spdmem.c revision 1.7.2.2 1 /* $NetBSD: spdmem.c,v 1.7.2.2 2014/05/18 17:45:38 rmind Exp $ */
2
3 /*
4 * Copyright (c) 2007 Nicolas Joly
5 * Copyright (c) 2007 Paul Goyette
6 * Copyright (c) 2007 Tobias Nygren
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Serial Presence Detect (SPD) memory identification
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.7.2.2 2014/05/18 17:45:38 rmind Exp $");
39
40 #include <sys/param.h>
41 #include <sys/device.h>
42 #include <sys/endian.h>
43 #include <sys/sysctl.h>
44 #include <machine/bswap.h>
45
46 #include <dev/i2c/i2cvar.h>
47 #include <dev/ic/spdmemreg.h>
48 #include <dev/ic/spdmemvar.h>
49
50 /* Routines for decoding spd data */
51 static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *);
52 static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *);
53 static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *,
54 int);
55 static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *);
56 static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *);
57 static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *);
58 static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *);
59
60 static void decode_size_speed(device_t, const struct sysctlnode *,
61 int, int, int, int, bool, const char *, int);
62 static void decode_voltage_refresh(device_t, struct spdmem *);
63
64 #define IS_RAMBUS_TYPE (s->sm_len < 4)
65
66 static const char* spdmem_basic_types[] = {
67 "unknown",
68 "FPM",
69 "EDO",
70 "Pipelined Nibble",
71 "SDRAM",
72 "ROM",
73 "DDR SGRAM",
74 "DDR SDRAM",
75 "DDR2 SDRAM",
76 "DDR2 SDRAM FB",
77 "DDR2 SDRAM FB Probe",
78 "DDR3 SDRAM"
79 };
80
81 static const char* spdmem_superset_types[] = {
82 "unknown",
83 "ESDRAM",
84 "DDR ESDRAM",
85 "PEM EDO",
86 "PEM SDRAM"
87 };
88
89 static const char* spdmem_voltage_types[] = {
90 "TTL (5V tolerant)",
91 "LvTTL (not 5V tolerant)",
92 "HSTL 1.5V",
93 "SSTL 3.3V",
94 "SSTL 2.5V",
95 "SSTL 1.8V"
96 };
97
98 static const char* spdmem_refresh_types[] = {
99 "15.625us",
100 "3.9us",
101 "7.8us",
102 "31.3us",
103 "62.5us",
104 "125us"
105 };
106
107 static const char* spdmem_parity_types[] = {
108 "no parity or ECC",
109 "data parity",
110 "data ECC",
111 "data parity and ECC",
112 "cmd/addr parity",
113 "cmd/addr/data parity",
114 "cmd/addr parity, data ECC",
115 "cmd/addr/data parity, data ECC"
116 };
117
118 /* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */
119 static const uint16_t spdmem_cycle_frac[] = {
120 0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
121 250, 333, 667, 750, 999, 999
122 };
123
124 /* Format string for timing info */
125 #define LATENCY "tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n"
126
127 /* CRC functions used for certain memory types */
128
129 static uint16_t spdcrc16 (struct spdmem_softc *sc, int count)
130 {
131 uint16_t crc;
132 int i, j;
133 uint8_t val;
134 crc = 0;
135 for (j = 0; j <= count; j++) {
136 val = (sc->sc_read)(sc, j);
137 crc = crc ^ val << 8;
138 for (i = 0; i < 8; ++i)
139 if (crc & 0x8000)
140 crc = crc << 1 ^ 0x1021;
141 else
142 crc = crc << 1;
143 }
144 return (crc & 0xFFFF);
145 }
146
147 int
148 spdmem_common_probe(struct spdmem_softc *sc)
149 {
150 int cksum = 0;
151 uint8_t i, val, spd_type;
152 int spd_len, spd_crc_cover;
153 uint16_t crc_calc, crc_spd;
154
155 spd_type = (sc->sc_read)(sc, 2);
156
157 /* For older memory types, validate the checksum over 1st 63 bytes */
158 if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
159 for (i = 0; i < 63; i++)
160 cksum += (sc->sc_read)(sc, i);
161
162 val = (sc->sc_read)(sc, 63);
163
164 if (cksum == 0 || (cksum & 0xff) != val) {
165 aprint_debug("spd checksum failed, calc = 0x%02x, "
166 "spd = 0x%02x\n", cksum, val);
167 return 0;
168 } else
169 return 1;
170 }
171
172 /* For DDR3 and FBDIMM, verify the CRC */
173 else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
174 spd_len = (sc->sc_read)(sc, 0);
175 if (spd_len & SPDMEM_SPDCRC_116)
176 spd_crc_cover = 116;
177 else
178 spd_crc_cover = 125;
179 switch (spd_len & SPDMEM_SPDLEN_MASK) {
180 case SPDMEM_SPDLEN_128:
181 spd_len = 128;
182 break;
183 case SPDMEM_SPDLEN_176:
184 spd_len = 176;
185 break;
186 case SPDMEM_SPDLEN_256:
187 spd_len = 256;
188 break;
189 default:
190 return 0;
191 }
192 if (spd_crc_cover > spd_len)
193 return 0;
194 crc_calc = spdcrc16(sc, spd_crc_cover);
195 crc_spd = (sc->sc_read)(sc, 127) << 8;
196 crc_spd |= (sc->sc_read)(sc, 126);
197 if (crc_calc != crc_spd) {
198 aprint_debug("crc16 failed, covers %d bytes, "
199 "calc = 0x%04x, spd = 0x%04x\n",
200 spd_crc_cover, crc_calc, crc_spd);
201 return 0;
202 }
203 return 1;
204 }
205
206 /* For unrecognized memory types, don't match at all */
207 return 0;
208 }
209
210 void
211 spdmem_common_attach(struct spdmem_softc *sc, device_t self)
212 {
213 struct spdmem *s = &(sc->sc_spd_data);
214 const char *type;
215 const char *rambus_rev = "Reserved";
216 int dimm_size;
217 unsigned int i, spd_len, spd_size;
218 const struct sysctlnode *node = NULL;
219
220 /*
221 * FBDIMM and DDR3 (and probably all newer) have a different
222 * encoding of the SPD EEPROM used/total sizes
223 */
224 s->sm_len = (sc->sc_read)(sc, 0);
225 s->sm_size = (sc->sc_read)(sc, 1);
226 s->sm_type = (sc->sc_read)(sc, 2);
227
228 if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) {
229 spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK);
230 switch (s->sm_len & SPDMEM_SPDLEN_MASK) {
231 case SPDMEM_SPDLEN_128:
232 spd_len = 128;
233 break;
234 case SPDMEM_SPDLEN_176:
235 spd_len = 176;
236 break;
237 case SPDMEM_SPDLEN_256:
238 spd_len = 256;
239 break;
240 default:
241 spd_len = 64;
242 break;
243 }
244 } else {
245 spd_size = 1 << s->sm_size;
246 spd_len = s->sm_len;
247 if (spd_len < 64)
248 spd_len = 64;
249 }
250 if (spd_len > spd_size)
251 spd_len = spd_size;
252 if (spd_len > sizeof(struct spdmem))
253 spd_len = sizeof(struct spdmem);
254 for (i = 3; i < spd_len; i++)
255 ((uint8_t *)s)[i] = (sc->sc_read)(sc, i);
256
257 /*
258 * Setup our sysctl subtree, hw.spdmemN
259 */
260 sc->sc_sysctl_log = NULL;
261 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &node,
262 0, CTLTYPE_NODE,
263 device_xname(self), NULL, NULL, 0, NULL, 0,
264 CTL_HW, CTL_CREATE, CTL_EOL);
265 if (node != NULL && spd_len != 0)
266 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
267 0,
268 CTLTYPE_STRUCT, "spd_data",
269 SYSCTL_DESCR("raw spd data"), NULL,
270 0, s, spd_len,
271 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
272
273 /*
274 * Decode and print key SPD contents
275 */
276 if (IS_RAMBUS_TYPE) {
277 if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS)
278 type = "Rambus";
279 else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS)
280 type = "Direct Rambus";
281 else
282 type = "Rambus (unknown)";
283
284 switch (s->sm_len) {
285 case 0:
286 rambus_rev = "Invalid";
287 break;
288 case 1:
289 rambus_rev = "0.7";
290 break;
291 case 2:
292 rambus_rev = "1.0";
293 break;
294 default:
295 rambus_rev = "Reserved";
296 break;
297 }
298 } else {
299 if (s->sm_type < __arraycount(spdmem_basic_types))
300 type = spdmem_basic_types[s->sm_type];
301 else
302 type = "unknown memory type";
303
304 if (s->sm_type == SPDMEM_MEMTYPE_EDO &&
305 s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM)
306 type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM];
307 if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
308 s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM)
309 type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM];
310 if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM &&
311 s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM)
312 type =
313 spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
314 if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
315 s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) {
316 type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
317 }
318 }
319
320 strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN);
321 if (node != NULL)
322 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
323 0,
324 CTLTYPE_STRING, "mem_type",
325 SYSCTL_DESCR("memory module type"), NULL,
326 0, sc->sc_type, 0,
327 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
328
329 if (IS_RAMBUS_TYPE) {
330 aprint_naive("\n");
331 aprint_normal("\n");
332 aprint_normal_dev(self, "%s, SPD Revision %s", type, rambus_rev);
333 dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13);
334 if (dimm_size >= 1024)
335 aprint_normal(", %dGB\n", dimm_size / 1024);
336 else
337 aprint_normal(", %dMB\n", dimm_size);
338
339 /* No further decode for RAMBUS memory */
340 return;
341 }
342 switch (s->sm_type) {
343 case SPDMEM_MEMTYPE_EDO:
344 case SPDMEM_MEMTYPE_FPM:
345 decode_edofpm(node, self, s);
346 break;
347 case SPDMEM_MEMTYPE_ROM:
348 decode_rom(node, self, s);
349 break;
350 case SPDMEM_MEMTYPE_SDRAM:
351 decode_sdram(node, self, s, spd_len);
352 break;
353 case SPDMEM_MEMTYPE_DDRSDRAM:
354 decode_ddr(node, self, s);
355 break;
356 case SPDMEM_MEMTYPE_DDR2SDRAM:
357 decode_ddr2(node, self, s);
358 break;
359 case SPDMEM_MEMTYPE_DDR3SDRAM:
360 decode_ddr3(node, self, s);
361 break;
362 case SPDMEM_MEMTYPE_FBDIMM:
363 case SPDMEM_MEMTYPE_FBDIMM_PROBE:
364 decode_fbdimm(node, self, s);
365 break;
366 }
367
368 /* Dump SPD */
369 for (i = 0; i < spd_len; i += 16) {
370 unsigned int j, k;
371 aprint_debug_dev(self, "0x%02x:", i);
372 k = (spd_len > (i + 16)) ? i + 16 : spd_len;
373 for (j = i; j < k; j++)
374 aprint_debug(" %02x", ((uint8_t *)s)[j]);
375 aprint_debug("\n");
376 }
377 }
378
379 int
380 spdmem_common_detach(struct spdmem_softc *sc, device_t self)
381 {
382 sysctl_teardown(&sc->sc_sysctl_log);
383
384 return 0;
385 }
386
387 static void
388 decode_size_speed(device_t self, const struct sysctlnode *node,
389 int dimm_size, int cycle_time, int d_clk, int bits,
390 bool round, const char *ddr_type_string, int speed)
391 {
392 int p_clk;
393 struct spdmem_softc *sc = device_private(self);
394
395 if (dimm_size < 1024)
396 aprint_normal("%dMB", dimm_size);
397 else
398 aprint_normal("%dGB", dimm_size / 1024);
399 if (node != NULL)
400 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
401 CTLFLAG_IMMEDIATE,
402 CTLTYPE_INT, "size",
403 SYSCTL_DESCR("module size in MB"), NULL,
404 dimm_size, NULL, 0,
405 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
406
407 if (cycle_time == 0) {
408 aprint_normal("\n");
409 return;
410 }
411
412 /*
413 * Calculate p_clk first, since for DDR3 we need maximum significance.
414 * DDR3 rating is not rounded to a multiple of 100. This results in
415 * cycle_time of 1.5ns displayed as PC3-10666.
416 *
417 * For SDRAM, the speed is provided by the caller so we use it.
418 */
419 d_clk *= 1000 * 1000;
420 if (speed)
421 p_clk = speed;
422 else
423 p_clk = (d_clk * bits) / 8 / cycle_time;
424 d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
425 if (round) {
426 if ((p_clk % 100) >= 50)
427 p_clk += 50;
428 p_clk -= p_clk % 100;
429 }
430 aprint_normal(", %dMHz (%s-%d)\n",
431 d_clk, ddr_type_string, p_clk);
432 if (node != NULL)
433 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
434 CTLFLAG_IMMEDIATE,
435 CTLTYPE_INT, "speed",
436 SYSCTL_DESCR("memory speed in MHz"),
437 NULL, d_clk, NULL, 0,
438 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
439 }
440
441 static void
442 decode_voltage_refresh(device_t self, struct spdmem *s)
443 {
444 const char *voltage, *refresh;
445
446 if (s->sm_voltage < __arraycount(spdmem_voltage_types))
447 voltage = spdmem_voltage_types[s->sm_voltage];
448 else
449 voltage = "unknown";
450
451 if (s->sm_refresh < __arraycount(spdmem_refresh_types))
452 refresh = spdmem_refresh_types[s->sm_refresh];
453 else
454 refresh = "unknown";
455
456 aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n",
457 voltage, refresh,
458 s->sm_selfrefresh?" (self-refreshing)":"");
459 }
460
461 static void
462 decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
463 aprint_naive("\n");
464 aprint_normal("\n");
465 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
466
467 aprint_normal("\n");
468 aprint_verbose_dev(self,
469 "%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n",
470 s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks,
471 s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC);
472 }
473
474 static void
475 decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s) {
476 aprint_naive("\n");
477 aprint_normal("\n");
478 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
479
480 aprint_normal("\n");
481 aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n",
482 s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks);
483 }
484
485 static void
486 decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s,
487 int spd_len) {
488 int dimm_size, cycle_time, bits, tAA, i, speed, freq;
489
490 aprint_naive("\n");
491 aprint_normal("\n");
492 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
493
494 aprint_normal("%s, %s, ",
495 (s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)?
496 " (registered)":"",
497 (s->sm_config < __arraycount(spdmem_parity_types))?
498 spdmem_parity_types[s->sm_config]:"invalid parity");
499
500 dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17);
501 dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip;
502
503 cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 +
504 s->sm_sdr.sdr_cycle_tenths * 100;
505 bits = le16toh(s->sm_sdr.sdr_datawidth);
506 if (s->sm_config == 1 || s->sm_config == 2)
507 bits -= 8;
508
509 /* Calculate speed here - from OpenBSD */
510 if (spd_len >= 128)
511 freq = ((uint8_t *)s)[126];
512 else
513 freq = 0;
514 switch (freq) {
515 /*
516 * Must check cycle time since some PC-133 DIMMs
517 * actually report PC-100
518 */
519 case 100:
520 case 133:
521 if (cycle_time < 8000)
522 speed = 133;
523 else
524 speed = 100;
525 break;
526 case 0x66: /* Legacy DIMMs use _hex_ 66! */
527 default:
528 speed = 66;
529 }
530 decode_size_speed(self, node, dimm_size, cycle_time, 1, bits, FALSE,
531 "PC", speed);
532
533 aprint_verbose_dev(self,
534 "%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n",
535 s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks,
536 s->sm_sdr.sdr_banks_per_chip, cycle_time/1000,
537 (cycle_time % 1000) / 100);
538
539 tAA = 0;
540 for (i = 0; i < 8; i++)
541 if (s->sm_sdr.sdr_tCAS & (1 << i))
542 tAA = i;
543 tAA++;
544 aprint_verbose_dev(self, LATENCY, tAA, s->sm_sdr.sdr_tRCD,
545 s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS);
546
547 decode_voltage_refresh(self, s);
548 }
549
550 static void
551 decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s) {
552 int dimm_size, cycle_time, bits, tAA, i;
553
554 aprint_naive("\n");
555 aprint_normal("\n");
556 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
557
558 aprint_normal("%s, %s, ",
559 (s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)?
560 " (registered)":"",
561 (s->sm_config < __arraycount(spdmem_parity_types))?
562 spdmem_parity_types[s->sm_config]:"invalid parity");
563
564 dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17);
565 dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip;
566
567 cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 +
568 spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths];
569 bits = le16toh(s->sm_ddr.ddr_datawidth);
570 if (s->sm_config == 1 || s->sm_config == 2)
571 bits -= 8;
572 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
573 "PC", 0);
574
575 aprint_verbose_dev(self,
576 "%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n",
577 s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks,
578 s->sm_ddr.ddr_banks_per_chip, cycle_time/1000,
579 (cycle_time % 1000 + 50) / 100);
580
581 tAA = 0;
582 for (i = 2; i < 8; i++)
583 if (s->sm_ddr.ddr_tCAS & (1 << i))
584 tAA = i;
585 tAA /= 2;
586
587 #define __DDR_ROUND(scale, field) \
588 ((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time)
589
590 aprint_verbose_dev(self, LATENCY, tAA, __DDR_ROUND(250, ddr_tRCD),
591 __DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS));
592
593 #undef __DDR_ROUND
594
595 decode_voltage_refresh(self, s);
596 }
597
598 static void
599 decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s) {
600 int dimm_size, cycle_time, bits, tAA, i;
601
602 aprint_naive("\n");
603 aprint_normal("\n");
604 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
605
606 aprint_normal("%s, %s, ",
607 (s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)?
608 " (registered)":"",
609 (s->sm_config < __arraycount(spdmem_parity_types))?
610 spdmem_parity_types[s->sm_config]:"invalid parity");
611
612 dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17);
613 dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) *
614 s->sm_ddr2.ddr2_banks_per_chip;
615
616 cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 +
617 spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac];
618 bits = s->sm_ddr2.ddr2_datawidth;
619 if ((s->sm_config & 0x03) != 0)
620 bits -= 8;
621 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
622 "PC2", 0);
623
624 aprint_verbose_dev(self,
625 "%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n",
626 s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols,
627 s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip,
628 cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
629
630 tAA = 0;
631 for (i = 2; i < 8; i++)
632 if (s->sm_ddr2.ddr2_tCAS & (1 << i))
633 tAA = i;
634
635 #define __DDR2_ROUND(scale, field) \
636 ((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time)
637
638 aprint_verbose_dev(self, LATENCY, tAA, __DDR2_ROUND(250, ddr2_tRCD),
639 __DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS));
640
641 #undef __DDR_ROUND
642
643 decode_voltage_refresh(self, s);
644 }
645
646 static void
647 decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s) {
648 int dimm_size, cycle_time, bits;
649
650 aprint_naive("\n");
651 aprint_normal(": %18s\n", s->sm_ddr3.ddr3_part);
652 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
653
654 if (s->sm_ddr3.ddr3_mod_type ==
655 SPDMEM_DDR3_TYPE_MINI_RDIMM ||
656 s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM)
657 aprint_normal(" (registered)");
658 aprint_normal(", %sECC, %stemp-sensor, ",
659 (s->sm_ddr3.ddr3_hasECC)?"":"no ",
660 (s->sm_ddr3.ddr3_has_therm_sensor)?"":"no ");
661
662 /*
663 * DDR3 size specification is quite different from others
664 *
665 * Module capacity is defined as
666 * Chip_Capacity_in_bits / 8bits-per-byte *
667 * external_bus_width / internal_bus_width
668 * We further divide by 2**20 to get our answer in MB
669 */
670 dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 +
671 (s->sm_ddr3.ddr3_datawidth + 3) -
672 (s->sm_ddr3.ddr3_chipwidth + 2);
673 dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1);
674
675 cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend +
676 (s->sm_ddr3.ddr3_mtb_divisor / 2)) /
677 s->sm_ddr3.ddr3_mtb_divisor;
678 cycle_time *= s->sm_ddr3.ddr3_tCKmin;
679 bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3);
680 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, FALSE,
681 "PC3", 0);
682
683 aprint_verbose_dev(self,
684 "%d rows, %d cols, %d log. banks, %d phys. banks, "
685 "%d.%03dns cycle time\n",
686 s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12,
687 1 << (s->sm_ddr3.ddr3_logbanks + 3),
688 s->sm_ddr3.ddr3_physbanks + 1,
689 cycle_time/1000, cycle_time % 1000);
690
691 #define __DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin)
692
693 aprint_verbose_dev(self, LATENCY, __DDR3_CYCLES(ddr3_tAAmin),
694 __DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin),
695 (s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) /
696 s->sm_ddr3.ddr3_tCKmin);
697
698 #undef __DDR3_CYCLES
699 }
700
701 static void
702 decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
703 int dimm_size, cycle_time, bits;
704
705 aprint_naive("\n");
706 aprint_normal("\n");
707 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
708
709 /*
710 * FB-DIMM module size calculation is very much like DDR3
711 */
712 dimm_size = s->sm_fbd.fbdimm_rows + 12 +
713 s->sm_fbd.fbdimm_cols + 9 - 20 - 3;
714 dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2));
715
716 cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend +
717 (s->sm_fbd.fbdimm_mtb_divisor / 2)) /
718 s->sm_fbd.fbdimm_mtb_divisor;
719 bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2);
720 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
721 "PC2", 0);
722
723 aprint_verbose_dev(self,
724 "%d rows, %d cols, %d banks, %d.%02dns cycle time\n",
725 s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols,
726 1 << (s->sm_fbd.fbdimm_banks + 2),
727 cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
728
729 #define __FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin)
730
731 aprint_verbose_dev(self, LATENCY, __FBDIMM_CYCLES(fbdimm_tAAmin),
732 __FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin),
733 (s->sm_fbd.fbdimm_tRAS_msb * 256 +
734 s->sm_fbd.fbdimm_tRAS_lsb) /
735 s->sm_fbd.fbdimm_tCKmin);
736
737 #undef __FBDIMM_CYCLES
738
739 decode_voltage_refresh(self, s);
740 }
741