Home | History | Annotate | Line # | Download | only in ic
spdmem.c revision 1.2
      1 /* $NetBSD: spdmem.c,v 1.2 2010/06/29 04:42:30 pgoyette Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2007 Nicolas Joly
      5  * Copyright (c) 2007 Paul Goyette
      6  * Copyright (c) 2007 Tobias Nygren
      7  * All rights reserved.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. The name of the author may not be used to endorse or promote products
     18  *    derived from this software without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Serial Presence Detect (SPD) memory identification
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.2 2010/06/29 04:42:30 pgoyette Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/device.h>
     42 #include <sys/endian.h>
     43 #include <sys/sysctl.h>
     44 #include <machine/bswap.h>
     45 
     46 #include <dev/i2c/i2cvar.h>
     47 #include <dev/ic/spdmemreg.h>
     48 #include <dev/ic/spdmemvar.h>
     49 
     50 SYSCTL_SETUP_PROTO(sysctl_spdmem_setup);
     51 
     52 /* Routines for decoding spd data */
     53 static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *);
     54 static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *);
     55 static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *,
     56 	int);
     57 static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *);
     58 static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *);
     59 static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *);
     60 static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *);
     61 
     62 static void decode_size_speed(const struct sysctlnode *, int, int, int, int,
     63 			      bool, const char *, int);
     64 static void decode_voltage_refresh(device_t, struct spdmem *);
     65 
     66 #define IS_RAMBUS_TYPE (s->sm_len < 4)
     67 
     68 static const char* spdmem_basic_types[] = {
     69 	"unknown",
     70 	"FPM",
     71 	"EDO",
     72 	"Pipelined Nibble",
     73 	"SDRAM",
     74 	"ROM",
     75 	"DDR SGRAM",
     76 	"DDR SDRAM",
     77 	"DDR2 SDRAM",
     78 	"DDR2 SDRAM FB",
     79 	"DDR2 SDRAM FB Probe",
     80 	"DDR3 SDRAM"
     81 };
     82 
     83 static const char* spdmem_superset_types[] = {
     84 	"unknown",
     85 	"ESDRAM",
     86 	"DDR ESDRAM",
     87 	"PEM EDO",
     88 	"PEM SDRAM"
     89 };
     90 
     91 static const char* spdmem_voltage_types[] = {
     92 	"TTL (5V tolerant)",
     93 	"LvTTL (not 5V tolerant)",
     94 	"HSTL 1.5V",
     95 	"SSTL 3.3V",
     96 	"SSTL 2.5V",
     97 	"SSTL 1.8V"
     98 };
     99 
    100 static const char* spdmem_refresh_types[] = {
    101 	"15.625us",
    102 	"3.9us",
    103 	"7.8us",
    104 	"31.3us",
    105 	"62.5us",
    106 	"125us"
    107 };
    108 
    109 static const char* spdmem_parity_types[] = {
    110 	"no parity or ECC",
    111 	"data parity",
    112 	"data ECC",
    113 	"data parity and ECC",
    114 	"cmd/addr parity",
    115 	"cmd/addr/data parity",
    116 	"cmd/addr parity, data ECC",
    117 	"cmd/addr/data parity, data ECC"
    118 };
    119 
    120 /* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */
    121 static const uint16_t spdmem_cycle_frac[] = {
    122 	0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
    123 	250, 333, 667, 750, 999, 999
    124 };
    125 
    126 /* Format string for timing info */
    127 static const char* latency="tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n";
    128 
    129 /* sysctl stuff */
    130 static int hw_node = CTL_EOL;
    131 
    132 /* CRC functions used for certain memory types */
    133 
    134 static uint16_t spdcrc16 (struct spdmem_softc *sc, int count)
    135 {
    136 	uint16_t crc;
    137 	int i, j;
    138 	uint8_t val;
    139 	crc = 0;
    140 	for (j = 0; j <= count; j++) {
    141 		val = (sc->sc_read)(sc, j);
    142 		crc = crc ^ val << 8;
    143 		for (i = 0; i < 8; ++i)
    144 			if (crc & 0x8000)
    145 				crc = crc << 1 ^ 0x1021;
    146 			else
    147 				crc = crc << 1;
    148 	}
    149 	return (crc & 0xFFFF);
    150 }
    151 
    152 int
    153 spdmem_common_probe(struct spdmem_softc *sc)
    154 {
    155 	int cksum = 0;
    156 	uint8_t i, val, spd_type;
    157 	int spd_len, spd_crc_cover;
    158 	uint16_t crc_calc, crc_spd;
    159 
    160 	spd_type = (sc->sc_read)(sc, 2);
    161 
    162 	/* For older memory types, validate the checksum over 1st 63 bytes */
    163 	if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
    164 		for (i = 0; i < 63; i++)
    165 			cksum += (sc->sc_read)(sc, i);
    166 
    167 		val = (sc->sc_read)(sc, 63);
    168 
    169 		if (cksum == 0 || (cksum & 0xff) != val) {
    170 			aprint_debug("spd checksum failed, calc = 0x%02x, "
    171 				     "spd = 0x%02x\n", cksum, val);
    172 			return 0;
    173 		} else
    174 			return 1;
    175 	}
    176 
    177 	/* For DDR3 and FBDIMM, verify the CRC */
    178 	else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
    179 		spd_len = (sc->sc_read)(sc, 0);
    180 		if (spd_len & SPDMEM_SPDCRC_116)
    181 			spd_crc_cover = 116;
    182 		else
    183 			spd_crc_cover = 125;
    184 		switch (spd_len & SPDMEM_SPDLEN_MASK) {
    185 		case SPDMEM_SPDLEN_128:
    186 			spd_len = 128;
    187 			break;
    188 		case SPDMEM_SPDLEN_176:
    189 			spd_len = 176;
    190 			break;
    191 		case SPDMEM_SPDLEN_256:
    192 			spd_len = 256;
    193 			break;
    194 		default:
    195 			return 0;
    196 		}
    197 		if (spd_crc_cover > spd_len)
    198 			return 0;
    199 		crc_calc = spdcrc16(sc, spd_crc_cover);
    200 		crc_spd = (sc->sc_read)(sc, 127) << 8;
    201 		crc_spd |= (sc->sc_read)(sc, 126);
    202 		if (crc_calc != crc_spd) {
    203 			aprint_debug("crc16 failed, covers %d bytes, "
    204 				     "calc = 0x%04x, spd = 0x%04x\n",
    205 				     spd_crc_cover, crc_calc, crc_spd);
    206 			return 0;
    207 		}
    208 		return 1;
    209 	}
    210 
    211 	/* For unrecognized memory types, don't match at all */
    212 	return 0;
    213 }
    214 
    215 void
    216 spdmem_common_attach(struct spdmem_softc *sc, device_t self)
    217 {
    218 	struct spdmem *s = &(sc->sc_spd_data);
    219 	const char *type;
    220 	const char *rambus_rev = "Reserved";
    221 	int dimm_size;
    222 	int i;
    223 	unsigned int spd_len, spd_size;
    224 	const struct sysctlnode *node = NULL;
    225 
    226 	/*
    227 	 * FBDIMM and DDR3 (and probably all newer) have a different
    228 	 * encoding of the SPD EEPROM used/total sizes
    229 	 */
    230 	s->sm_len = (sc->sc_read)(sc, 0);
    231 	s->sm_size = (sc->sc_read)(sc, 1);
    232 	s->sm_type = (sc->sc_read)(sc, 2);
    233 
    234 	if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) {
    235 		spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK);
    236 		switch (s->sm_len & SPDMEM_SPDLEN_MASK) {
    237 		case SPDMEM_SPDLEN_128:
    238 			spd_len = 128;
    239 			break;
    240 		case SPDMEM_SPDLEN_176:
    241 			spd_len = 176;
    242 			break;
    243 		case SPDMEM_SPDLEN_256:
    244 			spd_len = 256;
    245 			break;
    246 		default:
    247 			spd_len = 64;
    248 			break;
    249 		}
    250 	} else {
    251 		spd_size = 1 << s->sm_size;
    252 		spd_len = s->sm_len;
    253 		if (spd_len < 64)
    254 			spd_len = 64;
    255 	}
    256 	if (spd_len > spd_size)
    257 		spd_len = spd_size;
    258 	if (spd_len > sizeof(struct spdmem))
    259 		spd_len = sizeof(struct spdmem);
    260 	for (i = 3; i < spd_len; i++)
    261 		((uint8_t *)s)[i] = (sc->sc_read)(sc, i);
    262 
    263 #ifdef DEBUG
    264 	for (i = 0; i < spd_len;  i += 16) {
    265 		int j, k;
    266 		aprint_debug("\n");
    267 		aprint_debug_dev(self, "0x%02x:", i);
    268 		k = (spd_len > i + 16) ? spd_len : i + 16;
    269 		for (j = i; j < k; j++)
    270 			aprint_debug(" %02x", ((uint8_t *)s)[j]);
    271 	}
    272 	aprint_debug("\n");
    273 	aprint_debug_dev(self, "");
    274 #endif
    275 
    276 	/*
    277 	 * Setup our sysctl subtree, hw.spdmemN
    278 	 */
    279 	if (hw_node != CTL_EOL)
    280 		sysctl_createv(NULL, 0, NULL, &node,
    281 		    0, CTLTYPE_NODE,
    282 		    device_xname(self), NULL, NULL, 0, NULL, 0,
    283 		    CTL_HW, CTL_CREATE, CTL_EOL);
    284 	if (node != NULL && spd_len != 0)
    285                 sysctl_createv(NULL, 0, NULL, NULL,
    286                     0,
    287                     CTLTYPE_STRUCT, "spd_data",
    288 		    SYSCTL_DESCR("raw spd data"), NULL,
    289                     0, s, spd_len,
    290                     CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
    291 
    292 	/*
    293 	 * Decode and print key SPD contents
    294 	 */
    295 	if (IS_RAMBUS_TYPE) {
    296 		if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS)
    297 			type = "Rambus";
    298 		else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS)
    299 			type = "Direct Rambus";
    300 		else
    301 			type = "Rambus (unknown)";
    302 
    303 		switch (s->sm_len) {
    304 		case 0:
    305 			rambus_rev = "Invalid";
    306 			break;
    307 		case 1:
    308 			rambus_rev = "0.7";
    309 			break;
    310 		case 2:
    311 			rambus_rev = "1.0";
    312 			break;
    313 		default:
    314 			rambus_rev = "Reserved";
    315 			break;
    316 		}
    317 	} else {
    318 		if (s->sm_type < __arraycount(spdmem_basic_types))
    319 			type = spdmem_basic_types[s->sm_type];
    320 		else
    321 			type = "unknown memory type";
    322 
    323 		if (s->sm_type == SPDMEM_MEMTYPE_EDO &&
    324 		    s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM)
    325 			type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM];
    326 		if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
    327 		    s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM)
    328 			type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM];
    329 		if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM &&
    330 		    s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM)
    331 			type =
    332 			    spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
    333 		if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
    334 		    s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) {
    335 			type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
    336 		}
    337 	}
    338 
    339 	aprint_naive("\n");
    340 	aprint_normal("\n");
    341 	aprint_normal_dev(self, "%s", type);
    342 	strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN);
    343 	if (node != NULL)
    344 		sysctl_createv(NULL, 0, NULL, NULL,
    345 		    0,
    346 		    CTLTYPE_STRING, "mem_type",
    347 		    SYSCTL_DESCR("memory module type"), NULL,
    348 		    0, sc->sc_type, 0,
    349 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
    350 
    351 	if (IS_RAMBUS_TYPE) {
    352 		aprint_normal(", SPD Revision %s", rambus_rev);
    353 		dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13);
    354 		if (dimm_size >= 1024)
    355 			aprint_normal(", %dGB\n", dimm_size / 1024);
    356 		else
    357 			aprint_normal(", %dMB\n", dimm_size);
    358 
    359 		/* No further decode for RAMBUS memory */
    360 		return;
    361 	}
    362 	switch (s->sm_type) {
    363 	case SPDMEM_MEMTYPE_EDO:
    364 	case SPDMEM_MEMTYPE_FPM:
    365 		decode_edofpm(node, self, s);
    366 		break;
    367 	case SPDMEM_MEMTYPE_ROM:
    368 		decode_rom(node, self, s);
    369 		break;
    370 	case SPDMEM_MEMTYPE_SDRAM:
    371 		decode_sdram(node, self, s, spd_len);
    372 		break;
    373 	case SPDMEM_MEMTYPE_DDRSDRAM:
    374 		decode_ddr(node, self, s);
    375 		break;
    376 	case SPDMEM_MEMTYPE_DDR2SDRAM:
    377 		decode_ddr2(node, self, s);
    378 		break;
    379 	case SPDMEM_MEMTYPE_DDR3SDRAM:
    380 		decode_ddr3(node, self, s);
    381 		break;
    382 	case SPDMEM_MEMTYPE_FBDIMM:
    383 	case SPDMEM_MEMTYPE_FBDIMM_PROBE:
    384 		decode_fbdimm(node, self, s);
    385 		break;
    386 	}
    387 }
    388 
    389 SYSCTL_SETUP(sysctl_spdmem_setup, "sysctl hw.spdmem subtree setup")
    390 {
    391 	const struct sysctlnode *node;
    392 
    393 	if (sysctl_createv(clog, 0, NULL, &node,
    394 	    CTLFLAG_PERMANENT,
    395 	    CTLTYPE_NODE, "hw", NULL,
    396 	    NULL, 0, NULL, 0,
    397 	    CTL_HW, CTL_EOL) != 0)
    398 		return;
    399 
    400 	hw_node = node->sysctl_num;
    401 }
    402 
    403 static void
    404 decode_size_speed(const struct sysctlnode *node, int dimm_size, int cycle_time,
    405 		  int d_clk, int bits, bool round, const char *ddr_type_string,
    406 		  int speed)
    407 {
    408 	int p_clk;
    409 
    410 	if (dimm_size < 1024)
    411 		aprint_normal("%dMB", dimm_size);
    412 	else
    413 		aprint_normal("%dGB", dimm_size / 1024);
    414 	if (node != NULL)
    415 		sysctl_createv(NULL, 0, NULL, NULL,
    416 		    CTLFLAG_IMMEDIATE,
    417 		    CTLTYPE_INT, "size",
    418 		    SYSCTL_DESCR("module size in MB"), NULL,
    419 		    dimm_size, NULL, 0,
    420 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
    421 
    422 	if (cycle_time == 0) {
    423 		aprint_normal("\n");
    424 		return;
    425 	}
    426 
    427 	/*
    428 	 * Calculate p_clk first, since for DDR3 we need maximum significance.
    429 	 * DDR3 rating is not rounded to a multiple of 100.  This results in
    430 	 * cycle_time of 1.5ns displayed as PC3-10666.
    431 	 *
    432 	 * For SDRAM, the speed is provided by the caller so we use it.
    433 	 */
    434 	d_clk *= 1000 * 1000;
    435 	if (speed)
    436 		p_clk = speed;
    437 	else
    438 		p_clk = (d_clk * bits) / 8 / cycle_time;
    439 	d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
    440 	if (round) {
    441 		if ((p_clk % 100) >= 50)
    442 			p_clk += 50;
    443 		p_clk -= p_clk % 100;
    444 	}
    445 	aprint_normal(", %dMHz (%s-%d)\n",
    446 		      d_clk, ddr_type_string, p_clk);
    447 	if (node != NULL)
    448 		sysctl_createv(NULL, 0, NULL, NULL,
    449 			       CTLFLAG_IMMEDIATE,
    450 			       CTLTYPE_INT, "speed",
    451 			       SYSCTL_DESCR("memory speed in MHz"),
    452 			       NULL, d_clk, NULL, 0,
    453 			       CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
    454 }
    455 
    456 static void
    457 decode_voltage_refresh(device_t self, struct spdmem *s)
    458 {
    459 	const char *voltage, *refresh;
    460 
    461 	if (s->sm_voltage < __arraycount(spdmem_voltage_types))
    462 		voltage = spdmem_voltage_types[s->sm_voltage];
    463 	else
    464 		voltage = "unknown";
    465 
    466 	if (s->sm_refresh < __arraycount(spdmem_refresh_types))
    467 		refresh = spdmem_refresh_types[s->sm_refresh];
    468 	else
    469 		refresh = "unknown";
    470 
    471 	aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n",
    472 			voltage, refresh,
    473 			s->sm_selfrefresh?" (self-refreshing)":"");
    474 }
    475 
    476 static void
    477 decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
    478 	aprint_normal("\n");
    479 	aprint_verbose_dev(self,
    480 	    "%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n",
    481 	    s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks,
    482 	    s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC);
    483 }
    484 
    485 static void
    486 decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s) {
    487 	aprint_normal("\n");
    488 	aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n",
    489 	    s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks);
    490 }
    491 
    492 static void
    493 decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s,
    494 	     int spd_len) {
    495 	int dimm_size, cycle_time, bits, tAA, i, speed, freq;
    496 
    497 	aprint_normal("%s, %s, ",
    498 		(s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)?
    499 			" (registered)":"",
    500 		(s->sm_config < __arraycount(spdmem_parity_types))?
    501 			spdmem_parity_types[s->sm_config]:"invalid parity");
    502 
    503 	dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17);
    504 	dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip;
    505 
    506 	cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 +
    507 		     s->sm_sdr.sdr_cycle_tenths * 100;
    508 	bits = le16toh(s->sm_sdr.sdr_datawidth);
    509 	if (s->sm_config == 1 || s->sm_config == 2)
    510 		bits -= 8;
    511 
    512 	/* Calculate speed here - from OpenBSD */
    513 	if (spd_len >= 128)
    514 		freq = ((uint8_t *)s)[126];
    515 	else
    516 		freq = 0;
    517 	switch (freq) {
    518 		/*
    519 		 * Must check cycle time since some PC-133 DIMMs
    520 		 * actually report PC-100
    521 		 */
    522 	    case 100:
    523 	    case 133:
    524 		if (cycle_time < 8000)
    525 			speed = 133;
    526 		else
    527 			speed = 100;
    528 		break;
    529 	    case 0x66:		/* Legacy DIMMs use _hex_ 66! */
    530 	    default:
    531 		speed = 66;
    532 	}
    533 	decode_size_speed(node, dimm_size, cycle_time, 1, bits, FALSE, "PC",
    534 			  speed);
    535 
    536 	aprint_verbose_dev(self,
    537 	    "%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n",
    538 	    s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks,
    539 	    s->sm_sdr.sdr_banks_per_chip, cycle_time/1000,
    540 	    (cycle_time % 1000) / 100);
    541 
    542 	tAA  = 0;
    543 	for (i = 0; i < 8; i++)
    544 		if (s->sm_sdr.sdr_tCAS & (1 << i))
    545 			tAA = i;
    546 	tAA++;
    547 	aprint_verbose_dev(self, latency, tAA, s->sm_sdr.sdr_tRCD,
    548 	    s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS);
    549 
    550 	decode_voltage_refresh(self, s);
    551 }
    552 
    553 static void
    554 decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s) {
    555 	int dimm_size, cycle_time, bits, tAA, i;
    556 
    557 	aprint_normal("%s, %s, ",
    558 		(s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)?
    559 			" (registered)":"",
    560 		(s->sm_config < __arraycount(spdmem_parity_types))?
    561 			spdmem_parity_types[s->sm_config]:"invalid parity");
    562 
    563 	dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17);
    564 	dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip;
    565 
    566 	cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 +
    567 		  spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths];
    568 	bits = le16toh(s->sm_ddr.ddr_datawidth);
    569 	if (s->sm_config == 1 || s->sm_config == 2)
    570 		bits -= 8;
    571 	decode_size_speed(node, dimm_size, cycle_time, 2, bits, TRUE, "PC", 0);
    572 
    573 	aprint_verbose_dev(self,
    574 	    "%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n",
    575 	    s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks,
    576 	    s->sm_ddr.ddr_banks_per_chip, cycle_time/1000,
    577 	    (cycle_time % 1000 + 50) / 100);
    578 
    579 	tAA  = 0;
    580 	for (i = 2; i < 8; i++)
    581 		if (s->sm_ddr.ddr_tCAS & (1 << i))
    582 			tAA = i;
    583 	tAA /= 2;
    584 
    585 #define __DDR_ROUND(scale, field)	\
    586 		((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time)
    587 
    588 	aprint_verbose_dev(self, latency, tAA, __DDR_ROUND(250, ddr_tRCD),
    589 		__DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS));
    590 
    591 #undef	__DDR_ROUND
    592 
    593 	decode_voltage_refresh(self, s);
    594 }
    595 
    596 static void
    597 decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s) {
    598 	int dimm_size, cycle_time, bits, tAA, i;
    599 
    600 	aprint_normal("%s, %s, ",
    601 		(s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)?
    602 			" (registered)":"",
    603 		(s->sm_config < __arraycount(spdmem_parity_types))?
    604 			spdmem_parity_types[s->sm_config]:"invalid parity");
    605 
    606 	dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17);
    607 	dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) *
    608 		     s->sm_ddr2.ddr2_banks_per_chip;
    609 
    610 	cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 +
    611 		 spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac];
    612 	bits = s->sm_ddr2.ddr2_datawidth;
    613 	if ((s->sm_config & 0x03) != 0)
    614 		bits -= 8;
    615 	decode_size_speed(node, dimm_size, cycle_time, 2, bits, TRUE, "PC2", 0);
    616 
    617 	aprint_verbose_dev(self,
    618 	    "%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n",
    619 	    s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols,
    620 	    s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip,
    621 	    cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
    622 
    623 	tAA  = 0;
    624 	for (i = 2; i < 8; i++)
    625 		if (s->sm_ddr2.ddr2_tCAS & (1 << i))
    626 			tAA = i;
    627 
    628 #define __DDR2_ROUND(scale, field)	\
    629 		((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time)
    630 
    631 	aprint_verbose_dev(self, latency, tAA, __DDR2_ROUND(250, ddr2_tRCD),
    632 		__DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS));
    633 
    634 #undef	__DDR_ROUND
    635 
    636 	decode_voltage_refresh(self, s);
    637 }
    638 
    639 static void
    640 decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s) {
    641 	int dimm_size, cycle_time, bits;
    642 
    643 	if (s->sm_ddr3.ddr3_mod_type ==
    644 		SPDMEM_DDR3_TYPE_MINI_RDIMM ||
    645 	    s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM)
    646 		aprint_normal(" (registered)");
    647 	aprint_normal(", %sECC, %stemp-sensor, ",
    648 		(s->sm_ddr3.ddr3_hasECC)?"":"no ",
    649 		(s->sm_ddr3.ddr3_has_therm_sensor)?"":"no ");
    650 
    651 	/*
    652 	 * DDR3 size specification is quite different from others
    653 	 *
    654 	 * Module capacity is defined as
    655 	 *	Chip_Capacity_in_bits / 8bits-per-byte *
    656 	 *	external_bus_width / internal_bus_width
    657 	 * We further divide by 2**20 to get our answer in MB
    658 	 */
    659 	dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 +
    660 		    (s->sm_ddr3.ddr3_datawidth + 3) -
    661 		    (s->sm_ddr3.ddr3_chipwidth + 2);
    662 	dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1);
    663 
    664 	cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend +
    665 			    (s->sm_ddr3.ddr3_mtb_divisor / 2)) /
    666 		     s->sm_ddr3.ddr3_mtb_divisor;
    667 	cycle_time *= s->sm_ddr3.ddr3_tCKmin;
    668 	bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3);
    669 	decode_size_speed(node, dimm_size, cycle_time, 2, bits, FALSE, "PC3", 0);
    670 
    671 	aprint_verbose_dev(self,
    672 	    "%d rows, %d cols, %d log. banks, %d phys. banks, "
    673 	    "%d.%03dns cycle time\n",
    674 	    s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12,
    675 	    1 << (s->sm_ddr3.ddr3_logbanks + 3),
    676 	    s->sm_ddr3.ddr3_physbanks + 1,
    677 	    cycle_time/1000, cycle_time % 1000);
    678 
    679 #define	__DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin)
    680 
    681 	aprint_verbose_dev(self, latency, __DDR3_CYCLES(ddr3_tAAmin),
    682 		__DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin),
    683 		(s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) /
    684 		    s->sm_ddr3.ddr3_tCKmin);
    685 
    686 #undef	__DDR3_CYCLES
    687 }
    688 
    689 static void
    690 decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
    691 	int dimm_size, cycle_time, bits;
    692 
    693 	/*
    694 	 * FB-DIMM module size calculation is very much like DDR3
    695 	 */
    696 	dimm_size = s->sm_fbd.fbdimm_rows + 12 +
    697 		    s->sm_fbd.fbdimm_cols +  9 - 20 - 3;
    698 	dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2));
    699 
    700 	cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend +
    701 			    (s->sm_fbd.fbdimm_mtb_divisor / 2)) /
    702 		     s->sm_fbd.fbdimm_mtb_divisor;
    703 	bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2);
    704 	decode_size_speed(node, dimm_size, cycle_time, 2, bits, TRUE, "PC2", 0);
    705 
    706 	aprint_verbose_dev(self,
    707 	    "%d rows, %d cols, %d banks, %d.%02dns cycle time\n",
    708 	    s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols,
    709 	    1 << (s->sm_fbd.fbdimm_banks + 2),
    710 	    cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
    711 
    712 #define	__FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin)
    713 
    714 	aprint_verbose_dev(self, latency, __FBDIMM_CYCLES(fbdimm_tAAmin),
    715 		__FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin),
    716 		(s->sm_fbd.fbdimm_tRAS_msb * 256 +
    717 			s->sm_fbd.fbdimm_tRAS_lsb) /
    718 		    s->sm_fbd.fbdimm_tCKmin);
    719 
    720 #undef	__FBDIMM_CYCLES
    721 
    722 	decode_voltage_refresh(self, s);
    723 }
    724