spdmem.c revision 1.9 1 1.9 pooka /* $NetBSD: spdmem.c,v 1.9 2014/02/25 18:30:09 pooka Exp $ */
2 1.1 pgoyette
3 1.1 pgoyette /*
4 1.1 pgoyette * Copyright (c) 2007 Nicolas Joly
5 1.1 pgoyette * Copyright (c) 2007 Paul Goyette
6 1.1 pgoyette * Copyright (c) 2007 Tobias Nygren
7 1.1 pgoyette * All rights reserved.
8 1.1 pgoyette *
9 1.1 pgoyette * Redistribution and use in source and binary forms, with or without
10 1.1 pgoyette * modification, are permitted provided that the following conditions
11 1.1 pgoyette * are met:
12 1.1 pgoyette * 1. Redistributions of source code must retain the above copyright
13 1.1 pgoyette * notice, this list of conditions and the following disclaimer.
14 1.1 pgoyette * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 pgoyette * notice, this list of conditions and the following disclaimer in the
16 1.1 pgoyette * documentation and/or other materials provided with the distribution.
17 1.1 pgoyette * 3. The name of the author may not be used to endorse or promote products
18 1.1 pgoyette * derived from this software without specific prior written permission.
19 1.1 pgoyette *
20 1.1 pgoyette * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
21 1.1 pgoyette * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 pgoyette * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 pgoyette * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 pgoyette * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 pgoyette * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 pgoyette * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 pgoyette * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 pgoyette * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 pgoyette * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 pgoyette * POSSIBILITY OF SUCH DAMAGE.
31 1.1 pgoyette */
32 1.1 pgoyette
33 1.1 pgoyette /*
34 1.1 pgoyette * Serial Presence Detect (SPD) memory identification
35 1.1 pgoyette */
36 1.1 pgoyette
37 1.1 pgoyette #include <sys/cdefs.h>
38 1.9 pooka __KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.9 2014/02/25 18:30:09 pooka Exp $");
39 1.1 pgoyette
40 1.1 pgoyette #include <sys/param.h>
41 1.1 pgoyette #include <sys/device.h>
42 1.1 pgoyette #include <sys/endian.h>
43 1.1 pgoyette #include <sys/sysctl.h>
44 1.1 pgoyette #include <machine/bswap.h>
45 1.1 pgoyette
46 1.1 pgoyette #include <dev/i2c/i2cvar.h>
47 1.1 pgoyette #include <dev/ic/spdmemreg.h>
48 1.1 pgoyette #include <dev/ic/spdmemvar.h>
49 1.1 pgoyette
50 1.1 pgoyette SYSCTL_SETUP_PROTO(sysctl_spdmem_setup);
51 1.1 pgoyette
52 1.1 pgoyette /* Routines for decoding spd data */
53 1.1 pgoyette static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *);
54 1.1 pgoyette static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *);
55 1.1 pgoyette static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *,
56 1.1 pgoyette int);
57 1.1 pgoyette static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *);
58 1.1 pgoyette static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *);
59 1.1 pgoyette static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *);
60 1.1 pgoyette static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *);
61 1.1 pgoyette
62 1.3 pgoyette static void decode_size_speed(device_t, const struct sysctlnode *,
63 1.3 pgoyette int, int, int, int, bool, const char *, int);
64 1.1 pgoyette static void decode_voltage_refresh(device_t, struct spdmem *);
65 1.1 pgoyette
66 1.1 pgoyette #define IS_RAMBUS_TYPE (s->sm_len < 4)
67 1.1 pgoyette
68 1.1 pgoyette static const char* spdmem_basic_types[] = {
69 1.1 pgoyette "unknown",
70 1.1 pgoyette "FPM",
71 1.1 pgoyette "EDO",
72 1.1 pgoyette "Pipelined Nibble",
73 1.1 pgoyette "SDRAM",
74 1.1 pgoyette "ROM",
75 1.1 pgoyette "DDR SGRAM",
76 1.1 pgoyette "DDR SDRAM",
77 1.1 pgoyette "DDR2 SDRAM",
78 1.1 pgoyette "DDR2 SDRAM FB",
79 1.1 pgoyette "DDR2 SDRAM FB Probe",
80 1.1 pgoyette "DDR3 SDRAM"
81 1.1 pgoyette };
82 1.1 pgoyette
83 1.1 pgoyette static const char* spdmem_superset_types[] = {
84 1.1 pgoyette "unknown",
85 1.1 pgoyette "ESDRAM",
86 1.1 pgoyette "DDR ESDRAM",
87 1.1 pgoyette "PEM EDO",
88 1.1 pgoyette "PEM SDRAM"
89 1.1 pgoyette };
90 1.1 pgoyette
91 1.1 pgoyette static const char* spdmem_voltage_types[] = {
92 1.1 pgoyette "TTL (5V tolerant)",
93 1.1 pgoyette "LvTTL (not 5V tolerant)",
94 1.1 pgoyette "HSTL 1.5V",
95 1.1 pgoyette "SSTL 3.3V",
96 1.1 pgoyette "SSTL 2.5V",
97 1.1 pgoyette "SSTL 1.8V"
98 1.1 pgoyette };
99 1.1 pgoyette
100 1.1 pgoyette static const char* spdmem_refresh_types[] = {
101 1.1 pgoyette "15.625us",
102 1.1 pgoyette "3.9us",
103 1.1 pgoyette "7.8us",
104 1.1 pgoyette "31.3us",
105 1.1 pgoyette "62.5us",
106 1.1 pgoyette "125us"
107 1.1 pgoyette };
108 1.1 pgoyette
109 1.1 pgoyette static const char* spdmem_parity_types[] = {
110 1.1 pgoyette "no parity or ECC",
111 1.1 pgoyette "data parity",
112 1.1 pgoyette "data ECC",
113 1.1 pgoyette "data parity and ECC",
114 1.1 pgoyette "cmd/addr parity",
115 1.1 pgoyette "cmd/addr/data parity",
116 1.1 pgoyette "cmd/addr parity, data ECC",
117 1.1 pgoyette "cmd/addr/data parity, data ECC"
118 1.1 pgoyette };
119 1.1 pgoyette
120 1.1 pgoyette /* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */
121 1.1 pgoyette static const uint16_t spdmem_cycle_frac[] = {
122 1.1 pgoyette 0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
123 1.1 pgoyette 250, 333, 667, 750, 999, 999
124 1.1 pgoyette };
125 1.1 pgoyette
126 1.1 pgoyette /* Format string for timing info */
127 1.5 wiz #define LATENCY "tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n"
128 1.1 pgoyette
129 1.1 pgoyette /* CRC functions used for certain memory types */
130 1.1 pgoyette
131 1.1 pgoyette static uint16_t spdcrc16 (struct spdmem_softc *sc, int count)
132 1.1 pgoyette {
133 1.1 pgoyette uint16_t crc;
134 1.1 pgoyette int i, j;
135 1.1 pgoyette uint8_t val;
136 1.1 pgoyette crc = 0;
137 1.1 pgoyette for (j = 0; j <= count; j++) {
138 1.1 pgoyette val = (sc->sc_read)(sc, j);
139 1.1 pgoyette crc = crc ^ val << 8;
140 1.1 pgoyette for (i = 0; i < 8; ++i)
141 1.1 pgoyette if (crc & 0x8000)
142 1.1 pgoyette crc = crc << 1 ^ 0x1021;
143 1.1 pgoyette else
144 1.1 pgoyette crc = crc << 1;
145 1.1 pgoyette }
146 1.1 pgoyette return (crc & 0xFFFF);
147 1.1 pgoyette }
148 1.1 pgoyette
149 1.1 pgoyette int
150 1.1 pgoyette spdmem_common_probe(struct spdmem_softc *sc)
151 1.1 pgoyette {
152 1.1 pgoyette int cksum = 0;
153 1.1 pgoyette uint8_t i, val, spd_type;
154 1.1 pgoyette int spd_len, spd_crc_cover;
155 1.1 pgoyette uint16_t crc_calc, crc_spd;
156 1.1 pgoyette
157 1.1 pgoyette spd_type = (sc->sc_read)(sc, 2);
158 1.1 pgoyette
159 1.1 pgoyette /* For older memory types, validate the checksum over 1st 63 bytes */
160 1.1 pgoyette if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
161 1.1 pgoyette for (i = 0; i < 63; i++)
162 1.1 pgoyette cksum += (sc->sc_read)(sc, i);
163 1.1 pgoyette
164 1.1 pgoyette val = (sc->sc_read)(sc, 63);
165 1.1 pgoyette
166 1.1 pgoyette if (cksum == 0 || (cksum & 0xff) != val) {
167 1.1 pgoyette aprint_debug("spd checksum failed, calc = 0x%02x, "
168 1.1 pgoyette "spd = 0x%02x\n", cksum, val);
169 1.1 pgoyette return 0;
170 1.1 pgoyette } else
171 1.1 pgoyette return 1;
172 1.1 pgoyette }
173 1.1 pgoyette
174 1.1 pgoyette /* For DDR3 and FBDIMM, verify the CRC */
175 1.1 pgoyette else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
176 1.1 pgoyette spd_len = (sc->sc_read)(sc, 0);
177 1.2 pgoyette if (spd_len & SPDMEM_SPDCRC_116)
178 1.1 pgoyette spd_crc_cover = 116;
179 1.1 pgoyette else
180 1.1 pgoyette spd_crc_cover = 125;
181 1.1 pgoyette switch (spd_len & SPDMEM_SPDLEN_MASK) {
182 1.1 pgoyette case SPDMEM_SPDLEN_128:
183 1.1 pgoyette spd_len = 128;
184 1.1 pgoyette break;
185 1.1 pgoyette case SPDMEM_SPDLEN_176:
186 1.1 pgoyette spd_len = 176;
187 1.1 pgoyette break;
188 1.1 pgoyette case SPDMEM_SPDLEN_256:
189 1.1 pgoyette spd_len = 256;
190 1.1 pgoyette break;
191 1.1 pgoyette default:
192 1.1 pgoyette return 0;
193 1.1 pgoyette }
194 1.1 pgoyette if (spd_crc_cover > spd_len)
195 1.1 pgoyette return 0;
196 1.1 pgoyette crc_calc = spdcrc16(sc, spd_crc_cover);
197 1.1 pgoyette crc_spd = (sc->sc_read)(sc, 127) << 8;
198 1.1 pgoyette crc_spd |= (sc->sc_read)(sc, 126);
199 1.1 pgoyette if (crc_calc != crc_spd) {
200 1.1 pgoyette aprint_debug("crc16 failed, covers %d bytes, "
201 1.1 pgoyette "calc = 0x%04x, spd = 0x%04x\n",
202 1.1 pgoyette spd_crc_cover, crc_calc, crc_spd);
203 1.1 pgoyette return 0;
204 1.1 pgoyette }
205 1.1 pgoyette return 1;
206 1.1 pgoyette }
207 1.1 pgoyette
208 1.1 pgoyette /* For unrecognized memory types, don't match at all */
209 1.1 pgoyette return 0;
210 1.1 pgoyette }
211 1.1 pgoyette
212 1.1 pgoyette void
213 1.1 pgoyette spdmem_common_attach(struct spdmem_softc *sc, device_t self)
214 1.1 pgoyette {
215 1.1 pgoyette struct spdmem *s = &(sc->sc_spd_data);
216 1.1 pgoyette const char *type;
217 1.1 pgoyette const char *rambus_rev = "Reserved";
218 1.1 pgoyette int dimm_size;
219 1.3 pgoyette unsigned int i, spd_len, spd_size;
220 1.1 pgoyette const struct sysctlnode *node = NULL;
221 1.1 pgoyette
222 1.1 pgoyette /*
223 1.1 pgoyette * FBDIMM and DDR3 (and probably all newer) have a different
224 1.1 pgoyette * encoding of the SPD EEPROM used/total sizes
225 1.1 pgoyette */
226 1.1 pgoyette s->sm_len = (sc->sc_read)(sc, 0);
227 1.1 pgoyette s->sm_size = (sc->sc_read)(sc, 1);
228 1.1 pgoyette s->sm_type = (sc->sc_read)(sc, 2);
229 1.1 pgoyette
230 1.1 pgoyette if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) {
231 1.1 pgoyette spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK);
232 1.1 pgoyette switch (s->sm_len & SPDMEM_SPDLEN_MASK) {
233 1.1 pgoyette case SPDMEM_SPDLEN_128:
234 1.1 pgoyette spd_len = 128;
235 1.1 pgoyette break;
236 1.1 pgoyette case SPDMEM_SPDLEN_176:
237 1.1 pgoyette spd_len = 176;
238 1.1 pgoyette break;
239 1.1 pgoyette case SPDMEM_SPDLEN_256:
240 1.1 pgoyette spd_len = 256;
241 1.1 pgoyette break;
242 1.1 pgoyette default:
243 1.1 pgoyette spd_len = 64;
244 1.1 pgoyette break;
245 1.1 pgoyette }
246 1.1 pgoyette } else {
247 1.1 pgoyette spd_size = 1 << s->sm_size;
248 1.1 pgoyette spd_len = s->sm_len;
249 1.1 pgoyette if (spd_len < 64)
250 1.1 pgoyette spd_len = 64;
251 1.1 pgoyette }
252 1.1 pgoyette if (spd_len > spd_size)
253 1.1 pgoyette spd_len = spd_size;
254 1.1 pgoyette if (spd_len > sizeof(struct spdmem))
255 1.1 pgoyette spd_len = sizeof(struct spdmem);
256 1.1 pgoyette for (i = 3; i < spd_len; i++)
257 1.1 pgoyette ((uint8_t *)s)[i] = (sc->sc_read)(sc, i);
258 1.1 pgoyette
259 1.1 pgoyette /*
260 1.1 pgoyette * Setup our sysctl subtree, hw.spdmemN
261 1.1 pgoyette */
262 1.3 pgoyette sc->sc_sysctl_log = NULL;
263 1.9 pooka sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &node,
264 1.9 pooka 0, CTLTYPE_NODE,
265 1.9 pooka device_xname(self), NULL, NULL, 0, NULL, 0,
266 1.9 pooka CTL_HW, CTL_CREATE, CTL_EOL);
267 1.1 pgoyette if (node != NULL && spd_len != 0)
268 1.3 pgoyette sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
269 1.1 pgoyette 0,
270 1.1 pgoyette CTLTYPE_STRUCT, "spd_data",
271 1.1 pgoyette SYSCTL_DESCR("raw spd data"), NULL,
272 1.1 pgoyette 0, s, spd_len,
273 1.1 pgoyette CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
274 1.1 pgoyette
275 1.1 pgoyette /*
276 1.1 pgoyette * Decode and print key SPD contents
277 1.1 pgoyette */
278 1.1 pgoyette if (IS_RAMBUS_TYPE) {
279 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS)
280 1.1 pgoyette type = "Rambus";
281 1.1 pgoyette else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS)
282 1.1 pgoyette type = "Direct Rambus";
283 1.1 pgoyette else
284 1.1 pgoyette type = "Rambus (unknown)";
285 1.1 pgoyette
286 1.1 pgoyette switch (s->sm_len) {
287 1.1 pgoyette case 0:
288 1.1 pgoyette rambus_rev = "Invalid";
289 1.1 pgoyette break;
290 1.1 pgoyette case 1:
291 1.1 pgoyette rambus_rev = "0.7";
292 1.1 pgoyette break;
293 1.1 pgoyette case 2:
294 1.1 pgoyette rambus_rev = "1.0";
295 1.1 pgoyette break;
296 1.1 pgoyette default:
297 1.1 pgoyette rambus_rev = "Reserved";
298 1.1 pgoyette break;
299 1.1 pgoyette }
300 1.1 pgoyette } else {
301 1.1 pgoyette if (s->sm_type < __arraycount(spdmem_basic_types))
302 1.1 pgoyette type = spdmem_basic_types[s->sm_type];
303 1.1 pgoyette else
304 1.1 pgoyette type = "unknown memory type";
305 1.1 pgoyette
306 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_EDO &&
307 1.1 pgoyette s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM)
308 1.1 pgoyette type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM];
309 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
310 1.1 pgoyette s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM)
311 1.1 pgoyette type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM];
312 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM &&
313 1.1 pgoyette s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM)
314 1.1 pgoyette type =
315 1.1 pgoyette spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
316 1.1 pgoyette if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
317 1.1 pgoyette s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) {
318 1.1 pgoyette type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
319 1.1 pgoyette }
320 1.1 pgoyette }
321 1.1 pgoyette
322 1.1 pgoyette strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN);
323 1.1 pgoyette if (node != NULL)
324 1.3 pgoyette sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
325 1.1 pgoyette 0,
326 1.1 pgoyette CTLTYPE_STRING, "mem_type",
327 1.1 pgoyette SYSCTL_DESCR("memory module type"), NULL,
328 1.1 pgoyette 0, sc->sc_type, 0,
329 1.1 pgoyette CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
330 1.1 pgoyette
331 1.1 pgoyette if (IS_RAMBUS_TYPE) {
332 1.8 soren aprint_naive("\n");
333 1.8 soren aprint_normal("\n");
334 1.8 soren aprint_normal_dev(self, "%s, SPD Revision %s", type, rambus_rev);
335 1.1 pgoyette dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13);
336 1.1 pgoyette if (dimm_size >= 1024)
337 1.1 pgoyette aprint_normal(", %dGB\n", dimm_size / 1024);
338 1.1 pgoyette else
339 1.1 pgoyette aprint_normal(", %dMB\n", dimm_size);
340 1.1 pgoyette
341 1.1 pgoyette /* No further decode for RAMBUS memory */
342 1.1 pgoyette return;
343 1.1 pgoyette }
344 1.1 pgoyette switch (s->sm_type) {
345 1.1 pgoyette case SPDMEM_MEMTYPE_EDO:
346 1.1 pgoyette case SPDMEM_MEMTYPE_FPM:
347 1.1 pgoyette decode_edofpm(node, self, s);
348 1.1 pgoyette break;
349 1.1 pgoyette case SPDMEM_MEMTYPE_ROM:
350 1.1 pgoyette decode_rom(node, self, s);
351 1.1 pgoyette break;
352 1.1 pgoyette case SPDMEM_MEMTYPE_SDRAM:
353 1.1 pgoyette decode_sdram(node, self, s, spd_len);
354 1.1 pgoyette break;
355 1.1 pgoyette case SPDMEM_MEMTYPE_DDRSDRAM:
356 1.1 pgoyette decode_ddr(node, self, s);
357 1.1 pgoyette break;
358 1.1 pgoyette case SPDMEM_MEMTYPE_DDR2SDRAM:
359 1.1 pgoyette decode_ddr2(node, self, s);
360 1.1 pgoyette break;
361 1.1 pgoyette case SPDMEM_MEMTYPE_DDR3SDRAM:
362 1.1 pgoyette decode_ddr3(node, self, s);
363 1.1 pgoyette break;
364 1.1 pgoyette case SPDMEM_MEMTYPE_FBDIMM:
365 1.1 pgoyette case SPDMEM_MEMTYPE_FBDIMM_PROBE:
366 1.1 pgoyette decode_fbdimm(node, self, s);
367 1.1 pgoyette break;
368 1.1 pgoyette }
369 1.8 soren
370 1.8 soren /* Dump SPD */
371 1.8 soren for (i = 0; i < spd_len; i += 16) {
372 1.8 soren unsigned int j, k;
373 1.8 soren aprint_debug_dev(self, "0x%02x:", i);
374 1.8 soren k = (spd_len > (i + 16)) ? i + 16 : spd_len;
375 1.8 soren for (j = i; j < k; j++)
376 1.8 soren aprint_debug(" %02x", ((uint8_t *)s)[j]);
377 1.8 soren aprint_debug("\n");
378 1.8 soren }
379 1.1 pgoyette }
380 1.1 pgoyette
381 1.3 pgoyette int
382 1.3 pgoyette spdmem_common_detach(struct spdmem_softc *sc, device_t self)
383 1.3 pgoyette {
384 1.3 pgoyette sysctl_teardown(&sc->sc_sysctl_log);
385 1.3 pgoyette
386 1.3 pgoyette return 0;
387 1.3 pgoyette }
388 1.3 pgoyette
389 1.1 pgoyette static void
390 1.3 pgoyette decode_size_speed(device_t self, const struct sysctlnode *node,
391 1.3 pgoyette int dimm_size, int cycle_time, int d_clk, int bits,
392 1.3 pgoyette bool round, const char *ddr_type_string, int speed)
393 1.1 pgoyette {
394 1.1 pgoyette int p_clk;
395 1.7 chs struct spdmem_softc *sc = device_private(self);
396 1.1 pgoyette
397 1.1 pgoyette if (dimm_size < 1024)
398 1.1 pgoyette aprint_normal("%dMB", dimm_size);
399 1.1 pgoyette else
400 1.1 pgoyette aprint_normal("%dGB", dimm_size / 1024);
401 1.1 pgoyette if (node != NULL)
402 1.3 pgoyette sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
403 1.1 pgoyette CTLFLAG_IMMEDIATE,
404 1.1 pgoyette CTLTYPE_INT, "size",
405 1.1 pgoyette SYSCTL_DESCR("module size in MB"), NULL,
406 1.1 pgoyette dimm_size, NULL, 0,
407 1.1 pgoyette CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
408 1.1 pgoyette
409 1.1 pgoyette if (cycle_time == 0) {
410 1.1 pgoyette aprint_normal("\n");
411 1.1 pgoyette return;
412 1.1 pgoyette }
413 1.1 pgoyette
414 1.1 pgoyette /*
415 1.1 pgoyette * Calculate p_clk first, since for DDR3 we need maximum significance.
416 1.1 pgoyette * DDR3 rating is not rounded to a multiple of 100. This results in
417 1.1 pgoyette * cycle_time of 1.5ns displayed as PC3-10666.
418 1.1 pgoyette *
419 1.1 pgoyette * For SDRAM, the speed is provided by the caller so we use it.
420 1.1 pgoyette */
421 1.1 pgoyette d_clk *= 1000 * 1000;
422 1.1 pgoyette if (speed)
423 1.1 pgoyette p_clk = speed;
424 1.1 pgoyette else
425 1.1 pgoyette p_clk = (d_clk * bits) / 8 / cycle_time;
426 1.1 pgoyette d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
427 1.1 pgoyette if (round) {
428 1.1 pgoyette if ((p_clk % 100) >= 50)
429 1.1 pgoyette p_clk += 50;
430 1.1 pgoyette p_clk -= p_clk % 100;
431 1.1 pgoyette }
432 1.1 pgoyette aprint_normal(", %dMHz (%s-%d)\n",
433 1.1 pgoyette d_clk, ddr_type_string, p_clk);
434 1.1 pgoyette if (node != NULL)
435 1.3 pgoyette sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
436 1.1 pgoyette CTLFLAG_IMMEDIATE,
437 1.1 pgoyette CTLTYPE_INT, "speed",
438 1.1 pgoyette SYSCTL_DESCR("memory speed in MHz"),
439 1.1 pgoyette NULL, d_clk, NULL, 0,
440 1.1 pgoyette CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
441 1.1 pgoyette }
442 1.1 pgoyette
443 1.1 pgoyette static void
444 1.1 pgoyette decode_voltage_refresh(device_t self, struct spdmem *s)
445 1.1 pgoyette {
446 1.1 pgoyette const char *voltage, *refresh;
447 1.1 pgoyette
448 1.1 pgoyette if (s->sm_voltage < __arraycount(spdmem_voltage_types))
449 1.1 pgoyette voltage = spdmem_voltage_types[s->sm_voltage];
450 1.1 pgoyette else
451 1.1 pgoyette voltage = "unknown";
452 1.1 pgoyette
453 1.1 pgoyette if (s->sm_refresh < __arraycount(spdmem_refresh_types))
454 1.1 pgoyette refresh = spdmem_refresh_types[s->sm_refresh];
455 1.1 pgoyette else
456 1.1 pgoyette refresh = "unknown";
457 1.1 pgoyette
458 1.1 pgoyette aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n",
459 1.1 pgoyette voltage, refresh,
460 1.1 pgoyette s->sm_selfrefresh?" (self-refreshing)":"");
461 1.1 pgoyette }
462 1.1 pgoyette
463 1.1 pgoyette static void
464 1.1 pgoyette decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
465 1.8 soren aprint_naive("\n");
466 1.8 soren aprint_normal("\n");
467 1.8 soren aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
468 1.8 soren
469 1.1 pgoyette aprint_normal("\n");
470 1.1 pgoyette aprint_verbose_dev(self,
471 1.1 pgoyette "%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n",
472 1.1 pgoyette s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks,
473 1.1 pgoyette s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC);
474 1.1 pgoyette }
475 1.1 pgoyette
476 1.1 pgoyette static void
477 1.1 pgoyette decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s) {
478 1.8 soren aprint_naive("\n");
479 1.8 soren aprint_normal("\n");
480 1.8 soren aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
481 1.8 soren
482 1.1 pgoyette aprint_normal("\n");
483 1.1 pgoyette aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n",
484 1.1 pgoyette s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks);
485 1.1 pgoyette }
486 1.1 pgoyette
487 1.1 pgoyette static void
488 1.1 pgoyette decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s,
489 1.1 pgoyette int spd_len) {
490 1.1 pgoyette int dimm_size, cycle_time, bits, tAA, i, speed, freq;
491 1.1 pgoyette
492 1.8 soren aprint_naive("\n");
493 1.8 soren aprint_normal("\n");
494 1.8 soren aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
495 1.8 soren
496 1.1 pgoyette aprint_normal("%s, %s, ",
497 1.1 pgoyette (s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)?
498 1.1 pgoyette " (registered)":"",
499 1.1 pgoyette (s->sm_config < __arraycount(spdmem_parity_types))?
500 1.1 pgoyette spdmem_parity_types[s->sm_config]:"invalid parity");
501 1.1 pgoyette
502 1.1 pgoyette dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17);
503 1.1 pgoyette dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip;
504 1.1 pgoyette
505 1.1 pgoyette cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 +
506 1.1 pgoyette s->sm_sdr.sdr_cycle_tenths * 100;
507 1.1 pgoyette bits = le16toh(s->sm_sdr.sdr_datawidth);
508 1.1 pgoyette if (s->sm_config == 1 || s->sm_config == 2)
509 1.1 pgoyette bits -= 8;
510 1.1 pgoyette
511 1.1 pgoyette /* Calculate speed here - from OpenBSD */
512 1.1 pgoyette if (spd_len >= 128)
513 1.1 pgoyette freq = ((uint8_t *)s)[126];
514 1.1 pgoyette else
515 1.1 pgoyette freq = 0;
516 1.1 pgoyette switch (freq) {
517 1.1 pgoyette /*
518 1.1 pgoyette * Must check cycle time since some PC-133 DIMMs
519 1.1 pgoyette * actually report PC-100
520 1.1 pgoyette */
521 1.1 pgoyette case 100:
522 1.1 pgoyette case 133:
523 1.1 pgoyette if (cycle_time < 8000)
524 1.1 pgoyette speed = 133;
525 1.1 pgoyette else
526 1.1 pgoyette speed = 100;
527 1.1 pgoyette break;
528 1.1 pgoyette case 0x66: /* Legacy DIMMs use _hex_ 66! */
529 1.1 pgoyette default:
530 1.1 pgoyette speed = 66;
531 1.1 pgoyette }
532 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 1, bits, FALSE,
533 1.3 pgoyette "PC", speed);
534 1.1 pgoyette
535 1.1 pgoyette aprint_verbose_dev(self,
536 1.1 pgoyette "%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n",
537 1.1 pgoyette s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks,
538 1.1 pgoyette s->sm_sdr.sdr_banks_per_chip, cycle_time/1000,
539 1.1 pgoyette (cycle_time % 1000) / 100);
540 1.1 pgoyette
541 1.1 pgoyette tAA = 0;
542 1.1 pgoyette for (i = 0; i < 8; i++)
543 1.1 pgoyette if (s->sm_sdr.sdr_tCAS & (1 << i))
544 1.1 pgoyette tAA = i;
545 1.1 pgoyette tAA++;
546 1.4 christos aprint_verbose_dev(self, LATENCY, tAA, s->sm_sdr.sdr_tRCD,
547 1.1 pgoyette s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS);
548 1.1 pgoyette
549 1.1 pgoyette decode_voltage_refresh(self, s);
550 1.1 pgoyette }
551 1.1 pgoyette
552 1.1 pgoyette static void
553 1.1 pgoyette decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s) {
554 1.1 pgoyette int dimm_size, cycle_time, bits, tAA, i;
555 1.1 pgoyette
556 1.8 soren aprint_naive("\n");
557 1.8 soren aprint_normal("\n");
558 1.8 soren aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
559 1.8 soren
560 1.1 pgoyette aprint_normal("%s, %s, ",
561 1.1 pgoyette (s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)?
562 1.1 pgoyette " (registered)":"",
563 1.1 pgoyette (s->sm_config < __arraycount(spdmem_parity_types))?
564 1.1 pgoyette spdmem_parity_types[s->sm_config]:"invalid parity");
565 1.1 pgoyette
566 1.1 pgoyette dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17);
567 1.1 pgoyette dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip;
568 1.1 pgoyette
569 1.1 pgoyette cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 +
570 1.1 pgoyette spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths];
571 1.1 pgoyette bits = le16toh(s->sm_ddr.ddr_datawidth);
572 1.1 pgoyette if (s->sm_config == 1 || s->sm_config == 2)
573 1.1 pgoyette bits -= 8;
574 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
575 1.3 pgoyette "PC", 0);
576 1.1 pgoyette
577 1.1 pgoyette aprint_verbose_dev(self,
578 1.1 pgoyette "%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n",
579 1.1 pgoyette s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks,
580 1.1 pgoyette s->sm_ddr.ddr_banks_per_chip, cycle_time/1000,
581 1.1 pgoyette (cycle_time % 1000 + 50) / 100);
582 1.1 pgoyette
583 1.1 pgoyette tAA = 0;
584 1.1 pgoyette for (i = 2; i < 8; i++)
585 1.1 pgoyette if (s->sm_ddr.ddr_tCAS & (1 << i))
586 1.1 pgoyette tAA = i;
587 1.1 pgoyette tAA /= 2;
588 1.1 pgoyette
589 1.1 pgoyette #define __DDR_ROUND(scale, field) \
590 1.1 pgoyette ((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time)
591 1.1 pgoyette
592 1.4 christos aprint_verbose_dev(self, LATENCY, tAA, __DDR_ROUND(250, ddr_tRCD),
593 1.1 pgoyette __DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS));
594 1.1 pgoyette
595 1.1 pgoyette #undef __DDR_ROUND
596 1.1 pgoyette
597 1.1 pgoyette decode_voltage_refresh(self, s);
598 1.1 pgoyette }
599 1.1 pgoyette
600 1.1 pgoyette static void
601 1.1 pgoyette decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s) {
602 1.1 pgoyette int dimm_size, cycle_time, bits, tAA, i;
603 1.1 pgoyette
604 1.8 soren aprint_naive("\n");
605 1.8 soren aprint_normal("\n");
606 1.8 soren aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
607 1.8 soren
608 1.1 pgoyette aprint_normal("%s, %s, ",
609 1.1 pgoyette (s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)?
610 1.1 pgoyette " (registered)":"",
611 1.1 pgoyette (s->sm_config < __arraycount(spdmem_parity_types))?
612 1.1 pgoyette spdmem_parity_types[s->sm_config]:"invalid parity");
613 1.1 pgoyette
614 1.1 pgoyette dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17);
615 1.1 pgoyette dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) *
616 1.1 pgoyette s->sm_ddr2.ddr2_banks_per_chip;
617 1.1 pgoyette
618 1.1 pgoyette cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 +
619 1.1 pgoyette spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac];
620 1.1 pgoyette bits = s->sm_ddr2.ddr2_datawidth;
621 1.1 pgoyette if ((s->sm_config & 0x03) != 0)
622 1.1 pgoyette bits -= 8;
623 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
624 1.3 pgoyette "PC2", 0);
625 1.1 pgoyette
626 1.1 pgoyette aprint_verbose_dev(self,
627 1.1 pgoyette "%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n",
628 1.1 pgoyette s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols,
629 1.1 pgoyette s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip,
630 1.1 pgoyette cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
631 1.1 pgoyette
632 1.1 pgoyette tAA = 0;
633 1.1 pgoyette for (i = 2; i < 8; i++)
634 1.1 pgoyette if (s->sm_ddr2.ddr2_tCAS & (1 << i))
635 1.1 pgoyette tAA = i;
636 1.1 pgoyette
637 1.1 pgoyette #define __DDR2_ROUND(scale, field) \
638 1.1 pgoyette ((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time)
639 1.1 pgoyette
640 1.4 christos aprint_verbose_dev(self, LATENCY, tAA, __DDR2_ROUND(250, ddr2_tRCD),
641 1.1 pgoyette __DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS));
642 1.1 pgoyette
643 1.1 pgoyette #undef __DDR_ROUND
644 1.1 pgoyette
645 1.1 pgoyette decode_voltage_refresh(self, s);
646 1.1 pgoyette }
647 1.1 pgoyette
648 1.1 pgoyette static void
649 1.1 pgoyette decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s) {
650 1.1 pgoyette int dimm_size, cycle_time, bits;
651 1.1 pgoyette
652 1.8 soren aprint_naive("\n");
653 1.8 soren aprint_normal(": %18s\n", s->sm_ddr3.ddr3_part);
654 1.8 soren aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
655 1.8 soren
656 1.1 pgoyette if (s->sm_ddr3.ddr3_mod_type ==
657 1.1 pgoyette SPDMEM_DDR3_TYPE_MINI_RDIMM ||
658 1.1 pgoyette s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM)
659 1.1 pgoyette aprint_normal(" (registered)");
660 1.1 pgoyette aprint_normal(", %sECC, %stemp-sensor, ",
661 1.1 pgoyette (s->sm_ddr3.ddr3_hasECC)?"":"no ",
662 1.1 pgoyette (s->sm_ddr3.ddr3_has_therm_sensor)?"":"no ");
663 1.1 pgoyette
664 1.1 pgoyette /*
665 1.1 pgoyette * DDR3 size specification is quite different from others
666 1.1 pgoyette *
667 1.1 pgoyette * Module capacity is defined as
668 1.1 pgoyette * Chip_Capacity_in_bits / 8bits-per-byte *
669 1.1 pgoyette * external_bus_width / internal_bus_width
670 1.1 pgoyette * We further divide by 2**20 to get our answer in MB
671 1.1 pgoyette */
672 1.1 pgoyette dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 +
673 1.1 pgoyette (s->sm_ddr3.ddr3_datawidth + 3) -
674 1.1 pgoyette (s->sm_ddr3.ddr3_chipwidth + 2);
675 1.1 pgoyette dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1);
676 1.1 pgoyette
677 1.1 pgoyette cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend +
678 1.1 pgoyette (s->sm_ddr3.ddr3_mtb_divisor / 2)) /
679 1.1 pgoyette s->sm_ddr3.ddr3_mtb_divisor;
680 1.1 pgoyette cycle_time *= s->sm_ddr3.ddr3_tCKmin;
681 1.1 pgoyette bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3);
682 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, FALSE,
683 1.3 pgoyette "PC3", 0);
684 1.1 pgoyette
685 1.1 pgoyette aprint_verbose_dev(self,
686 1.1 pgoyette "%d rows, %d cols, %d log. banks, %d phys. banks, "
687 1.1 pgoyette "%d.%03dns cycle time\n",
688 1.1 pgoyette s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12,
689 1.1 pgoyette 1 << (s->sm_ddr3.ddr3_logbanks + 3),
690 1.1 pgoyette s->sm_ddr3.ddr3_physbanks + 1,
691 1.1 pgoyette cycle_time/1000, cycle_time % 1000);
692 1.1 pgoyette
693 1.1 pgoyette #define __DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin)
694 1.1 pgoyette
695 1.4 christos aprint_verbose_dev(self, LATENCY, __DDR3_CYCLES(ddr3_tAAmin),
696 1.1 pgoyette __DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin),
697 1.1 pgoyette (s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) /
698 1.1 pgoyette s->sm_ddr3.ddr3_tCKmin);
699 1.1 pgoyette
700 1.1 pgoyette #undef __DDR3_CYCLES
701 1.1 pgoyette }
702 1.1 pgoyette
703 1.1 pgoyette static void
704 1.1 pgoyette decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
705 1.1 pgoyette int dimm_size, cycle_time, bits;
706 1.1 pgoyette
707 1.8 soren aprint_naive("\n");
708 1.8 soren aprint_normal("\n");
709 1.8 soren aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
710 1.8 soren
711 1.1 pgoyette /*
712 1.1 pgoyette * FB-DIMM module size calculation is very much like DDR3
713 1.1 pgoyette */
714 1.1 pgoyette dimm_size = s->sm_fbd.fbdimm_rows + 12 +
715 1.1 pgoyette s->sm_fbd.fbdimm_cols + 9 - 20 - 3;
716 1.1 pgoyette dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2));
717 1.1 pgoyette
718 1.1 pgoyette cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend +
719 1.1 pgoyette (s->sm_fbd.fbdimm_mtb_divisor / 2)) /
720 1.1 pgoyette s->sm_fbd.fbdimm_mtb_divisor;
721 1.1 pgoyette bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2);
722 1.3 pgoyette decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
723 1.3 pgoyette "PC2", 0);
724 1.1 pgoyette
725 1.1 pgoyette aprint_verbose_dev(self,
726 1.1 pgoyette "%d rows, %d cols, %d banks, %d.%02dns cycle time\n",
727 1.1 pgoyette s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols,
728 1.1 pgoyette 1 << (s->sm_fbd.fbdimm_banks + 2),
729 1.1 pgoyette cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
730 1.1 pgoyette
731 1.1 pgoyette #define __FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin)
732 1.1 pgoyette
733 1.4 christos aprint_verbose_dev(self, LATENCY, __FBDIMM_CYCLES(fbdimm_tAAmin),
734 1.1 pgoyette __FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin),
735 1.1 pgoyette (s->sm_fbd.fbdimm_tRAS_msb * 256 +
736 1.1 pgoyette s->sm_fbd.fbdimm_tRAS_lsb) /
737 1.1 pgoyette s->sm_fbd.fbdimm_tCKmin);
738 1.1 pgoyette
739 1.1 pgoyette #undef __FBDIMM_CYCLES
740 1.1 pgoyette
741 1.1 pgoyette decode_voltage_refresh(self, s);
742 1.1 pgoyette }
743