smc83c170.c revision 1.73 1 /* $NetBSD: smc83c170.c,v 1.73 2008/04/08 12:07:27 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Device driver for the Standard Microsystems Corp. 83C170
42 * Ethernet PCI Integrated Controller (EPIC/100).
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: smc83c170.c,v 1.73 2008/04/08 12:07:27 cegger Exp $");
47
48 #include "bpfilter.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/callout.h>
53 #include <sys/mbuf.h>
54 #include <sys/malloc.h>
55 #include <sys/kernel.h>
56 #include <sys/socket.h>
57 #include <sys/ioctl.h>
58 #include <sys/errno.h>
59 #include <sys/device.h>
60
61 #include <uvm/uvm_extern.h>
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #include <sys/bus.h>
73 #include <sys/intr.h>
74
75 #include <dev/mii/miivar.h>
76 #include <dev/mii/lxtphyreg.h>
77
78 #include <dev/ic/smc83c170reg.h>
79 #include <dev/ic/smc83c170var.h>
80
81 void epic_start(struct ifnet *);
82 void epic_watchdog(struct ifnet *);
83 int epic_ioctl(struct ifnet *, u_long, void *);
84 int epic_init(struct ifnet *);
85 void epic_stop(struct ifnet *, int);
86
87 void epic_shutdown(void *);
88
89 void epic_reset(struct epic_softc *);
90 void epic_rxdrain(struct epic_softc *);
91 int epic_add_rxbuf(struct epic_softc *, int);
92 void epic_read_eeprom(struct epic_softc *, int, int, uint16_t *);
93 void epic_set_mchash(struct epic_softc *);
94 void epic_fixup_clock_source(struct epic_softc *);
95 int epic_mii_read(struct device *, int, int);
96 void epic_mii_write(struct device *, int, int, int);
97 int epic_mii_wait(struct epic_softc *, uint32_t);
98 void epic_tick(void *);
99
100 void epic_statchg(struct device *);
101 int epic_mediachange(struct ifnet *);
102
103 #define INTMASK (INTSTAT_FATAL_INT | INTSTAT_TXU | \
104 INTSTAT_TXC | INTSTAT_RXE | INTSTAT_RQE | INTSTAT_RCC)
105
106 int epic_copy_small = 0;
107
108 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
109
110 /*
111 * Attach an EPIC interface to the system.
112 */
113 void
114 epic_attach(sc)
115 struct epic_softc *sc;
116 {
117 bus_space_tag_t st = sc->sc_st;
118 bus_space_handle_t sh = sc->sc_sh;
119 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
120 int rseg, error, miiflags;
121 u_int i;
122 bus_dma_segment_t seg;
123 uint8_t enaddr[ETHER_ADDR_LEN], devname[12 + 1];
124 uint16_t myea[ETHER_ADDR_LEN / 2], mydevname[6];
125 char *nullbuf;
126
127 callout_init(&sc->sc_mii_callout, 0);
128
129 /*
130 * Allocate the control data structures, and create and load the
131 * DMA map for it.
132 */
133 if ((error = bus_dmamem_alloc(sc->sc_dmat,
134 sizeof(struct epic_control_data) + ETHER_PAD_LEN, PAGE_SIZE, 0,
135 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
136 aprint_error_dev(&sc->sc_dev,
137 "unable to allocate control data, error = %d\n",
138 error);
139 goto fail_0;
140 }
141
142 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
143 sizeof(struct epic_control_data) + ETHER_PAD_LEN,
144 (void **)&sc->sc_control_data,
145 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
146 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n", error);
147 goto fail_1;
148 }
149 nullbuf =
150 (char *)sc->sc_control_data + sizeof(struct epic_control_data);
151 memset(nullbuf, 0, ETHER_PAD_LEN);
152
153 if ((error = bus_dmamap_create(sc->sc_dmat,
154 sizeof(struct epic_control_data), 1,
155 sizeof(struct epic_control_data), 0, BUS_DMA_NOWAIT,
156 &sc->sc_cddmamap)) != 0) {
157 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
158 "error = %d\n", error);
159 goto fail_2;
160 }
161
162 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
163 sc->sc_control_data, sizeof(struct epic_control_data), NULL,
164 BUS_DMA_NOWAIT)) != 0) {
165 aprint_error_dev(&sc->sc_dev,
166 "unable to load control data DMA map, error = %d\n",
167 error);
168 goto fail_3;
169 }
170
171 /*
172 * Create the transmit buffer DMA maps.
173 */
174 for (i = 0; i < EPIC_NTXDESC; i++) {
175 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
176 EPIC_NFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
177 &EPIC_DSTX(sc, i)->ds_dmamap)) != 0) {
178 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
179 "error = %d\n", i, error);
180 goto fail_4;
181 }
182 }
183
184 /*
185 * Create the receive buffer DMA maps.
186 */
187 for (i = 0; i < EPIC_NRXDESC; i++) {
188 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
189 MCLBYTES, 0, BUS_DMA_NOWAIT,
190 &EPIC_DSRX(sc, i)->ds_dmamap)) != 0) {
191 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
192 "error = %d\n", i, error);
193 goto fail_5;
194 }
195 EPIC_DSRX(sc, i)->ds_mbuf = NULL;
196 }
197
198 /*
199 * create and map the pad buffer
200 */
201 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
202 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT,&sc->sc_nulldmamap)) != 0) {
203 aprint_error_dev(&sc->sc_dev, "unable to create pad buffer DMA map, "
204 "error = %d\n", error);
205 goto fail_5;
206 }
207
208 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
209 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
210 aprint_error_dev(&sc->sc_dev, "unable to load pad buffer DMA map, "
211 "error = %d\n", error);
212 goto fail_6;
213 }
214 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
215 BUS_DMASYNC_PREWRITE);
216
217 /*
218 * Bring the chip out of low-power mode and reset it to a known state.
219 */
220 bus_space_write_4(st, sh, EPIC_GENCTL, 0);
221 epic_reset(sc);
222
223 /*
224 * Read the Ethernet address from the EEPROM.
225 */
226 epic_read_eeprom(sc, 0, __arraycount(myea), myea);
227 for (i = 0; i < __arraycount(myea); i++) {
228 enaddr[i * 2] = myea[i] & 0xff;
229 enaddr[i * 2 + 1] = myea[i] >> 8;
230 }
231
232 /*
233 * ...and the device name.
234 */
235 epic_read_eeprom(sc, 0x2c, __arraycount(mydevname), mydevname);
236 for (i = 0; i < __arraycount(mydevname); i++) {
237 devname[i * 2] = mydevname[i] & 0xff;
238 devname[i * 2 + 1] = mydevname[i] >> 8;
239 }
240
241 devname[sizeof(mydevname)] = '\0';
242 for (i = sizeof(mydevname) ; i > 0; i--) {
243 if (devname[i - 1] == ' ')
244 devname[i - 1] = '\0';
245 else
246 break;
247 }
248
249 aprint_normal_dev(&sc->sc_dev, "%s, Ethernet address %s\n",
250 devname, ether_sprintf(enaddr));
251
252 miiflags = 0;
253 if (sc->sc_hwflags & EPIC_HAS_MII_FIBER)
254 miiflags |= MIIF_HAVEFIBER;
255
256 /*
257 * Initialize our media structures and probe the MII.
258 */
259 sc->sc_mii.mii_ifp = ifp;
260 sc->sc_mii.mii_readreg = epic_mii_read;
261 sc->sc_mii.mii_writereg = epic_mii_write;
262 sc->sc_mii.mii_statchg = epic_statchg;
263
264 sc->sc_ethercom.ec_mii = &sc->sc_mii;
265 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epic_mediachange,
266 ether_mediastatus);
267 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
268 MII_OFFSET_ANY, miiflags);
269 if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
270 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
271 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
272 } else
273 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
274
275 if (sc->sc_hwflags & EPIC_HAS_BNC) {
276 /* use the next free media instance */
277 sc->sc_serinst = sc->sc_mii.mii_instance++;
278 ifmedia_add(&sc->sc_mii.mii_media,
279 IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0,
280 sc->sc_serinst),
281 0, NULL);
282 aprint_normal_dev(&sc->sc_dev, "10base2/BNC\n");
283 } else
284 sc->sc_serinst = -1;
285
286 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
287 ifp->if_softc = sc;
288 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
289 ifp->if_ioctl = epic_ioctl;
290 ifp->if_start = epic_start;
291 ifp->if_watchdog = epic_watchdog;
292 ifp->if_init = epic_init;
293 ifp->if_stop = epic_stop;
294 IFQ_SET_READY(&ifp->if_snd);
295
296 /*
297 * We can support 802.1Q VLAN-sized frames.
298 */
299 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
300
301 /*
302 * Attach the interface.
303 */
304 if_attach(ifp);
305 ether_ifattach(ifp, enaddr);
306
307 /*
308 * Make sure the interface is shutdown during reboot.
309 */
310 sc->sc_sdhook = shutdownhook_establish(epic_shutdown, sc);
311 if (sc->sc_sdhook == NULL)
312 aprint_error_dev(&sc->sc_dev, "WARNING: unable to establish shutdown hook\n");
313 return;
314
315 /*
316 * Free any resources we've allocated during the failed attach
317 * attempt. Do this in reverse order and fall through.
318 */
319 fail_6:
320 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
321 fail_5:
322 for (i = 0; i < EPIC_NRXDESC; i++) {
323 if (EPIC_DSRX(sc, i)->ds_dmamap != NULL)
324 bus_dmamap_destroy(sc->sc_dmat,
325 EPIC_DSRX(sc, i)->ds_dmamap);
326 }
327 fail_4:
328 for (i = 0; i < EPIC_NTXDESC; i++) {
329 if (EPIC_DSTX(sc, i)->ds_dmamap != NULL)
330 bus_dmamap_destroy(sc->sc_dmat,
331 EPIC_DSTX(sc, i)->ds_dmamap);
332 }
333 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
334 fail_3:
335 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
336 fail_2:
337 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
338 sizeof(struct epic_control_data));
339 fail_1:
340 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
341 fail_0:
342 return;
343 }
344
345 /*
346 * Shutdown hook. Make sure the interface is stopped at reboot.
347 */
348 void
349 epic_shutdown(arg)
350 void *arg;
351 {
352 struct epic_softc *sc = arg;
353
354 epic_stop(&sc->sc_ethercom.ec_if, 1);
355 }
356
357 /*
358 * Start packet transmission on the interface.
359 * [ifnet interface function]
360 */
361 void
362 epic_start(ifp)
363 struct ifnet *ifp;
364 {
365 struct epic_softc *sc = ifp->if_softc;
366 struct mbuf *m0, *m;
367 struct epic_txdesc *txd;
368 struct epic_descsoft *ds;
369 struct epic_fraglist *fr;
370 bus_dmamap_t dmamap;
371 int error, firsttx, nexttx, opending, seg;
372 u_int len;
373
374 /*
375 * Remember the previous txpending and the first transmit
376 * descriptor we use.
377 */
378 opending = sc->sc_txpending;
379 firsttx = EPIC_NEXTTX(sc->sc_txlast);
380
381 /*
382 * Loop through the send queue, setting up transmit descriptors
383 * until we drain the queue, or use up all available transmit
384 * descriptors.
385 */
386 while (sc->sc_txpending < EPIC_NTXDESC) {
387 /*
388 * Grab a packet off the queue.
389 */
390 IFQ_POLL(&ifp->if_snd, m0);
391 if (m0 == NULL)
392 break;
393 m = NULL;
394
395 /*
396 * Get the last and next available transmit descriptor.
397 */
398 nexttx = EPIC_NEXTTX(sc->sc_txlast);
399 txd = EPIC_CDTX(sc, nexttx);
400 fr = EPIC_CDFL(sc, nexttx);
401 ds = EPIC_DSTX(sc, nexttx);
402 dmamap = ds->ds_dmamap;
403
404 /*
405 * Load the DMA map. If this fails, the packet either
406 * didn't fit in the alloted number of frags, or we were
407 * short on resources. In this case, we'll copy and try
408 * again.
409 */
410 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
411 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
412 (m0->m_pkthdr.len < ETHER_PAD_LEN &&
413 dmamap-> dm_nsegs == EPIC_NFRAGS)) {
414 if (error == 0)
415 bus_dmamap_unload(sc->sc_dmat, dmamap);
416
417 MGETHDR(m, M_DONTWAIT, MT_DATA);
418 if (m == NULL) {
419 aprint_error_dev(&sc->sc_dev, "unable to allocate Tx mbuf\n");
420 break;
421 }
422 if (m0->m_pkthdr.len > MHLEN) {
423 MCLGET(m, M_DONTWAIT);
424 if ((m->m_flags & M_EXT) == 0) {
425 aprint_error_dev(&sc->sc_dev, "unable to allocate Tx "
426 "cluster\n");
427 m_freem(m);
428 break;
429 }
430 }
431 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
432 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
433 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
434 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
435 if (error) {
436 aprint_error_dev(&sc->sc_dev, "unable to load Tx buffer, "
437 "error = %d\n", error);
438 break;
439 }
440 }
441 IFQ_DEQUEUE(&ifp->if_snd, m0);
442 if (m != NULL) {
443 m_freem(m0);
444 m0 = m;
445 }
446
447 /* Initialize the fraglist. */
448 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
449 fr->ef_frags[seg].ef_addr =
450 dmamap->dm_segs[seg].ds_addr;
451 fr->ef_frags[seg].ef_length =
452 dmamap->dm_segs[seg].ds_len;
453 }
454 len = m0->m_pkthdr.len;
455 if (len < ETHER_PAD_LEN) {
456 fr->ef_frags[seg].ef_addr = sc->sc_nulldma;
457 fr->ef_frags[seg].ef_length = ETHER_PAD_LEN - len;
458 len = ETHER_PAD_LEN;
459 seg++;
460 }
461 fr->ef_nfrags = seg;
462
463 EPIC_CDFLSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
464
465 /* Sync the DMA map. */
466 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
467 BUS_DMASYNC_PREWRITE);
468
469 /*
470 * Store a pointer to the packet so we can free it later.
471 */
472 ds->ds_mbuf = m0;
473
474 /*
475 * Fill in the transmit descriptor.
476 */
477 txd->et_control = ET_TXCTL_LASTDESC | ET_TXCTL_FRAGLIST;
478
479 /*
480 * If this is the first descriptor we're enqueueing,
481 * don't give it to the EPIC yet. That could cause
482 * a race condition. We'll do it below.
483 */
484 if (nexttx == firsttx)
485 txd->et_txstatus = TXSTAT_TXLENGTH(len);
486 else
487 txd->et_txstatus =
488 TXSTAT_TXLENGTH(len) | ET_TXSTAT_OWNER;
489
490 EPIC_CDTXSYNC(sc, nexttx,
491 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
492
493 /* Advance the tx pointer. */
494 sc->sc_txpending++;
495 sc->sc_txlast = nexttx;
496
497 #if NBPFILTER > 0
498 /*
499 * Pass the packet to any BPF listeners.
500 */
501 if (ifp->if_bpf)
502 bpf_mtap(ifp->if_bpf, m0);
503 #endif
504 }
505
506 if (sc->sc_txpending == EPIC_NTXDESC) {
507 /* No more slots left; notify upper layer. */
508 ifp->if_flags |= IFF_OACTIVE;
509 }
510
511 if (sc->sc_txpending != opending) {
512 /*
513 * We enqueued packets. If the transmitter was idle,
514 * reset the txdirty pointer.
515 */
516 if (opending == 0)
517 sc->sc_txdirty = firsttx;
518
519 /*
520 * Cause a transmit interrupt to happen on the
521 * last packet we enqueued.
522 */
523 EPIC_CDTX(sc, sc->sc_txlast)->et_control |= ET_TXCTL_IAF;
524 EPIC_CDTXSYNC(sc, sc->sc_txlast,
525 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
526
527 /*
528 * The entire packet chain is set up. Give the
529 * first descriptor to the EPIC now.
530 */
531 EPIC_CDTX(sc, firsttx)->et_txstatus |= ET_TXSTAT_OWNER;
532 EPIC_CDTXSYNC(sc, firsttx,
533 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
534
535 /* Start the transmitter. */
536 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
537 COMMAND_TXQUEUED);
538
539 /* Set a watchdog timer in case the chip flakes out. */
540 ifp->if_timer = 5;
541 }
542 }
543
544 /*
545 * Watchdog timer handler.
546 * [ifnet interface function]
547 */
548 void
549 epic_watchdog(ifp)
550 struct ifnet *ifp;
551 {
552 struct epic_softc *sc = ifp->if_softc;
553
554 printf("%s: device timeout\n", device_xname(&sc->sc_dev));
555 ifp->if_oerrors++;
556
557 (void) epic_init(ifp);
558 }
559
560 /*
561 * Handle control requests from the operator.
562 * [ifnet interface function]
563 */
564 int
565 epic_ioctl(ifp, cmd, data)
566 struct ifnet *ifp;
567 u_long cmd;
568 void *data;
569 {
570 struct epic_softc *sc = ifp->if_softc;
571 int s, error;
572
573 s = splnet();
574
575 error = ether_ioctl(ifp, cmd, data);
576 if (error == ENETRESET) {
577 /*
578 * Multicast list has changed; set the hardware filter
579 * accordingly. Update our idea of the current media;
580 * epic_set_mchash() needs to know what it is.
581 */
582 if (ifp->if_flags & IFF_RUNNING) {
583 mii_pollstat(&sc->sc_mii);
584 epic_set_mchash(sc);
585 }
586 error = 0;
587 }
588
589 splx(s);
590 return (error);
591 }
592
593 /*
594 * Interrupt handler.
595 */
596 int
597 epic_intr(arg)
598 void *arg;
599 {
600 struct epic_softc *sc = arg;
601 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
602 struct epic_rxdesc *rxd;
603 struct epic_txdesc *txd;
604 struct epic_descsoft *ds;
605 struct mbuf *m;
606 uint32_t intstat, rxstatus, txstatus;
607 int i, claimed = 0;
608 u_int len;
609
610 top:
611 /*
612 * Get the interrupt status from the EPIC.
613 */
614 intstat = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT);
615 if ((intstat & INTSTAT_INT_ACTV) == 0)
616 return (claimed);
617
618 claimed = 1;
619
620 /*
621 * Acknowledge the interrupt.
622 */
623 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT,
624 intstat & INTMASK);
625
626 /*
627 * Check for receive interrupts.
628 */
629 if (intstat & (INTSTAT_RCC | INTSTAT_RXE | INTSTAT_RQE)) {
630 for (i = sc->sc_rxptr;; i = EPIC_NEXTRX(i)) {
631 rxd = EPIC_CDRX(sc, i);
632 ds = EPIC_DSRX(sc, i);
633
634 EPIC_CDRXSYNC(sc, i,
635 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
636
637 rxstatus = rxd->er_rxstatus;
638 if (rxstatus & ER_RXSTAT_OWNER) {
639 /*
640 * We have processed all of the
641 * receive buffers.
642 */
643 break;
644 }
645
646 /*
647 * Make sure the packet arrived intact. If an error
648 * occurred, update stats and reset the descriptor.
649 * The buffer will be reused the next time the
650 * descriptor comes up in the ring.
651 */
652 if ((rxstatus & ER_RXSTAT_PKTINTACT) == 0) {
653 if (rxstatus & ER_RXSTAT_CRCERROR)
654 aprint_error_dev(&sc->sc_dev, "CRC error\n");
655 if (rxstatus & ER_RXSTAT_ALIGNERROR)
656 aprint_error_dev(&sc->sc_dev, "alignment error\n");
657 ifp->if_ierrors++;
658 EPIC_INIT_RXDESC(sc, i);
659 continue;
660 }
661
662 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
663 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
664
665 /*
666 * The EPIC includes the CRC with every packet;
667 * trim it.
668 */
669 len = RXSTAT_RXLENGTH(rxstatus) - ETHER_CRC_LEN;
670
671 if (len < sizeof(struct ether_header)) {
672 /*
673 * Runt packet; drop it now.
674 */
675 ifp->if_ierrors++;
676 EPIC_INIT_RXDESC(sc, i);
677 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
678 ds->ds_dmamap->dm_mapsize,
679 BUS_DMASYNC_PREREAD);
680 continue;
681 }
682
683 /*
684 * If the packet is small enough to fit in a
685 * single header mbuf, allocate one and copy
686 * the data into it. This greatly reduces
687 * memory consumption when we receive lots
688 * of small packets.
689 *
690 * Otherwise, we add a new buffer to the receive
691 * chain. If this fails, we drop the packet and
692 * recycle the old buffer.
693 */
694 if (epic_copy_small != 0 && len <= MHLEN) {
695 MGETHDR(m, M_DONTWAIT, MT_DATA);
696 if (m == NULL)
697 goto dropit;
698 memcpy(mtod(m, void *),
699 mtod(ds->ds_mbuf, void *), len);
700 EPIC_INIT_RXDESC(sc, i);
701 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
702 ds->ds_dmamap->dm_mapsize,
703 BUS_DMASYNC_PREREAD);
704 } else {
705 m = ds->ds_mbuf;
706 if (epic_add_rxbuf(sc, i) != 0) {
707 dropit:
708 ifp->if_ierrors++;
709 EPIC_INIT_RXDESC(sc, i);
710 bus_dmamap_sync(sc->sc_dmat,
711 ds->ds_dmamap, 0,
712 ds->ds_dmamap->dm_mapsize,
713 BUS_DMASYNC_PREREAD);
714 continue;
715 }
716 }
717
718 m->m_pkthdr.rcvif = ifp;
719 m->m_pkthdr.len = m->m_len = len;
720
721 #if NBPFILTER > 0
722 /*
723 * Pass this up to any BPF listeners, but only
724 * pass it up the stack if it's for us.
725 */
726 if (ifp->if_bpf)
727 bpf_mtap(ifp->if_bpf, m);
728 #endif
729
730 /* Pass it on. */
731 (*ifp->if_input)(ifp, m);
732 ifp->if_ipackets++;
733 }
734
735 /* Update the receive pointer. */
736 sc->sc_rxptr = i;
737
738 /*
739 * Check for receive queue underflow.
740 */
741 if (intstat & INTSTAT_RQE) {
742 aprint_error_dev(&sc->sc_dev, "receiver queue empty\n");
743 /*
744 * Ring is already built; just restart the
745 * receiver.
746 */
747 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_PRCDAR,
748 EPIC_CDRXADDR(sc, sc->sc_rxptr));
749 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
750 COMMAND_RXQUEUED | COMMAND_START_RX);
751 }
752 }
753
754 /*
755 * Check for transmission complete interrupts.
756 */
757 if (intstat & (INTSTAT_TXC | INTSTAT_TXU)) {
758 ifp->if_flags &= ~IFF_OACTIVE;
759 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
760 i = EPIC_NEXTTX(i), sc->sc_txpending--) {
761 txd = EPIC_CDTX(sc, i);
762 ds = EPIC_DSTX(sc, i);
763
764 EPIC_CDTXSYNC(sc, i,
765 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
766
767 txstatus = txd->et_txstatus;
768 if (txstatus & ET_TXSTAT_OWNER)
769 break;
770
771 EPIC_CDFLSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
772
773 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
774 0, ds->ds_dmamap->dm_mapsize,
775 BUS_DMASYNC_POSTWRITE);
776 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
777 m_freem(ds->ds_mbuf);
778 ds->ds_mbuf = NULL;
779
780 /*
781 * Check for errors and collisions.
782 */
783 if ((txstatus & ET_TXSTAT_PACKETTX) == 0)
784 ifp->if_oerrors++;
785 else
786 ifp->if_opackets++;
787 ifp->if_collisions +=
788 TXSTAT_COLLISIONS(txstatus);
789 if (txstatus & ET_TXSTAT_CARSENSELOST)
790 aprint_error_dev(&sc->sc_dev, "lost carrier\n");
791 }
792
793 /* Update the dirty transmit buffer pointer. */
794 sc->sc_txdirty = i;
795
796 /*
797 * Cancel the watchdog timer if there are no pending
798 * transmissions.
799 */
800 if (sc->sc_txpending == 0)
801 ifp->if_timer = 0;
802
803 /*
804 * Kick the transmitter after a DMA underrun.
805 */
806 if (intstat & INTSTAT_TXU) {
807 aprint_error_dev(&sc->sc_dev, "transmit underrun\n");
808 bus_space_write_4(sc->sc_st, sc->sc_sh,
809 EPIC_COMMAND, COMMAND_TXUGO);
810 if (sc->sc_txpending)
811 bus_space_write_4(sc->sc_st, sc->sc_sh,
812 EPIC_COMMAND, COMMAND_TXQUEUED);
813 }
814
815 /*
816 * Try to get more packets going.
817 */
818 epic_start(ifp);
819 }
820
821 /*
822 * Check for fatal interrupts.
823 */
824 if (intstat & INTSTAT_FATAL_INT) {
825 if (intstat & INTSTAT_PTA)
826 aprint_error_dev(&sc->sc_dev, "PCI target abort error\n");
827 else if (intstat & INTSTAT_PMA)
828 aprint_error_dev(&sc->sc_dev, "PCI master abort error\n");
829 else if (intstat & INTSTAT_APE)
830 aprint_error_dev(&sc->sc_dev, "PCI address parity error\n");
831 else if (intstat & INTSTAT_DPE)
832 aprint_error_dev(&sc->sc_dev, "PCI data parity error\n");
833 else
834 aprint_error_dev(&sc->sc_dev, "unknown fatal error\n");
835 (void) epic_init(ifp);
836 }
837
838 /*
839 * Check for more interrupts.
840 */
841 goto top;
842 }
843
844 /*
845 * One second timer, used to tick the MII.
846 */
847 void
848 epic_tick(arg)
849 void *arg;
850 {
851 struct epic_softc *sc = arg;
852 int s;
853
854 s = splnet();
855 mii_tick(&sc->sc_mii);
856 splx(s);
857
858 callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
859 }
860
861 /*
862 * Fixup the clock source on the EPIC.
863 */
864 void
865 epic_fixup_clock_source(sc)
866 struct epic_softc *sc;
867 {
868 int i;
869
870 /*
871 * According to SMC Application Note 7-15, the EPIC's clock
872 * source is incorrect following a reset. This manifests itself
873 * as failure to recognize when host software has written to
874 * a register on the EPIC. The appnote recommends issuing at
875 * least 16 consecutive writes to the CLOCK TEST bit to correctly
876 * configure the clock source.
877 */
878 for (i = 0; i < 16; i++)
879 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TEST,
880 TEST_CLOCKTEST);
881 }
882
883 /*
884 * Perform a soft reset on the EPIC.
885 */
886 void
887 epic_reset(sc)
888 struct epic_softc *sc;
889 {
890
891 epic_fixup_clock_source(sc);
892
893 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, 0);
894 delay(100);
895 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, GENCTL_SOFTRESET);
896 delay(100);
897
898 epic_fixup_clock_source(sc);
899 }
900
901 /*
902 * Initialize the interface. Must be called at splnet().
903 */
904 int
905 epic_init(ifp)
906 struct ifnet *ifp;
907 {
908 struct epic_softc *sc = ifp->if_softc;
909 bus_space_tag_t st = sc->sc_st;
910 bus_space_handle_t sh = sc->sc_sh;
911 const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
912 struct epic_txdesc *txd;
913 struct epic_descsoft *ds;
914 uint32_t genctl, reg0;
915 int i, error = 0;
916
917 /*
918 * Cancel any pending I/O.
919 */
920 epic_stop(ifp, 0);
921
922 /*
923 * Reset the EPIC to a known state.
924 */
925 epic_reset(sc);
926
927 /*
928 * Magical mystery initialization.
929 */
930 bus_space_write_4(st, sh, EPIC_TXTEST, 0);
931
932 /*
933 * Initialize the EPIC genctl register:
934 *
935 * - 64 byte receive FIFO threshold
936 * - automatic advance to next receive frame
937 */
938 genctl = GENCTL_RX_FIFO_THRESH0 | GENCTL_ONECOPY;
939 #if BYTE_ORDER == BIG_ENDIAN
940 genctl |= GENCTL_BIG_ENDIAN;
941 #endif
942 bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
943
944 /*
945 * Reset the MII bus and PHY.
946 */
947 reg0 = bus_space_read_4(st, sh, EPIC_NVCTL);
948 bus_space_write_4(st, sh, EPIC_NVCTL, reg0 | NVCTL_GPIO1 | NVCTL_GPOE1);
949 bus_space_write_4(st, sh, EPIC_MIICFG, MIICFG_ENASER);
950 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_RESET_PHY);
951 delay(100);
952 bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
953 delay(1000);
954 bus_space_write_4(st, sh, EPIC_NVCTL, reg0);
955
956 /*
957 * Initialize Ethernet address.
958 */
959 reg0 = enaddr[1] << 8 | enaddr[0];
960 bus_space_write_4(st, sh, EPIC_LAN0, reg0);
961 reg0 = enaddr[3] << 8 | enaddr[2];
962 bus_space_write_4(st, sh, EPIC_LAN1, reg0);
963 reg0 = enaddr[5] << 8 | enaddr[4];
964 bus_space_write_4(st, sh, EPIC_LAN2, reg0);
965
966 /*
967 * Initialize receive control. Remember the external buffer
968 * size setting.
969 */
970 reg0 = bus_space_read_4(st, sh, EPIC_RXCON) &
971 (RXCON_EXTBUFSIZESEL1 | RXCON_EXTBUFSIZESEL0);
972 reg0 |= (RXCON_RXMULTICAST | RXCON_RXBROADCAST);
973 if (ifp->if_flags & IFF_PROMISC)
974 reg0 |= RXCON_PROMISCMODE;
975 bus_space_write_4(st, sh, EPIC_RXCON, reg0);
976
977 /* Set the current media. */
978 if ((error = epic_mediachange(ifp)) != 0)
979 goto out;
980
981 /* Set up the multicast hash table. */
982 epic_set_mchash(sc);
983
984 /*
985 * Initialize the transmit descriptor ring. txlast is initialized
986 * to the end of the list so that it will wrap around to the first
987 * descriptor when the first packet is transmitted.
988 */
989 for (i = 0; i < EPIC_NTXDESC; i++) {
990 txd = EPIC_CDTX(sc, i);
991 memset(txd, 0, sizeof(struct epic_txdesc));
992 txd->et_bufaddr = EPIC_CDFLADDR(sc, i);
993 txd->et_nextdesc = EPIC_CDTXADDR(sc, EPIC_NEXTTX(i));
994 EPIC_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
995 }
996 sc->sc_txpending = 0;
997 sc->sc_txdirty = 0;
998 sc->sc_txlast = EPIC_NTXDESC - 1;
999
1000 /*
1001 * Initialize the receive descriptor ring.
1002 */
1003 for (i = 0; i < EPIC_NRXDESC; i++) {
1004 ds = EPIC_DSRX(sc, i);
1005 if (ds->ds_mbuf == NULL) {
1006 if ((error = epic_add_rxbuf(sc, i)) != 0) {
1007 aprint_error_dev(&sc->sc_dev, "unable to allocate or map rx "
1008 "buffer %d error = %d\n",
1009 i, error);
1010 /*
1011 * XXX Should attempt to run with fewer receive
1012 * XXX buffers instead of just failing.
1013 */
1014 epic_rxdrain(sc);
1015 goto out;
1016 }
1017 } else
1018 EPIC_INIT_RXDESC(sc, i);
1019 }
1020 sc->sc_rxptr = 0;
1021
1022 /*
1023 * Initialize the interrupt mask and enable interrupts.
1024 */
1025 bus_space_write_4(st, sh, EPIC_INTMASK, INTMASK);
1026 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_INTENA);
1027
1028 /*
1029 * Give the transmit and receive rings to the EPIC.
1030 */
1031 bus_space_write_4(st, sh, EPIC_PTCDAR,
1032 EPIC_CDTXADDR(sc, EPIC_NEXTTX(sc->sc_txlast)));
1033 bus_space_write_4(st, sh, EPIC_PRCDAR,
1034 EPIC_CDRXADDR(sc, sc->sc_rxptr));
1035
1036 /*
1037 * Set the EPIC in motion.
1038 */
1039 bus_space_write_4(st, sh, EPIC_COMMAND,
1040 COMMAND_RXQUEUED | COMMAND_START_RX);
1041
1042 /*
1043 * ...all done!
1044 */
1045 ifp->if_flags |= IFF_RUNNING;
1046 ifp->if_flags &= ~IFF_OACTIVE;
1047
1048 /*
1049 * Start the one second clock.
1050 */
1051 callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
1052
1053 /*
1054 * Attempt to start output on the interface.
1055 */
1056 epic_start(ifp);
1057
1058 out:
1059 if (error)
1060 aprint_error_dev(&sc->sc_dev, "interface not running\n");
1061 return (error);
1062 }
1063
1064 /*
1065 * Drain the receive queue.
1066 */
1067 void
1068 epic_rxdrain(sc)
1069 struct epic_softc *sc;
1070 {
1071 struct epic_descsoft *ds;
1072 int i;
1073
1074 for (i = 0; i < EPIC_NRXDESC; i++) {
1075 ds = EPIC_DSRX(sc, i);
1076 if (ds->ds_mbuf != NULL) {
1077 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1078 m_freem(ds->ds_mbuf);
1079 ds->ds_mbuf = NULL;
1080 }
1081 }
1082 }
1083
1084 /*
1085 * Stop transmission on the interface.
1086 */
1087 void
1088 epic_stop(ifp, disable)
1089 struct ifnet *ifp;
1090 int disable;
1091 {
1092 struct epic_softc *sc = ifp->if_softc;
1093 bus_space_tag_t st = sc->sc_st;
1094 bus_space_handle_t sh = sc->sc_sh;
1095 struct epic_descsoft *ds;
1096 uint32_t reg;
1097 int i;
1098
1099 /*
1100 * Stop the one second clock.
1101 */
1102 callout_stop(&sc->sc_mii_callout);
1103
1104 /* Down the MII. */
1105 mii_down(&sc->sc_mii);
1106
1107 /* Paranoia... */
1108 epic_fixup_clock_source(sc);
1109
1110 /*
1111 * Disable interrupts.
1112 */
1113 reg = bus_space_read_4(st, sh, EPIC_GENCTL);
1114 bus_space_write_4(st, sh, EPIC_GENCTL, reg & ~GENCTL_INTENA);
1115 bus_space_write_4(st, sh, EPIC_INTMASK, 0);
1116
1117 /*
1118 * Stop the DMA engine and take the receiver off-line.
1119 */
1120 bus_space_write_4(st, sh, EPIC_COMMAND, COMMAND_STOP_RDMA |
1121 COMMAND_STOP_TDMA | COMMAND_STOP_RX);
1122
1123 /*
1124 * Release any queued transmit buffers.
1125 */
1126 for (i = 0; i < EPIC_NTXDESC; i++) {
1127 ds = EPIC_DSTX(sc, i);
1128 if (ds->ds_mbuf != NULL) {
1129 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1130 m_freem(ds->ds_mbuf);
1131 ds->ds_mbuf = NULL;
1132 }
1133 }
1134
1135 /*
1136 * Mark the interface down and cancel the watchdog timer.
1137 */
1138 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1139 ifp->if_timer = 0;
1140
1141 if (disable)
1142 epic_rxdrain(sc);
1143 }
1144
1145 /*
1146 * Read the EPIC Serial EEPROM.
1147 */
1148 void
1149 epic_read_eeprom(sc, word, wordcnt, data)
1150 struct epic_softc *sc;
1151 int word, wordcnt;
1152 uint16_t *data;
1153 {
1154 bus_space_tag_t st = sc->sc_st;
1155 bus_space_handle_t sh = sc->sc_sh;
1156 uint16_t reg;
1157 int i, x;
1158
1159 #define EEPROM_WAIT_READY(st, sh) \
1160 while ((bus_space_read_4((st), (sh), EPIC_EECTL) & EECTL_EERDY) == 0) \
1161 /* nothing */
1162
1163 /*
1164 * Enable the EEPROM.
1165 */
1166 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1167 EEPROM_WAIT_READY(st, sh);
1168
1169 for (i = 0; i < wordcnt; i++) {
1170 /* Send CHIP SELECT for one clock tick. */
1171 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE|EECTL_EECS);
1172 EEPROM_WAIT_READY(st, sh);
1173
1174 /* Shift in the READ opcode. */
1175 for (x = 3; x > 0; x--) {
1176 reg = EECTL_ENABLE|EECTL_EECS;
1177 if (EPIC_EEPROM_OPC_READ & (1 << (x - 1)))
1178 reg |= EECTL_EEDI;
1179 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1180 EEPROM_WAIT_READY(st, sh);
1181 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1182 EEPROM_WAIT_READY(st, sh);
1183 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1184 EEPROM_WAIT_READY(st, sh);
1185 }
1186
1187 /* Shift in address. */
1188 for (x = 6; x > 0; x--) {
1189 reg = EECTL_ENABLE|EECTL_EECS;
1190 if ((word + i) & (1 << (x - 1)))
1191 reg |= EECTL_EEDI;
1192 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1193 EEPROM_WAIT_READY(st, sh);
1194 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1195 EEPROM_WAIT_READY(st, sh);
1196 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1197 EEPROM_WAIT_READY(st, sh);
1198 }
1199
1200 /* Shift out data. */
1201 reg = EECTL_ENABLE|EECTL_EECS;
1202 data[i] = 0;
1203 for (x = 16; x > 0; x--) {
1204 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1205 EEPROM_WAIT_READY(st, sh);
1206 if (bus_space_read_4(st, sh, EPIC_EECTL) & EECTL_EEDO)
1207 data[i] |= (1 << (x - 1));
1208 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1209 EEPROM_WAIT_READY(st, sh);
1210 }
1211
1212 /* Clear CHIP SELECT. */
1213 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1214 EEPROM_WAIT_READY(st, sh);
1215 }
1216
1217 /*
1218 * Disable the EEPROM.
1219 */
1220 bus_space_write_4(st, sh, EPIC_EECTL, 0);
1221
1222 #undef EEPROM_WAIT_READY
1223 }
1224
1225 /*
1226 * Add a receive buffer to the indicated descriptor.
1227 */
1228 int
1229 epic_add_rxbuf(sc, idx)
1230 struct epic_softc *sc;
1231 int idx;
1232 {
1233 struct epic_descsoft *ds = EPIC_DSRX(sc, idx);
1234 struct mbuf *m;
1235 int error;
1236
1237 MGETHDR(m, M_DONTWAIT, MT_DATA);
1238 if (m == NULL)
1239 return (ENOBUFS);
1240
1241 MCLGET(m, M_DONTWAIT);
1242 if ((m->m_flags & M_EXT) == 0) {
1243 m_freem(m);
1244 return (ENOBUFS);
1245 }
1246
1247 if (ds->ds_mbuf != NULL)
1248 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1249
1250 ds->ds_mbuf = m;
1251
1252 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1253 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1254 BUS_DMA_READ|BUS_DMA_NOWAIT);
1255 if (error) {
1256 aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
1257 idx, error);
1258 panic("epic_add_rxbuf"); /* XXX */
1259 }
1260
1261 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1262 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1263
1264 EPIC_INIT_RXDESC(sc, idx);
1265
1266 return (0);
1267 }
1268
1269 /*
1270 * Set the EPIC multicast hash table.
1271 *
1272 * NOTE: We rely on a recently-updated mii_media_active here!
1273 */
1274 void
1275 epic_set_mchash(sc)
1276 struct epic_softc *sc;
1277 {
1278 struct ethercom *ec = &sc->sc_ethercom;
1279 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1280 struct ether_multi *enm;
1281 struct ether_multistep step;
1282 uint32_t hash, mchash[4];
1283
1284 /*
1285 * Set up the multicast address filter by passing all multicast
1286 * addresses through a CRC generator, and then using the low-order
1287 * 6 bits as an index into the 64 bit multicast hash table (only
1288 * the lower 16 bits of each 32 bit multicast hash register are
1289 * valid). The high order bits select the register, while the
1290 * rest of the bits select the bit within the register.
1291 */
1292
1293 if (ifp->if_flags & IFF_PROMISC)
1294 goto allmulti;
1295
1296 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
1297 /* XXX hardware bug in 10Mbps mode. */
1298 goto allmulti;
1299 }
1300
1301 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0;
1302
1303 ETHER_FIRST_MULTI(step, ec, enm);
1304 while (enm != NULL) {
1305 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1306 /*
1307 * We must listen to a range of multicast addresses.
1308 * For now, just accept all multicasts, rather than
1309 * trying to set only those filter bits needed to match
1310 * the range. (At this time, the only use of address
1311 * ranges is for IP multicast routing, for which the
1312 * range is big enough to require all bits set.)
1313 */
1314 goto allmulti;
1315 }
1316
1317 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1318 hash >>= 26;
1319
1320 /* Set the corresponding bit in the hash table. */
1321 mchash[hash >> 4] |= 1 << (hash & 0xf);
1322
1323 ETHER_NEXT_MULTI(step, enm);
1324 }
1325
1326 ifp->if_flags &= ~IFF_ALLMULTI;
1327 goto sethash;
1328
1329 allmulti:
1330 ifp->if_flags |= IFF_ALLMULTI;
1331 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xffff;
1332
1333 sethash:
1334 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC0, mchash[0]);
1335 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC1, mchash[1]);
1336 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC2, mchash[2]);
1337 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC3, mchash[3]);
1338 }
1339
1340 /*
1341 * Wait for the MII to become ready.
1342 */
1343 int
1344 epic_mii_wait(sc, rw)
1345 struct epic_softc *sc;
1346 uint32_t rw;
1347 {
1348 int i;
1349
1350 for (i = 0; i < 50; i++) {
1351 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL) & rw)
1352 == 0)
1353 break;
1354 delay(2);
1355 }
1356 if (i == 50) {
1357 aprint_error_dev(&sc->sc_dev, "MII timed out\n");
1358 return (1);
1359 }
1360
1361 return (0);
1362 }
1363
1364 /*
1365 * Read from the MII.
1366 */
1367 int
1368 epic_mii_read(self, phy, reg)
1369 struct device *self;
1370 int phy, reg;
1371 {
1372 struct epic_softc *sc = (struct epic_softc *)self;
1373
1374 if (epic_mii_wait(sc, MMCTL_WRITE))
1375 return (0);
1376
1377 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1378 MMCTL_ARG(phy, reg, MMCTL_READ));
1379
1380 if (epic_mii_wait(sc, MMCTL_READ))
1381 return (0);
1382
1383 return (bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA) &
1384 MMDATA_MASK);
1385 }
1386
1387 /*
1388 * Write to the MII.
1389 */
1390 void
1391 epic_mii_write(self, phy, reg, val)
1392 struct device *self;
1393 int phy, reg, val;
1394 {
1395 struct epic_softc *sc = (struct epic_softc *)self;
1396
1397 if (epic_mii_wait(sc, MMCTL_WRITE))
1398 return;
1399
1400 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA, val);
1401 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1402 MMCTL_ARG(phy, reg, MMCTL_WRITE));
1403 }
1404
1405 /*
1406 * Callback from PHY when media changes.
1407 */
1408 void
1409 epic_statchg(self)
1410 struct device *self;
1411 {
1412 struct epic_softc *sc = (struct epic_softc *)self;
1413 uint32_t txcon, miicfg;
1414
1415 /*
1416 * Update loopback bits in TXCON to reflect duplex mode.
1417 */
1418 txcon = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_TXCON);
1419 if (sc->sc_mii.mii_media_active & IFM_FDX)
1420 txcon |= (TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1421 else
1422 txcon &= ~(TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1423 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TXCON, txcon);
1424
1425 /* On some cards we need manualy set fullduplex led */
1426 if (sc->sc_hwflags & EPIC_DUPLEXLED_ON_694) {
1427 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1428 if (IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX)
1429 miicfg |= MIICFG_ENABLE;
1430 else
1431 miicfg &= ~MIICFG_ENABLE;
1432 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1433 }
1434
1435 /*
1436 * There is a multicast filter bug in 10Mbps mode. Kick the
1437 * multicast filter in case the speed changed.
1438 */
1439 epic_set_mchash(sc);
1440 }
1441
1442 /*
1443 * Callback from ifmedia to request new media setting.
1444 *
1445 * XXX Looks to me like some of this complexity should move into
1446 * XXX one or two custom PHY drivers. --dyoung
1447 */
1448 int
1449 epic_mediachange(ifp)
1450 struct ifnet *ifp;
1451 {
1452 struct epic_softc *sc = ifp->if_softc;
1453 struct mii_data *mii = &sc->sc_mii;
1454 struct ifmedia *ifm = &mii->mii_media;
1455 int media = ifm->ifm_cur->ifm_media;
1456 uint32_t miicfg;
1457 struct mii_softc *miisc;
1458 int cfg, rc;
1459
1460 if ((ifp->if_flags & IFF_UP) == 0)
1461 return (0);
1462
1463 if (IFM_INST(media) != sc->sc_serinst) {
1464 /* If we're not selecting serial interface, select MII mode */
1465 #ifdef EPICMEDIADEBUG
1466 printf("%s: parallel mode\n", ifp->if_xname);
1467 #endif
1468 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1469 miicfg &= ~MIICFG_SERMODEENA;
1470 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1471 }
1472
1473 if ((rc = mii_mediachg(mii)) == ENXIO)
1474 rc = 0;
1475
1476 if (IFM_INST(media) == sc->sc_serinst) {
1477 /* select serial interface */
1478 #ifdef EPICMEDIADEBUG
1479 printf("%s: serial mode\n", ifp->if_xname);
1480 #endif
1481 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1482 miicfg |= (MIICFG_SERMODEENA | MIICFG_ENABLE);
1483 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1484
1485 /* There is no driver to fill this */
1486 mii->mii_media_active = media;
1487 mii->mii_media_status = 0;
1488
1489 epic_statchg(&sc->sc_dev);
1490 return (0);
1491 }
1492
1493 /* Lookup selected PHY */
1494 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
1495 if (IFM_INST(media) == miisc->mii_inst)
1496 break;
1497 }
1498 if (!miisc) {
1499 printf("epic_mediachange: can't happen\n"); /* ??? panic */
1500 return (0);
1501 }
1502 #ifdef EPICMEDIADEBUG
1503 printf("%s: using phy %s\n", ifp->if_xname,
1504 device_xname(&miisc->mii_dev));
1505 #endif
1506
1507 if (miisc->mii_flags & MIIF_HAVEFIBER) {
1508 /* XXX XXX assume it's a Level1 - should check */
1509
1510 /* We have to powerup fiber transceivers */
1511 cfg = PHY_READ(miisc, MII_LXTPHY_CONFIG);
1512 if (IFM_SUBTYPE(media) == IFM_100_FX) {
1513 #ifdef EPICMEDIADEBUG
1514 printf("%s: power up fiber\n", ifp->if_xname);
1515 #endif
1516 cfg |= (CONFIG_LEDC1 | CONFIG_LEDC0);
1517 } else {
1518 #ifdef EPICMEDIADEBUG
1519 printf("%s: power down fiber\n", ifp->if_xname);
1520 #endif
1521 cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0);
1522 }
1523 PHY_WRITE(miisc, MII_LXTPHY_CONFIG, cfg);
1524 }
1525
1526 return rc;
1527 }
1528