smc83c170.c revision 1.75 1 /* $NetBSD: smc83c170.c,v 1.75 2008/05/04 17:16:27 xtraeme Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Device driver for the Standard Microsystems Corp. 83C170
35 * Ethernet PCI Integrated Controller (EPIC/100).
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: smc83c170.c,v 1.75 2008/05/04 17:16:27 xtraeme Exp $");
40
41 #include "bpfilter.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53
54 #include <uvm/uvm_extern.h>
55
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64
65 #include <sys/bus.h>
66 #include <sys/intr.h>
67
68 #include <dev/mii/miivar.h>
69 #include <dev/mii/lxtphyreg.h>
70
71 #include <dev/ic/smc83c170reg.h>
72 #include <dev/ic/smc83c170var.h>
73
74 void epic_start(struct ifnet *);
75 void epic_watchdog(struct ifnet *);
76 int epic_ioctl(struct ifnet *, u_long, void *);
77 int epic_init(struct ifnet *);
78 void epic_stop(struct ifnet *, int);
79
80 void epic_shutdown(void *);
81
82 void epic_reset(struct epic_softc *);
83 void epic_rxdrain(struct epic_softc *);
84 int epic_add_rxbuf(struct epic_softc *, int);
85 void epic_read_eeprom(struct epic_softc *, int, int, uint16_t *);
86 void epic_set_mchash(struct epic_softc *);
87 void epic_fixup_clock_source(struct epic_softc *);
88 int epic_mii_read(struct device *, int, int);
89 void epic_mii_write(struct device *, int, int, int);
90 int epic_mii_wait(struct epic_softc *, uint32_t);
91 void epic_tick(void *);
92
93 void epic_statchg(struct device *);
94 int epic_mediachange(struct ifnet *);
95
96 #define INTMASK (INTSTAT_FATAL_INT | INTSTAT_TXU | \
97 INTSTAT_TXC | INTSTAT_RXE | INTSTAT_RQE | INTSTAT_RCC)
98
99 int epic_copy_small = 0;
100
101 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
102
103 /*
104 * Attach an EPIC interface to the system.
105 */
106 void
107 epic_attach(sc)
108 struct epic_softc *sc;
109 {
110 bus_space_tag_t st = sc->sc_st;
111 bus_space_handle_t sh = sc->sc_sh;
112 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
113 int rseg, error, miiflags;
114 u_int i;
115 bus_dma_segment_t seg;
116 uint8_t enaddr[ETHER_ADDR_LEN], devname[12 + 1];
117 uint16_t myea[ETHER_ADDR_LEN / 2], mydevname[6];
118 char *nullbuf;
119
120 callout_init(&sc->sc_mii_callout, 0);
121
122 /*
123 * Allocate the control data structures, and create and load the
124 * DMA map for it.
125 */
126 if ((error = bus_dmamem_alloc(sc->sc_dmat,
127 sizeof(struct epic_control_data) + ETHER_PAD_LEN, PAGE_SIZE, 0,
128 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
129 aprint_error_dev(&sc->sc_dev,
130 "unable to allocate control data, error = %d\n",
131 error);
132 goto fail_0;
133 }
134
135 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
136 sizeof(struct epic_control_data) + ETHER_PAD_LEN,
137 (void **)&sc->sc_control_data,
138 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
139 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n", error);
140 goto fail_1;
141 }
142 nullbuf =
143 (char *)sc->sc_control_data + sizeof(struct epic_control_data);
144 memset(nullbuf, 0, ETHER_PAD_LEN);
145
146 if ((error = bus_dmamap_create(sc->sc_dmat,
147 sizeof(struct epic_control_data), 1,
148 sizeof(struct epic_control_data), 0, BUS_DMA_NOWAIT,
149 &sc->sc_cddmamap)) != 0) {
150 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
151 "error = %d\n", error);
152 goto fail_2;
153 }
154
155 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
156 sc->sc_control_data, sizeof(struct epic_control_data), NULL,
157 BUS_DMA_NOWAIT)) != 0) {
158 aprint_error_dev(&sc->sc_dev,
159 "unable to load control data DMA map, error = %d\n",
160 error);
161 goto fail_3;
162 }
163
164 /*
165 * Create the transmit buffer DMA maps.
166 */
167 for (i = 0; i < EPIC_NTXDESC; i++) {
168 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
169 EPIC_NFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
170 &EPIC_DSTX(sc, i)->ds_dmamap)) != 0) {
171 aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
172 "error = %d\n", i, error);
173 goto fail_4;
174 }
175 }
176
177 /*
178 * Create the receive buffer DMA maps.
179 */
180 for (i = 0; i < EPIC_NRXDESC; i++) {
181 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
182 MCLBYTES, 0, BUS_DMA_NOWAIT,
183 &EPIC_DSRX(sc, i)->ds_dmamap)) != 0) {
184 aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
185 "error = %d\n", i, error);
186 goto fail_5;
187 }
188 EPIC_DSRX(sc, i)->ds_mbuf = NULL;
189 }
190
191 /*
192 * create and map the pad buffer
193 */
194 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
195 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT,&sc->sc_nulldmamap)) != 0) {
196 aprint_error_dev(&sc->sc_dev, "unable to create pad buffer DMA map, "
197 "error = %d\n", error);
198 goto fail_5;
199 }
200
201 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
202 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
203 aprint_error_dev(&sc->sc_dev, "unable to load pad buffer DMA map, "
204 "error = %d\n", error);
205 goto fail_6;
206 }
207 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
208 BUS_DMASYNC_PREWRITE);
209
210 /*
211 * Bring the chip out of low-power mode and reset it to a known state.
212 */
213 bus_space_write_4(st, sh, EPIC_GENCTL, 0);
214 epic_reset(sc);
215
216 /*
217 * Read the Ethernet address from the EEPROM.
218 */
219 epic_read_eeprom(sc, 0, __arraycount(myea), myea);
220 for (i = 0; i < __arraycount(myea); i++) {
221 enaddr[i * 2] = myea[i] & 0xff;
222 enaddr[i * 2 + 1] = myea[i] >> 8;
223 }
224
225 /*
226 * ...and the device name.
227 */
228 epic_read_eeprom(sc, 0x2c, __arraycount(mydevname), mydevname);
229 for (i = 0; i < __arraycount(mydevname); i++) {
230 devname[i * 2] = mydevname[i] & 0xff;
231 devname[i * 2 + 1] = mydevname[i] >> 8;
232 }
233
234 devname[sizeof(mydevname)] = '\0';
235 for (i = sizeof(mydevname) ; i > 0; i--) {
236 if (devname[i - 1] == ' ')
237 devname[i - 1] = '\0';
238 else
239 break;
240 }
241
242 aprint_normal_dev(&sc->sc_dev, "%s, Ethernet address %s\n",
243 devname, ether_sprintf(enaddr));
244
245 miiflags = 0;
246 if (sc->sc_hwflags & EPIC_HAS_MII_FIBER)
247 miiflags |= MIIF_HAVEFIBER;
248
249 /*
250 * Initialize our media structures and probe the MII.
251 */
252 sc->sc_mii.mii_ifp = ifp;
253 sc->sc_mii.mii_readreg = epic_mii_read;
254 sc->sc_mii.mii_writereg = epic_mii_write;
255 sc->sc_mii.mii_statchg = epic_statchg;
256
257 sc->sc_ethercom.ec_mii = &sc->sc_mii;
258 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epic_mediachange,
259 ether_mediastatus);
260 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
261 MII_OFFSET_ANY, miiflags);
262 if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
263 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
264 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
265 } else
266 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
267
268 if (sc->sc_hwflags & EPIC_HAS_BNC) {
269 /* use the next free media instance */
270 sc->sc_serinst = sc->sc_mii.mii_instance++;
271 ifmedia_add(&sc->sc_mii.mii_media,
272 IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0,
273 sc->sc_serinst),
274 0, NULL);
275 aprint_normal_dev(&sc->sc_dev, "10base2/BNC\n");
276 } else
277 sc->sc_serinst = -1;
278
279 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
280 ifp->if_softc = sc;
281 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
282 ifp->if_ioctl = epic_ioctl;
283 ifp->if_start = epic_start;
284 ifp->if_watchdog = epic_watchdog;
285 ifp->if_init = epic_init;
286 ifp->if_stop = epic_stop;
287 IFQ_SET_READY(&ifp->if_snd);
288
289 /*
290 * We can support 802.1Q VLAN-sized frames.
291 */
292 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
293
294 /*
295 * Attach the interface.
296 */
297 if_attach(ifp);
298 ether_ifattach(ifp, enaddr);
299
300 /*
301 * Make sure the interface is shutdown during reboot.
302 */
303 sc->sc_sdhook = shutdownhook_establish(epic_shutdown, sc);
304 if (sc->sc_sdhook == NULL)
305 aprint_error_dev(&sc->sc_dev, "WARNING: unable to establish shutdown hook\n");
306 return;
307
308 /*
309 * Free any resources we've allocated during the failed attach
310 * attempt. Do this in reverse order and fall through.
311 */
312 fail_6:
313 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
314 fail_5:
315 for (i = 0; i < EPIC_NRXDESC; i++) {
316 if (EPIC_DSRX(sc, i)->ds_dmamap != NULL)
317 bus_dmamap_destroy(sc->sc_dmat,
318 EPIC_DSRX(sc, i)->ds_dmamap);
319 }
320 fail_4:
321 for (i = 0; i < EPIC_NTXDESC; i++) {
322 if (EPIC_DSTX(sc, i)->ds_dmamap != NULL)
323 bus_dmamap_destroy(sc->sc_dmat,
324 EPIC_DSTX(sc, i)->ds_dmamap);
325 }
326 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
327 fail_3:
328 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
329 fail_2:
330 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
331 sizeof(struct epic_control_data));
332 fail_1:
333 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
334 fail_0:
335 return;
336 }
337
338 /*
339 * Shutdown hook. Make sure the interface is stopped at reboot.
340 */
341 void
342 epic_shutdown(arg)
343 void *arg;
344 {
345 struct epic_softc *sc = arg;
346
347 epic_stop(&sc->sc_ethercom.ec_if, 1);
348 }
349
350 /*
351 * Start packet transmission on the interface.
352 * [ifnet interface function]
353 */
354 void
355 epic_start(ifp)
356 struct ifnet *ifp;
357 {
358 struct epic_softc *sc = ifp->if_softc;
359 struct mbuf *m0, *m;
360 struct epic_txdesc *txd;
361 struct epic_descsoft *ds;
362 struct epic_fraglist *fr;
363 bus_dmamap_t dmamap;
364 int error, firsttx, nexttx, opending, seg;
365 u_int len;
366
367 /*
368 * Remember the previous txpending and the first transmit
369 * descriptor we use.
370 */
371 opending = sc->sc_txpending;
372 firsttx = EPIC_NEXTTX(sc->sc_txlast);
373
374 /*
375 * Loop through the send queue, setting up transmit descriptors
376 * until we drain the queue, or use up all available transmit
377 * descriptors.
378 */
379 while (sc->sc_txpending < EPIC_NTXDESC) {
380 /*
381 * Grab a packet off the queue.
382 */
383 IFQ_POLL(&ifp->if_snd, m0);
384 if (m0 == NULL)
385 break;
386 m = NULL;
387
388 /*
389 * Get the last and next available transmit descriptor.
390 */
391 nexttx = EPIC_NEXTTX(sc->sc_txlast);
392 txd = EPIC_CDTX(sc, nexttx);
393 fr = EPIC_CDFL(sc, nexttx);
394 ds = EPIC_DSTX(sc, nexttx);
395 dmamap = ds->ds_dmamap;
396
397 /*
398 * Load the DMA map. If this fails, the packet either
399 * didn't fit in the alloted number of frags, or we were
400 * short on resources. In this case, we'll copy and try
401 * again.
402 */
403 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
404 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
405 (m0->m_pkthdr.len < ETHER_PAD_LEN &&
406 dmamap-> dm_nsegs == EPIC_NFRAGS)) {
407 if (error == 0)
408 bus_dmamap_unload(sc->sc_dmat, dmamap);
409
410 MGETHDR(m, M_DONTWAIT, MT_DATA);
411 if (m == NULL) {
412 aprint_error_dev(&sc->sc_dev, "unable to allocate Tx mbuf\n");
413 break;
414 }
415 if (m0->m_pkthdr.len > MHLEN) {
416 MCLGET(m, M_DONTWAIT);
417 if ((m->m_flags & M_EXT) == 0) {
418 aprint_error_dev(&sc->sc_dev, "unable to allocate Tx "
419 "cluster\n");
420 m_freem(m);
421 break;
422 }
423 }
424 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
425 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
426 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
427 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
428 if (error) {
429 aprint_error_dev(&sc->sc_dev, "unable to load Tx buffer, "
430 "error = %d\n", error);
431 break;
432 }
433 }
434 IFQ_DEQUEUE(&ifp->if_snd, m0);
435 if (m != NULL) {
436 m_freem(m0);
437 m0 = m;
438 }
439
440 /* Initialize the fraglist. */
441 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
442 fr->ef_frags[seg].ef_addr =
443 dmamap->dm_segs[seg].ds_addr;
444 fr->ef_frags[seg].ef_length =
445 dmamap->dm_segs[seg].ds_len;
446 }
447 len = m0->m_pkthdr.len;
448 if (len < ETHER_PAD_LEN) {
449 fr->ef_frags[seg].ef_addr = sc->sc_nulldma;
450 fr->ef_frags[seg].ef_length = ETHER_PAD_LEN - len;
451 len = ETHER_PAD_LEN;
452 seg++;
453 }
454 fr->ef_nfrags = seg;
455
456 EPIC_CDFLSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
457
458 /* Sync the DMA map. */
459 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
460 BUS_DMASYNC_PREWRITE);
461
462 /*
463 * Store a pointer to the packet so we can free it later.
464 */
465 ds->ds_mbuf = m0;
466
467 /*
468 * Fill in the transmit descriptor.
469 */
470 txd->et_control = ET_TXCTL_LASTDESC | ET_TXCTL_FRAGLIST;
471
472 /*
473 * If this is the first descriptor we're enqueueing,
474 * don't give it to the EPIC yet. That could cause
475 * a race condition. We'll do it below.
476 */
477 if (nexttx == firsttx)
478 txd->et_txstatus = TXSTAT_TXLENGTH(len);
479 else
480 txd->et_txstatus =
481 TXSTAT_TXLENGTH(len) | ET_TXSTAT_OWNER;
482
483 EPIC_CDTXSYNC(sc, nexttx,
484 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
485
486 /* Advance the tx pointer. */
487 sc->sc_txpending++;
488 sc->sc_txlast = nexttx;
489
490 #if NBPFILTER > 0
491 /*
492 * Pass the packet to any BPF listeners.
493 */
494 if (ifp->if_bpf)
495 bpf_mtap(ifp->if_bpf, m0);
496 #endif
497 }
498
499 if (sc->sc_txpending == EPIC_NTXDESC) {
500 /* No more slots left; notify upper layer. */
501 ifp->if_flags |= IFF_OACTIVE;
502 }
503
504 if (sc->sc_txpending != opending) {
505 /*
506 * We enqueued packets. If the transmitter was idle,
507 * reset the txdirty pointer.
508 */
509 if (opending == 0)
510 sc->sc_txdirty = firsttx;
511
512 /*
513 * Cause a transmit interrupt to happen on the
514 * last packet we enqueued.
515 */
516 EPIC_CDTX(sc, sc->sc_txlast)->et_control |= ET_TXCTL_IAF;
517 EPIC_CDTXSYNC(sc, sc->sc_txlast,
518 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
519
520 /*
521 * The entire packet chain is set up. Give the
522 * first descriptor to the EPIC now.
523 */
524 EPIC_CDTX(sc, firsttx)->et_txstatus |= ET_TXSTAT_OWNER;
525 EPIC_CDTXSYNC(sc, firsttx,
526 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
527
528 /* Start the transmitter. */
529 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
530 COMMAND_TXQUEUED);
531
532 /* Set a watchdog timer in case the chip flakes out. */
533 ifp->if_timer = 5;
534 }
535 }
536
537 /*
538 * Watchdog timer handler.
539 * [ifnet interface function]
540 */
541 void
542 epic_watchdog(ifp)
543 struct ifnet *ifp;
544 {
545 struct epic_softc *sc = ifp->if_softc;
546
547 printf("%s: device timeout\n", device_xname(&sc->sc_dev));
548 ifp->if_oerrors++;
549
550 (void) epic_init(ifp);
551 }
552
553 /*
554 * Handle control requests from the operator.
555 * [ifnet interface function]
556 */
557 int
558 epic_ioctl(ifp, cmd, data)
559 struct ifnet *ifp;
560 u_long cmd;
561 void *data;
562 {
563 struct epic_softc *sc = ifp->if_softc;
564 int s, error;
565
566 s = splnet();
567
568 error = ether_ioctl(ifp, cmd, data);
569 if (error == ENETRESET) {
570 /*
571 * Multicast list has changed; set the hardware filter
572 * accordingly. Update our idea of the current media;
573 * epic_set_mchash() needs to know what it is.
574 */
575 if (ifp->if_flags & IFF_RUNNING) {
576 mii_pollstat(&sc->sc_mii);
577 epic_set_mchash(sc);
578 }
579 error = 0;
580 }
581
582 splx(s);
583 return (error);
584 }
585
586 /*
587 * Interrupt handler.
588 */
589 int
590 epic_intr(arg)
591 void *arg;
592 {
593 struct epic_softc *sc = arg;
594 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
595 struct epic_rxdesc *rxd;
596 struct epic_txdesc *txd;
597 struct epic_descsoft *ds;
598 struct mbuf *m;
599 uint32_t intstat, rxstatus, txstatus;
600 int i, claimed = 0;
601 u_int len;
602
603 top:
604 /*
605 * Get the interrupt status from the EPIC.
606 */
607 intstat = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT);
608 if ((intstat & INTSTAT_INT_ACTV) == 0)
609 return (claimed);
610
611 claimed = 1;
612
613 /*
614 * Acknowledge the interrupt.
615 */
616 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT,
617 intstat & INTMASK);
618
619 /*
620 * Check for receive interrupts.
621 */
622 if (intstat & (INTSTAT_RCC | INTSTAT_RXE | INTSTAT_RQE)) {
623 for (i = sc->sc_rxptr;; i = EPIC_NEXTRX(i)) {
624 rxd = EPIC_CDRX(sc, i);
625 ds = EPIC_DSRX(sc, i);
626
627 EPIC_CDRXSYNC(sc, i,
628 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
629
630 rxstatus = rxd->er_rxstatus;
631 if (rxstatus & ER_RXSTAT_OWNER) {
632 /*
633 * We have processed all of the
634 * receive buffers.
635 */
636 break;
637 }
638
639 /*
640 * Make sure the packet arrived intact. If an error
641 * occurred, update stats and reset the descriptor.
642 * The buffer will be reused the next time the
643 * descriptor comes up in the ring.
644 */
645 if ((rxstatus & ER_RXSTAT_PKTINTACT) == 0) {
646 if (rxstatus & ER_RXSTAT_CRCERROR)
647 aprint_error_dev(&sc->sc_dev, "CRC error\n");
648 if (rxstatus & ER_RXSTAT_ALIGNERROR)
649 aprint_error_dev(&sc->sc_dev, "alignment error\n");
650 ifp->if_ierrors++;
651 EPIC_INIT_RXDESC(sc, i);
652 continue;
653 }
654
655 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
656 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
657
658 /*
659 * The EPIC includes the CRC with every packet;
660 * trim it.
661 */
662 len = RXSTAT_RXLENGTH(rxstatus) - ETHER_CRC_LEN;
663
664 if (len < sizeof(struct ether_header)) {
665 /*
666 * Runt packet; drop it now.
667 */
668 ifp->if_ierrors++;
669 EPIC_INIT_RXDESC(sc, i);
670 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
671 ds->ds_dmamap->dm_mapsize,
672 BUS_DMASYNC_PREREAD);
673 continue;
674 }
675
676 /*
677 * If the packet is small enough to fit in a
678 * single header mbuf, allocate one and copy
679 * the data into it. This greatly reduces
680 * memory consumption when we receive lots
681 * of small packets.
682 *
683 * Otherwise, we add a new buffer to the receive
684 * chain. If this fails, we drop the packet and
685 * recycle the old buffer.
686 */
687 if (epic_copy_small != 0 && len <= MHLEN) {
688 MGETHDR(m, M_DONTWAIT, MT_DATA);
689 if (m == NULL)
690 goto dropit;
691 memcpy(mtod(m, void *),
692 mtod(ds->ds_mbuf, void *), len);
693 EPIC_INIT_RXDESC(sc, i);
694 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
695 ds->ds_dmamap->dm_mapsize,
696 BUS_DMASYNC_PREREAD);
697 } else {
698 m = ds->ds_mbuf;
699 if (epic_add_rxbuf(sc, i) != 0) {
700 dropit:
701 ifp->if_ierrors++;
702 EPIC_INIT_RXDESC(sc, i);
703 bus_dmamap_sync(sc->sc_dmat,
704 ds->ds_dmamap, 0,
705 ds->ds_dmamap->dm_mapsize,
706 BUS_DMASYNC_PREREAD);
707 continue;
708 }
709 }
710
711 m->m_pkthdr.rcvif = ifp;
712 m->m_pkthdr.len = m->m_len = len;
713
714 #if NBPFILTER > 0
715 /*
716 * Pass this up to any BPF listeners, but only
717 * pass it up the stack if it's for us.
718 */
719 if (ifp->if_bpf)
720 bpf_mtap(ifp->if_bpf, m);
721 #endif
722
723 /* Pass it on. */
724 (*ifp->if_input)(ifp, m);
725 ifp->if_ipackets++;
726 }
727
728 /* Update the receive pointer. */
729 sc->sc_rxptr = i;
730
731 /*
732 * Check for receive queue underflow.
733 */
734 if (intstat & INTSTAT_RQE) {
735 aprint_error_dev(&sc->sc_dev, "receiver queue empty\n");
736 /*
737 * Ring is already built; just restart the
738 * receiver.
739 */
740 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_PRCDAR,
741 EPIC_CDRXADDR(sc, sc->sc_rxptr));
742 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
743 COMMAND_RXQUEUED | COMMAND_START_RX);
744 }
745 }
746
747 /*
748 * Check for transmission complete interrupts.
749 */
750 if (intstat & (INTSTAT_TXC | INTSTAT_TXU)) {
751 ifp->if_flags &= ~IFF_OACTIVE;
752 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
753 i = EPIC_NEXTTX(i), sc->sc_txpending--) {
754 txd = EPIC_CDTX(sc, i);
755 ds = EPIC_DSTX(sc, i);
756
757 EPIC_CDTXSYNC(sc, i,
758 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
759
760 txstatus = txd->et_txstatus;
761 if (txstatus & ET_TXSTAT_OWNER)
762 break;
763
764 EPIC_CDFLSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
765
766 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
767 0, ds->ds_dmamap->dm_mapsize,
768 BUS_DMASYNC_POSTWRITE);
769 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
770 m_freem(ds->ds_mbuf);
771 ds->ds_mbuf = NULL;
772
773 /*
774 * Check for errors and collisions.
775 */
776 if ((txstatus & ET_TXSTAT_PACKETTX) == 0)
777 ifp->if_oerrors++;
778 else
779 ifp->if_opackets++;
780 ifp->if_collisions +=
781 TXSTAT_COLLISIONS(txstatus);
782 if (txstatus & ET_TXSTAT_CARSENSELOST)
783 aprint_error_dev(&sc->sc_dev, "lost carrier\n");
784 }
785
786 /* Update the dirty transmit buffer pointer. */
787 sc->sc_txdirty = i;
788
789 /*
790 * Cancel the watchdog timer if there are no pending
791 * transmissions.
792 */
793 if (sc->sc_txpending == 0)
794 ifp->if_timer = 0;
795
796 /*
797 * Kick the transmitter after a DMA underrun.
798 */
799 if (intstat & INTSTAT_TXU) {
800 aprint_error_dev(&sc->sc_dev, "transmit underrun\n");
801 bus_space_write_4(sc->sc_st, sc->sc_sh,
802 EPIC_COMMAND, COMMAND_TXUGO);
803 if (sc->sc_txpending)
804 bus_space_write_4(sc->sc_st, sc->sc_sh,
805 EPIC_COMMAND, COMMAND_TXQUEUED);
806 }
807
808 /*
809 * Try to get more packets going.
810 */
811 epic_start(ifp);
812 }
813
814 /*
815 * Check for fatal interrupts.
816 */
817 if (intstat & INTSTAT_FATAL_INT) {
818 if (intstat & INTSTAT_PTA)
819 aprint_error_dev(&sc->sc_dev, "PCI target abort error\n");
820 else if (intstat & INTSTAT_PMA)
821 aprint_error_dev(&sc->sc_dev, "PCI master abort error\n");
822 else if (intstat & INTSTAT_APE)
823 aprint_error_dev(&sc->sc_dev, "PCI address parity error\n");
824 else if (intstat & INTSTAT_DPE)
825 aprint_error_dev(&sc->sc_dev, "PCI data parity error\n");
826 else
827 aprint_error_dev(&sc->sc_dev, "unknown fatal error\n");
828 (void) epic_init(ifp);
829 }
830
831 /*
832 * Check for more interrupts.
833 */
834 goto top;
835 }
836
837 /*
838 * One second timer, used to tick the MII.
839 */
840 void
841 epic_tick(arg)
842 void *arg;
843 {
844 struct epic_softc *sc = arg;
845 int s;
846
847 s = splnet();
848 mii_tick(&sc->sc_mii);
849 splx(s);
850
851 callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
852 }
853
854 /*
855 * Fixup the clock source on the EPIC.
856 */
857 void
858 epic_fixup_clock_source(sc)
859 struct epic_softc *sc;
860 {
861 int i;
862
863 /*
864 * According to SMC Application Note 7-15, the EPIC's clock
865 * source is incorrect following a reset. This manifests itself
866 * as failure to recognize when host software has written to
867 * a register on the EPIC. The appnote recommends issuing at
868 * least 16 consecutive writes to the CLOCK TEST bit to correctly
869 * configure the clock source.
870 */
871 for (i = 0; i < 16; i++)
872 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TEST,
873 TEST_CLOCKTEST);
874 }
875
876 /*
877 * Perform a soft reset on the EPIC.
878 */
879 void
880 epic_reset(sc)
881 struct epic_softc *sc;
882 {
883
884 epic_fixup_clock_source(sc);
885
886 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, 0);
887 delay(100);
888 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, GENCTL_SOFTRESET);
889 delay(100);
890
891 epic_fixup_clock_source(sc);
892 }
893
894 /*
895 * Initialize the interface. Must be called at splnet().
896 */
897 int
898 epic_init(ifp)
899 struct ifnet *ifp;
900 {
901 struct epic_softc *sc = ifp->if_softc;
902 bus_space_tag_t st = sc->sc_st;
903 bus_space_handle_t sh = sc->sc_sh;
904 const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
905 struct epic_txdesc *txd;
906 struct epic_descsoft *ds;
907 uint32_t genctl, reg0;
908 int i, error = 0;
909
910 /*
911 * Cancel any pending I/O.
912 */
913 epic_stop(ifp, 0);
914
915 /*
916 * Reset the EPIC to a known state.
917 */
918 epic_reset(sc);
919
920 /*
921 * Magical mystery initialization.
922 */
923 bus_space_write_4(st, sh, EPIC_TXTEST, 0);
924
925 /*
926 * Initialize the EPIC genctl register:
927 *
928 * - 64 byte receive FIFO threshold
929 * - automatic advance to next receive frame
930 */
931 genctl = GENCTL_RX_FIFO_THRESH0 | GENCTL_ONECOPY;
932 #if BYTE_ORDER == BIG_ENDIAN
933 genctl |= GENCTL_BIG_ENDIAN;
934 #endif
935 bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
936
937 /*
938 * Reset the MII bus and PHY.
939 */
940 reg0 = bus_space_read_4(st, sh, EPIC_NVCTL);
941 bus_space_write_4(st, sh, EPIC_NVCTL, reg0 | NVCTL_GPIO1 | NVCTL_GPOE1);
942 bus_space_write_4(st, sh, EPIC_MIICFG, MIICFG_ENASER);
943 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_RESET_PHY);
944 delay(100);
945 bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
946 delay(1000);
947 bus_space_write_4(st, sh, EPIC_NVCTL, reg0);
948
949 /*
950 * Initialize Ethernet address.
951 */
952 reg0 = enaddr[1] << 8 | enaddr[0];
953 bus_space_write_4(st, sh, EPIC_LAN0, reg0);
954 reg0 = enaddr[3] << 8 | enaddr[2];
955 bus_space_write_4(st, sh, EPIC_LAN1, reg0);
956 reg0 = enaddr[5] << 8 | enaddr[4];
957 bus_space_write_4(st, sh, EPIC_LAN2, reg0);
958
959 /*
960 * Initialize receive control. Remember the external buffer
961 * size setting.
962 */
963 reg0 = bus_space_read_4(st, sh, EPIC_RXCON) &
964 (RXCON_EXTBUFSIZESEL1 | RXCON_EXTBUFSIZESEL0);
965 reg0 |= (RXCON_RXMULTICAST | RXCON_RXBROADCAST);
966 if (ifp->if_flags & IFF_PROMISC)
967 reg0 |= RXCON_PROMISCMODE;
968 bus_space_write_4(st, sh, EPIC_RXCON, reg0);
969
970 /* Set the current media. */
971 if ((error = epic_mediachange(ifp)) != 0)
972 goto out;
973
974 /* Set up the multicast hash table. */
975 epic_set_mchash(sc);
976
977 /*
978 * Initialize the transmit descriptor ring. txlast is initialized
979 * to the end of the list so that it will wrap around to the first
980 * descriptor when the first packet is transmitted.
981 */
982 for (i = 0; i < EPIC_NTXDESC; i++) {
983 txd = EPIC_CDTX(sc, i);
984 memset(txd, 0, sizeof(struct epic_txdesc));
985 txd->et_bufaddr = EPIC_CDFLADDR(sc, i);
986 txd->et_nextdesc = EPIC_CDTXADDR(sc, EPIC_NEXTTX(i));
987 EPIC_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
988 }
989 sc->sc_txpending = 0;
990 sc->sc_txdirty = 0;
991 sc->sc_txlast = EPIC_NTXDESC - 1;
992
993 /*
994 * Initialize the receive descriptor ring.
995 */
996 for (i = 0; i < EPIC_NRXDESC; i++) {
997 ds = EPIC_DSRX(sc, i);
998 if (ds->ds_mbuf == NULL) {
999 if ((error = epic_add_rxbuf(sc, i)) != 0) {
1000 aprint_error_dev(&sc->sc_dev, "unable to allocate or map rx "
1001 "buffer %d error = %d\n",
1002 i, error);
1003 /*
1004 * XXX Should attempt to run with fewer receive
1005 * XXX buffers instead of just failing.
1006 */
1007 epic_rxdrain(sc);
1008 goto out;
1009 }
1010 } else
1011 EPIC_INIT_RXDESC(sc, i);
1012 }
1013 sc->sc_rxptr = 0;
1014
1015 /*
1016 * Initialize the interrupt mask and enable interrupts.
1017 */
1018 bus_space_write_4(st, sh, EPIC_INTMASK, INTMASK);
1019 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_INTENA);
1020
1021 /*
1022 * Give the transmit and receive rings to the EPIC.
1023 */
1024 bus_space_write_4(st, sh, EPIC_PTCDAR,
1025 EPIC_CDTXADDR(sc, EPIC_NEXTTX(sc->sc_txlast)));
1026 bus_space_write_4(st, sh, EPIC_PRCDAR,
1027 EPIC_CDRXADDR(sc, sc->sc_rxptr));
1028
1029 /*
1030 * Set the EPIC in motion.
1031 */
1032 bus_space_write_4(st, sh, EPIC_COMMAND,
1033 COMMAND_RXQUEUED | COMMAND_START_RX);
1034
1035 /*
1036 * ...all done!
1037 */
1038 ifp->if_flags |= IFF_RUNNING;
1039 ifp->if_flags &= ~IFF_OACTIVE;
1040
1041 /*
1042 * Start the one second clock.
1043 */
1044 callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
1045
1046 /*
1047 * Attempt to start output on the interface.
1048 */
1049 epic_start(ifp);
1050
1051 out:
1052 if (error)
1053 aprint_error_dev(&sc->sc_dev, "interface not running\n");
1054 return (error);
1055 }
1056
1057 /*
1058 * Drain the receive queue.
1059 */
1060 void
1061 epic_rxdrain(sc)
1062 struct epic_softc *sc;
1063 {
1064 struct epic_descsoft *ds;
1065 int i;
1066
1067 for (i = 0; i < EPIC_NRXDESC; i++) {
1068 ds = EPIC_DSRX(sc, i);
1069 if (ds->ds_mbuf != NULL) {
1070 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1071 m_freem(ds->ds_mbuf);
1072 ds->ds_mbuf = NULL;
1073 }
1074 }
1075 }
1076
1077 /*
1078 * Stop transmission on the interface.
1079 */
1080 void
1081 epic_stop(ifp, disable)
1082 struct ifnet *ifp;
1083 int disable;
1084 {
1085 struct epic_softc *sc = ifp->if_softc;
1086 bus_space_tag_t st = sc->sc_st;
1087 bus_space_handle_t sh = sc->sc_sh;
1088 struct epic_descsoft *ds;
1089 uint32_t reg;
1090 int i;
1091
1092 /*
1093 * Stop the one second clock.
1094 */
1095 callout_stop(&sc->sc_mii_callout);
1096
1097 /* Down the MII. */
1098 mii_down(&sc->sc_mii);
1099
1100 /* Paranoia... */
1101 epic_fixup_clock_source(sc);
1102
1103 /*
1104 * Disable interrupts.
1105 */
1106 reg = bus_space_read_4(st, sh, EPIC_GENCTL);
1107 bus_space_write_4(st, sh, EPIC_GENCTL, reg & ~GENCTL_INTENA);
1108 bus_space_write_4(st, sh, EPIC_INTMASK, 0);
1109
1110 /*
1111 * Stop the DMA engine and take the receiver off-line.
1112 */
1113 bus_space_write_4(st, sh, EPIC_COMMAND, COMMAND_STOP_RDMA |
1114 COMMAND_STOP_TDMA | COMMAND_STOP_RX);
1115
1116 /*
1117 * Release any queued transmit buffers.
1118 */
1119 for (i = 0; i < EPIC_NTXDESC; i++) {
1120 ds = EPIC_DSTX(sc, i);
1121 if (ds->ds_mbuf != NULL) {
1122 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1123 m_freem(ds->ds_mbuf);
1124 ds->ds_mbuf = NULL;
1125 }
1126 }
1127
1128 /*
1129 * Mark the interface down and cancel the watchdog timer.
1130 */
1131 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1132 ifp->if_timer = 0;
1133
1134 if (disable)
1135 epic_rxdrain(sc);
1136 }
1137
1138 /*
1139 * Read the EPIC Serial EEPROM.
1140 */
1141 void
1142 epic_read_eeprom(sc, word, wordcnt, data)
1143 struct epic_softc *sc;
1144 int word, wordcnt;
1145 uint16_t *data;
1146 {
1147 bus_space_tag_t st = sc->sc_st;
1148 bus_space_handle_t sh = sc->sc_sh;
1149 uint16_t reg;
1150 int i, x;
1151
1152 #define EEPROM_WAIT_READY(st, sh) \
1153 while ((bus_space_read_4((st), (sh), EPIC_EECTL) & EECTL_EERDY) == 0) \
1154 /* nothing */
1155
1156 /*
1157 * Enable the EEPROM.
1158 */
1159 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1160 EEPROM_WAIT_READY(st, sh);
1161
1162 for (i = 0; i < wordcnt; i++) {
1163 /* Send CHIP SELECT for one clock tick. */
1164 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE|EECTL_EECS);
1165 EEPROM_WAIT_READY(st, sh);
1166
1167 /* Shift in the READ opcode. */
1168 for (x = 3; x > 0; x--) {
1169 reg = EECTL_ENABLE|EECTL_EECS;
1170 if (EPIC_EEPROM_OPC_READ & (1 << (x - 1)))
1171 reg |= EECTL_EEDI;
1172 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1173 EEPROM_WAIT_READY(st, sh);
1174 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1175 EEPROM_WAIT_READY(st, sh);
1176 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1177 EEPROM_WAIT_READY(st, sh);
1178 }
1179
1180 /* Shift in address. */
1181 for (x = 6; x > 0; x--) {
1182 reg = EECTL_ENABLE|EECTL_EECS;
1183 if ((word + i) & (1 << (x - 1)))
1184 reg |= EECTL_EEDI;
1185 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1186 EEPROM_WAIT_READY(st, sh);
1187 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1188 EEPROM_WAIT_READY(st, sh);
1189 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1190 EEPROM_WAIT_READY(st, sh);
1191 }
1192
1193 /* Shift out data. */
1194 reg = EECTL_ENABLE|EECTL_EECS;
1195 data[i] = 0;
1196 for (x = 16; x > 0; x--) {
1197 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1198 EEPROM_WAIT_READY(st, sh);
1199 if (bus_space_read_4(st, sh, EPIC_EECTL) & EECTL_EEDO)
1200 data[i] |= (1 << (x - 1));
1201 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1202 EEPROM_WAIT_READY(st, sh);
1203 }
1204
1205 /* Clear CHIP SELECT. */
1206 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1207 EEPROM_WAIT_READY(st, sh);
1208 }
1209
1210 /*
1211 * Disable the EEPROM.
1212 */
1213 bus_space_write_4(st, sh, EPIC_EECTL, 0);
1214
1215 #undef EEPROM_WAIT_READY
1216 }
1217
1218 /*
1219 * Add a receive buffer to the indicated descriptor.
1220 */
1221 int
1222 epic_add_rxbuf(sc, idx)
1223 struct epic_softc *sc;
1224 int idx;
1225 {
1226 struct epic_descsoft *ds = EPIC_DSRX(sc, idx);
1227 struct mbuf *m;
1228 int error;
1229
1230 MGETHDR(m, M_DONTWAIT, MT_DATA);
1231 if (m == NULL)
1232 return (ENOBUFS);
1233
1234 MCLGET(m, M_DONTWAIT);
1235 if ((m->m_flags & M_EXT) == 0) {
1236 m_freem(m);
1237 return (ENOBUFS);
1238 }
1239
1240 if (ds->ds_mbuf != NULL)
1241 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1242
1243 ds->ds_mbuf = m;
1244
1245 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1246 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1247 BUS_DMA_READ|BUS_DMA_NOWAIT);
1248 if (error) {
1249 aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
1250 idx, error);
1251 panic("epic_add_rxbuf"); /* XXX */
1252 }
1253
1254 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1255 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1256
1257 EPIC_INIT_RXDESC(sc, idx);
1258
1259 return (0);
1260 }
1261
1262 /*
1263 * Set the EPIC multicast hash table.
1264 *
1265 * NOTE: We rely on a recently-updated mii_media_active here!
1266 */
1267 void
1268 epic_set_mchash(sc)
1269 struct epic_softc *sc;
1270 {
1271 struct ethercom *ec = &sc->sc_ethercom;
1272 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1273 struct ether_multi *enm;
1274 struct ether_multistep step;
1275 uint32_t hash, mchash[4];
1276
1277 /*
1278 * Set up the multicast address filter by passing all multicast
1279 * addresses through a CRC generator, and then using the low-order
1280 * 6 bits as an index into the 64 bit multicast hash table (only
1281 * the lower 16 bits of each 32 bit multicast hash register are
1282 * valid). The high order bits select the register, while the
1283 * rest of the bits select the bit within the register.
1284 */
1285
1286 if (ifp->if_flags & IFF_PROMISC)
1287 goto allmulti;
1288
1289 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
1290 /* XXX hardware bug in 10Mbps mode. */
1291 goto allmulti;
1292 }
1293
1294 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0;
1295
1296 ETHER_FIRST_MULTI(step, ec, enm);
1297 while (enm != NULL) {
1298 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1299 /*
1300 * We must listen to a range of multicast addresses.
1301 * For now, just accept all multicasts, rather than
1302 * trying to set only those filter bits needed to match
1303 * the range. (At this time, the only use of address
1304 * ranges is for IP multicast routing, for which the
1305 * range is big enough to require all bits set.)
1306 */
1307 goto allmulti;
1308 }
1309
1310 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1311 hash >>= 26;
1312
1313 /* Set the corresponding bit in the hash table. */
1314 mchash[hash >> 4] |= 1 << (hash & 0xf);
1315
1316 ETHER_NEXT_MULTI(step, enm);
1317 }
1318
1319 ifp->if_flags &= ~IFF_ALLMULTI;
1320 goto sethash;
1321
1322 allmulti:
1323 ifp->if_flags |= IFF_ALLMULTI;
1324 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xffff;
1325
1326 sethash:
1327 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC0, mchash[0]);
1328 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC1, mchash[1]);
1329 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC2, mchash[2]);
1330 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC3, mchash[3]);
1331 }
1332
1333 /*
1334 * Wait for the MII to become ready.
1335 */
1336 int
1337 epic_mii_wait(sc, rw)
1338 struct epic_softc *sc;
1339 uint32_t rw;
1340 {
1341 int i;
1342
1343 for (i = 0; i < 50; i++) {
1344 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL) & rw)
1345 == 0)
1346 break;
1347 delay(2);
1348 }
1349 if (i == 50) {
1350 aprint_error_dev(&sc->sc_dev, "MII timed out\n");
1351 return (1);
1352 }
1353
1354 return (0);
1355 }
1356
1357 /*
1358 * Read from the MII.
1359 */
1360 int
1361 epic_mii_read(self, phy, reg)
1362 struct device *self;
1363 int phy, reg;
1364 {
1365 struct epic_softc *sc = (struct epic_softc *)self;
1366
1367 if (epic_mii_wait(sc, MMCTL_WRITE))
1368 return (0);
1369
1370 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1371 MMCTL_ARG(phy, reg, MMCTL_READ));
1372
1373 if (epic_mii_wait(sc, MMCTL_READ))
1374 return (0);
1375
1376 return (bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA) &
1377 MMDATA_MASK);
1378 }
1379
1380 /*
1381 * Write to the MII.
1382 */
1383 void
1384 epic_mii_write(self, phy, reg, val)
1385 struct device *self;
1386 int phy, reg, val;
1387 {
1388 struct epic_softc *sc = (struct epic_softc *)self;
1389
1390 if (epic_mii_wait(sc, MMCTL_WRITE))
1391 return;
1392
1393 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA, val);
1394 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1395 MMCTL_ARG(phy, reg, MMCTL_WRITE));
1396 }
1397
1398 /*
1399 * Callback from PHY when media changes.
1400 */
1401 void
1402 epic_statchg(self)
1403 struct device *self;
1404 {
1405 struct epic_softc *sc = (struct epic_softc *)self;
1406 uint32_t txcon, miicfg;
1407
1408 /*
1409 * Update loopback bits in TXCON to reflect duplex mode.
1410 */
1411 txcon = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_TXCON);
1412 if (sc->sc_mii.mii_media_active & IFM_FDX)
1413 txcon |= (TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1414 else
1415 txcon &= ~(TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1416 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TXCON, txcon);
1417
1418 /* On some cards we need manualy set fullduplex led */
1419 if (sc->sc_hwflags & EPIC_DUPLEXLED_ON_694) {
1420 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1421 if (IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX)
1422 miicfg |= MIICFG_ENABLE;
1423 else
1424 miicfg &= ~MIICFG_ENABLE;
1425 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1426 }
1427
1428 /*
1429 * There is a multicast filter bug in 10Mbps mode. Kick the
1430 * multicast filter in case the speed changed.
1431 */
1432 epic_set_mchash(sc);
1433 }
1434
1435 /*
1436 * Callback from ifmedia to request new media setting.
1437 *
1438 * XXX Looks to me like some of this complexity should move into
1439 * XXX one or two custom PHY drivers. --dyoung
1440 */
1441 int
1442 epic_mediachange(ifp)
1443 struct ifnet *ifp;
1444 {
1445 struct epic_softc *sc = ifp->if_softc;
1446 struct mii_data *mii = &sc->sc_mii;
1447 struct ifmedia *ifm = &mii->mii_media;
1448 int media = ifm->ifm_cur->ifm_media;
1449 uint32_t miicfg;
1450 struct mii_softc *miisc;
1451 int cfg, rc;
1452
1453 if ((ifp->if_flags & IFF_UP) == 0)
1454 return (0);
1455
1456 if (IFM_INST(media) != sc->sc_serinst) {
1457 /* If we're not selecting serial interface, select MII mode */
1458 #ifdef EPICMEDIADEBUG
1459 printf("%s: parallel mode\n", ifp->if_xname);
1460 #endif
1461 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1462 miicfg &= ~MIICFG_SERMODEENA;
1463 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1464 }
1465
1466 if ((rc = mii_mediachg(mii)) == ENXIO)
1467 rc = 0;
1468
1469 if (IFM_INST(media) == sc->sc_serinst) {
1470 /* select serial interface */
1471 #ifdef EPICMEDIADEBUG
1472 printf("%s: serial mode\n", ifp->if_xname);
1473 #endif
1474 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1475 miicfg |= (MIICFG_SERMODEENA | MIICFG_ENABLE);
1476 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1477
1478 /* There is no driver to fill this */
1479 mii->mii_media_active = media;
1480 mii->mii_media_status = 0;
1481
1482 epic_statchg(&sc->sc_dev);
1483 return (0);
1484 }
1485
1486 /* Lookup selected PHY */
1487 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
1488 if (IFM_INST(media) == miisc->mii_inst)
1489 break;
1490 }
1491 if (!miisc) {
1492 printf("epic_mediachange: can't happen\n"); /* ??? panic */
1493 return (0);
1494 }
1495 #ifdef EPICMEDIADEBUG
1496 printf("%s: using phy %s\n", ifp->if_xname,
1497 device_xname(miisc->mii_dev));
1498 #endif
1499
1500 if (miisc->mii_flags & MIIF_HAVEFIBER) {
1501 /* XXX XXX assume it's a Level1 - should check */
1502
1503 /* We have to powerup fiber transceivers */
1504 cfg = PHY_READ(miisc, MII_LXTPHY_CONFIG);
1505 if (IFM_SUBTYPE(media) == IFM_100_FX) {
1506 #ifdef EPICMEDIADEBUG
1507 printf("%s: power up fiber\n", ifp->if_xname);
1508 #endif
1509 cfg |= (CONFIG_LEDC1 | CONFIG_LEDC0);
1510 } else {
1511 #ifdef EPICMEDIADEBUG
1512 printf("%s: power down fiber\n", ifp->if_xname);
1513 #endif
1514 cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0);
1515 }
1516 PHY_WRITE(miisc, MII_LXTPHY_CONFIG, cfg);
1517 }
1518
1519 return rc;
1520 }
1521