spdmem.c revision 1.12 1 1.12 matt /* $NetBSD: spdmem.c,v 1.12 2015/04/01 06:08:39 matt Exp $ */
2 1.1 pgoyette
3 1.1 pgoyette /*
4 1.1 pgoyette * Copyright (c) 2007 Nicolas Joly
5 1.1 pgoyette * Copyright (c) 2007 Paul Goyette
6 1.1 pgoyette * Copyright (c) 2007 Tobias Nygren
7 1.1 pgoyette * All rights reserved.
8 1.1 pgoyette *
9 1.1 pgoyette * Redistribution and use in source and binary forms, with or without
10 1.1 pgoyette * modification, are permitted provided that the following conditions
11 1.1 pgoyette * are met:
12 1.1 pgoyette * 1. Redistributions of source code must retain the above copyright
13 1.1 pgoyette * notice, this list of conditions and the following disclaimer.
14 1.1 pgoyette * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 pgoyette * notice, this list of conditions and the following disclaimer in the
16 1.1 pgoyette * documentation and/or other materials provided with the distribution.
17 1.1 pgoyette * 3. The name of the author may not be used to endorse or promote products
18 1.1 pgoyette * derived from this software without specific prior written permission.
19 1.1 pgoyette *
20 1.1 pgoyette * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
21 1.1 pgoyette * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 pgoyette * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 pgoyette * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 pgoyette * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 pgoyette * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 pgoyette * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 pgoyette * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 pgoyette * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 pgoyette * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 pgoyette * POSSIBILITY OF SUCH DAMAGE.
31 1.1 pgoyette */
32 1.1 pgoyette
33 1.1 pgoyette /*
34 1.1 pgoyette * Serial Presence Detect (SPD) memory identification
35 1.1 pgoyette */
36 1.1 pgoyette
37 1.1 pgoyette #include <sys/cdefs.h>
38 1.12 matt __KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.12 2015/04/01 06:08:39 matt Exp $");
39 1.1 pgoyette
40 1.1 pgoyette #include <sys/param.h>
41 1.1 pgoyette #include <sys/device.h>
42 1.1 pgoyette #include <sys/endian.h>
43 1.1 pgoyette #include <sys/sysctl.h>
44 1.1 pgoyette #include <machine/bswap.h>
45 1.1 pgoyette
46 1.1 pgoyette #include <dev/i2c/i2cvar.h>
47 1.1 pgoyette #include <dev/ic/spdmemreg.h>
48 1.1 pgoyette #include <dev/ic/spdmemvar.h>
49 1.1 pgoyette
50 1.1 pgoyette /* Routines for decoding spd data */
51 1.1 pgoyette static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *);
52 1.1 pgoyette static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *);
53 1.1 pgoyette static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *,
54 1.1 pgoyette int);
55 1.1 pgoyette static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *);
56 1.1 pgoyette static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *);
57 1.1 pgoyette static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *);
58 1.1 pgoyette static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *);
59 1.1 pgoyette
60 1.3 pgoyette static void decode_size_speed(device_t, const struct sysctlnode *,
61 1.3 pgoyette int, int, int, int, bool, const char *, int);
62 1.1 pgoyette static void decode_voltage_refresh(device_t, struct spdmem *);
63 1.1 pgoyette
64 1.1 pgoyette #define IS_RAMBUS_TYPE (s->sm_len < 4)
65 1.1 pgoyette
66 1.12 matt static const char* const spdmem_basic_types[] = {
67 1.1 pgoyette "unknown",
68 1.1 pgoyette "FPM",
69 1.1 pgoyette "EDO",
70 1.1 pgoyette "Pipelined Nibble",
71 1.1 pgoyette "SDRAM",
72 1.1 pgoyette "ROM",
73 1.1 pgoyette "DDR SGRAM",
74 1.1 pgoyette "DDR SDRAM",
75 1.1 pgoyette "DDR2 SDRAM",
76 1.1 pgoyette "DDR2 SDRAM FB",
77 1.1 pgoyette "DDR2 SDRAM FB Probe",
78 1.12 matt "DDR3 SDRAM",
79 1.11 msaitoh "DDR4 SDRAM"
80 1.1 pgoyette };
81 1.1 pgoyette
82 1.12 matt static const char* const spdmem_superset_types[] = {
83 1.1 pgoyette "unknown",
84 1.1 pgoyette "ESDRAM",
85 1.1 pgoyette "DDR ESDRAM",
86 1.1 pgoyette "PEM EDO",
87 1.1 pgoyette "PEM SDRAM"
88 1.1 pgoyette };
89 1.1 pgoyette
90 1.12 matt static const char* const spdmem_voltage_types[] = {
91 1.1 pgoyette "TTL (5V tolerant)",
92 1.1 pgoyette "LvTTL (not 5V tolerant)",
93 1.1 pgoyette "HSTL 1.5V",
94 1.1 pgoyette "SSTL 3.3V",
95 1.1 pgoyette "SSTL 2.5V",
96 1.1 pgoyette "SSTL 1.8V"
97 1.1 pgoyette };
98 1.1 pgoyette
99 1.12 matt static const char* const spdmem_refresh_types[] = {
100 1.1 pgoyette "15.625us",
101 1.1 pgoyette "3.9us",
102 1.1 pgoyette "7.8us",
103 1.1 pgoyette "31.3us",
104 1.1 pgoyette "62.5us",
105 1.1 pgoyette "125us"
106 1.1 pgoyette };
107 1.1 pgoyette
108 1.12 matt static const char* const spdmem_parity_types[] = {
109 1.1 pgoyette "no parity or ECC",
110 1.1 pgoyette "data parity",
111 1.1 pgoyette "data ECC",
112 1.1 pgoyette "data parity and ECC",
113 1.1 pgoyette "cmd/addr parity",
114 1.1 pgoyette "cmd/addr/data parity",
115 1.1 pgoyette "cmd/addr parity, data ECC",
116 1.1 pgoyette "cmd/addr/data parity, data ECC"
117 1.1 pgoyette };
118 1.1 pgoyette
119 1.1 pgoyette /* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */
120 1.1 pgoyette static const uint16_t spdmem_cycle_frac[] = {
121 1.1 pgoyette 0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
122 1.1 pgoyette 250, 333, 667, 750, 999, 999
123 1.1 pgoyette };
124 1.1 pgoyette
125 1.1 pgoyette /* Format string for timing info */
126 1.5 wiz #define LATENCY "tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n"
127 1.1 pgoyette
128 1.1 pgoyette /* CRC functions used for certain memory types */
129 1.1 pgoyette
130 1.1 pgoyette static uint16_t spdcrc16 (struct spdmem_softc *sc, int count)
131 1.1 pgoyette {
132 1.1 pgoyette uint16_t crc;
133 1.1 pgoyette int i, j;
134 1.1 pgoyette uint8_t val;
135 1.1 pgoyette crc = 0;
136 1.1 pgoyette for (j = 0; j <= count; j++) {
137 1.1 pgoyette val = (sc->sc_read)(sc, j);
138 1.1 pgoyette crc = crc ^ val << 8;
139 1.1 pgoyette for (i = 0; i < 8; ++i)
140 1.1 pgoyette if (crc & 0x8000)
141 1.1 pgoyette crc = crc << 1 ^ 0x1021;
142 1.1 pgoyette else
143 1.1 pgoyette crc = crc << 1;
144 1.1 pgoyette }
145 1.1 pgoyette return (crc & 0xFFFF);
146 1.1 pgoyette }
147 1.1 pgoyette
148 1.1 pgoyette int
149 1.1 pgoyette spdmem_common_probe(struct spdmem_softc *sc)
150 1.1 pgoyette {
151 1.1 pgoyette int cksum = 0;
152 1.1 pgoyette uint8_t i, val, spd_type;
153 1.1 pgoyette int spd_len, spd_crc_cover;
154 1.1 pgoyette uint16_t crc_calc, crc_spd;
155 1.1 pgoyette
156 1.1 pgoyette spd_type = (sc->sc_read)(sc, 2);
157 1.1 pgoyette
158 1.1 pgoyette /* For older memory types, validate the checksum over 1st 63 bytes */
159 1.1 pgoyette if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
160 1.1 pgoyette for (i = 0; i < 63; i++)
161 1.1 pgoyette cksum += (sc->sc_read)(sc, i);
162 1.1 pgoyette
163 1.1 pgoyette val = (sc->sc_read)(sc, 63);
164 1.1 pgoyette
165 1.1 pgoyette if (cksum == 0 || (cksum & 0xff) != val) {
166 1.1 pgoyette aprint_debug("spd checksum failed, calc = 0x%02x, "
167 1.1 pgoyette "spd = 0x%02x\n", cksum, val);
168 1.1 pgoyette return 0;
169 1.1 pgoyette } else
170 1.1 pgoyette return 1;
171 1.1 pgoyette }
172 1.1 pgoyette
173 1.1 pgoyette /* For DDR3 and FBDIMM, verify the CRC */
174 1.1 pgoyette else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
175 1.1 pgoyette spd_len = (sc->sc_read)(sc, 0);
176 1.2 pgoyette if (spd_len & SPDMEM_SPDCRC_116)
177 1.1 pgoyette spd_crc_cover = 116;
178 1.1 pgoyette else
179 1.1 pgoyette spd_crc_cover = 125;
180 1.1 pgoyette switch (spd_len & SPDMEM_SPDLEN_MASK) {
181 1.1 pgoyette case SPDMEM_SPDLEN_128:
182 1.1 pgoyette spd_len = 128;
183 1.1 pgoyette break;
184 1.1 pgoyette case SPDMEM_SPDLEN_176:
185 1.1 pgoyette spd_len = 176;
186 1.1 pgoyette break;
187 1.1 pgoyette case SPDMEM_SPDLEN_256:
188 1.1 pgoyette spd_len = 256;
189 1.1 pgoyette break;
190 1.1 pgoyette default:
191 1.1 pgoyette return 0;
192 1.1 pgoyette }
193 1.1 pgoyette if (spd_crc_cover > spd_len)
194 1.1 pgoyette return 0;
195 1.1 pgoyette crc_calc = spdcrc16(sc, spd_crc_cover);
196 1.1 pgoyette crc_spd = (sc->sc_read)(sc, 127) << 8;
197 1.1 pgoyette crc_spd |= (sc->sc_read)(sc, 126);
198 1.1 pgoyette if (crc_calc != crc_spd) {
199 1.1 pgoyette aprint_debug("crc16 failed, covers %d bytes, "
200 1.1 pgoyette "calc = 0x%04x, spd = 0x%04x\n",
201 1.1 pgoyette spd_crc_cover, crc_calc, crc_spd);
202 1.1 pgoyette return 0;
203 1.1 pgoyette }
204 1.1 pgoyette return 1;
205 1.1 pgoyette }
206 1.1 pgoyette
207 1.1 pgoyette /* For unrecognized memory types, don't match at all */
208 1.1 pgoyette return 0;
209 1.1 pgoyette }
210 1.1 pgoyette
211 1.1 pgoyette void
212 1.1 pgoyette spdmem_common_attach(struct spdmem_softc *sc, device_t self)
213 1.1 pgoyette {
214 1.1 pgoyette struct spdmem *s = &(sc->sc_spd_data);
215 1.1 pgoyette const char *type;
216 1.1 pgoyette const char *rambus_rev = "Reserved";
217 1.1 pgoyette int dimm_size;
218 1.3 pgoyette unsigned int i, spd_len, spd_size;
219 1.1 pgoyette const struct sysctlnode *node = NULL;
220 1.1 pgoyette
221 1.1 pgoyette /*
222 1.1 pgoyette * FBDIMM and DDR3 (and probably all newer) have a different
223 1.1 pgoyette * encoding of the SPD EEPROM used/total sizes
224 1.1 pgoyette */
225 1.1 pgoyette s->sm_len = (sc->sc_read)(sc, 0);
226 1.1 pgoyette s->sm_size = (sc->sc_read)(sc, 1);
227 1.1 pgoyette s->sm_type = (sc->sc_read)(sc, 2);
228 1.1 pgoyette
229 1.1 pgoyette if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) {
230 1.1 pgoyette spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK);
231 1.1 pgoyette switch (s->sm_len & SPDMEM_SPDLEN_MASK) {
232 1.1 pgoyette case SPDMEM_SPDLEN_128:
233 1.1 pgoyette spd_len = 128;
234 1.1 pgoyette break;
235 1.1 pgoyette case SPDMEM_SPDLEN_176:
236 1.1 pgoyette spd_len = 176;
237 1.1 pgoyette break;
238 1.1 pgoyette case SPDMEM_SPDLEN_256:
239 1.1 pgoyette spd_len = 256;
240 1.1 pgoyette break;
241 1.1 pgoyette default:
242 1.1 pgoyette spd_len = 64;
243 1.1 pgoyette break;
244 1.1 pgoyette }
245 1.1 pgoyette } else {
246 1.1 pgoyette spd_size = 1 << s->sm_size;
247 1.1 pgoyette spd_len = s->sm_len;
248 1.1 pgoyette if (spd_len < 64)
249 1.1 pgoyette spd_len = 64;
250 1.1 pgoyette }
251 1.1 pgoyette if (spd_len > spd_size)
252 1.1 pgoyette spd_len = spd_size;
253 1.1 pgoyette if (spd_len > sizeof(struct spdmem))
254 1.1 pgoyette spd_len = sizeof(struct spdmem);
255 1.1 pgoyette for (i = 3; i < spd_len; i++)
256 1.1 pgoyette ((uint8_t *)s)[i] = (sc->sc_read)(sc, i);
257 1.1 pgoyette
258 1.1 pgoyette /*
259 1.1 pgoyette * Setup our sysctl subtree, hw.spdmemN
260 1.1 pgoyette */
261 1.3 pgoyette sc->sc_sysctl_log = NULL;
262 1.9 pooka sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &node,
263 1.9 pooka 0, CTLTYPE_NODE,
264 1.9 pooka device_xname(self), NULL, NULL, 0, NULL, 0,
265 1.9 pooka CTL_HW, CTL_CREATE, CTL_EOL);
266 1.1 pgoyette if (node != NULL && spd_len != 0)
267 1.3 pgoyette sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
268 1.1 pgoyette 0,
269 1.1 pgoyette CTLTYPE_STRUCT, "spd_data",
270 1.1 pgoyette SYSCTL_DESCR("raw spd data"), NULL,
271 1.1 pgoyette 0, s, spd_len,
272 1.1 pgoyette CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
273 1.1 pgoyette
274 1.1 pgoyette /*
275 1.1 pgoyette * Decode and print key SPD contents
276 1.1 pgoyette */
277 1.1 pgoyette if (IS_RAMBUS_TYPE) {
278 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS)
279 1.1 pgoyette type = "Rambus";
280 1.1 pgoyette else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS)
281 1.1 pgoyette type = "Direct Rambus";
282 1.1 pgoyette else
283 1.1 pgoyette type = "Rambus (unknown)";
284 1.1 pgoyette
285 1.1 pgoyette switch (s->sm_len) {
286 1.1 pgoyette case 0:
287 1.1 pgoyette rambus_rev = "Invalid";
288 1.1 pgoyette break;
289 1.1 pgoyette case 1:
290 1.1 pgoyette rambus_rev = "0.7";
291 1.1 pgoyette break;
292 1.1 pgoyette case 2:
293 1.1 pgoyette rambus_rev = "1.0";
294 1.1 pgoyette break;
295 1.1 pgoyette default:
296 1.1 pgoyette rambus_rev = "Reserved";
297 1.1 pgoyette break;
298 1.1 pgoyette }
299 1.1 pgoyette } else {
300 1.1 pgoyette if (s->sm_type < __arraycount(spdmem_basic_types))
301 1.1 pgoyette type = spdmem_basic_types[s->sm_type];
302 1.1 pgoyette else
303 1.1 pgoyette type = "unknown memory type";
304 1.1 pgoyette
305 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_EDO &&
306 1.1 pgoyette s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM)
307 1.1 pgoyette type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM];
308 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
309 1.1 pgoyette s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM)
310 1.1 pgoyette type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM];
311 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM &&
312 1.1 pgoyette s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM)
313 1.1 pgoyette type =
314 1.1 pgoyette spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
315 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
316 1.1 pgoyette s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) {
317 1.1 pgoyette type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
318 1.1 pgoyette }
319 1.1 pgoyette }
320 1.1 pgoyette
321 1.1 pgoyette strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN);
322 1.1 pgoyette if (node != NULL)
323 1.3 pgoyette sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
324 1.1 pgoyette 0,
325 1.1 pgoyette CTLTYPE_STRING, "mem_type",
326 1.1 pgoyette SYSCTL_DESCR("memory module type"), NULL,
327 1.1 pgoyette 0, sc->sc_type, 0,
328 1.1 pgoyette CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
329 1.1 pgoyette
330 1.1 pgoyette if (IS_RAMBUS_TYPE) {
331 1.8 soren aprint_naive("\n");
332 1.8 soren aprint_normal("\n");
333 1.8 soren aprint_normal_dev(self, "%s, SPD Revision %s", type, rambus_rev);
334 1.1 pgoyette dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13);
335 1.1 pgoyette if (dimm_size >= 1024)
336 1.1 pgoyette aprint_normal(", %dGB\n", dimm_size / 1024);
337 1.1 pgoyette else
338 1.1 pgoyette aprint_normal(", %dMB\n", dimm_size);
339 1.1 pgoyette
340 1.1 pgoyette /* No further decode for RAMBUS memory */
341 1.1 pgoyette return;
342 1.1 pgoyette }
343 1.1 pgoyette switch (s->sm_type) {
344 1.1 pgoyette case SPDMEM_MEMTYPE_EDO:
345 1.1 pgoyette case SPDMEM_MEMTYPE_FPM:
346 1.1 pgoyette decode_edofpm(node, self, s);
347 1.1 pgoyette break;
348 1.1 pgoyette case SPDMEM_MEMTYPE_ROM:
349 1.1 pgoyette decode_rom(node, self, s);
350 1.1 pgoyette break;
351 1.1 pgoyette case SPDMEM_MEMTYPE_SDRAM:
352 1.1 pgoyette decode_sdram(node, self, s, spd_len);
353 1.1 pgoyette break;
354 1.1 pgoyette case SPDMEM_MEMTYPE_DDRSDRAM:
355 1.1 pgoyette decode_ddr(node, self, s);
356 1.1 pgoyette break;
357 1.1 pgoyette case SPDMEM_MEMTYPE_DDR2SDRAM:
358 1.1 pgoyette decode_ddr2(node, self, s);
359 1.1 pgoyette break;
360 1.1 pgoyette case SPDMEM_MEMTYPE_DDR3SDRAM:
361 1.1 pgoyette decode_ddr3(node, self, s);
362 1.1 pgoyette break;
363 1.1 pgoyette case SPDMEM_MEMTYPE_FBDIMM:
364 1.1 pgoyette case SPDMEM_MEMTYPE_FBDIMM_PROBE:
365 1.1 pgoyette decode_fbdimm(node, self, s);
366 1.1 pgoyette break;
367 1.1 pgoyette }
368 1.8 soren
369 1.8 soren /* Dump SPD */
370 1.8 soren for (i = 0; i < spd_len; i += 16) {
371 1.8 soren unsigned int j, k;
372 1.8 soren aprint_debug_dev(self, "0x%02x:", i);
373 1.8 soren k = (spd_len > (i + 16)) ? i + 16 : spd_len;
374 1.8 soren for (j = i; j < k; j++)
375 1.8 soren aprint_debug(" %02x", ((uint8_t *)s)[j]);
376 1.8 soren aprint_debug("\n");
377 1.8 soren }
378 1.1 pgoyette }
379 1.1 pgoyette
380 1.3 pgoyette int
381 1.3 pgoyette spdmem_common_detach(struct spdmem_softc *sc, device_t self)
382 1.3 pgoyette {
383 1.3 pgoyette sysctl_teardown(&sc->sc_sysctl_log);
384 1.3 pgoyette
385 1.3 pgoyette return 0;
386 1.3 pgoyette }
387 1.3 pgoyette
388 1.1 pgoyette static void
389 1.3 pgoyette decode_size_speed(device_t self, const struct sysctlnode *node,
390 1.3 pgoyette int dimm_size, int cycle_time, int d_clk, int bits,
391 1.3 pgoyette bool round, const char *ddr_type_string, int speed)
392 1.1 pgoyette {
393 1.1 pgoyette int p_clk;
394 1.7 chs struct spdmem_softc *sc = device_private(self);
395 1.1 pgoyette
396 1.1 pgoyette if (dimm_size < 1024)
397 1.1 pgoyette aprint_normal("%dMB", dimm_size);
398 1.1 pgoyette else
399 1.1 pgoyette aprint_normal("%dGB", dimm_size / 1024);
400 1.1 pgoyette if (node != NULL)
401 1.3 pgoyette sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
402 1.1 pgoyette CTLFLAG_IMMEDIATE,
403 1.1 pgoyette CTLTYPE_INT, "size",
404 1.1 pgoyette SYSCTL_DESCR("module size in MB"), NULL,
405 1.1 pgoyette dimm_size, NULL, 0,
406 1.1 pgoyette CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
407 1.1 pgoyette
408 1.1 pgoyette if (cycle_time == 0) {
409 1.1 pgoyette aprint_normal("\n");
410 1.1 pgoyette return;
411 1.1 pgoyette }
412 1.1 pgoyette
413 1.1 pgoyette /*
414 1.1 pgoyette * Calculate p_clk first, since for DDR3 we need maximum significance.
415 1.1 pgoyette * DDR3 rating is not rounded to a multiple of 100. This results in
416 1.1 pgoyette * cycle_time of 1.5ns displayed as PC3-10666.
417 1.1 pgoyette *
418 1.1 pgoyette * For SDRAM, the speed is provided by the caller so we use it.
419 1.1 pgoyette */
420 1.1 pgoyette d_clk *= 1000 * 1000;
421 1.1 pgoyette if (speed)
422 1.1 pgoyette p_clk = speed;
423 1.1 pgoyette else
424 1.1 pgoyette p_clk = (d_clk * bits) / 8 / cycle_time;
425 1.1 pgoyette d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
426 1.1 pgoyette if (round) {
427 1.1 pgoyette if ((p_clk % 100) >= 50)
428 1.1 pgoyette p_clk += 50;
429 1.1 pgoyette p_clk -= p_clk % 100;
430 1.1 pgoyette }
431 1.1 pgoyette aprint_normal(", %dMHz (%s-%d)\n",
432 1.1 pgoyette d_clk, ddr_type_string, p_clk);
433 1.1 pgoyette if (node != NULL)
434 1.3 pgoyette sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
435 1.1 pgoyette CTLFLAG_IMMEDIATE,
436 1.1 pgoyette CTLTYPE_INT, "speed",
437 1.1 pgoyette SYSCTL_DESCR("memory speed in MHz"),
438 1.1 pgoyette NULL, d_clk, NULL, 0,
439 1.1 pgoyette CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
440 1.1 pgoyette }
441 1.1 pgoyette
442 1.1 pgoyette static void
443 1.1 pgoyette decode_voltage_refresh(device_t self, struct spdmem *s)
444 1.1 pgoyette {
445 1.1 pgoyette const char *voltage, *refresh;
446 1.1 pgoyette
447 1.1 pgoyette if (s->sm_voltage < __arraycount(spdmem_voltage_types))
448 1.1 pgoyette voltage = spdmem_voltage_types[s->sm_voltage];
449 1.1 pgoyette else
450 1.1 pgoyette voltage = "unknown";
451 1.1 pgoyette
452 1.1 pgoyette if (s->sm_refresh < __arraycount(spdmem_refresh_types))
453 1.1 pgoyette refresh = spdmem_refresh_types[s->sm_refresh];
454 1.1 pgoyette else
455 1.1 pgoyette refresh = "unknown";
456 1.1 pgoyette
457 1.1 pgoyette aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n",
458 1.1 pgoyette voltage, refresh,
459 1.1 pgoyette s->sm_selfrefresh?" (self-refreshing)":"");
460 1.1 pgoyette }
461 1.1 pgoyette
462 1.1 pgoyette static void
463 1.1 pgoyette decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
464 1.8 soren aprint_naive("\n");
465 1.8 soren aprint_normal("\n");
466 1.8 soren aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
467 1.8 soren
468 1.1 pgoyette aprint_normal("\n");
469 1.1 pgoyette aprint_verbose_dev(self,
470 1.1 pgoyette "%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n",
471 1.1 pgoyette s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks,
472 1.1 pgoyette s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC);
473 1.1 pgoyette }
474 1.1 pgoyette
475 1.1 pgoyette static void
476 1.1 pgoyette decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s) {
477 1.8 soren aprint_naive("\n");
478 1.8 soren aprint_normal("\n");
479 1.8 soren aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
480 1.8 soren
481 1.1 pgoyette aprint_normal("\n");
482 1.1 pgoyette aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n",
483 1.1 pgoyette s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks);
484 1.1 pgoyette }
485 1.1 pgoyette
486 1.1 pgoyette static void
487 1.1 pgoyette decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s,
488 1.1 pgoyette int spd_len) {
489 1.1 pgoyette int dimm_size, cycle_time, bits, tAA, i, speed, freq;
490 1.1 pgoyette
491 1.8 soren aprint_naive("\n");
492 1.8 soren aprint_normal("\n");
493 1.8 soren aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
494 1.8 soren
495 1.1 pgoyette aprint_normal("%s, %s, ",
496 1.1 pgoyette (s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)?
497 1.1 pgoyette " (registered)":"",
498 1.1 pgoyette (s->sm_config < __arraycount(spdmem_parity_types))?
499 1.1 pgoyette spdmem_parity_types[s->sm_config]:"invalid parity");
500 1.1 pgoyette
501 1.1 pgoyette dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17);
502 1.1 pgoyette dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip;
503 1.1 pgoyette
504 1.1 pgoyette cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 +
505 1.1 pgoyette s->sm_sdr.sdr_cycle_tenths * 100;
506 1.1 pgoyette bits = le16toh(s->sm_sdr.sdr_datawidth);
507 1.1 pgoyette if (s->sm_config == 1 || s->sm_config == 2)
508 1.1 pgoyette bits -= 8;
509 1.1 pgoyette
510 1.1 pgoyette /* Calculate speed here - from OpenBSD */
511 1.1 pgoyette if (spd_len >= 128)
512 1.1 pgoyette freq = ((uint8_t *)s)[126];
513 1.1 pgoyette else
514 1.1 pgoyette freq = 0;
515 1.1 pgoyette switch (freq) {
516 1.1 pgoyette /*
517 1.1 pgoyette * Must check cycle time since some PC-133 DIMMs
518 1.1 pgoyette * actually report PC-100
519 1.1 pgoyette */
520 1.1 pgoyette case 100:
521 1.1 pgoyette case 133:
522 1.1 pgoyette if (cycle_time < 8000)
523 1.1 pgoyette speed = 133;
524 1.1 pgoyette else
525 1.1 pgoyette speed = 100;
526 1.1 pgoyette break;
527 1.1 pgoyette case 0x66: /* Legacy DIMMs use _hex_ 66! */
528 1.1 pgoyette default:
529 1.1 pgoyette speed = 66;
530 1.1 pgoyette }
531 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 1, bits, FALSE,
532 1.3 pgoyette "PC", speed);
533 1.1 pgoyette
534 1.1 pgoyette aprint_verbose_dev(self,
535 1.1 pgoyette "%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n",
536 1.1 pgoyette s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks,
537 1.1 pgoyette s->sm_sdr.sdr_banks_per_chip, cycle_time/1000,
538 1.1 pgoyette (cycle_time % 1000) / 100);
539 1.1 pgoyette
540 1.1 pgoyette tAA = 0;
541 1.1 pgoyette for (i = 0; i < 8; i++)
542 1.1 pgoyette if (s->sm_sdr.sdr_tCAS & (1 << i))
543 1.1 pgoyette tAA = i;
544 1.1 pgoyette tAA++;
545 1.4 christos aprint_verbose_dev(self, LATENCY, tAA, s->sm_sdr.sdr_tRCD,
546 1.1 pgoyette s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS);
547 1.1 pgoyette
548 1.1 pgoyette decode_voltage_refresh(self, s);
549 1.1 pgoyette }
550 1.1 pgoyette
551 1.1 pgoyette static void
552 1.1 pgoyette decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s) {
553 1.1 pgoyette int dimm_size, cycle_time, bits, tAA, i;
554 1.1 pgoyette
555 1.8 soren aprint_naive("\n");
556 1.8 soren aprint_normal("\n");
557 1.8 soren aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
558 1.8 soren
559 1.1 pgoyette aprint_normal("%s, %s, ",
560 1.1 pgoyette (s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)?
561 1.1 pgoyette " (registered)":"",
562 1.1 pgoyette (s->sm_config < __arraycount(spdmem_parity_types))?
563 1.1 pgoyette spdmem_parity_types[s->sm_config]:"invalid parity");
564 1.1 pgoyette
565 1.1 pgoyette dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17);
566 1.1 pgoyette dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip;
567 1.1 pgoyette
568 1.1 pgoyette cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 +
569 1.1 pgoyette spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths];
570 1.1 pgoyette bits = le16toh(s->sm_ddr.ddr_datawidth);
571 1.1 pgoyette if (s->sm_config == 1 || s->sm_config == 2)
572 1.1 pgoyette bits -= 8;
573 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
574 1.3 pgoyette "PC", 0);
575 1.1 pgoyette
576 1.1 pgoyette aprint_verbose_dev(self,
577 1.1 pgoyette "%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n",
578 1.1 pgoyette s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks,
579 1.1 pgoyette s->sm_ddr.ddr_banks_per_chip, cycle_time/1000,
580 1.1 pgoyette (cycle_time % 1000 + 50) / 100);
581 1.1 pgoyette
582 1.1 pgoyette tAA = 0;
583 1.1 pgoyette for (i = 2; i < 8; i++)
584 1.1 pgoyette if (s->sm_ddr.ddr_tCAS & (1 << i))
585 1.1 pgoyette tAA = i;
586 1.1 pgoyette tAA /= 2;
587 1.1 pgoyette
588 1.1 pgoyette #define __DDR_ROUND(scale, field) \
589 1.1 pgoyette ((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time)
590 1.1 pgoyette
591 1.4 christos aprint_verbose_dev(self, LATENCY, tAA, __DDR_ROUND(250, ddr_tRCD),
592 1.1 pgoyette __DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS));
593 1.1 pgoyette
594 1.1 pgoyette #undef __DDR_ROUND
595 1.1 pgoyette
596 1.1 pgoyette decode_voltage_refresh(self, s);
597 1.1 pgoyette }
598 1.1 pgoyette
599 1.1 pgoyette static void
600 1.1 pgoyette decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s) {
601 1.1 pgoyette int dimm_size, cycle_time, bits, tAA, i;
602 1.1 pgoyette
603 1.8 soren aprint_naive("\n");
604 1.8 soren aprint_normal("\n");
605 1.8 soren aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
606 1.8 soren
607 1.1 pgoyette aprint_normal("%s, %s, ",
608 1.1 pgoyette (s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)?
609 1.1 pgoyette " (registered)":"",
610 1.1 pgoyette (s->sm_config < __arraycount(spdmem_parity_types))?
611 1.1 pgoyette spdmem_parity_types[s->sm_config]:"invalid parity");
612 1.1 pgoyette
613 1.1 pgoyette dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17);
614 1.1 pgoyette dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) *
615 1.1 pgoyette s->sm_ddr2.ddr2_banks_per_chip;
616 1.1 pgoyette
617 1.1 pgoyette cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 +
618 1.1 pgoyette spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac];
619 1.1 pgoyette bits = s->sm_ddr2.ddr2_datawidth;
620 1.1 pgoyette if ((s->sm_config & 0x03) != 0)
621 1.1 pgoyette bits -= 8;
622 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
623 1.3 pgoyette "PC2", 0);
624 1.1 pgoyette
625 1.1 pgoyette aprint_verbose_dev(self,
626 1.1 pgoyette "%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n",
627 1.1 pgoyette s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols,
628 1.1 pgoyette s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip,
629 1.1 pgoyette cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
630 1.1 pgoyette
631 1.1 pgoyette tAA = 0;
632 1.1 pgoyette for (i = 2; i < 8; i++)
633 1.1 pgoyette if (s->sm_ddr2.ddr2_tCAS & (1 << i))
634 1.1 pgoyette tAA = i;
635 1.1 pgoyette
636 1.1 pgoyette #define __DDR2_ROUND(scale, field) \
637 1.1 pgoyette ((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time)
638 1.1 pgoyette
639 1.4 christos aprint_verbose_dev(self, LATENCY, tAA, __DDR2_ROUND(250, ddr2_tRCD),
640 1.1 pgoyette __DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS));
641 1.1 pgoyette
642 1.1 pgoyette #undef __DDR_ROUND
643 1.1 pgoyette
644 1.1 pgoyette decode_voltage_refresh(self, s);
645 1.1 pgoyette }
646 1.1 pgoyette
647 1.1 pgoyette static void
648 1.1 pgoyette decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s) {
649 1.1 pgoyette int dimm_size, cycle_time, bits;
650 1.1 pgoyette
651 1.8 soren aprint_naive("\n");
652 1.8 soren aprint_normal(": %18s\n", s->sm_ddr3.ddr3_part);
653 1.8 soren aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
654 1.8 soren
655 1.1 pgoyette if (s->sm_ddr3.ddr3_mod_type ==
656 1.1 pgoyette SPDMEM_DDR3_TYPE_MINI_RDIMM ||
657 1.1 pgoyette s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM)
658 1.1 pgoyette aprint_normal(" (registered)");
659 1.1 pgoyette aprint_normal(", %sECC, %stemp-sensor, ",
660 1.1 pgoyette (s->sm_ddr3.ddr3_hasECC)?"":"no ",
661 1.1 pgoyette (s->sm_ddr3.ddr3_has_therm_sensor)?"":"no ");
662 1.1 pgoyette
663 1.1 pgoyette /*
664 1.1 pgoyette * DDR3 size specification is quite different from others
665 1.1 pgoyette *
666 1.1 pgoyette * Module capacity is defined as
667 1.1 pgoyette * Chip_Capacity_in_bits / 8bits-per-byte *
668 1.1 pgoyette * external_bus_width / internal_bus_width
669 1.1 pgoyette * We further divide by 2**20 to get our answer in MB
670 1.1 pgoyette */
671 1.1 pgoyette dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 +
672 1.1 pgoyette (s->sm_ddr3.ddr3_datawidth + 3) -
673 1.1 pgoyette (s->sm_ddr3.ddr3_chipwidth + 2);
674 1.1 pgoyette dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1);
675 1.1 pgoyette
676 1.1 pgoyette cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend +
677 1.1 pgoyette (s->sm_ddr3.ddr3_mtb_divisor / 2)) /
678 1.1 pgoyette s->sm_ddr3.ddr3_mtb_divisor;
679 1.1 pgoyette cycle_time *= s->sm_ddr3.ddr3_tCKmin;
680 1.1 pgoyette bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3);
681 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, FALSE,
682 1.3 pgoyette "PC3", 0);
683 1.1 pgoyette
684 1.1 pgoyette aprint_verbose_dev(self,
685 1.1 pgoyette "%d rows, %d cols, %d log. banks, %d phys. banks, "
686 1.1 pgoyette "%d.%03dns cycle time\n",
687 1.1 pgoyette s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12,
688 1.1 pgoyette 1 << (s->sm_ddr3.ddr3_logbanks + 3),
689 1.1 pgoyette s->sm_ddr3.ddr3_physbanks + 1,
690 1.1 pgoyette cycle_time/1000, cycle_time % 1000);
691 1.1 pgoyette
692 1.1 pgoyette #define __DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin)
693 1.1 pgoyette
694 1.4 christos aprint_verbose_dev(self, LATENCY, __DDR3_CYCLES(ddr3_tAAmin),
695 1.1 pgoyette __DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin),
696 1.1 pgoyette (s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) /
697 1.1 pgoyette s->sm_ddr3.ddr3_tCKmin);
698 1.1 pgoyette
699 1.1 pgoyette #undef __DDR3_CYCLES
700 1.1 pgoyette }
701 1.1 pgoyette
702 1.1 pgoyette static void
703 1.1 pgoyette decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
704 1.1 pgoyette int dimm_size, cycle_time, bits;
705 1.1 pgoyette
706 1.8 soren aprint_naive("\n");
707 1.8 soren aprint_normal("\n");
708 1.8 soren aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
709 1.8 soren
710 1.1 pgoyette /*
711 1.1 pgoyette * FB-DIMM module size calculation is very much like DDR3
712 1.1 pgoyette */
713 1.1 pgoyette dimm_size = s->sm_fbd.fbdimm_rows + 12 +
714 1.1 pgoyette s->sm_fbd.fbdimm_cols + 9 - 20 - 3;
715 1.1 pgoyette dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2));
716 1.1 pgoyette
717 1.1 pgoyette cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend +
718 1.1 pgoyette (s->sm_fbd.fbdimm_mtb_divisor / 2)) /
719 1.1 pgoyette s->sm_fbd.fbdimm_mtb_divisor;
720 1.1 pgoyette bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2);
721 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
722 1.3 pgoyette "PC2", 0);
723 1.1 pgoyette
724 1.1 pgoyette aprint_verbose_dev(self,
725 1.1 pgoyette "%d rows, %d cols, %d banks, %d.%02dns cycle time\n",
726 1.1 pgoyette s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols,
727 1.1 pgoyette 1 << (s->sm_fbd.fbdimm_banks + 2),
728 1.1 pgoyette cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
729 1.1 pgoyette
730 1.1 pgoyette #define __FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin)
731 1.1 pgoyette
732 1.4 christos aprint_verbose_dev(self, LATENCY, __FBDIMM_CYCLES(fbdimm_tAAmin),
733 1.1 pgoyette __FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin),
734 1.1 pgoyette (s->sm_fbd.fbdimm_tRAS_msb * 256 +
735 1.1 pgoyette s->sm_fbd.fbdimm_tRAS_lsb) /
736 1.1 pgoyette s->sm_fbd.fbdimm_tCKmin);
737 1.1 pgoyette
738 1.1 pgoyette #undef __FBDIMM_CYCLES
739 1.1 pgoyette
740 1.1 pgoyette decode_voltage_refresh(self, s);
741 1.1 pgoyette }
742