sl811hs.c revision 1.98 1 /* $NetBSD: sl811hs.c,v 1.98 2017/10/28 00:37:12 pgoyette Exp $ */
2
3 /*
4 * Not (c) 2007 Matthew Orgass
5 * This file is public domain, meaning anyone can make any use of part or all
6 * of this file including copying into other works without credit. Any use,
7 * modified or not, is solely the responsibility of the user. If this file is
8 * part of a collection then use in the collection is governed by the terms of
9 * the collection.
10 */
11
12 /*
13 * Cypress/ScanLogic SL811HS/T USB Host Controller
14 * Datasheet, Errata, and App Note available at www.cypress.com
15 *
16 * Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid X68k USB HC, ISA
17 * HCs. The Ratoc CFU2 uses a different chip.
18 *
19 * This chip puts the serial in USB. It implements USB by means of an eight
20 * bit I/O interface. It can be used for ISA, PCMCIA/CF, parallel port,
21 * serial port, or any eight bit interface. It has 256 bytes of memory, the
22 * first 16 of which are used for register access. There are two sets of
23 * registers for sending individual bus transactions. Because USB is polled,
24 * this organization means that some amount of card access must often be made
25 * when devices are attached, even if when they are not directly being used.
26 * A per-ms frame interrupt is necessary and many devices will poll with a
27 * per-frame bulk transfer.
28 *
29 * It is possible to write a little over two bytes to the chip (auto
30 * incremented) per full speed byte time on the USB. Unfortunately,
31 * auto-increment does not work reliably so write and bus speed is
32 * approximately the same for full speed devices.
33 *
34 * In addition to the 240 byte packet size limit for isochronous transfers,
35 * this chip has no means of determining the current frame number other than
36 * getting all 1ms SOF interrupts, which is not always possible even on a fast
37 * system. Isochronous transfers guarantee that transfers will never be
38 * retried in a later frame, so this can cause problems with devices beyond
39 * the difficulty in actually performing the transfer most frames. I tried
40 * implementing isoc transfers and was able to play CD-derrived audio via an
41 * iMic on a 2GHz PC, however it would still be interrupted at times and
42 * once interrupted, would stay out of sync. All isoc support has been
43 * removed.
44 *
45 * BUGS: all chip revisions have problems with low speed devices through hubs.
46 * The chip stops generating SOF with hubs that send SE0 during SOF. See
47 * comment in dointr(). All performance enhancing features of this chip seem
48 * not to work properly, most confirmed buggy in errata doc.
49 *
50 */
51
52 /*
53 * The hard interrupt is the main entry point. Start, callbacks, and repeat
54 * are the only others called frequently.
55 *
56 * Since this driver attaches to pcmcia, card removal at any point should be
57 * expected and not cause panics or infinite loops.
58 */
59
60 /*
61 * XXX TODO:
62 * copy next output packet while transfering
63 * usb suspend
64 * could keep track of known values of all buffer space?
65 * combined print/log function for errors
66 *
67 * ub_usepolling support is untested and may not work
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.98 2017/10/28 00:37:12 pgoyette Exp $");
72
73 #ifdef _KERNEL_OPT
74 #include "opt_slhci.h"
75 #include "opt_usb.h"
76 #endif
77
78 #include <sys/param.h>
79
80 #include <sys/bus.h>
81 #include <sys/cpu.h>
82 #include <sys/device.h>
83 #include <sys/gcq.h>
84 #include <sys/intr.h>
85 #include <sys/kernel.h>
86 #include <sys/kmem.h>
87 #include <sys/proc.h>
88 #include <sys/queue.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91
92 #include <dev/usb/usb.h>
93 #include <dev/usb/usbdi.h>
94 #include <dev/usb/usbdivar.h>
95 #include <dev/usb/usbhist.h>
96 #include <dev/usb/usb_mem.h>
97 #include <dev/usb/usbdevs.h>
98 #include <dev/usb/usbroothub.h>
99
100 #include <dev/ic/sl811hsreg.h>
101 #include <dev/ic/sl811hsvar.h>
102
103 #define Q_CB 0 /* Control/Bulk */
104 #define Q_NEXT_CB 1
105 #define Q_MAX_XFER Q_CB
106 #define Q_CALLBACKS 2
107 #define Q_MAX Q_CALLBACKS
108
109 #define F_AREADY (0x00000001)
110 #define F_BREADY (0x00000002)
111 #define F_AINPROG (0x00000004)
112 #define F_BINPROG (0x00000008)
113 #define F_LOWSPEED (0x00000010)
114 #define F_UDISABLED (0x00000020) /* Consider disabled for USB */
115 #define F_NODEV (0x00000040)
116 #define F_ROOTINTR (0x00000080)
117 #define F_REALPOWER (0x00000100) /* Actual power state */
118 #define F_POWER (0x00000200) /* USB reported power state */
119 #define F_ACTIVE (0x00000400)
120 #define F_CALLBACK (0x00000800) /* Callback scheduled */
121 #define F_SOFCHECK1 (0x00001000)
122 #define F_SOFCHECK2 (0x00002000)
123 #define F_CRESET (0x00004000) /* Reset done not reported */
124 #define F_CCONNECT (0x00008000) /* Connect change not reported */
125 #define F_RESET (0x00010000)
126 #define F_ISOC_WARNED (0x00020000)
127 #define F_LSVH_WARNED (0x00040000)
128
129 #define F_DISABLED (F_NODEV|F_UDISABLED)
130 #define F_CHANGE (F_CRESET|F_CCONNECT)
131
132 #ifdef SLHCI_TRY_LSVH
133 unsigned int slhci_try_lsvh = 1;
134 #else
135 unsigned int slhci_try_lsvh = 0;
136 #endif
137
138 #define ADR 0
139 #define LEN 1
140 #define PID 2
141 #define DEV 3
142 #define STAT 2
143 #define CONT 3
144
145 #define A 0
146 #define B 1
147
148 static const uint8_t slhci_tregs[2][4] =
149 {{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV },
150 {SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }};
151
152 #define PT_ROOT_CTRL 0
153 #define PT_ROOT_INTR 1
154 #define PT_CTRL_SETUP 2
155 #define PT_CTRL_DATA 3
156 #define PT_CTRL_STATUS 4
157 #define PT_INTR 5
158 #define PT_BULK 6
159 #define PT_MAX 6
160
161 #ifdef SLHCI_DEBUG
162 #define SLHCI_MEM_ACCOUNTING
163 #endif
164
165 /*
166 * Maximum allowable reserved bus time. Since intr/isoc transfers have
167 * unconditional priority, this is all that ensures control and bulk transfers
168 * get a chance. It is a single value for all frames since all transfers can
169 * use multiple consecutive frames if an error is encountered. Note that it
170 * is not really possible to fill the bus with transfers, so this value should
171 * be on the low side. Defaults to giving a warning unless SLHCI_NO_OVERTIME
172 * is defined. Full time is 12000 - END_BUSTIME.
173 */
174 #ifndef SLHCI_RESERVED_BUSTIME
175 #define SLHCI_RESERVED_BUSTIME 5000
176 #endif
177
178 /*
179 * Rate for "exceeds reserved bus time" warnings (default) or errors.
180 * Warnings only happen when an endpoint open causes the time to go above
181 * SLHCI_RESERVED_BUSTIME, not if it is already above.
182 */
183 #ifndef SLHCI_OVERTIME_WARNING_RATE
184 #define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */
185 #endif
186 static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE;
187
188 /*
189 * For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of
190 * 20 bit times. By default leave 66 bit times to start the transfer beyond
191 * the required time. Units are full-speed bit times (a bit over 5us per 64).
192 * Only multiples of 64 are significant.
193 */
194 #define SLHCI_STANDARD_END_BUSTIME 128
195 #ifndef SLHCI_EXTRA_END_BUSTIME
196 #define SLHCI_EXTRA_END_BUSTIME 0
197 #endif
198
199 #define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME)
200
201 /*
202 * This is an approximation of the USB worst-case timings presented on p. 54 of
203 * the USB 1.1 spec translated to full speed bit times.
204 * FS = full speed with handshake, FSII = isoc in, FSIO = isoc out,
205 * FSI = isoc (worst case), LS = low speed
206 */
207 #define SLHCI_FS_CONST 114
208 #define SLHCI_FSII_CONST 92
209 #define SLHCI_FSIO_CONST 80
210 #define SLHCI_FSI_CONST 92
211 #define SLHCI_LS_CONST 804
212 #ifndef SLHCI_PRECICE_BUSTIME
213 /*
214 * These values are < 3% too high (compared to the multiply and divide) for
215 * max sized packets.
216 */
217 #define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1))
218 #define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4))
219 #else
220 #define SLHCI_FS_DATA_TIME(len) (56*(len)/6)
221 #define SLHCI_LS_DATA_TIME(len) (449*(len)/6)
222 #endif
223
224 /*
225 * Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer
226 * to poll for after starting a transfer. 64 gets all full speed transfers.
227 * Note that even if 0 polling will occur if data equal or greater than the
228 * transfer size is copied to the chip while the transfer is in progress.
229 * Setting SLHCI_WAIT_TIME to -12000 will disable polling.
230 */
231 #ifndef SLHCI_WAIT_SIZE
232 #define SLHCI_WAIT_SIZE 8
233 #endif
234 #ifndef SLHCI_WAIT_TIME
235 #define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \
236 SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE))
237 #endif
238 const int slhci_wait_time = SLHCI_WAIT_TIME;
239
240 #ifndef SLHCI_MAX_RETRIES
241 #define SLHCI_MAX_RETRIES 3
242 #endif
243
244 /* Check IER values for corruption after this many unrecognized interrupts. */
245 #ifndef SLHCI_IER_CHECK_FREQUENCY
246 #ifdef SLHCI_DEBUG
247 #define SLHCI_IER_CHECK_FREQUENCY 1
248 #else
249 #define SLHCI_IER_CHECK_FREQUENCY 100
250 #endif
251 #endif
252
253 /* Note that buffer points to the start of the buffer for this transfer. */
254 struct slhci_pipe {
255 struct usbd_pipe pipe;
256 struct usbd_xfer *xfer; /* xfer in progress */
257 uint8_t *buffer; /* I/O buffer (if needed) */
258 struct gcq ap; /* All pipes */
259 struct gcq to; /* Timeout list */
260 struct gcq xq; /* Xfer queues */
261 unsigned int pflags; /* Pipe flags */
262 #define PF_GONE (0x01) /* Pipe is on disabled device */
263 #define PF_TOGGLE (0x02) /* Data toggle status */
264 #define PF_LS (0x04) /* Pipe is low speed */
265 #define PF_PREAMBLE (0x08) /* Needs preamble */
266 Frame to_frame; /* Frame number for timeout */
267 Frame frame; /* Frame number for intr xfer */
268 Frame lastframe; /* Previous frame number for intr */
269 uint16_t bustime; /* Worst case bus time usage */
270 uint16_t newbustime[2]; /* new bustimes (see index below) */
271 uint8_t tregs[4]; /* ADR, LEN, PID, DEV */
272 uint8_t newlen[2]; /* 0 = short data, 1 = ctrl data */
273 uint8_t newpid; /* for ctrl */
274 uint8_t wantshort; /* last xfer must be short */
275 uint8_t control; /* Host control register settings */
276 uint8_t nerrs; /* Current number of errors */
277 uint8_t ptype; /* Pipe type */
278 };
279
280 #define SLHCI_BUS2SC(bus) ((bus)->ub_hcpriv)
281 #define SLHCI_PIPE2SC(pipe) SLHCI_BUS2SC((pipe)->up_dev->ud_bus)
282 #define SLHCI_XFER2SC(xfer) SLHCI_BUS2SC((xfer)->ux_bus)
283
284 #define SLHCI_PIPE2SPIPE(pipe) ((struct slhci_pipe *)(pipe))
285 #define SLHCI_XFER2SPIPE(xfer) SLHCI_PIPE2SPIPE((xfer)->ux_pipe)
286
287 #define SLHCI_XFER_TYPE(x) (SLHCI_XFER2SPIPE(xfer)->ptype)
288
289 #ifdef SLHCI_PROFILE_TRANSFER
290 #if defined(__mips__)
291 /*
292 * MIPS cycle counter does not directly count cpu cycles but is a different
293 * fraction of cpu cycles depending on the cpu.
294 */
295 typedef uint32_t cc_type;
296 #define CC_TYPE_FMT "%u"
297 #define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \
298 : [cc] "=r"(x))
299 #elif defined(__i386__)
300 typedef uint64_t cc_type;
301 #define CC_TYPE_FMT "%llu"
302 #define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x))
303 #else
304 #error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)"
305 #endif
306 struct slhci_cc_time {
307 cc_type start;
308 cc_type stop;
309 unsigned int miscdata;
310 };
311 #ifndef SLHCI_N_TIMES
312 #define SLHCI_N_TIMES 200
313 #endif
314 struct slhci_cc_times {
315 struct slhci_cc_time times[SLHCI_N_TIMES];
316 int current;
317 int wraparound;
318 };
319
320 static struct slhci_cc_times t_ab[2];
321 static struct slhci_cc_times t_abdone;
322 static struct slhci_cc_times t_copy_to_dev;
323 static struct slhci_cc_times t_copy_from_dev;
324 static struct slhci_cc_times t_intr;
325 static struct slhci_cc_times t_lock;
326 static struct slhci_cc_times t_delay;
327 static struct slhci_cc_times t_hard_int;
328 static struct slhci_cc_times t_callback;
329
330 static inline void
331 start_cc_time(struct slhci_cc_times *times, unsigned int misc) {
332 times->times[times->current].miscdata = misc;
333 slhci_cc_set(times->times[times->current].start);
334 }
335 static inline void
336 stop_cc_time(struct slhci_cc_times *times) {
337 slhci_cc_set(times->times[times->current].stop);
338 if (++times->current >= SLHCI_N_TIMES) {
339 times->current = 0;
340 times->wraparound = 1;
341 }
342 }
343
344 void slhci_dump_cc_times(int);
345
346 void
347 slhci_dump_cc_times(int n) {
348 struct slhci_cc_times *times;
349 int i;
350
351 switch (n) {
352 default:
353 case 0:
354 printf("USBA start transfer to intr:\n");
355 times = &t_ab[A];
356 break;
357 case 1:
358 printf("USBB start transfer to intr:\n");
359 times = &t_ab[B];
360 break;
361 case 2:
362 printf("abdone:\n");
363 times = &t_abdone;
364 break;
365 case 3:
366 printf("copy to device:\n");
367 times = &t_copy_to_dev;
368 break;
369 case 4:
370 printf("copy from device:\n");
371 times = &t_copy_from_dev;
372 break;
373 case 5:
374 printf("intr to intr:\n");
375 times = &t_intr;
376 break;
377 case 6:
378 printf("lock to release:\n");
379 times = &t_lock;
380 break;
381 case 7:
382 printf("delay time:\n");
383 times = &t_delay;
384 break;
385 case 8:
386 printf("hard interrupt enter to exit:\n");
387 times = &t_hard_int;
388 break;
389 case 9:
390 printf("callback:\n");
391 times = &t_callback;
392 break;
393 }
394
395 if (times->wraparound)
396 for (i = times->current + 1; i < SLHCI_N_TIMES; i++)
397 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
398 " difference %8i miscdata %#x\n",
399 times->times[i].start, times->times[i].stop,
400 (int)(times->times[i].stop -
401 times->times[i].start), times->times[i].miscdata);
402
403 for (i = 0; i < times->current; i++)
404 printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
405 " difference %8i miscdata %#x\n", times->times[i].start,
406 times->times[i].stop, (int)(times->times[i].stop -
407 times->times[i].start), times->times[i].miscdata);
408 }
409 #else
410 #define start_cc_time(x, y)
411 #define stop_cc_time(x)
412 #endif /* SLHCI_PROFILE_TRANSFER */
413
414 typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe
415 *, struct usbd_xfer *);
416
417 struct usbd_xfer * slhci_allocx(struct usbd_bus *, unsigned int);
418 void slhci_freex(struct usbd_bus *, struct usbd_xfer *);
419 static void slhci_get_lock(struct usbd_bus *, kmutex_t **);
420
421 usbd_status slhci_transfer(struct usbd_xfer *);
422 usbd_status slhci_start(struct usbd_xfer *);
423 usbd_status slhci_root_start(struct usbd_xfer *);
424 usbd_status slhci_open(struct usbd_pipe *);
425
426 static int slhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
427 void *, int);
428
429 /*
430 * slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach,
431 * slhci_activate
432 */
433
434 void slhci_abort(struct usbd_xfer *);
435 void slhci_close(struct usbd_pipe *);
436 void slhci_clear_toggle(struct usbd_pipe *);
437 void slhci_poll(struct usbd_bus *);
438 void slhci_done(struct usbd_xfer *);
439 void slhci_void(void *);
440
441 /* lock entry functions */
442
443 #ifdef SLHCI_MEM_ACCOUNTING
444 void slhci_mem_use(struct usbd_bus *, int);
445 #endif
446
447 void slhci_reset_entry(void *);
448 usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc,
449 struct slhci_pipe *, struct usbd_xfer *);
450 void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *);
451 void slhci_callback_entry(void *arg);
452 void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *);
453
454 /* slhci_intr */
455
456 void slhci_main(struct slhci_softc *);
457
458 /* in lock functions */
459
460 static void slhci_write(struct slhci_softc *, uint8_t, uint8_t);
461 static uint8_t slhci_read(struct slhci_softc *, uint8_t);
462 static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
463 static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
464
465 static void slhci_waitintr(struct slhci_softc *, int);
466 static int slhci_dointr(struct slhci_softc *);
467 static void slhci_abdone(struct slhci_softc *, int);
468 static void slhci_tstart(struct slhci_softc *);
469 static void slhci_dotransfer(struct slhci_softc *);
470
471 static void slhci_callback(struct slhci_softc *);
472 static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *);
473 static void slhci_enter_xfers(struct slhci_softc *);
474 static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *);
475 static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *);
476
477 static void slhci_callback_schedule(struct slhci_softc *);
478 static void slhci_do_callback_schedule(struct slhci_softc *);
479 #if 0
480 void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *); /* XXX */
481 #endif
482
483 static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *,
484 struct usbd_xfer *);
485 static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *,
486 struct usbd_xfer *);
487 static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *,
488 struct usbd_xfer *);
489 static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *,
490 struct usbd_xfer *);
491 static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *,
492 struct usbd_xfer *);
493 static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *,
494 struct usbd_xfer *);
495 static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *,
496 struct usbd_xfer *);
497
498 static void slhci_intrchange(struct slhci_softc *, uint8_t);
499 static void slhci_drain(struct slhci_softc *);
500 static void slhci_reset(struct slhci_softc *);
501 static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *,
502 int);
503 static void slhci_insert(struct slhci_softc *);
504
505 static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int);
506 static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int);
507 static void slhci_get_status(struct slhci_softc *, usb_port_status_t *);
508
509 #define SLHCIHIST_FUNC() USBHIST_FUNC()
510 #define SLHCIHIST_CALLED() USBHIST_CALLED(slhcidebug)
511
512 #ifdef SLHCI_DEBUG
513 static int slhci_memtest(struct slhci_softc *);
514
515 void slhci_log_buffer(struct usbd_xfer *);
516 void slhci_log_req(usb_device_request_t *);
517 void slhci_log_dumpreg(void);
518 void slhci_log_xfer(struct usbd_xfer *);
519 void slhci_log_spipe(struct slhci_pipe *);
520 void slhci_print_intr(void);
521 void slhci_log_sc(void);
522 void slhci_log_slreq(struct slhci_pipe *);
523
524 /* Constified so you can read the values from ddb */
525 const int SLHCI_D_TRACE = 0x0001;
526 const int SLHCI_D_MSG = 0x0002;
527 const int SLHCI_D_XFER = 0x0004;
528 const int SLHCI_D_MEM = 0x0008;
529 const int SLHCI_D_INTR = 0x0010;
530 const int SLHCI_D_SXFER = 0x0020;
531 const int SLHCI_D_ERR = 0x0080;
532 const int SLHCI_D_BUF = 0x0100;
533 const int SLHCI_D_SOFT = 0x0200;
534 const int SLHCI_D_WAIT = 0x0400;
535 const int SLHCI_D_ROOT = 0x0800;
536 /* SOF/NAK alone normally ignored, SOF also needs D_INTR */
537 const int SLHCI_D_SOF = 0x1000;
538 const int SLHCI_D_NAK = 0x2000;
539
540 int slhcidebug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */
541
542 SYSCTL_SETUP(sysctl_hw_slhci_setup, "sysctl hw.slhci setup")
543 {
544 int err;
545 const struct sysctlnode *rnode;
546 const struct sysctlnode *cnode;
547
548 err = sysctl_createv(clog, 0, NULL, &rnode,
549 CTLFLAG_PERMANENT, CTLTYPE_NODE, "slhci",
550 SYSCTL_DESCR("slhci global controls"),
551 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
552
553 if (err)
554 goto fail;
555
556 /* control debugging printfs */
557 err = sysctl_createv(clog, 0, &rnode, &cnode,
558 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
559 "debug", SYSCTL_DESCR("Enable debugging output"),
560 NULL, 0, &slhcidebug, sizeof(slhcidebug), CTL_CREATE, CTL_EOL);
561 if (err)
562 goto fail;
563
564 return;
565 fail:
566 aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
567 }
568
569 struct slhci_softc *ssc;
570
571 #define SLHCI_DEXEC(x, y) do { if ((slhcidebug & SLHCI_ ## x)) { y; } \
572 } while (/*CONSTCOND*/ 0)
573 #define DDOLOG(f, a, b, c, d) do { KERNHIST_LOG(usbhist, f, a, b, c, d); \
574 } while (/*CONSTCOND*/0)
575 #define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d))
576
577 /*
578 * DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we
579 * can make it a real function.
580 */
581 static void
582 DDOLOGBUF(uint8_t *buf, unsigned int length)
583 {
584 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
585 int i;
586
587 for(i=0; i+8 <= length; i+=8)
588 DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
589 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
590 (buf[i+6] << 8) | buf[i+7]);
591 if (length == i+7)
592 DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
593 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
594 buf[i+6]);
595 else if (length == i+6)
596 DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
597 (buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0);
598 else if (length == i+5)
599 DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
600 (buf[i+2] << 8) | buf[i+3], buf[i+4], 0);
601 else if (length == i+4)
602 DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1],
603 (buf[i+2] << 8) | buf[i+3], 0,0);
604 else if (length == i+3)
605 DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0);
606 else if (length == i+2)
607 DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0);
608 else if (length == i+1)
609 DDOLOG("%.2x", buf[i], 0,0,0);
610 }
611 #define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l))
612
613 #define DDOLOGCTRL(x) do { \
614 DDOLOG("CTRL suspend=%jd", !!((x) & SL11_CTRL_SUSPEND), 0, 0, 0); \
615 DDOLOG("CTRL ls =%jd jk =%jd reset =%jd sof =%jd", \
616 !!((x) & SL11_CTRL_LOWSPEED), !!((x) & SL11_CTRL_JKSTATE), \
617 !!((x) & SL11_CTRL_RESETENGINE), !!((x) & SL11_CTRL_ENABLESOF));\
618 } while (0)
619
620 #define DDOLOGISR(r) do { \
621 DDOLOG("ISR data =%jd det/res=%jd insert =%jd sof =%jd", \
622 !!((r) & SL11_ISR_DATA), !!((r) & SL11_ISR_RESUME), \
623 !!((r) & SL11_ISR_INSERT), !!!!((r) & SL11_ISR_SOF)); \
624 DDOLOG("ISR babble =%jd usbb =%jd usba =%jd", \
625 !!((r) & SL11_ISR_BABBLE), !!((r) & SL11_ISR_USBB), \
626 !!((r) & SL11_ISR_USBA), 0); \
627 } while (0)
628
629 #define DDOLOGIER(r) do { \
630 DDOLOG("IER det/res=%d insert =%d sof =%d", \
631 !!((r) & SL11_IER_RESUME), \
632 !!((r) & SL11_IER_INSERT), !!!!((r) & SL11_IER_SOF), 0); \
633 DDOLOG("IER babble =%d usbb =%d usba =%d", \
634 !!((r) & SL11_IER_BABBLE), !!((r) & SL11_IER_USBB), \
635 !!((r) & SL11_IER_USBA), 0); \
636 } while (0)
637
638 #define DDOLOGSTATUS(s) do { \
639 DDOLOG("STAT stall =%d nak =%d overflow =%d setup =%d", \
640 !!((s) & SL11_EPSTAT_STALL), !!((s) & SL11_EPSTAT_NAK), \
641 !!((s) & SL11_EPSTAT_OVERFLOW), !!((s) & SL11_EPSTAT_SETUP)); \
642 DDOLOG("STAT sequence=%d timeout =%d error =%d ack =%d", \
643 !!((s) & SL11_EPSTAT_SEQUENCE), !!((s) & SL11_EPSTAT_TIMEOUT), \
644 !!((s) & SL11_EPSTAT_ERROR), !!((s) & SL11_EPSTAT_ACK)); \
645 } while (0)
646
647 #define DDOLOGEPCTRL(r) do { \
648 DDOLOG("CTRL preamble=%d toggle =%d sof =%d iso =%d", \
649 !!((r) & SL11_EPCTRL_PREAMBLE), !!((r) & SL11_EPCTRL_DATATOGGLE),\
650 !!((r) & SL11_EPCTRL_SOF), !!((r) & SL11_EPCTRL_ISO)); \
651 DDOLOG("CTRL out =%d enable =%d arm =%d", \
652 !!((r) & SL11_EPCTRL_DIRECTION), \
653 !!((r) & SL11_EPCTRL_ENABLE), !!((r) & SL11_EPCTRL_ARM), 0); \
654 } while (0)
655
656 #define DDOLOGEPSTAT(r) do { \
657 DDOLOG("STAT stall =%d nak =%d overflow =%d setup =%d", \
658 !!((r) & SL11_EPSTAT_STALL), !!((r) & SL11_EPSTAT_NAK), \
659 !!((r) & SL11_EPSTAT_OVERFLOW), !!((r) & SL11_EPSTAT_SETUP)); \
660 DDOLOG("STAT sequence=%d timeout =%d error =%d ack =%d", \
661 !!((r) & SL11_EPSTAT_SEQUENCE), !!((r) & SL11_EPSTAT_TIMEOUT), \
662 !!((r) & SL11_EPSTAT_ERROR), !!((r) & SL11_EPSTAT_ACK)); \
663 } while (0)
664 #else /* now !SLHCI_DEBUG */
665 #define slhcidebug 0
666 #define slhci_log_spipe(spipe) ((void)0)
667 #define slhci_log_xfer(xfer) ((void)0)
668 #define SLHCI_DEXEC(x, y) ((void)0)
669 #define DDOLOG(f, a, b, c, d) ((void)0)
670 #define DLOG(x, f, a, b, c, d) ((void)0)
671 #define DDOLOGBUF(b, l) ((void)0)
672 #define DLOGBUF(x, b, l) ((void)0)
673 #define DDOLOGCTRL(x) ((void)0)
674 #define DDOLOGISR(r) ((void)0)
675 #define DDOLOGIER(r) ((void)0)
676 #define DDOLOGSTATUS(s) ((void)0)
677 #define DDOLOGEPCTRL(r) ((void)0)
678 #define DDOLOGEPSTAT(r) ((void)0)
679 #endif /* SLHCI_DEBUG */
680
681 #ifdef DIAGNOSTIC
682 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) do { \
683 if (!(exp)) { \
684 printf("%s: assertion %s failed line %u function %s!" \
685 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
686 slhci_halt(sc, spipe, xfer); \
687 ext; \
688 } \
689 } while (/*CONSTCOND*/0)
690 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) do { \
691 if (!(exp)) { \
692 printf("%s: assertion %s failed line %u function %s!" \
693 " halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \
694 slhci_lock_call(sc, &slhci_halt, spipe, xfer); \
695 ext; \
696 } \
697 } while (/*CONSTCOND*/0)
698 #else
699 #define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
700 #define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
701 #endif
702
703 const struct usbd_bus_methods slhci_bus_methods = {
704 .ubm_open = slhci_open,
705 .ubm_softint= slhci_void,
706 .ubm_dopoll = slhci_poll,
707 .ubm_allocx = slhci_allocx,
708 .ubm_freex = slhci_freex,
709 .ubm_getlock = slhci_get_lock,
710 .ubm_rhctrl = slhci_roothub_ctrl,
711 };
712
713 const struct usbd_pipe_methods slhci_pipe_methods = {
714 .upm_transfer = slhci_transfer,
715 .upm_start = slhci_start,
716 .upm_abort = slhci_abort,
717 .upm_close = slhci_close,
718 .upm_cleartoggle = slhci_clear_toggle,
719 .upm_done = slhci_done,
720 };
721
722 const struct usbd_pipe_methods slhci_root_methods = {
723 .upm_transfer = slhci_transfer,
724 .upm_start = slhci_root_start,
725 .upm_abort = slhci_abort,
726 .upm_close = (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */
727 .upm_cleartoggle = slhci_clear_toggle,
728 .upm_done = slhci_done,
729 };
730
731 /* Queue inlines */
732
733 #define GOT_FIRST_TO(tvar, t) \
734 GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to)
735
736 #define FIND_TO(var, t, tvar, cond) \
737 GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond)
738
739 #define FOREACH_AP(var, t, tvar) \
740 GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap)
741
742 #define GOT_FIRST_TIMED_COND(tvar, t, cond) \
743 GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond)
744
745 #define GOT_FIRST_CB(tvar, t) \
746 GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq)
747
748 #define DEQUEUED_CALLBACK(tvar, t) \
749 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq)
750
751 #define FIND_TIMED(var, t, tvar, cond) \
752 GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond)
753
754 #define DEQUEUED_WAITQ(tvar, sc) \
755 GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq)
756
757 static inline void
758 enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe)
759 {
760 gcq_insert_tail(&sc->sc_waitq, &spipe->xq);
761 }
762
763 static inline void
764 enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i)
765 {
766 gcq_insert_tail(&t->q[i], &spipe->xq);
767 }
768
769 static inline void
770 enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe)
771 {
772 gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq);
773 }
774
775 static inline void
776 enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe)
777 {
778 gcq_insert_tail(&t->ap, &spipe->ap);
779 }
780
781 /* Start out of lock functions. */
782
783 struct usbd_xfer *
784 slhci_allocx(struct usbd_bus *bus, unsigned int nframes)
785 {
786 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
787 struct usbd_xfer *xfer;
788
789 xfer = kmem_zalloc(sizeof(*xfer), KM_SLEEP);
790
791 DLOG(D_MEM, "allocx %#jx", (uintptr_t)xfer, 0,0,0);
792
793 #ifdef SLHCI_MEM_ACCOUNTING
794 slhci_mem_use(bus, 1);
795 #endif
796 #ifdef DIAGNOSTIC
797 if (xfer != NULL)
798 xfer->ux_state = XFER_BUSY;
799 #endif
800 return xfer;
801 }
802
803 void
804 slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
805 {
806 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
807 DLOG(D_MEM, "freex xfer %#jx spipe %#jx",
808 (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe,0,0);
809
810 #ifdef SLHCI_MEM_ACCOUNTING
811 slhci_mem_use(bus, -1);
812 #endif
813 #ifdef DIAGNOSTIC
814 if (xfer->ux_state != XFER_BUSY) {
815 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
816 printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
817 SC_NAME(sc), xfer, xfer->ux_state);
818 DDOLOG("xfer=%p not busy, %#08x halted\n", xfer,
819 xfer->ux_state, 0, 0);
820 slhci_lock_call(sc, &slhci_halt, NULL, NULL);
821 return;
822 }
823 xfer->ux_state = XFER_FREE;
824 #endif
825
826 kmem_free(xfer, sizeof(*xfer));
827 }
828
829 static void
830 slhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
831 {
832 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
833
834 *lock = &sc->sc_lock;
835 }
836
837 usbd_status
838 slhci_transfer(struct usbd_xfer *xfer)
839 {
840 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
841 struct slhci_softc *sc = SLHCI_XFER2SC(xfer);
842 usbd_status error;
843
844 DLOG(D_TRACE, "transfer type %jd xfer %#jx spipe %#jx ",
845 SLHCI_XFER_TYPE(xfer), (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe,
846 0);
847
848 /* Insert last in queue */
849 mutex_enter(&sc->sc_lock);
850 error = usb_insert_transfer(xfer);
851 mutex_exit(&sc->sc_lock);
852 if (error) {
853 if (error != USBD_IN_PROGRESS)
854 DLOG(D_ERR, "usb_insert_transfer returns %jd!", error,
855 0,0,0);
856 return error;
857 }
858
859 /*
860 * Pipe isn't running (otherwise error would be USBD_INPROG),
861 * so start it first.
862 */
863
864 /*
865 * Start will take the lock.
866 */
867 error = xfer->ux_pipe->up_methods->upm_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
868
869 return error;
870 }
871
872 /* It is not safe for start to return anything other than USBD_INPROG. */
873 usbd_status
874 slhci_start(struct usbd_xfer *xfer)
875 {
876 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
877 struct slhci_softc *sc = SLHCI_XFER2SC(xfer);
878 struct usbd_pipe *pipe = xfer->ux_pipe;
879 struct slhci_pipe *spipe = SLHCI_PIPE2SPIPE(pipe);
880 struct slhci_transfers *t = &sc->sc_transfers;
881 usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
882 unsigned int max_packet;
883
884 mutex_enter(&sc->sc_lock);
885
886 max_packet = UGETW(ed->wMaxPacketSize);
887
888 DLOG(D_TRACE, "transfer type %jd start xfer %#jx spipe %#jx length %jd",
889 spipe->ptype, (uintptr_t)xfer, (uintptr_t)spipe, xfer->ux_length);
890
891 /* root transfers use slhci_root_start */
892
893 KASSERT(spipe->xfer == NULL); /* not SLASSERT */
894
895 xfer->ux_actlen = 0;
896 xfer->ux_status = USBD_IN_PROGRESS;
897
898 spipe->xfer = xfer;
899
900 spipe->nerrs = 0;
901 spipe->frame = t->frame;
902 spipe->control = SL11_EPCTRL_ARM_ENABLE;
903 spipe->tregs[DEV] = pipe->up_dev->ud_addr;
904 spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress)
905 | (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN :
906 SL11_PID_OUT);
907 spipe->newlen[0] = xfer->ux_length % max_packet;
908 spipe->newlen[1] = min(xfer->ux_length, max_packet);
909
910 if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) {
911 if (spipe->pflags & PF_TOGGLE)
912 spipe->control |= SL11_EPCTRL_DATATOGGLE;
913 spipe->tregs[LEN] = spipe->newlen[1];
914 if (spipe->tregs[LEN])
915 spipe->buffer = xfer->ux_buf;
916 else
917 spipe->buffer = NULL;
918 spipe->lastframe = t->frame;
919 if (spipe->ptype == PT_INTR) {
920 spipe->frame = spipe->lastframe +
921 spipe->pipe.up_interval;
922 }
923
924 #if defined(DEBUG) || defined(SLHCI_DEBUG)
925 if (__predict_false(spipe->ptype == PT_INTR &&
926 xfer->ux_length > spipe->tregs[LEN])) {
927 printf("%s: Long INTR transfer not supported!\n",
928 SC_NAME(sc));
929 DDOLOG("Long INTR transfer not supported!", 0, 0, 0, 0);
930 xfer->ux_status = USBD_INVAL;
931 }
932 #endif
933 } else {
934 /* ptype may be currently set to any control transfer type. */
935 SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer));
936
937 /* SETUP contains IN/OUT bits also */
938 spipe->tregs[PID] |= SL11_PID_SETUP;
939 spipe->tregs[LEN] = 8;
940 spipe->buffer = (uint8_t *)&xfer->ux_request;
941 DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]);
942 spipe->ptype = PT_CTRL_SETUP;
943 spipe->newpid &= ~SL11_PID_BITS;
944 if (xfer->ux_length == 0 ||
945 (xfer->ux_request.bmRequestType & UT_READ))
946 spipe->newpid |= SL11_PID_IN;
947 else
948 spipe->newpid |= SL11_PID_OUT;
949 }
950
951 if (xfer->ux_flags & USBD_FORCE_SHORT_XFER &&
952 spipe->tregs[LEN] == max_packet &&
953 (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT)
954 spipe->wantshort = 1;
955 else
956 spipe->wantshort = 0;
957
958 /*
959 * The goal of newbustime and newlen is to avoid bustime calculation
960 * in the interrupt. The calculations are not too complex, but they
961 * complicate the conditional logic somewhat and doing them all in the
962 * same place shares constants. Index 0 is "short length" for bulk and
963 * ctrl data and 1 is "full length" for ctrl data (bulk/intr are
964 * already set to full length).
965 */
966 if (spipe->pflags & PF_LS) {
967 /*
968 * Setting PREAMBLE for directly connected LS devices will
969 * lock up the chip.
970 */
971 if (spipe->pflags & PF_PREAMBLE)
972 spipe->control |= SL11_EPCTRL_PREAMBLE;
973 if (max_packet <= 8) {
974 spipe->bustime = SLHCI_LS_CONST +
975 SLHCI_LS_DATA_TIME(spipe->tregs[LEN]);
976 spipe->newbustime[0] = SLHCI_LS_CONST +
977 SLHCI_LS_DATA_TIME(spipe->newlen[0]);
978 spipe->newbustime[1] = SLHCI_LS_CONST +
979 SLHCI_LS_DATA_TIME(spipe->newlen[1]);
980 } else
981 xfer->ux_status = USBD_INVAL;
982 } else {
983 UL_SLASSERT(pipe->up_dev->ud_speed == USB_SPEED_FULL, sc,
984 spipe, xfer, return USBD_IN_PROGRESS);
985 if (max_packet <= SL11_MAX_PACKET_SIZE) {
986 spipe->bustime = SLHCI_FS_CONST +
987 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
988 spipe->newbustime[0] = SLHCI_FS_CONST +
989 SLHCI_FS_DATA_TIME(spipe->newlen[0]);
990 spipe->newbustime[1] = SLHCI_FS_CONST +
991 SLHCI_FS_DATA_TIME(spipe->newlen[1]);
992 } else
993 xfer->ux_status = USBD_INVAL;
994 }
995
996 /*
997 * The datasheet incorrectly indicates that DIRECTION is for
998 * "transmit to host". It is for OUT and SETUP. The app note
999 * describes its use correctly.
1000 */
1001 if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN)
1002 spipe->control |= SL11_EPCTRL_DIRECTION;
1003
1004 slhci_start_entry(sc, spipe);
1005
1006 mutex_exit(&sc->sc_lock);
1007
1008 return USBD_IN_PROGRESS;
1009 }
1010
1011 usbd_status
1012 slhci_root_start(struct usbd_xfer *xfer)
1013 {
1014 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1015 struct slhci_softc *sc;
1016 struct slhci_pipe *spipe __diagused;
1017
1018 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe);
1019 sc = SLHCI_XFER2SC(xfer);
1020
1021 struct slhci_transfers *t = &sc->sc_transfers;
1022
1023 LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return
1024 USBD_CANCELLED);
1025
1026 DLOG(D_TRACE, "transfer type %jd start",
1027 SLHCI_XFER_TYPE(xfer), 0, 0, 0);
1028
1029 KASSERT(spipe->ptype == PT_ROOT_INTR);
1030
1031 mutex_enter(&sc->sc_intr_lock);
1032 t->rootintr = xfer;
1033 mutex_exit(&sc->sc_intr_lock);
1034
1035 return USBD_IN_PROGRESS;
1036 }
1037
1038 usbd_status
1039 slhci_open(struct usbd_pipe *pipe)
1040 {
1041 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1042 struct usbd_device *dev;
1043 struct slhci_softc *sc;
1044 struct slhci_pipe *spipe;
1045 usb_endpoint_descriptor_t *ed;
1046 unsigned int max_packet, pmaxpkt;
1047 uint8_t rhaddr;
1048
1049 dev = pipe->up_dev;
1050 sc = SLHCI_PIPE2SC(pipe);
1051 spipe = SLHCI_PIPE2SPIPE(pipe);
1052 ed = pipe->up_endpoint->ue_edesc;
1053 rhaddr = dev->ud_bus->ub_rhaddr;
1054
1055 DLOG(D_TRACE, "slhci_open(addr=%jd,ep=%jd,rootaddr=%jd)",
1056 dev->ud_addr, ed->bEndpointAddress, rhaddr, 0);
1057
1058 spipe->pflags = 0;
1059 spipe->frame = 0;
1060 spipe->lastframe = 0;
1061 spipe->xfer = NULL;
1062 spipe->buffer = NULL;
1063
1064 gcq_init(&spipe->ap);
1065 gcq_init(&spipe->to);
1066 gcq_init(&spipe->xq);
1067
1068 /*
1069 * The endpoint descriptor will not have been set up yet in the case
1070 * of the standard control pipe, so the max packet checks are also
1071 * necessary in start.
1072 */
1073
1074 max_packet = UGETW(ed->wMaxPacketSize);
1075
1076 if (dev->ud_speed == USB_SPEED_LOW) {
1077 spipe->pflags |= PF_LS;
1078 if (dev->ud_myhub->ud_addr != rhaddr) {
1079 spipe->pflags |= PF_PREAMBLE;
1080 if (!slhci_try_lsvh)
1081 return slhci_lock_call(sc, &slhci_lsvh_warn,
1082 spipe, NULL);
1083 }
1084 pmaxpkt = 8;
1085 } else
1086 pmaxpkt = SL11_MAX_PACKET_SIZE;
1087
1088 if (max_packet > pmaxpkt) {
1089 DLOG(D_ERR, "packet too large! size %jd spipe %#jx", max_packet,
1090 (uintptr_t)spipe, 0,0);
1091 return USBD_INVAL;
1092 }
1093
1094 if (dev->ud_addr == rhaddr) {
1095 switch (ed->bEndpointAddress) {
1096 case USB_CONTROL_ENDPOINT:
1097 spipe->ptype = PT_ROOT_CTRL;
1098 pipe->up_interval = 0;
1099 pipe->up_methods = &roothub_ctrl_methods;
1100 break;
1101 case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
1102 spipe->ptype = PT_ROOT_INTR;
1103 pipe->up_interval = 1;
1104 pipe->up_methods = &slhci_root_methods;
1105 break;
1106 default:
1107 printf("%s: Invalid root endpoint!\n", SC_NAME(sc));
1108 DDOLOG("Invalid root endpoint", 0, 0, 0, 0);
1109 return USBD_INVAL;
1110 }
1111 return USBD_NORMAL_COMPLETION;
1112 } else {
1113 switch (ed->bmAttributes & UE_XFERTYPE) {
1114 case UE_CONTROL:
1115 spipe->ptype = PT_CTRL_SETUP;
1116 pipe->up_interval = 0;
1117 break;
1118 case UE_INTERRUPT:
1119 spipe->ptype = PT_INTR;
1120 if (pipe->up_interval == USBD_DEFAULT_INTERVAL)
1121 pipe->up_interval = ed->bInterval;
1122 break;
1123 case UE_ISOCHRONOUS:
1124 return slhci_lock_call(sc, &slhci_isoc_warn, spipe,
1125 NULL);
1126 case UE_BULK:
1127 spipe->ptype = PT_BULK;
1128 pipe->up_interval = 0;
1129 break;
1130 }
1131
1132 DLOG(D_MSG, "open pipe type %jd interval %jd", spipe->ptype,
1133 pipe->up_interval, 0,0);
1134
1135 pipe->up_methods = __UNCONST(&slhci_pipe_methods);
1136
1137 return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL);
1138 }
1139 }
1140
1141 int
1142 slhci_supported_rev(uint8_t rev)
1143 {
1144 return rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15;
1145 }
1146
1147 /*
1148 * Must be called before the ISR is registered. Interrupts can be shared so
1149 * slhci_intr could be called as soon as the ISR is registered.
1150 * Note max_current argument is actual current, but stored as current/2
1151 */
1152 void
1153 slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot,
1154 bus_space_handle_t ioh, uint16_t max_current, uint32_t stride)
1155 {
1156 struct slhci_transfers *t;
1157 int i;
1158
1159 t = &sc->sc_transfers;
1160
1161 #ifdef SLHCI_DEBUG
1162 ssc = sc;
1163 #endif
1164
1165 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
1166 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
1167
1168 /* sc->sc_ier = 0; */
1169 /* t->rootintr = NULL; */
1170 t->flags = F_NODEV|F_UDISABLED;
1171 t->pend = INT_MAX;
1172 KASSERT(slhci_wait_time != INT_MAX);
1173 t->len[0] = t->len[1] = -1;
1174 if (max_current > 500)
1175 max_current = 500;
1176 t->max_current = (uint8_t)(max_current / 2);
1177 sc->sc_enable_power = pow;
1178 sc->sc_iot = iot;
1179 sc->sc_ioh = ioh;
1180 sc->sc_stride = stride;
1181
1182 KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0]));
1183
1184 for (i = 0; i <= Q_MAX; i++)
1185 gcq_init_head(&t->q[i]);
1186 gcq_init_head(&t->timed);
1187 gcq_init_head(&t->to);
1188 gcq_init_head(&t->ap);
1189 gcq_init_head(&sc->sc_waitq);
1190 }
1191
1192 int
1193 slhci_attach(struct slhci_softc *sc)
1194 {
1195 struct slhci_transfers *t;
1196 const char *rev;
1197
1198 t = &sc->sc_transfers;
1199
1200 /* Detect and check the controller type */
1201 t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV));
1202
1203 /* SL11H not supported */
1204 if (!slhci_supported_rev(t->sltype)) {
1205 if (t->sltype == SLTYPE_SL11H)
1206 printf("%s: SL11H unsupported or bus error!\n",
1207 SC_NAME(sc));
1208 else
1209 printf("%s: Unknown chip revision!\n", SC_NAME(sc));
1210 return -1;
1211 }
1212
1213 #ifdef SLHCI_DEBUG
1214 if (slhci_memtest(sc)) {
1215 printf("%s: memory/bus error!\n", SC_NAME(sc));
1216 return -1;
1217 }
1218 #endif
1219
1220 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
1221 callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc);
1222
1223 /*
1224 * It is not safe to call the soft interrupt directly as
1225 * usb_schedsoftintr does in the ub_usepolling case (due to locking).
1226 */
1227 sc->sc_cb_softintr = softint_establish(SOFTINT_NET,
1228 slhci_callback_entry, sc);
1229
1230 if (t->sltype == SLTYPE_SL811HS_R12)
1231 rev = "(rev 1.2)";
1232 else if (t->sltype == SLTYPE_SL811HS_R14)
1233 rev = "(rev 1.4 or 1.5)";
1234 else
1235 rev = "(unknown revision)";
1236
1237 aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n",
1238 SC_NAME(sc), rev);
1239
1240 aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n",
1241 SC_NAME(sc), t->max_current * 2);
1242
1243 #if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \
1244 defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER)
1245 aprint_normal("%s: driver options:"
1246 #ifdef SLHCI_DEBUG
1247 " SLHCI_DEBUG"
1248 #endif
1249 #ifdef SLHCI_TRY_LSVH
1250 " SLHCI_TRY_LSVH"
1251 #endif
1252 #ifdef SLHCI_NO_OVERTIME
1253 " SLHCI_NO_OVERTIME"
1254 #endif
1255 #ifdef SLHCI_PROFILE_TRANSFER
1256 " SLHCI_PROFILE_TRANSFER"
1257 #endif
1258 "\n", SC_NAME(sc));
1259 #endif
1260 sc->sc_bus.ub_revision = USBREV_1_1;
1261 sc->sc_bus.ub_methods = __UNCONST(&slhci_bus_methods);
1262 sc->sc_bus.ub_pipesize = sizeof(struct slhci_pipe);
1263 sc->sc_bus.ub_usedma = false;
1264
1265 if (!sc->sc_enable_power)
1266 t->flags |= F_REALPOWER;
1267
1268 t->flags |= F_ACTIVE;
1269
1270 /* Attach usb and uhub. */
1271 sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint);
1272
1273 if (!sc->sc_child)
1274 return -1;
1275 else
1276 return 0;
1277 }
1278
1279 int
1280 slhci_detach(struct slhci_softc *sc, int flags)
1281 {
1282 struct slhci_transfers *t;
1283 int ret;
1284
1285 t = &sc->sc_transfers;
1286
1287 /* By this point bus access is no longer allowed. */
1288
1289 KASSERT(!(t->flags & F_ACTIVE));
1290
1291 /*
1292 * To be MPSAFE is not sufficient to cancel callouts and soft
1293 * interrupts and assume they are dead since the code could already be
1294 * running or about to run. Wait until they are known to be done.
1295 */
1296 while (t->flags & (F_RESET|F_CALLBACK))
1297 tsleep(&sc, PPAUSE, "slhci_detach", hz);
1298
1299 softint_disestablish(sc->sc_cb_softintr);
1300
1301 mutex_destroy(&sc->sc_lock);
1302 mutex_destroy(&sc->sc_intr_lock);
1303
1304 ret = 0;
1305
1306 if (sc->sc_child)
1307 ret = config_detach(sc->sc_child, flags);
1308
1309 #ifdef SLHCI_MEM_ACCOUNTING
1310 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1311 if (sc->sc_mem_use) {
1312 printf("%s: Memory still in use after detach! mem_use (count)"
1313 " = %d\n", SC_NAME(sc), sc->sc_mem_use);
1314 DDOLOG("Memory still in use after detach! mem_use (count)"
1315 " = %d", sc->sc_mem_use, 0, 0, 0);
1316 }
1317 #endif
1318
1319 return ret;
1320 }
1321
1322 int
1323 slhci_activate(device_t self, enum devact act)
1324 {
1325 struct slhci_softc *sc = device_private(self);
1326
1327 switch (act) {
1328 case DVACT_DEACTIVATE:
1329 slhci_lock_call(sc, &slhci_halt, NULL, NULL);
1330 return 0;
1331 default:
1332 return EOPNOTSUPP;
1333 }
1334 }
1335
1336 void
1337 slhci_abort(struct usbd_xfer *xfer)
1338 {
1339 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1340 struct slhci_softc *sc;
1341 struct slhci_pipe *spipe;
1342
1343 spipe = SLHCI_PIPE2SPIPE(xfer->ux_pipe);
1344
1345 if (spipe == NULL)
1346 goto callback;
1347
1348 sc = SLHCI_XFER2SC(xfer);
1349 KASSERT(mutex_owned(&sc->sc_lock));
1350
1351 DLOG(D_TRACE, "transfer type %jd abort xfer %#jx spipe %#jx "
1352 " spipe->xfer %#jx", spipe->ptype, (uintptr_t)xfer,
1353 (uintptr_t)spipe, (uintptr_t)spipe->xfer);
1354
1355 slhci_lock_call(sc, &slhci_do_abort, spipe, xfer);
1356
1357 callback:
1358 xfer->ux_status = USBD_CANCELLED;
1359 usb_transfer_complete(xfer);
1360 }
1361
1362 void
1363 slhci_close(struct usbd_pipe *pipe)
1364 {
1365 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1366 struct slhci_softc *sc;
1367 struct slhci_pipe *spipe;
1368
1369 sc = SLHCI_PIPE2SC(pipe);
1370 spipe = SLHCI_PIPE2SPIPE(pipe);
1371
1372 DLOG(D_TRACE, "transfer type %jd close spipe %#jx spipe->xfer %#jx",
1373 spipe->ptype, (uintptr_t)spipe, (uintptr_t)spipe->xfer, 0);
1374
1375 slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL);
1376 }
1377
1378 void
1379 slhci_clear_toggle(struct usbd_pipe *pipe)
1380 {
1381 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1382 struct slhci_pipe *spipe;
1383
1384 spipe = SLHCI_PIPE2SPIPE(pipe);
1385
1386 DLOG(D_TRACE, "transfer type %jd toggle spipe %#jx", spipe->ptype,
1387 (uintptr_t)spipe, 0, 0);
1388
1389 spipe->pflags &= ~PF_TOGGLE;
1390
1391 #ifdef DIAGNOSTIC
1392 if (spipe->xfer != NULL) {
1393 struct slhci_softc *sc = (struct slhci_softc
1394 *)pipe->up_dev->ud_bus;
1395
1396 printf("%s: Clear toggle on transfer in progress! halted\n",
1397 SC_NAME(sc));
1398 DDOLOG("Clear toggle on transfer in progress! halted",
1399 0, 0, 0, 0);
1400 slhci_halt(sc, NULL, NULL);
1401 }
1402 #endif
1403 }
1404
1405 void
1406 slhci_poll(struct usbd_bus *bus) /* XXX necessary? */
1407 {
1408 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1409 struct slhci_softc *sc;
1410
1411 sc = SLHCI_BUS2SC(bus);
1412
1413 DLOG(D_TRACE, "slhci_poll", 0,0,0,0);
1414
1415 slhci_lock_call(sc, &slhci_do_poll, NULL, NULL);
1416 }
1417
1418 void
1419 slhci_done(struct usbd_xfer *xfer)
1420 {
1421 }
1422
1423 void
1424 slhci_void(void *v) {}
1425
1426 /* End out of lock functions. Start lock entry functions. */
1427
1428 #ifdef SLHCI_MEM_ACCOUNTING
1429 void
1430 slhci_mem_use(struct usbd_bus *bus, int val)
1431 {
1432 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
1433
1434 mutex_enter(&sc->sc_intr_lock);
1435 sc->sc_mem_use += val;
1436 mutex_exit(&sc->sc_intr_lock);
1437 }
1438 #endif
1439
1440 void
1441 slhci_reset_entry(void *arg)
1442 {
1443 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1444 struct slhci_softc *sc = arg;
1445
1446 mutex_enter(&sc->sc_intr_lock);
1447 slhci_reset(sc);
1448 /*
1449 * We cannot call the callback directly since we could then be reset
1450 * again before finishing and need the callout delay for timing.
1451 * Scheduling the callout again before we exit would defeat the reap
1452 * mechanism since we could be unlocked while the reset flag is not
1453 * set. The callback code will check the wait queue.
1454 */
1455 slhci_callback_schedule(sc);
1456 mutex_exit(&sc->sc_intr_lock);
1457 }
1458
1459 usbd_status
1460 slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe
1461 *spipe, struct usbd_xfer *xfer)
1462 {
1463 usbd_status ret;
1464
1465 mutex_enter(&sc->sc_intr_lock);
1466 ret = (*lcf)(sc, spipe, xfer);
1467 slhci_main(sc);
1468 mutex_exit(&sc->sc_intr_lock);
1469
1470 return ret;
1471 }
1472
1473 void
1474 slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe)
1475 {
1476 struct slhci_transfers *t;
1477
1478 mutex_enter(&sc->sc_intr_lock);
1479 t = &sc->sc_transfers;
1480
1481 if (!(t->flags & (F_AINPROG|F_BINPROG))) {
1482 slhci_enter_xfer(sc, spipe);
1483 slhci_dotransfer(sc);
1484 slhci_main(sc);
1485 } else {
1486 enter_waitq(sc, spipe);
1487 }
1488 mutex_exit(&sc->sc_intr_lock);
1489 }
1490
1491 void
1492 slhci_callback_entry(void *arg)
1493 {
1494 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1495 struct slhci_softc *sc;
1496 struct slhci_transfers *t;
1497
1498 sc = (struct slhci_softc *)arg;
1499
1500 mutex_enter(&sc->sc_intr_lock);
1501 t = &sc->sc_transfers;
1502 DLOG(D_SOFT, "callback_entry flags %#jx", t->flags, 0,0,0);
1503
1504 repeat:
1505 slhci_callback(sc);
1506
1507 if (!gcq_empty(&sc->sc_waitq)) {
1508 slhci_enter_xfers(sc);
1509 slhci_dotransfer(sc);
1510 slhci_waitintr(sc, 0);
1511 goto repeat;
1512 }
1513
1514 t->flags &= ~F_CALLBACK;
1515 mutex_exit(&sc->sc_intr_lock);
1516 }
1517
1518 void
1519 slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer)
1520 {
1521 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1522 KASSERT(mutex_owned(&sc->sc_intr_lock));
1523
1524 start_cc_time(&t_callback, (u_int)xfer);
1525 mutex_exit(&sc->sc_intr_lock);
1526
1527 mutex_enter(&sc->sc_lock);
1528 usb_transfer_complete(xfer);
1529 mutex_exit(&sc->sc_lock);
1530
1531 mutex_enter(&sc->sc_intr_lock);
1532 stop_cc_time(&t_callback);
1533 }
1534
1535 int
1536 slhci_intr(void *arg)
1537 {
1538 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1539 struct slhci_softc *sc = arg;
1540 int ret = 0;
1541 int irq;
1542
1543 start_cc_time(&t_hard_int, (unsigned int)arg);
1544 mutex_enter(&sc->sc_intr_lock);
1545
1546 do {
1547 irq = slhci_dointr(sc);
1548 ret |= irq;
1549 slhci_main(sc);
1550 } while (irq);
1551 mutex_exit(&sc->sc_intr_lock);
1552
1553 stop_cc_time(&t_hard_int);
1554 return ret;
1555 }
1556
1557 /* called with interrupt lock only held. */
1558 void
1559 slhci_main(struct slhci_softc *sc)
1560 {
1561 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1562 struct slhci_transfers *t;
1563
1564 t = &sc->sc_transfers;
1565
1566 KASSERT(mutex_owned(&sc->sc_intr_lock));
1567
1568 waitcheck:
1569 slhci_waitintr(sc, slhci_wait_time);
1570
1571 /*
1572 * The direct call is needed in the ub_usepolling and disabled cases
1573 * since the soft interrupt is not available. In the disabled case,
1574 * this code can be reached from the usb detach, after the reaping of
1575 * the soft interrupt. That test could be !F_ACTIVE, but there is no
1576 * reason not to make the callbacks directly in the other DISABLED
1577 * cases.
1578 */
1579 if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) {
1580 if (__predict_false(sc->sc_bus.ub_usepolling ||
1581 t->flags & F_DISABLED))
1582 slhci_callback(sc);
1583 else
1584 slhci_callback_schedule(sc);
1585 }
1586
1587 if (!gcq_empty(&sc->sc_waitq)) {
1588 slhci_enter_xfers(sc);
1589 slhci_dotransfer(sc);
1590 goto waitcheck;
1591 }
1592 DLOG(D_INTR, "... done", 0, 0, 0, 0);
1593 }
1594
1595 /* End lock entry functions. Start in lock function. */
1596
1597 /* Register read/write routines and barriers. */
1598 #ifdef SLHCI_BUS_SPACE_BARRIERS
1599 #define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e)
1600 #define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE)
1601 #else /* now !SLHCI_BUS_SPACE_BARRIERS */
1602 #define BSB(a, b, c, d, e) __USE(d)
1603 #define BSB_SYNC(a, b, c, d)
1604 #endif /* SLHCI_BUS_SPACE_BARRIERS */
1605
1606 static void
1607 slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data)
1608 {
1609 bus_size_t paddr, pdata, pst, psz;
1610 bus_space_tag_t iot;
1611 bus_space_handle_t ioh;
1612
1613 paddr = pst = 0;
1614 pdata = sc->sc_stride;
1615 psz = pdata * 2;
1616 iot = sc->sc_iot;
1617 ioh = sc->sc_ioh;
1618
1619 bus_space_write_1(iot, ioh, paddr, addr);
1620 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1621 bus_space_write_1(iot, ioh, pdata, data);
1622 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1623 }
1624
1625 static uint8_t
1626 slhci_read(struct slhci_softc *sc, uint8_t addr)
1627 {
1628 bus_size_t paddr, pdata, pst, psz;
1629 bus_space_tag_t iot;
1630 bus_space_handle_t ioh;
1631 uint8_t data;
1632
1633 paddr = pst = 0;
1634 pdata = sc->sc_stride;
1635 psz = pdata * 2;
1636 iot = sc->sc_iot;
1637 ioh = sc->sc_ioh;
1638
1639 bus_space_write_1(iot, ioh, paddr, addr);
1640 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1641 data = bus_space_read_1(iot, ioh, pdata);
1642 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1643 return data;
1644 }
1645
1646 #if 0 /* auto-increment mode broken, see errata doc */
1647 static void
1648 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1649 {
1650 bus_size_t paddr, pdata, pst, psz;
1651 bus_space_tag_t iot;
1652 bus_space_handle_t ioh;
1653
1654 paddr = pst = 0;
1655 pdata = sc->sc_stride;
1656 psz = pdata * 2;
1657 iot = sc->sc_iot;
1658 ioh = sc->sc_ioh;
1659
1660 bus_space_write_1(iot, ioh, paddr, addr);
1661 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1662 bus_space_write_multi_1(iot, ioh, pdata, buf, l);
1663 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1664 }
1665
1666 static void
1667 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1668 {
1669 bus_size_t paddr, pdata, pst, psz;
1670 bus_space_tag_t iot;
1671 bus_space_handle_t ioh;
1672
1673 paddr = pst = 0;
1674 pdata = sc->sc_stride;
1675 psz = pdata * 2;
1676 iot = sc->sc_iot;
1677 ioh = sc->sc_ioh;
1678
1679 bus_space_write_1(iot, ioh, paddr, addr);
1680 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1681 bus_space_read_multi_1(iot, ioh, pdata, buf, l);
1682 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1683 }
1684 #else
1685 static void
1686 slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1687 {
1688 #if 1
1689 for (; l; addr++, buf++, l--)
1690 slhci_write(sc, addr, *buf);
1691 #else
1692 bus_size_t paddr, pdata, pst, psz;
1693 bus_space_tag_t iot;
1694 bus_space_handle_t ioh;
1695
1696 paddr = pst = 0;
1697 pdata = sc->sc_stride;
1698 psz = pdata * 2;
1699 iot = sc->sc_iot;
1700 ioh = sc->sc_ioh;
1701
1702 for (; l; addr++, buf++, l--) {
1703 bus_space_write_1(iot, ioh, paddr, addr);
1704 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1705 bus_space_write_1(iot, ioh, pdata, *buf);
1706 BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
1707 }
1708 #endif
1709 }
1710
1711 static void
1712 slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
1713 {
1714 #if 1
1715 for (; l; addr++, buf++, l--)
1716 *buf = slhci_read(sc, addr);
1717 #else
1718 bus_size_t paddr, pdata, pst, psz;
1719 bus_space_tag_t iot;
1720 bus_space_handle_t ioh;
1721
1722 paddr = pst = 0;
1723 pdata = sc->sc_stride;
1724 psz = pdata * 2;
1725 iot = sc->sc_iot;
1726 ioh = sc->sc_ioh;
1727
1728 for (; l; addr++, buf++, l--) {
1729 bus_space_write_1(iot, ioh, paddr, addr);
1730 BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
1731 *buf = bus_space_read_1(iot, ioh, pdata);
1732 BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
1733 }
1734 #endif
1735 }
1736 #endif
1737
1738 /*
1739 * After calling waitintr it is necessary to either call slhci_callback or
1740 * schedule the callback if necessary. The callback cannot be called directly
1741 * from the hard interrupt since it interrupts at a high IPL and callbacks
1742 * can do copyout and such.
1743 */
1744 static void
1745 slhci_waitintr(struct slhci_softc *sc, int wait_time)
1746 {
1747 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1748 struct slhci_transfers *t;
1749
1750 t = &sc->sc_transfers;
1751
1752 KASSERT(mutex_owned(&sc->sc_intr_lock));
1753
1754 if (__predict_false(sc->sc_bus.ub_usepolling))
1755 wait_time = 12000;
1756
1757 while (t->pend <= wait_time) {
1758 DLOG(D_WAIT, "waiting... frame %jd pend %jd flags %#jx",
1759 t->frame, t->pend, t->flags, 0);
1760 LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return);
1761 LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL,
1762 return);
1763 slhci_dointr(sc);
1764 }
1765 DLOG(D_WAIT, "... done", 0, 0, 0, 0);
1766 }
1767
1768 static int
1769 slhci_dointr(struct slhci_softc *sc)
1770 {
1771 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1772 struct slhci_transfers *t;
1773 struct slhci_pipe *tosp;
1774 uint8_t r;
1775
1776 t = &sc->sc_transfers;
1777
1778 KASSERT(mutex_owned(&sc->sc_intr_lock));
1779
1780 if (sc->sc_ier == 0) {
1781 DLOG(D_INTR, "sc_ier is zero", 0, 0, 0, 0);
1782 return 0;
1783 }
1784
1785 r = slhci_read(sc, SL11_ISR);
1786
1787 #ifdef SLHCI_DEBUG
1788 if (slhcidebug & SLHCI_D_INTR && r & sc->sc_ier &&
1789 ((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhcidebug & SLHCI_D_SOF)) {
1790 uint8_t e, f;
1791
1792 e = slhci_read(sc, SL11_IER);
1793 f = slhci_read(sc, SL11_CTRL);
1794 DDOLOG("Flags=%#x IER=%#x ISR=%#x CTRL=%#x", t->flags, e, r, f);
1795 DDOLOGCTRL(f);
1796 DDOLOGISR(r);
1797 }
1798 #endif
1799
1800 /*
1801 * check IER for corruption occasionally. Assume that the above
1802 * sc_ier == 0 case works correctly.
1803 */
1804 if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) {
1805 sc->sc_ier_check = 0;
1806 if (sc->sc_ier != slhci_read(sc, SL11_IER)) {
1807 printf("%s: IER value corrupted! halted\n",
1808 SC_NAME(sc));
1809 DDOLOG("IER value corrupted! halted", 0, 0, 0, 0);
1810 slhci_halt(sc, NULL, NULL);
1811 return 1;
1812 }
1813 }
1814
1815 r &= sc->sc_ier;
1816
1817 if (r == 0) {
1818 DLOG(D_INTR, "r is zero", 0, 0, 0, 0);
1819 return 0;
1820 }
1821
1822 sc->sc_ier_check = 0;
1823
1824 slhci_write(sc, SL11_ISR, r);
1825 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
1826
1827 /* If we have an insertion event we do not care about anything else. */
1828 if (__predict_false(r & SL11_ISR_INSERT)) {
1829 slhci_insert(sc);
1830 DLOG(D_INTR, "... done", 0, 0, 0, 0);
1831 return 1;
1832 }
1833
1834 stop_cc_time(&t_intr);
1835 start_cc_time(&t_intr, r);
1836
1837 if (r & SL11_ISR_SOF) {
1838 t->frame++;
1839
1840 gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]);
1841
1842 /*
1843 * SOFCHECK flags are cleared in tstart. Two flags are needed
1844 * since the first SOF interrupt processed after the transfer
1845 * is started might have been generated before the transfer
1846 * was started.
1847 */
1848 if (__predict_false(t->flags & F_SOFCHECK2 && t->flags &
1849 (F_AINPROG|F_BINPROG))) {
1850 printf("%s: Missed transfer completion. halted\n",
1851 SC_NAME(sc));
1852 DDOLOG("Missed transfer completion. halted", 0, 0, 0,
1853 0);
1854 slhci_halt(sc, NULL, NULL);
1855 return 1;
1856 } else if (t->flags & F_SOFCHECK1) {
1857 t->flags |= F_SOFCHECK2;
1858 } else
1859 t->flags |= F_SOFCHECK1;
1860
1861 if (t->flags & F_CHANGE)
1862 t->flags |= F_ROOTINTR;
1863
1864 while (__predict_true(GOT_FIRST_TO(tosp, t)) &&
1865 __predict_false(tosp->to_frame <= t->frame)) {
1866 tosp->xfer->ux_status = USBD_TIMEOUT;
1867 slhci_do_abort(sc, tosp, tosp->xfer);
1868 enter_callback(t, tosp);
1869 }
1870
1871 /*
1872 * Start any waiting transfers right away. If none, we will
1873 * start any new transfers later.
1874 */
1875 slhci_tstart(sc);
1876 }
1877
1878 if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) {
1879 int ab;
1880
1881 if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) ==
1882 (SL11_ISR_USBA|SL11_ISR_USBB)) {
1883 if (!(t->flags & (F_AINPROG|F_BINPROG)))
1884 return 1; /* presume card pulled */
1885
1886 LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) !=
1887 (F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1);
1888
1889 /*
1890 * This should never happen (unless card removal just
1891 * occurred) but appeared frequently when both
1892 * transfers were started at the same time and was
1893 * accompanied by data corruption. It still happens
1894 * at times. I have not seen data correption except
1895 * when the STATUS bit gets set, which now causes the
1896 * driver to halt, however this should still not
1897 * happen so the warning is kept. See comment in
1898 * abdone, below.
1899 */
1900 printf("%s: Transfer reported done but not started! "
1901 "Verify data integrity if not detaching. "
1902 " flags %#x r %x\n", SC_NAME(sc), t->flags, r);
1903
1904 if (!(t->flags & F_AINPROG))
1905 r &= ~SL11_ISR_USBA;
1906 else
1907 r &= ~SL11_ISR_USBB;
1908 }
1909 t->pend = INT_MAX;
1910
1911 if (r & SL11_ISR_USBA)
1912 ab = A;
1913 else
1914 ab = B;
1915
1916 /*
1917 * This happens when a low speed device is attached to
1918 * a hub with chip rev 1.5. SOF stops, but a few transfers
1919 * still work before causing this error.
1920 */
1921 if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) {
1922 printf("%s: %s done but not in progress! halted\n",
1923 SC_NAME(sc), ab ? "B" : "A");
1924 DDOLOG("AB=%d done but not in progress! halted", ab,
1925 0, 0, 0);
1926 slhci_halt(sc, NULL, NULL);
1927 return 1;
1928 }
1929
1930 t->flags &= ~(ab ? F_BINPROG : F_AINPROG);
1931 slhci_tstart(sc);
1932 stop_cc_time(&t_ab[ab]);
1933 start_cc_time(&t_abdone, t->flags);
1934 slhci_abdone(sc, ab);
1935 stop_cc_time(&t_abdone);
1936 }
1937
1938 slhci_dotransfer(sc);
1939
1940 DLOG(D_INTR, "... done", 0, 0, 0, 0);
1941
1942 return 1;
1943 }
1944
1945 static void
1946 slhci_abdone(struct slhci_softc *sc, int ab)
1947 {
1948 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
1949 struct slhci_transfers *t;
1950 struct slhci_pipe *spipe;
1951 struct usbd_xfer *xfer;
1952 uint8_t status, buf_start;
1953 uint8_t *target_buf;
1954 unsigned int actlen;
1955 int head;
1956
1957 t = &sc->sc_transfers;
1958
1959 KASSERT(mutex_owned(&sc->sc_intr_lock));
1960
1961 DLOG(D_TRACE, "ABDONE flags %#jx", t->flags, 0,0,0);
1962
1963 DLOG(D_MSG, "DONE AB=%jd spipe %#jx len %jd xfer %#jx", ab,
1964 t->spipe[ab], (uintptr_t)t->len[ab],
1965 (uintptr_t)(t->spipe[ab] ? t->spipe[ab]->xfer : NULL));
1966
1967 spipe = t->spipe[ab];
1968
1969 /*
1970 * skip this one if aborted; do not call return from the rest of the
1971 * function unless halting, else t->len will not be cleared.
1972 */
1973 if (spipe == NULL)
1974 goto done;
1975
1976 t->spipe[ab] = NULL;
1977
1978 xfer = spipe->xfer;
1979
1980 gcq_remove(&spipe->to);
1981
1982 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
1983
1984 status = slhci_read(sc, slhci_tregs[ab][STAT]);
1985
1986 /*
1987 * I saw no status or remaining length greater than the requested
1988 * length in early driver versions in circumstances I assumed caused
1989 * excess power draw. I am no longer able to reproduce this when
1990 * causing excess power draw circumstances.
1991 *
1992 * Disabling a power check and attaching aue to a keyboard and hub
1993 * that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard
1994 * 98mA) sometimes works and sometimes fails to configure. After
1995 * removing the aue and attaching a self-powered umass dvd reader
1996 * (unknown if it draws power from the host also) soon a single Error
1997 * status occurs then only timeouts. The controller soon halts freeing
1998 * memory due to being ONQU instead of BUSY. This may be the same
1999 * basic sequence that caused the no status/bad length errors. The
2000 * umass device seems to work (better at least) with the keyboard hub
2001 * when not first attaching aue (tested once reading an approximately
2002 * 200MB file).
2003 *
2004 * Overflow can indicate that the device and host disagree about how
2005 * much data has been transfered. This may indicate a problem at any
2006 * point during the transfer, not just when the error occurs. It may
2007 * indicate data corruption. A warning message is printed.
2008 *
2009 * Trying to use both A and B transfers at the same time results in
2010 * incorrect transfer completion ISR reports and the status will then
2011 * include SL11_EPSTAT_SETUP, which is apparently set while the
2012 * transfer is in progress. I also noticed data corruption, even
2013 * after waiting for the transfer to complete. The driver now avoids
2014 * trying to start both at the same time.
2015 *
2016 * I had accidently initialized the B registers before they were valid
2017 * in some driver versions. Since every other performance enhancing
2018 * feature has been confirmed buggy in the errata doc, I have not
2019 * tried both transfers at once again with the documented
2020 * initialization order.
2021 *
2022 * However, I have seen this problem again ("done but not started"
2023 * errors), which in some cases cases the SETUP status bit to remain
2024 * set on future transfers. In other cases, the SETUP bit is not set
2025 * and no data corruption occurs. This occured while using both umass
2026 * and aue on a powered hub (maybe triggered by some local activity
2027 * also) and needs several reads of the 200MB file to trigger. The
2028 * driver now halts if SETUP is detected.
2029 */
2030
2031 actlen = 0;
2032
2033 if (__predict_false(!status)) {
2034 DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0);
2035 printf("%s: no status! halted\n", SC_NAME(sc));
2036 slhci_halt(sc, spipe, xfer);
2037 return;
2038 }
2039
2040 #ifdef SLHCI_DEBUG
2041 if ((slhcidebug & SLHCI_D_NAK) ||
2042 (status & SL11_EPSTAT_ERRBITS) != SL11_EPSTAT_NAK) {
2043 DDOLOG("USB Status = %#.2x", status, 0, 0, 0);
2044 DDOLOGSTATUS(status);
2045 }
2046 #endif
2047
2048 if (!(status & SL11_EPSTAT_ERRBITS)) {
2049 unsigned int cont = slhci_read(sc, slhci_tregs[ab][CONT]);
2050 unsigned int len = spipe->tregs[LEN];
2051 DLOG(D_XFER, "cont %jd len %jd", cont, len, 0, 0);
2052 if ((status & SL11_EPSTAT_OVERFLOW) || cont > len) {
2053 DDOLOG("overflow - cont %d len %d xfer->ux_length %d "
2054 "xfer->actlen %d", cont, len, xfer->ux_length,
2055 xfer->ux_actlen);
2056 printf("%s: overflow cont %d len %d xfer->ux_length"
2057 " %d xfer->ux_actlen %d\n", SC_NAME(sc), cont,
2058 len, xfer->ux_length, xfer->ux_actlen);
2059 actlen = len;
2060 } else {
2061 actlen = len - cont;
2062 }
2063 spipe->nerrs = 0;
2064 }
2065
2066 /* Actual copyin done after starting next transfer. */
2067 if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) {
2068 target_buf = spipe->buffer;
2069 buf_start = spipe->tregs[ADR];
2070 } else {
2071 target_buf = NULL;
2072 buf_start = 0; /* XXX gcc uninitialized warnings */
2073 }
2074
2075 if (status & SL11_EPSTAT_ERRBITS) {
2076 status &= SL11_EPSTAT_ERRBITS;
2077 if (status & SL11_EPSTAT_SETUP) {
2078 printf("%s: Invalid controller state detected! "
2079 "halted\n", SC_NAME(sc));
2080 DDOLOG("Invalid controller state detected! "
2081 "halted", 0, 0, 0, 0);
2082 slhci_halt(sc, spipe, xfer);
2083 return;
2084 } else if (__predict_false(sc->sc_bus.ub_usepolling)) {
2085 head = Q_CALLBACKS;
2086 if (status & SL11_EPSTAT_STALL)
2087 xfer->ux_status = USBD_STALLED;
2088 else if (status & SL11_EPSTAT_TIMEOUT)
2089 xfer->ux_status = USBD_TIMEOUT;
2090 else if (status & SL11_EPSTAT_NAK)
2091 head = Q_NEXT_CB;
2092 else
2093 xfer->ux_status = USBD_IOERROR;
2094 } else if (status & SL11_EPSTAT_NAK) {
2095 int i = spipe->pipe.up_interval;
2096 if (i == 0)
2097 i = 1;
2098 DDOLOG("xfer %p spipe %p NAK delay by %d", xfer, spipe,
2099 i, 0);
2100 spipe->lastframe = spipe->frame = t->frame + i;
2101 slhci_queue_timed(sc, spipe);
2102 goto queued;
2103 } else if (++spipe->nerrs > SLHCI_MAX_RETRIES ||
2104 (status & SL11_EPSTAT_STALL)) {
2105 DDOLOG("xfer %p spipe %p nerrs %d", xfer, spipe,
2106 spipe->nerrs, 0);
2107 if (status & SL11_EPSTAT_STALL)
2108 xfer->ux_status = USBD_STALLED;
2109 else if (status & SL11_EPSTAT_TIMEOUT)
2110 xfer->ux_status = USBD_TIMEOUT;
2111 else
2112 xfer->ux_status = USBD_IOERROR;
2113
2114 DLOG(D_ERR, "Max retries reached! status %#jx "
2115 "xfer->ux_status %jd", status, xfer->ux_status, 0,
2116 0);
2117 DDOLOGSTATUS(status);
2118
2119 head = Q_CALLBACKS;
2120 } else {
2121 head = Q_NEXT_CB;
2122 }
2123 } else if (spipe->ptype == PT_CTRL_SETUP) {
2124 spipe->tregs[PID] = spipe->newpid;
2125
2126 if (xfer->ux_length) {
2127 LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer,
2128 return);
2129 spipe->tregs[LEN] = spipe->newlen[1];
2130 spipe->bustime = spipe->newbustime[1];
2131 spipe->buffer = xfer->ux_buf;
2132 spipe->ptype = PT_CTRL_DATA;
2133 } else {
2134 status_setup:
2135 /* CTRL_DATA swaps direction in PID then jumps here */
2136 spipe->tregs[LEN] = 0;
2137 if (spipe->pflags & PF_LS)
2138 spipe->bustime = SLHCI_LS_CONST;
2139 else
2140 spipe->bustime = SLHCI_FS_CONST;
2141 spipe->ptype = PT_CTRL_STATUS;
2142 spipe->buffer = NULL;
2143 }
2144
2145 /* Status or first data packet must be DATA1. */
2146 spipe->control |= SL11_EPCTRL_DATATOGGLE;
2147 if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN)
2148 spipe->control &= ~SL11_EPCTRL_DIRECTION;
2149 else
2150 spipe->control |= SL11_EPCTRL_DIRECTION;
2151
2152 head = Q_CB;
2153 } else if (spipe->ptype == PT_CTRL_STATUS) {
2154 head = Q_CALLBACKS;
2155 } else { /* bulk, intr, control data */
2156 xfer->ux_actlen += actlen;
2157 spipe->control ^= SL11_EPCTRL_DATATOGGLE;
2158
2159 if (actlen == spipe->tregs[LEN] &&
2160 (xfer->ux_length > xfer->ux_actlen || spipe->wantshort)) {
2161 spipe->buffer += actlen;
2162 LK_SLASSERT(xfer->ux_length >= xfer->ux_actlen, sc,
2163 spipe, xfer, return);
2164 if (xfer->ux_length - xfer->ux_actlen < actlen) {
2165 spipe->wantshort = 0;
2166 spipe->tregs[LEN] = spipe->newlen[0];
2167 spipe->bustime = spipe->newbustime[0];
2168 LK_SLASSERT(xfer->ux_actlen +
2169 spipe->tregs[LEN] == xfer->ux_length, sc,
2170 spipe, xfer, return);
2171 }
2172 head = Q_CB;
2173 } else if (spipe->ptype == PT_CTRL_DATA) {
2174 spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT;
2175 goto status_setup;
2176 } else {
2177 if (spipe->ptype == PT_INTR) {
2178 spipe->lastframe +=
2179 spipe->pipe.up_interval;
2180 /*
2181 * If ack, we try to keep the
2182 * interrupt rate by using lastframe
2183 * instead of the current frame.
2184 */
2185 spipe->frame = spipe->lastframe +
2186 spipe->pipe.up_interval;
2187 }
2188
2189 /*
2190 * Set the toggle for the next transfer. It
2191 * has already been toggled above, so the
2192 * current setting will apply to the next
2193 * transfer.
2194 */
2195 if (spipe->control & SL11_EPCTRL_DATATOGGLE)
2196 spipe->pflags |= PF_TOGGLE;
2197 else
2198 spipe->pflags &= ~PF_TOGGLE;
2199
2200 head = Q_CALLBACKS;
2201 }
2202 }
2203
2204 if (head == Q_CALLBACKS) {
2205 gcq_remove(&spipe->to);
2206
2207 if (xfer->ux_status == USBD_IN_PROGRESS) {
2208 LK_SLASSERT(xfer->ux_actlen <= xfer->ux_length, sc,
2209 spipe, xfer, return);
2210 xfer->ux_status = USBD_NORMAL_COMPLETION;
2211 }
2212 }
2213
2214 enter_q(t, spipe, head);
2215
2216 queued:
2217 if (target_buf != NULL) {
2218 slhci_dotransfer(sc);
2219 start_cc_time(&t_copy_from_dev, actlen);
2220 slhci_read_multi(sc, buf_start, target_buf, actlen);
2221 stop_cc_time(&t_copy_from_dev);
2222 DLOGBUF(D_BUF, target_buf, actlen);
2223 t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen);
2224 }
2225
2226 done:
2227 t->len[ab] = -1;
2228 }
2229
2230 static void
2231 slhci_tstart(struct slhci_softc *sc)
2232 {
2233 struct slhci_transfers *t;
2234 struct slhci_pipe *spipe;
2235 int remaining_bustime;
2236
2237 t = &sc->sc_transfers;
2238
2239 KASSERT(mutex_owned(&sc->sc_intr_lock));
2240
2241 if (!(t->flags & (F_AREADY|F_BREADY)))
2242 return;
2243
2244 if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED))
2245 return;
2246
2247 /*
2248 * We have about 6 us to get from the bus time check to
2249 * starting the transfer or we might babble or the chip might fail to
2250 * signal transfer complete. This leaves no time for any other
2251 * interrupts.
2252 */
2253 remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6;
2254 remaining_bustime -= SLHCI_END_BUSTIME;
2255
2256 /*
2257 * Start one transfer only, clearing any aborted transfers that are
2258 * not yet in progress and skipping missed isoc. It is easier to copy
2259 * & paste most of the A/B sections than to make the logic work
2260 * otherwise and this allows better constant use.
2261 */
2262 if (t->flags & F_AREADY) {
2263 spipe = t->spipe[A];
2264 if (spipe == NULL) {
2265 t->flags &= ~F_AREADY;
2266 t->len[A] = -1;
2267 } else if (remaining_bustime >= spipe->bustime) {
2268 t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2);
2269 t->flags |= F_AINPROG;
2270 start_cc_time(&t_ab[A], spipe->tregs[LEN]);
2271 slhci_write(sc, SL11_E0CTRL, spipe->control);
2272 goto pend;
2273 }
2274 }
2275 if (t->flags & F_BREADY) {
2276 spipe = t->spipe[B];
2277 if (spipe == NULL) {
2278 t->flags &= ~F_BREADY;
2279 t->len[B] = -1;
2280 } else if (remaining_bustime >= spipe->bustime) {
2281 t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2);
2282 t->flags |= F_BINPROG;
2283 start_cc_time(&t_ab[B], spipe->tregs[LEN]);
2284 slhci_write(sc, SL11_E1CTRL, spipe->control);
2285 pend:
2286 t->pend = spipe->bustime;
2287 }
2288 }
2289 }
2290
2291 static void
2292 slhci_dotransfer(struct slhci_softc *sc)
2293 {
2294 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2295 struct slhci_transfers *t;
2296 struct slhci_pipe *spipe;
2297 int ab, i;
2298
2299 t = &sc->sc_transfers;
2300
2301 KASSERT(mutex_owned(&sc->sc_intr_lock));
2302
2303 while ((t->len[A] == -1 || t->len[B] == -1) &&
2304 (GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) ||
2305 GOT_FIRST_CB(spipe, t))) {
2306 LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return);
2307 LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype !=
2308 PT_ROOT_INTR, sc, spipe, NULL, return);
2309
2310 /* Check that this transfer can fit in the remaining memory. */
2311 if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 >
2312 SL11_MAX_PACKET_SIZE) {
2313 DLOG(D_XFER, "Transfer does not fit. alen %jd blen %jd "
2314 "len %jd", t->len[A], t->len[B], spipe->tregs[LEN],
2315 0);
2316 return;
2317 }
2318
2319 gcq_remove(&spipe->xq);
2320
2321 if (t->len[A] == -1) {
2322 ab = A;
2323 spipe->tregs[ADR] = SL11_BUFFER_START;
2324 } else {
2325 ab = B;
2326 spipe->tregs[ADR] = SL11_BUFFER_END -
2327 spipe->tregs[LEN];
2328 }
2329
2330 t->len[ab] = spipe->tregs[LEN];
2331
2332 if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS)
2333 != SL11_PID_IN) {
2334 start_cc_time(&t_copy_to_dev,
2335 spipe->tregs[LEN]);
2336 slhci_write_multi(sc, spipe->tregs[ADR],
2337 spipe->buffer, spipe->tregs[LEN]);
2338 stop_cc_time(&t_copy_to_dev);
2339 t->pend -= SLHCI_FS_CONST +
2340 SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
2341 }
2342
2343 DLOG(D_MSG, "NEW TRANSFER AB=%jd flags %#jx alen %jd blen %jd",
2344 ab, t->flags, t->len[0], t->len[1]);
2345
2346 if (spipe->tregs[LEN])
2347 i = 0;
2348 else
2349 i = 1;
2350
2351 for (; i <= 3; i++)
2352 if (t->current_tregs[ab][i] != spipe->tregs[i]) {
2353 t->current_tregs[ab][i] = spipe->tregs[i];
2354 slhci_write(sc, slhci_tregs[ab][i],
2355 spipe->tregs[i]);
2356 }
2357
2358 DLOG(D_SXFER, "Transfer len %jd pid %#jx dev %jd type %jd",
2359 spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV],
2360 spipe->ptype);
2361
2362 t->spipe[ab] = spipe;
2363 t->flags |= ab ? F_BREADY : F_AREADY;
2364
2365 slhci_tstart(sc);
2366 }
2367 }
2368
2369 /*
2370 * slhci_callback is called after the lock is taken.
2371 */
2372 static void
2373 slhci_callback(struct slhci_softc *sc)
2374 {
2375 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2376 struct slhci_transfers *t;
2377 struct slhci_pipe *spipe;
2378 struct usbd_xfer *xfer;
2379
2380 t = &sc->sc_transfers;
2381
2382 KASSERT(mutex_owned(&sc->sc_intr_lock));
2383
2384 DLOG(D_SOFT, "CB flags %#jx", t->flags, 0,0,0);
2385 for (;;) {
2386 if (__predict_false(t->flags & F_ROOTINTR)) {
2387 t->flags &= ~F_ROOTINTR;
2388 if (t->rootintr != NULL) {
2389 u_char *p;
2390
2391 p = t->rootintr->ux_buf;
2392 p[0] = 2;
2393 t->rootintr->ux_actlen = 1;
2394 t->rootintr->ux_status = USBD_NORMAL_COMPLETION;
2395 xfer = t->rootintr;
2396 goto do_callback;
2397 }
2398 }
2399
2400
2401 if (!DEQUEUED_CALLBACK(spipe, t))
2402 return;
2403
2404 xfer = spipe->xfer;
2405 LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
2406 spipe->xfer = NULL;
2407 DLOG(D_XFER, "xfer callback length %jd actlen %jd spipe %#jx "
2408 "type %jd", xfer->ux_length, (uintptr_t)xfer->ux_actlen,
2409 (uintptr_t)spipe, spipe->ptype);
2410 do_callback:
2411 slhci_do_callback(sc, xfer);
2412 }
2413 }
2414
2415 static void
2416 slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2417 {
2418 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2419 struct slhci_transfers *t;
2420
2421 t = &sc->sc_transfers;
2422
2423 KASSERT(mutex_owned(&sc->sc_intr_lock));
2424
2425 if (__predict_false(t->flags & F_DISABLED) ||
2426 __predict_false(spipe->pflags & PF_GONE)) {
2427 DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0);
2428 spipe->xfer->ux_status = USBD_CANCELLED;
2429 }
2430
2431 if (spipe->xfer->ux_status == USBD_IN_PROGRESS) {
2432 if (spipe->xfer->ux_timeout) {
2433 spipe->to_frame = t->frame + spipe->xfer->ux_timeout;
2434 slhci_xfer_timer(sc, spipe);
2435 }
2436 if (spipe->pipe.up_interval)
2437 slhci_queue_timed(sc, spipe);
2438 else
2439 enter_q(t, spipe, Q_CB);
2440 } else
2441 enter_callback(t, spipe);
2442 }
2443
2444 static void
2445 slhci_enter_xfers(struct slhci_softc *sc)
2446 {
2447 struct slhci_pipe *spipe;
2448
2449 KASSERT(mutex_owned(&sc->sc_intr_lock));
2450
2451 while (DEQUEUED_WAITQ(spipe, sc))
2452 slhci_enter_xfer(sc, spipe);
2453 }
2454
2455 static void
2456 slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe)
2457 {
2458 struct slhci_transfers *t;
2459 struct gcq *q;
2460 struct slhci_pipe *spp;
2461
2462 t = &sc->sc_transfers;
2463
2464 KASSERT(mutex_owned(&sc->sc_intr_lock));
2465
2466 FIND_TIMED(q, t, spp, spp->frame > spipe->frame);
2467 gcq_insert_before(q, &spipe->xq);
2468 }
2469
2470 static void
2471 slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe)
2472 {
2473 struct slhci_transfers *t;
2474 struct gcq *q;
2475 struct slhci_pipe *spp;
2476
2477 t = &sc->sc_transfers;
2478
2479 KASSERT(mutex_owned(&sc->sc_intr_lock));
2480
2481 FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame);
2482 gcq_insert_before(q, &spipe->to);
2483 }
2484
2485 static void
2486 slhci_callback_schedule(struct slhci_softc *sc)
2487 {
2488 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2489 struct slhci_transfers *t;
2490
2491 t = &sc->sc_transfers;
2492
2493 KASSERT(mutex_owned(&sc->sc_intr_lock));
2494
2495 if (t->flags & F_ACTIVE)
2496 slhci_do_callback_schedule(sc);
2497 }
2498
2499 static void
2500 slhci_do_callback_schedule(struct slhci_softc *sc)
2501 {
2502 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2503 struct slhci_transfers *t;
2504
2505 t = &sc->sc_transfers;
2506
2507 KASSERT(mutex_owned(&sc->sc_intr_lock));
2508
2509 DLOG(D_MSG, "flags %#jx", t->flags, 0, 0, 0);
2510 if (!(t->flags & F_CALLBACK)) {
2511 t->flags |= F_CALLBACK;
2512 softint_schedule(sc->sc_cb_softintr);
2513 }
2514 }
2515
2516 #if 0
2517 /* must be called with lock taken. */
2518 /* XXX static */ void
2519 slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer)
2520 {
2521 KASSERT(mutex_owned(&sc->sc_intr_lock));
2522 slhci_dotransfer(sc);
2523 do {
2524 slhci_dointr(sc);
2525 } while (xfer->ux_status == USBD_IN_PROGRESS);
2526 slhci_do_callback(sc, xfer);
2527 }
2528 #endif
2529
2530 static usbd_status
2531 slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2532 usbd_xfer *xfer)
2533 {
2534 slhci_waitintr(sc, 0);
2535
2536 return USBD_NORMAL_COMPLETION;
2537 }
2538
2539 static usbd_status
2540 slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2541 usbd_xfer *xfer)
2542 {
2543 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2544 struct slhci_transfers *t;
2545
2546 t = &sc->sc_transfers;
2547
2548 if (!(t->flags & F_LSVH_WARNED)) {
2549 printf("%s: Low speed device via hub disabled, "
2550 "see slhci(4)\n", SC_NAME(sc));
2551 DDOLOG("Low speed device via hub disabled, "
2552 "see slhci(4)", SC_NAME(sc), 0,0,0);
2553 t->flags |= F_LSVH_WARNED;
2554 }
2555 return USBD_INVAL;
2556 }
2557
2558 static usbd_status
2559 slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2560 usbd_xfer *xfer)
2561 {
2562 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2563 struct slhci_transfers *t;
2564
2565 t = &sc->sc_transfers;
2566
2567 if (!(t->flags & F_ISOC_WARNED)) {
2568 printf("%s: ISOC transfer not supported "
2569 "(see slhci(4))\n", SC_NAME(sc));
2570 DDOLOG("ISOC transfer not supported "
2571 "(see slhci(4))", 0, 0, 0, 0);
2572 t->flags |= F_ISOC_WARNED;
2573 }
2574 return USBD_INVAL;
2575 }
2576
2577 static usbd_status
2578 slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2579 usbd_xfer *xfer)
2580 {
2581 struct slhci_transfers *t;
2582 struct usbd_pipe *pipe;
2583
2584 t = &sc->sc_transfers;
2585 pipe = &spipe->pipe;
2586
2587 if (t->flags & F_DISABLED)
2588 return USBD_CANCELLED;
2589 else if (pipe->up_interval && !slhci_reserve_bustime(sc, spipe, 1))
2590 return USBD_PENDING_REQUESTS;
2591 else {
2592 enter_all_pipes(t, spipe);
2593 return USBD_NORMAL_COMPLETION;
2594 }
2595 }
2596
2597 static usbd_status
2598 slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2599 usbd_xfer *xfer)
2600 {
2601 struct usbd_pipe *pipe;
2602
2603 pipe = &spipe->pipe;
2604
2605 if (pipe->up_interval && spipe->ptype != PT_ROOT_INTR)
2606 slhci_reserve_bustime(sc, spipe, 0);
2607 gcq_remove(&spipe->ap);
2608 return USBD_NORMAL_COMPLETION;
2609 }
2610
2611 static usbd_status
2612 slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
2613 usbd_xfer *xfer)
2614 {
2615 struct slhci_transfers *t;
2616
2617 t = &sc->sc_transfers;
2618
2619 KASSERT(mutex_owned(&sc->sc_intr_lock));
2620
2621 if (spipe->xfer == xfer) {
2622 if (spipe->ptype == PT_ROOT_INTR) {
2623 if (t->rootintr == spipe->xfer) /* XXX assert? */
2624 t->rootintr = NULL;
2625 } else {
2626 gcq_remove(&spipe->to);
2627 gcq_remove(&spipe->xq);
2628
2629 if (t->spipe[A] == spipe) {
2630 t->spipe[A] = NULL;
2631 if (!(t->flags & F_AINPROG))
2632 t->len[A] = -1;
2633 } else if (t->spipe[B] == spipe) {
2634 t->spipe[B] = NULL;
2635 if (!(t->flags & F_BINPROG))
2636 t->len[B] = -1;
2637 }
2638 }
2639
2640 if (xfer->ux_status != USBD_TIMEOUT) {
2641 spipe->xfer = NULL;
2642 spipe->pipe.up_repeat = 0; /* XXX timeout? */
2643 }
2644 }
2645
2646 return USBD_NORMAL_COMPLETION;
2647 }
2648
2649 /*
2650 * Called to deactivate or stop use of the controller instead of panicking.
2651 * Will cancel the xfer correctly even when not on a list.
2652 */
2653 static usbd_status
2654 slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe,
2655 struct usbd_xfer *xfer)
2656 {
2657 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2658 struct slhci_transfers *t;
2659
2660 KASSERT(mutex_owned(&sc->sc_intr_lock));
2661
2662 t = &sc->sc_transfers;
2663
2664 DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0);
2665
2666 if (spipe != NULL)
2667 slhci_log_spipe(spipe);
2668
2669 if (xfer != NULL)
2670 slhci_log_xfer(xfer);
2671
2672 if (spipe != NULL && xfer != NULL && spipe->xfer == xfer &&
2673 !gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] !=
2674 spipe) {
2675 xfer->ux_status = USBD_CANCELLED;
2676 enter_callback(t, spipe);
2677 }
2678
2679 if (t->flags & F_ACTIVE) {
2680 slhci_intrchange(sc, 0);
2681 /*
2682 * leave power on when halting in case flash devices or disks
2683 * are attached, which may be writing and could be damaged
2684 * by abrupt power loss. The root hub clear power feature
2685 * should still work after halting.
2686 */
2687 }
2688
2689 t->flags &= ~F_ACTIVE;
2690 t->flags |= F_UDISABLED;
2691 if (!(t->flags & F_NODEV))
2692 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
2693 slhci_drain(sc);
2694
2695 /* One last callback for the drain and device removal. */
2696 slhci_do_callback_schedule(sc);
2697
2698 return USBD_NORMAL_COMPLETION;
2699 }
2700
2701 /*
2702 * There are three interrupt states: no interrupts during reset and after
2703 * device deactivation, INSERT only for no device present but power on, and
2704 * SOF, INSERT, ADONE, and BDONE when device is present.
2705 */
2706 static void
2707 slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier)
2708 {
2709 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2710 KASSERT(mutex_owned(&sc->sc_intr_lock));
2711 if (sc->sc_ier != new_ier) {
2712 DLOG(D_INTR, "New IER %#jx", new_ier, 0, 0, 0);
2713 sc->sc_ier = new_ier;
2714 slhci_write(sc, SL11_IER, new_ier);
2715 BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
2716 }
2717 }
2718
2719 /*
2720 * Drain: cancel all pending transfers and put them on the callback list and
2721 * set the UDISABLED flag. UDISABLED is cleared only by reset.
2722 */
2723 static void
2724 slhci_drain(struct slhci_softc *sc)
2725 {
2726 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2727 struct slhci_transfers *t;
2728 struct slhci_pipe *spipe;
2729 struct gcq *q;
2730 int i;
2731
2732 KASSERT(mutex_owned(&sc->sc_intr_lock));
2733
2734 t = &sc->sc_transfers;
2735
2736 DLOG(D_MSG, "DRAIN flags %#jx", t->flags, 0,0,0);
2737
2738 t->pend = INT_MAX;
2739
2740 for (i=0; i<=1; i++) {
2741 t->len[i] = -1;
2742 if (t->spipe[i] != NULL) {
2743 enter_callback(t, t->spipe[i]);
2744 t->spipe[i] = NULL;
2745 }
2746 }
2747
2748 /* Merge the queues into the callback queue. */
2749 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]);
2750 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]);
2751 gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed);
2752
2753 /*
2754 * Cancel all pipes. Note that not all of these may be on the
2755 * callback queue yet; some could be in slhci_start, for example.
2756 */
2757 FOREACH_AP(q, t, spipe) {
2758 spipe->pflags |= PF_GONE;
2759 spipe->pipe.up_repeat = 0;
2760 spipe->pipe.up_aborting = 1;
2761 if (spipe->xfer != NULL)
2762 spipe->xfer->ux_status = USBD_CANCELLED;
2763 }
2764
2765 gcq_remove_all(&t->to);
2766
2767 t->flags |= F_UDISABLED;
2768 t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED);
2769 }
2770
2771 /*
2772 * RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms
2773 * reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF)
2774 * check attached device speed.
2775 * must wait 100ms before USB transaction according to app note, 10ms
2776 * by spec. uhub does this delay
2777 *
2778 * Started from root hub set feature reset, which does step one.
2779 * ub_usepolling will call slhci_reset directly, otherwise the callout goes
2780 * through slhci_reset_entry.
2781 */
2782 void
2783 slhci_reset(struct slhci_softc *sc)
2784 {
2785 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2786 struct slhci_transfers *t;
2787 struct slhci_pipe *spipe;
2788 struct gcq *q;
2789 uint8_t r, pol, ctrl;
2790
2791 t = &sc->sc_transfers;
2792 KASSERT(mutex_owned(&sc->sc_intr_lock));
2793
2794 stop_cc_time(&t_delay);
2795
2796 KASSERT(t->flags & F_ACTIVE);
2797
2798 start_cc_time(&t_delay, 0);
2799 stop_cc_time(&t_delay);
2800
2801 slhci_write(sc, SL11_CTRL, 0);
2802 start_cc_time(&t_delay, 3);
2803 DELAY(3);
2804 stop_cc_time(&t_delay);
2805 slhci_write(sc, SL11_ISR, 0xff);
2806
2807 r = slhci_read(sc, SL11_ISR);
2808
2809 if (r & SL11_ISR_INSERT)
2810 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
2811
2812 if (r & SL11_ISR_NODEV) {
2813 DLOG(D_MSG, "NC", 0,0,0,0);
2814 /*
2815 * Normally, the hard interrupt insert routine will issue
2816 * CCONNECT, however we need to do it here if the detach
2817 * happened during reset.
2818 */
2819 if (!(t->flags & F_NODEV))
2820 t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV;
2821 slhci_intrchange(sc, SL11_IER_INSERT);
2822 } else {
2823 if (t->flags & F_NODEV)
2824 t->flags |= F_CCONNECT;
2825 t->flags &= ~(F_NODEV|F_LOWSPEED);
2826 if (r & SL11_ISR_DATA) {
2827 DLOG(D_MSG, "FS", 0,0,0,0);
2828 pol = ctrl = 0;
2829 } else {
2830 DLOG(D_MSG, "LS", 0,0,0,0);
2831 pol = SL811_CSOF_POLARITY;
2832 ctrl = SL11_CTRL_LOWSPEED;
2833 t->flags |= F_LOWSPEED;
2834 }
2835
2836 /* Enable SOF auto-generation */
2837 t->frame = 0; /* write to SL811_CSOF will reset frame */
2838 slhci_write(sc, SL11_SOFTIME, 0xe0);
2839 slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e);
2840 slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF);
2841
2842 /*
2843 * According to the app note, ARM must be set
2844 * for SOF generation to work. We initialize all
2845 * USBA registers here for current_tregs.
2846 */
2847 slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START);
2848 slhci_write(sc, SL11_E0LEN, 0);
2849 slhci_write(sc, SL11_E0PID, SL11_PID_SOF);
2850 slhci_write(sc, SL11_E0DEV, 0);
2851 slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM);
2852
2853 /*
2854 * Initialize B registers. This can't be done earlier since
2855 * they are not valid until the SL811_CSOF register is written
2856 * above due to SL11H compatability.
2857 */
2858 slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8);
2859 slhci_write(sc, SL11_E1LEN, 0);
2860 slhci_write(sc, SL11_E1PID, 0);
2861 slhci_write(sc, SL11_E1DEV, 0);
2862
2863 t->current_tregs[0][ADR] = SL11_BUFFER_START;
2864 t->current_tregs[0][LEN] = 0;
2865 t->current_tregs[0][PID] = SL11_PID_SOF;
2866 t->current_tregs[0][DEV] = 0;
2867 t->current_tregs[1][ADR] = SL11_BUFFER_END - 8;
2868 t->current_tregs[1][LEN] = 0;
2869 t->current_tregs[1][PID] = 0;
2870 t->current_tregs[1][DEV] = 0;
2871
2872 /* SOF start will produce USBA interrupt */
2873 t->len[A] = 0;
2874 t->flags |= F_AINPROG;
2875
2876 slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS);
2877 }
2878
2879 t->flags &= ~(F_UDISABLED|F_RESET);
2880 t->flags |= F_CRESET|F_ROOTINTR;
2881 FOREACH_AP(q, t, spipe) {
2882 spipe->pflags &= ~PF_GONE;
2883 spipe->pipe.up_aborting = 0;
2884 }
2885 DLOG(D_MSG, "RESET done flags %#jx", t->flags, 0,0,0);
2886 }
2887
2888
2889 #ifdef SLHCI_DEBUG
2890 static int
2891 slhci_memtest(struct slhci_softc *sc)
2892 {
2893 enum { ASC, DESC, EITHER = ASC }; /* direction */
2894 enum { READ, WRITE }; /* operation */
2895 const char *ptr, *elem;
2896 size_t i;
2897 const int low = SL11_BUFFER_START, high = SL11_BUFFER_END;
2898 int addr = 0, dir = ASC, op = READ;
2899 /* Extended March C- test algorithm (SOFs also) */
2900 const char test[] = "E(w0) A(r0w1r1) A(r1w0r0) D(r0w1) D(r1w0) E(r0)";
2901 char c;
2902 const uint8_t dbs[] = { 0x00, 0x0f, 0x33, 0x55 }; /* data backgrounds */
2903 uint8_t db;
2904
2905 /* Perform memory test for all data backgrounds. */
2906 for (i = 0; i < __arraycount(dbs); i++) {
2907 ptr = test;
2908 elem = ptr;
2909 /* Walk test algorithm string. */
2910 while ((c = *ptr++) != '\0')
2911 switch (tolower((int)c)) {
2912 case 'a':
2913 /* Address sequence is in ascending order. */
2914 dir = ASC;
2915 break;
2916 case 'd':
2917 /* Address sequence is in descending order. */
2918 dir = DESC;
2919 break;
2920 case 'e':
2921 /* Address sequence is in either order. */
2922 dir = EITHER;
2923 break;
2924 case '(':
2925 /* Start of test element (sequence). */
2926 elem = ptr;
2927 addr = (dir == ASC) ? low : high;
2928 break;
2929 case 'r':
2930 /* read operation */
2931 op = READ;
2932 break;
2933 case 'w':
2934 /* write operation */
2935 op = WRITE;
2936 break;
2937 case '0':
2938 case '1':
2939 /*
2940 * Execute previously set-up operation by
2941 * reading/writing non-inverted ('0') or
2942 * inverted ('1') data background.
2943 */
2944 db = (c - '0') ? ~dbs[i] : dbs[i];
2945 if (op == READ) {
2946 if (slhci_read(sc, addr) != db)
2947 return -1;
2948 } else
2949 slhci_write(sc, addr, db);
2950 break;
2951 case ')':
2952 /*
2953 * End of element: Repeat same element with next
2954 * address or continue to next element.
2955 */
2956 addr = (dir == ASC) ? addr + 1 : addr - 1;
2957 if (addr >= low && addr <= high)
2958 ptr = elem;
2959 break;
2960 default:
2961 /* Do nothing. */
2962 break;
2963 }
2964 }
2965
2966 return 0;
2967 }
2968 #endif
2969
2970 /* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */
2971 static int
2972 slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int
2973 reserve)
2974 {
2975 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
2976 struct slhci_transfers *t;
2977 int bustime, max_packet;
2978
2979 KASSERT(mutex_owned(&sc->sc_intr_lock));
2980
2981 t = &sc->sc_transfers;
2982 max_packet = UGETW(spipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize);
2983
2984 if (spipe->pflags & PF_LS)
2985 bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet);
2986 else
2987 bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet);
2988
2989 if (!reserve) {
2990 t->reserved_bustime -= bustime;
2991 #ifdef DIAGNOSTIC
2992 if (t->reserved_bustime < 0) {
2993 printf("%s: reserved_bustime %d < 0!\n",
2994 SC_NAME(sc), t->reserved_bustime);
2995 DDOLOG("reserved_bustime %d < 0!",
2996 t->reserved_bustime, 0, 0, 0);
2997 t->reserved_bustime = 0;
2998 }
2999 #endif
3000 return 1;
3001 }
3002
3003 if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) {
3004 if (ratecheck(&sc->sc_reserved_warn_rate,
3005 &reserved_warn_rate))
3006 #ifdef SLHCI_NO_OVERTIME
3007 {
3008 printf("%s: Max reserved bus time exceeded! "
3009 "Erroring request.\n", SC_NAME(sc));
3010 DDOLOG("%s: Max reserved bus time exceeded! "
3011 "Erroring request.", 0, 0, 0, 0);
3012 }
3013 return 0;
3014 #else
3015 {
3016 printf("%s: Reserved bus time exceeds %d!\n",
3017 SC_NAME(sc), SLHCI_RESERVED_BUSTIME);
3018 DDOLOG("Reserved bus time exceeds %d!",
3019 SLHCI_RESERVED_BUSTIME, 0, 0, 0);
3020 }
3021 #endif
3022 }
3023
3024 t->reserved_bustime += bustime;
3025 return 1;
3026 }
3027
3028 /* Device insertion/removal interrupt */
3029 static void
3030 slhci_insert(struct slhci_softc *sc)
3031 {
3032 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3033 struct slhci_transfers *t;
3034
3035 t = &sc->sc_transfers;
3036
3037 KASSERT(mutex_owned(&sc->sc_intr_lock));
3038
3039 if (t->flags & F_NODEV)
3040 slhci_intrchange(sc, 0);
3041 else {
3042 slhci_drain(sc);
3043 slhci_intrchange(sc, SL11_IER_INSERT);
3044 }
3045 t->flags ^= F_NODEV;
3046 t->flags |= F_ROOTINTR|F_CCONNECT;
3047 DLOG(D_MSG, "INSERT intr: flags after %#jx", t->flags, 0,0,0);
3048 }
3049
3050 /*
3051 * Data structures and routines to emulate the root hub.
3052 */
3053
3054 static usbd_status
3055 slhci_clear_feature(struct slhci_softc *sc, unsigned int what)
3056 {
3057 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3058 struct slhci_transfers *t;
3059 usbd_status error;
3060
3061 t = &sc->sc_transfers;
3062 error = USBD_NORMAL_COMPLETION;
3063
3064 KASSERT(mutex_owned(&sc->sc_intr_lock));
3065
3066 if (what == UHF_PORT_POWER) {
3067 DLOG(D_MSG, "POWER_OFF", 0,0,0,0);
3068 t->flags &= ~F_POWER;
3069 if (!(t->flags & F_NODEV))
3070 t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
3071 /* for x68k Nereid USB controller */
3072 if (sc->sc_enable_power && (t->flags & F_REALPOWER)) {
3073 t->flags &= ~F_REALPOWER;
3074 sc->sc_enable_power(sc, POWER_OFF);
3075 }
3076 slhci_intrchange(sc, 0);
3077 slhci_drain(sc);
3078 } else if (what == UHF_C_PORT_CONNECTION) {
3079 t->flags &= ~F_CCONNECT;
3080 } else if (what == UHF_C_PORT_RESET) {
3081 t->flags &= ~F_CRESET;
3082 } else if (what == UHF_PORT_ENABLE) {
3083 slhci_drain(sc);
3084 } else if (what != UHF_PORT_SUSPEND) {
3085 DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0);
3086 error = USBD_IOERROR;
3087 }
3088
3089 return error;
3090 }
3091
3092 static usbd_status
3093 slhci_set_feature(struct slhci_softc *sc, unsigned int what)
3094 {
3095 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3096 struct slhci_transfers *t;
3097 uint8_t r;
3098
3099 t = &sc->sc_transfers;
3100
3101 KASSERT(mutex_owned(&sc->sc_intr_lock));
3102
3103 if (what == UHF_PORT_RESET) {
3104 if (!(t->flags & F_ACTIVE)) {
3105 DDOLOG("SET PORT_RESET when not ACTIVE!",
3106 0,0,0,0);
3107 return USBD_INVAL;
3108 }
3109 if (!(t->flags & F_POWER)) {
3110 DDOLOG("SET PORT_RESET without PORT_POWER! flags %p",
3111 t->flags, 0,0,0);
3112 return USBD_INVAL;
3113 }
3114 if (t->flags & F_RESET)
3115 return USBD_NORMAL_COMPLETION;
3116 DLOG(D_MSG, "RESET flags %#jx", t->flags, 0,0,0);
3117 slhci_intrchange(sc, 0);
3118 slhci_drain(sc);
3119 slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE);
3120 /* usb spec says delay >= 10ms, app note 50ms */
3121 start_cc_time(&t_delay, 50000);
3122 if (sc->sc_bus.ub_usepolling) {
3123 DELAY(50000);
3124 slhci_reset(sc);
3125 } else {
3126 t->flags |= F_RESET;
3127 callout_schedule(&sc->sc_timer, max(mstohz(50), 2));
3128 }
3129 } else if (what == UHF_PORT_SUSPEND) {
3130 printf("%s: USB Suspend not implemented!\n", SC_NAME(sc));
3131 DDOLOG("USB Suspend not implemented!", 0, 0, 0, 0);
3132 } else if (what == UHF_PORT_POWER) {
3133 DLOG(D_MSG, "PORT_POWER", 0,0,0,0);
3134 /* for x68k Nereid USB controller */
3135 if (!(t->flags & F_ACTIVE))
3136 return USBD_INVAL;
3137 if (t->flags & F_POWER)
3138 return USBD_NORMAL_COMPLETION;
3139 if (!(t->flags & F_REALPOWER)) {
3140 if (sc->sc_enable_power)
3141 sc->sc_enable_power(sc, POWER_ON);
3142 t->flags |= F_REALPOWER;
3143 }
3144 t->flags |= F_POWER;
3145 r = slhci_read(sc, SL11_ISR);
3146 if (r & SL11_ISR_INSERT)
3147 slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
3148 if (r & SL11_ISR_NODEV) {
3149 slhci_intrchange(sc, SL11_IER_INSERT);
3150 t->flags |= F_NODEV;
3151 } else {
3152 t->flags &= ~F_NODEV;
3153 t->flags |= F_CCONNECT|F_ROOTINTR;
3154 }
3155 } else {
3156 DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0);
3157 return USBD_IOERROR;
3158 }
3159
3160 return USBD_NORMAL_COMPLETION;
3161 }
3162
3163 static void
3164 slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps)
3165 {
3166 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3167 struct slhci_transfers *t;
3168 unsigned int status, change;
3169
3170 t = &sc->sc_transfers;
3171
3172 KASSERT(mutex_owned(&sc->sc_intr_lock));
3173
3174 /*
3175 * We do not have a way to detect over current or babble and
3176 * suspend is currently not implemented, so connect and reset
3177 * are the only changes that need to be reported.
3178 */
3179 change = 0;
3180 if (t->flags & F_CCONNECT)
3181 change |= UPS_C_CONNECT_STATUS;
3182 if (t->flags & F_CRESET)
3183 change |= UPS_C_PORT_RESET;
3184
3185 status = 0;
3186 if (!(t->flags & F_NODEV))
3187 status |= UPS_CURRENT_CONNECT_STATUS;
3188 if (!(t->flags & F_UDISABLED))
3189 status |= UPS_PORT_ENABLED;
3190 if (t->flags & F_RESET)
3191 status |= UPS_RESET;
3192 if (t->flags & F_POWER)
3193 status |= UPS_PORT_POWER;
3194 if (t->flags & F_LOWSPEED)
3195 status |= UPS_LOW_SPEED;
3196 USETW(ps->wPortStatus, status);
3197 USETW(ps->wPortChange, change);
3198 DLOG(D_ROOT, "status=%#.4jx, change=%#.4jx", status, change, 0,0);
3199 }
3200
3201 static int
3202 slhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
3203 void *buf, int buflen)
3204 {
3205 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3206 struct slhci_softc *sc = SLHCI_BUS2SC(bus);
3207 struct slhci_transfers *t = &sc->sc_transfers;
3208 usbd_status error = USBD_IOERROR; /* XXX should be STALL */
3209 uint16_t len, value, index;
3210 uint8_t type;
3211 int actlen = 0;
3212
3213 len = UGETW(req->wLength);
3214 value = UGETW(req->wValue);
3215 index = UGETW(req->wIndex);
3216
3217 type = req->bmRequestType;
3218
3219 SLHCI_DEXEC(D_TRACE, slhci_log_req(req));
3220
3221 /*
3222 * USB requests for hubs have two basic types, standard and class.
3223 * Each could potentially have recipients of device, interface,
3224 * endpoint, or other. For the hub class, CLASS_OTHER means the port
3225 * and CLASS_DEVICE means the hub. For standard requests, OTHER
3226 * is not used. Standard request are described in section 9.4 of the
3227 * standard, hub class requests in 11.16. Each request is either read
3228 * or write.
3229 *
3230 * Clear Feature, Set Feature, and Status are defined for each of the
3231 * used recipients. Get Descriptor and Set Descriptor are defined for
3232 * both standard and hub class types with different descriptors.
3233 * Other requests have only one defined recipient and type. These
3234 * include: Get/Set Address, Get/Set Configuration, Get/Set Interface,
3235 * and Synch Frame for standard requests and Get Bus State for hub
3236 * class.
3237 *
3238 * When a device is first powered up it has address 0 until the
3239 * address is set.
3240 *
3241 * Hubs are only allowed to support one interface and may not have
3242 * isochronous endpoints. The results of the related requests are
3243 * undefined.
3244 *
3245 * The standard requires invalid or unsupported requests to return
3246 * STALL in the data stage, however this does not work well with
3247 * current error handling. XXX
3248 *
3249 * Some unsupported fields:
3250 * Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT
3251 * Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP
3252 * Get Bus State is optional sample of D- and D+ at EOF2
3253 */
3254
3255 switch (req->bRequest) {
3256 /* Write Requests */
3257 case UR_CLEAR_FEATURE:
3258 if (type == UT_WRITE_CLASS_OTHER) {
3259 if (index == 1 /* Port */) {
3260 mutex_enter(&sc->sc_intr_lock);
3261 error = slhci_clear_feature(sc, value);
3262 mutex_exit(&sc->sc_intr_lock);
3263 } else
3264 DLOG(D_ROOT, "Clear Port Feature "
3265 "index = %#.4jx", index, 0,0,0);
3266 }
3267 break;
3268 case UR_SET_FEATURE:
3269 if (type == UT_WRITE_CLASS_OTHER) {
3270 if (index == 1 /* Port */) {
3271 mutex_enter(&sc->sc_intr_lock);
3272 error = slhci_set_feature(sc, value);
3273 mutex_exit(&sc->sc_intr_lock);
3274 } else
3275 DLOG(D_ROOT, "Set Port Feature "
3276 "index = %#.4jx", index, 0,0,0);
3277 } else if (type != UT_WRITE_CLASS_DEVICE)
3278 DLOG(D_ROOT, "Set Device Feature "
3279 "ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP "
3280 "not supported", 0,0,0,0);
3281 break;
3282
3283 /* Read Requests */
3284 case UR_GET_STATUS:
3285 if (type == UT_READ_CLASS_OTHER) {
3286 if (index == 1 /* Port */ && len == /* XXX >=? */
3287 sizeof(usb_port_status_t)) {
3288 mutex_enter(&sc->sc_intr_lock);
3289 slhci_get_status(sc, (usb_port_status_t *)
3290 buf);
3291 mutex_exit(&sc->sc_intr_lock);
3292 actlen = sizeof(usb_port_status_t);
3293 error = USBD_NORMAL_COMPLETION;
3294 } else
3295 DLOG(D_ROOT, "Get Port Status index = %#.4jx "
3296 "len = %#.4jx", index, len, 0,0);
3297 } else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */
3298 if (len == sizeof(usb_hub_status_t)) {
3299 DLOG(D_ROOT, "Get Hub Status",
3300 0,0,0,0);
3301 actlen = sizeof(usb_hub_status_t);
3302 memset(buf, 0, actlen);
3303 error = USBD_NORMAL_COMPLETION;
3304 } else
3305 DLOG(D_ROOT, "Get Hub Status bad len %#.4jx",
3306 len, 0,0,0);
3307 }
3308 break;
3309 case UR_GET_DESCRIPTOR:
3310 if (type == UT_READ_DEVICE) {
3311 /* value is type (&0xff00) and index (0xff) */
3312 if (value == (UDESC_DEVICE<<8)) {
3313 usb_device_descriptor_t devd;
3314
3315 actlen = min(buflen, sizeof(devd));
3316 memcpy(&devd, buf, actlen);
3317 USETW(devd.idVendor, USB_VENDOR_SCANLOGIC);
3318 memcpy(buf, &devd, actlen);
3319 error = USBD_NORMAL_COMPLETION;
3320 } else if (value == (UDESC_CONFIG<<8)) {
3321 struct usb_roothub_descriptors confd;
3322
3323 actlen = min(buflen, sizeof(confd));
3324 memcpy(&confd, buf, actlen);
3325
3326 /* 2 mA units */
3327 confd.urh_confd.bMaxPower = t->max_current;
3328 memcpy(buf, &confd, actlen);
3329 error = USBD_NORMAL_COMPLETION;
3330 } else if (value == ((UDESC_STRING<<8)|1)) {
3331 /* Vendor */
3332 actlen = usb_makestrdesc((usb_string_descriptor_t *)
3333 buf, len, "ScanLogic/Cypress");
3334 error = USBD_NORMAL_COMPLETION;
3335 } else if (value == ((UDESC_STRING<<8)|2)) {
3336 /* Product */
3337 actlen = usb_makestrdesc((usb_string_descriptor_t *)
3338 buf, len, "SL811HS/T root hub");
3339 error = USBD_NORMAL_COMPLETION;
3340 } else
3341 DDOLOG("Unknown Get Descriptor %#.4x",
3342 value, 0,0,0);
3343 } else if (type == UT_READ_CLASS_DEVICE) {
3344 /* Descriptor number is 0 */
3345 if (value == (UDESC_HUB<<8)) {
3346 usb_hub_descriptor_t hubd;
3347
3348 actlen = min(buflen, sizeof(hubd));
3349 memcpy(&hubd, buf, actlen);
3350 hubd.bHubContrCurrent =
3351 500 - t->max_current;
3352 memcpy(buf, &hubd, actlen);
3353 error = USBD_NORMAL_COMPLETION;
3354 } else
3355 DDOLOG("Unknown Get Hub Descriptor %#.4x",
3356 value, 0,0,0);
3357 }
3358 break;
3359 default:
3360 /* default from usbroothub */
3361 return buflen;
3362 }
3363
3364 if (error == USBD_NORMAL_COMPLETION)
3365 return actlen;
3366
3367 return -1;
3368 }
3369
3370 /* End in lock functions. Start debug functions. */
3371
3372 #ifdef SLHCI_DEBUG
3373 void
3374 slhci_log_buffer(struct usbd_xfer *xfer)
3375 {
3376 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3377 u_char *buf;
3378
3379 if(xfer->ux_length > 0 &&
3380 UE_GET_DIR(xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress) ==
3381 UE_DIR_IN) {
3382 buf = xfer->ux_buf;
3383 DDOLOGBUF(buf, xfer->ux_actlen);
3384 DDOLOG("len %d actlen %d short %d", xfer->ux_length,
3385 xfer->ux_actlen, xfer->ux_length - xfer->ux_actlen, 0);
3386 }
3387 }
3388
3389 void
3390 slhci_log_req(usb_device_request_t *r)
3391 {
3392 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3393 int req, type, value, index, len;
3394
3395 req = r->bRequest;
3396 type = r->bmRequestType;
3397 value = UGETW(r->wValue);
3398 index = UGETW(r->wIndex);
3399 len = UGETW(r->wLength);
3400
3401 DDOLOG("request: type %#x", type, 0, 0, 0);
3402 DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len);
3403 }
3404
3405 void
3406 slhci_log_dumpreg(void)
3407 {
3408 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3409 uint8_t r;
3410 unsigned int aaddr, alen, baddr, blen;
3411 static u_char buf[240];
3412
3413 r = slhci_read(ssc, SL11_E0CTRL);
3414 DDOLOG("USB A Host Control = %#.2x", r, 0, 0, 0);
3415 DDOLOGEPCTRL(r);
3416
3417 aaddr = slhci_read(ssc, SL11_E0ADDR);
3418 DDOLOG("USB A Base Address = %u", aaddr, 0,0,0);
3419 alen = slhci_read(ssc, SL11_E0LEN);
3420 DDOLOG("USB A Length = %u", alen, 0,0,0);
3421 r = slhci_read(ssc, SL11_E0STAT);
3422 DDOLOG("USB A Status = %#.2x", r, 0,0,0);
3423 DDOLOGEPSTAT(r);
3424
3425 r = slhci_read(ssc, SL11_E0CONT);
3426 DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0);
3427 r = slhci_read(ssc, SL11_E1CTRL);
3428 DDOLOG("USB B Host Control = %#.2x", r, 0,0,0);
3429 DDOLOGEPCTRL(r);
3430
3431 baddr = slhci_read(ssc, SL11_E1ADDR);
3432 DDOLOG("USB B Base Address = %u", baddr, 0,0,0);
3433 blen = slhci_read(ssc, SL11_E1LEN);
3434 DDOLOG("USB B Length = %u", blen, 0,0,0);
3435 r = slhci_read(ssc, SL11_E1STAT);
3436 DDOLOG("USB B Status = %#.2x", r, 0,0,0);
3437 DDOLOGEPSTAT(r);
3438
3439 r = slhci_read(ssc, SL11_E1CONT);
3440 DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0);
3441
3442 r = slhci_read(ssc, SL11_CTRL);
3443 DDOLOG("Control = %#.2x", r, 0,0,0);
3444 DDOLOGCTRL(r);
3445
3446 r = slhci_read(ssc, SL11_IER);
3447 DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0);
3448 DDOLOGIER(r);
3449
3450 r = slhci_read(ssc, SL11_ISR);
3451 DDOLOG("Interrupt Status = %#.2x", r, 0,0,0);
3452 DDOLOGISR(r);
3453
3454 r = slhci_read(ssc, SL11_REV);
3455 DDOLOG("Revision = %#.2x", r, 0,0,0);
3456 r = slhci_read(ssc, SL811_CSOF);
3457 DDOLOG("SOF Counter = %#.2x", r, 0,0,0);
3458
3459 if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END &&
3460 alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) {
3461 slhci_read_multi(ssc, aaddr, buf, alen);
3462 DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0);
3463 DDOLOGBUF(buf, alen);
3464 } else if (alen)
3465 DDOLOG("USBA Buffer Invalid", 0,0,0,0);
3466
3467 if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END &&
3468 blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) {
3469 slhci_read_multi(ssc, baddr, buf, blen);
3470 DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0);
3471 DDOLOGBUF(buf, blen);
3472 } else if (blen)
3473 DDOLOG("USBB Buffer Invalid", 0,0,0,0);
3474 }
3475
3476 void
3477 slhci_log_xfer(struct usbd_xfer *xfer)
3478 {
3479 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3480 DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,",
3481 xfer->ux_length, xfer->ux_actlen, xfer->ux_flags, xfer->ux_timeout);
3482 DDOLOG("buffer=%p", xfer->ux_buf, 0,0,0);
3483 slhci_log_req(&xfer->ux_request);
3484 }
3485
3486 void
3487 slhci_log_spipe(struct slhci_pipe *spipe)
3488 {
3489 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3490 DDOLOG("spipe %p onlists: AP=%d TO=%d XQ=%d", spipe,
3491 gcq_onlist(&spipe->ap) ? 1 : 0,
3492 gcq_onlist(&spipe->to) ? 1 : 0,
3493 gcq_onlist(&spipe->xq) ? 1 : 0);
3494 DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %d",
3495 spipe->xfer, spipe->buffer, spipe->pflags, spipe->ptype);
3496 }
3497
3498 void
3499 slhci_print_intr(void)
3500 {
3501 unsigned int ier, isr;
3502 ier = slhci_read(ssc, SL11_IER);
3503 isr = slhci_read(ssc, SL11_ISR);
3504 printf("IER: %#x ISR: %#x \n", ier, isr);
3505 }
3506
3507 #if 0
3508 void
3509 slhci_log_sc(void)
3510 {
3511 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3512
3513 struct slhci_transfers *t;
3514 int i;
3515
3516 t = &ssc->sc_transfers;
3517
3518 DDOLOG("Flags=%#x", t->flags, 0,0,0);
3519 DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0],
3520 t->spipe[1], t->len[1]);
3521
3522 for (i=0; i<=Q_MAX; i++)
3523 DDOLOG("Q %d: %p", i, gcq_hq(&t->q[i]), 0,0);
3524
3525 DDOLOG("TIMED: %p", GCQ_ITEM(gcq_hq(&t->to),
3526 struct slhci_pipe, to), 0,0,0);
3527
3528 DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0);
3529
3530 DDOLOG("ub_usepolling=%d", ssc->sc_bus.ub_usepolling, 0, 0, 0);
3531 }
3532
3533 void
3534 slhci_log_slreq(struct slhci_pipe *r)
3535 {
3536 SLHCIHIST_FUNC(); SLHCIHIST_CALLED();
3537 DDOLOG("xfer: %p", r->xfer, 0,0,0);
3538 DDOLOG("buffer: %p", r->buffer, 0,0,0);
3539 DDOLOG("bustime: %u", r->bustime, 0,0,0);
3540 DDOLOG("control: %#x", r->control, 0,0,0);
3541 DDOLOGEPCTRL(r->control);
3542
3543 DDOLOG("pid: %#x", r->tregs[PID], 0,0,0);
3544 DDOLOG("dev: %u", r->tregs[DEV], 0,0,0);
3545 DDOLOG("len: %u", r->tregs[LEN], 0,0,0);
3546
3547 if (r->xfer)
3548 slhci_log_xfer(r->xfer);
3549 }
3550 #endif
3551 #endif /* SLHCI_DEBUG */
3552 /* End debug functions. */
3553