smc83c170.c revision 1.79 1 /* $NetBSD: smc83c170.c,v 1.79 2010/04/05 07:19:36 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Device driver for the Standard Microsystems Corp. 83C170
35 * Ethernet PCI Integrated Controller (EPIC/100).
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: smc83c170.c,v 1.79 2010/04/05 07:19:36 joerg Exp $");
40
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52
53 #include <uvm/uvm_extern.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59
60 #include <net/bpf.h>
61
62 #include <sys/bus.h>
63 #include <sys/intr.h>
64
65 #include <dev/mii/miivar.h>
66 #include <dev/mii/lxtphyreg.h>
67
68 #include <dev/ic/smc83c170reg.h>
69 #include <dev/ic/smc83c170var.h>
70
71 void epic_start(struct ifnet *);
72 void epic_watchdog(struct ifnet *);
73 int epic_ioctl(struct ifnet *, u_long, void *);
74 int epic_init(struct ifnet *);
75 void epic_stop(struct ifnet *, int);
76
77 bool epic_shutdown(device_t, int);
78
79 void epic_reset(struct epic_softc *);
80 void epic_rxdrain(struct epic_softc *);
81 int epic_add_rxbuf(struct epic_softc *, int);
82 void epic_read_eeprom(struct epic_softc *, int, int, uint16_t *);
83 void epic_set_mchash(struct epic_softc *);
84 void epic_fixup_clock_source(struct epic_softc *);
85 int epic_mii_read(device_t, int, int);
86 void epic_mii_write(device_t, int, int, int);
87 int epic_mii_wait(struct epic_softc *, uint32_t);
88 void epic_tick(void *);
89
90 void epic_statchg(device_t);
91 int epic_mediachange(struct ifnet *);
92
93 #define INTMASK (INTSTAT_FATAL_INT | INTSTAT_TXU | \
94 INTSTAT_TXC | INTSTAT_RXE | INTSTAT_RQE | INTSTAT_RCC)
95
96 int epic_copy_small = 0;
97
98 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
99
100 /*
101 * Attach an EPIC interface to the system.
102 */
103 void
104 epic_attach(struct epic_softc *sc)
105 {
106 bus_space_tag_t st = sc->sc_st;
107 bus_space_handle_t sh = sc->sc_sh;
108 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
109 int rseg, error, miiflags;
110 u_int i;
111 bus_dma_segment_t seg;
112 uint8_t enaddr[ETHER_ADDR_LEN], devname[12 + 1];
113 uint16_t myea[ETHER_ADDR_LEN / 2], mydevname[6];
114 char *nullbuf;
115
116 callout_init(&sc->sc_mii_callout, 0);
117
118 /*
119 * Allocate the control data structures, and create and load the
120 * DMA map for it.
121 */
122 if ((error = bus_dmamem_alloc(sc->sc_dmat,
123 sizeof(struct epic_control_data) + ETHER_PAD_LEN, PAGE_SIZE, 0,
124 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
125 aprint_error_dev(sc->sc_dev,
126 "unable to allocate control data, error = %d\n", error);
127 goto fail_0;
128 }
129
130 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
131 sizeof(struct epic_control_data) + ETHER_PAD_LEN,
132 (void **)&sc->sc_control_data,
133 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
134 aprint_error_dev(sc->sc_dev,
135 "unable to map control data, error = %d\n", error);
136 goto fail_1;
137 }
138 nullbuf =
139 (char *)sc->sc_control_data + sizeof(struct epic_control_data);
140 memset(nullbuf, 0, ETHER_PAD_LEN);
141
142 if ((error = bus_dmamap_create(sc->sc_dmat,
143 sizeof(struct epic_control_data), 1,
144 sizeof(struct epic_control_data), 0, BUS_DMA_NOWAIT,
145 &sc->sc_cddmamap)) != 0) {
146 aprint_error_dev(sc->sc_dev,
147 "unable to create control data DMA map, error = %d\n",
148 error);
149 goto fail_2;
150 }
151
152 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
153 sc->sc_control_data, sizeof(struct epic_control_data), NULL,
154 BUS_DMA_NOWAIT)) != 0) {
155 aprint_error_dev(sc->sc_dev,
156 "unable to load control data DMA map, error = %d\n",
157 error);
158 goto fail_3;
159 }
160
161 /*
162 * Create the transmit buffer DMA maps.
163 */
164 for (i = 0; i < EPIC_NTXDESC; i++) {
165 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
166 EPIC_NFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
167 &EPIC_DSTX(sc, i)->ds_dmamap)) != 0) {
168 aprint_error_dev(sc->sc_dev,
169 "unable to create tx DMA map %d, error = %d\n",
170 i, error);
171 goto fail_4;
172 }
173 }
174
175 /*
176 * Create the receive buffer DMA maps.
177 */
178 for (i = 0; i < EPIC_NRXDESC; i++) {
179 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
180 MCLBYTES, 0, BUS_DMA_NOWAIT,
181 &EPIC_DSRX(sc, i)->ds_dmamap)) != 0) {
182 aprint_error_dev(sc->sc_dev,
183 "unable to create rx DMA map %d, error = %d\n",
184 i, error);
185 goto fail_5;
186 }
187 EPIC_DSRX(sc, i)->ds_mbuf = NULL;
188 }
189
190 /*
191 * create and map the pad buffer
192 */
193 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
194 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT,&sc->sc_nulldmamap)) != 0) {
195 aprint_error_dev(sc->sc_dev,
196 "unable to create pad buffer DMA map, error = %d\n", error);
197 goto fail_5;
198 }
199
200 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
201 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
202 aprint_error_dev(sc->sc_dev,
203 "unable to load pad buffer DMA map, error = %d\n", error);
204 goto fail_6;
205 }
206 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
207 BUS_DMASYNC_PREWRITE);
208
209 /*
210 * Bring the chip out of low-power mode and reset it to a known state.
211 */
212 bus_space_write_4(st, sh, EPIC_GENCTL, 0);
213 epic_reset(sc);
214
215 /*
216 * Read the Ethernet address from the EEPROM.
217 */
218 epic_read_eeprom(sc, 0, __arraycount(myea), myea);
219 for (i = 0; i < __arraycount(myea); i++) {
220 enaddr[i * 2] = myea[i] & 0xff;
221 enaddr[i * 2 + 1] = myea[i] >> 8;
222 }
223
224 /*
225 * ...and the device name.
226 */
227 epic_read_eeprom(sc, 0x2c, __arraycount(mydevname), mydevname);
228 for (i = 0; i < __arraycount(mydevname); i++) {
229 devname[i * 2] = mydevname[i] & 0xff;
230 devname[i * 2 + 1] = mydevname[i] >> 8;
231 }
232
233 devname[sizeof(mydevname)] = '\0';
234 for (i = sizeof(mydevname) ; i > 0; i--) {
235 if (devname[i - 1] == ' ')
236 devname[i - 1] = '\0';
237 else
238 break;
239 }
240
241 aprint_normal_dev(sc->sc_dev, "%s, Ethernet address %s\n",
242 devname, ether_sprintf(enaddr));
243
244 miiflags = 0;
245 if (sc->sc_hwflags & EPIC_HAS_MII_FIBER)
246 miiflags |= MIIF_HAVEFIBER;
247
248 /*
249 * Initialize our media structures and probe the MII.
250 */
251 sc->sc_mii.mii_ifp = ifp;
252 sc->sc_mii.mii_readreg = epic_mii_read;
253 sc->sc_mii.mii_writereg = epic_mii_write;
254 sc->sc_mii.mii_statchg = epic_statchg;
255
256 sc->sc_ethercom.ec_mii = &sc->sc_mii;
257 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epic_mediachange,
258 ether_mediastatus);
259 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
260 MII_OFFSET_ANY, miiflags);
261 if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
262 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
263 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
264 } else
265 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
266
267 if (sc->sc_hwflags & EPIC_HAS_BNC) {
268 /* use the next free media instance */
269 sc->sc_serinst = sc->sc_mii.mii_instance++;
270 ifmedia_add(&sc->sc_mii.mii_media,
271 IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0, sc->sc_serinst),
272 0, NULL);
273 aprint_normal_dev(sc->sc_dev, "10base2/BNC\n");
274 } else
275 sc->sc_serinst = -1;
276
277 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
278 ifp->if_softc = sc;
279 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
280 ifp->if_ioctl = epic_ioctl;
281 ifp->if_start = epic_start;
282 ifp->if_watchdog = epic_watchdog;
283 ifp->if_init = epic_init;
284 ifp->if_stop = epic_stop;
285 IFQ_SET_READY(&ifp->if_snd);
286
287 /*
288 * We can support 802.1Q VLAN-sized frames.
289 */
290 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
291
292 /*
293 * Attach the interface.
294 */
295 if_attach(ifp);
296 ether_ifattach(ifp, enaddr);
297
298 /*
299 * Make sure the interface is shutdown during reboot.
300 */
301 if (pmf_device_register1(sc->sc_dev, NULL, NULL, epic_shutdown))
302 pmf_class_network_register(sc->sc_dev, ifp);
303 else
304 aprint_error_dev(sc->sc_dev,
305 "couldn't establish power handler\n");
306
307 return;
308
309 /*
310 * Free any resources we've allocated during the failed attach
311 * attempt. Do this in reverse order and fall through.
312 */
313 fail_6:
314 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
315 fail_5:
316 for (i = 0; i < EPIC_NRXDESC; i++) {
317 if (EPIC_DSRX(sc, i)->ds_dmamap != NULL)
318 bus_dmamap_destroy(sc->sc_dmat,
319 EPIC_DSRX(sc, i)->ds_dmamap);
320 }
321 fail_4:
322 for (i = 0; i < EPIC_NTXDESC; i++) {
323 if (EPIC_DSTX(sc, i)->ds_dmamap != NULL)
324 bus_dmamap_destroy(sc->sc_dmat,
325 EPIC_DSTX(sc, i)->ds_dmamap);
326 }
327 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
328 fail_3:
329 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
330 fail_2:
331 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
332 sizeof(struct epic_control_data));
333 fail_1:
334 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
335 fail_0:
336 return;
337 }
338
339 /*
340 * Shutdown hook. Make sure the interface is stopped at reboot.
341 */
342 bool
343 epic_shutdown(device_t self, int howto)
344 {
345 struct epic_softc *sc = device_private(self);
346
347 epic_stop(&sc->sc_ethercom.ec_if, 1);
348
349 return true;
350 }
351
352 /*
353 * Start packet transmission on the interface.
354 * [ifnet interface function]
355 */
356 void
357 epic_start(struct ifnet *ifp)
358 {
359 struct epic_softc *sc = ifp->if_softc;
360 struct mbuf *m0, *m;
361 struct epic_txdesc *txd;
362 struct epic_descsoft *ds;
363 struct epic_fraglist *fr;
364 bus_dmamap_t dmamap;
365 int error, firsttx, nexttx, opending, seg;
366 u_int len;
367
368 /*
369 * Remember the previous txpending and the first transmit
370 * descriptor we use.
371 */
372 opending = sc->sc_txpending;
373 firsttx = EPIC_NEXTTX(sc->sc_txlast);
374
375 /*
376 * Loop through the send queue, setting up transmit descriptors
377 * until we drain the queue, or use up all available transmit
378 * descriptors.
379 */
380 while (sc->sc_txpending < EPIC_NTXDESC) {
381 /*
382 * Grab a packet off the queue.
383 */
384 IFQ_POLL(&ifp->if_snd, m0);
385 if (m0 == NULL)
386 break;
387 m = NULL;
388
389 /*
390 * Get the last and next available transmit descriptor.
391 */
392 nexttx = EPIC_NEXTTX(sc->sc_txlast);
393 txd = EPIC_CDTX(sc, nexttx);
394 fr = EPIC_CDFL(sc, nexttx);
395 ds = EPIC_DSTX(sc, nexttx);
396 dmamap = ds->ds_dmamap;
397
398 /*
399 * Load the DMA map. If this fails, the packet either
400 * didn't fit in the alloted number of frags, or we were
401 * short on resources. In this case, we'll copy and try
402 * again.
403 */
404 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
405 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
406 (m0->m_pkthdr.len < ETHER_PAD_LEN &&
407 dmamap-> dm_nsegs == EPIC_NFRAGS)) {
408 if (error == 0)
409 bus_dmamap_unload(sc->sc_dmat, dmamap);
410
411 MGETHDR(m, M_DONTWAIT, MT_DATA);
412 if (m == NULL) {
413 printf("%s: unable to allocate Tx mbuf\n",
414 device_xname(sc->sc_dev));
415 break;
416 }
417 if (m0->m_pkthdr.len > MHLEN) {
418 MCLGET(m, M_DONTWAIT);
419 if ((m->m_flags & M_EXT) == 0) {
420 printf("%s: unable to allocate Tx "
421 "cluster\n",
422 device_xname(sc->sc_dev));
423 m_freem(m);
424 break;
425 }
426 }
427 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
428 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
429 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
430 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
431 if (error) {
432 printf("%s: unable to load Tx buffer, "
433 "error = %d\n", device_xname(sc->sc_dev),
434 error);
435 break;
436 }
437 }
438 IFQ_DEQUEUE(&ifp->if_snd, m0);
439 if (m != NULL) {
440 m_freem(m0);
441 m0 = m;
442 }
443
444 /* Initialize the fraglist. */
445 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
446 fr->ef_frags[seg].ef_addr =
447 dmamap->dm_segs[seg].ds_addr;
448 fr->ef_frags[seg].ef_length =
449 dmamap->dm_segs[seg].ds_len;
450 }
451 len = m0->m_pkthdr.len;
452 if (len < ETHER_PAD_LEN) {
453 fr->ef_frags[seg].ef_addr = sc->sc_nulldma;
454 fr->ef_frags[seg].ef_length = ETHER_PAD_LEN - len;
455 len = ETHER_PAD_LEN;
456 seg++;
457 }
458 fr->ef_nfrags = seg;
459
460 EPIC_CDFLSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
461
462 /* Sync the DMA map. */
463 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
464 BUS_DMASYNC_PREWRITE);
465
466 /*
467 * Store a pointer to the packet so we can free it later.
468 */
469 ds->ds_mbuf = m0;
470
471 /*
472 * Fill in the transmit descriptor.
473 */
474 txd->et_control = ET_TXCTL_LASTDESC | ET_TXCTL_FRAGLIST;
475
476 /*
477 * If this is the first descriptor we're enqueueing,
478 * don't give it to the EPIC yet. That could cause
479 * a race condition. We'll do it below.
480 */
481 if (nexttx == firsttx)
482 txd->et_txstatus = TXSTAT_TXLENGTH(len);
483 else
484 txd->et_txstatus =
485 TXSTAT_TXLENGTH(len) | ET_TXSTAT_OWNER;
486
487 EPIC_CDTXSYNC(sc, nexttx,
488 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
489
490 /* Advance the tx pointer. */
491 sc->sc_txpending++;
492 sc->sc_txlast = nexttx;
493
494 /*
495 * Pass the packet to any BPF listeners.
496 */
497 bpf_mtap(ifp, m0);
498 }
499
500 if (sc->sc_txpending == EPIC_NTXDESC) {
501 /* No more slots left; notify upper layer. */
502 ifp->if_flags |= IFF_OACTIVE;
503 }
504
505 if (sc->sc_txpending != opending) {
506 /*
507 * We enqueued packets. If the transmitter was idle,
508 * reset the txdirty pointer.
509 */
510 if (opending == 0)
511 sc->sc_txdirty = firsttx;
512
513 /*
514 * Cause a transmit interrupt to happen on the
515 * last packet we enqueued.
516 */
517 EPIC_CDTX(sc, sc->sc_txlast)->et_control |= ET_TXCTL_IAF;
518 EPIC_CDTXSYNC(sc, sc->sc_txlast,
519 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
520
521 /*
522 * The entire packet chain is set up. Give the
523 * first descriptor to the EPIC now.
524 */
525 EPIC_CDTX(sc, firsttx)->et_txstatus |= ET_TXSTAT_OWNER;
526 EPIC_CDTXSYNC(sc, firsttx,
527 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
528
529 /* Start the transmitter. */
530 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
531 COMMAND_TXQUEUED);
532
533 /* Set a watchdog timer in case the chip flakes out. */
534 ifp->if_timer = 5;
535 }
536 }
537
538 /*
539 * Watchdog timer handler.
540 * [ifnet interface function]
541 */
542 void
543 epic_watchdog(struct ifnet *ifp)
544 {
545 struct epic_softc *sc = ifp->if_softc;
546
547 printf("%s: device timeout\n", device_xname(sc->sc_dev));
548 ifp->if_oerrors++;
549
550 (void)epic_init(ifp);
551 }
552
553 /*
554 * Handle control requests from the operator.
555 * [ifnet interface function]
556 */
557 int
558 epic_ioctl(struct ifnet *ifp, u_long cmd, void *data)
559 {
560 struct epic_softc *sc = ifp->if_softc;
561 int s, error;
562
563 s = splnet();
564
565 error = ether_ioctl(ifp, cmd, data);
566 if (error == ENETRESET) {
567 /*
568 * Multicast list has changed; set the hardware filter
569 * accordingly. Update our idea of the current media;
570 * epic_set_mchash() needs to know what it is.
571 */
572 if (ifp->if_flags & IFF_RUNNING) {
573 mii_pollstat(&sc->sc_mii);
574 epic_set_mchash(sc);
575 }
576 error = 0;
577 }
578
579 splx(s);
580 return error;
581 }
582
583 /*
584 * Interrupt handler.
585 */
586 int
587 epic_intr(void *arg)
588 {
589 struct epic_softc *sc = arg;
590 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
591 struct epic_rxdesc *rxd;
592 struct epic_txdesc *txd;
593 struct epic_descsoft *ds;
594 struct mbuf *m;
595 uint32_t intstat, rxstatus, txstatus;
596 int i, claimed = 0;
597 u_int len;
598
599 top:
600 /*
601 * Get the interrupt status from the EPIC.
602 */
603 intstat = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT);
604 if ((intstat & INTSTAT_INT_ACTV) == 0)
605 return claimed;
606
607 claimed = 1;
608
609 /*
610 * Acknowledge the interrupt.
611 */
612 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT,
613 intstat & INTMASK);
614
615 /*
616 * Check for receive interrupts.
617 */
618 if (intstat & (INTSTAT_RCC | INTSTAT_RXE | INTSTAT_RQE)) {
619 for (i = sc->sc_rxptr;; i = EPIC_NEXTRX(i)) {
620 rxd = EPIC_CDRX(sc, i);
621 ds = EPIC_DSRX(sc, i);
622
623 EPIC_CDRXSYNC(sc, i,
624 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
625
626 rxstatus = rxd->er_rxstatus;
627 if (rxstatus & ER_RXSTAT_OWNER) {
628 /*
629 * We have processed all of the
630 * receive buffers.
631 */
632 break;
633 }
634
635 /*
636 * Make sure the packet arrived intact. If an error
637 * occurred, update stats and reset the descriptor.
638 * The buffer will be reused the next time the
639 * descriptor comes up in the ring.
640 */
641 if ((rxstatus & ER_RXSTAT_PKTINTACT) == 0) {
642 if (rxstatus & ER_RXSTAT_CRCERROR)
643 printf("%s: CRC error\n",
644 device_xname(sc->sc_dev));
645 if (rxstatus & ER_RXSTAT_ALIGNERROR)
646 printf("%s: alignment error\n",
647 device_xname(sc->sc_dev));
648 ifp->if_ierrors++;
649 EPIC_INIT_RXDESC(sc, i);
650 continue;
651 }
652
653 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
654 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
655
656 /*
657 * The EPIC includes the CRC with every packet;
658 * trim it.
659 */
660 len = RXSTAT_RXLENGTH(rxstatus) - ETHER_CRC_LEN;
661
662 if (len < sizeof(struct ether_header)) {
663 /*
664 * Runt packet; drop it now.
665 */
666 ifp->if_ierrors++;
667 EPIC_INIT_RXDESC(sc, i);
668 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
669 ds->ds_dmamap->dm_mapsize,
670 BUS_DMASYNC_PREREAD);
671 continue;
672 }
673
674 /*
675 * If the packet is small enough to fit in a
676 * single header mbuf, allocate one and copy
677 * the data into it. This greatly reduces
678 * memory consumption when we receive lots
679 * of small packets.
680 *
681 * Otherwise, we add a new buffer to the receive
682 * chain. If this fails, we drop the packet and
683 * recycle the old buffer.
684 */
685 if (epic_copy_small != 0 && len <= MHLEN) {
686 MGETHDR(m, M_DONTWAIT, MT_DATA);
687 if (m == NULL)
688 goto dropit;
689 memcpy(mtod(m, void *),
690 mtod(ds->ds_mbuf, void *), len);
691 EPIC_INIT_RXDESC(sc, i);
692 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
693 ds->ds_dmamap->dm_mapsize,
694 BUS_DMASYNC_PREREAD);
695 } else {
696 m = ds->ds_mbuf;
697 if (epic_add_rxbuf(sc, i) != 0) {
698 dropit:
699 ifp->if_ierrors++;
700 EPIC_INIT_RXDESC(sc, i);
701 bus_dmamap_sync(sc->sc_dmat,
702 ds->ds_dmamap, 0,
703 ds->ds_dmamap->dm_mapsize,
704 BUS_DMASYNC_PREREAD);
705 continue;
706 }
707 }
708
709 m->m_pkthdr.rcvif = ifp;
710 m->m_pkthdr.len = m->m_len = len;
711
712 /*
713 * Pass this up to any BPF listeners, but only
714 * pass it up the stack if it's for us.
715 */
716 bpf_mtap(ifp, m);
717
718 /* Pass it on. */
719 (*ifp->if_input)(ifp, m);
720 ifp->if_ipackets++;
721 }
722
723 /* Update the receive pointer. */
724 sc->sc_rxptr = i;
725
726 /*
727 * Check for receive queue underflow.
728 */
729 if (intstat & INTSTAT_RQE) {
730 printf("%s: receiver queue empty\n",
731 device_xname(sc->sc_dev));
732 /*
733 * Ring is already built; just restart the
734 * receiver.
735 */
736 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_PRCDAR,
737 EPIC_CDRXADDR(sc, sc->sc_rxptr));
738 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
739 COMMAND_RXQUEUED | COMMAND_START_RX);
740 }
741 }
742
743 /*
744 * Check for transmission complete interrupts.
745 */
746 if (intstat & (INTSTAT_TXC | INTSTAT_TXU)) {
747 ifp->if_flags &= ~IFF_OACTIVE;
748 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
749 i = EPIC_NEXTTX(i), sc->sc_txpending--) {
750 txd = EPIC_CDTX(sc, i);
751 ds = EPIC_DSTX(sc, i);
752
753 EPIC_CDTXSYNC(sc, i,
754 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
755
756 txstatus = txd->et_txstatus;
757 if (txstatus & ET_TXSTAT_OWNER)
758 break;
759
760 EPIC_CDFLSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
761
762 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
763 0, ds->ds_dmamap->dm_mapsize,
764 BUS_DMASYNC_POSTWRITE);
765 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
766 m_freem(ds->ds_mbuf);
767 ds->ds_mbuf = NULL;
768
769 /*
770 * Check for errors and collisions.
771 */
772 if ((txstatus & ET_TXSTAT_PACKETTX) == 0)
773 ifp->if_oerrors++;
774 else
775 ifp->if_opackets++;
776 ifp->if_collisions +=
777 TXSTAT_COLLISIONS(txstatus);
778 if (txstatus & ET_TXSTAT_CARSENSELOST)
779 printf("%s: lost carrier\n",
780 device_xname(sc->sc_dev));
781 }
782
783 /* Update the dirty transmit buffer pointer. */
784 sc->sc_txdirty = i;
785
786 /*
787 * Cancel the watchdog timer if there are no pending
788 * transmissions.
789 */
790 if (sc->sc_txpending == 0)
791 ifp->if_timer = 0;
792
793 /*
794 * Kick the transmitter after a DMA underrun.
795 */
796 if (intstat & INTSTAT_TXU) {
797 printf("%s: transmit underrun\n",
798 device_xname(sc->sc_dev));
799 bus_space_write_4(sc->sc_st, sc->sc_sh,
800 EPIC_COMMAND, COMMAND_TXUGO);
801 if (sc->sc_txpending)
802 bus_space_write_4(sc->sc_st, sc->sc_sh,
803 EPIC_COMMAND, COMMAND_TXQUEUED);
804 }
805
806 /*
807 * Try to get more packets going.
808 */
809 epic_start(ifp);
810 }
811
812 /*
813 * Check for fatal interrupts.
814 */
815 if (intstat & INTSTAT_FATAL_INT) {
816 if (intstat & INTSTAT_PTA)
817 printf("%s: PCI target abort error\n",
818 device_xname(sc->sc_dev));
819 else if (intstat & INTSTAT_PMA)
820 printf("%s: PCI master abort error\n",
821 device_xname(sc->sc_dev));
822 else if (intstat & INTSTAT_APE)
823 printf("%s: PCI address parity error\n",
824 device_xname(sc->sc_dev));
825 else if (intstat & INTSTAT_DPE)
826 printf("%s: PCI data parity error\n",
827 device_xname(sc->sc_dev));
828 else
829 printf("%s: unknown fatal error\n",
830 device_xname(sc->sc_dev));
831 (void)epic_init(ifp);
832 }
833
834 /*
835 * Check for more interrupts.
836 */
837 goto top;
838 }
839
840 /*
841 * One second timer, used to tick the MII.
842 */
843 void
844 epic_tick(void *arg)
845 {
846 struct epic_softc *sc = arg;
847 int s;
848
849 s = splnet();
850 mii_tick(&sc->sc_mii);
851 splx(s);
852
853 callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
854 }
855
856 /*
857 * Fixup the clock source on the EPIC.
858 */
859 void
860 epic_fixup_clock_source(struct epic_softc *sc)
861 {
862 int i;
863
864 /*
865 * According to SMC Application Note 7-15, the EPIC's clock
866 * source is incorrect following a reset. This manifests itself
867 * as failure to recognize when host software has written to
868 * a register on the EPIC. The appnote recommends issuing at
869 * least 16 consecutive writes to the CLOCK TEST bit to correctly
870 * configure the clock source.
871 */
872 for (i = 0; i < 16; i++)
873 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TEST,
874 TEST_CLOCKTEST);
875 }
876
877 /*
878 * Perform a soft reset on the EPIC.
879 */
880 void
881 epic_reset(struct epic_softc *sc)
882 {
883
884 epic_fixup_clock_source(sc);
885
886 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, 0);
887 delay(100);
888 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, GENCTL_SOFTRESET);
889 delay(100);
890
891 epic_fixup_clock_source(sc);
892 }
893
894 /*
895 * Initialize the interface. Must be called at splnet().
896 */
897 int
898 epic_init(struct ifnet *ifp)
899 {
900 struct epic_softc *sc = ifp->if_softc;
901 bus_space_tag_t st = sc->sc_st;
902 bus_space_handle_t sh = sc->sc_sh;
903 const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
904 struct epic_txdesc *txd;
905 struct epic_descsoft *ds;
906 uint32_t genctl, reg0;
907 int i, error = 0;
908
909 /*
910 * Cancel any pending I/O.
911 */
912 epic_stop(ifp, 0);
913
914 /*
915 * Reset the EPIC to a known state.
916 */
917 epic_reset(sc);
918
919 /*
920 * Magical mystery initialization.
921 */
922 bus_space_write_4(st, sh, EPIC_TXTEST, 0);
923
924 /*
925 * Initialize the EPIC genctl register:
926 *
927 * - 64 byte receive FIFO threshold
928 * - automatic advance to next receive frame
929 */
930 genctl = GENCTL_RX_FIFO_THRESH0 | GENCTL_ONECOPY;
931 #if BYTE_ORDER == BIG_ENDIAN
932 genctl |= GENCTL_BIG_ENDIAN;
933 #endif
934 bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
935
936 /*
937 * Reset the MII bus and PHY.
938 */
939 reg0 = bus_space_read_4(st, sh, EPIC_NVCTL);
940 bus_space_write_4(st, sh, EPIC_NVCTL, reg0 | NVCTL_GPIO1 | NVCTL_GPOE1);
941 bus_space_write_4(st, sh, EPIC_MIICFG, MIICFG_ENASER);
942 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_RESET_PHY);
943 delay(100);
944 bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
945 delay(1000);
946 bus_space_write_4(st, sh, EPIC_NVCTL, reg0);
947
948 /*
949 * Initialize Ethernet address.
950 */
951 reg0 = enaddr[1] << 8 | enaddr[0];
952 bus_space_write_4(st, sh, EPIC_LAN0, reg0);
953 reg0 = enaddr[3] << 8 | enaddr[2];
954 bus_space_write_4(st, sh, EPIC_LAN1, reg0);
955 reg0 = enaddr[5] << 8 | enaddr[4];
956 bus_space_write_4(st, sh, EPIC_LAN2, reg0);
957
958 /*
959 * Initialize receive control. Remember the external buffer
960 * size setting.
961 */
962 reg0 = bus_space_read_4(st, sh, EPIC_RXCON) &
963 (RXCON_EXTBUFSIZESEL1 | RXCON_EXTBUFSIZESEL0);
964 reg0 |= (RXCON_RXMULTICAST | RXCON_RXBROADCAST);
965 if (ifp->if_flags & IFF_PROMISC)
966 reg0 |= RXCON_PROMISCMODE;
967 bus_space_write_4(st, sh, EPIC_RXCON, reg0);
968
969 /* Set the current media. */
970 if ((error = epic_mediachange(ifp)) != 0)
971 goto out;
972
973 /* Set up the multicast hash table. */
974 epic_set_mchash(sc);
975
976 /*
977 * Initialize the transmit descriptor ring. txlast is initialized
978 * to the end of the list so that it will wrap around to the first
979 * descriptor when the first packet is transmitted.
980 */
981 for (i = 0; i < EPIC_NTXDESC; i++) {
982 txd = EPIC_CDTX(sc, i);
983 memset(txd, 0, sizeof(struct epic_txdesc));
984 txd->et_bufaddr = EPIC_CDFLADDR(sc, i);
985 txd->et_nextdesc = EPIC_CDTXADDR(sc, EPIC_NEXTTX(i));
986 EPIC_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
987 }
988 sc->sc_txpending = 0;
989 sc->sc_txdirty = 0;
990 sc->sc_txlast = EPIC_NTXDESC - 1;
991
992 /*
993 * Initialize the receive descriptor ring.
994 */
995 for (i = 0; i < EPIC_NRXDESC; i++) {
996 ds = EPIC_DSRX(sc, i);
997 if (ds->ds_mbuf == NULL) {
998 if ((error = epic_add_rxbuf(sc, i)) != 0) {
999 printf("%s: unable to allocate or map rx "
1000 "buffer %d error = %d\n",
1001 device_xname(sc->sc_dev), i, error);
1002 /*
1003 * XXX Should attempt to run with fewer receive
1004 * XXX buffers instead of just failing.
1005 */
1006 epic_rxdrain(sc);
1007 goto out;
1008 }
1009 } else
1010 EPIC_INIT_RXDESC(sc, i);
1011 }
1012 sc->sc_rxptr = 0;
1013
1014 /*
1015 * Initialize the interrupt mask and enable interrupts.
1016 */
1017 bus_space_write_4(st, sh, EPIC_INTMASK, INTMASK);
1018 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_INTENA);
1019
1020 /*
1021 * Give the transmit and receive rings to the EPIC.
1022 */
1023 bus_space_write_4(st, sh, EPIC_PTCDAR,
1024 EPIC_CDTXADDR(sc, EPIC_NEXTTX(sc->sc_txlast)));
1025 bus_space_write_4(st, sh, EPIC_PRCDAR,
1026 EPIC_CDRXADDR(sc, sc->sc_rxptr));
1027
1028 /*
1029 * Set the EPIC in motion.
1030 */
1031 bus_space_write_4(st, sh, EPIC_COMMAND,
1032 COMMAND_RXQUEUED | COMMAND_START_RX);
1033
1034 /*
1035 * ...all done!
1036 */
1037 ifp->if_flags |= IFF_RUNNING;
1038 ifp->if_flags &= ~IFF_OACTIVE;
1039
1040 /*
1041 * Start the one second clock.
1042 */
1043 callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
1044
1045 /*
1046 * Attempt to start output on the interface.
1047 */
1048 epic_start(ifp);
1049
1050 out:
1051 if (error)
1052 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1053 return error;
1054 }
1055
1056 /*
1057 * Drain the receive queue.
1058 */
1059 void
1060 epic_rxdrain(struct epic_softc *sc)
1061 {
1062 struct epic_descsoft *ds;
1063 int i;
1064
1065 for (i = 0; i < EPIC_NRXDESC; i++) {
1066 ds = EPIC_DSRX(sc, i);
1067 if (ds->ds_mbuf != NULL) {
1068 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1069 m_freem(ds->ds_mbuf);
1070 ds->ds_mbuf = NULL;
1071 }
1072 }
1073 }
1074
1075 /*
1076 * Stop transmission on the interface.
1077 */
1078 void
1079 epic_stop(struct ifnet *ifp, int disable)
1080 {
1081 struct epic_softc *sc = ifp->if_softc;
1082 bus_space_tag_t st = sc->sc_st;
1083 bus_space_handle_t sh = sc->sc_sh;
1084 struct epic_descsoft *ds;
1085 uint32_t reg;
1086 int i;
1087
1088 /*
1089 * Stop the one second clock.
1090 */
1091 callout_stop(&sc->sc_mii_callout);
1092
1093 /* Down the MII. */
1094 mii_down(&sc->sc_mii);
1095
1096 /* Paranoia... */
1097 epic_fixup_clock_source(sc);
1098
1099 /*
1100 * Disable interrupts.
1101 */
1102 reg = bus_space_read_4(st, sh, EPIC_GENCTL);
1103 bus_space_write_4(st, sh, EPIC_GENCTL, reg & ~GENCTL_INTENA);
1104 bus_space_write_4(st, sh, EPIC_INTMASK, 0);
1105
1106 /*
1107 * Stop the DMA engine and take the receiver off-line.
1108 */
1109 bus_space_write_4(st, sh, EPIC_COMMAND, COMMAND_STOP_RDMA |
1110 COMMAND_STOP_TDMA | COMMAND_STOP_RX);
1111
1112 /*
1113 * Release any queued transmit buffers.
1114 */
1115 for (i = 0; i < EPIC_NTXDESC; i++) {
1116 ds = EPIC_DSTX(sc, i);
1117 if (ds->ds_mbuf != NULL) {
1118 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1119 m_freem(ds->ds_mbuf);
1120 ds->ds_mbuf = NULL;
1121 }
1122 }
1123
1124 /*
1125 * Mark the interface down and cancel the watchdog timer.
1126 */
1127 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1128 ifp->if_timer = 0;
1129
1130 if (disable)
1131 epic_rxdrain(sc);
1132 }
1133
1134 /*
1135 * Read the EPIC Serial EEPROM.
1136 */
1137 void
1138 epic_read_eeprom(struct epic_softc *sc, int word, int wordcnt, uint16_t *data)
1139 {
1140 bus_space_tag_t st = sc->sc_st;
1141 bus_space_handle_t sh = sc->sc_sh;
1142 uint16_t reg;
1143 int i, x;
1144
1145 #define EEPROM_WAIT_READY(st, sh) \
1146 while ((bus_space_read_4((st), (sh), EPIC_EECTL) & EECTL_EERDY) == 0) \
1147 /* nothing */
1148
1149 /*
1150 * Enable the EEPROM.
1151 */
1152 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1153 EEPROM_WAIT_READY(st, sh);
1154
1155 for (i = 0; i < wordcnt; i++) {
1156 /* Send CHIP SELECT for one clock tick. */
1157 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE|EECTL_EECS);
1158 EEPROM_WAIT_READY(st, sh);
1159
1160 /* Shift in the READ opcode. */
1161 for (x = 3; x > 0; x--) {
1162 reg = EECTL_ENABLE|EECTL_EECS;
1163 if (EPIC_EEPROM_OPC_READ & (1 << (x - 1)))
1164 reg |= EECTL_EEDI;
1165 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1166 EEPROM_WAIT_READY(st, sh);
1167 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1168 EEPROM_WAIT_READY(st, sh);
1169 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1170 EEPROM_WAIT_READY(st, sh);
1171 }
1172
1173 /* Shift in address. */
1174 for (x = 6; x > 0; x--) {
1175 reg = EECTL_ENABLE|EECTL_EECS;
1176 if ((word + i) & (1 << (x - 1)))
1177 reg |= EECTL_EEDI;
1178 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1179 EEPROM_WAIT_READY(st, sh);
1180 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1181 EEPROM_WAIT_READY(st, sh);
1182 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1183 EEPROM_WAIT_READY(st, sh);
1184 }
1185
1186 /* Shift out data. */
1187 reg = EECTL_ENABLE|EECTL_EECS;
1188 data[i] = 0;
1189 for (x = 16; x > 0; x--) {
1190 bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
1191 EEPROM_WAIT_READY(st, sh);
1192 if (bus_space_read_4(st, sh, EPIC_EECTL) & EECTL_EEDO)
1193 data[i] |= (1 << (x - 1));
1194 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1195 EEPROM_WAIT_READY(st, sh);
1196 }
1197
1198 /* Clear CHIP SELECT. */
1199 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1200 EEPROM_WAIT_READY(st, sh);
1201 }
1202
1203 /*
1204 * Disable the EEPROM.
1205 */
1206 bus_space_write_4(st, sh, EPIC_EECTL, 0);
1207
1208 #undef EEPROM_WAIT_READY
1209 }
1210
1211 /*
1212 * Add a receive buffer to the indicated descriptor.
1213 */
1214 int
1215 epic_add_rxbuf(struct epic_softc *sc, int idx)
1216 {
1217 struct epic_descsoft *ds = EPIC_DSRX(sc, idx);
1218 struct mbuf *m;
1219 int error;
1220
1221 MGETHDR(m, M_DONTWAIT, MT_DATA);
1222 if (m == NULL)
1223 return ENOBUFS;
1224
1225 MCLGET(m, M_DONTWAIT);
1226 if ((m->m_flags & M_EXT) == 0) {
1227 m_freem(m);
1228 return ENOBUFS;
1229 }
1230
1231 if (ds->ds_mbuf != NULL)
1232 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1233
1234 ds->ds_mbuf = m;
1235
1236 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1237 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1238 BUS_DMA_READ|BUS_DMA_NOWAIT);
1239 if (error) {
1240 printf("%s: can't load rx DMA map %d, error = %d\n",
1241 device_xname(sc->sc_dev), idx, error);
1242 panic("%s", __func__); /* XXX */
1243 }
1244
1245 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1246 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1247
1248 EPIC_INIT_RXDESC(sc, idx);
1249
1250 return 0;
1251 }
1252
1253 /*
1254 * Set the EPIC multicast hash table.
1255 *
1256 * NOTE: We rely on a recently-updated mii_media_active here!
1257 */
1258 void
1259 epic_set_mchash(struct epic_softc *sc)
1260 {
1261 struct ethercom *ec = &sc->sc_ethercom;
1262 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1263 struct ether_multi *enm;
1264 struct ether_multistep step;
1265 uint32_t hash, mchash[4];
1266
1267 /*
1268 * Set up the multicast address filter by passing all multicast
1269 * addresses through a CRC generator, and then using the low-order
1270 * 6 bits as an index into the 64 bit multicast hash table (only
1271 * the lower 16 bits of each 32 bit multicast hash register are
1272 * valid). The high order bits select the register, while the
1273 * rest of the bits select the bit within the register.
1274 */
1275
1276 if (ifp->if_flags & IFF_PROMISC)
1277 goto allmulti;
1278
1279 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
1280 /* XXX hardware bug in 10Mbps mode. */
1281 goto allmulti;
1282 }
1283
1284 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0;
1285
1286 ETHER_FIRST_MULTI(step, ec, enm);
1287 while (enm != NULL) {
1288 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1289 /*
1290 * We must listen to a range of multicast addresses.
1291 * For now, just accept all multicasts, rather than
1292 * trying to set only those filter bits needed to match
1293 * the range. (At this time, the only use of address
1294 * ranges is for IP multicast routing, for which the
1295 * range is big enough to require all bits set.)
1296 */
1297 goto allmulti;
1298 }
1299
1300 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1301 hash >>= 26;
1302
1303 /* Set the corresponding bit in the hash table. */
1304 mchash[hash >> 4] |= 1 << (hash & 0xf);
1305
1306 ETHER_NEXT_MULTI(step, enm);
1307 }
1308
1309 ifp->if_flags &= ~IFF_ALLMULTI;
1310 goto sethash;
1311
1312 allmulti:
1313 ifp->if_flags |= IFF_ALLMULTI;
1314 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xffff;
1315
1316 sethash:
1317 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC0, mchash[0]);
1318 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC1, mchash[1]);
1319 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC2, mchash[2]);
1320 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC3, mchash[3]);
1321 }
1322
1323 /*
1324 * Wait for the MII to become ready.
1325 */
1326 int
1327 epic_mii_wait(struct epic_softc *sc, uint32_t rw)
1328 {
1329 int i;
1330
1331 for (i = 0; i < 50; i++) {
1332 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL) & rw)
1333 == 0)
1334 break;
1335 delay(2);
1336 }
1337 if (i == 50) {
1338 printf("%s: MII timed out\n", device_xname(sc->sc_dev));
1339 return 1;
1340 }
1341
1342 return 0;
1343 }
1344
1345 /*
1346 * Read from the MII.
1347 */
1348 int
1349 epic_mii_read(device_t self, int phy, int reg)
1350 {
1351 struct epic_softc *sc = device_private(self);
1352
1353 if (epic_mii_wait(sc, MMCTL_WRITE))
1354 return 0;
1355
1356 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1357 MMCTL_ARG(phy, reg, MMCTL_READ));
1358
1359 if (epic_mii_wait(sc, MMCTL_READ))
1360 return 0;
1361
1362 return bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA) &
1363 MMDATA_MASK;
1364 }
1365
1366 /*
1367 * Write to the MII.
1368 */
1369 void
1370 epic_mii_write(device_t self, int phy, int reg, int val)
1371 {
1372 struct epic_softc *sc = device_private(self);
1373
1374 if (epic_mii_wait(sc, MMCTL_WRITE))
1375 return;
1376
1377 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA, val);
1378 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1379 MMCTL_ARG(phy, reg, MMCTL_WRITE));
1380 }
1381
1382 /*
1383 * Callback from PHY when media changes.
1384 */
1385 void
1386 epic_statchg(device_t self)
1387 {
1388 struct epic_softc *sc = device_private(self);
1389 uint32_t txcon, miicfg;
1390
1391 /*
1392 * Update loopback bits in TXCON to reflect duplex mode.
1393 */
1394 txcon = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_TXCON);
1395 if (sc->sc_mii.mii_media_active & IFM_FDX)
1396 txcon |= (TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1397 else
1398 txcon &= ~(TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
1399 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TXCON, txcon);
1400
1401 /* On some cards we need manualy set fullduplex led */
1402 if (sc->sc_hwflags & EPIC_DUPLEXLED_ON_694) {
1403 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1404 if (IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX)
1405 miicfg |= MIICFG_ENABLE;
1406 else
1407 miicfg &= ~MIICFG_ENABLE;
1408 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1409 }
1410
1411 /*
1412 * There is a multicast filter bug in 10Mbps mode. Kick the
1413 * multicast filter in case the speed changed.
1414 */
1415 epic_set_mchash(sc);
1416 }
1417
1418 /*
1419 * Callback from ifmedia to request new media setting.
1420 *
1421 * XXX Looks to me like some of this complexity should move into
1422 * XXX one or two custom PHY drivers. --dyoung
1423 */
1424 int
1425 epic_mediachange(struct ifnet *ifp)
1426 {
1427 struct epic_softc *sc = ifp->if_softc;
1428 struct mii_data *mii = &sc->sc_mii;
1429 struct ifmedia *ifm = &mii->mii_media;
1430 int media = ifm->ifm_cur->ifm_media;
1431 uint32_t miicfg;
1432 struct mii_softc *miisc;
1433 int cfg, rc;
1434
1435 if ((ifp->if_flags & IFF_UP) == 0)
1436 return 0;
1437
1438 if (IFM_INST(media) != sc->sc_serinst) {
1439 /* If we're not selecting serial interface, select MII mode */
1440 #ifdef EPICMEDIADEBUG
1441 printf("%s: parallel mode\n", ifp->if_xname);
1442 #endif
1443 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1444 miicfg &= ~MIICFG_SERMODEENA;
1445 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1446 }
1447
1448 if ((rc = mii_mediachg(mii)) == ENXIO)
1449 rc = 0;
1450
1451 if (IFM_INST(media) == sc->sc_serinst) {
1452 /* select serial interface */
1453 #ifdef EPICMEDIADEBUG
1454 printf("%s: serial mode\n", ifp->if_xname);
1455 #endif
1456 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1457 miicfg |= (MIICFG_SERMODEENA | MIICFG_ENABLE);
1458 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1459
1460 /* There is no driver to fill this */
1461 mii->mii_media_active = media;
1462 mii->mii_media_status = 0;
1463
1464 epic_statchg(sc->sc_dev);
1465 return 0;
1466 }
1467
1468 /* Lookup selected PHY */
1469 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
1470 if (IFM_INST(media) == miisc->mii_inst)
1471 break;
1472 }
1473 if (!miisc) {
1474 printf("%s: can't happen\n", __func__); /* ??? panic */
1475 return 0;
1476 }
1477 #ifdef EPICMEDIADEBUG
1478 printf("%s: using phy %s\n", ifp->if_xname,
1479 device_xname(miisc->mii_dev));
1480 #endif
1481
1482 if (miisc->mii_flags & MIIF_HAVEFIBER) {
1483 /* XXX XXX assume it's a Level1 - should check */
1484
1485 /* We have to powerup fiber transceivers */
1486 cfg = PHY_READ(miisc, MII_LXTPHY_CONFIG);
1487 if (IFM_SUBTYPE(media) == IFM_100_FX) {
1488 #ifdef EPICMEDIADEBUG
1489 printf("%s: power up fiber\n", ifp->if_xname);
1490 #endif
1491 cfg |= (CONFIG_LEDC1 | CONFIG_LEDC0);
1492 } else {
1493 #ifdef EPICMEDIADEBUG
1494 printf("%s: power down fiber\n", ifp->if_xname);
1495 #endif
1496 cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0);
1497 }
1498 PHY_WRITE(miisc, MII_LXTPHY_CONFIG, cfg);
1499 }
1500
1501 return rc;
1502 }
1503