smc83c170.c revision 1.95 1 /* $NetBSD: smc83c170.c,v 1.95 2020/03/15 22:19:00 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Device driver for the Standard Microsystems Corp. 83C170
35 * Ethernet PCI Integrated Controller (EPIC/100).
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: smc83c170.c,v 1.95 2020/03/15 22:19:00 thorpej Exp $");
40
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57
58 #include <net/bpf.h>
59
60 #include <sys/bus.h>
61 #include <sys/intr.h>
62
63 #include <dev/mii/miivar.h>
64 #include <dev/mii/lxtphyreg.h>
65
66 #include <dev/ic/smc83c170reg.h>
67 #include <dev/ic/smc83c170var.h>
68
69 static void epic_start(struct ifnet *);
70 static void epic_watchdog(struct ifnet *);
71 static int epic_ioctl(struct ifnet *, u_long, void *);
72 static int epic_init(struct ifnet *);
73 static void epic_stop(struct ifnet *, int);
74
75 static bool epic_shutdown(device_t, int);
76
77 static void epic_reset(struct epic_softc *);
78 static void epic_rxdrain(struct epic_softc *);
79 static int epic_add_rxbuf(struct epic_softc *, int);
80 static void epic_read_eeprom(struct epic_softc *, int, int, uint16_t *);
81 static void epic_set_mchash(struct epic_softc *);
82 static void epic_fixup_clock_source(struct epic_softc *);
83 static int epic_mii_read(device_t, int, int, uint16_t *);
84 static int epic_mii_write(device_t, int, int, uint16_t);
85 static int epic_mii_wait(struct epic_softc *, uint32_t);
86 static void epic_tick(void *);
87
88 static void epic_statchg(struct ifnet *);
89 static int epic_mediachange(struct ifnet *);
90
91 #define INTMASK (INTSTAT_FATAL_INT | INTSTAT_TXU | \
92 INTSTAT_TXC | INTSTAT_RXE | INTSTAT_RQE | INTSTAT_RCC)
93
94 int epic_copy_small = 0;
95
96 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
97
98 /*
99 * Attach an EPIC interface to the system.
100 */
101 void
102 epic_attach(struct epic_softc *sc)
103 {
104 bus_space_tag_t st = sc->sc_st;
105 bus_space_handle_t sh = sc->sc_sh;
106 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
107 struct mii_data * const mii = &sc->sc_mii;
108 int rseg, error, miiflags;
109 u_int i;
110 bus_dma_segment_t seg;
111 uint8_t enaddr[ETHER_ADDR_LEN], devname[12 + 1];
112 uint16_t myea[ETHER_ADDR_LEN / 2], mydevname[6];
113 char *nullbuf;
114
115 callout_init(&sc->sc_mii_callout, 0);
116 callout_setfunc(&sc->sc_mii_callout, epic_tick, sc);
117
118 /*
119 * Allocate the control data structures, and create and load the
120 * DMA map for it.
121 */
122 if ((error = bus_dmamem_alloc(sc->sc_dmat,
123 sizeof(struct epic_control_data) + ETHER_PAD_LEN, PAGE_SIZE, 0,
124 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
125 aprint_error_dev(sc->sc_dev,
126 "unable to allocate control data, error = %d\n", error);
127 goto fail_0;
128 }
129
130 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
131 sizeof(struct epic_control_data) + ETHER_PAD_LEN,
132 (void **)&sc->sc_control_data,
133 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
134 aprint_error_dev(sc->sc_dev,
135 "unable to map control data, error = %d\n", error);
136 goto fail_1;
137 }
138 nullbuf =
139 (char *)sc->sc_control_data + sizeof(struct epic_control_data);
140 memset(nullbuf, 0, ETHER_PAD_LEN);
141
142 if ((error = bus_dmamap_create(sc->sc_dmat,
143 sizeof(struct epic_control_data), 1,
144 sizeof(struct epic_control_data), 0, BUS_DMA_NOWAIT,
145 &sc->sc_cddmamap)) != 0) {
146 aprint_error_dev(sc->sc_dev,
147 "unable to create control data DMA map, error = %d\n",
148 error);
149 goto fail_2;
150 }
151
152 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
153 sc->sc_control_data, sizeof(struct epic_control_data), NULL,
154 BUS_DMA_NOWAIT)) != 0) {
155 aprint_error_dev(sc->sc_dev,
156 "unable to load control data DMA map, error = %d\n",
157 error);
158 goto fail_3;
159 }
160
161 /*
162 * Create the transmit buffer DMA maps.
163 */
164 for (i = 0; i < EPIC_NTXDESC; i++) {
165 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
166 EPIC_NFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
167 &EPIC_DSTX(sc, i)->ds_dmamap)) != 0) {
168 aprint_error_dev(sc->sc_dev,
169 "unable to create tx DMA map %d, error = %d\n",
170 i, error);
171 goto fail_4;
172 }
173 }
174
175 /*
176 * Create the receive buffer DMA maps.
177 */
178 for (i = 0; i < EPIC_NRXDESC; i++) {
179 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
180 MCLBYTES, 0, BUS_DMA_NOWAIT,
181 &EPIC_DSRX(sc, i)->ds_dmamap)) != 0) {
182 aprint_error_dev(sc->sc_dev,
183 "unable to create rx DMA map %d, error = %d\n",
184 i, error);
185 goto fail_5;
186 }
187 EPIC_DSRX(sc, i)->ds_mbuf = NULL;
188 }
189
190 /*
191 * create and map the pad buffer
192 */
193 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
194 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT,&sc->sc_nulldmamap)) != 0) {
195 aprint_error_dev(sc->sc_dev,
196 "unable to create pad buffer DMA map, error = %d\n", error);
197 goto fail_5;
198 }
199
200 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
201 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
202 aprint_error_dev(sc->sc_dev,
203 "unable to load pad buffer DMA map, error = %d\n", error);
204 goto fail_6;
205 }
206 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
207 BUS_DMASYNC_PREWRITE);
208
209 /*
210 * Bring the chip out of low-power mode and reset it to a known state.
211 */
212 bus_space_write_4(st, sh, EPIC_GENCTL, 0);
213 epic_reset(sc);
214
215 /*
216 * Read the Ethernet address from the EEPROM.
217 */
218 epic_read_eeprom(sc, 0, __arraycount(myea), myea);
219 for (i = 0; i < __arraycount(myea); i++) {
220 enaddr[i * 2] = myea[i] & 0xff;
221 enaddr[i * 2 + 1] = myea[i] >> 8;
222 }
223
224 /*
225 * ...and the device name.
226 */
227 epic_read_eeprom(sc, 0x2c, __arraycount(mydevname), mydevname);
228 for (i = 0; i < __arraycount(mydevname); i++) {
229 devname[i * 2] = mydevname[i] & 0xff;
230 devname[i * 2 + 1] = mydevname[i] >> 8;
231 }
232
233 devname[sizeof(mydevname)] = '\0';
234 for (i = sizeof(mydevname) ; i > 0; i--) {
235 if (devname[i - 1] == ' ')
236 devname[i - 1] = '\0';
237 else
238 break;
239 }
240
241 aprint_normal_dev(sc->sc_dev, "%s, Ethernet address %s\n",
242 devname, ether_sprintf(enaddr));
243
244 miiflags = 0;
245 if (sc->sc_hwflags & EPIC_HAS_MII_FIBER)
246 miiflags |= MIIF_HAVEFIBER;
247
248 /*
249 * Initialize our media structures and probe the MII.
250 */
251 mii->mii_ifp = ifp;
252 mii->mii_readreg = epic_mii_read;
253 mii->mii_writereg = epic_mii_write;
254 mii->mii_statchg = epic_statchg;
255
256 sc->sc_ethercom.ec_mii = mii;
257 ifmedia_init(&mii->mii_media, IFM_IMASK, epic_mediachange,
258 ether_mediastatus);
259 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
260 MII_OFFSET_ANY, miiflags);
261 if (LIST_EMPTY(&mii->mii_phys)) {
262 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
263 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
264 } else
265 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
266
267 if (sc->sc_hwflags & EPIC_HAS_BNC) {
268 /* use the next free media instance */
269 sc->sc_serinst = mii->mii_instance++;
270 ifmedia_add(&mii->mii_media,
271 IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0, sc->sc_serinst),
272 0, NULL);
273 aprint_normal_dev(sc->sc_dev, "10base2/BNC\n");
274 } else
275 sc->sc_serinst = -1;
276
277 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
278 ifp->if_softc = sc;
279 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
280 ifp->if_ioctl = epic_ioctl;
281 ifp->if_start = epic_start;
282 ifp->if_watchdog = epic_watchdog;
283 ifp->if_init = epic_init;
284 ifp->if_stop = epic_stop;
285 IFQ_SET_READY(&ifp->if_snd);
286
287 /*
288 * We can support 802.1Q VLAN-sized frames.
289 */
290 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
291
292 /*
293 * Attach the interface.
294 */
295 if_attach(ifp);
296 if_deferred_start_init(ifp, NULL);
297 ether_ifattach(ifp, enaddr);
298
299 /*
300 * Make sure the interface is shutdown during reboot.
301 */
302 if (pmf_device_register1(sc->sc_dev, NULL, NULL, epic_shutdown))
303 pmf_class_network_register(sc->sc_dev, ifp);
304 else
305 aprint_error_dev(sc->sc_dev,
306 "couldn't establish power handler\n");
307
308 return;
309
310 /*
311 * Free any resources we've allocated during the failed attach
312 * attempt. Do this in reverse order and fall through.
313 */
314 fail_6:
315 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
316 fail_5:
317 for (i = 0; i < EPIC_NRXDESC; i++) {
318 if (EPIC_DSRX(sc, i)->ds_dmamap != NULL)
319 bus_dmamap_destroy(sc->sc_dmat,
320 EPIC_DSRX(sc, i)->ds_dmamap);
321 }
322 fail_4:
323 for (i = 0; i < EPIC_NTXDESC; i++) {
324 if (EPIC_DSTX(sc, i)->ds_dmamap != NULL)
325 bus_dmamap_destroy(sc->sc_dmat,
326 EPIC_DSTX(sc, i)->ds_dmamap);
327 }
328 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
329 fail_3:
330 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
331 fail_2:
332 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
333 sizeof(struct epic_control_data));
334 fail_1:
335 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
336 fail_0:
337 return;
338 }
339
340 /*
341 * Shutdown hook. Make sure the interface is stopped at reboot.
342 */
343 static bool
344 epic_shutdown(device_t self, int howto)
345 {
346 struct epic_softc *sc = device_private(self);
347
348 epic_stop(&sc->sc_ethercom.ec_if, 1);
349
350 return true;
351 }
352
353 /*
354 * Start packet transmission on the interface.
355 * [ifnet interface function]
356 */
357 static void
358 epic_start(struct ifnet *ifp)
359 {
360 struct epic_softc *sc = ifp->if_softc;
361 struct mbuf *m0, *m;
362 struct epic_txdesc *txd;
363 struct epic_descsoft *ds;
364 struct epic_fraglist *fr;
365 bus_dmamap_t dmamap;
366 int error, firsttx, nexttx, opending, seg;
367 u_int len;
368
369 /*
370 * Remember the previous txpending and the first transmit
371 * descriptor we use.
372 */
373 opending = sc->sc_txpending;
374 firsttx = EPIC_NEXTTX(sc->sc_txlast);
375
376 /*
377 * Loop through the send queue, setting up transmit descriptors
378 * until we drain the queue, or use up all available transmit
379 * descriptors.
380 */
381 while (sc->sc_txpending < EPIC_NTXDESC) {
382 /*
383 * Grab a packet off the queue.
384 */
385 IFQ_POLL(&ifp->if_snd, m0);
386 if (m0 == NULL)
387 break;
388 m = NULL;
389
390 /*
391 * Get the last and next available transmit descriptor.
392 */
393 nexttx = EPIC_NEXTTX(sc->sc_txlast);
394 txd = EPIC_CDTX(sc, nexttx);
395 fr = EPIC_CDFL(sc, nexttx);
396 ds = EPIC_DSTX(sc, nexttx);
397 dmamap = ds->ds_dmamap;
398
399 /*
400 * Load the DMA map. If this fails, the packet either
401 * didn't fit in the alloted number of frags, or we were
402 * short on resources. In this case, we'll copy and try
403 * again.
404 */
405 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
406 BUS_DMA_WRITE | BUS_DMA_NOWAIT)) != 0 ||
407 (m0->m_pkthdr.len < ETHER_PAD_LEN &&
408 dmamap-> dm_nsegs == EPIC_NFRAGS)) {
409 if (error == 0)
410 bus_dmamap_unload(sc->sc_dmat, dmamap);
411
412 MGETHDR(m, M_DONTWAIT, MT_DATA);
413 if (m == NULL) {
414 printf("%s: unable to allocate Tx mbuf\n",
415 device_xname(sc->sc_dev));
416 break;
417 }
418 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
419 if (m0->m_pkthdr.len > MHLEN) {
420 MCLGET(m, M_DONTWAIT);
421 if ((m->m_flags & M_EXT) == 0) {
422 printf("%s: unable to allocate Tx "
423 "cluster\n",
424 device_xname(sc->sc_dev));
425 m_freem(m);
426 break;
427 }
428 }
429 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
430 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
431 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
432 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
433 if (error) {
434 printf("%s: unable to load Tx buffer, "
435 "error = %d\n", device_xname(sc->sc_dev),
436 error);
437 break;
438 }
439 }
440 IFQ_DEQUEUE(&ifp->if_snd, m0);
441 if (m != NULL) {
442 m_freem(m0);
443 m0 = m;
444 }
445
446 /* Initialize the fraglist. */
447 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
448 fr->ef_frags[seg].ef_addr =
449 dmamap->dm_segs[seg].ds_addr;
450 fr->ef_frags[seg].ef_length =
451 dmamap->dm_segs[seg].ds_len;
452 }
453 len = m0->m_pkthdr.len;
454 if (len < ETHER_PAD_LEN) {
455 fr->ef_frags[seg].ef_addr = sc->sc_nulldma;
456 fr->ef_frags[seg].ef_length = ETHER_PAD_LEN - len;
457 len = ETHER_PAD_LEN;
458 seg++;
459 }
460 fr->ef_nfrags = seg;
461
462 EPIC_CDFLSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
463
464 /* Sync the DMA map. */
465 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
466 BUS_DMASYNC_PREWRITE);
467
468 /*
469 * Store a pointer to the packet so we can free it later.
470 */
471 ds->ds_mbuf = m0;
472
473 /*
474 * Fill in the transmit descriptor.
475 */
476 txd->et_control = ET_TXCTL_LASTDESC | ET_TXCTL_FRAGLIST;
477
478 /*
479 * If this is the first descriptor we're enqueueing,
480 * don't give it to the EPIC yet. That could cause
481 * a race condition. We'll do it below.
482 */
483 if (nexttx == firsttx)
484 txd->et_txstatus = TXSTAT_TXLENGTH(len);
485 else
486 txd->et_txstatus =
487 TXSTAT_TXLENGTH(len) | ET_TXSTAT_OWNER;
488
489 EPIC_CDTXSYNC(sc, nexttx,
490 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
491
492 /* Advance the tx pointer. */
493 sc->sc_txpending++;
494 sc->sc_txlast = nexttx;
495
496 /*
497 * Pass the packet to any BPF listeners.
498 */
499 bpf_mtap(ifp, m0, BPF_D_OUT);
500 }
501
502 if (sc->sc_txpending != opending) {
503 /*
504 * We enqueued packets. If the transmitter was idle,
505 * reset the txdirty pointer.
506 */
507 if (opending == 0)
508 sc->sc_txdirty = firsttx;
509
510 /*
511 * Cause a transmit interrupt to happen on the
512 * last packet we enqueued.
513 */
514 EPIC_CDTX(sc, sc->sc_txlast)->et_control |= ET_TXCTL_IAF;
515 EPIC_CDTXSYNC(sc, sc->sc_txlast,
516 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
517
518 /*
519 * The entire packet chain is set up. Give the
520 * first descriptor to the EPIC now.
521 */
522 EPIC_CDTX(sc, firsttx)->et_txstatus |= ET_TXSTAT_OWNER;
523 EPIC_CDTXSYNC(sc, firsttx,
524 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
525
526 /* Start the transmitter. */
527 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
528 COMMAND_TXQUEUED);
529
530 /* Set a watchdog timer in case the chip flakes out. */
531 ifp->if_timer = 5;
532 }
533 }
534
535 /*
536 * Watchdog timer handler.
537 * [ifnet interface function]
538 */
539 static void
540 epic_watchdog(struct ifnet *ifp)
541 {
542 struct epic_softc *sc = ifp->if_softc;
543
544 printf("%s: device timeout\n", device_xname(sc->sc_dev));
545 if_statinc(ifp, if_oerrors);
546
547 (void)epic_init(ifp);
548 }
549
550 /*
551 * Handle control requests from the operator.
552 * [ifnet interface function]
553 */
554 static int
555 epic_ioctl(struct ifnet *ifp, u_long cmd, void *data)
556 {
557 struct epic_softc *sc = ifp->if_softc;
558 int s, error;
559
560 s = splnet();
561
562 error = ether_ioctl(ifp, cmd, data);
563 if (error == ENETRESET) {
564 /*
565 * Multicast list has changed; set the hardware filter
566 * accordingly. Update our idea of the current media;
567 * epic_set_mchash() needs to know what it is.
568 */
569 if (ifp->if_flags & IFF_RUNNING) {
570 mii_pollstat(&sc->sc_mii);
571 epic_set_mchash(sc);
572 }
573 error = 0;
574 }
575
576 splx(s);
577 return error;
578 }
579
580 /*
581 * Interrupt handler.
582 */
583 int
584 epic_intr(void *arg)
585 {
586 struct epic_softc *sc = arg;
587 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
588 struct epic_rxdesc *rxd;
589 struct epic_txdesc *txd;
590 struct epic_descsoft *ds;
591 struct mbuf *m;
592 uint32_t intstat, rxstatus, txstatus;
593 int i, claimed = 0;
594 u_int len;
595
596 top:
597 /*
598 * Get the interrupt status from the EPIC.
599 */
600 intstat = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT);
601 if ((intstat & INTSTAT_INT_ACTV) == 0)
602 return claimed;
603
604 claimed = 1;
605
606 /*
607 * Acknowledge the interrupt.
608 */
609 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT,
610 intstat & INTMASK);
611
612 /*
613 * Check for receive interrupts.
614 */
615 if (intstat & (INTSTAT_RCC | INTSTAT_RXE | INTSTAT_RQE)) {
616 for (i = sc->sc_rxptr;; i = EPIC_NEXTRX(i)) {
617 rxd = EPIC_CDRX(sc, i);
618 ds = EPIC_DSRX(sc, i);
619
620 EPIC_CDRXSYNC(sc, i,
621 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
622
623 rxstatus = rxd->er_rxstatus;
624 if (rxstatus & ER_RXSTAT_OWNER) {
625 /*
626 * We have processed all of the
627 * receive buffers.
628 */
629 break;
630 }
631
632 /*
633 * Make sure the packet arrived intact. If an error
634 * occurred, update stats and reset the descriptor.
635 * The buffer will be reused the next time the
636 * descriptor comes up in the ring.
637 */
638 if ((rxstatus & ER_RXSTAT_PKTINTACT) == 0) {
639 if (rxstatus & ER_RXSTAT_CRCERROR)
640 printf("%s: CRC error\n",
641 device_xname(sc->sc_dev));
642 if (rxstatus & ER_RXSTAT_ALIGNERROR)
643 printf("%s: alignment error\n",
644 device_xname(sc->sc_dev));
645 if_statinc(ifp, if_ierrors);
646 EPIC_INIT_RXDESC(sc, i);
647 continue;
648 }
649
650 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
651 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
652
653 /*
654 * The EPIC includes the CRC with every packet;
655 * trim it.
656 */
657 len = RXSTAT_RXLENGTH(rxstatus) - ETHER_CRC_LEN;
658
659 if (len < sizeof(struct ether_header)) {
660 /*
661 * Runt packet; drop it now.
662 */
663 if_statinc(ifp, if_ierrors);
664 EPIC_INIT_RXDESC(sc, i);
665 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
666 ds->ds_dmamap->dm_mapsize,
667 BUS_DMASYNC_PREREAD);
668 continue;
669 }
670
671 /*
672 * If the packet is small enough to fit in a
673 * single header mbuf, allocate one and copy
674 * the data into it. This greatly reduces
675 * memory consumption when we receive lots
676 * of small packets.
677 *
678 * Otherwise, we add a new buffer to the receive
679 * chain. If this fails, we drop the packet and
680 * recycle the old buffer.
681 */
682 if (epic_copy_small != 0 && len <= MHLEN) {
683 MGETHDR(m, M_DONTWAIT, MT_DATA);
684 if (m == NULL)
685 goto dropit;
686 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
687 memcpy(mtod(m, void *),
688 mtod(ds->ds_mbuf, void *), len);
689 EPIC_INIT_RXDESC(sc, i);
690 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
691 ds->ds_dmamap->dm_mapsize,
692 BUS_DMASYNC_PREREAD);
693 } else {
694 m = ds->ds_mbuf;
695 if (epic_add_rxbuf(sc, i) != 0) {
696 dropit:
697 if_statinc(ifp, if_ierrors);
698 EPIC_INIT_RXDESC(sc, i);
699 bus_dmamap_sync(sc->sc_dmat,
700 ds->ds_dmamap, 0,
701 ds->ds_dmamap->dm_mapsize,
702 BUS_DMASYNC_PREREAD);
703 continue;
704 }
705 }
706
707 m_set_rcvif(m, ifp);
708 m->m_pkthdr.len = m->m_len = len;
709
710 /* Pass it on. */
711 if_percpuq_enqueue(ifp->if_percpuq, m);
712 }
713
714 /* Update the receive pointer. */
715 sc->sc_rxptr = i;
716
717 /*
718 * Check for receive queue underflow.
719 */
720 if (intstat & INTSTAT_RQE) {
721 printf("%s: receiver queue empty\n",
722 device_xname(sc->sc_dev));
723 /*
724 * Ring is already built; just restart the
725 * receiver.
726 */
727 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_PRCDAR,
728 EPIC_CDRXADDR(sc, sc->sc_rxptr));
729 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
730 COMMAND_RXQUEUED | COMMAND_START_RX);
731 }
732 }
733
734 /*
735 * Check for transmission complete interrupts.
736 */
737 if (intstat & (INTSTAT_TXC | INTSTAT_TXU)) {
738 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
739 i = EPIC_NEXTTX(i), sc->sc_txpending--) {
740 txd = EPIC_CDTX(sc, i);
741 ds = EPIC_DSTX(sc, i);
742
743 EPIC_CDTXSYNC(sc, i,
744 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
745
746 txstatus = txd->et_txstatus;
747 if (txstatus & ET_TXSTAT_OWNER)
748 break;
749
750 EPIC_CDFLSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
751
752 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
753 0, ds->ds_dmamap->dm_mapsize,
754 BUS_DMASYNC_POSTWRITE);
755 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
756 m_freem(ds->ds_mbuf);
757 ds->ds_mbuf = NULL;
758
759 /*
760 * Check for errors and collisions.
761 */
762 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
763 if ((txstatus & ET_TXSTAT_PACKETTX) == 0)
764 if_statinc_ref(nsr, if_oerrors);
765 else
766 if_statinc_ref(nsr, if_opackets);
767 if (TXSTAT_COLLISIONS(txstatus))
768 if_statadd_ref(nsr, if_collisions,
769 TXSTAT_COLLISIONS(txstatus));
770 if (txstatus & ET_TXSTAT_CARSENSELOST)
771 printf("%s: lost carrier\n",
772 device_xname(sc->sc_dev));
773 IF_STAT_PUTREF(ifp);
774 }
775
776 /* Update the dirty transmit buffer pointer. */
777 sc->sc_txdirty = i;
778
779 /*
780 * Cancel the watchdog timer if there are no pending
781 * transmissions.
782 */
783 if (sc->sc_txpending == 0)
784 ifp->if_timer = 0;
785
786 /*
787 * Kick the transmitter after a DMA underrun.
788 */
789 if (intstat & INTSTAT_TXU) {
790 printf("%s: transmit underrun\n",
791 device_xname(sc->sc_dev));
792 bus_space_write_4(sc->sc_st, sc->sc_sh,
793 EPIC_COMMAND, COMMAND_TXUGO);
794 if (sc->sc_txpending)
795 bus_space_write_4(sc->sc_st, sc->sc_sh,
796 EPIC_COMMAND, COMMAND_TXQUEUED);
797 }
798
799 /*
800 * Try to get more packets going.
801 */
802 if_schedule_deferred_start(ifp);
803 }
804
805 /*
806 * Check for fatal interrupts.
807 */
808 if (intstat & INTSTAT_FATAL_INT) {
809 if (intstat & INTSTAT_PTA)
810 printf("%s: PCI target abort error\n",
811 device_xname(sc->sc_dev));
812 else if (intstat & INTSTAT_PMA)
813 printf("%s: PCI master abort error\n",
814 device_xname(sc->sc_dev));
815 else if (intstat & INTSTAT_APE)
816 printf("%s: PCI address parity error\n",
817 device_xname(sc->sc_dev));
818 else if (intstat & INTSTAT_DPE)
819 printf("%s: PCI data parity error\n",
820 device_xname(sc->sc_dev));
821 else
822 printf("%s: unknown fatal error\n",
823 device_xname(sc->sc_dev));
824 (void)epic_init(ifp);
825 }
826
827 /*
828 * Check for more interrupts.
829 */
830 goto top;
831 }
832
833 /*
834 * One second timer, used to tick the MII.
835 */
836 static void
837 epic_tick(void *arg)
838 {
839 struct epic_softc *sc = arg;
840 int s;
841
842 s = splnet();
843 mii_tick(&sc->sc_mii);
844 splx(s);
845
846 callout_schedule(&sc->sc_mii_callout, hz);
847 }
848
849 /*
850 * Fixup the clock source on the EPIC.
851 */
852 static void
853 epic_fixup_clock_source(struct epic_softc *sc)
854 {
855 int i;
856
857 /*
858 * According to SMC Application Note 7-15, the EPIC's clock
859 * source is incorrect following a reset. This manifests itself
860 * as failure to recognize when host software has written to
861 * a register on the EPIC. The appnote recommends issuing at
862 * least 16 consecutive writes to the CLOCK TEST bit to correctly
863 * configure the clock source.
864 */
865 for (i = 0; i < 16; i++)
866 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TEST,
867 TEST_CLOCKTEST);
868 }
869
870 /*
871 * Perform a soft reset on the EPIC.
872 */
873 static void
874 epic_reset(struct epic_softc *sc)
875 {
876
877 epic_fixup_clock_source(sc);
878
879 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, 0);
880 delay(100);
881 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, GENCTL_SOFTRESET);
882 delay(100);
883
884 epic_fixup_clock_source(sc);
885 }
886
887 /*
888 * Initialize the interface. Must be called at splnet().
889 */
890 static int
891 epic_init(struct ifnet *ifp)
892 {
893 struct epic_softc *sc = ifp->if_softc;
894 bus_space_tag_t st = sc->sc_st;
895 bus_space_handle_t sh = sc->sc_sh;
896 const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
897 struct epic_txdesc *txd;
898 struct epic_descsoft *ds;
899 uint32_t genctl, reg0;
900 int i, error = 0;
901
902 /*
903 * Cancel any pending I/O.
904 */
905 epic_stop(ifp, 0);
906
907 /*
908 * Reset the EPIC to a known state.
909 */
910 epic_reset(sc);
911
912 /*
913 * Magical mystery initialization.
914 */
915 bus_space_write_4(st, sh, EPIC_TXTEST, 0);
916
917 /*
918 * Initialize the EPIC genctl register:
919 *
920 * - 64 byte receive FIFO threshold
921 * - automatic advance to next receive frame
922 */
923 genctl = GENCTL_RX_FIFO_THRESH0 | GENCTL_ONECOPY;
924 #if BYTE_ORDER == BIG_ENDIAN
925 genctl |= GENCTL_BIG_ENDIAN;
926 #endif
927 bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
928
929 /*
930 * Reset the MII bus and PHY.
931 */
932 reg0 = bus_space_read_4(st, sh, EPIC_NVCTL);
933 bus_space_write_4(st, sh, EPIC_NVCTL, reg0 | NVCTL_GPIO1 | NVCTL_GPOE1);
934 bus_space_write_4(st, sh, EPIC_MIICFG, MIICFG_ENASER);
935 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_RESET_PHY);
936 delay(100);
937 bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
938 delay(1000);
939 bus_space_write_4(st, sh, EPIC_NVCTL, reg0);
940
941 /*
942 * Initialize Ethernet address.
943 */
944 reg0 = enaddr[1] << 8 | enaddr[0];
945 bus_space_write_4(st, sh, EPIC_LAN0, reg0);
946 reg0 = enaddr[3] << 8 | enaddr[2];
947 bus_space_write_4(st, sh, EPIC_LAN1, reg0);
948 reg0 = enaddr[5] << 8 | enaddr[4];
949 bus_space_write_4(st, sh, EPIC_LAN2, reg0);
950
951 /*
952 * Initialize receive control. Remember the external buffer
953 * size setting.
954 */
955 reg0 = bus_space_read_4(st, sh, EPIC_RXCON) &
956 (RXCON_EXTBUFSIZESEL1 | RXCON_EXTBUFSIZESEL0);
957 reg0 |= (RXCON_RXMULTICAST | RXCON_RXBROADCAST);
958 if (ifp->if_flags & IFF_PROMISC)
959 reg0 |= RXCON_PROMISCMODE;
960 bus_space_write_4(st, sh, EPIC_RXCON, reg0);
961
962 /* Set the current media. */
963 if ((error = epic_mediachange(ifp)) != 0)
964 goto out;
965
966 /* Set up the multicast hash table. */
967 epic_set_mchash(sc);
968
969 /*
970 * Initialize the transmit descriptor ring. txlast is initialized
971 * to the end of the list so that it will wrap around to the first
972 * descriptor when the first packet is transmitted.
973 */
974 for (i = 0; i < EPIC_NTXDESC; i++) {
975 txd = EPIC_CDTX(sc, i);
976 memset(txd, 0, sizeof(struct epic_txdesc));
977 txd->et_bufaddr = EPIC_CDFLADDR(sc, i);
978 txd->et_nextdesc = EPIC_CDTXADDR(sc, EPIC_NEXTTX(i));
979 EPIC_CDTXSYNC(sc, i,
980 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
981 }
982 sc->sc_txpending = 0;
983 sc->sc_txdirty = 0;
984 sc->sc_txlast = EPIC_NTXDESC - 1;
985
986 /*
987 * Initialize the receive descriptor ring.
988 */
989 for (i = 0; i < EPIC_NRXDESC; i++) {
990 ds = EPIC_DSRX(sc, i);
991 if (ds->ds_mbuf == NULL) {
992 if ((error = epic_add_rxbuf(sc, i)) != 0) {
993 printf("%s: unable to allocate or map rx "
994 "buffer %d error = %d\n",
995 device_xname(sc->sc_dev), i, error);
996 /*
997 * XXX Should attempt to run with fewer receive
998 * XXX buffers instead of just failing.
999 */
1000 epic_rxdrain(sc);
1001 goto out;
1002 }
1003 } else
1004 EPIC_INIT_RXDESC(sc, i);
1005 }
1006 sc->sc_rxptr = 0;
1007
1008 /*
1009 * Initialize the interrupt mask and enable interrupts.
1010 */
1011 bus_space_write_4(st, sh, EPIC_INTMASK, INTMASK);
1012 bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_INTENA);
1013
1014 /*
1015 * Give the transmit and receive rings to the EPIC.
1016 */
1017 bus_space_write_4(st, sh, EPIC_PTCDAR,
1018 EPIC_CDTXADDR(sc, EPIC_NEXTTX(sc->sc_txlast)));
1019 bus_space_write_4(st, sh, EPIC_PRCDAR,
1020 EPIC_CDRXADDR(sc, sc->sc_rxptr));
1021
1022 /*
1023 * Set the EPIC in motion.
1024 */
1025 bus_space_write_4(st, sh, EPIC_COMMAND,
1026 COMMAND_RXQUEUED | COMMAND_START_RX);
1027
1028 /*
1029 * ...all done!
1030 */
1031 ifp->if_flags |= IFF_RUNNING;
1032
1033 /*
1034 * Start the one second clock.
1035 */
1036 callout_schedule(&sc->sc_mii_callout, hz);
1037
1038 /*
1039 * Attempt to start output on the interface.
1040 */
1041 epic_start(ifp);
1042
1043 out:
1044 if (error)
1045 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1046 return error;
1047 }
1048
1049 /*
1050 * Drain the receive queue.
1051 */
1052 static void
1053 epic_rxdrain(struct epic_softc *sc)
1054 {
1055 struct epic_descsoft *ds;
1056 int i;
1057
1058 for (i = 0; i < EPIC_NRXDESC; i++) {
1059 ds = EPIC_DSRX(sc, i);
1060 if (ds->ds_mbuf != NULL) {
1061 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1062 m_freem(ds->ds_mbuf);
1063 ds->ds_mbuf = NULL;
1064 }
1065 }
1066 }
1067
1068 /*
1069 * Stop transmission on the interface.
1070 */
1071 static void
1072 epic_stop(struct ifnet *ifp, int disable)
1073 {
1074 struct epic_softc *sc = ifp->if_softc;
1075 bus_space_tag_t st = sc->sc_st;
1076 bus_space_handle_t sh = sc->sc_sh;
1077 struct epic_descsoft *ds;
1078 uint32_t reg;
1079 int i;
1080
1081 /*
1082 * Stop the one second clock.
1083 */
1084 callout_stop(&sc->sc_mii_callout);
1085
1086 /* Down the MII. */
1087 mii_down(&sc->sc_mii);
1088
1089 /* Paranoia... */
1090 epic_fixup_clock_source(sc);
1091
1092 /*
1093 * Disable interrupts.
1094 */
1095 reg = bus_space_read_4(st, sh, EPIC_GENCTL);
1096 bus_space_write_4(st, sh, EPIC_GENCTL, reg & ~GENCTL_INTENA);
1097 bus_space_write_4(st, sh, EPIC_INTMASK, 0);
1098
1099 /*
1100 * Stop the DMA engine and take the receiver off-line.
1101 */
1102 bus_space_write_4(st, sh, EPIC_COMMAND, COMMAND_STOP_RDMA |
1103 COMMAND_STOP_TDMA | COMMAND_STOP_RX);
1104
1105 /*
1106 * Release any queued transmit buffers.
1107 */
1108 for (i = 0; i < EPIC_NTXDESC; i++) {
1109 ds = EPIC_DSTX(sc, i);
1110 if (ds->ds_mbuf != NULL) {
1111 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1112 m_freem(ds->ds_mbuf);
1113 ds->ds_mbuf = NULL;
1114 }
1115 }
1116
1117 /*
1118 * Mark the interface down and cancel the watchdog timer.
1119 */
1120 ifp->if_flags &= ~IFF_RUNNING;
1121 ifp->if_timer = 0;
1122
1123 if (disable)
1124 epic_rxdrain(sc);
1125 }
1126
1127 /*
1128 * Read the EPIC Serial EEPROM.
1129 */
1130 static void
1131 epic_read_eeprom(struct epic_softc *sc, int word, int wordcnt, uint16_t *data)
1132 {
1133 bus_space_tag_t st = sc->sc_st;
1134 bus_space_handle_t sh = sc->sc_sh;
1135 uint16_t reg;
1136 int i, x;
1137
1138 #define EEPROM_WAIT_READY(st, sh) \
1139 while ((bus_space_read_4((st), (sh), EPIC_EECTL) & EECTL_EERDY) == 0) \
1140 /* nothing */
1141
1142 /*
1143 * Enable the EEPROM.
1144 */
1145 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1146 EEPROM_WAIT_READY(st, sh);
1147
1148 for (i = 0; i < wordcnt; i++) {
1149 /* Send CHIP SELECT for one clock tick. */
1150 bus_space_write_4(st, sh, EPIC_EECTL,
1151 EECTL_ENABLE | EECTL_EECS);
1152 EEPROM_WAIT_READY(st, sh);
1153
1154 /* Shift in the READ opcode. */
1155 for (x = 3; x > 0; x--) {
1156 reg = EECTL_ENABLE | EECTL_EECS;
1157 if (EPIC_EEPROM_OPC_READ & (1 << (x - 1)))
1158 reg |= EECTL_EEDI;
1159 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1160 EEPROM_WAIT_READY(st, sh);
1161 bus_space_write_4(st, sh, EPIC_EECTL, reg |EECTL_EESK);
1162 EEPROM_WAIT_READY(st, sh);
1163 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1164 EEPROM_WAIT_READY(st, sh);
1165 }
1166
1167 /* Shift in address. */
1168 for (x = 6; x > 0; x--) {
1169 reg = EECTL_ENABLE | EECTL_EECS;
1170 if ((word + i) & (1 << (x - 1)))
1171 reg |= EECTL_EEDI;
1172 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1173 EEPROM_WAIT_READY(st, sh);
1174 bus_space_write_4(st, sh, EPIC_EECTL, reg |EECTL_EESK);
1175 EEPROM_WAIT_READY(st, sh);
1176 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1177 EEPROM_WAIT_READY(st, sh);
1178 }
1179
1180 /* Shift out data. */
1181 reg = EECTL_ENABLE | EECTL_EECS;
1182 data[i] = 0;
1183 for (x = 16; x > 0; x--) {
1184 bus_space_write_4(st, sh, EPIC_EECTL, reg |EECTL_EESK);
1185 EEPROM_WAIT_READY(st, sh);
1186 if (bus_space_read_4(st, sh, EPIC_EECTL) & EECTL_EEDO)
1187 data[i] |= (1 << (x - 1));
1188 bus_space_write_4(st, sh, EPIC_EECTL, reg);
1189 EEPROM_WAIT_READY(st, sh);
1190 }
1191
1192 /* Clear CHIP SELECT. */
1193 bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
1194 EEPROM_WAIT_READY(st, sh);
1195 }
1196
1197 /*
1198 * Disable the EEPROM.
1199 */
1200 bus_space_write_4(st, sh, EPIC_EECTL, 0);
1201
1202 #undef EEPROM_WAIT_READY
1203 }
1204
1205 /*
1206 * Add a receive buffer to the indicated descriptor.
1207 */
1208 static int
1209 epic_add_rxbuf(struct epic_softc *sc, int idx)
1210 {
1211 struct epic_descsoft *ds = EPIC_DSRX(sc, idx);
1212 struct mbuf *m;
1213 int error;
1214
1215 MGETHDR(m, M_DONTWAIT, MT_DATA);
1216 if (m == NULL)
1217 return ENOBUFS;
1218 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1219
1220 MCLGET(m, M_DONTWAIT);
1221 if ((m->m_flags & M_EXT) == 0) {
1222 m_freem(m);
1223 return ENOBUFS;
1224 }
1225
1226 if (ds->ds_mbuf != NULL)
1227 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1228
1229 ds->ds_mbuf = m;
1230
1231 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1232 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1233 BUS_DMA_READ | BUS_DMA_NOWAIT);
1234 if (error) {
1235 printf("%s: can't load rx DMA map %d, error = %d\n",
1236 device_xname(sc->sc_dev), idx, error);
1237 panic("%s", __func__); /* XXX */
1238 }
1239
1240 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1241 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1242
1243 EPIC_INIT_RXDESC(sc, idx);
1244
1245 return 0;
1246 }
1247
1248 /*
1249 * Set the EPIC multicast hash table.
1250 *
1251 * NOTE: We rely on a recently-updated mii_media_active here!
1252 */
1253 static void
1254 epic_set_mchash(struct epic_softc *sc)
1255 {
1256 struct ethercom *ec = &sc->sc_ethercom;
1257 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1258 struct ether_multi *enm;
1259 struct ether_multistep step;
1260 uint32_t hash, mchash[4];
1261
1262 /*
1263 * Set up the multicast address filter by passing all multicast
1264 * addresses through a CRC generator, and then using the low-order
1265 * 6 bits as an index into the 64 bit multicast hash table (only
1266 * the lower 16 bits of each 32 bit multicast hash register are
1267 * valid). The high order bits select the register, while the
1268 * rest of the bits select the bit within the register.
1269 */
1270
1271 if (ifp->if_flags & IFF_PROMISC)
1272 goto allmulti;
1273
1274 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
1275 /* XXX hardware bug in 10Mbps mode. */
1276 goto allmulti;
1277 }
1278
1279 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0;
1280
1281 ETHER_LOCK(ec);
1282 ETHER_FIRST_MULTI(step, ec, enm);
1283 while (enm != NULL) {
1284 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1285 /*
1286 * We must listen to a range of multicast addresses.
1287 * For now, just accept all multicasts, rather than
1288 * trying to set only those filter bits needed to match
1289 * the range. (At this time, the only use of address
1290 * ranges is for IP multicast routing, for which the
1291 * range is big enough to require all bits set.)
1292 */
1293 ETHER_UNLOCK(ec);
1294 goto allmulti;
1295 }
1296
1297 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1298 hash >>= 26;
1299
1300 /* Set the corresponding bit in the hash table. */
1301 mchash[hash >> 4] |= 1 << (hash & 0xf);
1302
1303 ETHER_NEXT_MULTI(step, enm);
1304 }
1305 ETHER_UNLOCK(ec);
1306
1307 ifp->if_flags &= ~IFF_ALLMULTI;
1308 goto sethash;
1309
1310 allmulti:
1311 ifp->if_flags |= IFF_ALLMULTI;
1312 mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xffff;
1313
1314 sethash:
1315 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC0, mchash[0]);
1316 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC1, mchash[1]);
1317 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC2, mchash[2]);
1318 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC3, mchash[3]);
1319 }
1320
1321 /*
1322 * Wait for the MII to become ready.
1323 */
1324 static int
1325 epic_mii_wait(struct epic_softc *sc, uint32_t rw)
1326 {
1327 int i;
1328
1329 for (i = 0; i < 50; i++) {
1330 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL) & rw)
1331 == 0)
1332 break;
1333 delay(2);
1334 }
1335 if (i == 50) {
1336 printf("%s: MII timed out\n", device_xname(sc->sc_dev));
1337 return ETIMEDOUT;
1338 }
1339
1340 return 0;
1341 }
1342
1343 /*
1344 * Read from the MII.
1345 */
1346 static int
1347 epic_mii_read(device_t self, int phy, int reg, uint16_t *val)
1348 {
1349 struct epic_softc *sc = device_private(self);
1350 int rv;
1351
1352 if ((rv = epic_mii_wait(sc, MMCTL_WRITE)) != 0)
1353 return rv;
1354
1355 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1356 MMCTL_ARG(phy, reg, MMCTL_READ));
1357
1358 if ((rv = epic_mii_wait(sc, MMCTL_READ)) != 0)
1359 return rv;
1360
1361 *val = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA)
1362 & MMDATA_MASK;
1363 return 0;
1364 }
1365
1366 /*
1367 * Write to the MII.
1368 */
1369 static int
1370 epic_mii_write(device_t self, int phy, int reg, uint16_t val)
1371 {
1372 struct epic_softc *sc = device_private(self);
1373 int rv;
1374
1375 if ((rv = epic_mii_wait(sc, MMCTL_WRITE)) != 0)
1376 return rv;
1377
1378 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA, val);
1379 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
1380 MMCTL_ARG(phy, reg, MMCTL_WRITE));
1381
1382 return 0;
1383 }
1384
1385 /*
1386 * Callback from PHY when media changes.
1387 */
1388 static void
1389 epic_statchg(struct ifnet *ifp)
1390 {
1391 struct epic_softc *sc = ifp->if_softc;
1392 uint32_t txcon, miicfg;
1393
1394 /*
1395 * Update loopback bits in TXCON to reflect duplex mode.
1396 */
1397 txcon = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_TXCON);
1398 if (sc->sc_mii.mii_media_active & IFM_FDX)
1399 txcon |= (TXCON_LOOPBACK_D1 | TXCON_LOOPBACK_D2);
1400 else
1401 txcon &= ~(TXCON_LOOPBACK_D1 | TXCON_LOOPBACK_D2);
1402 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TXCON, txcon);
1403
1404 /* On some cards we need manualy set fullduplex led */
1405 if (sc->sc_hwflags & EPIC_DUPLEXLED_ON_694) {
1406 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1407 if (IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX)
1408 miicfg |= MIICFG_ENABLE;
1409 else
1410 miicfg &= ~MIICFG_ENABLE;
1411 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1412 }
1413
1414 /*
1415 * There is a multicast filter bug in 10Mbps mode. Kick the
1416 * multicast filter in case the speed changed.
1417 */
1418 epic_set_mchash(sc);
1419 }
1420
1421 /*
1422 * Callback from ifmedia to request new media setting.
1423 *
1424 * XXX Looks to me like some of this complexity should move into
1425 * XXX one or two custom PHY drivers. --dyoung
1426 */
1427 static int
1428 epic_mediachange(struct ifnet *ifp)
1429 {
1430 struct epic_softc *sc = ifp->if_softc;
1431 struct mii_data *mii = &sc->sc_mii;
1432 struct ifmedia *ifm = &mii->mii_media;
1433 int media = ifm->ifm_cur->ifm_media;
1434 uint32_t miicfg;
1435 struct mii_softc *miisc;
1436 int rc;
1437 uint16_t cfg;
1438
1439 if ((ifp->if_flags & IFF_UP) == 0)
1440 return 0;
1441
1442 if (IFM_INST(media) != sc->sc_serinst) {
1443 /* If we're not selecting serial interface, select MII mode */
1444 #ifdef EPICMEDIADEBUG
1445 printf("%s: parallel mode\n", ifp->if_xname);
1446 #endif
1447 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1448 miicfg &= ~MIICFG_SERMODEENA;
1449 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1450 }
1451
1452 if ((rc = mii_mediachg(mii)) == ENXIO)
1453 rc = 0;
1454
1455 if (IFM_INST(media) == sc->sc_serinst) {
1456 /* select serial interface */
1457 #ifdef EPICMEDIADEBUG
1458 printf("%s: serial mode\n", ifp->if_xname);
1459 #endif
1460 miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
1461 miicfg |= (MIICFG_SERMODEENA | MIICFG_ENABLE);
1462 bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
1463
1464 /* There is no driver to fill this */
1465 mii->mii_media_active = media;
1466 mii->mii_media_status = 0;
1467
1468 epic_statchg(mii->mii_ifp);
1469 return 0;
1470 }
1471
1472 /* Lookup selected PHY */
1473 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
1474 if (IFM_INST(media) == miisc->mii_inst)
1475 break;
1476 }
1477 if (!miisc) {
1478 printf("%s: can't happen\n", __func__); /* ??? panic */
1479 return 0;
1480 }
1481 #ifdef EPICMEDIADEBUG
1482 printf("%s: using phy %s\n", ifp->if_xname,
1483 device_xname(miisc->mii_dev));
1484 #endif
1485
1486 if (miisc->mii_flags & MIIF_HAVEFIBER) {
1487 /* XXX XXX assume it's a Level1 - should check */
1488
1489 /* We have to powerup fiber transceivers */
1490 PHY_READ(miisc, MII_LXTPHY_CONFIG, &cfg);
1491 if (IFM_SUBTYPE(media) == IFM_100_FX) {
1492 #ifdef EPICMEDIADEBUG
1493 printf("%s: power up fiber\n", ifp->if_xname);
1494 #endif
1495 cfg |= (CONFIG_LEDC1 | CONFIG_LEDC0);
1496 } else {
1497 #ifdef EPICMEDIADEBUG
1498 printf("%s: power down fiber\n", ifp->if_xname);
1499 #endif
1500 cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0);
1501 }
1502 PHY_WRITE(miisc, MII_LXTPHY_CONFIG, cfg);
1503 }
1504
1505 return rc;
1506 }
1507