smc83c170.c revision 1.93 1 /* $NetBSD: smc83c170.c,v 1.93 2020/02/07 00:56:48 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Device driver for the Standard Microsystems Corp. 83C170
35 * Ethernet PCI Integrated Controller (EPIC/100).
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: smc83c170.c,v 1.93 2020/02/07 00:56:48 thorpej Exp $");
40
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net/bpf.h>
59
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62
63 #include <dev/mii/miivar.h>
64 #include <dev/mii/lxtphyreg.h>
65
66 #include <dev/ic/smc83c170reg.h>
67 #include <dev/ic/smc83c170var.h>
68
69 static void epic_start(struct ifnet *);
70 static void epic_watchdog(struct ifnet *);
71 static int epic_ioctl(struct ifnet *, u_long, void *);
72 static int epic_init(struct ifnet *);
73 static void epic_stop(struct ifnet *, int);
74
75 static bool epic_shutdown(device_t, int);
76
77 static void epic_reset(struct epic_softc *);
78 static void epic_rxdrain(struct epic_softc *);
79 static int epic_add_rxbuf(struct epic_softc *, int);
80 static void epic_read_eeprom(struct epic_softc *, int, int, uint16_t *);
81 static void epic_set_mchash(struct epic_softc *);
82 static void epic_fixup_clock_source(struct epic_softc *);
83 static int epic_mii_read(device_t, int, int, uint16_t *);
84 static int epic_mii_write(device_t, int, int, uint16_t);
85 static int epic_mii_wait(struct epic_softc *, uint32_t);
86 static void epic_tick(void *);
87
88 static void epic_statchg(struct ifnet *);
89 static int epic_mediachange(struct ifnet *);
90
91 #define INTMASK (INTSTAT_FATAL_INT | INTSTAT_TXU | \
92 INTSTAT_TXC | INTSTAT_RXE | INTSTAT_RQE | INTSTAT_RCC)
93
94 int epic_copy_small = 0;
95
96 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
97
98 /*
99 * Attach an EPIC interface to the system.
100 */
101 void
102 epic_attach(struct epic_softc *sc)
103 {
104 bus_space_tag_t st = sc->sc_st;
105 bus_space_handle_t sh = sc->sc_sh;
106 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
107 struct mii_data * const mii = &sc->sc_mii;
108 int rseg, error, miiflags;
109 u_int i;
110 bus_dma_segment_t seg;
111 uint8_t enaddr[ETHER_ADDR_LEN], devname[12 + 1];
112 uint16_t myea[ETHER_ADDR_LEN / 2], mydevname[6];
113 char *nullbuf;
114
115 callout_init(&sc->sc_mii_callout, 0);
116 callout_setfunc(&sc->sc_mii_callout, epic_tick, sc);
117
118 /*
119 * Allocate the control data structures, and create and load the
120 * DMA map for it.
121 */
122 if ((error = bus_dmamem_alloc(sc->sc_dmat,
123 sizeof(struct epic_control_data) + ETHER_PAD_LEN, PAGE_SIZE, 0,
124 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
125 aprint_error_dev(sc->sc_dev,
126 "unable to allocate control data, error = %d\n", error);
127 goto fail_0;
128 }
129
130 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
131 sizeof(struct epic_control_data) + ETHER_PAD_LEN,
132 (void **)&sc->sc_control_data,
133 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
134 aprint_error_dev(sc->sc_dev,
135 "unable to map control data, error = %d\n", error);
136 goto fail_1;
137 }
138 nullbuf =
139 (char *)sc->sc_control_data + sizeof(struct epic_control_data);
140 memset(nullbuf, 0, ETHER_PAD_LEN);
141
142 if ((error = bus_dmamap_create(sc->sc_dmat,
143 sizeof(struct epic_control_data), 1,
144 sizeof(struct epic_control_data), 0, BUS_DMA_NOWAIT,
145 &sc->sc_cddmamap)) != 0) {
146 aprint_error_dev(sc->sc_dev,
147 "unable to create control data DMA map, error = %d\n",
148 error);
149 goto fail_2;
150 }
151
152 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
153 sc->sc_control_data, sizeof(struct epic_control_data), NULL,
154 BUS_DMA_NOWAIT)) != 0) {
155 aprint_error_dev(sc->sc_dev,
156 "unable to load control data DMA map, error = %d\n",
157 error);
158 goto fail_3;
159 }
160
161 /*
162 * Create the transmit buffer DMA maps.
163 */
164 for (i = 0; i < EPIC_NTXDESC; i++) {
165 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
166 EPIC_NFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
167 &EPIC_DSTX(sc, i)->ds_dmamap)) != 0) {
168 aprint_error_dev(sc->sc_dev,
169 "unable to create tx DMA map %d, error = %d\n",
170 i, error);
171 goto fail_4;
172 }
173 }
174
175 /*
176 * Create the receive buffer DMA maps.
177 */
178 for (i = 0; i < EPIC_NRXDESC; i++) {
179 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
180 MCLBYTES, 0, BUS_DMA_NOWAIT,
181 &EPIC_DSRX(sc, i)->ds_dmamap)) != 0) {
182 aprint_error_dev(sc->sc_dev,
183 "unable to create rx DMA map %d, error = %d\n",
184 i, error);
185 goto fail_5;
186 }
187 EPIC_DSRX(sc, i)->ds_mbuf = NULL;
188 }
189
190 /*
191 * create and map the pad buffer
192 */
193 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
194 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT,&sc->sc_nulldmamap)) != 0) {
195 aprint_error_dev(sc->sc_dev,
196 "unable to create pad buffer DMA map, error = %d\n", error);
197 goto fail_5;
198 }
199
200 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
201 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
202 aprint_error_dev(sc->sc_dev,
203 "unable to load pad buffer DMA map, error = %d\n", error);
204 goto fail_6;
205 }
206 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
207 BUS_DMASYNC_PREWRITE);
208
209 /*
210 * Bring the chip out of low-power mode and reset it to a known state.
211 */
212 bus_space_write_4(st, sh, EPIC_GENCTL, 0);
213 epic_reset(sc);
214
215 /*
216 * Read the Ethernet address from the EEPROM.
217 */
218 epic_read_eeprom(sc, 0, __arraycount(myea), myea);
219 for (i = 0; i < __arraycount(myea); i++) {
220 enaddr[i * 2] = myea[i] & 0xff;
221 enaddr[i * 2 + 1] = myea[i] >> 8;
222 }
223
224 /*
225 * ...and the device name.
226 */
227 epic_read_eeprom(sc, 0x2c, __arraycount(mydevname), mydevname);
228 for (i = 0; i < __arraycount(mydevname); i++) {
229 devname[i * 2] = mydevname[i] & 0xff;
230 devname[i * 2 + 1] = mydevname[i] >> 8;
231 }
232
233 devname[sizeof(mydevname)] = '\0';
234 for (i = sizeof(mydevname) ; i > 0; i--) {
235 if (devname[i - 1] == ' ')
236 devname[i - 1] = '\0';
237 else
238 break;
239 }
240
241 aprint_normal_dev(sc->sc_dev, "%s, Ethernet address %s\n",
242 devname, ether_sprintf(enaddr));
243
244 miiflags = 0;
245 if (sc->sc_hwflags & EPIC_HAS_MII_FIBER)
246 miiflags |= MIIF_HAVEFIBER;
247
248 /*
249 * Initialize our media structures and probe the MII.
250 */
251 mii->mii_ifp = ifp;
252 mii->mii_readreg = epic_mii_read;
253 mii->mii_writereg = epic_mii_write;
254 mii->mii_statchg = epic_statchg;
255
256 sc->sc_ethercom.ec_mii = mii;
257 ifmedia_init(&mii->mii_media, IFM_IMASK, epic_mediachange,
258 ether_mediastatus);
259 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
260 MII_OFFSET_ANY, miiflags);
261 if (LIST_EMPTY(&mii->mii_phys)) {
262 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
263 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
264 } else
265 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
266
267 if (sc->sc_hwflags & EPIC_HAS_BNC) {
268 /* use the next free media instance */
269 sc->sc_serinst = mii->mii_instance++;
270 ifmedia_add(&mii->mii_media,
271 IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0, sc->sc_serinst),
272 0, NULL);
273 aprint_normal_dev(sc->sc_dev, "10base2/BNC\n");
274 } else
275 sc->sc_serinst = -1;
276
277 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
278 ifp->if_softc = sc;
279 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
280 ifp->if_ioctl = epic_ioctl;
281 ifp->if_start = epic_start;
282 ifp->if_watchdog = epic_watchdog;
283 ifp->if_init = epic_init;
284 ifp->if_stop = epic_stop;
285 IFQ_SET_READY(&ifp->if_snd);
286
287 /*
288 * We can support 802.1Q VLAN-sized frames.
289 */
290 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
291
292 /*
293 * Attach the interface.
294 */
295 if_attach(ifp);
296 if_deferred_start_init(ifp, NULL);
297 ether_ifattach(ifp, enaddr);
298
299 /*
300 * Make sure the interface is shutdown during reboot.
301 */
302 if (pmf_device_register1(sc->sc_dev, NULL, NULL, epic_shutdown))
303 pmf_class_network_register(sc->sc_dev, ifp);
304 else
305 aprint_error_dev(sc->sc_dev,
306 "couldn't establish power handler\n");
307
308 return;
309
310 /*
311 * Free any resources we've allocated during the failed attach
312 * attempt. Do this in reverse order and fall through.
313 */
314 fail_6:
315 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
316 fail_5:
317 for (i = 0; i < EPIC_NRXDESC; i++) {
318 if (EPIC_DSRX(sc, i)->ds_dmamap != NULL)
319 bus_dmamap_destroy(sc->sc_dmat,
320 EPIC_DSRX(sc, i)->ds_dmamap);
321 }
322 fail_4:
323 for (i = 0; i < EPIC_NTXDESC; i++) {
324 if (EPIC_DSTX(sc, i)->ds_dmamap != NULL)
325 bus_dmamap_destroy(sc->sc_dmat,
326 EPIC_DSTX(sc, i)->ds_dmamap);
327 }
328 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
329 fail_3:
330 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
331 fail_2:
332 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
333 sizeof(struct epic_control_data));
334 fail_1:
335 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
336 fail_0:
337 return;
338 }
339
340 /*
341 * Shutdown hook. Make sure the interface is stopped at reboot.
342 */
343 static bool
344 epic_shutdown(device_t self, int howto)
345 {
346 struct epic_softc *sc = device_private(self);
347
348 epic_stop(&sc->sc_ethercom.ec_if, 1);
349
350 return true;
351 }
352
353 /*
354 * Start packet transmission on the interface.
355 * [ifnet interface function]
356 */
357 static void
358 epic_start(struct ifnet *ifp)
359 {
360 struct epic_softc *sc = ifp->if_softc;
361 struct mbuf *m0, *m;
362 struct epic_txdesc *txd;
363 struct epic_descsoft *ds;
364 struct epic_fraglist *fr;
365 bus_dmamap_t dmamap;
366 int error, firsttx, nexttx, opending, seg;
367 u_int len;
368
369 /*
370 * Remember the previous txpending and the first transmit
371 * descriptor we use.
372 */
373 opending = sc->sc_txpending;
374 firsttx = EPIC_NEXTTX(sc->sc_txlast);
375
376 /*
377 * Loop through the send queue, setting up transmit descriptors
378 * until we drain the queue, or use up all available transmit
379 * descriptors.
380 */
381 while (sc->sc_txpending < EPIC_NTXDESC) {
382 /*
383 * Grab a packet off the queue.
384 */
385 IFQ_POLL(&ifp->if_snd, m0);
386 if (m0 == NULL)
387 break;
388 m = NULL;
389
390 /*
391 * Get the last and next available transmit descriptor.
392 */
393 nexttx = EPIC_NEXTTX(sc->sc_txlast);
394 txd = EPIC_CDTX(sc, nexttx);
395 fr = EPIC_CDFL(sc, nexttx);
396 ds = EPIC_DSTX(sc, nexttx);
397 dmamap = ds->ds_dmamap;
398
399 /*
400 * Load the DMA map. If this fails, the packet either
401 * didn't fit in the alloted number of frags, or we were
402 * short on resources. In this case, we'll copy and try
403 * again.
404 */
405 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
406 BUS_DMA_WRITE | BUS_DMA_NOWAIT)) != 0 ||
407 (m0->m_pkthdr.len < ETHER_PAD_LEN &&
408 dmamap-> dm_nsegs == EPIC_NFRAGS)) {
409 if (error == 0)
410 bus_dmamap_unload(sc->sc_dmat, dmamap);
411
412 MGETHDR(m, M_DONTWAIT, MT_DATA);
413 if (m == NULL) {
414 printf("%s: unable to allocate Tx mbuf\n",
415 device_xname(sc->sc_dev));
416 break;
417 }
418 if (m0->m_pkthdr.len > MHLEN) {
419 MCLGET(m, M_DONTWAIT);
420 if ((m->m_flags & M_EXT) == 0) {
421 printf("%s: unable to allocate Tx "
422 "cluster\n",
423 device_xname(sc->sc_dev));
424 m_freem(m);
425 break;
426 }
427 }
428 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
429 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
430 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
431 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
432 if (error) {
433 printf("%s: unable to load Tx buffer, "
434 "error = %d\n", device_xname(sc->sc_dev),
435 error);
436 break;
437 }
438 }
439 IFQ_DEQUEUE(&ifp->if_snd, m0);
440 if (m != NULL) {
441 m_freem(m0);
442 m0 = m;
443 }
444
445 /* Initialize the fraglist. */
446 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
447 fr->ef_frags[seg].ef_addr =
448 dmamap->dm_segs[seg].ds_addr;
449 fr->ef_frags[seg].ef_length =
450 dmamap->dm_segs[seg].ds_len;
451 }
452 len = m0->m_pkthdr.len;
453 if (len < ETHER_PAD_LEN) {
454 fr->ef_frags[seg].ef_addr = sc->sc_nulldma;
455 fr->ef_frags[seg].ef_length = ETHER_PAD_LEN - len;
456 len = ETHER_PAD_LEN;
457 seg++;
458 }
459 fr->ef_nfrags = seg;
460
461 EPIC_CDFLSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
462
463 /* Sync the DMA map. */
464 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
465 BUS_DMASYNC_PREWRITE);
466
467 /*
468 * Store a pointer to the packet so we can free it later.
469 */
470 ds->ds_mbuf = m0;
471
472 /*
473 * Fill in the transmit descriptor.
474 */
475 txd->et_control = ET_TXCTL_LASTDESC | ET_TXCTL_FRAGLIST;
476
477 /*
478 * If this is the first descriptor we're enqueueing,
479 * don't give it to the EPIC yet. That could cause
480 * a race condition. We'll do it below.
481 */
482 if (nexttx == firsttx)
483 txd->et_txstatus = TXSTAT_TXLENGTH(len);
484 else
485 txd->et_txstatus =
486 TXSTAT_TXLENGTH(len) | ET_TXSTAT_OWNER;
487
488 EPIC_CDTXSYNC(sc, nexttx,
489 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
490
491 /* Advance the tx pointer. */
492 sc->sc_txpending++;
493 sc->sc_txlast = nexttx;
494
495 /*
496 * Pass the packet to any BPF listeners.
497 */
498 bpf_mtap(ifp, m0, BPF_D_OUT);
499 }
500
501 if (sc->sc_txpending == EPIC_NTXDESC) {
502 /* No more slots left; notify upper layer. */
503 ifp->if_flags |= IFF_OACTIVE;
504 }
505
506 if (sc->sc_txpending != opending) {
507 /*
508 * We enqueued packets. If the transmitter was idle,
509 * reset the txdirty pointer.
510 */
511 if (opending == 0)
512 sc->sc_txdirty = firsttx;
513
514 /*
515 * Cause a transmit interrupt to happen on the
516 * last packet we enqueued.
517 */
518 EPIC_CDTX(sc, sc->sc_txlast)->et_control |= ET_TXCTL_IAF;
519 EPIC_CDTXSYNC(sc, sc->sc_txlast,
520 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
521
522 /*
523 * The entire packet chain is set up. Give the
524 * first descriptor to the EPIC now.
525 */
526 EPIC_CDTX(sc, firsttx)->et_txstatus |= ET_TXSTAT_OWNER;
527 EPIC_CDTXSYNC(sc, firsttx,
528 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
529
530 /* Start the transmitter. */
531 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
532 COMMAND_TXQUEUED);
533
534 /* Set a watchdog timer in case the chip flakes out. */
535 ifp->if_timer = 5;
536 }
537 }
538
539 /*
540 * Watchdog timer handler.
541 * [ifnet interface function]
542 */
543 static void
544 epic_watchdog(struct ifnet *ifp)
545 {
546 struct epic_softc *sc = ifp->if_softc;
547
548 printf("%s: device timeout\n", device_xname(sc->sc_dev));
549 if_statinc(ifp, if_oerrors);
550
551 (void)epic_init(ifp);
552 }
553
554 /*
555 * Handle control requests from the operator.
556 * [ifnet interface function]
557 */
558 static int
559 epic_ioctl(struct ifnet *ifp, u_long cmd, void *data)
560 {
561 struct epic_softc *sc = ifp->if_softc;
562 int s, error;
563
564 s = splnet();
565
566 error = ether_ioctl(ifp, cmd, data);
567 if (error == ENETRESET) {
568 /*
569 * Multicast list has changed; set the hardware filter
570 * accordingly. Update our idea of the current media;
571 * epic_set_mchash() needs to know what it is.
572 */
573 if (ifp->if_flags & IFF_RUNNING) {
574 mii_pollstat(&sc->sc_mii);
575 epic_set_mchash(sc);
576 }
577 error = 0;
578 }
579
580 splx(s);
581 return error;
582 }
583
584 /*
585 * Interrupt handler.
586 */
587 int
588 epic_intr(void *arg)
589 {
590 struct epic_softc *sc = arg;
591 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
592 struct epic_rxdesc *rxd;
593 struct epic_txdesc *txd;
594 struct epic_descsoft *ds;
595 struct mbuf *m;
596 uint32_t intstat, rxstatus, txstatus;
597 int i, claimed = 0;
598 u_int len;
599
600 top:
601 /*
602 * Get the interrupt status from the EPIC.
603 */
604 intstat = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT);
605 if ((intstat & INTSTAT_INT_ACTV) == 0)
606 return claimed;
607
608 claimed = 1;
609
610 /*
611 * Acknowledge the interrupt.
612 */
613 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT,
614 intstat & INTMASK);
615
616 /*
617 * Check for receive interrupts.
618 */
619 if (intstat & (INTSTAT_RCC | INTSTAT_RXE | INTSTAT_RQE)) {
620 for (i = sc->sc_rxptr;; i = EPIC_NEXTRX(i)) {
621 rxd = EPIC_CDRX(sc, i);
622 ds = EPIC_DSRX(sc, i);
623
624 EPIC_CDRXSYNC(sc, i,
625 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
626
627 rxstatus = rxd->er_rxstatus;
628 if (rxstatus & ER_RXSTAT_OWNER) {
629 /*
630 * We have processed all of the
631 * receive buffers.
632 */
633 break;
634 }
635
636 /*
637 * Make sure the packet arrived intact. If an error
638 * occurred, update stats and reset the descriptor.
639 * The buffer will be reused the next time the
640 * descriptor comes up in the ring.
641 */
642 if ((rxstatus & ER_RXSTAT_PKTINTACT) == 0) {
643 if (rxstatus & ER_RXSTAT_CRCERROR)
644 printf("%s: CRC error\n",
645 device_xname(sc->sc_dev));
646 if (rxstatus & ER_RXSTAT_ALIGNERROR)
647 printf("%s: alignment error\n",
648 device_xname(sc->sc_dev));
649 if_statinc(ifp, if_ierrors);
650 EPIC_INIT_RXDESC(sc, i);
651 continue;
652 }
653
654 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
655 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
656
657 /*
658 * The EPIC includes the CRC with every packet;
659 * trim it.
660 */
661 len = RXSTAT_RXLENGTH(rxstatus) - ETHER_CRC_LEN;
662
663 if (len < sizeof(struct ether_header)) {
664 /*
665 * Runt packet; drop it now.
666 */
667 if_statinc(ifp, if_ierrors);
668 EPIC_INIT_RXDESC(sc, i);
669 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
670 ds->ds_dmamap->dm_mapsize,
671 BUS_DMASYNC_PREREAD);
672 continue;
673 }
674
675 /*
676 * If the packet is small enough to fit in a
677 * single header mbuf, allocate one and copy
678 * the data into it. This greatly reduces
679 * memory consumption when we receive lots
680 * of small packets.
681 *
682 * Otherwise, we add a new buffer to the receive
683 * chain. If this fails, we drop the packet and
684 * recycle the old buffer.
685 */
686 if (epic_copy_small != 0 && len <= MHLEN) {
687 MGETHDR(m, M_DONTWAIT, MT_DATA);
688 if (m == NULL)
689 goto dropit;
690 memcpy(mtod(m, void *),
691 mtod(ds->ds_mbuf, void *), len);
692 EPIC_INIT_RXDESC(sc, i);
693 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
694 ds->ds_dmamap->dm_mapsize,
695 BUS_DMASYNC_PREREAD);
696 } else {
697 m = ds->ds_mbuf;
698 if (epic_add_rxbuf(sc, i) != 0) {
699 dropit:
700 if_statinc(ifp, if_ierrors);
701 EPIC_INIT_RXDESC(sc, i);
702 bus_dmamap_sync(sc->sc_dmat,
703 ds->ds_dmamap, 0,
704 ds->ds_dmamap->dm_mapsize,
705 BUS_DMASYNC_PREREAD);
706 continue;
707 }
708 }
709
710 m_set_rcvif(m, ifp);
711 m->m_pkthdr.len = m->m_len = len;
712
713 /* Pass it on. */
714 if_percpuq_enqueue(ifp->if_percpuq, m);
715 }
716
717 /* Update the receive pointer. */
718 sc->sc_rxptr = i;
719
720 /*
721 * Check for receive queue underflow.
722 */
723 if (intstat & INTSTAT_RQE) {
724 printf("%s: receiver queue empty\n",
725 device_xname(sc->sc_dev));
726 /*
727 * Ring is already built; just restart the
728 * receiver.
729 */
730 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_PRCDAR,
731 EPIC_CDRXADDR(sc, sc->sc_rxptr));
732 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
733 COMMAND_RXQUEUED | COMMAND_START_RX);
734 }
735 }
736
737 /*
738 * Check for transmission complete interrupts.
739 */
740 if (intstat & (INTSTAT_TXC | INTSTAT_TXU)) {
741 ifp->if_flags &= ~IFF_OACTIVE;
742 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
743 i = EPIC_NEXTTX(i), sc->sc_txpending--) {
744 txd = EPIC_CDTX(sc, i);
745 ds = EPIC_DSTX(sc, i);
746
747 EPIC_CDTXSYNC(sc, i,
748 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
749
750 txstatus = txd->et_txstatus;
751 if (txstatus & ET_TXSTAT_OWNER)
752 break;
753
754 EPIC_CDFLSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
755
756 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
757 0, ds->ds_dmamap->dm_mapsize,
758 BUS_DMASYNC_POSTWRITE);
759 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
760 m_freem(ds->ds_mbuf);
761 ds->ds_mbuf = NULL;
762
763 /*
764 * Check for errors and collisions.
765 */
766 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
767 if ((txstatus & ET_TXSTAT_PACKETTX) == 0)
768 if_statinc_ref(nsr, if_oerrors);
769 else
770 if_statinc_ref(nsr, if_opackets);
771 if (TXSTAT_COLLISIONS(txstatus))
772 if_statadd_ref(nsr, if_collisions,
773 TXSTAT_COLLISIONS(txstatus));
774 if (txstatus & ET_TXSTAT_CARSENSELOST)
775 printf("%s: lost carrier\n",
776 device_xname(sc->sc_dev));
777 IF_STAT_PUTREF(ifp);
778 }
779
780 /* Update the dirty transmit buffer pointer. */
781 sc->sc_txdirty = i;
782
783 /*
784 * Cancel the watchdog timer if there are no pending
785 * transmissions.
786 */
787 if (sc->sc_txpending == 0)
788 ifp->if_timer = 0;
789
790 /*
791 * Kick the transmitter after a DMA underrun.
792 */
793 if (intstat & INTSTAT_TXU) {
794 printf("%s: transmit underrun\n",
795 device_xname(sc->sc_dev));
796 bus_space_write_4(sc->sc_st, sc->sc_sh,
797 EPIC_COMMAND, COMMAND_TXUGO);
798 if (sc->sc_txpending)
799 bus_space_write_4(sc->sc_st, sc->sc_sh,
800 EPIC_COMMAND, COMMAND_TXQUEUED);
801 }
802
803 /*
804 * Try to get more packets going.
805 */
806 if_schedule_deferred_start(ifp);
807 }
808
809 /*
810 * Check for fatal interrupts.
811 */
812 if (intstat & INTSTAT_FATAL_INT) {
813 if (intstat & INTSTAT_PTA)
814 printf("%s: PCI target abort error\n",
815 device_xname(sc->sc_dev));
816 else if (intstat & INTSTAT_PMA)
817 printf("%s: PCI master abort error\n",
818 device_xname(sc->sc_dev));
819 else if (intstat & INTSTAT_APE)
820 printf("%s: PCI address parity error\n",
821 device_xname(sc->sc_dev));
822 else if (intstat & INTSTAT_DPE)
823 printf("%s: PCI data parity error\n",
824 device_xname(sc->sc_dev));
825 else
826 printf("%s: unknown fatal error\n",
827 device_xname(sc->sc_dev));
828 (void)epic_init(ifp);
829 }
830
831 /*
832 * Check for more interrupts.
833 */
834 goto top;
835 }
836
837 /*
838 * One second timer, used to tick the MII.
839 */
840 static void
841 epic_tick(void *arg)
842 {
843 struct epic_softc *sc = arg;
844 int s;
845
846 s = splnet();
847 mii_tick(&sc->sc_mii);
848 splx(s);
849
850 callout_schedule(&sc->sc_mii_callout, hz);
851 }
852
853 /*
854 * Fixup the clock source on the EPIC.
855 */
856 static void
857 epic_fixup_clock_source(struct epic_softc *sc)
858 {
859 int i;
860
861 /*
862 * According to SMC Application Note 7-15, the EPIC's clock
863 * source is incorrect following a reset. This manifests itself
864 * as failure to recognize when host software has written to
865 * a register on the EPIC. The appnote recommends issuing at
866 * least 16 consecutive writes to the CLOCK TEST bit to correctly
867 * configure the clock source.
868 */
869 for (i = 0; i < 16; i++)
870 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TEST,
871 TEST_CLOCKTEST);
872 }
873
874 /*
875 * Perform a soft reset on the EPIC.
876 */
877 static void
878 epic_reset(struct epic_softc *sc)
879 {
880
881 epic_fixup_clock_source(sc);
882
883 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, 0);
884 delay(100);
885 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, GENCTL_SOFTRESET);
886 delay(100);
887
888 epic_fixup_clock_source(sc);
889 }
890
891 /*
892 * Initialize the interface. Must be called at splnet().
893 */
894 static int
895 epic_init(struct ifnet *ifp)
896 {
897 struct epic_softc *sc = ifp->if_softc;
898 bus_space_tag_t st = sc->sc_st;
899 bus_space_handle_t sh = sc->sc_sh;
900 const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
901 struct epic_txdesc *txd;
902 struct epic_descsoft *ds;
903 uint32_t genctl, reg0;
904 int i, error = 0;
905
906 /*
907 * Cancel any pending I/O.
908 */
909 epic_stop(ifp, 0);
910
911 /*
912 * Reset the EPIC to a known state.
913 */
914 epic_reset(sc);
915
916 /*
917 * Magical mystery initialization.
918 */
919 bus_space_write_4(st, sh, EPIC_TXTEST, 0);
920
921 /*
922 * Initialize the EPIC genctl register:
923 *
924 * - 64 byte receive FIFO threshold
925 * - automatic advance to next receive frame
926 */
927 genctl = GENCTL_RX_FIFO_THRESH0 | GENCTL_ONECOPY;
928 #if BYTE_ORDER == BIG_ENDIAN
929 genctl |= GENCTL_BIG_ENDIAN;
930 #endif
931 bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
932
933 /*
934 * Reset the MII bus and PHY.
935 */
936 reg0 = bus_space_read_4(st, sh, EPIC_NVCTL);
937 bus_space_write_4(st, sh, EPIC_NVCTL, reg0 | NVCTL_GPIO1 | NVCTL_GPOE1);
938 bus_space_write_4(st, sh, EPIC_MIICFG, MIICFG_ENASER);
939 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_RESET_PHY);
940 delay(100);
941 bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
942 delay(1000);
943 bus_space_write_4(st, sh, EPIC_NVCTL, reg0);
944
945 /*
946 * Initialize Ethernet address.
947 */
948 reg0 = enaddr[1] << 8 | enaddr[0];
949 bus_space_write_4(st, sh, EPIC_LAN0, reg0);
950 reg0 = enaddr[3] << 8 | enaddr[2];
951 bus_space_write_4(st, sh, EPIC_LAN1, reg0);
952 reg0 = enaddr[5] << 8 | enaddr[4];
953 bus_space_write_4(st, sh, EPIC_LAN2, reg0);
954
955 /*
956 * Initialize receive control. Remember the external buffer
957 * size setting.
958 */
959 reg0 = bus_space_read_4(st, sh, EPIC_RXCON) &
960 (RXCON_EXTBUFSIZESEL1 | RXCON_EXTBUFSIZESEL0);
961 reg0 |= (RXCON_RXMULTICAST | RXCON_RXBROADCAST);
962 if (ifp->if_flags & IFF_PROMISC)
963 reg0 |= RXCON_PROMISCMODE;
964 bus_space_write_4(st, sh, EPIC_RXCON, reg0);
965
966 /* Set the current media. */
967 if ((error = epic_mediachange(ifp)) != 0)
968 goto out;
969
970 /* Set up the multicast hash table. */
971 epic_set_mchash(sc);
972
973 /*
974 * Initialize the transmit descriptor ring. txlast is initialized
975 * to the end of the list so that it will wrap around to the first
976 * descriptor when the first packet is transmitted.
977 */
978 for (i = 0; i < EPIC_NTXDESC; i++) {
979 txd = EPIC_CDTX(sc, i);
980 memset(txd, 0, sizeof(struct epic_txdesc));
981 txd->et_bufaddr = EPIC_CDFLADDR(sc, i);
982 txd->et_nextdesc = EPIC_CDTXADDR(sc, EPIC_NEXTTX(i));
983 EPIC_CDTXSYNC(sc, i,
984 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
985 }
986 sc->sc_txpending = 0;
987 sc->sc_txdirty = 0;
988 sc->sc_txlast = EPIC_NTXDESC - 1;
989
990 /*
991 * Initialize the receive descriptor ring.
992 */
993 for (i = 0; i < EPIC_NRXDESC; i++) {
994 ds = EPIC_DSRX(sc, i);
995 if (ds->ds_mbuf == NULL) {
996 if ((error = epic_add_rxbuf(sc, i)) != 0) {
997 printf("%s: unable to allocate or map rx "
998 "buffer %d error = %d\n",
999 device_xname(sc->sc_dev), i, error);
1000 /*
1001 * XXX Should attempt to run with fewer receive
1002 * XXX buffers instead of just failing.
1003 */
1004 epic_rxdrain(sc);
1005 goto out;
1006 }
1007 } else
1008 EPIC_INIT_RXDESC(sc, i);
1009 }
1010 sc->sc_rxptr = 0;
1011
1012 /*
1013 * Initialize the interrupt mask and enable interrupts.
1014 */
1015 bus_space_write_4(st, sh, EPIC_INTMASK, INTMASK);
1016 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_INTENA);
1017
1018 /*
1019 * Give the transmit and receive rings to the EPIC.
1020 */
1021 bus_space_write_4(st, sh, EPIC_PTCDAR,
1022 EPIC_CDTXADDR(sc, EPIC_NEXTTX(sc->sc_txlast)));
1023 bus_space_write_4(st, sh, EPIC_PRCDAR,
1024 EPIC_CDRXADDR(sc, sc->sc_rxptr));
1025
1026 /*
1027 * Set the EPIC in motion.
1028 */
1029 bus_space_write_4(st, sh, EPIC_COMMAND,
1030 COMMAND_RXQUEUED | COMMAND_START_RX);
1031
1032 /*
1033 * ...all done!
1034 */
1035 ifp->if_flags |= IFF_RUNNING;
1036 ifp->if_flags &= ~IFF_OACTIVE;
1037
1038 /*
1039 * Start the one second clock.
1040 */
1041 callout_schedule(&sc->sc_mii_callout, hz);
1042
1043 /*
1044 * Attempt to start output on the interface.
1045 */
1046 epic_start(ifp);
1047
1048 out:
1049 if (error)
1050 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1051 return error;
1052 }
1053
1054 /*
1055 * Drain the receive queue.
1056 */
1057 static void
1058 epic_rxdrain(struct epic_softc *sc)
1059 {
1060 struct epic_descsoft *ds;
1061 int i;
1062
1063 for (i = 0; i < EPIC_NRXDESC; i++) {
1064 ds = EPIC_DSRX(sc, i);
1065 if (ds->ds_mbuf != NULL) {
1066 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1067 m_freem(ds->ds_mbuf);
1068 ds->ds_mbuf = NULL;
1069 }
1070 }
1071 }
1072
1073 /*
1074 * Stop transmission on the interface.
1075 */
1076 static void
1077 epic_stop(struct ifnet *ifp, int disable)
1078 {
1079 struct epic_softc *sc = ifp->if_softc;
1080 bus_space_tag_t st = sc->sc_st;
1081 bus_space_handle_t sh = sc->sc_sh;
1082 struct epic_descsoft *ds;
1083 uint32_t reg;
1084 int i;
1085
1086 /*
1087 * Stop the one second clock.
1088 */
1089 callout_stop(&sc->sc_mii_callout);
1090
1091 /* Down the MII. */
1092 mii_down(&sc->sc_mii);
1093
1094 /* Paranoia... */
1095 epic_fixup_clock_source(sc);
1096
1097 /*
1098 * Disable interrupts.
1099 */
1100 reg = bus_space_read_4(st, sh, EPIC_GENCTL);
1101 bus_space_write_4(st, sh, EPIC_GENCTL, reg & ~GENCTL_INTENA);
1102 bus_space_write_4(st, sh, EPIC_INTMASK, 0);
1103
1104 /*
1105 * Stop the DMA engine and take the receiver off-line.
1106 */
1107 bus_space_write_4(st, sh, EPIC_COMMAND, COMMAND_STOP_RDMA |
1108 COMMAND_STOP_TDMA | COMMAND_STOP_RX);
1109
1110 /*
1111 * Release any queued transmit buffers.
1112 */
1113 for (i = 0; i < EPIC_NTXDESC; i++) {
1114 ds = EPIC_DSTX(sc, i);
1115 if (ds->ds_mbuf != NULL) {
1116 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1117 m_freem(ds->ds_mbuf);
1118 ds->ds_mbuf = NULL;
1119 }
1120 }
1121
1122 /*
1123 * Mark the interface down and cancel the watchdog timer.
1124 */
1125 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1126 ifp->if_timer = 0;
1127
1128 if (disable)
1129 epic_rxdrain(sc);
1130 }
1131
1132 /*
1133 * Read the EPIC Serial EEPROM.
1134 */
1135 static void
1136 epic_read_eeprom(struct epic_softc *sc, int word, int wordcnt, uint16_t *data)
1137 {
1138 bus_space_tag_t st = sc->sc_st;
1139 bus_space_handle_t sh = sc->sc_sh;
1140 uint16_t reg;
1141 int i, x;
1142
1143 #define EEPROM_WAIT_READY(st, sh) \
1144 while ((bus_space_read_4((st), (sh), EPIC_EECTL) & EECTL_EERDY) == 0) \
1145 /* nothing */
1146
1147 /*
1148 * Enable the EEPROM.
1149 */
1150 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1151 EEPROM_WAIT_READY(st, sh);
1152
1153 for (i = 0; i < wordcnt; i++) {
1154 /* Send CHIP SELECT for one clock tick. */
1155 bus_space_write_4(st, sh, EPIC_EECTL,
1156 EECTL_ENABLE | EECTL_EECS);
1157 EEPROM_WAIT_READY(st, sh);
1158
1159 /* Shift in the READ opcode. */
1160 for (x = 3; x > 0; x--) {
1161 reg = EECTL_ENABLE | EECTL_EECS;
1162 if (EPIC_EEPROM_OPC_READ & (1 << (x - 1)))
1163 reg |= EECTL_EEDI;
1164 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1165 EEPROM_WAIT_READY(st, sh);
1166 bus_space_write_4(st, sh, EPIC_EECTL, reg |EECTL_EESK);
1167 EEPROM_WAIT_READY(st, sh);
1168 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1169 EEPROM_WAIT_READY(st, sh);
1170 }
1171
1172 /* Shift in address. */
1173 for (x = 6; x > 0; x--) {
1174 reg = EECTL_ENABLE | EECTL_EECS;
1175 if ((word + i) & (1 << (x - 1)))
1176 reg |= EECTL_EEDI;
1177 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1178 EEPROM_WAIT_READY(st, sh);
1179 bus_space_write_4(st, sh, EPIC_EECTL, reg |EECTL_EESK);
1180 EEPROM_WAIT_READY(st, sh);
1181 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1182 EEPROM_WAIT_READY(st, sh);
1183 }
1184
1185 /* Shift out data. */
1186 reg = EECTL_ENABLE | EECTL_EECS;
1187 data[i] = 0;
1188 for (x = 16; x > 0; x--) {
1189 bus_space_write_4(st, sh, EPIC_EECTL, reg |EECTL_EESK);
1190 EEPROM_WAIT_READY(st, sh);
1191 if (bus_space_read_4(st, sh, EPIC_EECTL) & EECTL_EEDO)
1192 data[i] |= (1 << (x - 1));
1193 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1194 EEPROM_WAIT_READY(st, sh);
1195 }
1196
1197 /* Clear CHIP SELECT. */
1198 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1199 EEPROM_WAIT_READY(st, sh);
1200 }
1201
1202 /*
1203 * Disable the EEPROM.
1204 */
1205 bus_space_write_4(st, sh, EPIC_EECTL, 0);
1206
1207 #undef EEPROM_WAIT_READY
1208 }
1209
1210 /*
1211 * Add a receive buffer to the indicated descriptor.
1212 */
1213 static int
1214 epic_add_rxbuf(struct epic_softc *sc, int idx)
1215 {
1216 struct epic_descsoft *ds = EPIC_DSRX(sc, idx);
1217 struct mbuf *m;
1218 int error;
1219
1220 MGETHDR(m, M_DONTWAIT, MT_DATA);
1221 if (m == NULL)
1222 return ENOBUFS;
1223
1224 MCLGET(m, M_DONTWAIT);
1225 if ((m->m_flags & M_EXT) == 0) {
1226 m_freem(m);
1227 return ENOBUFS;
1228 }
1229
1230 if (ds->ds_mbuf != NULL)
1231 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1232
1233 ds->ds_mbuf = m;
1234
1235 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1236 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1237 BUS_DMA_READ | BUS_DMA_NOWAIT);
1238 if (error) {
1239 printf("%s: can't load rx DMA map %d, error = %d\n",
1240 device_xname(sc->sc_dev), idx, error);
1241 panic("%s", __func__); /* XXX */
1242 }
1243
1244 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1245 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1246
1247 EPIC_INIT_RXDESC(sc, idx);
1248
1249 return 0;
1250 }
1251
1252 /*
1253 * Set the EPIC multicast hash table.
1254 *
1255 * NOTE: We rely on a recently-updated mii_media_active here!
1256 */
1257 static void
1258 epic_set_mchash(struct epic_softc *sc)
1259 {
1260 struct ethercom *ec = &sc->sc_ethercom;
1261 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1262 struct ether_multi *enm;
1263 struct ether_multistep step;
1264 uint32_t hash, mchash[4];
1265
1266 /*
1267 * Set up the multicast address filter by passing all multicast
1268 * addresses through a CRC generator, and then using the low-order
1269 * 6 bits as an index into the 64 bit multicast hash table (only
1270 * the lower 16 bits of each 32 bit multicast hash register are
1271 * valid). The high order bits select the register, while the
1272 * rest of the bits select the bit within the register.
1273 */
1274
1275 if (ifp->if_flags & IFF_PROMISC)
1276 goto allmulti;
1277
1278 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
1279 /* XXX hardware bug in 10Mbps mode. */
1280 goto allmulti;
1281 }
1282
1283 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0;
1284
1285 ETHER_LOCK(ec);
1286 ETHER_FIRST_MULTI(step, ec, enm);
1287 while (enm != NULL) {
1288 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1289 /*
1290 * We must listen to a range of multicast addresses.
1291 * For now, just accept all multicasts, rather than
1292 * trying to set only those filter bits needed to match
1293 * the range. (At this time, the only use of address
1294 * ranges is for IP multicast routing, for which the
1295 * range is big enough to require all bits set.)
1296 */
1297 ETHER_UNLOCK(ec);
1298 goto allmulti;
1299 }
1300
1301 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1302 hash >>= 26;
1303
1304 /* Set the corresponding bit in the hash table. */
1305 mchash[hash >> 4] |= 1 << (hash & 0xf);
1306
1307 ETHER_NEXT_MULTI(step, enm);
1308 }
1309 ETHER_UNLOCK(ec);
1310
1311 ifp->if_flags &= ~IFF_ALLMULTI;
1312 goto sethash;
1313
1314 allmulti:
1315 ifp->if_flags |= IFF_ALLMULTI;
1316 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xffff;
1317
1318 sethash:
1319 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC0, mchash[0]);
1320 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC1, mchash[1]);
1321 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC2, mchash[2]);
1322 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC3, mchash[3]);
1323 }
1324
1325 /*
1326 * Wait for the MII to become ready.
1327 */
1328 static int
1329 epic_mii_wait(struct epic_softc *sc, uint32_t rw)
1330 {
1331 int i;
1332
1333 for (i = 0; i < 50; i++) {
1334 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL) & rw)
1335 == 0)
1336 break;
1337 delay(2);
1338 }
1339 if (i == 50) {
1340 printf("%s: MII timed out\n", device_xname(sc->sc_dev));
1341 return ETIMEDOUT;
1342 }
1343
1344 return 0;
1345 }
1346
1347 /*
1348 * Read from the MII.
1349 */
1350 static int
1351 epic_mii_read(device_t self, int phy, int reg, uint16_t *val)
1352 {
1353 struct epic_softc *sc = device_private(self);
1354 int rv;
1355
1356 if ((rv = epic_mii_wait(sc, MMCTL_WRITE)) != 0)
1357 return rv;
1358
1359 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1360 MMCTL_ARG(phy, reg, MMCTL_READ));
1361
1362 if ((rv = epic_mii_wait(sc, MMCTL_READ)) != 0)
1363 return rv;
1364
1365 *val = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA)
1366 & MMDATA_MASK;
1367 return 0;
1368 }
1369
1370 /*
1371 * Write to the MII.
1372 */
1373 static int
1374 epic_mii_write(device_t self, int phy, int reg, uint16_t val)
1375 {
1376 struct epic_softc *sc = device_private(self);
1377 int rv;
1378
1379 if ((rv = epic_mii_wait(sc, MMCTL_WRITE)) != 0)
1380 return rv;
1381
1382 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA, val);
1383 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1384 MMCTL_ARG(phy, reg, MMCTL_WRITE));
1385
1386 return 0;
1387 }
1388
1389 /*
1390 * Callback from PHY when media changes.
1391 */
1392 static void
1393 epic_statchg(struct ifnet *ifp)
1394 {
1395 struct epic_softc *sc = ifp->if_softc;
1396 uint32_t txcon, miicfg;
1397
1398 /*
1399 * Update loopback bits in TXCON to reflect duplex mode.
1400 */
1401 txcon = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_TXCON);
1402 if (sc->sc_mii.mii_media_active & IFM_FDX)
1403 txcon |= (TXCON_LOOPBACK_D1 | TXCON_LOOPBACK_D2);
1404 else
1405 txcon &= ~(TXCON_LOOPBACK_D1 | TXCON_LOOPBACK_D2);
1406 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TXCON, txcon);
1407
1408 /* On some cards we need manualy set fullduplex led */
1409 if (sc->sc_hwflags & EPIC_DUPLEXLED_ON_694) {
1410 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1411 if (IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX)
1412 miicfg |= MIICFG_ENABLE;
1413 else
1414 miicfg &= ~MIICFG_ENABLE;
1415 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1416 }
1417
1418 /*
1419 * There is a multicast filter bug in 10Mbps mode. Kick the
1420 * multicast filter in case the speed changed.
1421 */
1422 epic_set_mchash(sc);
1423 }
1424
1425 /*
1426 * Callback from ifmedia to request new media setting.
1427 *
1428 * XXX Looks to me like some of this complexity should move into
1429 * XXX one or two custom PHY drivers. --dyoung
1430 */
1431 static int
1432 epic_mediachange(struct ifnet *ifp)
1433 {
1434 struct epic_softc *sc = ifp->if_softc;
1435 struct mii_data *mii = &sc->sc_mii;
1436 struct ifmedia *ifm = &mii->mii_media;
1437 int media = ifm->ifm_cur->ifm_media;
1438 uint32_t miicfg;
1439 struct mii_softc *miisc;
1440 int rc;
1441 uint16_t cfg;
1442
1443 if ((ifp->if_flags & IFF_UP) == 0)
1444 return 0;
1445
1446 if (IFM_INST(media) != sc->sc_serinst) {
1447 /* If we're not selecting serial interface, select MII mode */
1448 #ifdef EPICMEDIADEBUG
1449 printf("%s: parallel mode\n", ifp->if_xname);
1450 #endif
1451 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1452 miicfg &= ~MIICFG_SERMODEENA;
1453 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1454 }
1455
1456 if ((rc = mii_mediachg(mii)) == ENXIO)
1457 rc = 0;
1458
1459 if (IFM_INST(media) == sc->sc_serinst) {
1460 /* select serial interface */
1461 #ifdef EPICMEDIADEBUG
1462 printf("%s: serial mode\n", ifp->if_xname);
1463 #endif
1464 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1465 miicfg |= (MIICFG_SERMODEENA | MIICFG_ENABLE);
1466 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1467
1468 /* There is no driver to fill this */
1469 mii->mii_media_active = media;
1470 mii->mii_media_status = 0;
1471
1472 epic_statchg(mii->mii_ifp);
1473 return 0;
1474 }
1475
1476 /* Lookup selected PHY */
1477 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
1478 if (IFM_INST(media) == miisc->mii_inst)
1479 break;
1480 }
1481 if (!miisc) {
1482 printf("%s: can't happen\n", __func__); /* ??? panic */
1483 return 0;
1484 }
1485 #ifdef EPICMEDIADEBUG
1486 printf("%s: using phy %s\n", ifp->if_xname,
1487 device_xname(miisc->mii_dev));
1488 #endif
1489
1490 if (miisc->mii_flags & MIIF_HAVEFIBER) {
1491 /* XXX XXX assume it's a Level1 - should check */
1492
1493 /* We have to powerup fiber transceivers */
1494 PHY_READ(miisc, MII_LXTPHY_CONFIG, &cfg);
1495 if (IFM_SUBTYPE(media) == IFM_100_FX) {
1496 #ifdef EPICMEDIADEBUG
1497 printf("%s: power up fiber\n", ifp->if_xname);
1498 #endif
1499 cfg |= (CONFIG_LEDC1 | CONFIG_LEDC0);
1500 } else {
1501 #ifdef EPICMEDIADEBUG
1502 printf("%s: power down fiber\n", ifp->if_xname);
1503 #endif
1504 cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0);
1505 }
1506 PHY_WRITE(miisc, MII_LXTPHY_CONFIG, cfg);
1507 }
1508
1509 return rc;
1510 }
1511