue and attaching a self-powered umass dvd reader
1987 * (unknown if it draws power from the host also) soon a single Error
1988 * status occurs then only timeouts. The controller soon halts freeing
1989 * memory due to being ONQU instead of BUSY. This may be the same
1990 * basic sequence that caused the no status/bad length errors. The
1991 * umass device seems to work (better at least) with the keyboard hub
1992 * when not first attaching aue (tested once reading an approximately
1993 * 200MB file).
1994 *
1995 * Overflow can indicate that the device and host disagree about how
1996 * much data has been transfered. This may indicate a problem at any
1997 * point during the transfer, not just when the error occurs. It may
1998 * indicate data corruption. A warning message is printed.
1999 *
2000 * Trying to use both A and B transfers at the same time results in
2001 * incorrect transfer completion ISR reports and the status will then
2002 * include SL11_EPSTAT_SETUP, which is apparently set while the
2003 * transfer is in progress. I also noticed data corruption, even
2004 * after waiting for the transfer to complete. The driver now avoids
2005 * trying to start both at the same time.
2006 *
2007 * I had accidently initialized the B registers before they were valid
2008 * in some driver versions. Since every other performance enhancing
2009 * feature has been confirmed buggy in the errata doc, I have not
2010 * tried both transfers at once again with the documented
2011 * initialization order.
2012 *
2013 * However, I have seen this problem again ("done but not started"
2014 * errors), which in some cases cases the SETUP status bit to remain
2015 * set on future transfers. In other cases, the SETUP bit is not set
2016 * and no data corruption occurs. This occured while using both umass
2017 * and aue on a powered hub (maybe triggered by some local activity
2018 * also) and needs several reads of the 200MB file to trigger. The
2019 * driver now halts if SETUP is detected.
2020 */
2021
2022 actlen = 0;
2023
2024 if (__predict_false(!status)) {
2025 DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0);
2026 printf("%s: no status! halted\n", SC_NAME(sc));
2027 slhci_halt(sc, spipe, xfer);
2028 return;
2029 }
2030
2031 #ifdef SLHCI_DEBUG
2032 if ((slhcidebug & SLHCI_D_NAK) ||
2033 (status & SL11_EPSTAT_ERRBITS) != SL11_EPSTAT_NAK) {
2034 DDOLOG("USB Status = %#.2x", status, 0, 0, 0);
2035 DDOLOGSTATUS(status);
2036 }
2037 #endif
2038
2039 if (!(status & SL11_EPSTAT_ERRBITS)) {
2040 unsigned int cont;
2041 cont = slhci_read(sc, slhci_tregs[ab][CONT]);
2042 if (cont != 0)
2043 DLOG(D_XFER, "cont %d len %d", cont,
2044 spipe->tregs[LEN], 0,0);
2045 if (__predict_false(cont > spipe->tregs[LEN])) {
2046 DDOLOG("cont > len! cont %d len %d xfer->ux_length %d "
2047 "spipe %p", cont, spipe->tregs[LEN], xfer->ux_length,
2048 spipe);
2049 printf("%s: cont > len! cont %d len %d xfer->ux_length "
2050 "%d", SC_NAME(sc), cont, spipe->tregs[LEN],
2051 xfer->ux_length);
2052 slhci_halt(sc, spipe, xfer);
2053 return;
2054 } else {
2055 spipe->nerrs = 0;
2056 actlen = spipe->tregs[LEN] - cont;
2057 }
2058 }
2059
2060 /* Actual copyin done after starting next transfer. */
2061 if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) {
2062 target_buf = spipe->buffer;
2063 buf_start = spipe->tregs[ADR];
2064 } else {
2065 target_buf = NULL;
2066 buf_start = 0; /* XXX gcc uninitialized warnings */
2067 }
2068
2069 if (status & SL11_EPSTAT_ERRBITS) {
2070 status &= SL11_EPSTAT_ERRBITS;
2071 if (status & SL11_EPSTAT_SETUP) {
2072 printf("%s: Invalid controller state detected! "
2073 "halted\n", SC_NAME(sc));
2074 DDOLOG("Invalid controller state detected! "
2075 "halted", 0, 0, 0, 0);
2076 slhci_halt(sc, spipe, xfer);
2077 return;
2078 } else if (__predict_false(sc->sc_bus.ub_usepolling)) {
2079 if (status == SL11_EPSTAT_STALL)
2080 xfer->ux_status = USBD_STALLED;
2081 else if (status == SL11_EPSTAT_TIMEOUT)
2082 xfer->ux_status = USBD_TIMEOUT;
2083 else if (status == SL11_EPSTAT_NAK)
2084 xfer->ux_status = USBD_TIMEOUT; /*XXX*/
2085 else
2086 xfer->ux_status = USBD_IOERROR;
2087 head = Q_CALLBACKS;
2088 } else if (status == SL11_EPSTAT_NAK) {
2089 if (spipe->pipe.up_interval) {
2090 spipe->lastframe = spipe->frame =
2091 t->frame + spipe->pipe.up_interval;
2092 slhci_queue_timed(sc, spipe);
2093 goto queued;
2094 }
2095 head = Q_NEXT_CB;
2096 } else if (++spipe->nerrs > SLHCI_MAX_RETRIES ||
2097 status == SL11_EPSTAT_STALL) {
2098 if (status == SL11_EPSTAT_STALL)
2099 xfer->ux_status = USBD_STALLED;
2100 else if (status == SL11_EPSTAT_TIMEOUT)
2101 xfer->ux_status = USBD_TIMEOUT;
2102 else
2103 xfer->ux_status = USBD_IOERROR;
2104
2105 DLOG(D_ERR, "Max retries reached! status %#x "
2106 "xfer->ux_status %#x", status, xfer->ux_status, 0,
2107 0);
2108 DDOLOGSTATUS(status);
2109
2110 if (status == SL11_EPSTAT_OVERFLOW &&
2111 ratecheck(&sc->sc_overflow_warn_rate,
2112 &overflow_warn_rate)) {
2113 printf("%s: Overflow condition: "
2114 "data corruption possible\n",
2115 SC_NAME(sc));
2116 DDOLOG("Overflow condition: "
2117 "data corruption possible",
2118 0, 0, 0, 0);
2119 }
2120 head = Q_CALLBACKS;
2121 } else {
2122 head = Q_NEXT_CB;
2123 }
2124 } else if (spipe->ptype == PT_CTRL_SETUP) {
2125 spipe->tregs[PID] = spipe->newpid;
2126
2127 if (xfer->ux_length) {
2128 LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer,
2129 return);
2130 spipe->tregs[LEN] = spipe->newlen[1];
2131 spipe->bustime = spipe->newbustime[1];
2132 spipe->buffer = xfer->ux_buf;
2133 spipe->ptype = PT_CTRL_DATA;
2134 } else {
2135 status_setup:
2136 /* CTRL_DATA swaps direction in PID then jumps here */
2137 spipe->tregs[LEN] = 0;
2138 if (spipe->pflags & PF_LS)
2139 spipe->bustime = SLHCI_LS_CONST;
2140 else
2141 spipe->bustime = SLHCI_FS_CONST;
2142 spipe->ptype = PT_CTRL_STATUS;
2143 spipe->buffer = NULL;
2144 }
2145
2146 /* Status or first data packet must be DATA1. */
2147 spipe->control |= SL11_EPCTRL_DATATOGGLE;
2148 if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN)
2149 spipe->control &= ~SL11_EPCTRL_DIRECTION;
2150 else
2151 spipe->control |= SL11_EPCTRL_DIRECTION;
2152
2153 head = Q_CB;
2154 } else if (spipe->ptype == PT_CTRL_STATUS) {
2155 head = Q_CALLBACKS;
2156 } else { /* bulk, intr, control data */
2157 xfer->ux_actlen += actlen;
2158 spipe->control ^= SL11_EPCTRL_DATATOGGLE;
2159
2160 if (actlen == spipe->tregs[LEN] && (xfer->ux_length >
2161 xfer->ux_actlen || spipe->wantshort)) {
2162 spipe->buffer += actlen;
2163 LK_SLASSERT(xfer->ux_length >= xfer->ux_actlen, sc,
2164 spipe, xfer, return);
2165 if (xfer->ux_length - xfer->ux_actlen < actlen) {
2166 spipe->wantshort = 0;
2167 spipe->tregs[LEN] = spipe->newlen[0];
2168 spipe->bustime = spipe->newbustime[0];
2169 LK_SLASSERT(xfer->ux_actlen +
2170 spipe->tregs[LEN] == xfer->ux_length, sc,
2171 spipe, xfer, return);
2172 }
2173 head = Q_CB;
2174 } else if (spipe->ptype == PT_CTRL_DATA) {
2175 spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT;
2176 goto status_setup;
2177 } else {
2178 if (spipe->ptype == PT_INTR) {
2179 spipe->lastframe +=
2180 spipe->pipe.up_interval;
2181 /*
2182 * If ack, we try to keep the
2183 * interrupt rate by using lastframe
2184 * instead of the current frame.
2185 */
2186 spipe->frame = spipe->lastframe +
2187 spipe->pipe.up_interval;
2188 }
2189
2190 /*
2191 * Set the toggle for the next transfer. It
2192 * has already been toggled above, so the
2193 * current setting will apply to the next
2194 * transfer.
2195 */
2196 if (spipe->control & SL11_EPCTRL_DATATOGGLE)
2197 spipe->pflags |= PF_TOGGLE;
2198 else
2199 spipe->pflags &= ~PF_TOGGLE;
2200
2201 head = Q_CALLBACKS;
2202 }
2203 }
2204
2205 if (head == Q_CALLBACKS) {
2206 gcq_remove(&spipe->to);
2207
2208 if (xfer->ux_status == USBD_IN_PROGRESS) {
2209 LK_SLASSERT(xfer->ux_actlen <= xfer->ux_length, sc,
2210 spipe, xfer, return);
2211 xfer->ux_status = USBD_NORMAL_COMPLETION;
2212 }
2213 }
2214
2215 enter_q(t, spipe, head);
2216
2217 queued:
2218 if (target_buf != NULL) {
2219 slhci_dotransfer(sc);
2220 start_cc_time(&t_copy_from_dev, actlen);
2221 slhci_read_multi(sc, buf_start, target_buf, actlen);
2222 stop_cc_time(&t_copy_from_dev);
2223 DLOGBUF(D_BUF, target_buf, actlen);
2224 t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen);
2225 }
2226
2227 done:
2228 t->len[ab] = -1;
2229 }
2230
2231 static void
2232 slhci_tstart(struct slhci_softc *sc)
2233 {
2234 struct slhci_transfers *t;
2235 struct slhci_pipe *spipe;
2236 int remaining_bustime;
2237
2238 t = &sc->sc_transfers;
2239
2240 KASSERT(mutex_owned(&sc->sc_intr_lock));
2241
2242 if (!(t->flags & (F_AREADY|F_BREADY)))
2243 return;
2244
2245 if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED))
2246 return;
2247
2248 /*
2249 * We have about 6 us to get from the bus time check to
2250 * starting the transfer or we might babble or the chip might fail to
2251 * signal transfer complete. This leaves no time for any other
2252 * interrupts.
2253 */
2254 remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6;
2255 remaining_bustime -= SLHCI_END_BUSTIME;
2256
2257 /*
2258 * Start one transfer only, clearing any aborted transfers that are
2259 * not yet in progress and skipping missed isoc. It is easier to copy
2260 * & paste most of the A/B sections than to make the logic work
2261 * otherwise and this allows better constant use.
2262 */
2263 if (t->flags & F_AREADY) {
2264 spipe = t->spipe[A];
2265 if (spipe == NULL) {
2266 t->flags &= ~F_AREADY;
2267 t->len[A] = -1;
2268 } else if (remaining_bustime >= spipe->bustime) {
2269 t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2);
2270 t->flags |= F_AINPROG;
2271 start_cc_time(&t_ab[A], spipe->tregs[LEN]);
2272 slhci_write(sc, SL11_E0CTRL, spipe->control);
2273 goto pend;
2274 }
2275 }
2276 if (t->flags & F_BREADY) {
2277 spipe = t->spipe[B];
2278 if (spipe == NULL) {
2279 t->flags &= ~F_BREADY;
2280 t->len[B] = -1;
2281 } else if (remaining_bustime >= spipe->bustime) {
2282 t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2);
2283 t->flags |= F_BINPROG;
2284 start_cc_time(&t_ab[B], spipe->tregs[LEN]);
2285 slhci_write(sc, SL11_E1CTRL, spipe->control);
2286 pend:
2287 t->pend = spipe->bustime;
2288 }
2289 }
2290 }
2291
2292 static void
2293 slhci_dotransfer(struct slhci_softc *sc)
2294 {
2295 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2296 struct slhci_transfers *t;
2297 struct slhci_pipe *spipe;
2298 int ab, i;
2299
2300 t = &sc->sc_transfers;
2301
2302 KASSERT(mutex_owned(&sc->sc_intr_lock));
2303
2304 while ((t->len[A] == -1 || t->len[B] == -1) &&
2305 (GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) ||
2306 GOT_FIRST_CB(spipe, t))) {
2307 LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return);
2308 LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype !=
2309 PT_ROOT_INTR, sc, spipe, NULL, return);
2310
2311 /* Check that this transfer can fit in the remaining memory. */
2312 if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 >
2313 SL11_MAX_PACKET_SIZE) {
2314 DLOG(D_XFER, "Transfer does not fit. alen %d blen %d "
2315 "len %d", t->len[A], t->len[B], spipe->tregs[LEN],
2316 0);
2317 return;
2318 }
2319
2320 gcq_remove(&spipe->xq);
2321
2322 if (t->len[A] == -1) {
2323 ab = A;
2324 spipe->tregs[ADR] = SL11_BUFFER_START;
2325 } else {
2326 ab = B;
2327 spipe->tregs[ADR] = SL11_BUFFER_END -
2328 spipe->tregs[LEN];
2329 }
2330
2331 t->len[ab] = spipe->tregs[LEN];
2332
2333 if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS)
2334 != SL11_PID_IN) {
2335 start_cc_time(&t_copy_to_dev,
2336 spipe->tregs[LEN]);
2337 slhci_write_multi(sc, spipe->tregs[ADR],
2338 spipe->buffer, spipe->tregs[LEN]);
2339 stop_cc_time(&t_copy_to_dev);
2340 t->pend -= SLHCI_FS_CONST +
2341 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
2342 }
2343
2344 DLOG(D_MSG, "NEW TRANSFER AB=%d flags %#x alen %d blen %d",
2345 ab, t->flags, t->len[0], t->len[1]);
2346
2347 if (spipe->tregs[LEN])
2348 i = 0;
2349 else
2350 i = 1;
2351
2352 for (; i <= 3; i++)
2353 if (t->current_tregs[ab][i] != spipe->tregs[i]) {
2354 t->current_tregs[ab][i] = spipe->tregs[i];
2355 slhci_write(sc, slhci_tregs[ab][i],
2356 spipe->tregs[i]);
2357 }
2358
2359 DLOG(D_SXFER, "Transfer len %d pid %#x dev %d type %d",
2360 spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV],
2361 spipe->ptype);
2362
2363 t->spipe[ab] = spipe;
2364 t->flags |= ab ? F_BREADY : F_AREADY;
2365
2366 slhci_tstart(sc);
2367 }
2368 }
2369
2370 /*
2371 * slhci_callback is called after the lock is taken.
2372 */
2373 static void
2374 slhci_callback(struct slhci_softc *sc)
2375 {
2376 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2377 struct slhci_transfers *t;
2378 struct slhci_pipe *spipe;
2379 struct usbd_xfer *xfer;
2380
2381 t = &sc->sc_transfers;
2382
2383 KASSERT(mutex_owned(&sc->sc_intr_lock));
2384
2385 DLOG(D_SOFT, "CB flags %#x", t->flags, 0,0,0);
2386 for (;;) {
2387 if (__predict_false(t->flags & F_ROOTINTR)) {
2388 t->flags &= ~F_ROOTINTR;
2389 if (t->rootintr != NULL) {
2390 u_char *p;
2391
2392 p = t->rootintr->ux_buf;
2393 p[0] = 2;
2394 t->rootintr->ux_actlen = 1;
2395 t->rootintr->ux_status = USBD_NORMAL_COMPLETION;
2396 xfer = t->rootintr;
2397 goto do_callback;
2398 }
2399 }
2400
2401
2402 if (!DEQUEUED_CALLBACK(spipe, t))
2403 return;
2404
2405 xfer = spipe->xfer;
2406 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
2407 spipe->xfer = NULL;
2408 DLOG(D_XFER, "xfer callback length %d actlen %d spipe %p "
2409 "type %d", xfer->ux_length, xfer->ux_actlen, spipe,
2410 spipe->ptype);
2411 do_callback:
2412 slhci_do_callback(sc, xfer);
2413 }
2414 }
2415
2416 static void
2417 slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2418 {
2419 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2420 struct slhci_transfers *t;
2421
2422 t = &sc->sc_transfers;
2423
2424 KASSERT(mutex_owned(&sc->sc_intr_lock));
2425
2426 if (__predict_false(t->flags & F_DISABLED) ||
2427 __predict_false(spipe->pflags & PF_GONE)) {
2428 DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0);
2429 spipe->xfer->ux_status = USBD_CANCELLED;
2430 }
2431
2432 if (spipe->xfer->ux_status == USBD_IN_PROGRESS) {
2433 if (spipe->xfer->ux_timeout) {
2434 spipe->to_frame = t->frame + spipe->xfer->ux_timeout;
2435 slhci_xfer_timer(sc, spipe);
2436 }
2437 if (spipe->pipe.up_interval)
2438 slhci_queue_timed(sc, spipe);
2439 else
2440 enter_q(t, spipe, Q_CB);
2441 } else
2442 enter_callback(t, spipe);
2443 }
2444
2445 static void
2446 slhci_enter_xfers(struct slhci_softc *sc)
2447 {
2448 struct slhci_pipe *spipe;
2449
2450 KASSERT(mutex_owned(&sc->sc_intr_lock));
2451
2452 while (DEQUEUED_WAITQ(spipe, sc))
2453 slhci_enter_xfer(sc, spipe);
2454 }
2455
2456 static void
2457 slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe)
2458 {
2459 struct slhci_transfers *t;
2460 struct gcq *q;
2461 struct slhci_pipe *spp;
2462
2463 t = &sc->sc_transfers;
2464
2465 KASSERT(mutex_owned(&sc->sc_intr_lock));
2466
2467 FIND_TIMED(q, t, spp, spp->frame > spipe->frame);
2468 gcq_insert_before(q, &spipe->xq);
2469 }
2470
2471 static void
2472 slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2473 {
2474 struct slhci_transfers *t;
2475 struct gcq *q;
2476 struct slhci_pipe *spp;
2477
2478 t = &sc->sc_transfers;
2479
2480 KASSERT(mutex_owned(&sc->sc_intr_lock));
2481
2482 FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame);
2483 gcq_insert_before(q, &spipe->to);
2484 }
2485
2486 static void
2487 slhci_callback_schedule(struct slhci_softc *sc)
2488 {
2489 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2490 struct slhci_transfers *t;
2491
2492 t = &sc->sc_transfers;
2493
2494 KASSERT(mutex_owned(&sc->sc_intr_lock));
2495
2496 if (t->flags & F_ACTIVE)
2497 slhci_do_callback_schedule(sc);
2498 }
2499
2500 static void
2501 slhci_do_callback_schedule(struct slhci_softc *sc)
2502 {
2503 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2504 struct slhci_transfers *t;
2505
2506 t = &sc->sc_transfers;
2507
2508 KASSERT(mutex_owned(&sc->sc_intr_lock));
2509
2510 DLOG(D_MSG, "flags %#x", t->flags, 0, 0, 0);
2511 if (!(t->flags & F_CALLBACK)) {
2512 t->flags |= F_CALLBACK;
2513 softint_schedule(sc->sc_cb_softintr);
2514 }
2515 }
2516
2517 #if 0
2518 /* must be called with lock taken. */
2519 /* XXX static */ void
2520 slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer)
2521 {
2522 KASSERT(mutex_owned(&sc->sc_intr_lock));
2523 slhci_dotransfer(sc);
2524 do {
2525 slhci_dointr(sc);
2526 } while (xfer->ux_status == USBD_IN_PROGRESS);
2527 slhci_do_callback(sc, xfer);
2528 }
2529 #endif
2530
2531 static usbd_status
2532 slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2533 usbd_xfer *xfer)
2534 {
2535 slhci_waitintr(sc, 0);
2536
2537 return USBD_NORMAL_COMPLETION;
2538 }
2539
2540 static usbd_status
2541 slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2542 usbd_xfer *xfer)
2543 {
2544 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2545 struct slhci_transfers *t;
2546
2547 t = &sc->sc_transfers;
2548
2549 if (!(t->flags & F_LSVH_WARNED)) {
2550 printf("%s: Low speed device via hub disabled, "
2551 "see slhci(4)\n", SC_NAME(sc));
2552 DDOLOG("Low speed device via hub disabled, "
2553 "see slhci(4)", SC_NAME(sc), 0,0,0);
2554 t->flags |= F_LSVH_WARNED;
2555 }
2556 return USBD_INVAL;
2557 }
2558
2559 static usbd_status
2560 slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2561 usbd_xfer *xfer)
2562 {
2563 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2564 struct slhci_transfers *t;
2565
2566 t = &sc->sc_transfers;
2567
2568 if (!(t->flags & F_ISOC_WARNED)) {
2569 printf("%s: ISOC transfer not supported "
2570 "(see slhci(4))\n", SC_NAME(sc));
2571 DDOLOG("ISOC transfer not supported "
2572 "(see slhci(4))", 0, 0, 0, 0);
2573 t->flags |= F_ISOC_WARNED;
2574 }
2575 return USBD_INVAL;
2576 }
2577
2578 static usbd_status
2579 slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2580 usbd_xfer *xfer)
2581 {
2582 struct slhci_transfers *t;
2583 struct usbd_pipe *pipe;
2584
2585 t = &sc->sc_transfers;
2586 pipe = &spipe->pipe;
2587
2588 if (t->flags & F_DISABLED)
2589 return USBD_CANCELLED;
2590 else if (pipe->up_interval && !slhci_reserve_bustime(sc, spipe, 1))
2591 return USBD_PENDING_REQUESTS;
2592 else {
2593 enter_all_pipes(t, spipe);
2594 return USBD_NORMAL_COMPLETION;
2595 }
2596 }
2597
2598 static usbd_status
2599 slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2600 usbd_xfer *xfer)
2601 {
2602 struct usbd_pipe *pipe;
2603
2604 pipe = &spipe->pipe;
2605
2606 if (pipe->up_interval && spipe->ptype != PT_ROOT_INTR)
2607 slhci_reserve_bustime(sc, spipe, 0);
2608 gcq_remove(&spipe->ap);
2609 return USBD_NORMAL_COMPLETION;
2610 }
2611
2612 static usbd_status
2613 slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2614 usbd_xfer *xfer)
2615 {
2616 struct slhci_transfers *t;
2617
2618 t = &sc->sc_transfers;
2619
2620 KASSERT(mutex_owned(&sc->sc_intr_lock));
2621
2622 if (spipe->xfer == xfer) {
2623 if (spipe->ptype == PT_ROOT_INTR) {
2624 if (t->rootintr == spipe->xfer) /* XXX assert? */
2625 t->rootintr = NULL;
2626 } else {
2627 gcq_remove(&spipe->to);
2628 gcq_remove(&spipe->xq);
2629
2630 if (t->spipe[A] == spipe) {
2631 t->spipe[A] = NULL;
2632 if (!(t->flags & F_AINPROG))
2633 t->len[A] = -1;
2634 } else if (t->spipe[B] == spipe) {
2635 t->spipe[B] = NULL;
2636 if (!(t->flags & F_BINPROG))
2637 t->len[B] = -1;
2638 }
2639 }
2640
2641 if (xfer->ux_status != USBD_TIMEOUT) {
2642 spipe->xfer = NULL;
2643 spipe->pipe.up_repeat = 0; /* XXX timeout? */
2644 }
2645 }
2646
2647 return USBD_NORMAL_COMPLETION;
2648 }
2649
2650 /*
2651 * Called to deactivate or stop use of the controller instead of panicking.
2652 * Will cancel the xfer correctly even when not on a list.
2653 */
2654 static usbd_status
2655 slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe,
2656 struct usbd_xfer *xfer)
2657 {
2658 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2659 struct slhci_transfers *t;
2660
2661 KASSERT(mutex_owned(&sc->sc_intr_lock));
2662
2663 t = &sc->sc_transfers;
2664
2665 DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0);
2666
2667 if (spipe != NULL)
2668 slhci_log_spipe(spipe);
2669
2670 if (xfer != NULL)
2671 slhci_log_xfer(xfer);
2672
2673 if (spipe != NULL && xfer != NULL && spipe->xfer == xfer &&
2674 !gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] !=
2675 spipe) {
2676 xfer->ux_status = USBD_CANCELLED;
2677 enter_callback(t, spipe);
2678 }
2679
2680 if (t->flags & F_ACTIVE) {
2681 slhci_intrchange(sc, 0);
2682 /*
2683 * leave power on when halting in case flash devices or disks
2684 * are attached, which may be writing and could be damaged
2685 * by abrupt power loss. The root hub clear power feature
2686 * should still work after halting.
2687 */
2688 }
2689
2690 t->flags &= ~F_ACTIVE;
2691 t->flags |= F_UDISABLED;
2692 if (!(t->flags & F_NODEV))
2693 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
2694 slhci_drain(sc);
2695
2696 /* One last callback for the drain and device removal. */
2697 slhci_do_callback_schedule(sc);
2698
2699 return USBD_NORMAL_COMPLETION;
2700 }
2701
2702 /*
2703 * There are three interrupt states: no interrupts during reset and after
2704 * device deactivation, INSERT only for no device present but power on, and
2705 * SOF, INSERT, ADONE, and BDONE when device is present.
2706 */
2707 static void
2708 slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier)
2709 {
2710 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2711 KASSERT(mutex_owned(&sc->sc_intr_lock));
2712 if (sc->sc_ier != new_ier) {
2713 DLOG(D_INTR, "New IER %#x", new_ier, 0, 0, 0);
2714 sc->sc_ier = new_ier;
2715 slhci_write(sc, SL11_IER, new_ier);
2716 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
2717 }
2718 }
2719
2720 /*
2721 * Drain: cancel all pending transfers and put them on the callback list and
2722 * set the UDISABLED flag. UDISABLED is cleared only by reset.
2723 */
2724 static void
2725 slhci_drain(struct slhci_softc *sc)
2726 {
2727 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2728 struct slhci_transfers *t;
2729 struct slhci_pipe *spipe;
2730 struct gcq *q;
2731 int i;
2732
2733 KASSERT(mutex_owned(&sc->sc_intr_lock));
2734
2735 t = &sc->sc_transfers;
2736
2737 DLOG(D_MSG, "DRAIN flags %#x", t->flags, 0,0,0);
2738
2739 t->pend = INT_MAX;
2740
2741 for (i=0; i<=1; i++) {
2742 t->len[i] = -1;
2743 if (t->spipe[i] != NULL) {
2744 enter_callback(t, t->spipe[i]);
2745 t->spipe[i] = NULL;
2746 }
2747 }
2748
2749 /* Merge the queues into the callback queue. */
2750 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]);
2751 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]);
2752 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed);
2753
2754 /*
2755 * Cancel all pipes. Note that not all of these may be on the
2756 * callback queue yet; some could be in slhci_start, for example.
2757 */
2758 FOREACH_AP(q, t, spipe) {
2759 spipe->pflags |= PF_GONE;
2760 spipe->pipe.up_repeat = 0;
2761 spipe->pipe.up_aborting = 1;
2762 if (spipe->xfer != NULL)
2763 spipe->xfer->ux_status = USBD_CANCELLED;
2764 }
2765
2766 gcq_remove_all(&t->to);
2767
2768 t->flags |= F_UDISABLED;
2769 t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED);
2770 }
2771
2772 /*
2773 * RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms
2774 * reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF)
2775 * check attached device speed.
2776 * must wait 100ms before USB transaction according to app note, 10ms
2777 * by spec. uhub does this delay
2778 *
2779 * Started from root hub set feature reset, which does step one.
2780 * ub_usepolling will call slhci_reset directly, otherwise the callout goes
2781 * through slhci_reset_entry.
2782 */
2783 void
2784 slhci_reset(struct slhci_softc *sc)
2785 {
2786 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2787 struct slhci_transfers *t;
2788 struct slhci_pipe *spipe;
2789 struct gcq *q;
2790 uint8_t r, pol, ctrl;
2791
2792 t = &sc->sc_transfers;
2793 KASSERT(mutex_owned(&sc->sc_intr_lock));
2794
2795 stop_cc_time(&t_delay);
2796
2797 KASSERT(t->flags & F_ACTIVE);
2798
2799 start_cc_time(&t_delay, 0);
2800 stop_cc_time(&t_delay);
2801
2802 slhci_write(sc, SL11_CTRL, 0);
2803 start_cc_time(&t_delay, 3);
2804 DELAY(3);
2805 stop_cc_time(&t_delay);
2806 slhci_write(sc, SL11_ISR, 0xff);
2807
2808 r = slhci_read(sc, SL11_ISR);
2809
2810 if (r & SL11_ISR_INSERT)
2811 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
2812
2813 if (r & SL11_ISR_NODEV) {
2814 DLOG(D_MSG, "NC", 0,0,0,0);
2815 /*
2816 * Normally, the hard interrupt insert routine will issue
2817 * CCONNECT, however we need to do it here if the detach
2818 * happened during reset.
2819 */
2820 if (!(t->flags & F_NODEV))
2821 t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV;
2822 slhci_intrchange(sc, SL11_IER_INSERT);
2823 } else {
2824 if (t->flags & F_NODEV)
2825 t->flags |= F_CCONNECT;
2826 t->flags &= ~(F_NODEV|F_LOWSPEED);
2827 if (r & SL11_ISR_DATA) {
2828 DLOG(D_MSG, "FS", 0,0,0,0);
2829 pol = ctrl = 0;
2830 } else {
2831 DLOG(D_MSG, "LS", 0,0,0,0);
2832 pol = SL811_CSOF_POLARITY;
2833 ctrl = SL11_CTRL_LOWSPEED;
2834 t->flags |= F_LOWSPEED;
2835 }
2836
2837 /* Enable SOF auto-generation */
2838 t->frame = 0; /* write to SL811_CSOF will reset frame */
2839 slhci_write(sc, SL11_SOFTIME, 0xe0);
2840 slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e);
2841 slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF);
2842
2843 /*
2844 * According to the app note, ARM must be set
2845 * for SOF generation to work. We initialize all
2846 * USBA registers here for current_tregs.
2847 */
2848 slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START);
2849 slhci_write(sc, SL11_E0LEN, 0);
2850 slhci_write(sc, SL11_E0PID, SL11_PID_SOF);
2851 slhci_write(sc, SL11_E0DEV, 0);
2852 slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM);
2853
2854 /*
2855 * Initialize B registers. This can't be done earlier since
2856 * they are not valid until the SL811_CSOF register is written
2857 * above due to SL11H compatability.
2858 */
2859 slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8);
2860 slhci_write(sc, SL11_E1LEN, 0);
2861 slhci_write(sc, SL11_E1PID, 0);
2862 slhci_write(sc, SL11_E1DEV, 0);
2863
2864 t->current_tregs[0][ADR] = SL11_BUFFER_START;
2865 t->current_tregs[0][LEN] = 0;
2866 t->current_tregs[0][PID] = SL11_PID_SOF;
2867 t->current_tregs[0][DEV] = 0;
2868 t->current_tregs[1][ADR] = SL11_BUFFER_END - 8;
2869 t->current_tregs[1][LEN] = 0;
2870 t->current_tregs[1][PID] = 0;
2871 t->current_tregs[1][DEV] = 0;
2872
2873 /* SOF start will produce USBA interrupt */
2874 t->len[A] = 0;
2875 t->flags |= F_AINPROG;
2876
2877 slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS);
2878 }
2879
2880 t->flags &= ~(F_UDISABLED|F_RESET);
2881 t->flags |= F_CRESET|F_ROOTINTR;
2882 FOREACH_AP(q, t, spipe) {
2883 spipe->pflags &= ~PF_GONE;
2884 spipe->pipe.up_aborting = 0;
2885 }
2886 DLOG(D_MSG, "RESET done flags %#x", t->flags, 0,0,0);
2887 }
2888
2889
2890 #ifdef SLHCI_DEBUG
2891 static int
2892 slhci_memtest(struct slhci_softc *sc)
2893 {
2894 enum { ASC, DESC, EITHER = ASC }; /* direction */
2895 enum { READ, WRITE }; /* operation */
2896 const char *ptr, *elem;
2897 size_t i;
2898 const int low = SL11_BUFFER_START, high = SL11_BUFFER_END;
2899 int addr = 0, dir = ASC, op = READ;
2900 /* Extended March C- test algorithm (SOFs also) */
2901 const char test[] = "E(w0) A(r0w1r1) A(r1w0r0) D(r0w1) D(r1w0) E(r0)";
2902 char c;
2903 const uint8_t dbs[] = { 0x00, 0x0f, 0x33, 0x55 }; /* data backgrounds */
2904 uint8_t db;
2905
2906 /* Perform memory test for all data backgrounds. */
2907 for (i = 0; i < __arraycount(dbs); i++) {
2908 ptr = test;
2909 elem = ptr;
2910 /* Walk test algorithm string. */
2911 while ((c = *ptr++) != '\0')
2912 switch (tolower((int)c)) {
2913 case 'a':
2914 /* Address sequence is in ascending order. */
2915 dir = ASC;
2916 break;
2917 case 'd':
2918 /* Address sequence is in descending order. */
2919 dir = DESC;
2920 break;
2921 case 'e':
2922 /* Address sequence is in either order. */
2923 dir = EITHER;
2924 break;
2925 case '(':
2926 /* Start of test element (sequence). */
2927 elem = ptr;
2928 addr = (dir == ASC) ? low : high;
2929 break;
2930 case 'r':
2931 /* read operation */
2932 op = READ;
2933 break;
2934 case 'w':
2935 /* write operation */
2936 op = WRITE;
2937 break;
2938 case '0':
2939 case '1':
2940 /*
2941 * Execute previously set-up operation by
2942 * reading/writing non-inverted ('0') or
2943 * inverted ('1') data background.
2944 */
2945 db = (c - '0') ? ~dbs[i] : dbs[i];
2946 if (op == READ) {
2947 if (slhci_read(sc, addr) != db)
2948 return -1;
2949 } else
2950 slhci_write(sc, addr, db);
2951 break;
2952 case ')':
2953 /*
2954 * End of element: Repeat same element with next
2955 * address or continue to next element.
2956 */
2957 addr = (dir == ASC) ? addr + 1 : addr - 1;
2958 if (addr >= low && addr <= high)
2959 ptr = elem;
2960 break;
2961 default:
2962 /* Do nothing. */
2963 break;
2964 }
2965 }
2966
2967 return 0;
2968 }
2969 #endif
2970
2971 /* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */
2972 static int
2973 slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int
2974 reserve)
2975 {
2976 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2977 struct slhci_transfers *t;
2978 int bustime, max_packet;
2979
2980 KASSERT(mutex_owned(&sc->sc_intr_lock));
2981
2982 t = &sc->sc_transfers;
2983 max_packet = UGETW(spipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize);
2984
2985 if (spipe->pflags & PF_LS)
2986 bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet);
2987 else
2988 bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet);
2989
2990 if (!reserve) {
2991 t->reserved_bustime -= bustime;
2992 #ifdef DIAGNOSTIC
2993 if (t->reserved_bustime < 0) {
2994 printf("%s: reserved_bustime %d < 0!\n",
2995 SC_NAME(sc), t->reserved_bustime);
2996 DDOLOG("reserved_bustime %d < 0!",
2997 t->reserved_bustime, 0, 0, 0);
2998 t->reserved_bustime = 0;
2999 }
3000 #endif
3001 return 1;
3002 }
3003
3004 if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) {
3005 if (ratecheck(&sc->sc_reserved_warn_rate,
3006 &reserved_warn_rate))
3007 #ifdef SLHCI_NO_OVERTIME
3008 {
3009 printf("%s: Max reserved bus time exceeded! "
3010 "Erroring request.\n", SC_NAME(sc));
3011 DDOLOG("%s: Max reserved bus time exceeded! "
3012 "Erroring request.", 0, 0, 0, 0);
3013 }
3014 return 0;
3015 #else
3016 {
3017 printf("%s: Reserved bus time exceeds %d!\n",
3018 SC_NAME(sc), SLHCI_RESERVED_BUSTIME);
3019 DDOLOG("Reserved bus time exceeds %d!",
3020 SLHCI_RESERVED_BUSTIME, 0, 0, 0);
3021 }
3022 #endif
3023 }
3024
3025 t->reserved_bustime += bustime;
3026 return 1;
3027 }
3028
3029 /* Device insertion/removal interrupt */
3030 static void
3031 slhci_insert(struct slhci_softc *sc)
3032 {
3033 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3034 struct slhci_transfers *t;
3035
3036 t = &sc->sc_transfers;
3037
3038 KASSERT(mutex_owned(&sc->sc_intr_lock));
3039
3040 if (t->flags & F_NODEV)
3041 slhci_intrchange(sc, 0);
3042 else {
3043 slhci_drain(sc);
3044 slhci_intrchange(sc, SL11_IER_INSERT);
3045 }
3046 t->flags ^= F_NODEV;
3047 t->flags |= F_ROOTINTR|F_CCONNECT;
3048 DLOG(D_MSG, "INSERT intr: flags after %#x", t->flags, 0,0,0);
3049 }
3050
3051 /*
3052 * Data structures and routines to emulate the root hub.
3053 */
3054
3055 static usbd_status
3056 slhci_clear_feature(struct slhci_softc *sc, unsigned int what)
3057 {
3058 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3059 struct slhci_transfers *t;
3060 usbd_status error;
3061
3062 t = &sc->sc_transfers;
3063 error = USBD_NORMAL_COMPLETION;
3064
3065 KASSERT(mutex_owned(&sc->sc_intr_lock));
3066
3067 if (what == UHF_PORT_POWER) {
3068 DLOG(D_MSG, "POWER_OFF", 0,0,0,0);
3069 t->flags &= ~F_POWER;
3070 if (!(t->flags & F_NODEV))
3071 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
3072 /* for x68k Nereid USB controller */
3073 if (sc->sc_enable_power && (t->flags & F_REALPOWER)) {
3074 t->flags &= ~F_REALPOWER;
3075 sc->sc_enable_power(sc, POWER_OFF);
3076 }
3077 slhci_intrchange(sc, 0);
3078 slhci_drain(sc);
3079 } else if (what == UHF_C_PORT_CONNECTION) {
3080 t->flags &= ~F_CCONNECT;
3081 } else if (what == UHF_C_PORT_RESET) {
3082 t->flags &= ~F_CRESET;
3083 } else if (what == UHF_PORT_ENABLE) {
3084 slhci_drain(sc);
3085 } else if (what != UHF_PORT_SUSPEND) {
3086 DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0);
3087 error = USBD_IOERROR;
3088 }
3089
3090 return error;
3091 }
3092
3093 static usbd_status
3094 slhci_set_feature(struct slhci_softc *sc, unsigned int what)
3095 {
3096 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3097 struct slhci_transfers *t;
3098 uint8_t r;
3099
3100 t = &sc->sc_transfers;
3101
3102 KASSERT(mutex_owned(&sc->sc_intr_lock));
3103
3104 if (what == UHF_PORT_RESET) {
3105 if (!(t->flags & F_ACTIVE)) {
3106 DDOLOG("SET PORT_RESET when not ACTIVE!",
3107 0,0,0,0);
3108 return USBD_INVAL;
3109 }
3110 if (!(t->flags & F_POWER)) {
3111 DDOLOG("SET PORT_RESET without PORT_POWER! flags %p",
3112 t->flags, 0,0,0);
3113 return USBD_INVAL;
3114 }
3115 if (t->flags & F_RESET)
3116 return USBD_NORMAL_COMPLETION;
3117 DLOG(D_MSG, "RESET flags %#x", t->flags, 0,0,0);
3118 slhci_intrchange(sc, 0);
3119 slhci_drain(sc);
3120 slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE);
3121 /* usb spec says delay >= 10ms, app note 50ms */
3122 start_cc_time(&t_delay, 50000);
3123 if (sc->sc_bus.ub_usepolling) {
3124 DELAY(50000);
3125 slhci_reset(sc);
3126 } else {
3127 t->flags |= F_RESET;
3128 callout_schedule(&sc->sc_timer, max(mstohz(50), 2));
3129 }
3130 } else if (what == UHF_PORT_SUSPEND) {
3131 printf("%s: USB Suspend not implemented!\n", SC_NAME(sc));
3132 DDOLOG("USB Suspend not implemented!", 0, 0, 0, 0);
3133 } else if (what == UHF_PORT_POWER) {
3134 DLOG(D_MSG, "PORT_POWER", 0,0,0,0);
3135 /* for x68k Nereid USB controller */
3136 if (!(t->flags & F_ACTIVE))
3137 return USBD_INVAL;
3138 if (t->flags & F_POWER)
3139 return USBD_NORMAL_COMPLETION;
3140 if (!(t->flags & F_REALPOWER)) {
3141 if (sc->sc_enable_power)
3142 sc->sc_enable_power(sc, POWER_ON);
3143 t->flags |= F_REALPOWER;
3144 }
3145 t->flags |= F_POWER;
3146 r = slhci_read(sc, SL11_ISR);
3147 if (r & SL11_ISR_INSERT)
3148 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
3149 if (r & SL11_ISR_NODEV) {
3150 slhci_intrchange(sc, SL11_IER_INSERT);
3151 t->flags |= F_NODEV;
3152 } else {
3153 t->flags &= ~F_NODEV;
3154 t->flags |= F_CCONNECT|F_ROOTINTR;
3155 }
3156 } else {
3157 DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0);
3158 return USBD_IOERROR;
3159 }
3160
3161 return USBD_NORMAL_COMPLETION;
3162 }
3163
3164 static void
3165 slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps)
3166 {
3167 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3168 struct slhci_transfers *t;
3169 unsigned int status, change;
3170
3171 t = &sc->sc_transfers;
3172
3173 KASSERT(mutex_owned(&sc->sc_intr_lock));
3174
3175 /*
3176 * We do not have a way to detect over current or babble and
3177 * suspend is currently not implemented, so connect and reset
3178 * are the only changes that need to be reported.
3179 */
3180 change = 0;
3181 if (t->flags & F_CCONNECT)
3182 change |= UPS_C_CONNECT_STATUS;
3183 if (t->flags & F_CRESET)
3184 change |= UPS_C_PORT_RESET;
3185
3186 status = 0;
3187 if (!(t->flags & F_NODEV))
3188 status |= UPS_CURRENT_CONNECT_STATUS;
3189 if (!(t->flags & F_UDISABLED))
3190 status |= UPS_PORT_ENABLED;
3191 if (t->flags & F_RESET)
3192 status |= UPS_RESET;
3193 if (t->flags & F_POWER)
3194 status |= UPS_PORT_POWER;
3195 if (t->flags & F_LOWSPEED)
3196 status |= UPS_LOW_SPEED;
3197 USETW(ps->wPortStatus, status);
3198 USETW(ps->wPortChange, change);
3199 DLOG(D_ROOT, "status=%#.4x, change=%#.4x", status, change, 0,0);
3200 }
3201
3202 static int
3203 slhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
3204 void *buf, int buflen)
3205 {
3206 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3207 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
3208 struct slhci_transfers *t = &sc->sc_transfers;
3209 usbd_status error = USBD_IOERROR; /* XXX should be STALL */
3210 uint16_t len, value, index;
3211 uint8_t type;
3212 int actlen = 0;
3213
3214 len = UGETW(req->wLength);
3215 value = UGETW(req->wValue);
3216 index = UGETW(req->wIndex);
3217
3218 type = req->bmRequestType;
3219
3220 SLHCI_DEXEC(D_TRACE, slhci_log_req(req));
3221
3222 /*
3223 * USB requests for hubs have two basic types, standard and class.
3224 * Each could potentially have recipients of device, interface,
3225 * endpoint, or other. For the hub class, CLASS_OTHER means the port
3226 * and CLASS_DEVICE means the hub. For standard requests, OTHER
3227 * is not used. Standard request are described in section 9.4 of the
3228 * standard, hub class requests in 11.16. Each request is either read
3229 * or write.
3230 *
3231 * Clear Feature, Set Feature, and Status are defined for each of the
3232 * used recipients. Get Descriptor and Set Descriptor are defined for
3233 * both standard and hub class types with different descriptors.
3234 * Other requests have only one defined recipient and type. These
3235 * include: Get/Set Address, Get/Set Configuration, Get/Set Interface,
3236 * and Synch Frame for standard requests and Get Bus State for hub
3237 * class.
3238 *
3239 * When a device is first powered up it has address 0 until the
3240 * address is set.
3241 *
3242 * Hubs are only allowed to support one interface and may not have
3243 * isochronous endpoints. The results of the related requests are
3244 * undefined.
3245 *
3246 * The standard requires invalid or unsupported requests to return
3247 * STALL in the data stage, however this does not work well with
3248 * current error handling. XXX
3249 *
3250 * Some unsupported fields:
3251 * Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT
3252 * Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP
3253 * Get Bus State is optional sample of D- and D+ at EOF2
3254 */
3255
3256 switch (req->bRequest) {
3257 /* Write Requests */
3258 case UR_CLEAR_FEATURE:
3259 if (type == UT_WRITE_CLASS_OTHER) {
3260 if (index == 1 /* Port */) {
3261 mutex_enter(&sc->sc_intr_lock);
3262 error = slhci_clear_feature(sc, value);
3263 mutex_exit(&sc->sc_intr_lock);
3264 } else
3265 DLOG(D_ROOT, "Clear Port Feature "
3266 "index = %#.4x", index, 0,0,0);
3267 }
3268 break;
3269 case UR_SET_FEATURE:
3270 if (type == UT_WRITE_CLASS_OTHER) {
3271 if (index == 1 /* Port */) {
3272 mutex_enter(&sc->sc_intr_lock);
3273 error = slhci_set_feature(sc, value);
3274 mutex_exit(&sc->sc_intr_lock);
3275 } else
3276 DLOG(D_ROOT, "Set Port Feature "
3277 "index = %#.4x", index, 0,0,0);
3278 } else if (type != UT_WRITE_CLASS_DEVICE)
3279 DLOG(D_ROOT, "Set Device Feature "
3280 "ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP "
3281 "not supported", 0,0,0,0);
3282 break;
3283
3284 /* Read Requests */
3285 case UR_GET_STATUS:
3286 if (type == UT_READ_CLASS_OTHER) {
3287 if (index == 1 /* Port */ && len == /* XXX >=? */
3288 sizeof(usb_port_status_t)) {
3289 mutex_enter(&sc->sc_intr_lock);
3290 slhci_get_status(sc, (usb_port_status_t *)
3291 buf);
3292 mutex_exit(&sc->sc_intr_lock);
3293 actlen = sizeof(usb_port_status_t);
3294 error = USBD_NORMAL_COMPLETION;
3295 } else
3296 DLOG(D_ROOT, "Get Port Status index = %#.4x "
3297 "len = %#.4x", index, len, 0,0);
3298 } else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */
3299 if (len == sizeof(usb_hub_status_t)) {
3300 DLOG(D_ROOT, "Get Hub Status",
3301 0,0,0,0);
3302 actlen = sizeof(usb_hub_status_t);
3303 memset(buf, 0, actlen);
3304 error = USBD_NORMAL_COMPLETION;
3305 } else
3306 DLOG(D_ROOT, "Get Hub Status bad len %#.4x",
3307 len, 0,0,0);
3308 }
3309 break;
3310 case UR_GET_DESCRIPTOR:
3311 if (type == UT_READ_DEVICE) {
3312 /* value is type (&0xff00) and index (0xff) */
3313 if (value == (UDESC_DEVICE<<8)) {
3314 usb_device_descriptor_t devd;
3315
3316 actlen = min(buflen, sizeof(devd));
3317 memcpy(&devd, buf, actlen);
3318 USETW(devd.idVendor, USB_VENDOR_SCANLOGIC);
3319 memcpy(buf, &devd, actlen);
3320 error = USBD_NORMAL_COMPLETION;
3321 } else if (value == (UDESC_CONFIG<<8)) {
3322 struct usb_roothub_descriptors confd;
3323
3324 actlen = min(buflen, sizeof(confd));
3325 memcpy(&confd, buf, actlen);
3326
3327 /* 2 mA units */
3328 confd.urh_confd.bMaxPower = t->max_current;
3329 memcpy(buf, &confd, actlen);
3330 error = USBD_NORMAL_COMPLETION;
3331 } else if (value == ((UDESC_STRING<<8)|1)) {
3332 /* Vendor */
3333 actlen = usb_makestrdesc((usb_string_descriptor_t *)
3334 buf, len, "ScanLogic/Cypress");
3335 error = USBD_NORMAL_COMPLETION;
3336 } else if (value == ((UDESC_STRING<<8)|2)) {
3337 /* Product */
3338 actlen = usb_makestrdesc((usb_string_descriptor_t *)
3339 buf, len, "SL811HS/T root hub");
3340 error = USBD_NORMAL_COMPLETION;
3341 } else
3342 DDOLOG("Unknown Get Descriptor %#.4x",
3343 value, 0,0,0);
3344 } else if (type == UT_READ_CLASS_DEVICE) {
3345 /* Descriptor number is 0 */
3346 if (value == (UDESC_HUB<<8)) {
3347 usb_hub_descriptor_t hubd;
3348
3349 actlen = min(buflen, sizeof(hubd));
3350 memcpy(&hubd, buf, actlen);
3351 hubd.bHubContrCurrent =
3352 500 - t->max_current;
3353 memcpy(buf, &hubd, actlen);
3354 error = USBD_NORMAL_COMPLETION;
3355 } else
3356 DDOLOG("Unknown Get Hub Descriptor %#.4x",
3357 value, 0,0,0);
3358 }
3359 break;
3360 default:
3361 /* default from usbroothub */
3362 return buflen;
3363 }
3364
3365 if (error == USBD_NORMAL_COMPLETION)
3366 return actlen;
3367
3368 return -1;
3369 }
3370
3371 /* End in lock functions. Start debug functions. */
3372
3373 #ifdef SLHCI_DEBUG
3374 void
3375 slhci_log_buffer(struct usbd_xfer *xfer)
3376 {
3377 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3378 u_char *buf;
3379
3380 if(xfer->ux_length > 0 &&
3381 UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) ==
3382 UE_DIR_IN) {
3383 buf = xfer->ux_buf;
3384 DDOLOGBUF(buf, xfer->ux_actlen);
3385 DDOLOG("len %d actlen %d short %d", xfer->ux_length,
3386 xfer->ux_actlen, xfer->ux_length - xfer->ux_actlen, 0);
3387 }
3388 }
3389
3390 void
3391 slhci_log_req(usb_device_request_t *r)
3392 {
3393 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3394 int req, type, value, index, len;
3395
3396 req = r->bRequest;
3397 type = r->bmRequestType;
3398 value = UGETW(r->wValue);
3399 index = UGETW(r->wIndex);
3400 len = UGETW(r->wLength);
3401
3402 DDOLOG("request: type %#x", type, 0, 0, 0);
3403 DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len);
3404 }
3405
3406 void
3407 slhci_log_dumpreg(void)
3408 {
3409 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3410 uint8_t r;
3411 unsigned int aaddr, alen, baddr, blen;
3412 static u_char buf[240];
3413
3414 r = slhci_read(ssc, SL11_E0CTRL);
3415 DDOLOG("USB A Host Control = %#.2x", r, 0, 0, 0);
3416 DDOLOGEPCTRL(r);
3417
3418 aaddr = slhci_read(ssc, SL11_E0ADDR);
3419 DDOLOG("USB A Base Address = %u", aaddr, 0,0,0);
3420 alen = slhci_read(ssc, SL11_E0LEN);
3421 DDOLOG("USB A Length = %u", alen, 0,0,0);
3422 r = slhci_read(ssc, SL11_E0STAT);
3423 DDOLOG("USB A Status = %#.2x", r, 0,0,0);
3424 DDOLOGEPSTAT(r);
3425
3426 r = slhci_read(ssc, SL11_E0CONT);
3427 DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0);
3428 r = slhci_read(ssc, SL11_E1CTRL);
3429 DDOLOG("USB B Host Control = %#.2x", r, 0,0,0);
3430 DDOLOGEPCTRL(r);
3431
3432 baddr = slhci_read(ssc, SL11_E1ADDR);
3433 DDOLOG("USB B Base Address = %u", baddr, 0,0,0);
3434 blen = slhci_read(ssc, SL11_E1LEN);
3435 DDOLOG("USB B Length = %u", blen, 0,0,0);
3436 r = slhci_read(ssc, SL11_E1STAT);
3437 DDOLOG("USB B Status = %#.2x", r, 0,0,0);
3438 DDOLOGEPSTAT(r);
3439
3440 r = slhci_read(ssc, SL11_E1CONT);
3441 DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0);
3442
3443 r = slhci_read(ssc, SL11_CTRL);
3444 DDOLOG("Control = %#.2x", r, 0,0,0);
3445 DDOLOGCTRL(r);
3446
3447 r = slhci_read(ssc, SL11_IER);
3448 DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0);
3449 DDOLOGIER(r);
3450
3451 r = slhci_read(ssc, SL11_ISR);
3452 DDOLOG("Interrupt Status = %#.2x", r, 0,0,0);
3453 DDOLOGISR(r);
3454
3455 r = slhci_read(ssc, SL11_REV);
3456 DDOLOG("Revision = %#.2x", r, 0,0,0);
3457 r = slhci_read(ssc, SL811_CSOF);
3458 DDOLOG("SOF Counter = %#.2x", r, 0,0,0);
3459
3460 if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END &&
3461 alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) {
3462 slhci_read_multi(ssc, aaddr, buf, alen);
3463 DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0);
3464 DDOLOGBUF(buf, alen);
3465 } else if (alen)
3466 DDOLOG("USBA Buffer Invalid", 0,0,0,0);
3467
3468 if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END &&
3469 blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) {
3470 slhci_read_multi(ssc, baddr, buf, blen);
3471 DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0);
3472 DDOLOGBUF(buf, blen);
3473 } else if (blen)
3474 DDOLOG("USBB Buffer Invalid", 0,0,0,0);
3475 }
3476
3477 void
3478 slhci_log_xfer(struct usbd_xfer *xfer)
3479 {
3480 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3481 DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,",
3482 xfer->ux_length, xfer->ux_actlen, xfer->ux_flags, xfer->ux_timeout);
3483 DDOLOG("buffer=%p", xfer->ux_buf, 0,0,0);
3484 slhci_log_req(&xfer->ux_request);
3485 }
3486
3487 void
3488 slhci_log_spipe(struct slhci_pipe *spipe)
3489 {
3490 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3491 DDOLOG("spipe %p onlists: AP=%d TO=%d XQ=%d", spipe,
3492 gcq_onlist(&spipe->ap) ? 1 : 0,
3493 gcq_onlist(&spipe->to) ? 1 : 0,
3494 gcq_onlist(&spipe->xq) ? 1 : 0);
3495 DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %d",
3496 spipe->xfer, spipe->buffer, spipe->pflags, spipe->ptype);
3497 }
3498
3499 void
3500 slhci_print_intr(void)
3501 {
3502 unsigned int ier, isr;
3503 ier = slhci_read(ssc, SL11_IER);
3504 isr = slhci_read(ssc, SL11_ISR);
3505 printf("IER: %#x ISR: %#x \n", ier, isr);
3506 }
3507
3508 #if 0
3509 void
3510 slhci_log_sc(void)
3511 {
3512 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3513
3514 struct slhci_transfers *t;
3515 int i;
3516
3517 t = &ssc->sc_transfers;
3518
3519 DDOLOG("Flags=%#x", t->flags, 0,0,0);
3520 DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0],
3521 t->spipe[1], t->len[1]);
3522
3523 for (i=0; i<=Q_MAX; i++)
3524 DDOLOG("Q %d: %p", i, gcq_hq(&t->q[i]), 0,0);
3525
3526 DDOLOG("TIMED: %p", GCQ_ITEM(gcq_hq(&t->to),
3527 struct slhci_pipe, to), 0,0,0);
3528
3529 DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0);
3530
3531 DDOLOG("ub_usepolling=%d", ssc->sc_bus.ub_usepolling, 0, 0, 0);
3532 }
3533
3534 void
3535 slhci_log_slreq(struct slhci_pipe *r)
3536 {
3537 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3538 DDOLOG("xfer: %p", r->xfer, 0,0,0);
3539 DDOLOG("buffer: %p", r->buffer, 0,0,0);
3540 DDOLOG("bustime: %u", r->bustime, 0,0,0);
3541 DDOLOG("control: %#x", r->control, 0,0,0);
3542 DDOLOGEPCTRL(r->control);
3543
3544 DDOLOG("pid: %#x", r->tregs[PID], 0,0,0);
3545 DDOLOG("dev: %u", r->tregs[DEV], 0,0,0);
3546 DDOLOG("len: %u", r->tregs[LEN], 0,0,0);
3547
3548 if (r->xfer)
3549 slhci_log_xfer(r->xfer);
3550 }
3551 #endif
3552 #endif /* SLHCI_DEBUG */
3553 /* End debug functions. */
3554