spdmem.c revision 1.2 1 /* $NetBSD: spdmem.c,v 1.2 2010/06/29 04:42:30 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 2007 Nicolas Joly
5 * Copyright (c) 2007 Paul Goyette
6 * Copyright (c) 2007 Tobias Nygren
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Serial Presence Detect (SPD) memory identification
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.2 2010/06/29 04:42:30 pgoyette Exp $");
39
40 #include <sys/param.h>
41 #include <sys/device.h>
42 #include <sys/endian.h>
43 #include <sys/sysctl.h>
44 #include <machine/bswap.h>
45
46 #include <dev/i2c/i2cvar.h>
47 #include <dev/ic/spdmemreg.h>
48 #include <dev/ic/spdmemvar.h>
49
50 SYSCTL_SETUP_PROTO(sysctl_spdmem_setup);
51
52 /* Routines for decoding spd data */
53 static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *);
54 static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *);
55 static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *,
56 int);
57 static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *);
58 static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *);
59 static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *);
60 static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *);
61
62 static void decode_size_speed(const struct sysctlnode *, int, int, int, int,
63 bool, const char *, int);
64 static void decode_voltage_refresh(device_t, struct spdmem *);
65
66 #define IS_RAMBUS_TYPE (s->sm_len < 4)
67
68 static const char* spdmem_basic_types[] = {
69 "unknown",
70 "FPM",
71 "EDO",
72 "Pipelined Nibble",
73 "SDRAM",
74 "ROM",
75 "DDR SGRAM",
76 "DDR SDRAM",
77 "DDR2 SDRAM",
78 "DDR2 SDRAM FB",
79 "DDR2 SDRAM FB Probe",
80 "DDR3 SDRAM"
81 };
82
83 static const char* spdmem_superset_types[] = {
84 "unknown",
85 "ESDRAM",
86 "DDR ESDRAM",
87 "PEM EDO",
88 "PEM SDRAM"
89 };
90
91 static const char* spdmem_voltage_types[] = {
92 "TTL (5V tolerant)",
93 "LvTTL (not 5V tolerant)",
94 "HSTL 1.5V",
95 "SSTL 3.3V",
96 "SSTL 2.5V",
97 "SSTL 1.8V"
98 };
99
100 static const char* spdmem_refresh_types[] = {
101 "15.625us",
102 "3.9us",
103 "7.8us",
104 "31.3us",
105 "62.5us",
106 "125us"
107 };
108
109 static const char* spdmem_parity_types[] = {
110 "no parity or ECC",
111 "data parity",
112 "data ECC",
113 "data parity and ECC",
114 "cmd/addr parity",
115 "cmd/addr/data parity",
116 "cmd/addr parity, data ECC",
117 "cmd/addr/data parity, data ECC"
118 };
119
120 /* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */
121 static const uint16_t spdmem_cycle_frac[] = {
122 0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
123 250, 333, 667, 750, 999, 999
124 };
125
126 /* Format string for timing info */
127 static const char* latency="tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n";
128
129 /* sysctl stuff */
130 static int hw_node = CTL_EOL;
131
132 /* CRC functions used for certain memory types */
133
134 static uint16_t spdcrc16 (struct spdmem_softc *sc, int count)
135 {
136 uint16_t crc;
137 int i, j;
138 uint8_t val;
139 crc = 0;
140 for (j = 0; j <= count; j++) {
141 val = (sc->sc_read)(sc, j);
142 crc = crc ^ val << 8;
143 for (i = 0; i < 8; ++i)
144 if (crc & 0x8000)
145 crc = crc << 1 ^ 0x1021;
146 else
147 crc = crc << 1;
148 }
149 return (crc & 0xFFFF);
150 }
151
152 int
153 spdmem_common_probe(struct spdmem_softc *sc)
154 {
155 int cksum = 0;
156 uint8_t i, val, spd_type;
157 int spd_len, spd_crc_cover;
158 uint16_t crc_calc, crc_spd;
159
160 spd_type = (sc->sc_read)(sc, 2);
161
162 /* For older memory types, validate the checksum over 1st 63 bytes */
163 if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
164 for (i = 0; i < 63; i++)
165 cksum += (sc->sc_read)(sc, i);
166
167 val = (sc->sc_read)(sc, 63);
168
169 if (cksum == 0 || (cksum & 0xff) != val) {
170 aprint_debug("spd checksum failed, calc = 0x%02x, "
171 "spd = 0x%02x\n", cksum, val);
172 return 0;
173 } else
174 return 1;
175 }
176
177 /* For DDR3 and FBDIMM, verify the CRC */
178 else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
179 spd_len = (sc->sc_read)(sc, 0);
180 if (spd_len & SPDMEM_SPDCRC_116)
181 spd_crc_cover = 116;
182 else
183 spd_crc_cover = 125;
184 switch (spd_len & SPDMEM_SPDLEN_MASK) {
185 case SPDMEM_SPDLEN_128:
186 spd_len = 128;
187 break;
188 case SPDMEM_SPDLEN_176:
189 spd_len = 176;
190 break;
191 case SPDMEM_SPDLEN_256:
192 spd_len = 256;
193 break;
194 default:
195 return 0;
196 }
197 if (spd_crc_cover > spd_len)
198 return 0;
199 crc_calc = spdcrc16(sc, spd_crc_cover);
200 crc_spd = (sc->sc_read)(sc, 127) << 8;
201 crc_spd |= (sc->sc_read)(sc, 126);
202 if (crc_calc != crc_spd) {
203 aprint_debug("crc16 failed, covers %d bytes, "
204 "calc = 0x%04x, spd = 0x%04x\n",
205 spd_crc_cover, crc_calc, crc_spd);
206 return 0;
207 }
208 return 1;
209 }
210
211 /* For unrecognized memory types, don't match at all */
212 return 0;
213 }
214
215 void
216 spdmem_common_attach(struct spdmem_softc *sc, device_t self)
217 {
218 struct spdmem *s = &(sc->sc_spd_data);
219 const char *type;
220 const char *rambus_rev = "Reserved";
221 int dimm_size;
222 int i;
223 unsigned int spd_len, spd_size;
224 const struct sysctlnode *node = NULL;
225
226 /*
227 * FBDIMM and DDR3 (and probably all newer) have a different
228 * encoding of the SPD EEPROM used/total sizes
229 */
230 s->sm_len = (sc->sc_read)(sc, 0);
231 s->sm_size = (sc->sc_read)(sc, 1);
232 s->sm_type = (sc->sc_read)(sc, 2);
233
234 if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) {
235 spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK);
236 switch (s->sm_len & SPDMEM_SPDLEN_MASK) {
237 case SPDMEM_SPDLEN_128:
238 spd_len = 128;
239 break;
240 case SPDMEM_SPDLEN_176:
241 spd_len = 176;
242 break;
243 case SPDMEM_SPDLEN_256:
244 spd_len = 256;
245 break;
246 default:
247 spd_len = 64;
248 break;
249 }
250 } else {
251 spd_size = 1 << s->sm_size;
252 spd_len = s->sm_len;
253 if (spd_len < 64)
254 spd_len = 64;
255 }
256 if (spd_len > spd_size)
257 spd_len = spd_size;
258 if (spd_len > sizeof(struct spdmem))
259 spd_len = sizeof(struct spdmem);
260 for (i = 3; i < spd_len; i++)
261 ((uint8_t *)s)[i] = (sc->sc_read)(sc, i);
262
263 #ifdef DEBUG
264 for (i = 0; i < spd_len; i += 16) {
265 int j, k;
266 aprint_debug("\n");
267 aprint_debug_dev(self, "0x%02x:", i);
268 k = (spd_len > i + 16) ? spd_len : i + 16;
269 for (j = i; j < k; j++)
270 aprint_debug(" %02x", ((uint8_t *)s)[j]);
271 }
272 aprint_debug("\n");
273 aprint_debug_dev(self, "");
274 #endif
275
276 /*
277 * Setup our sysctl subtree, hw.spdmemN
278 */
279 if (hw_node != CTL_EOL)
280 sysctl_createv(NULL, 0, NULL, &node,
281 0, CTLTYPE_NODE,
282 device_xname(self), NULL, NULL, 0, NULL, 0,
283 CTL_HW, CTL_CREATE, CTL_EOL);
284 if (node != NULL && spd_len != 0)
285 sysctl_createv(NULL, 0, NULL, NULL,
286 0,
287 CTLTYPE_STRUCT, "spd_data",
288 SYSCTL_DESCR("raw spd data"), NULL,
289 0, s, spd_len,
290 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
291
292 /*
293 * Decode and print key SPD contents
294 */
295 if (IS_RAMBUS_TYPE) {
296 if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS)
297 type = "Rambus";
298 else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS)
299 type = "Direct Rambus";
300 else
301 type = "Rambus (unknown)";
302
303 switch (s->sm_len) {
304 case 0:
305 rambus_rev = "Invalid";
306 break;
307 case 1:
308 rambus_rev = "0.7";
309 break;
310 case 2:
311 rambus_rev = "1.0";
312 break;
313 default:
314 rambus_rev = "Reserved";
315 break;
316 }
317 } else {
318 if (s->sm_type < __arraycount(spdmem_basic_types))
319 type = spdmem_basic_types[s->sm_type];
320 else
321 type = "unknown memory type";
322
323 if (s->sm_type == SPDMEM_MEMTYPE_EDO &&
324 s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM)
325 type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM];
326 if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
327 s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM)
328 type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM];
329 if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM &&
330 s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM)
331 type =
332 spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
333 if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
334 s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) {
335 type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
336 }
337 }
338
339 aprint_naive("\n");
340 aprint_normal("\n");
341 aprint_normal_dev(self, "%s", type);
342 strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN);
343 if (node != NULL)
344 sysctl_createv(NULL, 0, NULL, NULL,
345 0,
346 CTLTYPE_STRING, "mem_type",
347 SYSCTL_DESCR("memory module type"), NULL,
348 0, sc->sc_type, 0,
349 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
350
351 if (IS_RAMBUS_TYPE) {
352 aprint_normal(", SPD Revision %s", rambus_rev);
353 dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13);
354 if (dimm_size >= 1024)
355 aprint_normal(", %dGB\n", dimm_size / 1024);
356 else
357 aprint_normal(", %dMB\n", dimm_size);
358
359 /* No further decode for RAMBUS memory */
360 return;
361 }
362 switch (s->sm_type) {
363 case SPDMEM_MEMTYPE_EDO:
364 case SPDMEM_MEMTYPE_FPM:
365 decode_edofpm(node, self, s);
366 break;
367 case SPDMEM_MEMTYPE_ROM:
368 decode_rom(node, self, s);
369 break;
370 case SPDMEM_MEMTYPE_SDRAM:
371 decode_sdram(node, self, s, spd_len);
372 break;
373 case SPDMEM_MEMTYPE_DDRSDRAM:
374 decode_ddr(node, self, s);
375 break;
376 case SPDMEM_MEMTYPE_DDR2SDRAM:
377 decode_ddr2(node, self, s);
378 break;
379 case SPDMEM_MEMTYPE_DDR3SDRAM:
380 decode_ddr3(node, self, s);
381 break;
382 case SPDMEM_MEMTYPE_FBDIMM:
383 case SPDMEM_MEMTYPE_FBDIMM_PROBE:
384 decode_fbdimm(node, self, s);
385 break;
386 }
387 }
388
389 SYSCTL_SETUP(sysctl_spdmem_setup, "sysctl hw.spdmem subtree setup")
390 {
391 const struct sysctlnode *node;
392
393 if (sysctl_createv(clog, 0, NULL, &node,
394 CTLFLAG_PERMANENT,
395 CTLTYPE_NODE, "hw", NULL,
396 NULL, 0, NULL, 0,
397 CTL_HW, CTL_EOL) != 0)
398 return;
399
400 hw_node = node->sysctl_num;
401 }
402
403 static void
404 decode_size_speed(const struct sysctlnode *node, int dimm_size, int cycle_time,
405 int d_clk, int bits, bool round, const char *ddr_type_string,
406 int speed)
407 {
408 int p_clk;
409
410 if (dimm_size < 1024)
411 aprint_normal("%dMB", dimm_size);
412 else
413 aprint_normal("%dGB", dimm_size / 1024);
414 if (node != NULL)
415 sysctl_createv(NULL, 0, NULL, NULL,
416 CTLFLAG_IMMEDIATE,
417 CTLTYPE_INT, "size",
418 SYSCTL_DESCR("module size in MB"), NULL,
419 dimm_size, NULL, 0,
420 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
421
422 if (cycle_time == 0) {
423 aprint_normal("\n");
424 return;
425 }
426
427 /*
428 * Calculate p_clk first, since for DDR3 we need maximum significance.
429 * DDR3 rating is not rounded to a multiple of 100. This results in
430 * cycle_time of 1.5ns displayed as PC3-10666.
431 *
432 * For SDRAM, the speed is provided by the caller so we use it.
433 */
434 d_clk *= 1000 * 1000;
435 if (speed)
436 p_clk = speed;
437 else
438 p_clk = (d_clk * bits) / 8 / cycle_time;
439 d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
440 if (round) {
441 if ((p_clk % 100) >= 50)
442 p_clk += 50;
443 p_clk -= p_clk % 100;
444 }
445 aprint_normal(", %dMHz (%s-%d)\n",
446 d_clk, ddr_type_string, p_clk);
447 if (node != NULL)
448 sysctl_createv(NULL, 0, NULL, NULL,
449 CTLFLAG_IMMEDIATE,
450 CTLTYPE_INT, "speed",
451 SYSCTL_DESCR("memory speed in MHz"),
452 NULL, d_clk, NULL, 0,
453 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
454 }
455
456 static void
457 decode_voltage_refresh(device_t self, struct spdmem *s)
458 {
459 const char *voltage, *refresh;
460
461 if (s->sm_voltage < __arraycount(spdmem_voltage_types))
462 voltage = spdmem_voltage_types[s->sm_voltage];
463 else
464 voltage = "unknown";
465
466 if (s->sm_refresh < __arraycount(spdmem_refresh_types))
467 refresh = spdmem_refresh_types[s->sm_refresh];
468 else
469 refresh = "unknown";
470
471 aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n",
472 voltage, refresh,
473 s->sm_selfrefresh?" (self-refreshing)":"");
474 }
475
476 static void
477 decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
478 aprint_normal("\n");
479 aprint_verbose_dev(self,
480 "%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n",
481 s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks,
482 s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC);
483 }
484
485 static void
486 decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s) {
487 aprint_normal("\n");
488 aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n",
489 s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks);
490 }
491
492 static void
493 decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s,
494 int spd_len) {
495 int dimm_size, cycle_time, bits, tAA, i, speed, freq;
496
497 aprint_normal("%s, %s, ",
498 (s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)?
499 " (registered)":"",
500 (s->sm_config < __arraycount(spdmem_parity_types))?
501 spdmem_parity_types[s->sm_config]:"invalid parity");
502
503 dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17);
504 dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip;
505
506 cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 +
507 s->sm_sdr.sdr_cycle_tenths * 100;
508 bits = le16toh(s->sm_sdr.sdr_datawidth);
509 if (s->sm_config == 1 || s->sm_config == 2)
510 bits -= 8;
511
512 /* Calculate speed here - from OpenBSD */
513 if (spd_len >= 128)
514 freq = ((uint8_t *)s)[126];
515 else
516 freq = 0;
517 switch (freq) {
518 /*
519 * Must check cycle time since some PC-133 DIMMs
520 * actually report PC-100
521 */
522 case 100:
523 case 133:
524 if (cycle_time < 8000)
525 speed = 133;
526 else
527 speed = 100;
528 break;
529 case 0x66: /* Legacy DIMMs use _hex_ 66! */
530 default:
531 speed = 66;
532 }
533 decode_size_speed(node, dimm_size, cycle_time, 1, bits, FALSE, "PC",
534 speed);
535
536 aprint_verbose_dev(self,
537 "%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n",
538 s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks,
539 s->sm_sdr.sdr_banks_per_chip, cycle_time/1000,
540 (cycle_time % 1000) / 100);
541
542 tAA = 0;
543 for (i = 0; i < 8; i++)
544 if (s->sm_sdr.sdr_tCAS & (1 << i))
545 tAA = i;
546 tAA++;
547 aprint_verbose_dev(self, latency, tAA, s->sm_sdr.sdr_tRCD,
548 s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS);
549
550 decode_voltage_refresh(self, s);
551 }
552
553 static void
554 decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s) {
555 int dimm_size, cycle_time, bits, tAA, i;
556
557 aprint_normal("%s, %s, ",
558 (s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)?
559 " (registered)":"",
560 (s->sm_config < __arraycount(spdmem_parity_types))?
561 spdmem_parity_types[s->sm_config]:"invalid parity");
562
563 dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17);
564 dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip;
565
566 cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 +
567 spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths];
568 bits = le16toh(s->sm_ddr.ddr_datawidth);
569 if (s->sm_config == 1 || s->sm_config == 2)
570 bits -= 8;
571 decode_size_speed(node, dimm_size, cycle_time, 2, bits, TRUE, "PC", 0);
572
573 aprint_verbose_dev(self,
574 "%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n",
575 s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks,
576 s->sm_ddr.ddr_banks_per_chip, cycle_time/1000,
577 (cycle_time % 1000 + 50) / 100);
578
579 tAA = 0;
580 for (i = 2; i < 8; i++)
581 if (s->sm_ddr.ddr_tCAS & (1 << i))
582 tAA = i;
583 tAA /= 2;
584
585 #define __DDR_ROUND(scale, field) \
586 ((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time)
587
588 aprint_verbose_dev(self, latency, tAA, __DDR_ROUND(250, ddr_tRCD),
589 __DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS));
590
591 #undef __DDR_ROUND
592
593 decode_voltage_refresh(self, s);
594 }
595
596 static void
597 decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s) {
598 int dimm_size, cycle_time, bits, tAA, i;
599
600 aprint_normal("%s, %s, ",
601 (s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)?
602 " (registered)":"",
603 (s->sm_config < __arraycount(spdmem_parity_types))?
604 spdmem_parity_types[s->sm_config]:"invalid parity");
605
606 dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17);
607 dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) *
608 s->sm_ddr2.ddr2_banks_per_chip;
609
610 cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 +
611 spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac];
612 bits = s->sm_ddr2.ddr2_datawidth;
613 if ((s->sm_config & 0x03) != 0)
614 bits -= 8;
615 decode_size_speed(node, dimm_size, cycle_time, 2, bits, TRUE, "PC2", 0);
616
617 aprint_verbose_dev(self,
618 "%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n",
619 s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols,
620 s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip,
621 cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
622
623 tAA = 0;
624 for (i = 2; i < 8; i++)
625 if (s->sm_ddr2.ddr2_tCAS & (1 << i))
626 tAA = i;
627
628 #define __DDR2_ROUND(scale, field) \
629 ((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time)
630
631 aprint_verbose_dev(self, latency, tAA, __DDR2_ROUND(250, ddr2_tRCD),
632 __DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS));
633
634 #undef __DDR_ROUND
635
636 decode_voltage_refresh(self, s);
637 }
638
639 static void
640 decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s) {
641 int dimm_size, cycle_time, bits;
642
643 if (s->sm_ddr3.ddr3_mod_type ==
644 SPDMEM_DDR3_TYPE_MINI_RDIMM ||
645 s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM)
646 aprint_normal(" (registered)");
647 aprint_normal(", %sECC, %stemp-sensor, ",
648 (s->sm_ddr3.ddr3_hasECC)?"":"no ",
649 (s->sm_ddr3.ddr3_has_therm_sensor)?"":"no ");
650
651 /*
652 * DDR3 size specification is quite different from others
653 *
654 * Module capacity is defined as
655 * Chip_Capacity_in_bits / 8bits-per-byte *
656 * external_bus_width / internal_bus_width
657 * We further divide by 2**20 to get our answer in MB
658 */
659 dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 +
660 (s->sm_ddr3.ddr3_datawidth + 3) -
661 (s->sm_ddr3.ddr3_chipwidth + 2);
662 dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1);
663
664 cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend +
665 (s->sm_ddr3.ddr3_mtb_divisor / 2)) /
666 s->sm_ddr3.ddr3_mtb_divisor;
667 cycle_time *= s->sm_ddr3.ddr3_tCKmin;
668 bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3);
669 decode_size_speed(node, dimm_size, cycle_time, 2, bits, FALSE, "PC3", 0);
670
671 aprint_verbose_dev(self,
672 "%d rows, %d cols, %d log. banks, %d phys. banks, "
673 "%d.%03dns cycle time\n",
674 s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12,
675 1 << (s->sm_ddr3.ddr3_logbanks + 3),
676 s->sm_ddr3.ddr3_physbanks + 1,
677 cycle_time/1000, cycle_time % 1000);
678
679 #define __DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin)
680
681 aprint_verbose_dev(self, latency, __DDR3_CYCLES(ddr3_tAAmin),
682 __DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin),
683 (s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) /
684 s->sm_ddr3.ddr3_tCKmin);
685
686 #undef __DDR3_CYCLES
687 }
688
689 static void
690 decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
691 int dimm_size, cycle_time, bits;
692
693 /*
694 * FB-DIMM module size calculation is very much like DDR3
695 */
696 dimm_size = s->sm_fbd.fbdimm_rows + 12 +
697 s->sm_fbd.fbdimm_cols + 9 - 20 - 3;
698 dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2));
699
700 cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend +
701 (s->sm_fbd.fbdimm_mtb_divisor / 2)) /
702 s->sm_fbd.fbdimm_mtb_divisor;
703 bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2);
704 decode_size_speed(node, dimm_size, cycle_time, 2, bits, TRUE, "PC2", 0);
705
706 aprint_verbose_dev(self,
707 "%d rows, %d cols, %d banks, %d.%02dns cycle time\n",
708 s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols,
709 1 << (s->sm_fbd.fbdimm_banks + 2),
710 cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
711
712 #define __FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin)
713
714 aprint_verbose_dev(self, latency, __FBDIMM_CYCLES(fbdimm_tAAmin),
715 __FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin),
716 (s->sm_fbd.fbdimm_tRAS_msb * 256 +
717 s->sm_fbd.fbdimm_tRAS_lsb) /
718 s->sm_fbd.fbdimm_tCKmin);
719
720 #undef __FBDIMM_CYCLES
721
722 decode_voltage_refresh(self, s);
723 }
724