spdmem.c revision 1.9 1 /* $NetBSD: spdmem.c,v 1.9 2014/02/25 18:30:09 pooka Exp $ */
2
3 /*
4 * Copyright (c) 2007 Nicolas Joly
5 * Copyright (c) 2007 Paul Goyette
6 * Copyright (c) 2007 Tobias Nygren
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Serial Presence Detect (SPD) memory identification
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.9 2014/02/25 18:30:09 pooka Exp $");
39
40 #include <sys/param.h>
41 #include <sys/device.h>
42 #include <sys/endian.h>
43 #include <sys/sysctl.h>
44 #include <machine/bswap.h>
45
46 #include <dev/i2c/i2cvar.h>
47 #include <dev/ic/spdmemreg.h>
48 #include <dev/ic/spdmemvar.h>
49
50 SYSCTL_SETUP_PROTO(sysctl_spdmem_setup);
51
52 /* Routines for decoding spd data */
53 static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *);
54 static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *);
55 static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *,
56 int);
57 static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *);
58 static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *);
59 static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *);
60 static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *);
61
62 static void decode_size_speed(device_t, const struct sysctlnode *,
63 int, int, int, int, bool, const char *, int);
64 static void decode_voltage_refresh(device_t, struct spdmem *);
65
66 #define IS_RAMBUS_TYPE (s->sm_len < 4)
67
68 static const char* spdmem_basic_types[] = {
69 "unknown",
70 "FPM",
71 "EDO",
72 "Pipelined Nibble",
73 "SDRAM",
74 "ROM",
75 "DDR SGRAM",
76 "DDR SDRAM",
77 "DDR2 SDRAM",
78 "DDR2 SDRAM FB",
79 "DDR2 SDRAM FB Probe",
80 "DDR3 SDRAM"
81 };
82
83 static const char* spdmem_superset_types[] = {
84 "unknown",
85 "ESDRAM",
86 "DDR ESDRAM",
87 "PEM EDO",
88 "PEM SDRAM"
89 };
90
91 static const char* spdmem_voltage_types[] = {
92 "TTL (5V tolerant)",
93 "LvTTL (not 5V tolerant)",
94 "HSTL 1.5V",
95 "SSTL 3.3V",
96 "SSTL 2.5V",
97 "SSTL 1.8V"
98 };
99
100 static const char* spdmem_refresh_types[] = {
101 "15.625us",
102 "3.9us",
103 "7.8us",
104 "31.3us",
105 "62.5us",
106 "125us"
107 };
108
109 static const char* spdmem_parity_types[] = {
110 "no parity or ECC",
111 "data parity",
112 "data ECC",
113 "data parity and ECC",
114 "cmd/addr parity",
115 "cmd/addr/data parity",
116 "cmd/addr parity, data ECC",
117 "cmd/addr/data parity, data ECC"
118 };
119
120 /* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */
121 static const uint16_t spdmem_cycle_frac[] = {
122 0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
123 250, 333, 667, 750, 999, 999
124 };
125
126 /* Format string for timing info */
127 #define LATENCY "tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n"
128
129 /* CRC functions used for certain memory types */
130
131 static uint16_t spdcrc16 (struct spdmem_softc *sc, int count)
132 {
133 uint16_t crc;
134 int i, j;
135 uint8_t val;
136 crc = 0;
137 for (j = 0; j <= count; j++) {
138 val = (sc->sc_read)(sc, j);
139 crc = crc ^ val << 8;
140 for (i = 0; i < 8; ++i)
141 if (crc & 0x8000)
142 crc = crc << 1 ^ 0x1021;
143 else
144 crc = crc << 1;
145 }
146 return (crc & 0xFFFF);
147 }
148
149 int
150 spdmem_common_probe(struct spdmem_softc *sc)
151 {
152 int cksum = 0;
153 uint8_t i, val, spd_type;
154 int spd_len, spd_crc_cover;
155 uint16_t crc_calc, crc_spd;
156
157 spd_type = (sc->sc_read)(sc, 2);
158
159 /* For older memory types, validate the checksum over 1st 63 bytes */
160 if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
161 for (i = 0; i < 63; i++)
162 cksum += (sc->sc_read)(sc, i);
163
164 val = (sc->sc_read)(sc, 63);
165
166 if (cksum == 0 || (cksum & 0xff) != val) {
167 aprint_debug("spd checksum failed, calc = 0x%02x, "
168 "spd = 0x%02x\n", cksum, val);
169 return 0;
170 } else
171 return 1;
172 }
173
174 /* For DDR3 and FBDIMM, verify the CRC */
175 else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
176 spd_len = (sc->sc_read)(sc, 0);
177 if (spd_len & SPDMEM_SPDCRC_116)
178 spd_crc_cover = 116;
179 else
180 spd_crc_cover = 125;
181 switch (spd_len & SPDMEM_SPDLEN_MASK) {
182 case SPDMEM_SPDLEN_128:
183 spd_len = 128;
184 break;
185 case SPDMEM_SPDLEN_176:
186 spd_len = 176;
187 break;
188 case SPDMEM_SPDLEN_256:
189 spd_len = 256;
190 break;
191 default:
192 return 0;
193 }
194 if (spd_crc_cover > spd_len)
195 return 0;
196 crc_calc = spdcrc16(sc, spd_crc_cover);
197 crc_spd = (sc->sc_read)(sc, 127) << 8;
198 crc_spd |= (sc->sc_read)(sc, 126);
199 if (crc_calc != crc_spd) {
200 aprint_debug("crc16 failed, covers %d bytes, "
201 "calc = 0x%04x, spd = 0x%04x\n",
202 spd_crc_cover, crc_calc, crc_spd);
203 return 0;
204 }
205 return 1;
206 }
207
208 /* For unrecognized memory types, don't match at all */
209 return 0;
210 }
211
212 void
213 spdmem_common_attach(struct spdmem_softc *sc, device_t self)
214 {
215 struct spdmem *s = &(sc->sc_spd_data);
216 const char *type;
217 const char *rambus_rev = "Reserved";
218 int dimm_size;
219 unsigned int i, spd_len, spd_size;
220 const struct sysctlnode *node = NULL;
221
222 /*
223 * FBDIMM and DDR3 (and probably all newer) have a different
224 * encoding of the SPD EEPROM used/total sizes
225 */
226 s->sm_len = (sc->sc_read)(sc, 0);
227 s->sm_size = (sc->sc_read)(sc, 1);
228 s->sm_type = (sc->sc_read)(sc, 2);
229
230 if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) {
231 spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK);
232 switch (s->sm_len & SPDMEM_SPDLEN_MASK) {
233 case SPDMEM_SPDLEN_128:
234 spd_len = 128;
235 break;
236 case SPDMEM_SPDLEN_176:
237 spd_len = 176;
238 break;
239 case SPDMEM_SPDLEN_256:
240 spd_len = 256;
241 break;
242 default:
243 spd_len = 64;
244 break;
245 }
246 } else {
247 spd_size = 1 << s->sm_size;
248 spd_len = s->sm_len;
249 if (spd_len < 64)
250 spd_len = 64;
251 }
252 if (spd_len > spd_size)
253 spd_len = spd_size;
254 if (spd_len > sizeof(struct spdmem))
255 spd_len = sizeof(struct spdmem);
256 for (i = 3; i < spd_len; i++)
257 ((uint8_t *)s)[i] = (sc->sc_read)(sc, i);
258
259 /*
260 * Setup our sysctl subtree, hw.spdmemN
261 */
262 sc->sc_sysctl_log = NULL;
263 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &node,
264 0, CTLTYPE_NODE,
265 device_xname(self), NULL, NULL, 0, NULL, 0,
266 CTL_HW, CTL_CREATE, CTL_EOL);
267 if (node != NULL && spd_len != 0)
268 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
269 0,
270 CTLTYPE_STRUCT, "spd_data",
271 SYSCTL_DESCR("raw spd data"), NULL,
272 0, s, spd_len,
273 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
274
275 /*
276 * Decode and print key SPD contents
277 */
278 if (IS_RAMBUS_TYPE) {
279 if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS)
280 type = "Rambus";
281 else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS)
282 type = "Direct Rambus";
283 else
284 type = "Rambus (unknown)";
285
286 switch (s->sm_len) {
287 case 0:
288 rambus_rev = "Invalid";
289 break;
290 case 1:
291 rambus_rev = "0.7";
292 break;
293 case 2:
294 rambus_rev = "1.0";
295 break;
296 default:
297 rambus_rev = "Reserved";
298 break;
299 }
300 } else {
301 if (s->sm_type < __arraycount(spdmem_basic_types))
302 type = spdmem_basic_types[s->sm_type];
303 else
304 type = "unknown memory type";
305
306 if (s->sm_type == SPDMEM_MEMTYPE_EDO &&
307 s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM)
308 type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM];
309 if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
310 s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM)
311 type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM];
312 if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM &&
313 s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM)
314 type =
315 spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
316 if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
317 s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) {
318 type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
319 }
320 }
321
322 strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN);
323 if (node != NULL)
324 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
325 0,
326 CTLTYPE_STRING, "mem_type",
327 SYSCTL_DESCR("memory module type"), NULL,
328 0, sc->sc_type, 0,
329 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
330
331 if (IS_RAMBUS_TYPE) {
332 aprint_naive("\n");
333 aprint_normal("\n");
334 aprint_normal_dev(self, "%s, SPD Revision %s", type, rambus_rev);
335 dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13);
336 if (dimm_size >= 1024)
337 aprint_normal(", %dGB\n", dimm_size / 1024);
338 else
339 aprint_normal(", %dMB\n", dimm_size);
340
341 /* No further decode for RAMBUS memory */
342 return;
343 }
344 switch (s->sm_type) {
345 case SPDMEM_MEMTYPE_EDO:
346 case SPDMEM_MEMTYPE_FPM:
347 decode_edofpm(node, self, s);
348 break;
349 case SPDMEM_MEMTYPE_ROM:
350 decode_rom(node, self, s);
351 break;
352 case SPDMEM_MEMTYPE_SDRAM:
353 decode_sdram(node, self, s, spd_len);
354 break;
355 case SPDMEM_MEMTYPE_DDRSDRAM:
356 decode_ddr(node, self, s);
357 break;
358 case SPDMEM_MEMTYPE_DDR2SDRAM:
359 decode_ddr2(node, self, s);
360 break;
361 case SPDMEM_MEMTYPE_DDR3SDRAM:
362 decode_ddr3(node, self, s);
363 break;
364 case SPDMEM_MEMTYPE_FBDIMM:
365 case SPDMEM_MEMTYPE_FBDIMM_PROBE:
366 decode_fbdimm(node, self, s);
367 break;
368 }
369
370 /* Dump SPD */
371 for (i = 0; i < spd_len; i += 16) {
372 unsigned int j, k;
373 aprint_debug_dev(self, "0x%02x:", i);
374 k = (spd_len > (i + 16)) ? i + 16 : spd_len;
375 for (j = i; j < k; j++)
376 aprint_debug(" %02x", ((uint8_t *)s)[j]);
377 aprint_debug("\n");
378 }
379 }
380
381 int
382 spdmem_common_detach(struct spdmem_softc *sc, device_t self)
383 {
384 sysctl_teardown(&sc->sc_sysctl_log);
385
386 return 0;
387 }
388
389 static void
390 decode_size_speed(device_t self, const struct sysctlnode *node,
391 int dimm_size, int cycle_time, int d_clk, int bits,
392 bool round, const char *ddr_type_string, int speed)
393 {
394 int p_clk;
395 struct spdmem_softc *sc = device_private(self);
396
397 if (dimm_size < 1024)
398 aprint_normal("%dMB", dimm_size);
399 else
400 aprint_normal("%dGB", dimm_size / 1024);
401 if (node != NULL)
402 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
403 CTLFLAG_IMMEDIATE,
404 CTLTYPE_INT, "size",
405 SYSCTL_DESCR("module size in MB"), NULL,
406 dimm_size, NULL, 0,
407 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
408
409 if (cycle_time == 0) {
410 aprint_normal("\n");
411 return;
412 }
413
414 /*
415 * Calculate p_clk first, since for DDR3 we need maximum significance.
416 * DDR3 rating is not rounded to a multiple of 100. This results in
417 * cycle_time of 1.5ns displayed as PC3-10666.
418 *
419 * For SDRAM, the speed is provided by the caller so we use it.
420 */
421 d_clk *= 1000 * 1000;
422 if (speed)
423 p_clk = speed;
424 else
425 p_clk = (d_clk * bits) / 8 / cycle_time;
426 d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
427 if (round) {
428 if ((p_clk % 100) >= 50)
429 p_clk += 50;
430 p_clk -= p_clk % 100;
431 }
432 aprint_normal(", %dMHz (%s-%d)\n",
433 d_clk, ddr_type_string, p_clk);
434 if (node != NULL)
435 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
436 CTLFLAG_IMMEDIATE,
437 CTLTYPE_INT, "speed",
438 SYSCTL_DESCR("memory speed in MHz"),
439 NULL, d_clk, NULL, 0,
440 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
441 }
442
443 static void
444 decode_voltage_refresh(device_t self, struct spdmem *s)
445 {
446 const char *voltage, *refresh;
447
448 if (s->sm_voltage < __arraycount(spdmem_voltage_types))
449 voltage = spdmem_voltage_types[s->sm_voltage];
450 else
451 voltage = "unknown";
452
453 if (s->sm_refresh < __arraycount(spdmem_refresh_types))
454 refresh = spdmem_refresh_types[s->sm_refresh];
455 else
456 refresh = "unknown";
457
458 aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n",
459 voltage, refresh,
460 s->sm_selfrefresh?" (self-refreshing)":"");
461 }
462
463 static void
464 decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
465 aprint_naive("\n");
466 aprint_normal("\n");
467 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
468
469 aprint_normal("\n");
470 aprint_verbose_dev(self,
471 "%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n",
472 s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks,
473 s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC);
474 }
475
476 static void
477 decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s) {
478 aprint_naive("\n");
479 aprint_normal("\n");
480 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
481
482 aprint_normal("\n");
483 aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n",
484 s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks);
485 }
486
487 static void
488 decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s,
489 int spd_len) {
490 int dimm_size, cycle_time, bits, tAA, i, speed, freq;
491
492 aprint_naive("\n");
493 aprint_normal("\n");
494 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
495
496 aprint_normal("%s, %s, ",
497 (s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)?
498 " (registered)":"",
499 (s->sm_config < __arraycount(spdmem_parity_types))?
500 spdmem_parity_types[s->sm_config]:"invalid parity");
501
502 dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17);
503 dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip;
504
505 cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 +
506 s->sm_sdr.sdr_cycle_tenths * 100;
507 bits = le16toh(s->sm_sdr.sdr_datawidth);
508 if (s->sm_config == 1 || s->sm_config == 2)
509 bits -= 8;
510
511 /* Calculate speed here - from OpenBSD */
512 if (spd_len >= 128)
513 freq = ((uint8_t *)s)[126];
514 else
515 freq = 0;
516 switch (freq) {
517 /*
518 * Must check cycle time since some PC-133 DIMMs
519 * actually report PC-100
520 */
521 case 100:
522 case 133:
523 if (cycle_time < 8000)
524 speed = 133;
525 else
526 speed = 100;
527 break;
528 case 0x66: /* Legacy DIMMs use _hex_ 66! */
529 default:
530 speed = 66;
531 }
532 decode_size_speed(self, node, dimm_size, cycle_time, 1, bits, FALSE,
533 "PC", speed);
534
535 aprint_verbose_dev(self,
536 "%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n",
537 s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks,
538 s->sm_sdr.sdr_banks_per_chip, cycle_time/1000,
539 (cycle_time % 1000) / 100);
540
541 tAA = 0;
542 for (i = 0; i < 8; i++)
543 if (s->sm_sdr.sdr_tCAS & (1 << i))
544 tAA = i;
545 tAA++;
546 aprint_verbose_dev(self, LATENCY, tAA, s->sm_sdr.sdr_tRCD,
547 s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS);
548
549 decode_voltage_refresh(self, s);
550 }
551
552 static void
553 decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s) {
554 int dimm_size, cycle_time, bits, tAA, i;
555
556 aprint_naive("\n");
557 aprint_normal("\n");
558 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
559
560 aprint_normal("%s, %s, ",
561 (s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)?
562 " (registered)":"",
563 (s->sm_config < __arraycount(spdmem_parity_types))?
564 spdmem_parity_types[s->sm_config]:"invalid parity");
565
566 dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17);
567 dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip;
568
569 cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 +
570 spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths];
571 bits = le16toh(s->sm_ddr.ddr_datawidth);
572 if (s->sm_config == 1 || s->sm_config == 2)
573 bits -= 8;
574 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
575 "PC", 0);
576
577 aprint_verbose_dev(self,
578 "%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n",
579 s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks,
580 s->sm_ddr.ddr_banks_per_chip, cycle_time/1000,
581 (cycle_time % 1000 + 50) / 100);
582
583 tAA = 0;
584 for (i = 2; i < 8; i++)
585 if (s->sm_ddr.ddr_tCAS & (1 << i))
586 tAA = i;
587 tAA /= 2;
588
589 #define __DDR_ROUND(scale, field) \
590 ((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time)
591
592 aprint_verbose_dev(self, LATENCY, tAA, __DDR_ROUND(250, ddr_tRCD),
593 __DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS));
594
595 #undef __DDR_ROUND
596
597 decode_voltage_refresh(self, s);
598 }
599
600 static void
601 decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s) {
602 int dimm_size, cycle_time, bits, tAA, i;
603
604 aprint_naive("\n");
605 aprint_normal("\n");
606 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
607
608 aprint_normal("%s, %s, ",
609 (s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)?
610 " (registered)":"",
611 (s->sm_config < __arraycount(spdmem_parity_types))?
612 spdmem_parity_types[s->sm_config]:"invalid parity");
613
614 dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17);
615 dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) *
616 s->sm_ddr2.ddr2_banks_per_chip;
617
618 cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 +
619 spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac];
620 bits = s->sm_ddr2.ddr2_datawidth;
621 if ((s->sm_config & 0x03) != 0)
622 bits -= 8;
623 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
624 "PC2", 0);
625
626 aprint_verbose_dev(self,
627 "%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n",
628 s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols,
629 s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip,
630 cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
631
632 tAA = 0;
633 for (i = 2; i < 8; i++)
634 if (s->sm_ddr2.ddr2_tCAS & (1 << i))
635 tAA = i;
636
637 #define __DDR2_ROUND(scale, field) \
638 ((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time)
639
640 aprint_verbose_dev(self, LATENCY, tAA, __DDR2_ROUND(250, ddr2_tRCD),
641 __DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS));
642
643 #undef __DDR_ROUND
644
645 decode_voltage_refresh(self, s);
646 }
647
648 static void
649 decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s) {
650 int dimm_size, cycle_time, bits;
651
652 aprint_naive("\n");
653 aprint_normal(": %18s\n", s->sm_ddr3.ddr3_part);
654 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
655
656 if (s->sm_ddr3.ddr3_mod_type ==
657 SPDMEM_DDR3_TYPE_MINI_RDIMM ||
658 s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM)
659 aprint_normal(" (registered)");
660 aprint_normal(", %sECC, %stemp-sensor, ",
661 (s->sm_ddr3.ddr3_hasECC)?"":"no ",
662 (s->sm_ddr3.ddr3_has_therm_sensor)?"":"no ");
663
664 /*
665 * DDR3 size specification is quite different from others
666 *
667 * Module capacity is defined as
668 * Chip_Capacity_in_bits / 8bits-per-byte *
669 * external_bus_width / internal_bus_width
670 * We further divide by 2**20 to get our answer in MB
671 */
672 dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 +
673 (s->sm_ddr3.ddr3_datawidth + 3) -
674 (s->sm_ddr3.ddr3_chipwidth + 2);
675 dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1);
676
677 cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend +
678 (s->sm_ddr3.ddr3_mtb_divisor / 2)) /
679 s->sm_ddr3.ddr3_mtb_divisor;
680 cycle_time *= s->sm_ddr3.ddr3_tCKmin;
681 bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3);
682 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, FALSE,
683 "PC3", 0);
684
685 aprint_verbose_dev(self,
686 "%d rows, %d cols, %d log. banks, %d phys. banks, "
687 "%d.%03dns cycle time\n",
688 s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12,
689 1 << (s->sm_ddr3.ddr3_logbanks + 3),
690 s->sm_ddr3.ddr3_physbanks + 1,
691 cycle_time/1000, cycle_time % 1000);
692
693 #define __DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin)
694
695 aprint_verbose_dev(self, LATENCY, __DDR3_CYCLES(ddr3_tAAmin),
696 __DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin),
697 (s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) /
698 s->sm_ddr3.ddr3_tCKmin);
699
700 #undef __DDR3_CYCLES
701 }
702
703 static void
704 decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s) {
705 int dimm_size, cycle_time, bits;
706
707 aprint_naive("\n");
708 aprint_normal("\n");
709 aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
710
711 /*
712 * FB-DIMM module size calculation is very much like DDR3
713 */
714 dimm_size = s->sm_fbd.fbdimm_rows + 12 +
715 s->sm_fbd.fbdimm_cols + 9 - 20 - 3;
716 dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2));
717
718 cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend +
719 (s->sm_fbd.fbdimm_mtb_divisor / 2)) /
720 s->sm_fbd.fbdimm_mtb_divisor;
721 bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2);
722 decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
723 "PC2", 0);
724
725 aprint_verbose_dev(self,
726 "%d rows, %d cols, %d banks, %d.%02dns cycle time\n",
727 s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols,
728 1 << (s->sm_fbd.fbdimm_banks + 2),
729 cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
730
731 #define __FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin)
732
733 aprint_verbose_dev(self, LATENCY, __FBDIMM_CYCLES(fbdimm_tAAmin),
734 __FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin),
735 (s->sm_fbd.fbdimm_tRAS_msb * 256 +
736 s->sm_fbd.fbdimm_tRAS_lsb) /
737 s->sm_fbd.fbdimm_tCKmin);
738
739 #undef __FBDIMM_CYCLES
740
741 decode_voltage_refresh(self, s);
742 }
743