smc83c170.c revision 1.56 1 /* $NetBSD: smc83c170.c,v 1.56 2004/10/30 18:08:40 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Device driver for the Standard Microsystems Corp. 83C170
42 * Ethernet PCI Integrated Controller (EPIC/100).
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: smc83c170.c,v 1.56 2004/10/30 18:08:40 thorpej Exp $");
47
48 #include "bpfilter.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/callout.h>
53 #include <sys/mbuf.h>
54 #include <sys/malloc.h>
55 #include <sys/kernel.h>
56 #include <sys/socket.h>
57 #include <sys/ioctl.h>
58 #include <sys/errno.h>
59 #include <sys/device.h>
60
61 #include <uvm/uvm_extern.h>
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <machine/bus.h>
73 #include <machine/intr.h>
74
75 #include <dev/mii/miivar.h>
76 #include <dev/mii/lxtphyreg.h>
77
78 #include <dev/ic/smc83c170reg.h>
79 #include <dev/ic/smc83c170var.h>
80
81 void epic_start __P((struct ifnet *));
82 void epic_watchdog __P((struct ifnet *));
83 int epic_ioctl __P((struct ifnet *, u_long, caddr_t));
84 int epic_init __P((struct ifnet *));
85 void epic_stop __P((struct ifnet *, int));
86
87 void epic_shutdown __P((void *));
88
89 void epic_reset __P((struct epic_softc *));
90 void epic_rxdrain __P((struct epic_softc *));
91 int epic_add_rxbuf __P((struct epic_softc *, int));
92 void epic_read_eeprom __P((struct epic_softc *, int, int, u_int16_t *));
93 void epic_set_mchash __P((struct epic_softc *));
94 void epic_fixup_clock_source __P((struct epic_softc *));
95 int epic_mii_read __P((struct device *, int, int));
96 void epic_mii_write __P((struct device *, int, int, int));
97 int epic_mii_wait __P((struct epic_softc *, u_int32_t));
98 void epic_tick __P((void *));
99
100 void epic_statchg __P((struct device *));
101 int epic_mediachange __P((struct ifnet *));
102 void epic_mediastatus __P((struct ifnet *, struct ifmediareq *));
103
104 #define INTMASK (INTSTAT_FATAL_INT | INTSTAT_TXU | \
105 INTSTAT_TXC | INTSTAT_RXE | INTSTAT_RQE | INTSTAT_RCC)
106
107 int epic_copy_small = 0;
108
109 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
110
111 /*
112 * Attach an EPIC interface to the system.
113 */
114 void
115 epic_attach(sc)
116 struct epic_softc *sc;
117 {
118 bus_space_tag_t st = sc->sc_st;
119 bus_space_handle_t sh = sc->sc_sh;
120 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
121 int rseg, error, miiflags;
122 u_int i;
123 bus_dma_segment_t seg;
124 u_int8_t enaddr[ETHER_ADDR_LEN], devname[12 + 1];
125 u_int16_t myea[ETHER_ADDR_LEN / 2], mydevname[6];
126 char *nullbuf;
127
128 callout_init(&sc->sc_mii_callout);
129
130 /*
131 * Allocate the control data structures, and create and load the
132 * DMA map for it.
133 */
134 if ((error = bus_dmamem_alloc(sc->sc_dmat,
135 sizeof(struct epic_control_data) + ETHER_PAD_LEN, PAGE_SIZE, 0,
136 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
137 aprint_error(
138 "%s: unable to allocate control data, error = %d\n",
139 sc->sc_dev.dv_xname, error);
140 goto fail_0;
141 }
142
143 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
144 sizeof(struct epic_control_data) + ETHER_PAD_LEN,
145 (caddr_t *)&sc->sc_control_data,
146 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
147 aprint_error("%s: unable to map control data, error = %d\n",
148 sc->sc_dev.dv_xname, error);
149 goto fail_1;
150 }
151 nullbuf =
152 (char *)sc->sc_control_data + sizeof(struct epic_control_data);
153 memset(nullbuf, 0, ETHER_PAD_LEN);
154
155 if ((error = bus_dmamap_create(sc->sc_dmat,
156 sizeof(struct epic_control_data), 1,
157 sizeof(struct epic_control_data), 0, BUS_DMA_NOWAIT,
158 &sc->sc_cddmamap)) != 0) {
159 aprint_error("%s: unable to create control data DMA map, "
160 "error = %d\n", sc->sc_dev.dv_xname, error);
161 goto fail_2;
162 }
163
164 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
165 sc->sc_control_data, sizeof(struct epic_control_data), NULL,
166 BUS_DMA_NOWAIT)) != 0) {
167 aprint_error(
168 "%s: unable to load control data DMA map, error = %d\n",
169 sc->sc_dev.dv_xname, error);
170 goto fail_3;
171 }
172
173 /*
174 * Create the transmit buffer DMA maps.
175 */
176 for (i = 0; i < EPIC_NTXDESC; i++) {
177 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
178 EPIC_NFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
179 &EPIC_DSTX(sc, i)->ds_dmamap)) != 0) {
180 aprint_error("%s: unable to create tx DMA map %d, "
181 "error = %d\n", sc->sc_dev.dv_xname, i, error);
182 goto fail_4;
183 }
184 }
185
186 /*
187 * Create the receive buffer DMA maps.
188 */
189 for (i = 0; i < EPIC_NRXDESC; i++) {
190 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
191 MCLBYTES, 0, BUS_DMA_NOWAIT,
192 &EPIC_DSRX(sc, i)->ds_dmamap)) != 0) {
193 aprint_error("%s: unable to create rx DMA map %d, "
194 "error = %d\n", sc->sc_dev.dv_xname, i, error);
195 goto fail_5;
196 }
197 EPIC_DSRX(sc, i)->ds_mbuf = NULL;
198 }
199
200 /*
201 * create and map the pad buffer
202 */
203 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
204 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT,&sc->sc_nulldmamap)) != 0) {
205 printf("%s: unable to create pad buffer DMA map, "
206 "error = %d\n", sc->sc_dev.dv_xname, error);
207 goto fail_5;
208 }
209
210 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
211 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
212 printf("%s: unable to load pad buffer DMA map, "
213 "error = %d\n", sc->sc_dev.dv_xname, error);
214 goto fail_6;
215 }
216 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
217 BUS_DMASYNC_PREWRITE);
218
219 /*
220 * Bring the chip out of low-power mode and reset it to a known state.
221 */
222 bus_space_write_4(st, sh, EPIC_GENCTL, 0);
223 epic_reset(sc);
224
225 /*
226 * Read the Ethernet address from the EEPROM.
227 */
228 epic_read_eeprom(sc, 0, (sizeof(myea) / sizeof(myea[0])), myea);
229 for (i = 0; i < sizeof(myea)/ sizeof(myea[0]); i++) {
230 enaddr[i * 2] = myea[i] & 0xff;
231 enaddr[i * 2 + 1] = myea[i] >> 8;
232 }
233
234 /*
235 * ...and the device name.
236 */
237 epic_read_eeprom(sc, 0x2c, (sizeof(mydevname) / sizeof(mydevname[0])),
238 mydevname);
239 for (i = 0; i < sizeof(mydevname) / sizeof(mydevname[0]); i++) {
240 devname[i * 2] = mydevname[i] & 0xff;
241 devname[i * 2 + 1] = mydevname[i] >> 8;
242 }
243
244 devname[sizeof(mydevname)] = '\0';
245 for (i = sizeof(mydevname) - 1; i >= 0; i--) {
246 if (devname[i] == ' ')
247 devname[i] = '\0';
248 else
249 break;
250 }
251
252 aprint_normal("%s: %s, Ethernet address %s\n", sc->sc_dev.dv_xname,
253 devname, ether_sprintf(enaddr));
254
255 miiflags = 0;
256 if (sc->sc_hwflags & EPIC_HAS_MII_FIBER)
257 miiflags |= MIIF_HAVEFIBER;
258
259 /*
260 * Initialize our media structures and probe the MII.
261 */
262 sc->sc_mii.mii_ifp = ifp;
263 sc->sc_mii.mii_readreg = epic_mii_read;
264 sc->sc_mii.mii_writereg = epic_mii_write;
265 sc->sc_mii.mii_statchg = epic_statchg;
266 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epic_mediachange,
267 epic_mediastatus);
268 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
269 MII_OFFSET_ANY, miiflags);
270 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
271 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
272 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
273 } else
274 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
275
276 if (sc->sc_hwflags & EPIC_HAS_BNC) {
277 /* use the next free media instance */
278 sc->sc_serinst = sc->sc_mii.mii_instance++;
279 ifmedia_add(&sc->sc_mii.mii_media,
280 IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0,
281 sc->sc_serinst),
282 0, NULL);
283 aprint_normal("%s: 10base2/BNC\n", sc->sc_dev.dv_xname);
284 } else
285 sc->sc_serinst = -1;
286
287 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
288 ifp->if_softc = sc;
289 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
290 ifp->if_ioctl = epic_ioctl;
291 ifp->if_start = epic_start;
292 ifp->if_watchdog = epic_watchdog;
293 ifp->if_init = epic_init;
294 ifp->if_stop = epic_stop;
295 IFQ_SET_READY(&ifp->if_snd);
296
297 /*
298 * We can support 802.1Q VLAN-sized frames.
299 */
300 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
301
302 /*
303 * Attach the interface.
304 */
305 if_attach(ifp);
306 ether_ifattach(ifp, enaddr);
307
308 /*
309 * Make sure the interface is shutdown during reboot.
310 */
311 sc->sc_sdhook = shutdownhook_establish(epic_shutdown, sc);
312 if (sc->sc_sdhook == NULL)
313 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
314 sc->sc_dev.dv_xname);
315 return;
316
317 /*
318 * Free any resources we've allocated during the failed attach
319 * attempt. Do this in reverse order and fall through.
320 */
321 fail_6:
322 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
323 fail_5:
324 for (i = 0; i < EPIC_NRXDESC; i++) {
325 if (EPIC_DSRX(sc, i)->ds_dmamap != NULL)
326 bus_dmamap_destroy(sc->sc_dmat,
327 EPIC_DSRX(sc, i)->ds_dmamap);
328 }
329 fail_4:
330 for (i = 0; i < EPIC_NTXDESC; i++) {
331 if (EPIC_DSTX(sc, i)->ds_dmamap != NULL)
332 bus_dmamap_destroy(sc->sc_dmat,
333 EPIC_DSTX(sc, i)->ds_dmamap);
334 }
335 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
336 fail_3:
337 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
338 fail_2:
339 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
340 sizeof(struct epic_control_data));
341 fail_1:
342 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
343 fail_0:
344 return;
345 }
346
347 /*
348 * Shutdown hook. Make sure the interface is stopped at reboot.
349 */
350 void
351 epic_shutdown(arg)
352 void *arg;
353 {
354 struct epic_softc *sc = arg;
355
356 epic_stop(&sc->sc_ethercom.ec_if, 1);
357 }
358
359 /*
360 * Start packet transmission on the interface.
361 * [ifnet interface function]
362 */
363 void
364 epic_start(ifp)
365 struct ifnet *ifp;
366 {
367 struct epic_softc *sc = ifp->if_softc;
368 struct mbuf *m0, *m;
369 struct epic_txdesc *txd;
370 struct epic_descsoft *ds;
371 struct epic_fraglist *fr;
372 bus_dmamap_t dmamap;
373 int error, firsttx, nexttx, opending, seg;
374 u_int len;
375
376 /*
377 * Remember the previous txpending and the first transmit
378 * descriptor we use.
379 */
380 opending = sc->sc_txpending;
381 firsttx = EPIC_NEXTTX(sc->sc_txlast);
382
383 /*
384 * Loop through the send queue, setting up transmit descriptors
385 * until we drain the queue, or use up all available transmit
386 * descriptors.
387 */
388 while (sc->sc_txpending < EPIC_NTXDESC) {
389 /*
390 * Grab a packet off the queue.
391 */
392 IFQ_POLL(&ifp->if_snd, m0);
393 if (m0 == NULL)
394 break;
395 m = NULL;
396
397 /*
398 * Get the last and next available transmit descriptor.
399 */
400 nexttx = EPIC_NEXTTX(sc->sc_txlast);
401 txd = EPIC_CDTX(sc, nexttx);
402 fr = EPIC_CDFL(sc, nexttx);
403 ds = EPIC_DSTX(sc, nexttx);
404 dmamap = ds->ds_dmamap;
405
406 /*
407 * Load the DMA map. If this fails, the packet either
408 * didn't fit in the alloted number of frags, or we were
409 * short on resources. In this case, we'll copy and try
410 * again.
411 */
412 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
413 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
414 (m0->m_pkthdr.len < ETHER_PAD_LEN &&
415 dmamap-> dm_nsegs == EPIC_NFRAGS)) {
416 if (error == 0)
417 bus_dmamap_unload(sc->sc_dmat, dmamap);
418
419 MGETHDR(m, M_DONTWAIT, MT_DATA);
420 if (m == NULL) {
421 printf("%s: unable to allocate Tx mbuf\n",
422 sc->sc_dev.dv_xname);
423 break;
424 }
425 if (m0->m_pkthdr.len > MHLEN) {
426 MCLGET(m, M_DONTWAIT);
427 if ((m->m_flags & M_EXT) == 0) {
428 printf("%s: unable to allocate Tx "
429 "cluster\n", sc->sc_dev.dv_xname);
430 m_freem(m);
431 break;
432 }
433 }
434 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
435 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
436 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
437 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
438 if (error) {
439 printf("%s: unable to load Tx buffer, "
440 "error = %d\n", sc->sc_dev.dv_xname, error);
441 break;
442 }
443 }
444 IFQ_DEQUEUE(&ifp->if_snd, m0);
445 if (m != NULL) {
446 m_freem(m0);
447 m0 = m;
448 }
449
450 /* Initialize the fraglist. */
451 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
452 fr->ef_frags[seg].ef_addr =
453 dmamap->dm_segs[seg].ds_addr;
454 fr->ef_frags[seg].ef_length =
455 dmamap->dm_segs[seg].ds_len;
456 }
457 len = m0->m_pkthdr.len;
458 if (len < ETHER_PAD_LEN) {
459 fr->ef_frags[seg].ef_addr = sc->sc_nulldma;
460 fr->ef_frags[seg].ef_length = ETHER_PAD_LEN - len;
461 len = ETHER_PAD_LEN;
462 seg++;
463 }
464 fr->ef_nfrags = seg;
465
466 EPIC_CDFLSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
467
468 /* Sync the DMA map. */
469 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
470 BUS_DMASYNC_PREWRITE);
471
472 /*
473 * Store a pointer to the packet so we can free it later.
474 */
475 ds->ds_mbuf = m0;
476
477 /*
478 * Fill in the transmit descriptor.
479 */
480 txd->et_control = ET_TXCTL_LASTDESC | ET_TXCTL_FRAGLIST;
481
482 /*
483 * If this is the first descriptor we're enqueueing,
484 * don't give it to the EPIC yet. That could cause
485 * a race condition. We'll do it below.
486 */
487 if (nexttx == firsttx)
488 txd->et_txstatus = TXSTAT_TXLENGTH(len);
489 else
490 txd->et_txstatus =
491 TXSTAT_TXLENGTH(len) | ET_TXSTAT_OWNER;
492
493 EPIC_CDTXSYNC(sc, nexttx,
494 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
495
496 /* Advance the tx pointer. */
497 sc->sc_txpending++;
498 sc->sc_txlast = nexttx;
499
500 #if NBPFILTER > 0
501 /*
502 * Pass the packet to any BPF listeners.
503 */
504 if (ifp->if_bpf)
505 bpf_mtap(ifp->if_bpf, m0);
506 #endif
507 }
508
509 if (sc->sc_txpending == EPIC_NTXDESC) {
510 /* No more slots left; notify upper layer. */
511 ifp->if_flags |= IFF_OACTIVE;
512 }
513
514 if (sc->sc_txpending != opending) {
515 /*
516 * We enqueued packets. If the transmitter was idle,
517 * reset the txdirty pointer.
518 */
519 if (opending == 0)
520 sc->sc_txdirty = firsttx;
521
522 /*
523 * Cause a transmit interrupt to happen on the
524 * last packet we enqueued.
525 */
526 EPIC_CDTX(sc, sc->sc_txlast)->et_control |= ET_TXCTL_IAF;
527 EPIC_CDTXSYNC(sc, sc->sc_txlast,
528 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
529
530 /*
531 * The entire packet chain is set up. Give the
532 * first descriptor to the EPIC now.
533 */
534 EPIC_CDTX(sc, firsttx)->et_txstatus |= ET_TXSTAT_OWNER;
535 EPIC_CDTXSYNC(sc, firsttx,
536 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
537
538 /* Start the transmitter. */
539 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
540 COMMAND_TXQUEUED);
541
542 /* Set a watchdog timer in case the chip flakes out. */
543 ifp->if_timer = 5;
544 }
545 }
546
547 /*
548 * Watchdog timer handler.
549 * [ifnet interface function]
550 */
551 void
552 epic_watchdog(ifp)
553 struct ifnet *ifp;
554 {
555 struct epic_softc *sc = ifp->if_softc;
556
557 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
558 ifp->if_oerrors++;
559
560 (void) epic_init(ifp);
561 }
562
563 /*
564 * Handle control requests from the operator.
565 * [ifnet interface function]
566 */
567 int
568 epic_ioctl(ifp, cmd, data)
569 struct ifnet *ifp;
570 u_long cmd;
571 caddr_t data;
572 {
573 struct epic_softc *sc = ifp->if_softc;
574 struct ifreq *ifr = (struct ifreq *)data;
575 int s, error;
576
577 s = splnet();
578
579 switch (cmd) {
580 case SIOCSIFMEDIA:
581 case SIOCGIFMEDIA:
582 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
583 break;
584
585 default:
586 error = ether_ioctl(ifp, cmd, data);
587 if (error == ENETRESET) {
588 /*
589 * Multicast list has changed; set the hardware filter
590 * accordingly. Update our idea of the current media;
591 * epic_set_mchash() needs to know what it is.
592 */
593 if (ifp->if_flags & IFF_RUNNING) {
594 mii_pollstat(&sc->sc_mii);
595 epic_set_mchash(sc);
596 }
597 error = 0;
598 }
599 break;
600 }
601
602 splx(s);
603 return (error);
604 }
605
606 /*
607 * Interrupt handler.
608 */
609 int
610 epic_intr(arg)
611 void *arg;
612 {
613 struct epic_softc *sc = arg;
614 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
615 struct epic_rxdesc *rxd;
616 struct epic_txdesc *txd;
617 struct epic_descsoft *ds;
618 struct mbuf *m;
619 u_int32_t intstat, rxstatus, txstatus;
620 int i, claimed = 0;
621 u_int len;
622
623 top:
624 /*
625 * Get the interrupt status from the EPIC.
626 */
627 intstat = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT);
628 if ((intstat & INTSTAT_INT_ACTV) == 0)
629 return (claimed);
630
631 claimed = 1;
632
633 /*
634 * Acknowledge the interrupt.
635 */
636 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT,
637 intstat & INTMASK);
638
639 /*
640 * Check for receive interrupts.
641 */
642 if (intstat & (INTSTAT_RCC | INTSTAT_RXE | INTSTAT_RQE)) {
643 for (i = sc->sc_rxptr;; i = EPIC_NEXTRX(i)) {
644 rxd = EPIC_CDRX(sc, i);
645 ds = EPIC_DSRX(sc, i);
646
647 EPIC_CDRXSYNC(sc, i,
648 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
649
650 rxstatus = rxd->er_rxstatus;
651 if (rxstatus & ER_RXSTAT_OWNER) {
652 /*
653 * We have processed all of the
654 * receive buffers.
655 */
656 break;
657 }
658
659 /*
660 * Make sure the packet arrived intact. If an error
661 * occurred, update stats and reset the descriptor.
662 * The buffer will be reused the next time the
663 * descriptor comes up in the ring.
664 */
665 if ((rxstatus & ER_RXSTAT_PKTINTACT) == 0) {
666 if (rxstatus & ER_RXSTAT_CRCERROR)
667 printf("%s: CRC error\n",
668 sc->sc_dev.dv_xname);
669 if (rxstatus & ER_RXSTAT_ALIGNERROR)
670 printf("%s: alignment error\n",
671 sc->sc_dev.dv_xname);
672 ifp->if_ierrors++;
673 EPIC_INIT_RXDESC(sc, i);
674 continue;
675 }
676
677 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
678 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
679
680 /*
681 * The EPIC includes the CRC with every packet.
682 */
683 len = RXSTAT_RXLENGTH(rxstatus);
684
685 if (len < sizeof(struct ether_header)) {
686 /*
687 * Runt packet; drop it now.
688 */
689 ifp->if_ierrors++;
690 EPIC_INIT_RXDESC(sc, i);
691 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
692 ds->ds_dmamap->dm_mapsize,
693 BUS_DMASYNC_PREREAD);
694 continue;
695 }
696
697 /*
698 * If the packet is small enough to fit in a
699 * single header mbuf, allocate one and copy
700 * the data into it. This greatly reduces
701 * memory consumption when we receive lots
702 * of small packets.
703 *
704 * Otherwise, we add a new buffer to the receive
705 * chain. If this fails, we drop the packet and
706 * recycle the old buffer.
707 */
708 if (epic_copy_small != 0 && len <= MHLEN) {
709 MGETHDR(m, M_DONTWAIT, MT_DATA);
710 if (m == NULL)
711 goto dropit;
712 memcpy(mtod(m, caddr_t),
713 mtod(ds->ds_mbuf, caddr_t), len);
714 EPIC_INIT_RXDESC(sc, i);
715 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
716 ds->ds_dmamap->dm_mapsize,
717 BUS_DMASYNC_PREREAD);
718 } else {
719 m = ds->ds_mbuf;
720 if (epic_add_rxbuf(sc, i) != 0) {
721 dropit:
722 ifp->if_ierrors++;
723 EPIC_INIT_RXDESC(sc, i);
724 bus_dmamap_sync(sc->sc_dmat,
725 ds->ds_dmamap, 0,
726 ds->ds_dmamap->dm_mapsize,
727 BUS_DMASYNC_PREREAD);
728 continue;
729 }
730 }
731
732 m->m_flags |= M_HASFCS;
733 m->m_pkthdr.rcvif = ifp;
734 m->m_pkthdr.len = m->m_len = len;
735
736 #if NBPFILTER > 0
737 /*
738 * Pass this up to any BPF listeners, but only
739 * pass it up the stack if its for us.
740 */
741 if (ifp->if_bpf)
742 bpf_mtap(ifp->if_bpf, m);
743 #endif
744
745 /* Pass it on. */
746 (*ifp->if_input)(ifp, m);
747 ifp->if_ipackets++;
748 }
749
750 /* Update the receive pointer. */
751 sc->sc_rxptr = i;
752
753 /*
754 * Check for receive queue underflow.
755 */
756 if (intstat & INTSTAT_RQE) {
757 printf("%s: receiver queue empty\n",
758 sc->sc_dev.dv_xname);
759 /*
760 * Ring is already built; just restart the
761 * receiver.
762 */
763 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_PRCDAR,
764 EPIC_CDRXADDR(sc, sc->sc_rxptr));
765 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
766 COMMAND_RXQUEUED | COMMAND_START_RX);
767 }
768 }
769
770 /*
771 * Check for transmission complete interrupts.
772 */
773 if (intstat & (INTSTAT_TXC | INTSTAT_TXU)) {
774 ifp->if_flags &= ~IFF_OACTIVE;
775 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
776 i = EPIC_NEXTTX(i), sc->sc_txpending--) {
777 txd = EPIC_CDTX(sc, i);
778 ds = EPIC_DSTX(sc, i);
779
780 EPIC_CDTXSYNC(sc, i,
781 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
782
783 txstatus = txd->et_txstatus;
784 if (txstatus & ET_TXSTAT_OWNER)
785 break;
786
787 EPIC_CDFLSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
788
789 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
790 0, ds->ds_dmamap->dm_mapsize,
791 BUS_DMASYNC_POSTWRITE);
792 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
793 m_freem(ds->ds_mbuf);
794 ds->ds_mbuf = NULL;
795
796 /*
797 * Check for errors and collisions.
798 */
799 if ((txstatus & ET_TXSTAT_PACKETTX) == 0)
800 ifp->if_oerrors++;
801 else
802 ifp->if_opackets++;
803 ifp->if_collisions +=
804 TXSTAT_COLLISIONS(txstatus);
805 if (txstatus & ET_TXSTAT_CARSENSELOST)
806 printf("%s: lost carrier\n",
807 sc->sc_dev.dv_xname);
808 }
809
810 /* Update the dirty transmit buffer pointer. */
811 sc->sc_txdirty = i;
812
813 /*
814 * Cancel the watchdog timer if there are no pending
815 * transmissions.
816 */
817 if (sc->sc_txpending == 0)
818 ifp->if_timer = 0;
819
820 /*
821 * Kick the transmitter after a DMA underrun.
822 */
823 if (intstat & INTSTAT_TXU) {
824 printf("%s: transmit underrun\n", sc->sc_dev.dv_xname);
825 bus_space_write_4(sc->sc_st, sc->sc_sh,
826 EPIC_COMMAND, COMMAND_TXUGO);
827 if (sc->sc_txpending)
828 bus_space_write_4(sc->sc_st, sc->sc_sh,
829 EPIC_COMMAND, COMMAND_TXQUEUED);
830 }
831
832 /*
833 * Try to get more packets going.
834 */
835 epic_start(ifp);
836 }
837
838 /*
839 * Check for fatal interrupts.
840 */
841 if (intstat & INTSTAT_FATAL_INT) {
842 if (intstat & INTSTAT_PTA)
843 printf("%s: PCI target abort error\n",
844 sc->sc_dev.dv_xname);
845 else if (intstat & INTSTAT_PMA)
846 printf("%s: PCI master abort error\n",
847 sc->sc_dev.dv_xname);
848 else if (intstat & INTSTAT_APE)
849 printf("%s: PCI address parity error\n",
850 sc->sc_dev.dv_xname);
851 else if (intstat & INTSTAT_DPE)
852 printf("%s: PCI data parity error\n",
853 sc->sc_dev.dv_xname);
854 else
855 printf("%s: unknown fatal error\n",
856 sc->sc_dev.dv_xname);
857 (void) epic_init(ifp);
858 }
859
860 /*
861 * Check for more interrupts.
862 */
863 goto top;
864 }
865
866 /*
867 * One second timer, used to tick the MII.
868 */
869 void
870 epic_tick(arg)
871 void *arg;
872 {
873 struct epic_softc *sc = arg;
874 int s;
875
876 s = splnet();
877 mii_tick(&sc->sc_mii);
878 splx(s);
879
880 callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
881 }
882
883 /*
884 * Fixup the clock source on the EPIC.
885 */
886 void
887 epic_fixup_clock_source(sc)
888 struct epic_softc *sc;
889 {
890 int i;
891
892 /*
893 * According to SMC Application Note 7-15, the EPIC's clock
894 * source is incorrect following a reset. This manifests itself
895 * as failure to recognize when host software has written to
896 * a register on the EPIC. The appnote recommends issuing at
897 * least 16 consecutive writes to the CLOCK TEST bit to correctly
898 * configure the clock source.
899 */
900 for (i = 0; i < 16; i++)
901 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TEST,
902 TEST_CLOCKTEST);
903 }
904
905 /*
906 * Perform a soft reset on the EPIC.
907 */
908 void
909 epic_reset(sc)
910 struct epic_softc *sc;
911 {
912
913 epic_fixup_clock_source(sc);
914
915 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, 0);
916 delay(100);
917 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, GENCTL_SOFTRESET);
918 delay(100);
919
920 epic_fixup_clock_source(sc);
921 }
922
923 /*
924 * Initialize the interface. Must be called at splnet().
925 */
926 int
927 epic_init(ifp)
928 struct ifnet *ifp;
929 {
930 struct epic_softc *sc = ifp->if_softc;
931 bus_space_tag_t st = sc->sc_st;
932 bus_space_handle_t sh = sc->sc_sh;
933 u_int8_t *enaddr = LLADDR(ifp->if_sadl);
934 struct epic_txdesc *txd;
935 struct epic_descsoft *ds;
936 u_int32_t genctl, reg0;
937 int i, error = 0;
938
939 /*
940 * Cancel any pending I/O.
941 */
942 epic_stop(ifp, 0);
943
944 /*
945 * Reset the EPIC to a known state.
946 */
947 epic_reset(sc);
948
949 /*
950 * Magical mystery initialization.
951 */
952 bus_space_write_4(st, sh, EPIC_TXTEST, 0);
953
954 /*
955 * Initialize the EPIC genctl register:
956 *
957 * - 64 byte receive FIFO threshold
958 * - automatic advance to next receive frame
959 */
960 genctl = GENCTL_RX_FIFO_THRESH0 | GENCTL_ONECOPY;
961 #if BYTE_ORDER == BIG_ENDIAN
962 genctl |= GENCTL_BIG_ENDIAN;
963 #endif
964 bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
965
966 /*
967 * Reset the MII bus and PHY.
968 */
969 reg0 = bus_space_read_4(st, sh, EPIC_NVCTL);
970 bus_space_write_4(st, sh, EPIC_NVCTL, reg0 | NVCTL_GPIO1 | NVCTL_GPOE1);
971 bus_space_write_4(st, sh, EPIC_MIICFG, MIICFG_ENASER);
972 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_RESET_PHY);
973 delay(100);
974 bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
975 delay(1000);
976 bus_space_write_4(st, sh, EPIC_NVCTL, reg0);
977
978 /*
979 * Initialize Ethernet address.
980 */
981 reg0 = enaddr[1] << 8 | enaddr[0];
982 bus_space_write_4(st, sh, EPIC_LAN0, reg0);
983 reg0 = enaddr[3] << 8 | enaddr[2];
984 bus_space_write_4(st, sh, EPIC_LAN1, reg0);
985 reg0 = enaddr[5] << 8 | enaddr[4];
986 bus_space_write_4(st, sh, EPIC_LAN2, reg0);
987
988 /*
989 * Initialize receive control. Remember the external buffer
990 * size setting.
991 */
992 reg0 = bus_space_read_4(st, sh, EPIC_RXCON) &
993 (RXCON_EXTBUFSIZESEL1 | RXCON_EXTBUFSIZESEL0);
994 reg0 |= (RXCON_RXMULTICAST | RXCON_RXBROADCAST);
995 if (ifp->if_flags & IFF_PROMISC)
996 reg0 |= RXCON_PROMISCMODE;
997 bus_space_write_4(st, sh, EPIC_RXCON, reg0);
998
999 /* Set the current media. */
1000 epic_mediachange(ifp);
1001
1002 /* Set up the multicast hash table. */
1003 epic_set_mchash(sc);
1004
1005 /*
1006 * Initialize the transmit descriptor ring. txlast is initialized
1007 * to the end of the list so that it will wrap around to the first
1008 * descriptor when the first packet is transmitted.
1009 */
1010 for (i = 0; i < EPIC_NTXDESC; i++) {
1011 txd = EPIC_CDTX(sc, i);
1012 memset(txd, 0, sizeof(struct epic_txdesc));
1013 txd->et_bufaddr = EPIC_CDFLADDR(sc, i);
1014 txd->et_nextdesc = EPIC_CDTXADDR(sc, EPIC_NEXTTX(i));
1015 EPIC_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1016 }
1017 sc->sc_txpending = 0;
1018 sc->sc_txdirty = 0;
1019 sc->sc_txlast = EPIC_NTXDESC - 1;
1020
1021 /*
1022 * Initialize the receive descriptor ring.
1023 */
1024 for (i = 0; i < EPIC_NRXDESC; i++) {
1025 ds = EPIC_DSRX(sc, i);
1026 if (ds->ds_mbuf == NULL) {
1027 if ((error = epic_add_rxbuf(sc, i)) != 0) {
1028 printf("%s: unable to allocate or map rx "
1029 "buffer %d error = %d\n",
1030 sc->sc_dev.dv_xname, i, error);
1031 /*
1032 * XXX Should attempt to run with fewer receive
1033 * XXX buffers instead of just failing.
1034 */
1035 epic_rxdrain(sc);
1036 goto out;
1037 }
1038 } else
1039 EPIC_INIT_RXDESC(sc, i);
1040 }
1041 sc->sc_rxptr = 0;
1042
1043 /*
1044 * Initialize the interrupt mask and enable interrupts.
1045 */
1046 bus_space_write_4(st, sh, EPIC_INTMASK, INTMASK);
1047 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_INTENA);
1048
1049 /*
1050 * Give the transmit and receive rings to the EPIC.
1051 */
1052 bus_space_write_4(st, sh, EPIC_PTCDAR,
1053 EPIC_CDTXADDR(sc, EPIC_NEXTTX(sc->sc_txlast)));
1054 bus_space_write_4(st, sh, EPIC_PRCDAR,
1055 EPIC_CDRXADDR(sc, sc->sc_rxptr));
1056
1057 /*
1058 * Set the EPIC in motion.
1059 */
1060 bus_space_write_4(st, sh, EPIC_COMMAND,
1061 COMMAND_RXQUEUED | COMMAND_START_RX);
1062
1063 /*
1064 * ...all done!
1065 */
1066 ifp->if_flags |= IFF_RUNNING;
1067 ifp->if_flags &= ~IFF_OACTIVE;
1068
1069 /*
1070 * Start the one second clock.
1071 */
1072 callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
1073
1074 /*
1075 * Attempt to start output on the interface.
1076 */
1077 epic_start(ifp);
1078
1079 out:
1080 if (error)
1081 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1082 return (error);
1083 }
1084
1085 /*
1086 * Drain the receive queue.
1087 */
1088 void
1089 epic_rxdrain(sc)
1090 struct epic_softc *sc;
1091 {
1092 struct epic_descsoft *ds;
1093 int i;
1094
1095 for (i = 0; i < EPIC_NRXDESC; i++) {
1096 ds = EPIC_DSRX(sc, i);
1097 if (ds->ds_mbuf != NULL) {
1098 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1099 m_freem(ds->ds_mbuf);
1100 ds->ds_mbuf = NULL;
1101 }
1102 }
1103 }
1104
1105 /*
1106 * Stop transmission on the interface.
1107 */
1108 void
1109 epic_stop(ifp, disable)
1110 struct ifnet *ifp;
1111 int disable;
1112 {
1113 struct epic_softc *sc = ifp->if_softc;
1114 bus_space_tag_t st = sc->sc_st;
1115 bus_space_handle_t sh = sc->sc_sh;
1116 struct epic_descsoft *ds;
1117 u_int32_t reg;
1118 int i;
1119
1120 /*
1121 * Stop the one second clock.
1122 */
1123 callout_stop(&sc->sc_mii_callout);
1124
1125 /* Down the MII. */
1126 mii_down(&sc->sc_mii);
1127
1128 /* Paranoia... */
1129 epic_fixup_clock_source(sc);
1130
1131 /*
1132 * Disable interrupts.
1133 */
1134 reg = bus_space_read_4(st, sh, EPIC_GENCTL);
1135 bus_space_write_4(st, sh, EPIC_GENCTL, reg & ~GENCTL_INTENA);
1136 bus_space_write_4(st, sh, EPIC_INTMASK, 0);
1137
1138 /*
1139 * Stop the DMA engine and take the receiver off-line.
1140 */
1141 bus_space_write_4(st, sh, EPIC_COMMAND, COMMAND_STOP_RDMA |
1142 COMMAND_STOP_TDMA | COMMAND_STOP_RX);
1143
1144 /*
1145 * Release any queued transmit buffers.
1146 */
1147 for (i = 0; i < EPIC_NTXDESC; i++) {
1148 ds = EPIC_DSTX(sc, i);
1149 if (ds->ds_mbuf != NULL) {
1150 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1151 m_freem(ds->ds_mbuf);
1152 ds->ds_mbuf = NULL;
1153 }
1154 }
1155
1156 if (disable)
1157 epic_rxdrain(sc);
1158
1159 /*
1160 * Mark the interface down and cancel the watchdog timer.
1161 */
1162 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1163 ifp->if_timer = 0;
1164 }
1165
1166 /*
1167 * Read the EPIC Serial EEPROM.
1168 */
1169 void
1170 epic_read_eeprom(sc, word, wordcnt, data)
1171 struct epic_softc *sc;
1172 int word, wordcnt;
1173 u_int16_t *data;
1174 {
1175 bus_space_tag_t st = sc->sc_st;
1176 bus_space_handle_t sh = sc->sc_sh;
1177 u_int16_t reg;
1178 int i, x;
1179
1180 #define EEPROM_WAIT_READY(st, sh) \
1181 while ((bus_space_read_4((st), (sh), EPIC_EECTL) & EECTL_EERDY) == 0) \
1182 /* nothing */
1183
1184 /*
1185 * Enable the EEPROM.
1186 */
1187 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1188 EEPROM_WAIT_READY(st, sh);
1189
1190 for (i = 0; i < wordcnt; i++) {
1191 /* Send CHIP SELECT for one clock tick. */
1192 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE|EECTL_EECS);
1193 EEPROM_WAIT_READY(st, sh);
1194
1195 /* Shift in the READ opcode. */
1196 for (x = 3; x > 0; x--) {
1197 reg = EECTL_ENABLE|EECTL_EECS;
1198 if (EPIC_EEPROM_OPC_READ & (1 << (x - 1)))
1199 reg |= EECTL_EEDI;
1200 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1201 EEPROM_WAIT_READY(st, sh);
1202 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1203 EEPROM_WAIT_READY(st, sh);
1204 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1205 EEPROM_WAIT_READY(st, sh);
1206 }
1207
1208 /* Shift in address. */
1209 for (x = 6; x > 0; x--) {
1210 reg = EECTL_ENABLE|EECTL_EECS;
1211 if ((word + i) & (1 << (x - 1)))
1212 reg |= EECTL_EEDI;
1213 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1214 EEPROM_WAIT_READY(st, sh);
1215 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1216 EEPROM_WAIT_READY(st, sh);
1217 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1218 EEPROM_WAIT_READY(st, sh);
1219 }
1220
1221 /* Shift out data. */
1222 reg = EECTL_ENABLE|EECTL_EECS;
1223 data[i] = 0;
1224 for (x = 16; x > 0; x--) {
1225 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1226 EEPROM_WAIT_READY(st, sh);
1227 if (bus_space_read_4(st, sh, EPIC_EECTL) & EECTL_EEDO)
1228 data[i] |= (1 << (x - 1));
1229 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1230 EEPROM_WAIT_READY(st, sh);
1231 }
1232
1233 /* Clear CHIP SELECT. */
1234 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1235 EEPROM_WAIT_READY(st, sh);
1236 }
1237
1238 /*
1239 * Disable the EEPROM.
1240 */
1241 bus_space_write_4(st, sh, EPIC_EECTL, 0);
1242
1243 #undef EEPROM_WAIT_READY
1244 }
1245
1246 /*
1247 * Add a receive buffer to the indicated descriptor.
1248 */
1249 int
1250 epic_add_rxbuf(sc, idx)
1251 struct epic_softc *sc;
1252 int idx;
1253 {
1254 struct epic_descsoft *ds = EPIC_DSRX(sc, idx);
1255 struct mbuf *m;
1256 int error;
1257
1258 MGETHDR(m, M_DONTWAIT, MT_DATA);
1259 if (m == NULL)
1260 return (ENOBUFS);
1261
1262 MCLGET(m, M_DONTWAIT);
1263 if ((m->m_flags & M_EXT) == 0) {
1264 m_freem(m);
1265 return (ENOBUFS);
1266 }
1267
1268 if (ds->ds_mbuf != NULL)
1269 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1270
1271 ds->ds_mbuf = m;
1272
1273 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1274 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1275 BUS_DMA_READ|BUS_DMA_NOWAIT);
1276 if (error) {
1277 printf("%s: can't load rx DMA map %d, error = %d\n",
1278 sc->sc_dev.dv_xname, idx, error);
1279 panic("epic_add_rxbuf"); /* XXX */
1280 }
1281
1282 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1283 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1284
1285 EPIC_INIT_RXDESC(sc, idx);
1286
1287 return (0);
1288 }
1289
1290 /*
1291 * Set the EPIC multicast hash table.
1292 *
1293 * NOTE: We rely on a recently-updated mii_media_active here!
1294 */
1295 void
1296 epic_set_mchash(sc)
1297 struct epic_softc *sc;
1298 {
1299 struct ethercom *ec = &sc->sc_ethercom;
1300 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1301 struct ether_multi *enm;
1302 struct ether_multistep step;
1303 u_int32_t hash, mchash[4];
1304
1305 /*
1306 * Set up the multicast address filter by passing all multicast
1307 * addresses through a CRC generator, and then using the low-order
1308 * 6 bits as an index into the 64 bit multicast hash table (only
1309 * the lower 16 bits of each 32 bit multicast hash register are
1310 * valid). The high order bits select the register, while the
1311 * rest of the bits select the bit within the register.
1312 */
1313
1314 if (ifp->if_flags & IFF_PROMISC)
1315 goto allmulti;
1316
1317 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
1318 /* XXX hardware bug in 10Mbps mode. */
1319 goto allmulti;
1320 }
1321
1322 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0;
1323
1324 ETHER_FIRST_MULTI(step, ec, enm);
1325 while (enm != NULL) {
1326 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1327 /*
1328 * We must listen to a range of multicast addresses.
1329 * For now, just accept all multicasts, rather than
1330 * trying to set only those filter bits needed to match
1331 * the range. (At this time, the only use of address
1332 * ranges is for IP multicast routing, for which the
1333 * range is big enough to require all bits set.)
1334 */
1335 goto allmulti;
1336 }
1337
1338 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1339 hash >>= 26;
1340
1341 /* Set the corresponding bit in the hash table. */
1342 mchash[hash >> 4] |= 1 << (hash & 0xf);
1343
1344 ETHER_NEXT_MULTI(step, enm);
1345 }
1346
1347 ifp->if_flags &= ~IFF_ALLMULTI;
1348 goto sethash;
1349
1350 allmulti:
1351 ifp->if_flags |= IFF_ALLMULTI;
1352 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xffff;
1353
1354 sethash:
1355 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC0, mchash[0]);
1356 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC1, mchash[1]);
1357 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC2, mchash[2]);
1358 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC3, mchash[3]);
1359 }
1360
1361 /*
1362 * Wait for the MII to become ready.
1363 */
1364 int
1365 epic_mii_wait(sc, rw)
1366 struct epic_softc *sc;
1367 u_int32_t rw;
1368 {
1369 int i;
1370
1371 for (i = 0; i < 50; i++) {
1372 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL) & rw)
1373 == 0)
1374 break;
1375 delay(2);
1376 }
1377 if (i == 50) {
1378 printf("%s: MII timed out\n", sc->sc_dev.dv_xname);
1379 return (1);
1380 }
1381
1382 return (0);
1383 }
1384
1385 /*
1386 * Read from the MII.
1387 */
1388 int
1389 epic_mii_read(self, phy, reg)
1390 struct device *self;
1391 int phy, reg;
1392 {
1393 struct epic_softc *sc = (struct epic_softc *)self;
1394
1395 if (epic_mii_wait(sc, MMCTL_WRITE))
1396 return (0);
1397
1398 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1399 MMCTL_ARG(phy, reg, MMCTL_READ));
1400
1401 if (epic_mii_wait(sc, MMCTL_READ))
1402 return (0);
1403
1404 return (bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA) &
1405 MMDATA_MASK);
1406 }
1407
1408 /*
1409 * Write to the MII.
1410 */
1411 void
1412 epic_mii_write(self, phy, reg, val)
1413 struct device *self;
1414 int phy, reg, val;
1415 {
1416 struct epic_softc *sc = (struct epic_softc *)self;
1417
1418 if (epic_mii_wait(sc, MMCTL_WRITE))
1419 return;
1420
1421 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA, val);
1422 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1423 MMCTL_ARG(phy, reg, MMCTL_WRITE));
1424 }
1425
1426 /*
1427 * Callback from PHY when media changes.
1428 */
1429 void
1430 epic_statchg(self)
1431 struct device *self;
1432 {
1433 struct epic_softc *sc = (struct epic_softc *)self;
1434 u_int32_t txcon, miicfg;
1435
1436 /*
1437 * Update loopback bits in TXCON to reflect duplex mode.
1438 */
1439 txcon = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_TXCON);
1440 if (sc->sc_mii.mii_media_active & IFM_FDX)
1441 txcon |= (TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1442 else
1443 txcon &= ~(TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1444 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TXCON, txcon);
1445
1446 /* On some cards we need manualy set fullduplex led */
1447 if (sc->sc_hwflags & EPIC_DUPLEXLED_ON_694) {
1448 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1449 if (IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX)
1450 miicfg |= MIICFG_ENABLE;
1451 else
1452 miicfg &= ~MIICFG_ENABLE;
1453 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1454 }
1455
1456 /*
1457 * There is a multicast filter bug in 10Mbps mode. Kick the
1458 * multicast filter in case the speed changed.
1459 */
1460 epic_set_mchash(sc);
1461 }
1462
1463 /*
1464 * Callback from ifmedia to request current media status.
1465 */
1466 void
1467 epic_mediastatus(ifp, ifmr)
1468 struct ifnet *ifp;
1469 struct ifmediareq *ifmr;
1470 {
1471 struct epic_softc *sc = ifp->if_softc;
1472
1473 mii_pollstat(&sc->sc_mii);
1474 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1475 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1476 }
1477
1478 /*
1479 * Callback from ifmedia to request new media setting.
1480 */
1481 int
1482 epic_mediachange(ifp)
1483 struct ifnet *ifp;
1484 {
1485 struct epic_softc *sc = ifp->if_softc;
1486 struct mii_data *mii = &sc->sc_mii;
1487 struct ifmedia *ifm = &mii->mii_media;
1488 int media = ifm->ifm_cur->ifm_media;
1489 u_int32_t miicfg;
1490 struct mii_softc *miisc;
1491 int cfg;
1492
1493 if (!(ifp->if_flags & IFF_UP))
1494 return (0);
1495
1496 if (IFM_INST(media) != sc->sc_serinst) {
1497 /* If we're not selecting serial interface, select MII mode */
1498 #ifdef EPICMEDIADEBUG
1499 printf("%s: parallel mode\n", ifp->if_xname);
1500 #endif
1501 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1502 miicfg &= ~MIICFG_SERMODEENA;
1503 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1504 }
1505
1506 mii_mediachg(mii);
1507
1508 if (IFM_INST(media) == sc->sc_serinst) {
1509 /* select serial interface */
1510 #ifdef EPICMEDIADEBUG
1511 printf("%s: serial mode\n", ifp->if_xname);
1512 #endif
1513 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1514 miicfg |= (MIICFG_SERMODEENA | MIICFG_ENABLE);
1515 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1516
1517 /* There is no driver to fill this */
1518 mii->mii_media_active = media;
1519 mii->mii_media_status = 0;
1520
1521 epic_statchg(&sc->sc_dev);
1522 return (0);
1523 }
1524
1525 /* Lookup selected PHY */
1526 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1527 miisc = LIST_NEXT(miisc, mii_list)) {
1528 if (IFM_INST(media) == miisc->mii_inst)
1529 break;
1530 }
1531 if (!miisc) {
1532 printf("epic_mediachange: can't happen\n"); /* ??? panic */
1533 return (0);
1534 }
1535 #ifdef EPICMEDIADEBUG
1536 printf("%s: using phy %s\n", ifp->if_xname,
1537 miisc->mii_dev.dv_xname);
1538 #endif
1539
1540 if (miisc->mii_flags & MIIF_HAVEFIBER) {
1541 /* XXX XXX assume it's a Level1 - should check */
1542
1543 /* We have to powerup fiber transceivers */
1544 cfg = PHY_READ(miisc, MII_LXTPHY_CONFIG);
1545 if (IFM_SUBTYPE(media) == IFM_100_FX) {
1546 #ifdef EPICMEDIADEBUG
1547 printf("%s: power up fiber\n", ifp->if_xname);
1548 #endif
1549 cfg |= (CONFIG_LEDC1 | CONFIG_LEDC0);
1550 } else {
1551 #ifdef EPICMEDIADEBUG
1552 printf("%s: power down fiber\n", ifp->if_xname);
1553 #endif
1554 cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0);
1555 }
1556 PHY_WRITE(miisc, MII_LXTPHY_CONFIG, cfg);
1557 }
1558
1559 return (0);
1560 }
1561