tulip.c revision 1.11 1 /* $NetBSD: tulip.c,v 1.11 1999/09/17 21:57:36 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Device driver for the Digital Semiconductor ``Tulip'' (21x4x)
42 * Ethernet controller family, and a variety of clone chips.
43 */
44
45 #include "opt_inet.h"
46 #include "opt_ns.h"
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58
59 #include <vm/vm.h> /* for PAGE_SIZE */
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65
66 #if NBPFILTER > 0
67 #include <net/bpf.h>
68 #endif
69
70 #ifdef INET
71 #include <netinet/in.h>
72 #include <netinet/if_inarp.h>
73 #endif
74
75 #ifdef NS
76 #include <netns/ns.h>
77 #include <netns/ns_if.h>
78 #endif
79
80 #include <machine/bus.h>
81 #include <machine/intr.h>
82
83 #include <dev/mii/mii.h>
84 #include <dev/mii/miivar.h>
85
86 #include <dev/ic/tulipreg.h>
87 #include <dev/ic/tulipvar.h>
88
89 /*
90 * The following tables compute the transmit threshold mode. We start
91 * at index 0. When ever we get a transmit underrun, we increment our
92 * index, falling back if we encounter the NULL terminator.
93 *
94 * Note: Store and forward mode is only available on the 100mbps chips
95 * (21140 and higher).
96 */
97 const struct tulip_txthresh_tab tlp_10_txthresh_tab[] = {
98 { OPMODE_TR_72, "72 bytes" },
99 { OPMODE_TR_96, "96 bytes" },
100 { OPMODE_TR_128, "128 bytes" },
101 { OPMODE_TR_160, "160 bytes" },
102 { 0, NULL },
103 };
104
105 const struct tulip_txthresh_tab tlp_10_100_txthresh_tab[] = {
106 { OPMODE_TR_72, "72/128 bytes" },
107 { OPMODE_TR_96, "96/256 bytes" },
108 { OPMODE_TR_128, "128/512 bytes" },
109 { OPMODE_TR_160, "160/1024 bytes" },
110 { OPMODE_SF, "store and forward mode" },
111 { 0, NULL },
112 };
113
114 #define TXTH_72 0
115 #define TXTH_96 1
116 #define TXTH_128 2
117 #define TXTH_160 3
118 #define TXTH_SF 4
119
120 /*
121 * The Winbond 89C840F does transmit threshold control totally
122 * differently. It simply has a 7-bit field which indicates
123 * the threshold:
124 *
125 * txth = ((OPMODE & OPMODE_WINB_TTH) >> OPMODE_WINB_TTH_SHIFT) * 16;
126 *
127 * However, we just do Store-and-Forward mode on these chips, since
128 * the DMA engines seem to be flaky.
129 */
130 const struct tulip_txthresh_tab tlp_winb_txthresh_tab[] = {
131 { 0, "store and forward mode" },
132 { 0, NULL },
133 };
134
135 #define TXTH_WINB_SF 0
136
137 void tlp_start __P((struct ifnet *));
138 void tlp_watchdog __P((struct ifnet *));
139 int tlp_ioctl __P((struct ifnet *, u_long, caddr_t));
140
141 void tlp_shutdown __P((void *));
142
143 void tlp_reset __P((struct tulip_softc *));
144 int tlp_init __P((struct tulip_softc *));
145 void tlp_rxdrain __P((struct tulip_softc *));
146 void tlp_stop __P((struct tulip_softc *, int));
147 int tlp_add_rxbuf __P((struct tulip_softc *, int));
148 void tlp_idle __P((struct tulip_softc *, u_int32_t));
149 void tlp_srom_idle __P((struct tulip_softc *));
150
151 void tlp_filter_setup __P((struct tulip_softc *));
152 void tlp_winb_filter_setup __P((struct tulip_softc *));
153
154 void tlp_rxintr __P((struct tulip_softc *));
155 void tlp_txintr __P((struct tulip_softc *));
156
157 void tlp_mii_tick __P((void *));
158 void tlp_mii_statchg __P((struct device *));
159 void tlp_winb_mii_statchg __P((struct device *));
160
161 void tlp_mii_getmedia __P((struct tulip_softc *, struct ifmediareq *));
162 int tlp_mii_setmedia __P((struct tulip_softc *));
163
164 void tlp_sio_mii_sync __P((struct tulip_softc *));
165 void tlp_sio_mii_sendbits __P((struct tulip_softc *, u_int32_t, int));
166 int tlp_sio_mii_readreg __P((struct device *, int, int));
167 void tlp_sio_mii_writereg __P((struct device *, int, int, int));
168
169 int tlp_pnic_mii_readreg __P((struct device *, int, int));
170 void tlp_pnic_mii_writereg __P((struct device *, int, int, int));
171
172 u_int32_t tlp_crc32 __P((const u_int8_t *, size_t));
173 #define tlp_mchash(addr) (tlp_crc32((addr), ETHER_ADDR_LEN) & \
174 (TULIP_MCHASHSIZE - 1))
175
176 #ifdef TLP_DEBUG
177 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
178 printf x
179 #else
180 #define DPRINTF(sc, x) /* nothing */
181 #endif
182
183 /*
184 * tlp_attach:
185 *
186 * Attach a Tulip interface to the system.
187 */
188 void
189 tlp_attach(sc, enaddr)
190 struct tulip_softc *sc;
191 const u_int8_t *enaddr;
192 {
193 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
194 int i, rseg, error;
195 bus_dma_segment_t seg;
196
197 /*
198 * NOTE: WE EXPECT THE FRONT-END TO INITIALIZE sc_regshift!
199 */
200
201 /*
202 * Setup the transmit threshold table.
203 */
204 switch (sc->sc_chip) {
205 case TULIP_CHIP_DE425:
206 case TULIP_CHIP_21040:
207 case TULIP_CHIP_21041:
208 sc->sc_txth = tlp_10_txthresh_tab;
209 break;
210
211 default:
212 sc->sc_txth = tlp_10_100_txthresh_tab;
213 break;
214 }
215
216 /*
217 * Setup the filter setup function.
218 */
219 switch (sc->sc_chip) {
220 case TULIP_CHIP_WB89C840F:
221 sc->sc_filter_setup = tlp_winb_filter_setup;
222 break;
223
224 default:
225 sc->sc_filter_setup = tlp_filter_setup;
226 break;
227 }
228
229 /*
230 * Set up the media status change function.
231 */
232 switch (sc->sc_chip) {
233 case TULIP_CHIP_WB89C840F:
234 sc->sc_statchg = tlp_winb_mii_statchg;
235 break;
236
237 default:
238 /*
239 * We may override this if we have special media
240 * handling requirements (e.g. flipping GPIO pins).
241 *
242 * The pure-MII statchg function covers the basics.
243 */
244 sc->sc_statchg = tlp_mii_statchg;
245 break;
246 }
247
248 /*
249 * Set up various chip-specific quirks.
250 */
251 switch (sc->sc_chip) {
252 case TULIP_CHIP_82C168:
253 case TULIP_CHIP_82C169:
254 /*
255 * These chips seem to have busted DMA engines; just put them
256 * in Store-and-Forward mode from the get-go.
257 */
258 sc->sc_txthresh = TXTH_SF;
259 break;
260
261 case TULIP_CHIP_WB89C840F:
262 sc->sc_flags |= TULIPF_IC_FS;
263 break;
264
265 default:
266 /* Nothing. */
267 }
268
269 SIMPLEQ_INIT(&sc->sc_txfreeq);
270 SIMPLEQ_INIT(&sc->sc_txdirtyq);
271
272 /*
273 * Allocate the control data structures, and create and load the
274 * DMA map for it.
275 */
276 if ((error = bus_dmamem_alloc(sc->sc_dmat,
277 sizeof(struct tulip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
278 0)) != 0) {
279 printf("%s: unable to allocate control data, error = %d\n",
280 sc->sc_dev.dv_xname, error);
281 goto fail_0;
282 }
283
284 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
285 sizeof(struct tulip_control_data), (caddr_t *)&sc->sc_control_data,
286 BUS_DMA_COHERENT)) != 0) {
287 printf("%s: unable to map control data, error = %d\n",
288 sc->sc_dev.dv_xname, error);
289 goto fail_1;
290 }
291
292 if ((error = bus_dmamap_create(sc->sc_dmat,
293 sizeof(struct tulip_control_data), 1,
294 sizeof(struct tulip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
295 printf("%s: unable to create control data DMA map, "
296 "error = %d\n", sc->sc_dev.dv_xname, error);
297 goto fail_2;
298 }
299
300 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
301 sc->sc_control_data, sizeof(struct tulip_control_data), NULL,
302 0)) != 0) {
303 printf("%s: unable to load control data DMA map, error = %d\n",
304 sc->sc_dev.dv_xname, error);
305 goto fail_3;
306 }
307
308 /*
309 * Create the transmit buffer DMA maps.
310 */
311 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
312 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
313 TULIP_NTXSEGS, MCLBYTES, 0, 0,
314 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
315 printf("%s: unable to create tx DMA map %d, "
316 "error = %d\n", sc->sc_dev.dv_xname, i, error);
317 goto fail_4;
318 }
319 }
320
321 /*
322 * Create the recieve buffer DMA maps.
323 */
324 for (i = 0; i < TULIP_NRXDESC; i++) {
325 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
326 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
327 printf("%s: unable to create rx DMA map %d, "
328 "error = %d\n", sc->sc_dev.dv_xname, i, error);
329 goto fail_5;
330 }
331 sc->sc_rxsoft[i].rxs_mbuf = NULL;
332 }
333
334 /*
335 * Reset the chip to a known state.
336 */
337 tlp_reset(sc);
338
339 /* Announce ourselves. */
340 printf("%s: %s%sEthernet address %s\n", sc->sc_dev.dv_xname,
341 sc->sc_name[0] != '\0' ? sc->sc_name : "",
342 sc->sc_name[0] != '\0' ? ", " : "",
343 ether_sprintf(enaddr));
344
345 /*
346 * Initialize our media structures. This may probe the MII, if
347 * present.
348 */
349 (*sc->sc_mediasw->tmsw_init)(sc);
350
351 ifp = &sc->sc_ethercom.ec_if;
352 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
353 ifp->if_softc = sc;
354 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
355 ifp->if_ioctl = tlp_ioctl;
356 ifp->if_start = tlp_start;
357 ifp->if_watchdog = tlp_watchdog;
358
359 /*
360 * Attach the interface.
361 */
362 if_attach(ifp);
363 ether_ifattach(ifp, enaddr);
364 #if NBPFILTER > 0
365 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
366 sizeof(struct ether_header));
367 #endif
368
369 /*
370 * Make sure the interface is shutdown during reboot.
371 */
372 sc->sc_sdhook = shutdownhook_establish(tlp_shutdown, sc);
373 if (sc->sc_sdhook == NULL)
374 printf("%s: WARNING: unable to establish shutdown hook\n",
375 sc->sc_dev.dv_xname);
376 return;
377
378 /*
379 * Free any resources we've allocated during the failed attach
380 * attempt. Do this in reverse order and fall through.
381 */
382 fail_5:
383 for (i = 0; i < TULIP_NRXDESC; i++) {
384 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
385 bus_dmamap_destroy(sc->sc_dmat,
386 sc->sc_rxsoft[i].rxs_dmamap);
387 }
388 fail_4:
389 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
390 if (sc->sc_txsoft[i].txs_dmamap != NULL)
391 bus_dmamap_destroy(sc->sc_dmat,
392 sc->sc_txsoft[i].txs_dmamap);
393 }
394 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
395 fail_3:
396 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
397 fail_2:
398 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
399 sizeof(struct tulip_control_data));
400 fail_1:
401 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
402 fail_0:
403 return;
404 }
405
406 /*
407 * tlp_shutdown:
408 *
409 * Make sure the interface is stopped at reboot time.
410 */
411 void
412 tlp_shutdown(arg)
413 void *arg;
414 {
415 struct tulip_softc *sc = arg;
416
417 tlp_stop(sc, 1);
418 }
419
420 /*
421 * tlp_start: [ifnet interface function]
422 *
423 * Start packet transmission on the interface.
424 */
425 void
426 tlp_start(ifp)
427 struct ifnet *ifp;
428 {
429 struct tulip_softc *sc = ifp->if_softc;
430 struct mbuf *m0, *m;
431 struct tulip_txsoft *txs, *last_txs;
432 bus_dmamap_t dmamap;
433 int error, firsttx, nexttx, lasttx, ofree, seg;
434
435 DPRINTF(sc, ("%s: tlp_start: sc_flags 0x%08x, if_flags 0x%08x\n",
436 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
437
438 /*
439 * If we want a filter setup, it means no more descriptors were
440 * available for the setup routine. Let it get a chance to wedge
441 * itself into the ring.
442 */
443 if (sc->sc_flags & TULIPF_WANT_SETUP)
444 ifp->if_flags |= IFF_OACTIVE;
445
446 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
447 return;
448
449 /*
450 * Remember the previous number of free descriptors and
451 * the first descriptor we'll use.
452 */
453 ofree = sc->sc_txfree;
454 firsttx = sc->sc_txnext;
455
456 DPRINTF(sc, ("%s: tlp_start: txfree %d, txnext %d\n",
457 sc->sc_dev.dv_xname, ofree, firsttx));
458
459 /*
460 * Loop through the send queue, setting up transmit descriptors
461 * until we drain the queue, or use up all available transmit
462 * descriptors.
463 */
464 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
465 sc->sc_txfree != 0) {
466 /*
467 * Grab a packet off the queue.
468 */
469 IF_DEQUEUE(&ifp->if_snd, m0);
470 if (m0 == NULL)
471 break;
472
473 dmamap = txs->txs_dmamap;
474
475 /*
476 * Load the DMA map. If this fails, the packet either
477 * didn't fit in the alloted number of segments, or we were
478 * short on resources. In this case, we'll copy and try
479 * again.
480 */
481 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
482 BUS_DMA_NOWAIT) != 0) {
483 MGETHDR(m, M_DONTWAIT, MT_DATA);
484 if (m == NULL) {
485 printf("%s: unable to allocate Tx mbuf\n",
486 sc->sc_dev.dv_xname);
487 IF_PREPEND(&ifp->if_snd, m0);
488 break;
489 }
490 if (m0->m_pkthdr.len > MHLEN) {
491 MCLGET(m, M_DONTWAIT);
492 if ((m->m_flags & M_EXT) == 0) {
493 printf("%s: unable to allocate Tx "
494 "cluster\n", sc->sc_dev.dv_xname);
495 m_freem(m);
496 IF_PREPEND(&ifp->if_snd, m0);
497 break;
498 }
499 }
500 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
501 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
502 m_freem(m0);
503 m0 = m;
504 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
505 m0, BUS_DMA_NOWAIT);
506 if (error) {
507 printf("%s: unable to load Tx buffer, "
508 "error = %d\n", sc->sc_dev.dv_xname, error);
509 IF_PREPEND(&ifp->if_snd, m0);
510 break;
511 }
512 }
513
514 /*
515 * Ensure we have enough descriptors free to describe
516 * the packet.
517 */
518 if (dmamap->dm_nsegs > sc->sc_txfree) {
519 /*
520 * Not enough free descriptors to transmit this
521 * packet. We haven't committed to anything yet,
522 * so just unload the DMA map, put the packet
523 * back on the queue, and punt. Notify the upper
524 * layer that there are no more slots left.
525 *
526 * XXX We could allocate an mbuf and copy, but
527 * XXX it is worth it?
528 */
529 ifp->if_flags |= IFF_OACTIVE;
530 bus_dmamap_unload(sc->sc_dmat, dmamap);
531 IF_PREPEND(&ifp->if_snd, m0);
532 break;
533 }
534
535 /*
536 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
537 */
538
539 /* Sync the DMA map. */
540 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
541 BUS_DMASYNC_PREWRITE);
542
543 /*
544 * Initialize the transmit descriptors.
545 */
546 for (nexttx = sc->sc_txnext, seg = 0;
547 seg < dmamap->dm_nsegs;
548 seg++, nexttx = TULIP_NEXTTX(nexttx)) {
549 /*
550 * If this is the first descriptor we're
551 * enqueueing, don't set the OWN bit just
552 * yet. That could cause a race condition.
553 * We'll do it below.
554 */
555 sc->sc_txdescs[nexttx].td_status =
556 (nexttx == firsttx) ? 0 : TDSTAT_OWN;
557 sc->sc_txdescs[nexttx].td_bufaddr1 =
558 dmamap->dm_segs[seg].ds_addr;
559 sc->sc_txdescs[nexttx].td_ctl =
560 (dmamap->dm_segs[seg].ds_len << TDCTL_SIZE1_SHIFT) |
561 TDCTL_CH;
562 lasttx = nexttx;
563 }
564
565 /* Set `first segment' and `last segment' appropriately. */
566 sc->sc_txdescs[sc->sc_txnext].td_ctl |= TDCTL_Tx_FS;
567 sc->sc_txdescs[lasttx].td_ctl |= TDCTL_Tx_LS;
568
569 #ifdef TLP_DEBUG
570 if (ifp->if_flags & IFF_DEBUG) {
571 printf(" txsoft %p trainsmit chain:\n", txs);
572 for (seg = sc->sc_txnext;; seg = TULIP_NEXTTX(seg)) {
573 printf(" descriptor %d:\n", seg);
574 printf(" td_status: 0x%08x\n",
575 sc->sc_txdescs[seg].td_status);
576 printf(" td_ctl: 0x%08x\n",
577 sc->sc_txdescs[seg].td_ctl);
578 printf(" td_bufaddr1: 0x%08x\n",
579 sc->sc_txdescs[seg].td_bufaddr1);
580 printf(" td_bufaddr2: 0x%08x\n",
581 sc->sc_txdescs[seg].td_bufaddr2);
582 if (seg == lasttx)
583 break;
584 }
585 }
586 #endif
587
588 /* Sync the descriptors we're using. */
589 TULIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
590 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
591
592 /*
593 * Store a pointer to the packet so we can free it later,
594 * and remember what txdirty will be once the packet is
595 * done.
596 */
597 txs->txs_mbuf = m0;
598 txs->txs_firstdesc = sc->sc_txnext;
599 txs->txs_lastdesc = lasttx;
600
601 /* Advance the tx pointer. */
602 sc->sc_txfree -= dmamap->dm_nsegs;
603 sc->sc_txnext = nexttx;
604
605 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
606 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
607
608 last_txs = txs;
609
610 #if NBPFILTER > 0
611 /*
612 * Pass the packet to any BPF listeners.
613 */
614 if (ifp->if_bpf)
615 bpf_mtap(ifp->if_bpf, m0);
616 #endif /* NBPFILTER > 0 */
617 }
618
619 if (txs == NULL || sc->sc_txfree == 0) {
620 /* No more slots left; notify upper layer. */
621 ifp->if_flags |= IFF_OACTIVE;
622 }
623
624 if (sc->sc_txfree != ofree) {
625 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
626 sc->sc_dev.dv_xname, lasttx, firsttx));
627 /*
628 * Cause a transmit interrupt to happen on the
629 * last packet we enqueued.
630 */
631 sc->sc_txdescs[lasttx].td_ctl |= TDCTL_Tx_IC;
632 TULIP_CDTXSYNC(sc, lasttx, 1,
633 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
634
635 /*
636 * Some clone chips want IC on the *first* segment in
637 * the packet. Appease them.
638 */
639 if ((sc->sc_flags & TULIPF_IC_FS) != 0 &&
640 last_txs->txs_firstdesc != lasttx) {
641 sc->sc_txdescs[last_txs->txs_firstdesc].td_ctl |=
642 TDCTL_Tx_IC;
643 TULIP_CDTXSYNC(sc, last_txs->txs_firstdesc, 1,
644 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
645 }
646
647 /*
648 * The entire packet chain is set up. Give the
649 * first descriptor to the chip now.
650 */
651 sc->sc_txdescs[firsttx].td_status |= TDSTAT_OWN;
652 TULIP_CDTXSYNC(sc, firsttx, 1,
653 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
654
655 /* Wake up the transmitter. */
656 /* XXX USE AUTOPOLLING? */
657 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
658
659 /* Set a watchdog timer in case the chip flakes out. */
660 ifp->if_timer = 5;
661 }
662 }
663
664 /*
665 * tlp_watchdog: [ifnet interface function]
666 *
667 * Watchdog timer handler.
668 */
669 void
670 tlp_watchdog(ifp)
671 struct ifnet *ifp;
672 {
673 struct tulip_softc *sc = ifp->if_softc;
674 int doing_setup, doing_transmit;
675
676 doing_setup = (sc->sc_flags & TULIPF_DOING_SETUP);
677 doing_transmit = (SIMPLEQ_FIRST(&sc->sc_txdirtyq) != NULL);
678
679 if (doing_setup && doing_transmit) {
680 printf("%s: filter setup and transmit timeout\n",
681 sc->sc_dev.dv_xname);
682 ifp->if_oerrors++;
683 } else if (doing_transmit) {
684 printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
685 ifp->if_oerrors++;
686 } else if (doing_setup)
687 printf("%s: filter setup timeout\n", sc->sc_dev.dv_xname);
688 else
689 printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
690
691 (void) tlp_init(sc);
692
693 /* Try to get more packets going. */
694 tlp_start(ifp);
695 }
696
697 /*
698 * tlp_ioctl: [ifnet interface function]
699 *
700 * Handle control requests from the operator.
701 */
702 int
703 tlp_ioctl(ifp, cmd, data)
704 struct ifnet *ifp;
705 u_long cmd;
706 caddr_t data;
707 {
708 struct tulip_softc *sc = ifp->if_softc;
709 struct ifreq *ifr = (struct ifreq *)data;
710 struct ifaddr *ifa = (struct ifaddr *)data;
711 int s, error = 0;
712
713 s = splnet();
714
715 switch (cmd) {
716 case SIOCSIFADDR:
717 ifp->if_flags |= IFF_UP;
718
719 switch (ifa->ifa_addr->sa_family) {
720 #ifdef INET
721 case AF_INET:
722 if ((error = tlp_init(sc)) != 0)
723 break;
724 arp_ifinit(ifp, ifa);
725 break;
726 #endif /* INET */
727 #ifdef NS
728 case AF_NS:
729 {
730 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
731
732 if (ns_nullhost(*ina))
733 ina->x_host = *(union ns_host *)
734 LLADDR(ifp->if_sadl);
735 else
736 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
737 ifp->if_addrlen);
738 /* Set new address. */
739 error = tlp_init(sc);
740 break;
741 }
742 #endif /* NS */
743 default:
744 error = tlp_init(sc);
745 break;
746 }
747 break;
748
749 case SIOCSIFMTU:
750 if (ifr->ifr_mtu > ETHERMTU)
751 error = EINVAL;
752 else
753 ifp->if_mtu = ifr->ifr_mtu;
754 break;
755
756 case SIOCSIFFLAGS:
757 if ((ifp->if_flags & IFF_UP) == 0 &&
758 (ifp->if_flags & IFF_RUNNING) != 0) {
759 /*
760 * If interface is marked down and it is running, then
761 * stop it.
762 */
763 tlp_stop(sc, 1);
764 } else if ((ifp->if_flags & IFF_UP) != 0 &&
765 (ifp->if_flags & IFF_RUNNING) == 0) {
766 /*
767 * If interfase it marked up and it is stopped, then
768 * start it.
769 */
770 error = tlp_init(sc);
771 } else if ((ifp->if_flags & IFF_UP) != 0) {
772 /*
773 * Reset the interface to pick up changes in any other
774 * flags that affect the hardware state.
775 */
776 error = tlp_init(sc);
777 }
778 break;
779
780 case SIOCADDMULTI:
781 case SIOCDELMULTI:
782 error = (cmd == SIOCADDMULTI) ?
783 ether_addmulti(ifr, &sc->sc_ethercom) :
784 ether_delmulti(ifr, &sc->sc_ethercom);
785
786 if (error == ENETRESET) {
787 /*
788 * Multicast list has changed. Set the filter
789 * accordingly.
790 */
791 (*sc->sc_filter_setup)(sc);
792 error = 0;
793 }
794 break;
795
796 case SIOCSIFMEDIA:
797 case SIOCGIFMEDIA:
798 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
799 break;
800
801 default:
802 error = EINVAL;
803 break;
804 }
805
806 /* Try to get more packets going. */
807 tlp_start(ifp);
808
809 splx(s);
810 return (error);
811 }
812
813 /*
814 * tlp_intr:
815 *
816 * Interrupt service routine.
817 */
818 int
819 tlp_intr(arg)
820 void *arg;
821 {
822 struct tulip_softc *sc = arg;
823 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
824 u_int32_t status, rxstatus, txstatus;
825 int handled = 0, txthresh;
826
827 DPRINTF(sc, ("%s: tlp_intr\n", sc->sc_dev.dv_xname));
828
829 /*
830 * If the interface isn't running, the interrupt couldn't
831 * possibly have come from us.
832 */
833 if ((ifp->if_flags & IFF_RUNNING) == 0)
834 return (0);
835
836 for (;;) {
837 status = TULIP_READ(sc, CSR_STATUS);
838 if (status)
839 TULIP_WRITE(sc, CSR_STATUS, status);
840
841 if ((status & sc->sc_inten) == 0)
842 break;
843
844 handled = 1;
845
846 rxstatus = status & sc->sc_rxint_mask;
847 txstatus = status & sc->sc_txint_mask;
848
849 if (rxstatus) {
850 /* Grab new any new packets. */
851 tlp_rxintr(sc);
852
853 if (rxstatus & STATUS_RWT)
854 printf("%s: receive watchdog timeout\n",
855 sc->sc_dev.dv_xname);
856
857 if (rxstatus & STATUS_RU) {
858 printf("%s: receive ring overrun\n",
859 sc->sc_dev.dv_xname);
860 /* Get the receive process going again. */
861 tlp_idle(sc, OPMODE_SR);
862 TULIP_WRITE(sc, CSR_RXLIST,
863 TULIP_CDRXADDR(sc, sc->sc_rxptr));
864 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
865 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
866 break;
867 }
868 }
869
870 if (txstatus) {
871 /* Sweep up transmit descriptors. */
872 tlp_txintr(sc);
873
874 if (txstatus & STATUS_TJT)
875 printf("%s: transmit jabber timeout\n",
876 sc->sc_dev.dv_xname);
877
878 if (txstatus & STATUS_UNF) {
879 /*
880 * Increase our transmit threshold if
881 * another is available.
882 */
883 txthresh = sc->sc_txthresh + 1;
884 if (sc->sc_txth[txthresh].txth_name != NULL) {
885 /* Idle the transmit process. */
886 tlp_idle(sc, OPMODE_ST);
887
888 sc->sc_txthresh = txthresh;
889 sc->sc_opmode &= ~(OPMODE_TR|OPMODE_SF);
890 sc->sc_opmode |=
891 sc->sc_txth[txthresh].txth_opmode;
892 printf("%s: transmit underrun; new "
893 "threshold: %s\n",
894 sc->sc_dev.dv_xname,
895 sc->sc_txth[txthresh].txth_name);
896
897 /*
898 * Set the new threshold and restart
899 * the transmit process.
900 */
901 TULIP_WRITE(sc, CSR_OPMODE,
902 sc->sc_opmode);
903 }
904 /*
905 * XXX Log every Nth underrun from
906 * XXX now on?
907 */
908 }
909 }
910
911 if (status & (STATUS_TPS|STATUS_RPS)) {
912 if (status & STATUS_TPS)
913 printf("%s: transmit process stopped\n",
914 sc->sc_dev.dv_xname);
915 if (status & STATUS_RPS)
916 printf("%s: receive process stopped\n",
917 sc->sc_dev.dv_xname);
918 (void) tlp_init(sc);
919 break;
920 }
921
922 if (status & STATUS_SE) {
923 const char *str;
924 switch (status & STATUS_EB) {
925 case STATUS_EB_PARITY:
926 str = "parity error";
927 break;
928
929 case STATUS_EB_MABT:
930 str = "master abort";
931 break;
932
933 case STATUS_EB_TABT:
934 str = "target abort";
935 break;
936
937 default:
938 str = "unknown error";
939 break;
940 }
941 printf("%s: fatal system error: %s\n",
942 sc->sc_dev.dv_xname, str);
943 (void) tlp_init(sc);
944 break;
945 }
946
947 /*
948 * Not handled:
949 *
950 * Transmit buffer unavailable -- normal
951 * condition, nothing to do, really.
952 *
953 * General purpose timer experied -- we don't
954 * use the general purpose timer.
955 *
956 * Early receive interrupt -- not available on
957 * all chips, we just use RI. We also only
958 * use single-segment receive DMA, so this
959 * is mostly useless.
960 */
961 }
962
963 /* Try to get more packets going. */
964 tlp_start(ifp);
965
966 return (handled);
967 }
968
969 /*
970 * tlp_rxintr:
971 *
972 * Helper; handle receive interrupts.
973 */
974 void
975 tlp_rxintr(sc)
976 struct tulip_softc *sc;
977 {
978 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
979 struct ether_header *eh;
980 struct tulip_rxsoft *rxs;
981 struct mbuf *m;
982 u_int32_t rxstat;
983 int i, len;
984
985 for (i = sc->sc_rxptr;; i = TULIP_NEXTRX(i)) {
986 rxs = &sc->sc_rxsoft[i];
987
988 TULIP_CDRXSYNC(sc, i,
989 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
990
991 rxstat = sc->sc_rxdescs[i].td_status;
992
993 if (rxstat & TDSTAT_OWN) {
994 /*
995 * We have processed all of the receive buffers.
996 */
997 break;
998 }
999
1000 /*
1001 * Make sure the packet fit in one buffer. This should
1002 * always be the case. But the Lite-On PNIC, rev 33
1003 * has an awful receive engine bug, which may require
1004 * a very icky work-around.
1005 */
1006 if ((rxstat & (TDSTAT_Rx_FS|TDSTAT_Rx_LS)) !=
1007 (TDSTAT_Rx_FS|TDSTAT_Rx_LS)) {
1008 printf("%s: incoming packet spilled, resetting\n",
1009 sc->sc_dev.dv_xname);
1010 (void) tlp_init(sc);
1011 return;
1012 }
1013
1014 /*
1015 * If any collisions were seen on the wire, count one.
1016 */
1017 if (rxstat & TDSTAT_Rx_CS)
1018 ifp->if_collisions++;
1019
1020 /*
1021 * If an error occured, update stats, clear the status
1022 * word, and leave the packet buffer in place. It will
1023 * simply be reused the next time the ring comes around.
1024 */
1025 if (rxstat & TDSTAT_ES) {
1026 #define PRINTERR(bit, str) \
1027 if (rxstat & (bit)) \
1028 printf("%s: receive error: %s\n", \
1029 sc->sc_dev.dv_xname, str)
1030 ifp->if_ierrors++;
1031 PRINTERR(TDSTAT_Rx_DE, "descriptor error");
1032 PRINTERR(TDSTAT_Rx_RF, "runt frame");
1033 PRINTERR(TDSTAT_Rx_TL, "frame too long");
1034 PRINTERR(TDSTAT_Rx_RE, "MII error");
1035 PRINTERR(TDSTAT_Rx_DB, "dribbling bit");
1036 PRINTERR(TDSTAT_Rx_CE, "CRC error");
1037 #undef PRINTERR
1038 TULIP_INIT_RXDESC(sc, i);
1039 continue;
1040 }
1041
1042 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1043 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1044
1045 /*
1046 * No errors; receive the packet. Note the Tulip
1047 * includes the CRC with every packet; trim it.
1048 */
1049 len = TDSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1050
1051 #ifdef __NO_STRICT_ALIGNMENT
1052 /*
1053 * Allocate a new mbuf cluster. If that fails, we are
1054 * out of memory, and must drop the packet and recycle
1055 * the buffer that's already attached to this descriptor.
1056 */
1057 m = rxs->rxs_mbuf;
1058 if (tlp_add_rxbuf(sc, i) != 0) {
1059 ifp->if_ierrors++;
1060 TULIP_INIT_RXDESC(sc, i);
1061 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1062 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1063 continue;
1064 }
1065 #else
1066 /*
1067 * The Tulip's receive buffers must be 4-byte aligned.
1068 * But this means that the data after the Ethernet header
1069 * is misaligned. We must allocate a new buffer and
1070 * copy the data, shifted forward 2 bytes.
1071 */
1072 MGETHDR(m, M_DONTWAIT, MT_DATA);
1073 if (m == NULL) {
1074 dropit:
1075 ifp->if_ierrors++;
1076 TULIP_INIT_RXDESC(sc, i);
1077 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1078 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1079 continue;
1080 }
1081 if (len > (MHLEN - 2)) {
1082 MCLGET(m, M_DONTWAIT);
1083 if ((m->m_flags & M_EXT) == 0) {
1084 m_freem(m);
1085 goto dropit;
1086 }
1087 }
1088 m->m_data += 2;
1089
1090 /*
1091 * Note that we use clusters for incoming frames, so the
1092 * buffer is virtually contiguous.
1093 */
1094 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1095
1096 /* Allow the receive descriptor to continue using its mbuf. */
1097 TULIP_INIT_RXDESC(sc, i);
1098 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1099 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1100 #endif /* __NO_STRICT_ALIGNMENT */
1101
1102 ifp->if_ipackets++;
1103 eh = mtod(m, struct ether_header *);
1104 m->m_pkthdr.rcvif = ifp;
1105 m->m_pkthdr.len = m->m_len = len;
1106
1107 #if NBPFILTER > 0
1108 /*
1109 * Pass this up to any BPF listeners, but only
1110 * pass it up the stack if its for us.
1111 */
1112 if (ifp->if_bpf)
1113 bpf_mtap(ifp->if_bpf, m);
1114 #endif /* NPBFILTER > 0 */
1115
1116 /*
1117 * This test is outside the NBPFILTER block because
1118 * on the 21140 we have to use Hash-Only mode due to
1119 * a bug in the filter logic.
1120 */
1121 if ((ifp->if_flags & IFF_PROMISC) != 0 ||
1122 sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) {
1123 if (memcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
1124 ETHER_ADDR_LEN) != 0 &&
1125 ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
1126 m_freem(m);
1127 continue;
1128 }
1129 }
1130
1131 /* Pass it on. */
1132 (*ifp->if_input)(ifp, m);
1133 }
1134
1135 /* Update the recieve pointer. */
1136 sc->sc_rxptr = i;
1137 }
1138
1139 /*
1140 * tlp_txintr:
1141 *
1142 * Helper; handle transmit interrupts.
1143 */
1144 void
1145 tlp_txintr(sc)
1146 struct tulip_softc *sc;
1147 {
1148 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1149 struct tulip_txsoft *txs;
1150 u_int32_t txstat;
1151
1152 DPRINTF(sc, ("%s: tlp_txintr: sc_flags 0x%08x\n",
1153 sc->sc_dev.dv_xname, sc->sc_flags));
1154
1155 ifp->if_flags &= ~IFF_OACTIVE;
1156
1157 /*
1158 * If we were doing a filter setup, check to see if it completed.
1159 */
1160 if (sc->sc_flags & TULIPF_DOING_SETUP) {
1161 TULIP_CDSDSYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1162 if ((sc->sc_setup_desc.td_status & TDSTAT_OWN) == 0)
1163 sc->sc_flags &= ~TULIPF_DOING_SETUP;
1164 }
1165
1166 /*
1167 * Go through our Tx list and free mbufs for those
1168 * frames that have been transmitted.
1169 */
1170 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1171 TULIP_CDTXSYNC(sc, txs->txs_firstdesc,
1172 txs->txs_dmamap->dm_nsegs,
1173 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1174
1175 #ifdef TLP_DEBUG
1176 if (ifp->if_flags & IFF_DEBUG) {
1177 int i;
1178 printf(" txsoft %p trainsmit chain:\n", txs);
1179 for (i = txs->txs_firstdesc;; i = TULIP_NEXTTX(i)) {
1180 printf(" descriptor %d:\n", i);
1181 printf(" td_status: 0x%08x\n",
1182 sc->sc_txdescs[i].td_status);
1183 printf(" td_ctl: 0x%08x\n",
1184 sc->sc_txdescs[i].td_ctl);
1185 printf(" td_bufaddr1: 0x%08x\n",
1186 sc->sc_txdescs[i].td_bufaddr1);
1187 printf(" td_bufaddr2: 0x%08x\n",
1188 sc->sc_txdescs[i].td_bufaddr2);
1189 if (i == txs->txs_lastdesc)
1190 break;
1191 }
1192 }
1193 #endif
1194
1195 txstat = sc->sc_txdescs[txs->txs_firstdesc].td_status;
1196 if (txstat & TDSTAT_OWN)
1197 break;
1198
1199 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1200
1201 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1202
1203 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1204 0, txs->txs_dmamap->dm_mapsize,
1205 BUS_DMASYNC_POSTWRITE);
1206 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1207 m_freem(txs->txs_mbuf);
1208 txs->txs_mbuf = NULL;
1209
1210 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1211
1212 /*
1213 * Check for errors and collisions.
1214 */
1215 if (txstat &
1216 (TDSTAT_Tx_UF|TDSTAT_Tx_NC|TDSTAT_Tx_LO|TDSTAT_Tx_TO)) {
1217 ifp->if_oerrors++;
1218 #if 0
1219 /*
1220 * XXX Can't check for late or excessive collisions;
1221 * XXX Some 21040s seem to register those even on
1222 * XXX successful transmissions!
1223 */
1224 if (txstat & TDSTAT_Tx_EC)
1225 ifp->if_collisions += 16;
1226 if (txstat & TDSTAT_Tx_LC)
1227 ifp->if_collisions++;
1228 #endif
1229 } else {
1230 /* Packet was transmitted successfully. */
1231 ifp->if_opackets++;
1232 ifp->if_collisions += TDSTAT_Tx_COLLISIONS(txstat);
1233 }
1234 }
1235
1236 /*
1237 * If there are no more pending transmissions, cancel the watchdog
1238 * timer.
1239 */
1240 if (txs == NULL && (sc->sc_flags & TULIPF_DOING_SETUP) == 0)
1241 ifp->if_timer = 0;
1242
1243 /*
1244 * If we have a receive filter setup pending, do it now.
1245 */
1246 if (sc->sc_flags & TULIPF_WANT_SETUP)
1247 (*sc->sc_filter_setup)(sc);
1248 }
1249
1250 /*
1251 * tlp_reset:
1252 *
1253 * Perform a soft reset on the Tulip.
1254 */
1255 void
1256 tlp_reset(sc)
1257 struct tulip_softc *sc;
1258 {
1259 int i;
1260
1261 TULIP_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1262
1263 for (i = 0; i < 1000; i++) {
1264 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1265 break;
1266 delay(10);
1267 }
1268
1269 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1270 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1271
1272 delay(1000);
1273 }
1274
1275 /*
1276 * tlp_init:
1277 *
1278 * Initialize the interface. Must be called at splnet().
1279 */
1280 int
1281 tlp_init(sc)
1282 struct tulip_softc *sc;
1283 {
1284 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1285 struct tulip_txsoft *txs;
1286 struct tulip_rxsoft *rxs;
1287 int i, error = 0;
1288
1289 /*
1290 * Cancel any pending I/O.
1291 */
1292 tlp_stop(sc, 0);
1293
1294 /*
1295 * Reset the Tulip to a known state.
1296 */
1297 tlp_reset(sc);
1298
1299 /*
1300 * Initialize the BUSMODE register.
1301 *
1302 * XXX What about read-multiple/read-line/write-line on
1303 * XXX the 21140 and up?
1304 */
1305 sc->sc_busmode = BUSMODE_BAR | BUSMODE_PBL_DEFAULT;
1306 switch (sc->sc_cacheline) {
1307 default:
1308 /*
1309 * Note: We must *always* set these bits; a cache
1310 * alignment of 0 is RESERVED.
1311 */
1312 case 8:
1313 sc->sc_busmode |= BUSMODE_CAL_8LW;
1314 break;
1315 case 16:
1316 sc->sc_busmode |= BUSMODE_CAL_16LW;
1317 break;
1318 case 32:
1319 sc->sc_busmode |= BUSMODE_CAL_32LW;
1320 break;
1321 }
1322 switch (sc->sc_chip) {
1323 case TULIP_CHIP_82C168:
1324 case TULIP_CHIP_82C169:
1325 sc->sc_busmode |= BUSMODE_PNIC_MBO;
1326 break;
1327 default:
1328 /* Nothing. */
1329 break;
1330 }
1331 #if BYTE_ORDER == BIG_ENDIAN
1332 /*
1333 * XXX There are reports that this doesn't work properly
1334 * in the old Tulip driver, but BUSMODE_DBO does. However,
1335 * BUSMODE_DBO is not available on the 21040, and requires
1336 * us to byte-swap the setup packet. What to do?
1337 */
1338 sc->sc_busmode |= BUSMODE_BLE;
1339 #endif
1340 TULIP_WRITE(sc, CSR_BUSMODE, sc->sc_busmode);
1341
1342 /*
1343 * Initialize the OPMODE register. We don't write it until
1344 * we're ready to begin the transmit and receive processes.
1345 *
1346 * Media-related OPMODE bits are set in the media callbacks
1347 * for each specific chip/board.
1348 */
1349 sc->sc_opmode = OPMODE_SR | OPMODE_ST |
1350 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1351 switch (sc->sc_chip) {
1352 case TULIP_CHIP_21140:
1353 case TULIP_CHIP_21140A:
1354 case TULIP_CHIP_21142:
1355 case TULIP_CHIP_21143:
1356 sc->sc_opmode |= OPMODE_MBO;
1357 break;
1358
1359 default:
1360 /* Nothing. */
1361 }
1362
1363 if (sc->sc_flags & TULIPF_HAS_MII) {
1364 switch (sc->sc_chip) {
1365 case TULIP_CHIP_82C168:
1366 case TULIP_CHIP_82C169:
1367 /* Enable the MII port. */
1368 sc->sc_opmode |= OPMODE_PS;
1369
1370 TULIP_WRITE(sc, CSR_PNIC_ENDEC, PNIC_ENDEC_JDIS);
1371 break;
1372
1373 case TULIP_CHIP_WB89C840F:
1374 /* Nothing. */
1375 break;
1376
1377 default:
1378 /* Enable the MII port. */
1379 sc->sc_opmode |= OPMODE_PS;
1380 break;
1381 }
1382 } else {
1383 switch (sc->sc_chip) {
1384 case TULIP_CHIP_82C168:
1385 case TULIP_CHIP_82C169:
1386 sc->sc_opmode |= OPMODE_PNIC_TBEN;
1387 break;
1388
1389 default:
1390 /* Nothing. */
1391 }
1392 }
1393
1394 /*
1395 * Magical mystery initialization on the Macronix chips.
1396 * The MX98713 uses its own magic value, the rest share
1397 * a common one.
1398 */
1399 switch (sc->sc_chip) {
1400 case TULIP_CHIP_MX98713:
1401 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98713);
1402 break;
1403
1404 case TULIP_CHIP_MX98713A:
1405 case TULIP_CHIP_MX98715:
1406 case TULIP_CHIP_MX98725:
1407 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98715);
1408 break;
1409
1410 default:
1411 /* Nothing. */
1412 }
1413
1414 /*
1415 * Initialize the transmit descriptor ring.
1416 */
1417 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1418 for (i = 0; i < TULIP_NTXDESC; i++) {
1419 sc->sc_txdescs[i].td_ctl = TDCTL_CH;
1420 sc->sc_txdescs[i].td_bufaddr2 =
1421 TULIP_CDTXADDR(sc, TULIP_NEXTTX(i));
1422 }
1423 TULIP_CDTXSYNC(sc, 0, TULIP_NTXDESC,
1424 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1425 sc->sc_txfree = TULIP_NTXDESC;
1426 sc->sc_txnext = 0;
1427
1428 /*
1429 * Initialize the transmit job descriptors.
1430 */
1431 SIMPLEQ_INIT(&sc->sc_txfreeq);
1432 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1433 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
1434 txs = &sc->sc_txsoft[i];
1435 txs->txs_mbuf = NULL;
1436 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1437 }
1438
1439 /*
1440 * Initialize the receive descriptor and receive job
1441 * descriptor rings.
1442 */
1443 for (i = 0; i < TULIP_NRXDESC; i++) {
1444 rxs = &sc->sc_rxsoft[i];
1445 if (rxs->rxs_mbuf == NULL) {
1446 if ((error = tlp_add_rxbuf(sc, i)) != 0) {
1447 printf("%s: unable to allocate or map rx "
1448 "buffer %d, error = %d\n",
1449 sc->sc_dev.dv_xname, i, error);
1450 /*
1451 * XXX Should attempt to run with fewer receive
1452 * XXX buffers instead of just failing.
1453 */
1454 tlp_rxdrain(sc);
1455 goto out;
1456 }
1457 }
1458 }
1459 sc->sc_rxptr = 0;
1460
1461 /*
1462 * Initialize the interrupt mask and enable interrupts.
1463 */
1464 /* normal interrupts */
1465 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1466
1467 /* abnormal interrupts */
1468 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1469 STATUS_RU | STATUS_RPS | STATUS_RWT | STATUS_SE | STATUS_AIS;
1470
1471 sc->sc_rxint_mask = STATUS_RI|STATUS_RU|STATUS_RWT;
1472 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1473
1474 switch (sc->sc_chip) {
1475 case TULIP_CHIP_WB89C840F:
1476 /*
1477 * Clear bits that we don't want that happen to
1478 * overlap or don't exist.
1479 */
1480 sc->sc_inten &= ~(STATUS_WINB_REI|STATUS_RWT);
1481 break;
1482
1483 default:
1484 /* Nothing. */
1485 }
1486
1487 sc->sc_rxint_mask &= sc->sc_inten;
1488 sc->sc_txint_mask &= sc->sc_inten;
1489
1490 TULIP_WRITE(sc, CSR_INTEN, sc->sc_inten);
1491 TULIP_WRITE(sc, CSR_STATUS, 0xffffffff);
1492
1493 /*
1494 * Give the transmit and receive rings to the Tulip.
1495 */
1496 TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDTXADDR(sc, sc->sc_txnext));
1497 TULIP_WRITE(sc, CSR_RXLIST, TULIP_CDRXADDR(sc, sc->sc_rxptr));
1498
1499 /*
1500 * On chips that do this differently, set the station address.
1501 */
1502 switch (sc->sc_chip) {
1503 case TULIP_CHIP_WB89C840F:
1504 {
1505 /* XXX Do this with stream writes? */
1506 bus_addr_t cpa = TULIP_CSR_OFFSET(sc, CSR_WINB_CPA0);
1507
1508 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1509 bus_space_write_1(sc->sc_st, sc->sc_sh,
1510 cpa + i, LLADDR(ifp->if_sadl)[i]);
1511 }
1512 break;
1513 }
1514
1515 default:
1516 /* Nothing. */
1517 }
1518
1519 /*
1520 * Set the receive filter. This will start the transmit and
1521 * receive processes.
1522 */
1523 (*sc->sc_filter_setup)(sc);
1524
1525 /*
1526 * Start the receive process.
1527 */
1528 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1529
1530 if (sc->sc_tick != NULL) {
1531 /* Start the one second clock. */
1532 timeout(sc->sc_tick, sc, hz);
1533 }
1534
1535 /*
1536 * Note that the interface is now running.
1537 */
1538 ifp->if_flags |= IFF_RUNNING;
1539 ifp->if_flags &= ~IFF_OACTIVE;
1540
1541 /*
1542 * Set the media. We must do this after the transmit process is
1543 * running, since we may actually have to transmit packets on
1544 * our board to test link integrity.
1545 */
1546 (void) (*sc->sc_mediasw->tmsw_set)(sc);
1547
1548 out:
1549 if (error)
1550 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1551 return (error);
1552 }
1553
1554 /*
1555 * tlp_rxdrain:
1556 *
1557 * Drain the receive queue.
1558 */
1559 void
1560 tlp_rxdrain(sc)
1561 struct tulip_softc *sc;
1562 {
1563 struct tulip_rxsoft *rxs;
1564 int i;
1565
1566 for (i = 0; i < TULIP_NRXDESC; i++) {
1567 rxs = &sc->sc_rxsoft[i];
1568 if (rxs->rxs_mbuf != NULL) {
1569 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1570 m_freem(rxs->rxs_mbuf);
1571 rxs->rxs_mbuf = NULL;
1572 }
1573 }
1574 }
1575
1576 /*
1577 * tlp_stop:
1578 *
1579 * Stop transmission on the interface.
1580 */
1581 void
1582 tlp_stop(sc, drain)
1583 struct tulip_softc *sc;
1584 int drain;
1585 {
1586 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1587 struct tulip_txsoft *txs;
1588
1589 if (sc->sc_tick != NULL) {
1590 /* Stop the one second clock. */
1591 untimeout(sc->sc_tick, sc);
1592 }
1593
1594 /* Disable interrupts. */
1595 TULIP_WRITE(sc, CSR_INTEN, 0);
1596
1597 /* Stop the transmit and receive processes. */
1598 TULIP_WRITE(sc, CSR_OPMODE, 0);
1599 TULIP_WRITE(sc, CSR_RXLIST, 0);
1600 TULIP_WRITE(sc, CSR_TXLIST, 0);
1601
1602 /*
1603 * Release any queued transmit buffers.
1604 */
1605 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1606 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1607 if (txs->txs_mbuf != NULL) {
1608 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1609 m_freem(txs->txs_mbuf);
1610 txs->txs_mbuf = NULL;
1611 }
1612 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1613 }
1614
1615 if (drain) {
1616 /*
1617 * Release the receive buffers.
1618 */
1619 tlp_rxdrain(sc);
1620 }
1621
1622 sc->sc_flags &= ~(TULIPF_WANT_SETUP|TULIPF_DOING_SETUP);
1623
1624 /*
1625 * Mark the interface down and cancel the watchdog timer.
1626 */
1627 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1628 ifp->if_timer = 0;
1629 }
1630
1631 #define SROM_EMIT(sc, x) \
1632 do { \
1633 TULIP_WRITE((sc), CSR_MIIROM, (x)); \
1634 delay(1); \
1635 } while (0)
1636
1637 /*
1638 * tlp_srom_idle:
1639 *
1640 * Put the SROM in idle state.
1641 */
1642 void
1643 tlp_srom_idle(sc)
1644 struct tulip_softc *sc;
1645 {
1646 u_int32_t miirom;
1647 int i;
1648
1649 miirom = MIIROM_SR;
1650 SROM_EMIT(sc, miirom);
1651
1652 miirom |= MIIROM_RD;
1653 SROM_EMIT(sc, miirom);
1654
1655 miirom |= MIIROM_SROMCS;
1656 SROM_EMIT(sc, miirom);
1657
1658 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1659
1660 /* Strobe the clock 25 times. */
1661 for (i = 0; i < 25; i++) {
1662 SROM_EMIT(sc, miirom);
1663 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1664 }
1665
1666 SROM_EMIT(sc, miirom);
1667
1668 miirom &= ~MIIROM_SROMCS;
1669 SROM_EMIT(sc, miirom);
1670
1671 SROM_EMIT(sc, 0);
1672 }
1673
1674 /*
1675 * tlp_read_srom:
1676 *
1677 * Read the Tulip SROM.
1678 */
1679 void
1680 tlp_read_srom(sc, word, wordcnt, data)
1681 struct tulip_softc *sc;
1682 int word, wordcnt;
1683 u_int16_t *data;
1684 {
1685 u_int32_t miirom;
1686 int i, x;
1687
1688 tlp_srom_idle(sc);
1689
1690 /* Select the SROM. */
1691 miirom = MIIROM_SR;
1692 SROM_EMIT(sc, miirom);
1693
1694 miirom |= MIIROM_RD;
1695 SROM_EMIT(sc, miirom);
1696
1697 for (i = 0; i < wordcnt; i++) {
1698 /* Send CHIP SELECT for one clock tick. */
1699 miirom |= MIIROM_SROMCS;
1700 SROM_EMIT(sc, miirom);
1701
1702 /* Shift in the READ opcode. */
1703 for (x = 3; x > 0; x--) {
1704 if (TULIP_SROM_OPC_READ & (1 << (x - 1)))
1705 miirom |= MIIROM_SROMDI;
1706 else
1707 miirom &= ~MIIROM_SROMDI;
1708 SROM_EMIT(sc, miirom);
1709 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1710 SROM_EMIT(sc, miirom);
1711 }
1712
1713 /* Shift in address. */
1714 for (x = 6; x > 0; x--) {
1715 if ((word + i) & (1 << (x - 1)))
1716 miirom |= MIIROM_SROMDI;
1717 else
1718 miirom &= ~MIIROM_SROMDI;
1719 SROM_EMIT(sc, miirom);
1720 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1721 SROM_EMIT(sc, miirom);
1722 }
1723
1724 /* Shift out data. */
1725 miirom &= ~MIIROM_SROMDI;
1726 data[i] = 0;
1727 for (x = 16; x > 0; x--) {
1728 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1729 if (TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO))
1730 data[i] |= (1 << (x - 1));
1731 SROM_EMIT(sc, miirom);
1732 }
1733
1734 /* Clear CHIP SELECT. */
1735 miirom &= ~MIIROM_SROMCS;
1736 SROM_EMIT(sc, miirom);
1737 }
1738
1739 /* Deselect the SROM. */
1740 SROM_EMIT(sc, 0);
1741
1742 /* ...and idle it. */
1743 tlp_srom_idle(sc);
1744 }
1745
1746 #undef SROM_EMIT
1747
1748 /*
1749 * tlp_add_rxbuf:
1750 *
1751 * Add a receive buffer to the indicated descriptor.
1752 */
1753 int
1754 tlp_add_rxbuf(sc, idx)
1755 struct tulip_softc *sc;
1756 int idx;
1757 {
1758 struct tulip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1759 struct mbuf *m;
1760 int error;
1761
1762 MGETHDR(m, M_DONTWAIT, MT_DATA);
1763 if (m == NULL)
1764 return (ENOBUFS);
1765
1766 MCLGET(m, M_DONTWAIT);
1767 if ((m->m_flags & M_EXT) == 0) {
1768 m_freem(m);
1769 return (ENOBUFS);
1770 }
1771
1772 if (rxs->rxs_mbuf != NULL)
1773 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1774
1775 rxs->rxs_mbuf = m;
1776
1777 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1778 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1779 if (error) {
1780 printf("%s: can't load rx DMA map %d, error = %d\n",
1781 sc->sc_dev.dv_xname, idx, error);
1782 panic("tlp_add_rxbuf"); /* XXX */
1783 }
1784
1785 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1786 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1787
1788 TULIP_INIT_RXDESC(sc, idx);
1789
1790 return (0);
1791 }
1792
1793 /*
1794 * tlp_crc32:
1795 *
1796 * Compute the 32-bit CRC of the provided buffer.
1797 */
1798 u_int32_t
1799 tlp_crc32(buf, len)
1800 const u_int8_t *buf;
1801 size_t len;
1802 {
1803 static const u_int32_t crctab[] = {
1804 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1805 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1806 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1807 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1808 };
1809 u_int32_t crc;
1810 int i;
1811
1812 crc = 0xffffffff;
1813 for (i = 0; i < len; i++) {
1814 crc ^= buf[i];
1815 crc = (crc >> 4) ^ crctab[crc & 0xf];
1816 crc = (crc >> 4) ^ crctab[crc & 0xf];
1817 }
1818 return (crc);
1819 }
1820
1821 /*
1822 * tlp_srom_crcok:
1823 *
1824 * Check the CRC of the Tulip SROM.
1825 */
1826 int
1827 tlp_srom_crcok(romdata)
1828 u_int8_t *romdata;
1829 {
1830 u_int32_t crc;
1831
1832 crc = tlp_crc32(romdata, TULIP_ROM_CRC32_CHECKSUM);
1833 crc = (crc & 0xffff) ^ 0xffff;
1834 if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM))
1835 return (1);
1836 return (0);
1837 }
1838
1839 /*
1840 * tlp_parse_old_srom:
1841 *
1842 * Parse old-format SROMs.
1843 *
1844 * This routine is largely lifted from Matt Thomas's `de' driver.
1845 */
1846 int
1847 tlp_parse_old_srom(sc, enaddr)
1848 struct tulip_softc *sc;
1849 u_int8_t *enaddr;
1850 {
1851 static const u_int8_t testpat[] =
1852 { 0xff, 0, 0x55, 0xaa, 0xff, 0, 0x55, 0xaa };
1853 int i;
1854 u_int32_t cksum;
1855
1856 if (memcmp(&sc->sc_srom[0], &sc->sc_srom[16], 8) != 0) {
1857 /*
1858 * Some vendors (e.g. ZNYX) don't use the standard
1859 * DEC Address ROM format, but rather just have an
1860 * Ethernet address in the first 6 bytes, maybe a
1861 * 2 byte checksum, and then all 0xff's.
1862 */
1863 for (i = 8; i < 32; i++) {
1864 if (sc->sc_srom[i] != 0xff)
1865 return (0);
1866 }
1867
1868 /*
1869 * Sanity check the Ethernet address:
1870 *
1871 * - Make sure it's not multicast or locally
1872 * assigned
1873 * - Make sure it has a non-0 OUI
1874 */
1875 if (sc->sc_srom[0] & 3)
1876 return (0);
1877 if (sc->sc_srom[0] == 0 && sc->sc_srom[1] == 0 &&
1878 sc->sc_srom[2] == 0)
1879 return (0);
1880
1881 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN);
1882 return (1);
1883 }
1884
1885 /*
1886 * Standard DEC Address ROM test.
1887 */
1888
1889 if (memcmp(&sc->sc_srom[24], testpat, 8) != 0)
1890 return (0);
1891
1892 for (i = 0; i < 8; i++) {
1893 if (sc->sc_srom[i] != sc->sc_srom[15 - i])
1894 return (0);
1895 }
1896
1897 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN);
1898
1899 cksum = *(u_int16_t *) &enaddr[0];
1900
1901 cksum <<= 1;
1902 if (cksum > 0xffff)
1903 cksum -= 0xffff;
1904
1905 cksum += *(u_int16_t *) &enaddr[2];
1906 if (cksum > 0xffff)
1907 cksum -= 0xffff;
1908
1909 cksum <<= 1;
1910 if (cksum > 0xffff)
1911 cksum -= 0xffff;
1912
1913 cksum += *(u_int16_t *) &enaddr[4];
1914 if (cksum >= 0xffff)
1915 cksum -= 0xffff;
1916
1917 if (cksum != *(u_int16_t *) &sc->sc_srom[6])
1918 return (0);
1919
1920 return (1);
1921 }
1922
1923 /*
1924 * tlp_filter_setup:
1925 *
1926 * Set the Tulip's receive filter.
1927 */
1928 void
1929 tlp_filter_setup(sc)
1930 struct tulip_softc *sc;
1931 {
1932 struct ethercom *ec = &sc->sc_ethercom;
1933 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1934 struct ether_multi *enm;
1935 struct ether_multistep step;
1936 __volatile u_int32_t *sp;
1937 u_int8_t enaddr[ETHER_ADDR_LEN];
1938 u_int32_t hash;
1939 int cnt;
1940
1941 DPRINTF(sc, ("%s: tlp_filter_setup: sc_flags 0x%08x\n",
1942 sc->sc_dev.dv_xname, sc->sc_flags));
1943
1944 memcpy(enaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1945
1946 /*
1947 * If there are transmissions pending, wait until they have
1948 * completed.
1949 */
1950 if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) != NULL ||
1951 (sc->sc_flags & TULIPF_DOING_SETUP) != 0) {
1952 sc->sc_flags |= TULIPF_WANT_SETUP;
1953 DPRINTF(sc, ("%s: tlp_filter_setup: deferring\n",
1954 sc->sc_dev.dv_xname));
1955 return;
1956 }
1957 sc->sc_flags &= ~TULIPF_WANT_SETUP;
1958
1959 /*
1960 * If we're running, idle the transmit and receive engines. If
1961 * we're NOT running, we're being called from tlp_init(), and our
1962 * writing OPMODE will start the transmit and receive processes
1963 * in motion.
1964 */
1965 if (ifp->if_flags & IFF_RUNNING)
1966 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
1967
1968 sc->sc_opmode &= ~(OPMODE_PR|OPMODE_PM);
1969
1970 if (ifp->if_flags & IFF_PROMISC) {
1971 sc->sc_opmode |= OPMODE_PR;
1972 goto allmulti;
1973 }
1974
1975 /*
1976 * Try Perfect filtering first.
1977 */
1978
1979 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT;
1980 sp = TULIP_CDSP(sc);
1981 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
1982 cnt = 0;
1983 ETHER_FIRST_MULTI(step, ec, enm);
1984 while (enm != NULL) {
1985 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1986 /*
1987 * We must listen to a range of multicast addresses.
1988 * For now, just accept all multicasts, rather than
1989 * trying to set only those filter bits needed to match
1990 * the range. (At this time, the only use of address
1991 * ranges is for IP multicast routing, for which the
1992 * range is big enough to require all bits set.)
1993 */
1994 goto allmulti;
1995 }
1996 if (cnt == (TULIP_MAXADDRS - 2)) {
1997 /*
1998 * We already have our multicast limit (still need
1999 * our station address and broadcast). Go to
2000 * Hash-Perfect mode.
2001 */
2002 goto hashperfect;
2003 }
2004 *sp++ = ((u_int16_t *) enm->enm_addrlo)[0];
2005 *sp++ = ((u_int16_t *) enm->enm_addrlo)[1];
2006 *sp++ = ((u_int16_t *) enm->enm_addrlo)[2];
2007 ETHER_NEXT_MULTI(step, enm);
2008 }
2009
2010 if (ifp->if_flags & IFF_BROADCAST) {
2011 /* ...and the broadcast address. */
2012 cnt++;
2013 *sp++ = 0xffff;
2014 *sp++ = 0xffff;
2015 *sp++ = 0xffff;
2016 }
2017
2018 /* Pad the rest with our station address. */
2019 for (; cnt < TULIP_MAXADDRS; cnt++) {
2020 *sp++ = ((u_int16_t *) enaddr)[0];
2021 *sp++ = ((u_int16_t *) enaddr)[1];
2022 *sp++ = ((u_int16_t *) enaddr)[2];
2023 }
2024 ifp->if_flags &= ~IFF_ALLMULTI;
2025 goto setit;
2026
2027 hashperfect:
2028 /*
2029 * Try Hash-Perfect mode.
2030 */
2031
2032 /*
2033 * Some 21140 chips have broken Hash-Perfect modes. On these
2034 * chips, we simply use Hash-Only mode, and put our station
2035 * address into the filter.
2036 */
2037 if (sc->sc_chip == TULIP_CHIP_21140)
2038 sc->sc_filtmode = TDCTL_Tx_FT_HASHONLY;
2039 else
2040 sc->sc_filtmode = TDCTL_Tx_FT_HASH;
2041 sp = TULIP_CDSP(sc);
2042 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2043 ETHER_FIRST_MULTI(step, ec, enm);
2044 while (enm != NULL) {
2045 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2046 /*
2047 * We must listen to a range of multicast addresses.
2048 * For now, just accept all multicasts, rather than
2049 * trying to set only those filter bits needed to match
2050 * the range. (At this time, the only use of address
2051 * ranges is for IP multicast routing, for which the
2052 * range is big enough to require all bits set.)
2053 */
2054 goto allmulti;
2055 }
2056 hash = tlp_mchash(enm->enm_addrlo);
2057 sp[hash >> 4] |= 1 << (hash & 0xf);
2058 ETHER_NEXT_MULTI(step, enm);
2059 }
2060
2061 if (ifp->if_flags & IFF_BROADCAST) {
2062 /* ...and the broadcast address. */
2063 hash = tlp_mchash(etherbroadcastaddr);
2064 sp[hash >> 4] |= 1 << (hash & 0xf);
2065 }
2066
2067 if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) {
2068 /* ...and our station address. */
2069 hash = tlp_mchash(enaddr);
2070 sp[hash >> 4] |= 1 << (hash & 0xf);
2071 } else {
2072 /*
2073 * Hash-Perfect mode; put our station address after
2074 * the hash table.
2075 */
2076 sp[39] = ((u_int16_t *) enaddr)[0];
2077 sp[40] = ((u_int16_t *) enaddr)[1];
2078 sp[41] = ((u_int16_t *) enaddr)[2];
2079 }
2080 ifp->if_flags &= ~IFF_ALLMULTI;
2081 goto setit;
2082
2083 allmulti:
2084 /*
2085 * Use Perfect filter mode. First address is the broadcast address,
2086 * and pad the rest with our station address. We'll set Pass-all-
2087 * multicast in OPMODE below.
2088 */
2089 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT;
2090 sp = TULIP_CDSP(sc);
2091 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2092 cnt = 0;
2093 if (ifp->if_flags & IFF_BROADCAST) {
2094 cnt++;
2095 *sp++ = 0xffff;
2096 *sp++ = 0xffff;
2097 *sp++ = 0xffff;
2098 }
2099 for (; cnt < TULIP_MAXADDRS; cnt++) {
2100 *sp++ = ((u_int16_t *) enaddr)[0];
2101 *sp++ = ((u_int16_t *) enaddr)[1];
2102 *sp++ = ((u_int16_t *) enaddr)[2];
2103 }
2104 ifp->if_flags |= IFF_ALLMULTI;
2105
2106 setit:
2107 if (ifp->if_flags & IFF_ALLMULTI)
2108 sc->sc_opmode |= OPMODE_PM;
2109
2110 /* Sync the setup packet buffer. */
2111 TULIP_CDSPSYNC(sc, BUS_DMASYNC_PREWRITE);
2112
2113 /*
2114 * Fill in the setup packet descriptor.
2115 */
2116 sc->sc_setup_desc.td_bufaddr1 = TULIP_CDSPADDR(sc);
2117 sc->sc_setup_desc.td_bufaddr2 = TULIP_CDTXADDR(sc, sc->sc_txnext);
2118 sc->sc_setup_desc.td_ctl =
2119 (TULIP_SETUP_PACKET_LEN << TDCTL_SIZE1_SHIFT) |
2120 sc->sc_filtmode | TDCTL_Tx_SET | TDCTL_Tx_FS | TDCTL_Tx_LS |
2121 TDCTL_Tx_IC | TDCTL_CH;
2122 sc->sc_setup_desc.td_status = TDSTAT_OWN;
2123 TULIP_CDSDSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2124
2125 /*
2126 * Write the address of the setup descriptor. This also has
2127 * the side effect of giving the transmit ring to the chip,
2128 * since the setup descriptor points to the next available
2129 * descriptor in the ring.
2130 */
2131 TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDSDADDR(sc));
2132
2133 /*
2134 * Set the OPMODE register. This will also resume the
2135 * transmit transmit process we idled above.
2136 */
2137 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2138
2139 sc->sc_flags |= TULIPF_DOING_SETUP;
2140
2141 /*
2142 * Kick the transmitter; this will cause the Tulip to
2143 * read the setup descriptor.
2144 */
2145 /* XXX USE AUTOPOLLING? */
2146 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
2147
2148 /* Set up a watchdog timer in case the chip flakes out. */
2149 ifp->if_timer = 5;
2150
2151 DPRINTF(sc, ("%s: tlp_filter_setup: returning\n", sc->sc_dev.dv_xname));
2152 }
2153
2154 /*
2155 * tlp_winb_filter_setup:
2156 *
2157 * Set the Winbond 89C840F's receive filter.
2158 */
2159 void
2160 tlp_winb_filter_setup(sc)
2161 struct tulip_softc *sc;
2162 {
2163 struct ethercom *ec = &sc->sc_ethercom;
2164 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2165 struct ether_multi *enm;
2166 struct ether_multistep step;
2167 u_int32_t hash, mchash[2];
2168
2169 DPRINTF(sc, ("%s: tlp_winb_filter_setup: sc_flags 0x%08x\n",
2170 sc->sc_dev.dv_xname, sc->sc_flags));
2171
2172 sc->sc_opmode &= ~(OPMODE_WINB_APP|OPMODE_WINB_AMP|OPMODE_WINB_ABP);
2173
2174 if (ifp->if_flags & IFF_MULTICAST)
2175 sc->sc_opmode |= OPMODE_WINB_AMP;
2176
2177 if (ifp->if_flags & IFF_BROADCAST)
2178 sc->sc_opmode |= OPMODE_WINB_ABP;
2179
2180 if (ifp->if_flags & IFF_PROMISC) {
2181 sc->sc_opmode |= OPMODE_WINB_APP;
2182 goto allmulti;
2183 }
2184
2185 mchash[0] = mchash[1] = 0;
2186
2187 ETHER_FIRST_MULTI(step, ec, enm);
2188 while (enm != NULL) {
2189 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2190 /*
2191 * We must listen to a range of multicast addresses.
2192 * For now, just accept all multicasts, rather than
2193 * trying to set only those filter bits needed to match
2194 * the range. (At this time, the only use of address
2195 * ranges is for IP multicast routing, for which the
2196 * range is big enough to require all bits set.)
2197 */
2198 goto allmulti;
2199 }
2200
2201 /*
2202 * According to the FreeBSD `wb' driver, yes, you
2203 * really do invert the hash.
2204 */
2205 hash = (~(tlp_crc32(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26))
2206 & 0x3f;
2207 mchash[hash >> 5] |= 1 << (hash & 0x1f);
2208 ETHER_NEXT_MULTI(step, enm);
2209 }
2210 ifp->if_flags &= ~IFF_ALLMULTI;
2211 goto setit;
2212
2213 allmulti:
2214 ifp->if_flags |= IFF_ALLMULTI;
2215 mchash[0] = mchash[1] = 0xffffffff;
2216
2217 setit:
2218 TULIP_WRITE(sc, CSR_WINB_CMA0, mchash[0]);
2219 TULIP_WRITE(sc, CSR_WINB_CMA1, mchash[1]);
2220 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2221 DPRINTF(sc, ("%s: tlp_winb_filter_setup: returning\n",
2222 sc->sc_dev.dv_xname));
2223 }
2224
2225 /*
2226 * tlp_idle:
2227 *
2228 * Cause the transmit and/or receive processes to go idle.
2229 */
2230 void
2231 tlp_idle(sc, bits)
2232 struct tulip_softc *sc;
2233 u_int32_t bits;
2234 {
2235 static const char *tx_state_names[] = {
2236 "STOPPED",
2237 "RUNNING - FETCH",
2238 "RUNNING - WAIT",
2239 "RUNNING - READING",
2240 "-- RESERVED --",
2241 "RUNNING - SETUP",
2242 "SUSPENDED",
2243 "RUNNING - CLOSE",
2244 };
2245 static const char *rx_state_names[] = {
2246 "STOPPED",
2247 "RUNNING - FETCH",
2248 "RUNNING - CHECK",
2249 "RUNNING - WAIT",
2250 "SUSPENDED",
2251 "RUNNING - CLOSE",
2252 "RUNNING - FLUSH",
2253 "RUNNING - QUEUE",
2254 };
2255 u_int32_t csr, ackmask = 0;
2256 int i;
2257
2258 if (bits & OPMODE_ST)
2259 ackmask |= STATUS_TPS;
2260
2261 if (bits & OPMODE_SR)
2262 ackmask |= STATUS_RPS;
2263
2264 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode & ~bits);
2265
2266 for (i = 0; i < 1000; i++) {
2267 if (TULIP_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
2268 break;
2269 delay(10);
2270 }
2271
2272 csr = TULIP_READ(sc, CSR_STATUS);
2273 if ((csr & ackmask) != ackmask) {
2274 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
2275 (csr & STATUS_TS) != STATUS_TS_STOPPED)
2276 printf("%s: transmit process failed to idle: "
2277 "state %s\n", sc->sc_dev.dv_xname,
2278 tx_state_names[(csr & STATUS_TS) >> 20]);
2279 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
2280 (csr & STATUS_RS) != STATUS_RS_STOPPED)
2281 printf("%s: receive process failed to idle: "
2282 "state %s\n", sc->sc_dev.dv_xname,
2283 rx_state_names[(csr & STATUS_RS) >> 17]);
2284 }
2285 TULIP_WRITE(sc, CSR_STATUS, ackmask);
2286 }
2287
2288 /*****************************************************************************
2289 * Generic media support functions.
2290 *****************************************************************************/
2291
2292 /*
2293 * tlp_mediastatus: [ifmedia interface function]
2294 *
2295 * Query the current media.
2296 */
2297 void
2298 tlp_mediastatus(ifp, ifmr)
2299 struct ifnet *ifp;
2300 struct ifmediareq *ifmr;
2301 {
2302 struct tulip_softc *sc = ifp->if_softc;
2303
2304 (*sc->sc_mediasw->tmsw_get)(sc, ifmr);
2305 }
2306
2307 /*
2308 * tlp_mediachange: [ifmedia interface function]
2309 *
2310 * Update the current media.
2311 */
2312 int
2313 tlp_mediachange(ifp)
2314 struct ifnet *ifp;
2315 {
2316 struct tulip_softc *sc = ifp->if_softc;
2317
2318 return ((*sc->sc_mediasw->tmsw_set)(sc));
2319 }
2320
2321 /*****************************************************************************
2322 * Support functions for MII-attached media.
2323 *****************************************************************************/
2324
2325 /*
2326 * tlp_mii_tick:
2327 *
2328 * One second timer, used to tick the MII.
2329 */
2330 void
2331 tlp_mii_tick(arg)
2332 void *arg;
2333 {
2334 struct tulip_softc *sc = arg;
2335 int s;
2336
2337 s = splnet();
2338 mii_tick(&sc->sc_mii);
2339 splx(s);
2340
2341 timeout(sc->sc_tick, sc, hz);
2342 }
2343
2344 /*
2345 * tlp_mii_statchg: [mii interface function]
2346 *
2347 * Callback from PHY when media changes.
2348 */
2349 void
2350 tlp_mii_statchg(self)
2351 struct device *self;
2352 {
2353 struct tulip_softc *sc = (struct tulip_softc *)self;
2354
2355 /* Idle the transmit and receive processes. */
2356 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2357
2358 /*
2359 * XXX What about Heartbeat Disable? Is it magically frobbed
2360 * XXX by the PHY? I hope so...
2361 */
2362
2363 sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD);
2364
2365 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T)
2366 sc->sc_opmode |= OPMODE_TTM;
2367
2368 if (sc->sc_mii.mii_media_active & IFM_FDX)
2369 sc->sc_opmode |= OPMODE_FD;
2370
2371 /*
2372 * Write new OPMODE bits. This also restarts the transmit
2373 * and receive processes.
2374 */
2375 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2376
2377 /* XXX Update ifp->if_baudrate */
2378 }
2379
2380 /*
2381 * tlp_winb_mii_statchg: [mii interface function]
2382 *
2383 * Callback from PHY when media changes. This version is
2384 * for the Winbond 89C840F, which has different OPMODE bits.
2385 */
2386 void
2387 tlp_winb_mii_statchg(self)
2388 struct device *self;
2389 {
2390 struct tulip_softc *sc = (struct tulip_softc *)self;
2391
2392 /* Idle the transmit and receive processes. */
2393 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2394
2395 /*
2396 * XXX What about Heartbeat Disable? Is it magically frobbed
2397 * XXX by the PHY? I hope so...
2398 */
2399
2400 sc->sc_opmode &= ~(OPMODE_WINB_FES|OPMODE_FD);
2401
2402 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX)
2403 sc->sc_opmode |= OPMODE_WINB_FES;
2404
2405 if (sc->sc_mii.mii_media_active & IFM_FDX)
2406 sc->sc_opmode |= OPMODE_FD;
2407
2408 /*
2409 * Write new OPMODE bits. This also restarts the transmit
2410 * and receive processes.
2411 */
2412 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2413
2414 /* XXX Update ifp->if_baudrate */
2415 }
2416
2417 /*
2418 * tlp_mii_getmedia:
2419 *
2420 * Callback from ifmedia to request current media status.
2421 */
2422 void
2423 tlp_mii_getmedia(sc, ifmr)
2424 struct tulip_softc *sc;
2425 struct ifmediareq *ifmr;
2426 {
2427
2428 mii_pollstat(&sc->sc_mii);
2429 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2430 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2431 }
2432
2433 /*
2434 * tlp_mii_setmedia:
2435 *
2436 * Callback from ifmedia to request new media setting.
2437 */
2438 int
2439 tlp_mii_setmedia(sc)
2440 struct tulip_softc *sc;
2441 {
2442 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2443
2444 if (ifp->if_flags & IFF_UP)
2445 mii_mediachg(&sc->sc_mii);
2446 return (0);
2447 }
2448
2449 #define MII_EMIT(sc, x) \
2450 do { \
2451 TULIP_WRITE((sc), CSR_MIIROM, (x)); \
2452 delay(1); \
2453 } while (0)
2454
2455 /*
2456 * tlp_sio_mii_sync:
2457 *
2458 * Synchronize the SIO-attached MII.
2459 */
2460 void
2461 tlp_sio_mii_sync(sc)
2462 struct tulip_softc *sc;
2463 {
2464 u_int32_t miirom;
2465 int i;
2466
2467 miirom = MIIROM_MIIDIR|MIIROM_MDO;
2468
2469 MII_EMIT(sc, miirom);
2470 for (i = 0; i < 32; i++) {
2471 MII_EMIT(sc, miirom | MIIROM_MDC);
2472 MII_EMIT(sc, miirom);
2473 }
2474 }
2475
2476 /*
2477 * tlp_sio_mii_sendbits:
2478 *
2479 * Send a series of bits out the SIO to the MII.
2480 */
2481 void
2482 tlp_sio_mii_sendbits(sc, data, nbits)
2483 struct tulip_softc *sc;
2484 u_int32_t data;
2485 int nbits;
2486 {
2487 u_int32_t miirom, i;
2488
2489 miirom = MIIROM_MIIDIR;
2490 MII_EMIT(sc, miirom);
2491
2492 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
2493 if (data & i)
2494 miirom |= MIIROM_MDO;
2495 else
2496 miirom &= ~MIIROM_MDO;
2497 MII_EMIT(sc, miirom);
2498 MII_EMIT(sc, miirom|MIIROM_MDC);
2499 MII_EMIT(sc, miirom);
2500 }
2501 }
2502
2503 /*
2504 * tlp_sio_mii_readreg:
2505 *
2506 * Read a PHY register via SIO-attached MII.
2507 */
2508 int
2509 tlp_sio_mii_readreg(self, phy, reg)
2510 struct device *self;
2511 int phy, reg;
2512 {
2513 struct tulip_softc *sc = (void *) self;
2514 int val = 0, err = 0, i;
2515
2516 tlp_sio_mii_sync(sc);
2517
2518 tlp_sio_mii_sendbits(sc, MII_COMMAND_START, 2);
2519 tlp_sio_mii_sendbits(sc, MII_COMMAND_READ, 2);
2520 tlp_sio_mii_sendbits(sc, phy, 5);
2521 tlp_sio_mii_sendbits(sc, reg, 5);
2522
2523 MII_EMIT(sc, MIIROM_MIIDIR);
2524 MII_EMIT(sc, MIIROM_MIIDIR|MIIROM_MDC);
2525
2526 MII_EMIT(sc, 0);
2527 MII_EMIT(sc, MIIROM_MDC);
2528
2529 err = TULIP_ISSET(sc, CSR_MIIROM, MIIROM_MDI);
2530
2531 MII_EMIT(sc, 0);
2532 MII_EMIT(sc, MIIROM_MDC);
2533
2534 for (i = 0; i < 16; i++) {
2535 val <<= 1;
2536 MII_EMIT(sc, 0);
2537 if (err == 0 && TULIP_ISSET(sc, CSR_MIIROM, MIIROM_MDI))
2538 val |= 1;
2539 MII_EMIT(sc, MIIROM_MDC);
2540 }
2541
2542 MII_EMIT(sc, 0);
2543
2544 return (err ? 0 : val);
2545 }
2546
2547 /*
2548 * tlp_sio_mii_writereg:
2549 *
2550 * Write a PHY register via SIO-attached MII.
2551 */
2552 void
2553 tlp_sio_mii_writereg(self, phy, reg, val)
2554 struct device *self;
2555 int phy, reg, val;
2556 {
2557 struct tulip_softc *sc = (void *) self;
2558
2559 tlp_sio_mii_sync(sc);
2560
2561 tlp_sio_mii_sendbits(sc, MII_COMMAND_START, 2);
2562 tlp_sio_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
2563 tlp_sio_mii_sendbits(sc, phy, 5);
2564 tlp_sio_mii_sendbits(sc, reg, 5);
2565 tlp_sio_mii_sendbits(sc, MII_COMMAND_ACK, 2);
2566 tlp_sio_mii_sendbits(sc, val, 16);
2567
2568 MII_EMIT(sc, 0);
2569 }
2570
2571 #undef MII_EMIT
2572
2573 /*
2574 * tlp_pnic_mii_readreg:
2575 *
2576 * Read a PHY register on the Lite-On PNIC.
2577 */
2578 int
2579 tlp_pnic_mii_readreg(self, phy, reg)
2580 struct device *self;
2581 int phy, reg;
2582 {
2583 struct tulip_softc *sc = (void *) self;
2584 u_int32_t val;
2585 int i;
2586
2587 TULIP_WRITE(sc, CSR_PNIC_MII,
2588 PNIC_MII_MBO | PNIC_MII_RESERVED |
2589 PNIC_MII_READ | (phy << PNIC_MII_PHYSHIFT) |
2590 (reg << PNIC_MII_REGSHIFT));
2591
2592 for (i = 0; i < 1000; i++) {
2593 delay(10);
2594 val = TULIP_READ(sc, CSR_PNIC_MII);
2595 if ((val & PNIC_MII_BUSY) == 0) {
2596 if ((val & PNIC_MII_DATA) == PNIC_MII_DATA)
2597 return (0);
2598 else
2599 return (val & PNIC_MII_DATA);
2600 }
2601 }
2602 printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
2603 return (0);
2604 }
2605
2606 /*
2607 * tlp_pnic_mii_writereg:
2608 *
2609 * Write a PHY register on the Lite-On PNIC.
2610 */
2611 void
2612 tlp_pnic_mii_writereg(self, phy, reg, val)
2613 struct device *self;
2614 int phy, reg, val;
2615 {
2616 struct tulip_softc *sc = (void *) self;
2617 int i;
2618
2619 TULIP_WRITE(sc, CSR_PNIC_MII,
2620 PNIC_MII_MBO | PNIC_MII_RESERVED |
2621 PNIC_MII_WRITE | (phy << PNIC_MII_PHYSHIFT) |
2622 (reg << PNIC_MII_REGSHIFT) | val);
2623
2624 for (i = 0; i < 1000; i++) {
2625 delay(10);
2626 if (TULIP_ISSET(sc, CSR_PNIC_MII, PNIC_MII_BUSY) == 0)
2627 return;
2628 }
2629 printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
2630 }
2631
2632 /*****************************************************************************
2633 * Chip/board-specific media switches. The ones here are ones that
2634 * are potentially common to multiple front-ends.
2635 *****************************************************************************/
2636
2637 /*
2638 * 21040 and 21041 media switches.
2639 */
2640 void tlp_21040_tmsw_init __P((struct tulip_softc *));
2641 void tlp_21040_tp_tmsw_init __P((struct tulip_softc *));
2642 void tlp_21040_auibnc_tmsw_init __P((struct tulip_softc *));
2643 void tlp_21040_21041_tmsw_get __P((struct tulip_softc *,
2644 struct ifmediareq *));
2645 int tlp_21040_21041_tmsw_set __P((struct tulip_softc *));
2646
2647 const struct tulip_mediasw tlp_21040_mediasw = {
2648 tlp_21040_tmsw_init, tlp_21040_21041_tmsw_get, tlp_21040_21041_tmsw_set
2649 };
2650
2651 const struct tulip_mediasw tlp_21040_tp_mediasw = {
2652 tlp_21040_tp_tmsw_init, tlp_21040_21041_tmsw_get,
2653 tlp_21040_21041_tmsw_set
2654 };
2655
2656 const struct tulip_mediasw tlp_21040_auibnc_mediasw = {
2657 tlp_21040_auibnc_tmsw_init, tlp_21040_21041_tmsw_get,
2658 tlp_21040_21041_tmsw_set
2659 };
2660
2661 #define ADD(m, t) ifmedia_add(&sc->sc_mii.mii_media, (m), 0, (t))
2662 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
2663
2664 void
2665 tlp_21040_tmsw_init(sc)
2666 struct tulip_softc *sc;
2667 {
2668 struct tulip_21040_21041_sia_media *tsm;
2669 const char *sep = "";
2670
2671 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2672 tlp_mediastatus);
2673
2674 printf("%s: ", sc->sc_dev.dv_xname);
2675
2676 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2677 M_WAITOK);
2678 tsm->tsm_siaconn = SIACONN_21040_10BASET;
2679 tsm->tsm_siatxrx = SIATXRX_21040_10BASET;
2680 tsm->tsm_siagen = SIAGEN_21040_10BASET;
2681 ADD(IFM_ETHER|IFM_10_T, tsm);
2682 PRINT("10baseT");
2683
2684 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2685 M_WAITOK);
2686 tsm->tsm_siaconn = SIACONN_21040_10BASET_FDX;
2687 tsm->tsm_siatxrx = SIATXRX_21040_10BASET_FDX;
2688 tsm->tsm_siagen = SIAGEN_21040_10BASET_FDX;
2689 ADD(IFM_ETHER|IFM_10_T|IFM_FDX, tsm);
2690 PRINT("10baseT-FDX");
2691
2692 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2693 M_WAITOK);
2694 tsm->tsm_siaconn = SIACONN_21040_AUI;
2695 tsm->tsm_siatxrx = SIATXRX_21040_AUI;
2696 tsm->tsm_siagen = SIAGEN_21040_AUI;
2697 ADD(IFM_ETHER|IFM_10_5, tsm);
2698 PRINT("10base5");
2699
2700 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2701 M_WAITOK);
2702 tsm->tsm_siaconn = SIACONN_21040_EXTSIA;
2703 tsm->tsm_siatxrx = SIATXRX_21040_EXTSIA;
2704 tsm->tsm_siagen = SIAGEN_21040_EXTSIA;
2705 ADD(IFM_ETHER|IFM_MANUAL, tsm);
2706 PRINT("manual");
2707
2708 /*
2709 * XXX Autosense not yet supported.
2710 */
2711
2712 /* XXX This should be auto-sense. */
2713 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
2714 printf(", default 10baseT");
2715
2716 printf("\n");
2717 }
2718
2719 void
2720 tlp_21040_tp_tmsw_init(sc)
2721 struct tulip_softc *sc;
2722 {
2723 struct tulip_21040_21041_sia_media *tsm;
2724 const char *sep = "";
2725
2726 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2727 tlp_mediastatus);
2728
2729 printf("%s: ", sc->sc_dev.dv_xname);
2730
2731 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2732 M_WAITOK);
2733 tsm->tsm_siaconn = SIACONN_21040_10BASET;
2734 tsm->tsm_siatxrx = SIATXRX_21040_10BASET;
2735 tsm->tsm_siagen = SIAGEN_21040_10BASET;
2736 ADD(IFM_ETHER|IFM_10_T, tsm);
2737 PRINT("10baseT");
2738
2739 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2740 M_WAITOK);
2741 tsm->tsm_siaconn = SIACONN_21040_10BASET_FDX;
2742 tsm->tsm_siatxrx = SIATXRX_21040_10BASET_FDX;
2743 tsm->tsm_siagen = SIAGEN_21040_10BASET_FDX;
2744 ADD(IFM_ETHER|IFM_10_T|IFM_FDX, tsm);
2745 PRINT("10baseT-FDX");
2746
2747 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
2748 printf(", default 10baseT");
2749
2750 printf("\n");
2751 }
2752
2753 void
2754 tlp_21040_auibnc_tmsw_init(sc)
2755 struct tulip_softc *sc;
2756 {
2757 struct tulip_21040_21041_sia_media *tsm;
2758 const char *sep = "";
2759
2760 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2761 tlp_mediastatus);
2762
2763 printf("%s: ", sc->sc_dev.dv_xname);
2764
2765 tsm = malloc(sizeof(struct tulip_21040_21041_sia_media), M_DEVBUF,
2766 M_WAITOK);
2767 tsm->tsm_siaconn = SIACONN_21040_AUI;
2768 tsm->tsm_siatxrx = SIATXRX_21040_AUI;
2769 tsm->tsm_siagen = SIAGEN_21040_AUI;
2770 ADD(IFM_ETHER|IFM_10_5, tsm);
2771 PRINT("10base5");
2772
2773 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_5);
2774
2775 printf("\n");
2776 }
2777
2778 #undef ADD
2779 #undef PRINT
2780
2781 void
2782 tlp_21040_21041_tmsw_get(sc, ifmr)
2783 struct tulip_softc *sc;
2784 struct ifmediareq *ifmr;
2785 {
2786 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
2787
2788 ifmr->ifm_status = 0;
2789
2790 switch (IFM_SUBTYPE(ife->ifm_media)) {
2791 case IFM_AUTO:
2792 /*
2793 * XXX Implement autosensing case.
2794 */
2795 break;
2796
2797 case IFM_10_T:
2798 /*
2799 * We're able to detect link directly on twisted pair.
2800 */
2801 ifmr->ifm_status = IFM_AVALID;
2802 if (TULIP_ISSET(sc, CSR_SIASTAT, SIASTAT_LKF) == 0)
2803 ifmr->ifm_status |= IFM_ACTIVE;
2804 /* FALLTHROUGH */
2805 default:
2806 /*
2807 * If not autosensing, active media is the currently
2808 * selected media.
2809 */
2810 ifmr->ifm_active = ife->ifm_media;
2811 }
2812 }
2813
2814 int
2815 tlp_21040_21041_tmsw_set(sc)
2816 struct tulip_softc *sc;
2817 {
2818 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
2819 struct tulip_21040_21041_sia_media *tsm;
2820
2821 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
2822 /*
2823 * If not autosensing, just pull the SIA settings out
2824 * of the media entry.
2825 */
2826 tsm = ife->ifm_aux;
2827 TULIP_WRITE(sc, CSR_SIACONN, SIACONN_SRL);
2828 TULIP_WRITE(sc, CSR_SIATXRX, tsm->tsm_siatxrx);
2829 TULIP_WRITE(sc, CSR_SIAGEN, tsm->tsm_siagen);
2830 TULIP_WRITE(sc, CSR_SIACONN, tsm->tsm_siaconn);
2831
2832 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2833 sc->sc_opmode &= ~OPMODE_FD;
2834 if (ife->ifm_media & IFM_FDX)
2835 sc->sc_opmode |= OPMODE_FD;
2836 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2837 } else {
2838 /*
2839 * XXX Implement autosensing case.
2840 */
2841 }
2842
2843 return (0);
2844 }
2845
2846 /*
2847 * MII-on-SIO media switch. Handles only MII attached to the SIO.
2848 */
2849 void tlp_sio_mii_tmsw_init __P((struct tulip_softc *));
2850
2851 const struct tulip_mediasw tlp_sio_mii_mediasw = {
2852 tlp_sio_mii_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
2853 };
2854
2855 void
2856 tlp_sio_mii_tmsw_init(sc)
2857 struct tulip_softc *sc;
2858 {
2859 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2860
2861 sc->sc_mii.mii_ifp = ifp;
2862 sc->sc_mii.mii_readreg = tlp_sio_mii_readreg;
2863 sc->sc_mii.mii_writereg = tlp_sio_mii_writereg;
2864 sc->sc_mii.mii_statchg = sc->sc_statchg;
2865 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2866 tlp_mediastatus);
2867 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
2868 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2869 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2870 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2871 } else {
2872 sc->sc_flags |= TULIPF_HAS_MII;
2873 sc->sc_tick = tlp_mii_tick;
2874 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2875 }
2876 }
2877
2878 /*
2879 * Lite-On PNIC media switch. Must handle MII or internal NWAY.
2880 */
2881 void tlp_pnic_tmsw_init __P((struct tulip_softc *));
2882 void tlp_pnic_tmsw_get __P((struct tulip_softc *, struct ifmediareq *));
2883 int tlp_pnic_tmsw_set __P((struct tulip_softc *));
2884
2885 const struct tulip_mediasw tlp_pnic_mediasw = {
2886 tlp_pnic_tmsw_init, tlp_pnic_tmsw_get, tlp_pnic_tmsw_set
2887 };
2888
2889 void tlp_pnic_nway_statchg __P((struct device *));
2890 void tlp_pnic_nway_tick __P((void *));
2891 int tlp_pnic_nway_service __P((struct tulip_softc *, int));
2892 void tlp_pnic_nway_reset __P((struct tulip_softc *));
2893 int tlp_pnic_nway_auto __P((struct tulip_softc *, int));
2894 void tlp_pnic_nway_auto_timeout __P((void *));
2895 void tlp_pnic_nway_status __P((struct tulip_softc *));
2896 void tlp_pnic_nway_acomp __P((struct tulip_softc *));
2897
2898 void
2899 tlp_pnic_tmsw_init(sc)
2900 struct tulip_softc *sc;
2901 {
2902 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2903 const char *sep = "";
2904
2905 #define ADD(m, c) ifmedia_add(&sc->sc_mii.mii_media, (m), (c), NULL)
2906 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
2907
2908 sc->sc_mii.mii_ifp = ifp;
2909 sc->sc_mii.mii_readreg = tlp_pnic_mii_readreg;
2910 sc->sc_mii.mii_writereg = tlp_pnic_mii_writereg;
2911 sc->sc_mii.mii_statchg = sc->sc_statchg;
2912 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
2913 tlp_mediastatus);
2914 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
2915 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2916 /* XXX What about AUI/BNC support? */
2917 printf("%s: ", sc->sc_dev.dv_xname);
2918
2919 tlp_pnic_nway_reset(sc);
2920
2921 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0),
2922 PNIC_NWAY_TW|PNIC_NWAY_CAP10T);
2923 PRINT("10baseT");
2924
2925 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, IFM_FDX, 0),
2926 PNIC_NWAY_TW|PNIC_NWAY_FD|PNIC_NWAY_CAP10TFDX);
2927 PRINT("10baseT-FDX");
2928
2929 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, 0, 0),
2930 PNIC_NWAY_TW|PNIC_NWAY_100|PNIC_NWAY_CAP100TX);
2931 PRINT("100baseTX");
2932
2933 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, IFM_FDX, 0),
2934 PNIC_NWAY_TW|PNIC_NWAY_100|PNIC_NWAY_FD|
2935 PNIC_NWAY_CAP100TXFDX);
2936 PRINT("100baseTX-FDX");
2937
2938 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0),
2939 PNIC_NWAY_TW|PNIC_NWAY_RN|PNIC_NWAY_NW|
2940 PNIC_NWAY_CAP10T|PNIC_NWAY_CAP10TFDX|
2941 PNIC_NWAY_CAP100TXFDX|PNIC_NWAY_CAP100TX);
2942 PRINT("auto");
2943
2944 printf("\n");
2945
2946 sc->sc_statchg = tlp_pnic_nway_statchg;
2947 sc->sc_tick = tlp_pnic_nway_tick;
2948 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2949 } else {
2950 sc->sc_flags |= TULIPF_HAS_MII;
2951 sc->sc_tick = tlp_mii_tick;
2952 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2953 }
2954
2955 #undef ADD
2956 #undef PRINT
2957 }
2958
2959 void
2960 tlp_pnic_tmsw_get(sc, ifmr)
2961 struct tulip_softc *sc;
2962 struct ifmediareq *ifmr;
2963 {
2964 struct mii_data *mii = &sc->sc_mii;
2965
2966 if (sc->sc_flags & TULIPF_HAS_MII)
2967 tlp_mii_getmedia(sc, ifmr);
2968 else {
2969 mii->mii_media_status = 0;
2970 mii->mii_media_active = IFM_NONE;
2971 tlp_pnic_nway_service(sc, MII_POLLSTAT);
2972 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2973 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2974 }
2975 }
2976
2977 int
2978 tlp_pnic_tmsw_set(sc)
2979 struct tulip_softc *sc;
2980 {
2981 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2982 struct mii_data *mii = &sc->sc_mii;
2983
2984 if (sc->sc_flags & TULIPF_HAS_MII)
2985 return (tlp_mii_setmedia(sc));
2986
2987 if (ifp->if_flags & IFF_UP) {
2988 mii->mii_media_status = 0;
2989 mii->mii_media_active = IFM_NONE;
2990 return (tlp_pnic_nway_service(sc, MII_MEDIACHG));
2991 }
2992
2993 return (0);
2994 }
2995
2996 void
2997 tlp_pnic_nway_statchg(self)
2998 struct device *self;
2999 {
3000 struct tulip_softc *sc = (struct tulip_softc *)self;
3001
3002 /* Idle the transmit and receive processes. */
3003 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
3004
3005 /*
3006 * XXX What about Heartbeat Disable? Is it magically frobbed
3007 * XXX by the PHY? I hope so...
3008 */
3009
3010 sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD|OPMODE_PS|OPMODE_PCS|
3011 OPMODE_SCR);
3012
3013 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
3014 sc->sc_opmode |= OPMODE_TTM;
3015 TULIP_WRITE(sc, CSR_GPP,
3016 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 0) |
3017 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1));
3018 } else {
3019 sc->sc_opmode |= OPMODE_PS|OPMODE_PCS|OPMODE_SCR;
3020 TULIP_WRITE(sc, CSR_GPP,
3021 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 1) |
3022 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1));
3023 }
3024
3025 if (sc->sc_mii.mii_media_active & IFM_FDX)
3026 sc->sc_opmode |= OPMODE_FD;
3027
3028 /*
3029 * Write new OPMODE bits. This also restarts the transmit
3030 * and receive processes.
3031 */
3032 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
3033
3034 /* XXX Update ifp->if_baudrate */
3035 }
3036
3037 void
3038 tlp_pnic_nway_tick(arg)
3039 void *arg;
3040 {
3041 struct tulip_softc *sc = arg;
3042 int s;
3043
3044 s = splnet();
3045 tlp_pnic_nway_service(sc, MII_TICK);
3046 splx(s);
3047
3048 timeout(tlp_pnic_nway_tick, sc, hz);
3049 }
3050
3051 /*
3052 * Support for the Lite-On PNIC internal NWay block. This is constructed
3053 * somewhat like a PHY driver for simplicity.
3054 */
3055
3056 int
3057 tlp_pnic_nway_service(sc, cmd)
3058 struct tulip_softc *sc;
3059 int cmd;
3060 {
3061 struct mii_data *mii = &sc->sc_mii;
3062 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
3063
3064 if ((mii->mii_ifp->if_flags & IFF_UP) == 0)
3065 return (0);
3066
3067 switch (cmd) {
3068 case MII_POLLSTAT:
3069 /* Nothing special to do here. */
3070 break;
3071
3072 case MII_MEDIACHG:
3073 switch (IFM_SUBTYPE(ife->ifm_media)) {
3074 case IFM_AUTO:
3075 (void) tlp_pnic_nway_auto(sc, 1);
3076 break;
3077 case IFM_100_T4:
3078 /*
3079 * XXX Not supported as a manual setting right now.
3080 */
3081 return (EINVAL);
3082 default:
3083 /*
3084 * NWAY register data is stored in the ifmedia entry.
3085 */
3086 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data);
3087 }
3088 break;
3089
3090 case MII_TICK:
3091 /*
3092 * Only used for autonegotiation.
3093 */
3094 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
3095 return (0);
3096
3097 /*
3098 * Check to see if we have link. If we do, we don't
3099 * need to restart the autonegotiation process.
3100 */
3101 if (sc->sc_flags & TULIPF_LINK_UP)
3102 return (0);
3103
3104 /*
3105 * Only retry autonegotiation every 5 seconds.
3106 */
3107 if (++sc->sc_nway_ticks != 5)
3108 return (0);
3109
3110 sc->sc_nway_ticks = 0;
3111 tlp_pnic_nway_reset(sc);
3112 if (tlp_pnic_nway_auto(sc, 0) == EJUSTRETURN)
3113 return (0);
3114 break;
3115 }
3116
3117 /* Update the media status. */
3118 tlp_pnic_nway_status(sc);
3119
3120 /* Callback if something changed. */
3121 if (sc->sc_nway_active != mii->mii_media_active ||
3122 cmd == MII_MEDIACHG) {
3123 (*sc->sc_statchg)(&sc->sc_dev);
3124 sc->sc_nway_active = mii->mii_media_active;
3125 }
3126 return (0);
3127 }
3128
3129 void
3130 tlp_pnic_nway_reset(sc)
3131 struct tulip_softc *sc;
3132 {
3133
3134 TULIP_WRITE(sc, CSR_PNIC_NWAY, PNIC_NWAY_RS);
3135 delay(100);
3136 TULIP_WRITE(sc, CSR_PNIC_NWAY, 0);
3137 }
3138
3139 int
3140 tlp_pnic_nway_auto(sc, waitfor)
3141 struct tulip_softc *sc;
3142 int waitfor;
3143 {
3144 struct mii_data *mii = &sc->sc_mii;
3145 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
3146 u_int32_t reg;
3147 int i;
3148
3149 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0)
3150 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data);
3151
3152 if (waitfor) {
3153 /* Wait 500ms for it to complete. */
3154 for (i = 0; i < 500; i++) {
3155 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
3156 if (reg & PNIC_NWAY_LPAR_MASK) {
3157 tlp_pnic_nway_acomp(sc);
3158 return (0);
3159 }
3160 delay(1000);
3161 }
3162 #if 0
3163 if ((reg & PNIC_NWAY_LPAR_MASK) == 0)
3164 printf("%s: autonegotiation failed to complete\n",
3165 sc->sc_dev.dv_xname);
3166 #endif
3167
3168 /*
3169 * Don't need to worry about clearing DOINGAUTO.
3170 * If that's set, a timeout is pending, and it will
3171 * clear the flag.
3172 */
3173 return (EIO);
3174 }
3175
3176 /*
3177 * Just let it finish asynchronously. This is for the benefit of
3178 * the tick handler driving autonegotiation. Don't want 500ms
3179 * delays all the time while the system is running!
3180 */
3181 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0) {
3182 sc->sc_flags |= TULIPF_DOINGAUTO;
3183 timeout(tlp_pnic_nway_auto_timeout, sc, hz >> 1);
3184 }
3185 return (EJUSTRETURN);
3186 }
3187
3188 void
3189 tlp_pnic_nway_auto_timeout(arg)
3190 void *arg;
3191 {
3192 struct tulip_softc *sc = arg;
3193 u_int32_t reg;
3194 int s;
3195
3196 s = splnet();
3197 sc->sc_flags &= ~TULIPF_DOINGAUTO;
3198 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
3199 #if 0
3200 if ((reg & PNIC_NWAY_LPAR_MASK) == 0)
3201 printf("%s: autonegotiation failed to complete\n",
3202 sc->sc_dev.dv_xname);
3203 #endif
3204
3205 tlp_pnic_nway_acomp(sc);
3206
3207 /* Update the media status. */
3208 (void) tlp_pnic_nway_service(sc, MII_POLLSTAT);
3209 splx(s);
3210 }
3211
3212 void
3213 tlp_pnic_nway_status(sc)
3214 struct tulip_softc *sc;
3215 {
3216 struct mii_data *mii = &sc->sc_mii;
3217 u_int32_t reg;
3218
3219 mii->mii_media_status = IFM_AVALID;
3220 mii->mii_media_active = IFM_ETHER;
3221
3222 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
3223
3224 if (sc->sc_flags & TULIPF_LINK_UP)
3225 mii->mii_media_status |= IFM_ACTIVE;
3226
3227 if (reg & PNIC_NWAY_NW) {
3228 if ((reg & PNIC_NWAY_LPAR_MASK) == 0) {
3229 /* Erg, still trying, I guess... */
3230 mii->mii_media_active |= IFM_NONE;
3231 return;
3232 }
3233
3234 #if 0
3235 if (reg & PNIC_NWAY_LPAR100T4)
3236 mii->mii_media_active |= IFM_100_T4;
3237 else
3238 #endif
3239 if (reg & PNIC_NWAY_LPAR100TXFDX)
3240 mii->mii_media_active |= IFM_100_TX|IFM_FDX;
3241 else if (reg & PNIC_NWAY_LPAR100TX)
3242 mii->mii_media_active |= IFM_100_TX;
3243 else if (reg & PNIC_NWAY_LPAR10TFDX)
3244 mii->mii_media_active |= IFM_10_T|IFM_FDX;
3245 else if (reg & PNIC_NWAY_LPAR10T)
3246 mii->mii_media_active |= IFM_10_T;
3247 else
3248 mii->mii_media_active |= IFM_NONE;
3249 } else {
3250 if (reg & PNIC_NWAY_100)
3251 mii->mii_media_active |= IFM_100_TX;
3252 else
3253 mii->mii_media_active |= IFM_10_T;
3254 if (reg & PNIC_NWAY_FD)
3255 mii->mii_media_active |= IFM_FDX;
3256 }
3257 }
3258
3259 void
3260 tlp_pnic_nway_acomp(sc)
3261 struct tulip_softc *sc;
3262 {
3263 u_int32_t reg;
3264
3265 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
3266 reg &= ~(PNIC_NWAY_FD|PNIC_NWAY_100|PNIC_NWAY_RN);
3267
3268 if (reg & (PNIC_NWAY_LPAR100TXFDX|PNIC_NWAY_LPAR100TX))
3269 reg |= PNIC_NWAY_100;
3270 if (reg & (PNIC_NWAY_LPAR10TFDX|PNIC_NWAY_LPAR100TXFDX))
3271 reg |= PNIC_NWAY_FD;
3272
3273 TULIP_WRITE(sc, CSR_PNIC_NWAY, reg);
3274 }
3275