Home | History | Annotate | Line # | Download | only in ic
spdmem.c revision 1.9
      1  1.9     pooka /* $NetBSD: spdmem.c,v 1.9 2014/02/25 18:30:09 pooka Exp $ */
      2  1.1  pgoyette 
      3  1.1  pgoyette /*
      4  1.1  pgoyette  * Copyright (c) 2007 Nicolas Joly
      5  1.1  pgoyette  * Copyright (c) 2007 Paul Goyette
      6  1.1  pgoyette  * Copyright (c) 2007 Tobias Nygren
      7  1.1  pgoyette  * All rights reserved.
      8  1.1  pgoyette  *
      9  1.1  pgoyette  * Redistribution and use in source and binary forms, with or without
     10  1.1  pgoyette  * modification, are permitted provided that the following conditions
     11  1.1  pgoyette  * are met:
     12  1.1  pgoyette  * 1. Redistributions of source code must retain the above copyright
     13  1.1  pgoyette  *    notice, this list of conditions and the following disclaimer.
     14  1.1  pgoyette  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.1  pgoyette  *    notice, this list of conditions and the following disclaimer in the
     16  1.1  pgoyette  *    documentation and/or other materials provided with the distribution.
     17  1.1  pgoyette  * 3. The name of the author may not be used to endorse or promote products
     18  1.1  pgoyette  *    derived from this software without specific prior written permission.
     19  1.1  pgoyette  *
     20  1.1  pgoyette  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
     21  1.1  pgoyette  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  1.1  pgoyette  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  1.1  pgoyette  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  1.1  pgoyette  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.1  pgoyette  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.1  pgoyette  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.1  pgoyette  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.1  pgoyette  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.1  pgoyette  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.1  pgoyette  * POSSIBILITY OF SUCH DAMAGE.
     31  1.1  pgoyette  */
     32  1.1  pgoyette 
     33  1.1  pgoyette /*
     34  1.1  pgoyette  * Serial Presence Detect (SPD) memory identification
     35  1.1  pgoyette  */
     36  1.1  pgoyette 
     37  1.1  pgoyette #include <sys/cdefs.h>
     38  1.9     pooka __KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.9 2014/02/25 18:30:09 pooka Exp $");
     39  1.1  pgoyette 
     40  1.1  pgoyette #include <sys/param.h>
     41  1.1  pgoyette #include <sys/device.h>
     42  1.1  pgoyette #include <sys/endian.h>
     43  1.1  pgoyette #include <sys/sysctl.h>
     44  1.1  pgoyette #include <machine/bswap.h>
     45  1.1  pgoyette 
     46  1.1  pgoyette #include <dev/i2c/i2cvar.h>
     47  1.1  pgoyette #include <dev/ic/spdmemreg.h>
     48  1.1  pgoyette #include <dev/ic/spdmemvar.h>
     49  1.1  pgoyette 
     50  1.1  pgoyette SYSCTL_SETUP_PROTO(sysctl_spdmem_setup);
     51  1.1  pgoyette 
     52  1.1  pgoyette /* Routines for decoding spd data */
     53  1.1  pgoyette static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *);
     54  1.1  pgoyette static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *);
     55  1.1  pgoyette static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *,
     56  1.1  pgoyette 	int);
     57  1.1  pgoyette static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *);
     58  1.1  pgoyette static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *);
     59  1.1  pgoyette static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *);
     60  1.1  pgoyette static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *);
     61  1.1  pgoyette 
     62  1.3  pgoyette static void decode_size_speed(device_t, const struct sysctlnode *,
     63  1.3  pgoyette 			      int, int, int, int, bool, const char *, int);
     64  1.1  pgoyette static void decode_voltage_refresh(device_t, struct spdmem *);
     65  1.1  pgoyette 
     66  1.1  pgoyette #define IS_RAMBUS_TYPE (s->sm_len < 4)
     67  1.1  pgoyette 
     68  1.1  pgoyette static const char* spdmem_basic_types[] = {
     69  1.1  pgoyette 	"unknown",
     70  1.1  pgoyette 	"FPM",
     71  1.1  pgoyette 	"EDO",
     72  1.1  pgoyette 	"Pipelined Nibble",
     73  1.1  pgoyette 	"SDRAM",
     74  1.1  pgoyette 	"ROM",
     75  1.1  pgoyette 	"DDR SGRAM",
     76  1.1  pgoyette 	"DDR SDRAM",
     77  1.1  pgoyette 	"DDR2 SDRAM",
     78  1.1  pgoyette 	"DDR2 SDRAM FB",
     79  1.1  pgoyette 	"DDR2 SDRAM FB Probe",
     80  1.1  pgoyette 	"DDR3 SDRAM"
     81  1.1  pgoyette };
     82  1.1  pgoyette 
     83  1.1  pgoyette static const char* spdmem_superset_types[] = {
     84  1.1  pgoyette 	"unknown",
     85  1.1  pgoyette 	"ESDRAM",
     86  1.1  pgoyette 	"DDR ESDRAM",
     87  1.1  pgoyette 	"PEM EDO",
     88  1.1  pgoyette 	"PEM SDRAM"
     89  1.1  pgoyette };
     90  1.1  pgoyette 
     91  1.1  pgoyette static const char* spdmem_voltage_types[] = {
     92  1.1  pgoyette 	"TTL (5V tolerant)",
     93  1.1  pgoyette 	"LvTTL (not 5V tolerant)",
     94  1.1  pgoyette 	"HSTL 1.5V",
     95  1.1  pgoyette 	"SSTL 3.3V",
     96  1.1  pgoyette 	"SSTL 2.5V",
     97  1.1  pgoyette 	"SSTL 1.8V"
     98  1.1  pgoyette };
     99  1.1  pgoyette 
    100  1.1  pgoyette static const char* spdmem_refresh_types[] = {
    101  1.1  pgoyette 	"15.625us",
    102  1.1  pgoyette 	"3.9us",
    103  1.1  pgoyette 	"7.8us",
    104  1.1  pgoyette 	"31.3us",
    105  1.1  pgoyette 	"62.5us",
    106  1.1  pgoyette 	"125us"
    107  1.1  pgoyette };
    108  1.1  pgoyette 
    109  1.1  pgoyette static const char* spdmem_parity_types[] = {
    110  1.1  pgoyette 	"no parity or ECC",
    111  1.1  pgoyette 	"data parity",
    112  1.1  pgoyette 	"data ECC",
    113  1.1  pgoyette 	"data parity and ECC",
    114  1.1  pgoyette 	"cmd/addr parity",
    115  1.1  pgoyette 	"cmd/addr/data parity",
    116  1.1  pgoyette 	"cmd/addr parity, data ECC",
    117  1.1  pgoyette 	"cmd/addr/data parity, data ECC"
    118  1.1  pgoyette };
    119  1.1  pgoyette 
    120  1.1  pgoyette /* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */
    121  1.1  pgoyette static const uint16_t spdmem_cycle_frac[] = {
    122  1.1  pgoyette 	0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
    123  1.1  pgoyette 	250, 333, 667, 750, 999, 999
    124  1.1  pgoyette };
    125  1.1  pgoyette 
    126  1.1  pgoyette /* Format string for timing info */
    127  1.5       wiz #define	LATENCY	"tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n"
    128  1.1  pgoyette 
    129  1.1  pgoyette /* CRC functions used for certain memory types */
    130  1.1  pgoyette 
    131  1.1  pgoyette static uint16_t spdcrc16 (struct spdmem_softc *sc, int count)
    132  1.1  pgoyette {
    133  1.1  pgoyette 	uint16_t crc;
    134  1.1  pgoyette 	int i, j;
    135  1.1  pgoyette 	uint8_t val;
    136  1.1  pgoyette 	crc = 0;
    137  1.1  pgoyette 	for (j = 0; j <= count; j++) {
    138  1.1  pgoyette 		val = (sc->sc_read)(sc, j);
    139  1.1  pgoyette 		crc = crc ^ val << 8;
    140  1.1  pgoyette 		for (i = 0; i < 8; ++i)
    141  1.1  pgoyette 			if (crc & 0x8000)
    142  1.1  pgoyette 				crc = crc << 1 ^ 0x1021;
    143  1.1  pgoyette 			else
    144  1.1  pgoyette 				crc = crc << 1;
    145  1.1  pgoyette 	}
    146  1.1  pgoyette 	return (crc & 0xFFFF);
    147  1.1  pgoyette }
    148  1.1  pgoyette 
    149  1.1  pgoyette int
    150  1.1  pgoyette spdmem_common_probe(struct spdmem_softc *sc)
    151  1.1  pgoyette {
    152  1.1  pgoyette 	int cksum = 0;
    153  1.1  pgoyette 	uint8_t i, val, spd_type;
    154  1.1  pgoyette 	int spd_len, spd_crc_cover;
    155  1.1  pgoyette 	uint16_t crc_calc, crc_spd;
    156  1.1  pgoyette 
    157  1.1  pgoyette 	spd_type = (sc->sc_read)(sc, 2);
    158  1.1  pgoyette 
    159  1.1  pgoyette 	/* For older memory types, validate the checksum over 1st 63 bytes */
    160  1.1  pgoyette 	if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
    161  1.1  pgoyette 		for (i = 0; i < 63; i++)
    162  1.1  pgoyette 			cksum += (sc->sc_read)(sc, i);
    163  1.1  pgoyette 
    164  1.1  pgoyette 		val = (sc->sc_read)(sc, 63);
    165  1.1  pgoyette 
    166  1.1  pgoyette 		if (cksum == 0 || (cksum & 0xff) != val) {
    167  1.1  pgoyette 			aprint_debug("spd checksum failed, calc = 0x%02x, "
    168  1.1  pgoyette 				     "spd = 0x%02x\n", cksum, val);
    169  1.1  pgoyette 			return 0;
    170  1.1  pgoyette 		} else
    171  1.1  pgoyette 			return 1;
    172  1.1  pgoyette 	}
    173  1.1  pgoyette 
    174  1.1  pgoyette 	/* For DDR3 and FBDIMM, verify the CRC */
    175  1.1  pgoyette 	else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
    176  1.1  pgoyette 		spd_len = (sc->sc_read)(sc, 0);
    177  1.2  pgoyette 		if (spd_len & SPDMEM_SPDCRC_116)
    178  1.1  pgoyette 			spd_crc_cover = 116;
    179  1.1  pgoyette 		else
    180  1.1  pgoyette 			spd_crc_cover = 125;
    181  1.1  pgoyette 		switch (spd_len & SPDMEM_SPDLEN_MASK) {
    182  1.1  pgoyette 		case SPDMEM_SPDLEN_128:
    183  1.1  pgoyette 			spd_len = 128;
    184  1.1  pgoyette 			break;
    185  1.1  pgoyette 		case SPDMEM_SPDLEN_176:
    186  1.1  pgoyette 			spd_len = 176;
    187  1.1  pgoyette 			break;
    188  1.1  pgoyette 		case SPDMEM_SPDLEN_256:
    189  1.1  pgoyette 			spd_len = 256;
    190  1.1  pgoyette 			break;
    191  1.1  pgoyette 		default:
    192  1.1  pgoyette 			return 0;
    193  1.1  pgoyette 		}
    194  1.1  pgoyette 		if (spd_crc_cover > spd_len)
    195  1.1  pgoyette 			return 0;
    196  1.1  pgoyette 		crc_calc = spdcrc16(sc, spd_crc_cover);
    197  1.1  pgoyette 		crc_spd = (sc->sc_read)(sc, 127) << 8;
    198  1.1  pgoyette 		crc_spd |= (sc->sc_read)(sc, 126);
    199  1.1  pgoyette 		if (crc_calc != crc_spd) {
    200  1.1  pgoyette 			aprint_debug("crc16 failed, covers %d bytes, "
    201  1.1  pgoyette 				     "calc = 0x%04x, spd = 0x%04x\n",
    202  1.1  pgoyette 				     spd_crc_cover, crc_calc, crc_spd);
    203  1.1  pgoyette 			return 0;
    204  1.1  pgoyette 		}
    205  1.1  pgoyette 		return 1;
    206  1.1  pgoyette 	}
    207  1.1  pgoyette 
    208  1.1  pgoyette 	/* For unrecognized memory types, don't match at all */
    209  1.1  pgoyette 	return 0;
    210  1.1  pgoyette }
    211  1.1  pgoyette 
    212  1.1  pgoyette void
    213  1.1  pgoyette spdmem_common_attach(struct spdmem_softc *sc, device_t self)
    214  1.1  pgoyette {
    215  1.1  pgoyette 	struct spdmem *s = &(sc->sc_spd_data);
    216  1.1  pgoyette 	const char *type;
    217  1.1  pgoyette 	const char *rambus_rev = "Reserved";
    218  1.1  pgoyette 	int dimm_size;
    219  1.3  pgoyette 	unsigned int i, spd_len, spd_size;
    220  1.1  pgoyette 	const struct sysctlnode *node = NULL;
    221  1.1  pgoyette 
    222  1.1  pgoyette 	/*
    223  1.1  pgoyette 	 * FBDIMM and DDR3 (and probably all newer) have a different
    224  1.1  pgoyette 	 * encoding of the SPD EEPROM used/total sizes
    225  1.1  pgoyette 	 */
    226  1.1  pgoyette 	s->sm_len = (sc->sc_read)(sc, 0);
    227  1.1  pgoyette 	s->sm_size = (sc->sc_read)(sc, 1);
    228  1.1  pgoyette 	s->sm_type = (sc->sc_read)(sc, 2);
    229  1.1  pgoyette 
    230  1.1  pgoyette 	if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) {
    231  1.1  pgoyette 		spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK);
    232  1.1  pgoyette 		switch (s->sm_len & SPDMEM_SPDLEN_MASK) {
    233  1.1  pgoyette 		case SPDMEM_SPDLEN_128:
    234  1.1  pgoyette 			spd_len = 128;
    235  1.1  pgoyette 			break;
    236  1.1  pgoyette 		case SPDMEM_SPDLEN_176:
    237  1.1  pgoyette 			spd_len = 176;
    238  1.1  pgoyette 			break;
    239  1.1  pgoyette 		case SPDMEM_SPDLEN_256:
    240  1.1  pgoyette 			spd_len = 256;
    241  1.1  pgoyette 			break;
    242  1.1  pgoyette 		default:
    243  1.1  pgoyette 			spd_len = 64;
    244  1.1  pgoyette 			break;
    245  1.1  pgoyette 		}
    246  1.1  pgoyette 	} else {
    247  1.1  pgoyette 		spd_size = 1 << s->sm_size;
    248  1.1  pgoyette 		spd_len = s->sm_len;
    249  1.1  pgoyette 		if (spd_len < 64)
    250  1.1  pgoyette 			spd_len = 64;
    251  1.1  pgoyette 	}
    252  1.1  pgoyette 	if (spd_len > spd_size)
    253  1.1  pgoyette 		spd_len = spd_size;
    254  1.1  pgoyette 	if (spd_len > sizeof(struct spdmem))
    255  1.1  pgoyette 		spd_len = sizeof(struct spdmem);
    256  1.1  pgoyette 	for (i = 3; i < spd_len; i++)
    257  1.1  pgoyette 		((uint8_t *)s)[i] = (sc->sc_read)(sc, i);
    258  1.1  pgoyette 
    259  1.1  pgoyette 	/*
    260  1.1  pgoyette 	 * Setup our sysctl subtree, hw.spdmemN
    261  1.1  pgoyette 	 */
    262  1.3  pgoyette 	sc->sc_sysctl_log = NULL;
    263  1.9     pooka 	sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &node,
    264  1.9     pooka 	    0, CTLTYPE_NODE,
    265  1.9     pooka 	    device_xname(self), NULL, NULL, 0, NULL, 0,
    266  1.9     pooka 	    CTL_HW, CTL_CREATE, CTL_EOL);
    267  1.1  pgoyette 	if (node != NULL && spd_len != 0)
    268  1.3  pgoyette                 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
    269  1.1  pgoyette                     0,
    270  1.1  pgoyette                     CTLTYPE_STRUCT, "spd_data",
    271  1.1  pgoyette 		    SYSCTL_DESCR("raw spd data"), NULL,
    272  1.1  pgoyette                     0, s, spd_len,
    273  1.1  pgoyette                     CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
    274  1.1  pgoyette 
    275  1.1  pgoyette 	/*
    276  1.1  pgoyette 	 * Decode and print key SPD contents
    277  1.1  pgoyette 	 */
    278  1.1  pgoyette 	if (IS_RAMBUS_TYPE) {
    279  1.1  pgoyette 		if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS)
    280  1.1  pgoyette 			type = "Rambus";
    281  1.1  pgoyette 		else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS)
    282  1.1  pgoyette 			type = "Direct Rambus";
    283  1.1  pgoyette 		else
    284  1.1  pgoyette 			type = "Rambus (unknown)";
    285  1.1  pgoyette 
    286  1.1  pgoyette 		switch (s->sm_len) {
    287  1.1  pgoyette 		case 0:
    288  1.1  pgoyette 			rambus_rev = "Invalid";
    289  1.1  pgoyette 			break;
    290  1.1  pgoyette 		case 1:
    291  1.1  pgoyette 			rambus_rev = "0.7";
    292  1.1  pgoyette 			break;
    293  1.1  pgoyette 		case 2:
    294  1.1  pgoyette 			rambus_rev = "1.0";
    295  1.1  pgoyette 			break;
    296  1.1  pgoyette 		default:
    297  1.1  pgoyette 			rambus_rev = "Reserved";
    298  1.1  pgoyette 			break;
    299  1.1  pgoyette 		}
    300  1.1  pgoyette 	} else {
    301  1.1  pgoyette 		if (s->sm_type < __arraycount(spdmem_basic_types))
    302  1.1  pgoyette 			type = spdmem_basic_types[s->sm_type];
    303  1.1  pgoyette 		else
    304  1.1  pgoyette 			type = "unknown memory type";
    305  1.1  pgoyette 
    306  1.1  pgoyette 		if (s->sm_type == SPDMEM_MEMTYPE_EDO &&
    307  1.1  pgoyette 		    s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM)
    308  1.1  pgoyette 			type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM];
    309  1.1  pgoyette 		if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
    310  1.1  pgoyette 		    s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM)
    311  1.1  pgoyette 			type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM];
    312  1.1  pgoyette 		if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM &&
    313  1.1  pgoyette 		    s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM)
    314  1.1  pgoyette 			type =
    315  1.1  pgoyette 			    spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
    316  1.1  pgoyette 		if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
    317  1.1  pgoyette 		    s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) {
    318  1.1  pgoyette 			type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
    319  1.1  pgoyette 		}
    320  1.1  pgoyette 	}
    321  1.1  pgoyette 
    322  1.1  pgoyette 	strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN);
    323  1.1  pgoyette 	if (node != NULL)
    324  1.3  pgoyette 		sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
    325  1.1  pgoyette 		    0,
    326  1.1  pgoyette 		    CTLTYPE_STRING, "mem_type",
    327  1.1  pgoyette 		    SYSCTL_DESCR("memory module type"), NULL,
    328  1.1  pgoyette 		    0, sc->sc_type, 0,
    329  1.1  pgoyette 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
    330  1.1  pgoyette 
    331  1.1  pgoyette 	if (IS_RAMBUS_TYPE) {
    332  1.8     soren 		aprint_naive("\n");
    333  1.8     soren 		aprint_normal("\n");
    334  1.8     soren 		aprint_normal_dev(self, "%s, SPD Revision %s", type, rambus_rev);
    335  1.1  pgoyette 		dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13);
    336  1.1  pgoyette 		if (dimm_size >= 1024)
    337  1.1  pgoyette 			aprint_normal(", %dGB\n", dimm_size / 1024);
    338  1.1  pgoyette 		else
    339  1.1  pgoyette 			aprint_normal(", %dMB\n", dimm_size);
    340  1.1  pgoyette 
    341  1.1  pgoyette 		/* No further decode for RAMBUS memory */
    342  1.1  pgoyette 		return;
    343  1.1  pgoyette 	}
    344  1.1  pgoyette 	switch (s->sm_type) {
    345  1.1  pgoyette 	case SPDMEM_MEMTYPE_EDO:
    346  1.1  pgoyette 	case SPDMEM_MEMTYPE_FPM:
    347  1.1  pgoyette 		decode_edofpm(node, self, s);
    348  1.1  pgoyette 		break;
    349  1.1  pgoyette 	case SPDMEM_MEMTYPE_ROM:
    350  1.1  pgoyette 		decode_rom(node, self, s);
    351  1.1  pgoyette 		break;
    352  1.1  pgoyette 	case SPDMEM_MEMTYPE_SDRAM:
    353  1.1  pgoyette 		decode_sdram(node, self, s, spd_len);
    354  1.1  pgoyette 		break;
    355  1.1  pgoyette 	case SPDMEM_MEMTYPE_DDRSDRAM:
    356  1.1  pgoyette 		decode_ddr(node, self, s);
    357  1.1  pgoyette 		break;
    358  1.1  pgoyette 	case SPDMEM_MEMTYPE_DDR2SDRAM:
    359  1.1  pgoyette 		decode_ddr2(node, self, s);
    360  1.1  pgoyette 		break;
    361  1.1  pgoyette 	case SPDMEM_MEMTYPE_DDR3SDRAM:
    362  1.1  pgoyette 		decode_ddr3(node, self, s);
    363  1.1  pgoyette 		break;
    364  1.1  pgoyette 	case SPDMEM_MEMTYPE_FBDIMM:
    365  1.1  pgoyette 	case SPDMEM_MEMTYPE_FBDIMM_PROBE:
    366  1.1  pgoyette 		decode_fbdimm(node, self, s);
    367  1.1  pgoyette 		break;
    368  1.1  pgoyette 	}
    369  1.8     soren 
    370  1.8     soren 	/* Dump SPD */
    371  1.8     soren 	for (i = 0; i < spd_len;  i += 16) {
    372  1.8     soren 		unsigned int j, k;
    373  1.8     soren 		aprint_debug_dev(self, "0x%02x:", i);
    374  1.8     soren 		k = (spd_len > (i + 16)) ? i + 16 : spd_len;
    375  1.8     soren 		for (j = i; j < k; j++)
    376  1.8     soren 			aprint_debug(" %02x", ((uint8_t *)s)[j]);
    377  1.8     soren 		aprint_debug("\n");
    378  1.8     soren 	}
    379  1.1  pgoyette }
    380  1.1  pgoyette 
    381  1.3  pgoyette int
    382  1.3  pgoyette spdmem_common_detach(struct spdmem_softc *sc, device_t self)
    383  1.3  pgoyette {
    384  1.3  pgoyette 	sysctl_teardown(&sc->sc_sysctl_log);
    385  1.3  pgoyette 
    386  1.3  pgoyette 	return 0;
    387  1.3  pgoyette }
    388  1.3  pgoyette 
    389  1.1  pgoyette static void
    390  1.3  pgoyette decode_size_speed(device_t self, const struct sysctlnode *node,
    391  1.3  pgoyette 		  int dimm_size, int cycle_time, int d_clk, int bits,
    392  1.3  pgoyette 		  bool round, const char *ddr_type_string, int speed)
    393  1.1  pgoyette {
    394  1.1  pgoyette 	int p_clk;
    395  1.7       chs 	struct spdmem_softc *sc = device_private(self);
    396  1.1  pgoyette 
    397  1.1  pgoyette 	if (dimm_size < 1024)
    398  1.1  pgoyette 		aprint_normal("%dMB", dimm_size);
    399  1.1  pgoyette 	else
    400  1.1  pgoyette 		aprint_normal("%dGB", dimm_size / 1024);
    401  1.1  pgoyette 	if (node != NULL)
    402  1.3  pgoyette 		sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
    403  1.1  pgoyette 		    CTLFLAG_IMMEDIATE,
    404  1.1  pgoyette 		    CTLTYPE_INT, "size",
    405  1.1  pgoyette 		    SYSCTL_DESCR("module size in MB"), NULL,
    406  1.1  pgoyette 		    dimm_size, NULL, 0,
    407  1.1  pgoyette 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
    408  1.1  pgoyette 
    409  1.1  pgoyette 	if (cycle_time == 0) {
    410  1.1  pgoyette 		aprint_normal("\n");
    411  1.1  pgoyette 		return;
    412  1.1  pgoyette 	}
    413  1.1  pgoyette 
    414  1.1  pgoyette 	/*
    415  1.1  pgoyette 	 * Calculate p_clk first, since for DDR3 we need maximum significance.
    416  1.1  pgoyette 	 * DDR3 rating is not rounded to a multiple of 100.  This results in
    417  1.1  pgoyette 	 * cycle_time of 1.5ns displayed as PC3-10666.
    418  1.1  pgoyette 	 *
    419  1.1  pgoyette 	 * For SDRAM, the speed is provided by the caller so we use it.
    420  1.1  pgoyette 	 */
    421  1.1  pgoyette 	d_clk *= 1000 * 1000;
    422  1.1  pgoyette 	if (speed)
    423  1.1  pgoyette 		p_clk = speed;
    424  1.1  pgoyette 	else
    425  1.1  pgoyette 		p_clk = (d_clk * bits) / 8 / cycle_time;
    426  1.1  pgoyette 	d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
    427  1.1  pgoyette 	if (round) {
    428  1.1  pgoyette 		if ((p_clk % 100) >= 50)
    429  1.1  pgoyette 			p_clk += 50;
    430  1.1  pgoyette 		p_clk -= p_clk % 100;
    431  1.1  pgoyette 	}
    432  1.1  pgoyette 	aprint_normal(", %dMHz (%s-%d)\n",
    433  1.1  pgoyette 		      d_clk, ddr_type_string, p_clk);
    434  1.1  pgoyette 	if (node != NULL)
    435  1.3  pgoyette 		sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
    436  1.1  pgoyette 			       CTLFLAG_IMMEDIATE,
    437  1.1  pgoyette 			       CTLTYPE_INT, "speed",
    438  1.1  pgoyette 			       SYSCTL_DESCR("memory speed in MHz"),
    439  1.1  pgoyette 			       NULL, d_clk, NULL, 0,
    440  1.1  pgoyette 			       CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
    441  1.1  pgoyette }
    442  1.1  pgoyette 
    443  1.1  pgoyette static void
    444  1.1  pgoyette decode_voltage_refresh(device_t self, struct spdmem *s)
    445  1.1  pgoyette {
    446  1.1  pgoyette 	const char *voltage, *refresh;
    447  1.1  pgoyette 
    448  1.1  pgoyette 	if (s->sm_voltage < __arraycount(spdmem_voltage_types))
    449  1.1  pgoyette 		voltage = spdmem_voltage_types[s->sm_voltage];
    450  1.1  pgoyette 	else
    451  1.1  pgoyette 		voltage = "unknown";
    452  1.1  pgoyette 
    453  1.1  pgoyette 	if (s->sm_refresh < __arraycount(spdmem_refresh_types))
    454  1.1  pgoyette 		refresh = spdmem_refresh_types[s->sm_refresh];
    455  1.1  pgoyette 	else
    456  1.1  pgoyette 		refresh = "unknown";
    457  1.1  pgoyette 
    458  1.1  pgoyette 	aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n",
    459  1.1  pgoyette 			voltage, refresh,
    460  1.1  pgoyette 			s->sm_selfrefresh?" (self-refreshing)":"");
    461  1.1  pgoyette }
    462  1.1  pgoyette 
    463  1.1  pgoyette static void
    464  1.1  pgoyette decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
    465  1.8     soren 	aprint_naive("\n");
    466  1.8     soren 	aprint_normal("\n");
    467  1.8     soren 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
    468  1.8     soren 
    469  1.1  pgoyette 	aprint_normal("\n");
    470  1.1  pgoyette 	aprint_verbose_dev(self,
    471  1.1  pgoyette 	    "%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n",
    472  1.1  pgoyette 	    s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks,
    473  1.1  pgoyette 	    s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC);
    474  1.1  pgoyette }
    475  1.1  pgoyette 
    476  1.1  pgoyette static void
    477  1.1  pgoyette decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s) {
    478  1.8     soren 	aprint_naive("\n");
    479  1.8     soren 	aprint_normal("\n");
    480  1.8     soren 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
    481  1.8     soren 
    482  1.1  pgoyette 	aprint_normal("\n");
    483  1.1  pgoyette 	aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n",
    484  1.1  pgoyette 	    s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks);
    485  1.1  pgoyette }
    486  1.1  pgoyette 
    487  1.1  pgoyette static void
    488  1.1  pgoyette decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s,
    489  1.1  pgoyette 	     int spd_len) {
    490  1.1  pgoyette 	int dimm_size, cycle_time, bits, tAA, i, speed, freq;
    491  1.1  pgoyette 
    492  1.8     soren 	aprint_naive("\n");
    493  1.8     soren 	aprint_normal("\n");
    494  1.8     soren 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
    495  1.8     soren 
    496  1.1  pgoyette 	aprint_normal("%s, %s, ",
    497  1.1  pgoyette 		(s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)?
    498  1.1  pgoyette 			" (registered)":"",
    499  1.1  pgoyette 		(s->sm_config < __arraycount(spdmem_parity_types))?
    500  1.1  pgoyette 			spdmem_parity_types[s->sm_config]:"invalid parity");
    501  1.1  pgoyette 
    502  1.1  pgoyette 	dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17);
    503  1.1  pgoyette 	dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip;
    504  1.1  pgoyette 
    505  1.1  pgoyette 	cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 +
    506  1.1  pgoyette 		     s->sm_sdr.sdr_cycle_tenths * 100;
    507  1.1  pgoyette 	bits = le16toh(s->sm_sdr.sdr_datawidth);
    508  1.1  pgoyette 	if (s->sm_config == 1 || s->sm_config == 2)
    509  1.1  pgoyette 		bits -= 8;
    510  1.1  pgoyette 
    511  1.1  pgoyette 	/* Calculate speed here - from OpenBSD */
    512  1.1  pgoyette 	if (spd_len >= 128)
    513  1.1  pgoyette 		freq = ((uint8_t *)s)[126];
    514  1.1  pgoyette 	else
    515  1.1  pgoyette 		freq = 0;
    516  1.1  pgoyette 	switch (freq) {
    517  1.1  pgoyette 		/*
    518  1.1  pgoyette 		 * Must check cycle time since some PC-133 DIMMs
    519  1.1  pgoyette 		 * actually report PC-100
    520  1.1  pgoyette 		 */
    521  1.1  pgoyette 	    case 100:
    522  1.1  pgoyette 	    case 133:
    523  1.1  pgoyette 		if (cycle_time < 8000)
    524  1.1  pgoyette 			speed = 133;
    525  1.1  pgoyette 		else
    526  1.1  pgoyette 			speed = 100;
    527  1.1  pgoyette 		break;
    528  1.1  pgoyette 	    case 0x66:		/* Legacy DIMMs use _hex_ 66! */
    529  1.1  pgoyette 	    default:
    530  1.1  pgoyette 		speed = 66;
    531  1.1  pgoyette 	}
    532  1.3  pgoyette 	decode_size_speed(self, node, dimm_size, cycle_time, 1, bits, FALSE,
    533  1.3  pgoyette 			  "PC", speed);
    534  1.1  pgoyette 
    535  1.1  pgoyette 	aprint_verbose_dev(self,
    536  1.1  pgoyette 	    "%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n",
    537  1.1  pgoyette 	    s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks,
    538  1.1  pgoyette 	    s->sm_sdr.sdr_banks_per_chip, cycle_time/1000,
    539  1.1  pgoyette 	    (cycle_time % 1000) / 100);
    540  1.1  pgoyette 
    541  1.1  pgoyette 	tAA  = 0;
    542  1.1  pgoyette 	for (i = 0; i < 8; i++)
    543  1.1  pgoyette 		if (s->sm_sdr.sdr_tCAS & (1 << i))
    544  1.1  pgoyette 			tAA = i;
    545  1.1  pgoyette 	tAA++;
    546  1.4  christos 	aprint_verbose_dev(self, LATENCY, tAA, s->sm_sdr.sdr_tRCD,
    547  1.1  pgoyette 	    s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS);
    548  1.1  pgoyette 
    549  1.1  pgoyette 	decode_voltage_refresh(self, s);
    550  1.1  pgoyette }
    551  1.1  pgoyette 
    552  1.1  pgoyette static void
    553  1.1  pgoyette decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s) {
    554  1.1  pgoyette 	int dimm_size, cycle_time, bits, tAA, i;
    555  1.1  pgoyette 
    556  1.8     soren 	aprint_naive("\n");
    557  1.8     soren 	aprint_normal("\n");
    558  1.8     soren 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
    559  1.8     soren 
    560  1.1  pgoyette 	aprint_normal("%s, %s, ",
    561  1.1  pgoyette 		(s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)?
    562  1.1  pgoyette 			" (registered)":"",
    563  1.1  pgoyette 		(s->sm_config < __arraycount(spdmem_parity_types))?
    564  1.1  pgoyette 			spdmem_parity_types[s->sm_config]:"invalid parity");
    565  1.1  pgoyette 
    566  1.1  pgoyette 	dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17);
    567  1.1  pgoyette 	dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip;
    568  1.1  pgoyette 
    569  1.1  pgoyette 	cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 +
    570  1.1  pgoyette 		  spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths];
    571  1.1  pgoyette 	bits = le16toh(s->sm_ddr.ddr_datawidth);
    572  1.1  pgoyette 	if (s->sm_config == 1 || s->sm_config == 2)
    573  1.1  pgoyette 		bits -= 8;
    574  1.3  pgoyette 	decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
    575  1.3  pgoyette 			  "PC", 0);
    576  1.1  pgoyette 
    577  1.1  pgoyette 	aprint_verbose_dev(self,
    578  1.1  pgoyette 	    "%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n",
    579  1.1  pgoyette 	    s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks,
    580  1.1  pgoyette 	    s->sm_ddr.ddr_banks_per_chip, cycle_time/1000,
    581  1.1  pgoyette 	    (cycle_time % 1000 + 50) / 100);
    582  1.1  pgoyette 
    583  1.1  pgoyette 	tAA  = 0;
    584  1.1  pgoyette 	for (i = 2; i < 8; i++)
    585  1.1  pgoyette 		if (s->sm_ddr.ddr_tCAS & (1 << i))
    586  1.1  pgoyette 			tAA = i;
    587  1.1  pgoyette 	tAA /= 2;
    588  1.1  pgoyette 
    589  1.1  pgoyette #define __DDR_ROUND(scale, field)	\
    590  1.1  pgoyette 		((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time)
    591  1.1  pgoyette 
    592  1.4  christos 	aprint_verbose_dev(self, LATENCY, tAA, __DDR_ROUND(250, ddr_tRCD),
    593  1.1  pgoyette 		__DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS));
    594  1.1  pgoyette 
    595  1.1  pgoyette #undef	__DDR_ROUND
    596  1.1  pgoyette 
    597  1.1  pgoyette 	decode_voltage_refresh(self, s);
    598  1.1  pgoyette }
    599  1.1  pgoyette 
    600  1.1  pgoyette static void
    601  1.1  pgoyette decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s) {
    602  1.1  pgoyette 	int dimm_size, cycle_time, bits, tAA, i;
    603  1.1  pgoyette 
    604  1.8     soren 	aprint_naive("\n");
    605  1.8     soren 	aprint_normal("\n");
    606  1.8     soren 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
    607  1.8     soren 
    608  1.1  pgoyette 	aprint_normal("%s, %s, ",
    609  1.1  pgoyette 		(s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)?
    610  1.1  pgoyette 			" (registered)":"",
    611  1.1  pgoyette 		(s->sm_config < __arraycount(spdmem_parity_types))?
    612  1.1  pgoyette 			spdmem_parity_types[s->sm_config]:"invalid parity");
    613  1.1  pgoyette 
    614  1.1  pgoyette 	dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17);
    615  1.1  pgoyette 	dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) *
    616  1.1  pgoyette 		     s->sm_ddr2.ddr2_banks_per_chip;
    617  1.1  pgoyette 
    618  1.1  pgoyette 	cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 +
    619  1.1  pgoyette 		 spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac];
    620  1.1  pgoyette 	bits = s->sm_ddr2.ddr2_datawidth;
    621  1.1  pgoyette 	if ((s->sm_config & 0x03) != 0)
    622  1.1  pgoyette 		bits -= 8;
    623  1.3  pgoyette 	decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
    624  1.3  pgoyette 			  "PC2", 0);
    625  1.1  pgoyette 
    626  1.1  pgoyette 	aprint_verbose_dev(self,
    627  1.1  pgoyette 	    "%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n",
    628  1.1  pgoyette 	    s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols,
    629  1.1  pgoyette 	    s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip,
    630  1.1  pgoyette 	    cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
    631  1.1  pgoyette 
    632  1.1  pgoyette 	tAA  = 0;
    633  1.1  pgoyette 	for (i = 2; i < 8; i++)
    634  1.1  pgoyette 		if (s->sm_ddr2.ddr2_tCAS & (1 << i))
    635  1.1  pgoyette 			tAA = i;
    636  1.1  pgoyette 
    637  1.1  pgoyette #define __DDR2_ROUND(scale, field)	\
    638  1.1  pgoyette 		((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time)
    639  1.1  pgoyette 
    640  1.4  christos 	aprint_verbose_dev(self, LATENCY, tAA, __DDR2_ROUND(250, ddr2_tRCD),
    641  1.1  pgoyette 		__DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS));
    642  1.1  pgoyette 
    643  1.1  pgoyette #undef	__DDR_ROUND
    644  1.1  pgoyette 
    645  1.1  pgoyette 	decode_voltage_refresh(self, s);
    646  1.1  pgoyette }
    647  1.1  pgoyette 
    648  1.1  pgoyette static void
    649  1.1  pgoyette decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s) {
    650  1.1  pgoyette 	int dimm_size, cycle_time, bits;
    651  1.1  pgoyette 
    652  1.8     soren 	aprint_naive("\n");
    653  1.8     soren 	aprint_normal(": %18s\n", s->sm_ddr3.ddr3_part);
    654  1.8     soren 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
    655  1.8     soren 
    656  1.1  pgoyette 	if (s->sm_ddr3.ddr3_mod_type ==
    657  1.1  pgoyette 		SPDMEM_DDR3_TYPE_MINI_RDIMM ||
    658  1.1  pgoyette 	    s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM)
    659  1.1  pgoyette 		aprint_normal(" (registered)");
    660  1.1  pgoyette 	aprint_normal(", %sECC, %stemp-sensor, ",
    661  1.1  pgoyette 		(s->sm_ddr3.ddr3_hasECC)?"":"no ",
    662  1.1  pgoyette 		(s->sm_ddr3.ddr3_has_therm_sensor)?"":"no ");
    663  1.1  pgoyette 
    664  1.1  pgoyette 	/*
    665  1.1  pgoyette 	 * DDR3 size specification is quite different from others
    666  1.1  pgoyette 	 *
    667  1.1  pgoyette 	 * Module capacity is defined as
    668  1.1  pgoyette 	 *	Chip_Capacity_in_bits / 8bits-per-byte *
    669  1.1  pgoyette 	 *	external_bus_width / internal_bus_width
    670  1.1  pgoyette 	 * We further divide by 2**20 to get our answer in MB
    671  1.1  pgoyette 	 */
    672  1.1  pgoyette 	dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 +
    673  1.1  pgoyette 		    (s->sm_ddr3.ddr3_datawidth + 3) -
    674  1.1  pgoyette 		    (s->sm_ddr3.ddr3_chipwidth + 2);
    675  1.1  pgoyette 	dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1);
    676  1.1  pgoyette 
    677  1.1  pgoyette 	cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend +
    678  1.1  pgoyette 			    (s->sm_ddr3.ddr3_mtb_divisor / 2)) /
    679  1.1  pgoyette 		     s->sm_ddr3.ddr3_mtb_divisor;
    680  1.1  pgoyette 	cycle_time *= s->sm_ddr3.ddr3_tCKmin;
    681  1.1  pgoyette 	bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3);
    682  1.3  pgoyette 	decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, FALSE,
    683  1.3  pgoyette 			  "PC3", 0);
    684  1.1  pgoyette 
    685  1.1  pgoyette 	aprint_verbose_dev(self,
    686  1.1  pgoyette 	    "%d rows, %d cols, %d log. banks, %d phys. banks, "
    687  1.1  pgoyette 	    "%d.%03dns cycle time\n",
    688  1.1  pgoyette 	    s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12,
    689  1.1  pgoyette 	    1 << (s->sm_ddr3.ddr3_logbanks + 3),
    690  1.1  pgoyette 	    s->sm_ddr3.ddr3_physbanks + 1,
    691  1.1  pgoyette 	    cycle_time/1000, cycle_time % 1000);
    692  1.1  pgoyette 
    693  1.1  pgoyette #define	__DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin)
    694  1.1  pgoyette 
    695  1.4  christos 	aprint_verbose_dev(self, LATENCY, __DDR3_CYCLES(ddr3_tAAmin),
    696  1.1  pgoyette 		__DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin),
    697  1.1  pgoyette 		(s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) /
    698  1.1  pgoyette 		    s->sm_ddr3.ddr3_tCKmin);
    699  1.1  pgoyette 
    700  1.1  pgoyette #undef	__DDR3_CYCLES
    701  1.1  pgoyette }
    702  1.1  pgoyette 
    703  1.1  pgoyette static void
    704  1.1  pgoyette decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
    705  1.1  pgoyette 	int dimm_size, cycle_time, bits;
    706  1.1  pgoyette 
    707  1.8     soren 	aprint_naive("\n");
    708  1.8     soren 	aprint_normal("\n");
    709  1.8     soren 	aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
    710  1.8     soren 
    711  1.1  pgoyette 	/*
    712  1.1  pgoyette 	 * FB-DIMM module size calculation is very much like DDR3
    713  1.1  pgoyette 	 */
    714  1.1  pgoyette 	dimm_size = s->sm_fbd.fbdimm_rows + 12 +
    715  1.1  pgoyette 		    s->sm_fbd.fbdimm_cols +  9 - 20 - 3;
    716  1.1  pgoyette 	dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2));
    717  1.1  pgoyette 
    718  1.1  pgoyette 	cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend +
    719  1.1  pgoyette 			    (s->sm_fbd.fbdimm_mtb_divisor / 2)) /
    720  1.1  pgoyette 		     s->sm_fbd.fbdimm_mtb_divisor;
    721  1.1  pgoyette 	bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2);
    722  1.3  pgoyette 	decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
    723  1.3  pgoyette 			  "PC2", 0);
    724  1.1  pgoyette 
    725  1.1  pgoyette 	aprint_verbose_dev(self,
    726  1.1  pgoyette 	    "%d rows, %d cols, %d banks, %d.%02dns cycle time\n",
    727  1.1  pgoyette 	    s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols,
    728  1.1  pgoyette 	    1 << (s->sm_fbd.fbdimm_banks + 2),
    729  1.1  pgoyette 	    cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
    730  1.1  pgoyette 
    731  1.1  pgoyette #define	__FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin)
    732  1.1  pgoyette 
    733  1.4  christos 	aprint_verbose_dev(self, LATENCY, __FBDIMM_CYCLES(fbdimm_tAAmin),
    734  1.1  pgoyette 		__FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin),
    735  1.1  pgoyette 		(s->sm_fbd.fbdimm_tRAS_msb * 256 +
    736  1.1  pgoyette 			s->sm_fbd.fbdimm_tRAS_lsb) /
    737  1.1  pgoyette 		    s->sm_fbd.fbdimm_tCKmin);
    738  1.1  pgoyette 
    739  1.1  pgoyette #undef	__FBDIMM_CYCLES
    740  1.1  pgoyette 
    741  1.1  pgoyette 	decode_voltage_refresh(self, s);
    742  1.1  pgoyette }
    743