spdmem.c revision 1.7 1 1.7 chs /* $NetBSD: spdmem.c,v 1.7 2012/10/27 17:18:22 chs Exp $ */
2 1.1 pgoyette
3 1.1 pgoyette /*
4 1.1 pgoyette * Copyright (c) 2007 Nicolas Joly
5 1.1 pgoyette * Copyright (c) 2007 Paul Goyette
6 1.1 pgoyette * Copyright (c) 2007 Tobias Nygren
7 1.1 pgoyette * All rights reserved.
8 1.1 pgoyette *
9 1.1 pgoyette * Redistribution and use in source and binary forms, with or without
10 1.1 pgoyette * modification, are permitted provided that the following conditions
11 1.1 pgoyette * are met:
12 1.1 pgoyette * 1. Redistributions of source code must retain the above copyright
13 1.1 pgoyette * notice, this list of conditions and the following disclaimer.
14 1.1 pgoyette * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 pgoyette * notice, this list of conditions and the following disclaimer in the
16 1.1 pgoyette * documentation and/or other materials provided with the distribution.
17 1.1 pgoyette * 3. The name of the author may not be used to endorse or promote products
18 1.1 pgoyette * derived from this software without specific prior written permission.
19 1.1 pgoyette *
20 1.1 pgoyette * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
21 1.1 pgoyette * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 pgoyette * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 pgoyette * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 pgoyette * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 pgoyette * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 pgoyette * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 pgoyette * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 pgoyette * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 pgoyette * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 pgoyette * POSSIBILITY OF SUCH DAMAGE.
31 1.1 pgoyette */
32 1.1 pgoyette
33 1.1 pgoyette /*
34 1.1 pgoyette * Serial Presence Detect (SPD) memory identification
35 1.1 pgoyette */
36 1.1 pgoyette
37 1.1 pgoyette #include <sys/cdefs.h>
38 1.7 chs __KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.7 2012/10/27 17:18:22 chs Exp $");
39 1.1 pgoyette
40 1.1 pgoyette #include <sys/param.h>
41 1.1 pgoyette #include <sys/device.h>
42 1.1 pgoyette #include <sys/endian.h>
43 1.1 pgoyette #include <sys/sysctl.h>
44 1.1 pgoyette #include <machine/bswap.h>
45 1.1 pgoyette
46 1.1 pgoyette #include <dev/i2c/i2cvar.h>
47 1.1 pgoyette #include <dev/ic/spdmemreg.h>
48 1.1 pgoyette #include <dev/ic/spdmemvar.h>
49 1.1 pgoyette
50 1.1 pgoyette SYSCTL_SETUP_PROTO(sysctl_spdmem_setup);
51 1.1 pgoyette
52 1.1 pgoyette /* Routines for decoding spd data */
53 1.1 pgoyette static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *);
54 1.1 pgoyette static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *);
55 1.1 pgoyette static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *,
56 1.1 pgoyette int);
57 1.1 pgoyette static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *);
58 1.1 pgoyette static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *);
59 1.1 pgoyette static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *);
60 1.1 pgoyette static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *);
61 1.1 pgoyette
62 1.3 pgoyette static void decode_size_speed(device_t, const struct sysctlnode *,
63 1.3 pgoyette int, int, int, int, bool, const char *, int);
64 1.1 pgoyette static void decode_voltage_refresh(device_t, struct spdmem *);
65 1.1 pgoyette
66 1.1 pgoyette #define IS_RAMBUS_TYPE (s->sm_len < 4)
67 1.1 pgoyette
68 1.1 pgoyette static const char* spdmem_basic_types[] = {
69 1.1 pgoyette "unknown",
70 1.1 pgoyette "FPM",
71 1.1 pgoyette "EDO",
72 1.1 pgoyette "Pipelined Nibble",
73 1.1 pgoyette "SDRAM",
74 1.1 pgoyette "ROM",
75 1.1 pgoyette "DDR SGRAM",
76 1.1 pgoyette "DDR SDRAM",
77 1.1 pgoyette "DDR2 SDRAM",
78 1.1 pgoyette "DDR2 SDRAM FB",
79 1.1 pgoyette "DDR2 SDRAM FB Probe",
80 1.1 pgoyette "DDR3 SDRAM"
81 1.1 pgoyette };
82 1.1 pgoyette
83 1.1 pgoyette static const char* spdmem_superset_types[] = {
84 1.1 pgoyette "unknown",
85 1.1 pgoyette "ESDRAM",
86 1.1 pgoyette "DDR ESDRAM",
87 1.1 pgoyette "PEM EDO",
88 1.1 pgoyette "PEM SDRAM"
89 1.1 pgoyette };
90 1.1 pgoyette
91 1.1 pgoyette static const char* spdmem_voltage_types[] = {
92 1.1 pgoyette "TTL (5V tolerant)",
93 1.1 pgoyette "LvTTL (not 5V tolerant)",
94 1.1 pgoyette "HSTL 1.5V",
95 1.1 pgoyette "SSTL 3.3V",
96 1.1 pgoyette "SSTL 2.5V",
97 1.1 pgoyette "SSTL 1.8V"
98 1.1 pgoyette };
99 1.1 pgoyette
100 1.1 pgoyette static const char* spdmem_refresh_types[] = {
101 1.1 pgoyette "15.625us",
102 1.1 pgoyette "3.9us",
103 1.1 pgoyette "7.8us",
104 1.1 pgoyette "31.3us",
105 1.1 pgoyette "62.5us",
106 1.1 pgoyette "125us"
107 1.1 pgoyette };
108 1.1 pgoyette
109 1.1 pgoyette static const char* spdmem_parity_types[] = {
110 1.1 pgoyette "no parity or ECC",
111 1.1 pgoyette "data parity",
112 1.1 pgoyette "data ECC",
113 1.1 pgoyette "data parity and ECC",
114 1.1 pgoyette "cmd/addr parity",
115 1.1 pgoyette "cmd/addr/data parity",
116 1.1 pgoyette "cmd/addr parity, data ECC",
117 1.1 pgoyette "cmd/addr/data parity, data ECC"
118 1.1 pgoyette };
119 1.1 pgoyette
120 1.1 pgoyette /* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */
121 1.1 pgoyette static const uint16_t spdmem_cycle_frac[] = {
122 1.1 pgoyette 0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
123 1.1 pgoyette 250, 333, 667, 750, 999, 999
124 1.1 pgoyette };
125 1.1 pgoyette
126 1.1 pgoyette /* Format string for timing info */
127 1.5 wiz #define LATENCY "tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n"
128 1.1 pgoyette
129 1.1 pgoyette /* sysctl stuff */
130 1.1 pgoyette static int hw_node = CTL_EOL;
131 1.1 pgoyette
132 1.1 pgoyette /* CRC functions used for certain memory types */
133 1.1 pgoyette
134 1.1 pgoyette static uint16_t spdcrc16 (struct spdmem_softc *sc, int count)
135 1.1 pgoyette {
136 1.1 pgoyette uint16_t crc;
137 1.1 pgoyette int i, j;
138 1.1 pgoyette uint8_t val;
139 1.1 pgoyette crc = 0;
140 1.1 pgoyette for (j = 0; j <= count; j++) {
141 1.1 pgoyette val = (sc->sc_read)(sc, j);
142 1.1 pgoyette crc = crc ^ val << 8;
143 1.1 pgoyette for (i = 0; i < 8; ++i)
144 1.1 pgoyette if (crc & 0x8000)
145 1.1 pgoyette crc = crc << 1 ^ 0x1021;
146 1.1 pgoyette else
147 1.1 pgoyette crc = crc << 1;
148 1.1 pgoyette }
149 1.1 pgoyette return (crc & 0xFFFF);
150 1.1 pgoyette }
151 1.1 pgoyette
152 1.1 pgoyette int
153 1.1 pgoyette spdmem_common_probe(struct spdmem_softc *sc)
154 1.1 pgoyette {
155 1.1 pgoyette int cksum = 0;
156 1.1 pgoyette uint8_t i, val, spd_type;
157 1.1 pgoyette int spd_len, spd_crc_cover;
158 1.1 pgoyette uint16_t crc_calc, crc_spd;
159 1.1 pgoyette
160 1.1 pgoyette spd_type = (sc->sc_read)(sc, 2);
161 1.1 pgoyette
162 1.1 pgoyette /* For older memory types, validate the checksum over 1st 63 bytes */
163 1.1 pgoyette if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
164 1.1 pgoyette for (i = 0; i < 63; i++)
165 1.1 pgoyette cksum += (sc->sc_read)(sc, i);
166 1.1 pgoyette
167 1.1 pgoyette val = (sc->sc_read)(sc, 63);
168 1.1 pgoyette
169 1.1 pgoyette if (cksum == 0 || (cksum & 0xff) != val) {
170 1.1 pgoyette aprint_debug("spd checksum failed, calc = 0x%02x, "
171 1.1 pgoyette "spd = 0x%02x\n", cksum, val);
172 1.1 pgoyette return 0;
173 1.1 pgoyette } else
174 1.1 pgoyette return 1;
175 1.1 pgoyette }
176 1.1 pgoyette
177 1.1 pgoyette /* For DDR3 and FBDIMM, verify the CRC */
178 1.1 pgoyette else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
179 1.1 pgoyette spd_len = (sc->sc_read)(sc, 0);
180 1.2 pgoyette if (spd_len & SPDMEM_SPDCRC_116)
181 1.1 pgoyette spd_crc_cover = 116;
182 1.1 pgoyette else
183 1.1 pgoyette spd_crc_cover = 125;
184 1.1 pgoyette switch (spd_len & SPDMEM_SPDLEN_MASK) {
185 1.1 pgoyette case SPDMEM_SPDLEN_128:
186 1.1 pgoyette spd_len = 128;
187 1.1 pgoyette break;
188 1.1 pgoyette case SPDMEM_SPDLEN_176:
189 1.1 pgoyette spd_len = 176;
190 1.1 pgoyette break;
191 1.1 pgoyette case SPDMEM_SPDLEN_256:
192 1.1 pgoyette spd_len = 256;
193 1.1 pgoyette break;
194 1.1 pgoyette default:
195 1.1 pgoyette return 0;
196 1.1 pgoyette }
197 1.1 pgoyette if (spd_crc_cover > spd_len)
198 1.1 pgoyette return 0;
199 1.1 pgoyette crc_calc = spdcrc16(sc, spd_crc_cover);
200 1.1 pgoyette crc_spd = (sc->sc_read)(sc, 127) << 8;
201 1.1 pgoyette crc_spd |= (sc->sc_read)(sc, 126);
202 1.1 pgoyette if (crc_calc != crc_spd) {
203 1.1 pgoyette aprint_debug("crc16 failed, covers %d bytes, "
204 1.1 pgoyette "calc = 0x%04x, spd = 0x%04x\n",
205 1.1 pgoyette spd_crc_cover, crc_calc, crc_spd);
206 1.1 pgoyette return 0;
207 1.1 pgoyette }
208 1.1 pgoyette return 1;
209 1.1 pgoyette }
210 1.1 pgoyette
211 1.1 pgoyette /* For unrecognized memory types, don't match at all */
212 1.1 pgoyette return 0;
213 1.1 pgoyette }
214 1.1 pgoyette
215 1.1 pgoyette void
216 1.1 pgoyette spdmem_common_attach(struct spdmem_softc *sc, device_t self)
217 1.1 pgoyette {
218 1.1 pgoyette struct spdmem *s = &(sc->sc_spd_data);
219 1.1 pgoyette const char *type;
220 1.1 pgoyette const char *rambus_rev = "Reserved";
221 1.1 pgoyette int dimm_size;
222 1.3 pgoyette unsigned int i, spd_len, spd_size;
223 1.1 pgoyette const struct sysctlnode *node = NULL;
224 1.1 pgoyette
225 1.1 pgoyette /*
226 1.1 pgoyette * FBDIMM and DDR3 (and probably all newer) have a different
227 1.1 pgoyette * encoding of the SPD EEPROM used/total sizes
228 1.1 pgoyette */
229 1.1 pgoyette s->sm_len = (sc->sc_read)(sc, 0);
230 1.1 pgoyette s->sm_size = (sc->sc_read)(sc, 1);
231 1.1 pgoyette s->sm_type = (sc->sc_read)(sc, 2);
232 1.1 pgoyette
233 1.1 pgoyette if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) {
234 1.1 pgoyette spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK);
235 1.1 pgoyette switch (s->sm_len & SPDMEM_SPDLEN_MASK) {
236 1.1 pgoyette case SPDMEM_SPDLEN_128:
237 1.1 pgoyette spd_len = 128;
238 1.1 pgoyette break;
239 1.1 pgoyette case SPDMEM_SPDLEN_176:
240 1.1 pgoyette spd_len = 176;
241 1.1 pgoyette break;
242 1.1 pgoyette case SPDMEM_SPDLEN_256:
243 1.1 pgoyette spd_len = 256;
244 1.1 pgoyette break;
245 1.1 pgoyette default:
246 1.1 pgoyette spd_len = 64;
247 1.1 pgoyette break;
248 1.1 pgoyette }
249 1.1 pgoyette } else {
250 1.1 pgoyette spd_size = 1 << s->sm_size;
251 1.1 pgoyette spd_len = s->sm_len;
252 1.1 pgoyette if (spd_len < 64)
253 1.1 pgoyette spd_len = 64;
254 1.1 pgoyette }
255 1.1 pgoyette if (spd_len > spd_size)
256 1.1 pgoyette spd_len = spd_size;
257 1.1 pgoyette if (spd_len > sizeof(struct spdmem))
258 1.1 pgoyette spd_len = sizeof(struct spdmem);
259 1.1 pgoyette for (i = 3; i < spd_len; i++)
260 1.1 pgoyette ((uint8_t *)s)[i] = (sc->sc_read)(sc, i);
261 1.1 pgoyette
262 1.1 pgoyette #ifdef DEBUG
263 1.1 pgoyette for (i = 0; i < spd_len; i += 16) {
264 1.3 pgoyette unsigned int j, k;
265 1.1 pgoyette aprint_debug("\n");
266 1.1 pgoyette aprint_debug_dev(self, "0x%02x:", i);
267 1.1 pgoyette k = (spd_len > i + 16) ? spd_len : i + 16;
268 1.1 pgoyette for (j = i; j < k; j++)
269 1.1 pgoyette aprint_debug(" %02x", ((uint8_t *)s)[j]);
270 1.1 pgoyette }
271 1.1 pgoyette aprint_debug("\n");
272 1.1 pgoyette aprint_debug_dev(self, "");
273 1.1 pgoyette #endif
274 1.1 pgoyette
275 1.1 pgoyette /*
276 1.1 pgoyette * Setup our sysctl subtree, hw.spdmemN
277 1.1 pgoyette */
278 1.3 pgoyette sc->sc_sysctl_log = NULL;
279 1.1 pgoyette if (hw_node != CTL_EOL)
280 1.3 pgoyette sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &node,
281 1.1 pgoyette 0, CTLTYPE_NODE,
282 1.1 pgoyette device_xname(self), NULL, NULL, 0, NULL, 0,
283 1.1 pgoyette CTL_HW, CTL_CREATE, CTL_EOL);
284 1.1 pgoyette if (node != NULL && spd_len != 0)
285 1.3 pgoyette sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
286 1.1 pgoyette 0,
287 1.1 pgoyette CTLTYPE_STRUCT, "spd_data",
288 1.1 pgoyette SYSCTL_DESCR("raw spd data"), NULL,
289 1.1 pgoyette 0, s, spd_len,
290 1.1 pgoyette CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
291 1.1 pgoyette
292 1.1 pgoyette /*
293 1.1 pgoyette * Decode and print key SPD contents
294 1.1 pgoyette */
295 1.1 pgoyette if (IS_RAMBUS_TYPE) {
296 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS)
297 1.1 pgoyette type = "Rambus";
298 1.1 pgoyette else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS)
299 1.1 pgoyette type = "Direct Rambus";
300 1.1 pgoyette else
301 1.1 pgoyette type = "Rambus (unknown)";
302 1.1 pgoyette
303 1.1 pgoyette switch (s->sm_len) {
304 1.1 pgoyette case 0:
305 1.1 pgoyette rambus_rev = "Invalid";
306 1.1 pgoyette break;
307 1.1 pgoyette case 1:
308 1.1 pgoyette rambus_rev = "0.7";
309 1.1 pgoyette break;
310 1.1 pgoyette case 2:
311 1.1 pgoyette rambus_rev = "1.0";
312 1.1 pgoyette break;
313 1.1 pgoyette default:
314 1.1 pgoyette rambus_rev = "Reserved";
315 1.1 pgoyette break;
316 1.1 pgoyette }
317 1.1 pgoyette } else {
318 1.1 pgoyette if (s->sm_type < __arraycount(spdmem_basic_types))
319 1.1 pgoyette type = spdmem_basic_types[s->sm_type];
320 1.1 pgoyette else
321 1.1 pgoyette type = "unknown memory type";
322 1.1 pgoyette
323 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_EDO &&
324 1.1 pgoyette s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM)
325 1.1 pgoyette type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM];
326 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
327 1.1 pgoyette s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM)
328 1.1 pgoyette type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM];
329 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM &&
330 1.1 pgoyette s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM)
331 1.1 pgoyette type =
332 1.1 pgoyette spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
333 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
334 1.1 pgoyette s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) {
335 1.1 pgoyette type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
336 1.1 pgoyette }
337 1.1 pgoyette }
338 1.1 pgoyette
339 1.1 pgoyette aprint_naive("\n");
340 1.1 pgoyette aprint_normal("\n");
341 1.1 pgoyette aprint_normal_dev(self, "%s", type);
342 1.1 pgoyette strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN);
343 1.1 pgoyette if (node != NULL)
344 1.3 pgoyette sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
345 1.1 pgoyette 0,
346 1.1 pgoyette CTLTYPE_STRING, "mem_type",
347 1.1 pgoyette SYSCTL_DESCR("memory module type"), NULL,
348 1.1 pgoyette 0, sc->sc_type, 0,
349 1.1 pgoyette CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
350 1.1 pgoyette
351 1.1 pgoyette if (IS_RAMBUS_TYPE) {
352 1.1 pgoyette aprint_normal(", SPD Revision %s", rambus_rev);
353 1.1 pgoyette dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13);
354 1.1 pgoyette if (dimm_size >= 1024)
355 1.1 pgoyette aprint_normal(", %dGB\n", dimm_size / 1024);
356 1.1 pgoyette else
357 1.1 pgoyette aprint_normal(", %dMB\n", dimm_size);
358 1.1 pgoyette
359 1.1 pgoyette /* No further decode for RAMBUS memory */
360 1.1 pgoyette return;
361 1.1 pgoyette }
362 1.1 pgoyette switch (s->sm_type) {
363 1.1 pgoyette case SPDMEM_MEMTYPE_EDO:
364 1.1 pgoyette case SPDMEM_MEMTYPE_FPM:
365 1.1 pgoyette decode_edofpm(node, self, s);
366 1.1 pgoyette break;
367 1.1 pgoyette case SPDMEM_MEMTYPE_ROM:
368 1.1 pgoyette decode_rom(node, self, s);
369 1.1 pgoyette break;
370 1.1 pgoyette case SPDMEM_MEMTYPE_SDRAM:
371 1.1 pgoyette decode_sdram(node, self, s, spd_len);
372 1.1 pgoyette break;
373 1.1 pgoyette case SPDMEM_MEMTYPE_DDRSDRAM:
374 1.1 pgoyette decode_ddr(node, self, s);
375 1.1 pgoyette break;
376 1.1 pgoyette case SPDMEM_MEMTYPE_DDR2SDRAM:
377 1.1 pgoyette decode_ddr2(node, self, s);
378 1.1 pgoyette break;
379 1.1 pgoyette case SPDMEM_MEMTYPE_DDR3SDRAM:
380 1.1 pgoyette decode_ddr3(node, self, s);
381 1.1 pgoyette break;
382 1.1 pgoyette case SPDMEM_MEMTYPE_FBDIMM:
383 1.1 pgoyette case SPDMEM_MEMTYPE_FBDIMM_PROBE:
384 1.1 pgoyette decode_fbdimm(node, self, s);
385 1.1 pgoyette break;
386 1.1 pgoyette }
387 1.1 pgoyette }
388 1.1 pgoyette
389 1.3 pgoyette int
390 1.3 pgoyette spdmem_common_detach(struct spdmem_softc *sc, device_t self)
391 1.3 pgoyette {
392 1.3 pgoyette sysctl_teardown(&sc->sc_sysctl_log);
393 1.3 pgoyette
394 1.3 pgoyette return 0;
395 1.3 pgoyette }
396 1.3 pgoyette
397 1.1 pgoyette SYSCTL_SETUP(sysctl_spdmem_setup, "sysctl hw.spdmem subtree setup")
398 1.1 pgoyette {
399 1.1 pgoyette const struct sysctlnode *node;
400 1.1 pgoyette
401 1.6 pgoyette if (sysctl_createv(clog, 0, NULL, &node,
402 1.6 pgoyette #ifdef _MODULE
403 1.6 pgoyette 0,
404 1.6 pgoyette #else
405 1.6 pgoyette CTLFLAG_PERMANENT,
406 1.6 pgoyette #endif
407 1.3 pgoyette CTLTYPE_NODE, "hw", NULL, NULL, 0, NULL, 0,
408 1.3 pgoyette CTL_HW, CTL_EOL) != 0)
409 1.1 pgoyette return;
410 1.1 pgoyette
411 1.1 pgoyette hw_node = node->sysctl_num;
412 1.1 pgoyette }
413 1.1 pgoyette
414 1.1 pgoyette static void
415 1.3 pgoyette decode_size_speed(device_t self, const struct sysctlnode *node,
416 1.3 pgoyette int dimm_size, int cycle_time, int d_clk, int bits,
417 1.3 pgoyette bool round, const char *ddr_type_string, int speed)
418 1.1 pgoyette {
419 1.1 pgoyette int p_clk;
420 1.7 chs struct spdmem_softc *sc = device_private(self);
421 1.1 pgoyette
422 1.1 pgoyette if (dimm_size < 1024)
423 1.1 pgoyette aprint_normal("%dMB", dimm_size);
424 1.1 pgoyette else
425 1.1 pgoyette aprint_normal("%dGB", dimm_size / 1024);
426 1.1 pgoyette if (node != NULL)
427 1.3 pgoyette sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
428 1.1 pgoyette CTLFLAG_IMMEDIATE,
429 1.1 pgoyette CTLTYPE_INT, "size",
430 1.1 pgoyette SYSCTL_DESCR("module size in MB"), NULL,
431 1.1 pgoyette dimm_size, NULL, 0,
432 1.1 pgoyette CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
433 1.1 pgoyette
434 1.1 pgoyette if (cycle_time == 0) {
435 1.1 pgoyette aprint_normal("\n");
436 1.1 pgoyette return;
437 1.1 pgoyette }
438 1.1 pgoyette
439 1.1 pgoyette /*
440 1.1 pgoyette * Calculate p_clk first, since for DDR3 we need maximum significance.
441 1.1 pgoyette * DDR3 rating is not rounded to a multiple of 100. This results in
442 1.1 pgoyette * cycle_time of 1.5ns displayed as PC3-10666.
443 1.1 pgoyette *
444 1.1 pgoyette * For SDRAM, the speed is provided by the caller so we use it.
445 1.1 pgoyette */
446 1.1 pgoyette d_clk *= 1000 * 1000;
447 1.1 pgoyette if (speed)
448 1.1 pgoyette p_clk = speed;
449 1.1 pgoyette else
450 1.1 pgoyette p_clk = (d_clk * bits) / 8 / cycle_time;
451 1.1 pgoyette d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
452 1.1 pgoyette if (round) {
453 1.1 pgoyette if ((p_clk % 100) >= 50)
454 1.1 pgoyette p_clk += 50;
455 1.1 pgoyette p_clk -= p_clk % 100;
456 1.1 pgoyette }
457 1.1 pgoyette aprint_normal(", %dMHz (%s-%d)\n",
458 1.1 pgoyette d_clk, ddr_type_string, p_clk);
459 1.1 pgoyette if (node != NULL)
460 1.3 pgoyette sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
461 1.1 pgoyette CTLFLAG_IMMEDIATE,
462 1.1 pgoyette CTLTYPE_INT, "speed",
463 1.1 pgoyette SYSCTL_DESCR("memory speed in MHz"),
464 1.1 pgoyette NULL, d_clk, NULL, 0,
465 1.1 pgoyette CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
466 1.1 pgoyette }
467 1.1 pgoyette
468 1.1 pgoyette static void
469 1.1 pgoyette decode_voltage_refresh(device_t self, struct spdmem *s)
470 1.1 pgoyette {
471 1.1 pgoyette const char *voltage, *refresh;
472 1.1 pgoyette
473 1.1 pgoyette if (s->sm_voltage < __arraycount(spdmem_voltage_types))
474 1.1 pgoyette voltage = spdmem_voltage_types[s->sm_voltage];
475 1.1 pgoyette else
476 1.1 pgoyette voltage = "unknown";
477 1.1 pgoyette
478 1.1 pgoyette if (s->sm_refresh < __arraycount(spdmem_refresh_types))
479 1.1 pgoyette refresh = spdmem_refresh_types[s->sm_refresh];
480 1.1 pgoyette else
481 1.1 pgoyette refresh = "unknown";
482 1.1 pgoyette
483 1.1 pgoyette aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n",
484 1.1 pgoyette voltage, refresh,
485 1.1 pgoyette s->sm_selfrefresh?" (self-refreshing)":"");
486 1.1 pgoyette }
487 1.1 pgoyette
488 1.1 pgoyette static void
489 1.1 pgoyette decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
490 1.1 pgoyette aprint_normal("\n");
491 1.1 pgoyette aprint_verbose_dev(self,
492 1.1 pgoyette "%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n",
493 1.1 pgoyette s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks,
494 1.1 pgoyette s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC);
495 1.1 pgoyette }
496 1.1 pgoyette
497 1.1 pgoyette static void
498 1.1 pgoyette decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s) {
499 1.1 pgoyette aprint_normal("\n");
500 1.1 pgoyette aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n",
501 1.1 pgoyette s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks);
502 1.1 pgoyette }
503 1.1 pgoyette
504 1.1 pgoyette static void
505 1.1 pgoyette decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s,
506 1.1 pgoyette int spd_len) {
507 1.1 pgoyette int dimm_size, cycle_time, bits, tAA, i, speed, freq;
508 1.1 pgoyette
509 1.1 pgoyette aprint_normal("%s, %s, ",
510 1.1 pgoyette (s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)?
511 1.1 pgoyette " (registered)":"",
512 1.1 pgoyette (s->sm_config < __arraycount(spdmem_parity_types))?
513 1.1 pgoyette spdmem_parity_types[s->sm_config]:"invalid parity");
514 1.1 pgoyette
515 1.1 pgoyette dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17);
516 1.1 pgoyette dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip;
517 1.1 pgoyette
518 1.1 pgoyette cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 +
519 1.1 pgoyette s->sm_sdr.sdr_cycle_tenths * 100;
520 1.1 pgoyette bits = le16toh(s->sm_sdr.sdr_datawidth);
521 1.1 pgoyette if (s->sm_config == 1 || s->sm_config == 2)
522 1.1 pgoyette bits -= 8;
523 1.1 pgoyette
524 1.1 pgoyette /* Calculate speed here - from OpenBSD */
525 1.1 pgoyette if (spd_len >= 128)
526 1.1 pgoyette freq = ((uint8_t *)s)[126];
527 1.1 pgoyette else
528 1.1 pgoyette freq = 0;
529 1.1 pgoyette switch (freq) {
530 1.1 pgoyette /*
531 1.1 pgoyette * Must check cycle time since some PC-133 DIMMs
532 1.1 pgoyette * actually report PC-100
533 1.1 pgoyette */
534 1.1 pgoyette case 100:
535 1.1 pgoyette case 133:
536 1.1 pgoyette if (cycle_time < 8000)
537 1.1 pgoyette speed = 133;
538 1.1 pgoyette else
539 1.1 pgoyette speed = 100;
540 1.1 pgoyette break;
541 1.1 pgoyette case 0x66: /* Legacy DIMMs use _hex_ 66! */
542 1.1 pgoyette default:
543 1.1 pgoyette speed = 66;
544 1.1 pgoyette }
545 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 1, bits, FALSE,
546 1.3 pgoyette "PC", speed);
547 1.1 pgoyette
548 1.1 pgoyette aprint_verbose_dev(self,
549 1.1 pgoyette "%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n",
550 1.1 pgoyette s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks,
551 1.1 pgoyette s->sm_sdr.sdr_banks_per_chip, cycle_time/1000,
552 1.1 pgoyette (cycle_time % 1000) / 100);
553 1.1 pgoyette
554 1.1 pgoyette tAA = 0;
555 1.1 pgoyette for (i = 0; i < 8; i++)
556 1.1 pgoyette if (s->sm_sdr.sdr_tCAS & (1 << i))
557 1.1 pgoyette tAA = i;
558 1.1 pgoyette tAA++;
559 1.4 christos aprint_verbose_dev(self, LATENCY, tAA, s->sm_sdr.sdr_tRCD,
560 1.1 pgoyette s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS);
561 1.1 pgoyette
562 1.1 pgoyette decode_voltage_refresh(self, s);
563 1.1 pgoyette }
564 1.1 pgoyette
565 1.1 pgoyette static void
566 1.1 pgoyette decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s) {
567 1.1 pgoyette int dimm_size, cycle_time, bits, tAA, i;
568 1.1 pgoyette
569 1.1 pgoyette aprint_normal("%s, %s, ",
570 1.1 pgoyette (s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)?
571 1.1 pgoyette " (registered)":"",
572 1.1 pgoyette (s->sm_config < __arraycount(spdmem_parity_types))?
573 1.1 pgoyette spdmem_parity_types[s->sm_config]:"invalid parity");
574 1.1 pgoyette
575 1.1 pgoyette dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17);
576 1.1 pgoyette dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip;
577 1.1 pgoyette
578 1.1 pgoyette cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 +
579 1.1 pgoyette spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths];
580 1.1 pgoyette bits = le16toh(s->sm_ddr.ddr_datawidth);
581 1.1 pgoyette if (s->sm_config == 1 || s->sm_config == 2)
582 1.1 pgoyette bits -= 8;
583 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
584 1.3 pgoyette "PC", 0);
585 1.1 pgoyette
586 1.1 pgoyette aprint_verbose_dev(self,
587 1.1 pgoyette "%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n",
588 1.1 pgoyette s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks,
589 1.1 pgoyette s->sm_ddr.ddr_banks_per_chip, cycle_time/1000,
590 1.1 pgoyette (cycle_time % 1000 + 50) / 100);
591 1.1 pgoyette
592 1.1 pgoyette tAA = 0;
593 1.1 pgoyette for (i = 2; i < 8; i++)
594 1.1 pgoyette if (s->sm_ddr.ddr_tCAS & (1 << i))
595 1.1 pgoyette tAA = i;
596 1.1 pgoyette tAA /= 2;
597 1.1 pgoyette
598 1.1 pgoyette #define __DDR_ROUND(scale, field) \
599 1.1 pgoyette ((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time)
600 1.1 pgoyette
601 1.4 christos aprint_verbose_dev(self, LATENCY, tAA, __DDR_ROUND(250, ddr_tRCD),
602 1.1 pgoyette __DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS));
603 1.1 pgoyette
604 1.1 pgoyette #undef __DDR_ROUND
605 1.1 pgoyette
606 1.1 pgoyette decode_voltage_refresh(self, s);
607 1.1 pgoyette }
608 1.1 pgoyette
609 1.1 pgoyette static void
610 1.1 pgoyette decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s) {
611 1.1 pgoyette int dimm_size, cycle_time, bits, tAA, i;
612 1.1 pgoyette
613 1.1 pgoyette aprint_normal("%s, %s, ",
614 1.1 pgoyette (s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)?
615 1.1 pgoyette " (registered)":"",
616 1.1 pgoyette (s->sm_config < __arraycount(spdmem_parity_types))?
617 1.1 pgoyette spdmem_parity_types[s->sm_config]:"invalid parity");
618 1.1 pgoyette
619 1.1 pgoyette dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17);
620 1.1 pgoyette dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) *
621 1.1 pgoyette s->sm_ddr2.ddr2_banks_per_chip;
622 1.1 pgoyette
623 1.1 pgoyette cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 +
624 1.1 pgoyette spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac];
625 1.1 pgoyette bits = s->sm_ddr2.ddr2_datawidth;
626 1.1 pgoyette if ((s->sm_config & 0x03) != 0)
627 1.1 pgoyette bits -= 8;
628 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
629 1.3 pgoyette "PC2", 0);
630 1.1 pgoyette
631 1.1 pgoyette aprint_verbose_dev(self,
632 1.1 pgoyette "%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n",
633 1.1 pgoyette s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols,
634 1.1 pgoyette s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip,
635 1.1 pgoyette cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
636 1.1 pgoyette
637 1.1 pgoyette tAA = 0;
638 1.1 pgoyette for (i = 2; i < 8; i++)
639 1.1 pgoyette if (s->sm_ddr2.ddr2_tCAS & (1 << i))
640 1.1 pgoyette tAA = i;
641 1.1 pgoyette
642 1.1 pgoyette #define __DDR2_ROUND(scale, field) \
643 1.1 pgoyette ((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time)
644 1.1 pgoyette
645 1.4 christos aprint_verbose_dev(self, LATENCY, tAA, __DDR2_ROUND(250, ddr2_tRCD),
646 1.1 pgoyette __DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS));
647 1.1 pgoyette
648 1.1 pgoyette #undef __DDR_ROUND
649 1.1 pgoyette
650 1.1 pgoyette decode_voltage_refresh(self, s);
651 1.1 pgoyette }
652 1.1 pgoyette
653 1.1 pgoyette static void
654 1.1 pgoyette decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s) {
655 1.1 pgoyette int dimm_size, cycle_time, bits;
656 1.1 pgoyette
657 1.1 pgoyette if (s->sm_ddr3.ddr3_mod_type ==
658 1.1 pgoyette SPDMEM_DDR3_TYPE_MINI_RDIMM ||
659 1.1 pgoyette s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM)
660 1.1 pgoyette aprint_normal(" (registered)");
661 1.1 pgoyette aprint_normal(", %sECC, %stemp-sensor, ",
662 1.1 pgoyette (s->sm_ddr3.ddr3_hasECC)?"":"no ",
663 1.1 pgoyette (s->sm_ddr3.ddr3_has_therm_sensor)?"":"no ");
664 1.1 pgoyette
665 1.1 pgoyette /*
666 1.1 pgoyette * DDR3 size specification is quite different from others
667 1.1 pgoyette *
668 1.1 pgoyette * Module capacity is defined as
669 1.1 pgoyette * Chip_Capacity_in_bits / 8bits-per-byte *
670 1.1 pgoyette * external_bus_width / internal_bus_width
671 1.1 pgoyette * We further divide by 2**20 to get our answer in MB
672 1.1 pgoyette */
673 1.1 pgoyette dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 +
674 1.1 pgoyette (s->sm_ddr3.ddr3_datawidth + 3) -
675 1.1 pgoyette (s->sm_ddr3.ddr3_chipwidth + 2);
676 1.1 pgoyette dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1);
677 1.1 pgoyette
678 1.1 pgoyette cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend +
679 1.1 pgoyette (s->sm_ddr3.ddr3_mtb_divisor / 2)) /
680 1.1 pgoyette s->sm_ddr3.ddr3_mtb_divisor;
681 1.1 pgoyette cycle_time *= s->sm_ddr3.ddr3_tCKmin;
682 1.1 pgoyette bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3);
683 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, FALSE,
684 1.3 pgoyette "PC3", 0);
685 1.1 pgoyette
686 1.1 pgoyette aprint_verbose_dev(self,
687 1.1 pgoyette "%d rows, %d cols, %d log. banks, %d phys. banks, "
688 1.1 pgoyette "%d.%03dns cycle time\n",
689 1.1 pgoyette s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12,
690 1.1 pgoyette 1 << (s->sm_ddr3.ddr3_logbanks + 3),
691 1.1 pgoyette s->sm_ddr3.ddr3_physbanks + 1,
692 1.1 pgoyette cycle_time/1000, cycle_time % 1000);
693 1.1 pgoyette
694 1.1 pgoyette #define __DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin)
695 1.1 pgoyette
696 1.4 christos aprint_verbose_dev(self, LATENCY, __DDR3_CYCLES(ddr3_tAAmin),
697 1.1 pgoyette __DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin),
698 1.1 pgoyette (s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) /
699 1.1 pgoyette s->sm_ddr3.ddr3_tCKmin);
700 1.1 pgoyette
701 1.1 pgoyette #undef __DDR3_CYCLES
702 1.1 pgoyette }
703 1.1 pgoyette
704 1.1 pgoyette static void
705 1.1 pgoyette decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
706 1.1 pgoyette int dimm_size, cycle_time, bits;
707 1.1 pgoyette
708 1.1 pgoyette /*
709 1.1 pgoyette * FB-DIMM module size calculation is very much like DDR3
710 1.1 pgoyette */
711 1.1 pgoyette dimm_size = s->sm_fbd.fbdimm_rows + 12 +
712 1.1 pgoyette s->sm_fbd.fbdimm_cols + 9 - 20 - 3;
713 1.1 pgoyette dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2));
714 1.1 pgoyette
715 1.1 pgoyette cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend +
716 1.1 pgoyette (s->sm_fbd.fbdimm_mtb_divisor / 2)) /
717 1.1 pgoyette s->sm_fbd.fbdimm_mtb_divisor;
718 1.1 pgoyette bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2);
719 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
720 1.3 pgoyette "PC2", 0);
721 1.1 pgoyette
722 1.1 pgoyette aprint_verbose_dev(self,
723 1.1 pgoyette "%d rows, %d cols, %d banks, %d.%02dns cycle time\n",
724 1.1 pgoyette s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols,
725 1.1 pgoyette 1 << (s->sm_fbd.fbdimm_banks + 2),
726 1.1 pgoyette cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
727 1.1 pgoyette
728 1.1 pgoyette #define __FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin)
729 1.1 pgoyette
730 1.4 christos aprint_verbose_dev(self, LATENCY, __FBDIMM_CYCLES(fbdimm_tAAmin),
731 1.1 pgoyette __FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin),
732 1.1 pgoyette (s->sm_fbd.fbdimm_tRAS_msb * 256 +
733 1.1 pgoyette s->sm_fbd.fbdimm_tRAS_lsb) /
734 1.1 pgoyette s->sm_fbd.fbdimm_tCKmin);
735 1.1 pgoyette
736 1.1 pgoyette #undef __FBDIMM_CYCLES
737 1.1 pgoyette
738 1.1 pgoyette decode_voltage_refresh(self, s);
739 1.1 pgoyette }
740