spdmem.c revision 1.4 1 /* $NetBSD: spdmem.c,v 1.4 2011/08/19 08:25:07 christos Exp $ */
2
3 /*
4 * Copyright (c) 2007 Nicolas Joly
5 * Copyright (c) 2007 Paul Goyette
6 * Copyright (c) 2007 Tobias Nygren
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Serial Presence Detect (SPD) memory identification
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.4 2011/08/19 08:25:07 christos Exp $");
39
40 #include <sys/param.h>
41 #include <sys/device.h>
42 #include <sys/endian.h>
43 #include <sys/sysctl.h>
44 #include <machine/bswap.h>
45
46 #include <dev/i2c/i2cvar.h>
47 #include <dev/ic/spdmemreg.h>
48 #include <dev/ic/spdmemvar.h>
49
50 SYSCTL_SETUP_PROTO(sysctl_spdmem_setup);
51
52 /* Routines for decoding spd data */
53 static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *);
54 static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *);
55 static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *,
56 int);
57 static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *);
58 static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *);
59 static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *);
60 static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *);
61
62 static void decode_size_speed(device_t, const struct sysctlnode *,
63 int, int, int, int, bool, const char *, int);
64 static void decode_voltage_refresh(device_t, struct spdmem *);
65
66 #define IS_RAMBUS_TYPE (s->sm_len < 4)
67
68 static const char* spdmem_basic_types[] = {
69 "unknown",
70 "FPM",
71 "EDO",
72 "Pipelined Nibble",
73 "SDRAM",
74 "ROM",
75 "DDR SGRAM",
76 "DDR SDRAM",
77 "DDR2 SDRAM",
78 "DDR2 SDRAM FB",
79 "DDR2 SDRAM FB Probe",
80 "DDR3 SDRAM"
81 };
82
83 static const char* spdmem_superset_types[] = {
84 "unknown",
85 "ESDRAM",
86 "DDR ESDRAM",
87 "PEM EDO",
88 "PEM SDRAM"
89 };
90
91 static const char* spdmem_voltage_types[] = {
92 "TTL (5V tolerant)",
93 "LvTTL (not 5V tolerant)",
94 "HSTL 1.5V",
95 "SSTL 3.3V",
96 "SSTL 2.5V",
97 "SSTL 1.8V"
98 };
99
100 static const char* spdmem_refresh_types[] = {
101 "15.625us",
102 "3.9us",
103 "7.8us",
104 "31.3us",
105 "62.5us",
106 "125us"
107 };
108
109 static const char* spdmem_parity_types[] = {
110 "no parity or ECC",
111 "data parity",
112 "data ECC",
113 "data parity and ECC",
114 "cmd/addr parity",
115 "cmd/addr/data parity",
116 "cmd/addr parity, data ECC",
117 "cmd/addr/data parity, data ECC"
118 };
119
120 /* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */
121 static const uint16_t spdmem_cycle_frac[] = {
122 0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
123 250, 333, 667, 750, 999, 999
124 };
125
126 /* Format string for timing info */
127 #define LATENCY "tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n";
128
129 /* sysctl stuff */
130 static int hw_node = CTL_EOL;
131
132 /* CRC functions used for certain memory types */
133
134 static uint16_t spdcrc16 (struct spdmem_softc *sc, int count)
135 {
136 uint16_t crc;
137 int i, j;
138 uint8_t val;
139 crc = 0;
140 for (j = 0; j <= count; j++) {
141 val = (sc->sc_read)(sc, j);
142 crc = crc ^ val << 8;
143 for (i = 0; i < 8; ++i)
144 if (crc & 0x8000)
145 crc = crc << 1 ^ 0x1021;
146 else
147 crc = crc << 1;
148 }
149 return (crc & 0xFFFF);
150 }
151
152 int
153 spdmem_common_probe(struct spdmem_softc *sc)
154 {
155 int cksum = 0;
156 uint8_t i, val, spd_type;
157 int spd_len, spd_crc_cover;
158 uint16_t crc_calc, crc_spd;
159
160 spd_type = (sc->sc_read)(sc, 2);
161
162 /* For older memory types, validate the checksum over 1st 63 bytes */
163 if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
164 for (i = 0; i < 63; i++)
165 cksum += (sc->sc_read)(sc, i);
166
167 val = (sc->sc_read)(sc, 63);
168
169 if (cksum == 0 || (cksum & 0xff) != val) {
170 aprint_debug("spd checksum failed, calc = 0x%02x, "
171 "spd = 0x%02x\n", cksum, val);
172 return 0;
173 } else
174 return 1;
175 }
176
177 /* For DDR3 and FBDIMM, verify the CRC */
178 else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
179 spd_len = (sc->sc_read)(sc, 0);
180 if (spd_len & SPDMEM_SPDCRC_116)
181 spd_crc_cover = 116;
182 else
183 spd_crc_cover = 125;
184 switch (spd_len & SPDMEM_SPDLEN_MASK) {
185 case SPDMEM_SPDLEN_128:
186 spd_len = 128;
187 break;
188 case SPDMEM_SPDLEN_176:
189 spd_len = 176;
190 break;
191 case SPDMEM_SPDLEN_256:
192 spd_len = 256;
193 break;
194 default:
195 return 0;
196 }
197 if (spd_crc_cover > spd_len)
198 return 0;
199 crc_calc = spdcrc16(sc, spd_crc_cover);
200 crc_spd = (sc->sc_read)(sc, 127) << 8;
201 crc_spd |= (sc->sc_read)(sc, 126);
202 if (crc_calc != crc_spd) {
203 aprint_debug("crc16 failed, covers %d bytes, "
204 "calc = 0x%04x, spd = 0x%04x\n",
205 spd_crc_cover, crc_calc, crc_spd);
206 return 0;
207 }
208 return 1;
209 }
210
211 /* For unrecognized memory types, don't match at all */
212 return 0;
213 }
214
215 void
216 spdmem_common_attach(struct spdmem_softc *sc, device_t self)
217 {
218 struct spdmem *s = &(sc->sc_spd_data);
219 const char *type;
220 const char *rambus_rev = "Reserved";
221 int dimm_size;
222 unsigned int i, spd_len, spd_size;
223 const struct sysctlnode *node = NULL;
224
225 /*
226 * FBDIMM and DDR3 (and probably all newer) have a different
227 * encoding of the SPD EEPROM used/total sizes
228 */
229 s->sm_len = (sc->sc_read)(sc, 0);
230 s->sm_size = (sc->sc_read)(sc, 1);
231 s->sm_type = (sc->sc_read)(sc, 2);
232
233 if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) {
234 spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK);
235 switch (s->sm_len & SPDMEM_SPDLEN_MASK) {
236 case SPDMEM_SPDLEN_128:
237 spd_len = 128;
238 break;
239 case SPDMEM_SPDLEN_176:
240 spd_len = 176;
241 break;
242 case SPDMEM_SPDLEN_256:
243 spd_len = 256;
244 break;
245 default:
246 spd_len = 64;
247 break;
248 }
249 } else {
250 spd_size = 1 << s->sm_size;
251 spd_len = s->sm_len;
252 if (spd_len < 64)
253 spd_len = 64;
254 }
255 if (spd_len > spd_size)
256 spd_len = spd_size;
257 if (spd_len > sizeof(struct spdmem))
258 spd_len = sizeof(struct spdmem);
259 for (i = 3; i < spd_len; i++)
260 ((uint8_t *)s)[i] = (sc->sc_read)(sc, i);
261
262 #ifdef DEBUG
263 for (i = 0; i < spd_len; i += 16) {
264 unsigned int j, k;
265 aprint_debug("\n");
266 aprint_debug_dev(self, "0x%02x:", i);
267 k = (spd_len > i + 16) ? spd_len : i + 16;
268 for (j = i; j < k; j++)
269 aprint_debug(" %02x", ((uint8_t *)s)[j]);
270 }
271 aprint_debug("\n");
272 aprint_debug_dev(self, "");
273 #endif
274
275 /*
276 * Setup our sysctl subtree, hw.spdmemN
277 */
278 sc->sc_sysctl_log = NULL;
279 #ifdef _MODULE
280 sysctl_spdmem_setup(&sc->sc_sysctl_log);
281 #endif
282 if (hw_node != CTL_EOL)
283 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &node,
284 0, CTLTYPE_NODE,
285 device_xname(self), NULL, NULL, 0, NULL, 0,
286 CTL_HW, CTL_CREATE, CTL_EOL);
287 if (node != NULL && spd_len != 0)
288 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
289 0,
290 CTLTYPE_STRUCT, "spd_data",
291 SYSCTL_DESCR("raw spd data"), NULL,
292 0, s, spd_len,
293 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
294
295 /*
296 * Decode and print key SPD contents
297 */
298 if (IS_RAMBUS_TYPE) {
299 if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS)
300 type = "Rambus";
301 else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS)
302 type = "Direct Rambus";
303 else
304 type = "Rambus (unknown)";
305
306 switch (s->sm_len) {
307 case 0:
308 rambus_rev = "Invalid";
309 break;
310 case 1:
311 rambus_rev = "0.7";
312 break;
313 case 2:
314 rambus_rev = "1.0";
315 break;
316 default:
317 rambus_rev = "Reserved";
318 break;
319 }
320 } else {
321 if (s->sm_type < __arraycount(spdmem_basic_types))
322 type = spdmem_basic_types[s->sm_type];
323 else
324 type = "unknown memory type";
325
326 if (s->sm_type == SPDMEM_MEMTYPE_EDO &&
327 s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM)
328 type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM];
329 if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
330 s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM)
331 type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM];
332 if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM &&
333 s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM)
334 type =
335 spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
336 if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
337 s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) {
338 type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
339 }
340 }
341
342 aprint_naive("\n");
343 aprint_normal("\n");
344 aprint_normal_dev(self, "%s", type);
345 strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN);
346 if (node != NULL)
347 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
348 0,
349 CTLTYPE_STRING, "mem_type",
350 SYSCTL_DESCR("memory module type"), NULL,
351 0, sc->sc_type, 0,
352 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
353
354 if (IS_RAMBUS_TYPE) {
355 aprint_normal(", SPD Revision %s", rambus_rev);
356 dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13);
357 if (dimm_size >= 1024)
358 aprint_normal(", %dGB\n", dimm_size / 1024);
359 else
360 aprint_normal(", %dMB\n", dimm_size);
361
362 /* No further decode for RAMBUS memory */
363 return;
364 }
365 switch (s->sm_type) {
366 case SPDMEM_MEMTYPE_EDO:
367 case SPDMEM_MEMTYPE_FPM:
368 decode_edofpm(node, self, s);
369 break;
370 case SPDMEM_MEMTYPE_ROM:
371 decode_rom(node, self, s);
372 break;
373 case SPDMEM_MEMTYPE_SDRAM:
374 decode_sdram(node, self, s, spd_len);
375 break;
376 case SPDMEM_MEMTYPE_DDRSDRAM:
377 decode_ddr(node, self, s);
378 break;
379 case SPDMEM_MEMTYPE_DDR2SDRAM:
380 decode_ddr2(node, self, s);
381 break;
382 case SPDMEM_MEMTYPE_DDR3SDRAM:
383 decode_ddr3(node, self, s);
384 break;
385 case SPDMEM_MEMTYPE_FBDIMM:
386 case SPDMEM_MEMTYPE_FBDIMM_PROBE:
387 decode_fbdimm(node, self, s);
388 break;
389 }
390 }
391
392 int
393 spdmem_common_detach(struct spdmem_softc *sc, device_t self)
394 {
395 sysctl_teardown(&sc->sc_sysctl_log);
396
397 return 0;
398 }
399
400 SYSCTL_SETUP(sysctl_spdmem_setup, "sysctl hw.spdmem subtree setup")
401 {
402 const struct sysctlnode *node;
403
404 if (sysctl_createv(clog, 0, NULL, &node, CTLFLAG_PERMANENT,
405 CTLTYPE_NODE, "hw", NULL, NULL, 0, NULL, 0,
406 CTL_HW, CTL_EOL) != 0)
407 return;
408
409 hw_node = node->sysctl_num;
410 }
411
412 static void
413 decode_size_speed(device_t self, const struct sysctlnode *node,
414 int dimm_size, int cycle_time, int d_clk, int bits,
415 bool round, const char *ddr_type_string, int speed)
416 {
417 int p_clk;
418 struct spdmem_softc *sc = (struct spdmem_softc *)device_private(self);
419
420 if (dimm_size < 1024)
421 aprint_normal("%dMB", dimm_size);
422 else
423 aprint_normal("%dGB", dimm_size / 1024);
424 if (node != NULL)
425 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
426 CTLFLAG_IMMEDIATE,
427 CTLTYPE_INT, "size",
428 SYSCTL_DESCR("module size in MB"), NULL,
429 dimm_size, NULL, 0,
430 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
431
432 if (cycle_time == 0) {
433 aprint_normal("\n");
434 return;
435 }
436
437 /*
438 * Calculate p_clk first, since for DDR3 we need maximum significance.
439 * DDR3 rating is not rounded to a multiple of 100. This results in
440 * cycle_time of 1.5ns displayed as PC3-10666.
441 *
442 * For SDRAM, the speed is provided by the caller so we use it.
443 */
444 d_clk *= 1000 * 1000;
445 if (speed)
446 p_clk = speed;
447 else
448 p_clk = (d_clk * bits) / 8 / cycle_time;
449 d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
450 if (round) {
451 if ((p_clk % 100) >= 50)
452 p_clk += 50;
453 p_clk -= p_clk % 100;
454 }
455 aprint_normal(", %dMHz (%s-%d)\n",
456 d_clk, ddr_type_string, p_clk);
457 if (node != NULL)
458 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
459 CTLFLAG_IMMEDIATE,
460 CTLTYPE_INT, "speed",
461 SYSCTL_DESCR("memory speed in MHz"),
462 NULL, d_clk, NULL, 0,
463 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
464 }
465
466 static void
467 decode_voltage_refresh(device_t self, struct spdmem *s)
468 {
469 const char *voltage, *refresh;
470
471 if (s->sm_voltage < __arraycount(spdmem_voltage_types))
472 voltage = spdmem_voltage_types[s->sm_voltage];
473 else
474 voltage = "unknown";
475
476 if (s->sm_refresh < __arraycount(spdmem_refresh_types))
477 refresh = spdmem_refresh_types[s->sm_refresh];
478 else
479 refresh = "unknown";
480
481 aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n",
482 voltage, refresh,
483 s->sm_selfrefresh?" (self-refreshing)":"");
484 }
485
486 static void
487 decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
488 aprint_normal("\n");
489 aprint_verbose_dev(self,
490 "%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n",
491 s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks,
492 s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC);
493 }
494
495 static void
496 decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s) {
497 aprint_normal("\n");
498 aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n",
499 s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks);
500 }
501
502 static void
503 decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s,
504 int spd_len) {
505 int dimm_size, cycle_time, bits, tAA, i, speed, freq;
506
507 aprint_normal("%s, %s, ",
508 (s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)?
509 " (registered)":"",
510 (s->sm_config < __arraycount(spdmem_parity_types))?
511 spdmem_parity_types[s->sm_config]:"invalid parity");
512
513 dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17);
514 dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip;
515
516 cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 +
517 s->sm_sdr.sdr_cycle_tenths * 100;
518 bits = le16toh(s->sm_sdr.sdr_datawidth);
519 if (s->sm_config == 1 || s->sm_config == 2)
520 bits -= 8;
521
522 /* Calculate speed here - from OpenBSD */
523 if (spd_len >= 128)
524 freq = ((uint8_t *)s)[126];
525 else
526 freq = 0;
527 switch (freq) {
528 /*
529 * Must check cycle time since some PC-133 DIMMs
530 * actually report PC-100
531 */
532 case 100:
533 case 133:
534 if (cycle_time < 8000)
535 speed = 133;
536 else
537 speed = 100;
538 break;
539 case 0x66: /* Legacy DIMMs use _hex_ 66! */
540 default:
541 speed = 66;
542 }
543 decode_size_speed(self, node, dimm_size, cycle_time, 1, bits, FALSE,
544 "PC", speed);
545
546 aprint_verbose_dev(self,
547 "%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n",
548 s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks,
549 s->sm_sdr.sdr_banks_per_chip, cycle_time/1000,
550 (cycle_time % 1000) / 100);
551
552 tAA = 0;
553 for (i = 0; i < 8; i++)
554 if (s->sm_sdr.sdr_tCAS & (1 << i))
555 tAA = i;
556 tAA++;
557 aprint_verbose_dev(self, LATENCY, tAA, s->sm_sdr.sdr_tRCD,
558 s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS);
559
560 decode_voltage_refresh(self, s);
561 }
562
563 static void
564 decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s) {
565 int dimm_size, cycle_time, bits, tAA, i;
566
567 aprint_normal("%s, %s, ",
568 (s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)?
569 " (registered)":"",
570 (s->sm_config < __arraycount(spdmem_parity_types))?
571 spdmem_parity_types[s->sm_config]:"invalid parity");
572
573 dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17);
574 dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip;
575
576 cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 +
577 spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths];
578 bits = le16toh(s->sm_ddr.ddr_datawidth);
579 if (s->sm_config == 1 || s->sm_config == 2)
580 bits -= 8;
581 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
582 "PC", 0);
583
584 aprint_verbose_dev(self,
585 "%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n",
586 s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks,
587 s->sm_ddr.ddr_banks_per_chip, cycle_time/1000,
588 (cycle_time % 1000 + 50) / 100);
589
590 tAA = 0;
591 for (i = 2; i < 8; i++)
592 if (s->sm_ddr.ddr_tCAS & (1 << i))
593 tAA = i;
594 tAA /= 2;
595
596 #define __DDR_ROUND(scale, field) \
597 ((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time)
598
599 aprint_verbose_dev(self, LATENCY, tAA, __DDR_ROUND(250, ddr_tRCD),
600 __DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS));
601
602 #undef __DDR_ROUND
603
604 decode_voltage_refresh(self, s);
605 }
606
607 static void
608 decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s) {
609 int dimm_size, cycle_time, bits, tAA, i;
610
611 aprint_normal("%s, %s, ",
612 (s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)?
613 " (registered)":"",
614 (s->sm_config < __arraycount(spdmem_parity_types))?
615 spdmem_parity_types[s->sm_config]:"invalid parity");
616
617 dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17);
618 dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) *
619 s->sm_ddr2.ddr2_banks_per_chip;
620
621 cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 +
622 spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac];
623 bits = s->sm_ddr2.ddr2_datawidth;
624 if ((s->sm_config & 0x03) != 0)
625 bits -= 8;
626 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
627 "PC2", 0);
628
629 aprint_verbose_dev(self,
630 "%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n",
631 s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols,
632 s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip,
633 cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
634
635 tAA = 0;
636 for (i = 2; i < 8; i++)
637 if (s->sm_ddr2.ddr2_tCAS & (1 << i))
638 tAA = i;
639
640 #define __DDR2_ROUND(scale, field) \
641 ((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time)
642
643 aprint_verbose_dev(self, LATENCY, tAA, __DDR2_ROUND(250, ddr2_tRCD),
644 __DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS));
645
646 #undef __DDR_ROUND
647
648 decode_voltage_refresh(self, s);
649 }
650
651 static void
652 decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s) {
653 int dimm_size, cycle_time, bits;
654
655 if (s->sm_ddr3.ddr3_mod_type ==
656 SPDMEM_DDR3_TYPE_MINI_RDIMM ||
657 s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM)
658 aprint_normal(" (registered)");
659 aprint_normal(", %sECC, %stemp-sensor, ",
660 (s->sm_ddr3.ddr3_hasECC)?"":"no ",
661 (s->sm_ddr3.ddr3_has_therm_sensor)?"":"no ");
662
663 /*
664 * DDR3 size specification is quite different from others
665 *
666 * Module capacity is defined as
667 * Chip_Capacity_in_bits / 8bits-per-byte *
668 * external_bus_width / internal_bus_width
669 * We further divide by 2**20 to get our answer in MB
670 */
671 dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 +
672 (s->sm_ddr3.ddr3_datawidth + 3) -
673 (s->sm_ddr3.ddr3_chipwidth + 2);
674 dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1);
675
676 cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend +
677 (s->sm_ddr3.ddr3_mtb_divisor / 2)) /
678 s->sm_ddr3.ddr3_mtb_divisor;
679 cycle_time *= s->sm_ddr3.ddr3_tCKmin;
680 bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3);
681 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, FALSE,
682 "PC3", 0);
683
684 aprint_verbose_dev(self,
685 "%d rows, %d cols, %d log. banks, %d phys. banks, "
686 "%d.%03dns cycle time\n",
687 s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12,
688 1 << (s->sm_ddr3.ddr3_logbanks + 3),
689 s->sm_ddr3.ddr3_physbanks + 1,
690 cycle_time/1000, cycle_time % 1000);
691
692 #define __DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin)
693
694 aprint_verbose_dev(self, LATENCY, __DDR3_CYCLES(ddr3_tAAmin),
695 __DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin),
696 (s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) /
697 s->sm_ddr3.ddr3_tCKmin);
698
699 #undef __DDR3_CYCLES
700 }
701
702 static void
703 decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
704 int dimm_size, cycle_time, bits;
705
706 /*
707 * FB-DIMM module size calculation is very much like DDR3
708 */
709 dimm_size = s->sm_fbd.fbdimm_rows + 12 +
710 s->sm_fbd.fbdimm_cols + 9 - 20 - 3;
711 dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2));
712
713 cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend +
714 (s->sm_fbd.fbdimm_mtb_divisor / 2)) /
715 s->sm_fbd.fbdimm_mtb_divisor;
716 bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2);
717 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
718 "PC2", 0);
719
720 aprint_verbose_dev(self,
721 "%d rows, %d cols, %d banks, %d.%02dns cycle time\n",
722 s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols,
723 1 << (s->sm_fbd.fbdimm_banks + 2),
724 cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
725
726 #define __FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin)
727
728 aprint_verbose_dev(self, LATENCY, __FBDIMM_CYCLES(fbdimm_tAAmin),
729 __FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin),
730 (s->sm_fbd.fbdimm_tRAS_msb * 256 +
731 s->sm_fbd.fbdimm_tRAS_lsb) /
732 s->sm_fbd.fbdimm_tCKmin);
733
734 #undef __FBDIMM_CYCLES
735
736 decode_voltage_refresh(self, s);
737 }
738