tulip.c revision 1.30 1 /* $NetBSD: tulip.c,v 1.30 1999/11/04 01:20:57 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Device driver for the Digital Semiconductor ``Tulip'' (21x4x)
42 * Ethernet controller family, and a variety of clone chips.
43 */
44
45 #include "opt_inet.h"
46 #include "opt_ns.h"
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58
59 #include <vm/vm.h> /* for PAGE_SIZE */
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65
66 #if NBPFILTER > 0
67 #include <net/bpf.h>
68 #endif
69
70 #ifdef INET
71 #include <netinet/in.h>
72 #include <netinet/if_inarp.h>
73 #endif
74
75 #ifdef NS
76 #include <netns/ns.h>
77 #include <netns/ns_if.h>
78 #endif
79
80 #include <machine/bus.h>
81 #include <machine/intr.h>
82
83 #include <dev/mii/mii.h>
84 #include <dev/mii/miivar.h>
85
86 #include <dev/ic/tulipreg.h>
87 #include <dev/ic/tulipvar.h>
88
89 /*
90 * The following tables compute the transmit threshold mode. We start
91 * at index 0. When ever we get a transmit underrun, we increment our
92 * index, falling back if we encounter the NULL terminator.
93 *
94 * Note: Store and forward mode is only available on the 100mbps chips
95 * (21140 and higher).
96 */
97 const struct tulip_txthresh_tab tlp_10_txthresh_tab[] = {
98 { OPMODE_TR_72, "72 bytes" },
99 { OPMODE_TR_96, "96 bytes" },
100 { OPMODE_TR_128, "128 bytes" },
101 { OPMODE_TR_160, "160 bytes" },
102 { 0, NULL },
103 };
104
105 const struct tulip_txthresh_tab tlp_10_100_txthresh_tab[] = {
106 { OPMODE_TR_72, "72/128 bytes" },
107 { OPMODE_TR_96, "96/256 bytes" },
108 { OPMODE_TR_128, "128/512 bytes" },
109 { OPMODE_TR_160, "160/1024 bytes" },
110 { OPMODE_SF, "store and forward mode" },
111 { 0, NULL },
112 };
113
114 #define TXTH_72 0
115 #define TXTH_96 1
116 #define TXTH_128 2
117 #define TXTH_160 3
118 #define TXTH_SF 4
119
120 /*
121 * The Winbond 89C840F does transmit threshold control totally
122 * differently. It simply has a 7-bit field which indicates
123 * the threshold:
124 *
125 * txth = ((OPMODE & OPMODE_WINB_TTH) >> OPMODE_WINB_TTH_SHIFT) * 16;
126 *
127 * However, we just do Store-and-Forward mode on these chips, since
128 * the DMA engines seem to be flaky.
129 */
130 const struct tulip_txthresh_tab tlp_winb_txthresh_tab[] = {
131 { 0, "store and forward mode" },
132 { 0, NULL },
133 };
134
135 #define TXTH_WINB_SF 0
136
137 void tlp_start __P((struct ifnet *));
138 void tlp_watchdog __P((struct ifnet *));
139 int tlp_ioctl __P((struct ifnet *, u_long, caddr_t));
140
141 void tlp_shutdown __P((void *));
142
143 void tlp_reset __P((struct tulip_softc *));
144 int tlp_init __P((struct tulip_softc *));
145 void tlp_rxdrain __P((struct tulip_softc *));
146 void tlp_stop __P((struct tulip_softc *, int));
147 int tlp_add_rxbuf __P((struct tulip_softc *, int));
148 void tlp_idle __P((struct tulip_softc *, u_int32_t));
149 void tlp_srom_idle __P((struct tulip_softc *));
150
151 void tlp_filter_setup __P((struct tulip_softc *));
152 void tlp_winb_filter_setup __P((struct tulip_softc *));
153 void tlp_al981_filter_setup __P((struct tulip_softc *));
154
155 void tlp_rxintr __P((struct tulip_softc *));
156 void tlp_txintr __P((struct tulip_softc *));
157
158 void tlp_mii_tick __P((void *));
159 void tlp_mii_statchg __P((struct device *));
160 void tlp_winb_mii_statchg __P((struct device *));
161
162 void tlp_mii_getmedia __P((struct tulip_softc *, struct ifmediareq *));
163 int tlp_mii_setmedia __P((struct tulip_softc *));
164
165 void tlp_sio_mii_sync __P((struct tulip_softc *));
166 void tlp_sio_mii_sendbits __P((struct tulip_softc *, u_int32_t, int));
167 int tlp_sio_mii_readreg __P((struct device *, int, int));
168 void tlp_sio_mii_writereg __P((struct device *, int, int, int));
169
170 int tlp_pnic_mii_readreg __P((struct device *, int, int));
171 void tlp_pnic_mii_writereg __P((struct device *, int, int, int));
172
173 int tlp_al981_mii_readreg __P((struct device *, int, int));
174 void tlp_al981_mii_writereg __P((struct device *, int, int, int));
175
176 void tlp_2114x_preinit __P((struct tulip_softc *));
177 void tlp_2114x_mii_preinit __P((struct tulip_softc *));
178 void tlp_pnic_preinit __P((struct tulip_softc *));
179
180 void tlp_21140_reset __P((struct tulip_softc *));
181 void tlp_pmac_reset __P((struct tulip_softc *));
182
183 u_int32_t tlp_crc32 __P((const u_int8_t *, size_t));
184 #define tlp_mchash(addr, sz) (tlp_crc32((addr), ETHER_ADDR_LEN) & ((sz) - 1))
185
186 #ifdef TLP_DEBUG
187 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
188 printf x
189 #else
190 #define DPRINTF(sc, x) /* nothing */
191 #endif
192
193 #ifdef TLP_STATS
194 void tlp_print_stats __P((struct tulip_softc *));
195 #endif
196
197 /*
198 * tlp_attach:
199 *
200 * Attach a Tulip interface to the system.
201 */
202 void
203 tlp_attach(sc, enaddr)
204 struct tulip_softc *sc;
205 const u_int8_t *enaddr;
206 {
207 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
208 int i, rseg, error;
209 bus_dma_segment_t seg;
210
211 /*
212 * NOTE: WE EXPECT THE FRONT-END TO INITIALIZE sc_regshift!
213 */
214
215 /*
216 * Setup the transmit threshold table.
217 */
218 switch (sc->sc_chip) {
219 case TULIP_CHIP_DE425:
220 case TULIP_CHIP_21040:
221 case TULIP_CHIP_21041:
222 sc->sc_txth = tlp_10_txthresh_tab;
223 break;
224
225 default:
226 sc->sc_txth = tlp_10_100_txthresh_tab;
227 break;
228 }
229
230 /*
231 * Setup the filter setup function.
232 */
233 switch (sc->sc_chip) {
234 case TULIP_CHIP_WB89C840F:
235 sc->sc_filter_setup = tlp_winb_filter_setup;
236 break;
237
238 case TULIP_CHIP_AL981:
239 sc->sc_filter_setup = tlp_al981_filter_setup;
240 break;
241
242 default:
243 sc->sc_filter_setup = tlp_filter_setup;
244 break;
245 }
246
247 /*
248 * Set up the media status change function.
249 */
250 switch (sc->sc_chip) {
251 case TULIP_CHIP_WB89C840F:
252 sc->sc_statchg = tlp_winb_mii_statchg;
253 break;
254
255 default:
256 /*
257 * We may override this if we have special media
258 * handling requirements (e.g. flipping GPIO pins).
259 *
260 * The pure-MII statchg function covers the basics.
261 */
262 sc->sc_statchg = tlp_mii_statchg;
263 break;
264 }
265
266 /*
267 * Set up various chip-specific quirks.
268 */
269 switch (sc->sc_chip) {
270 case TULIP_CHIP_21140:
271 case TULIP_CHIP_21140A:
272 case TULIP_CHIP_21142:
273 case TULIP_CHIP_21143:
274 case TULIP_CHIP_82C115: /* 21143-like */
275 case TULIP_CHIP_MX98713: /* 21140-like */
276 case TULIP_CHIP_MX98713A: /* 21143-like */
277 case TULIP_CHIP_MX98715: /* 21143-like */
278 case TULIP_CHIP_MX98715A: /* 21143-like */
279 case TULIP_CHIP_MX98725: /* 21143-like */
280 sc->sc_preinit = tlp_2114x_preinit;
281 break;
282
283 case TULIP_CHIP_82C168:
284 case TULIP_CHIP_82C169:
285 sc->sc_preinit = tlp_pnic_preinit;
286
287 /*
288 * These chips seem to have busted DMA engines; just put them
289 * in Store-and-Forward mode from the get-go.
290 */
291 sc->sc_txthresh = TXTH_SF;
292 break;
293
294 case TULIP_CHIP_WB89C840F:
295 sc->sc_flags |= TULIPF_IC_FS;
296 break;
297
298 default:
299 /* Nothing. */
300 }
301
302 SIMPLEQ_INIT(&sc->sc_txfreeq);
303 SIMPLEQ_INIT(&sc->sc_txdirtyq);
304
305 /*
306 * Allocate the control data structures, and create and load the
307 * DMA map for it.
308 */
309 if ((error = bus_dmamem_alloc(sc->sc_dmat,
310 sizeof(struct tulip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
311 0)) != 0) {
312 printf("%s: unable to allocate control data, error = %d\n",
313 sc->sc_dev.dv_xname, error);
314 goto fail_0;
315 }
316
317 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
318 sizeof(struct tulip_control_data), (caddr_t *)&sc->sc_control_data,
319 BUS_DMA_COHERENT)) != 0) {
320 printf("%s: unable to map control data, error = %d\n",
321 sc->sc_dev.dv_xname, error);
322 goto fail_1;
323 }
324
325 if ((error = bus_dmamap_create(sc->sc_dmat,
326 sizeof(struct tulip_control_data), 1,
327 sizeof(struct tulip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
328 printf("%s: unable to create control data DMA map, "
329 "error = %d\n", sc->sc_dev.dv_xname, error);
330 goto fail_2;
331 }
332
333 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
334 sc->sc_control_data, sizeof(struct tulip_control_data), NULL,
335 0)) != 0) {
336 printf("%s: unable to load control data DMA map, error = %d\n",
337 sc->sc_dev.dv_xname, error);
338 goto fail_3;
339 }
340
341 /*
342 * Create the transmit buffer DMA maps.
343 */
344 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
345 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
346 TULIP_NTXSEGS, MCLBYTES, 0, 0,
347 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
348 printf("%s: unable to create tx DMA map %d, "
349 "error = %d\n", sc->sc_dev.dv_xname, i, error);
350 goto fail_4;
351 }
352 }
353
354 /*
355 * Create the recieve buffer DMA maps.
356 */
357 for (i = 0; i < TULIP_NRXDESC; i++) {
358 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
359 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
360 printf("%s: unable to create rx DMA map %d, "
361 "error = %d\n", sc->sc_dev.dv_xname, i, error);
362 goto fail_5;
363 }
364 sc->sc_rxsoft[i].rxs_mbuf = NULL;
365 }
366
367 /*
368 * Reset the chip to a known state.
369 */
370 tlp_reset(sc);
371
372 /* Announce ourselves. */
373 printf("%s: %s%sEthernet address %s\n", sc->sc_dev.dv_xname,
374 sc->sc_name[0] != '\0' ? sc->sc_name : "",
375 sc->sc_name[0] != '\0' ? ", " : "",
376 ether_sprintf(enaddr));
377
378 /*
379 * Initialize our media structures. This may probe the MII, if
380 * present.
381 */
382 (*sc->sc_mediasw->tmsw_init)(sc);
383
384 ifp = &sc->sc_ethercom.ec_if;
385 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
386 ifp->if_softc = sc;
387 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
388 ifp->if_ioctl = tlp_ioctl;
389 ifp->if_start = tlp_start;
390 ifp->if_watchdog = tlp_watchdog;
391
392 /*
393 * Attach the interface.
394 */
395 if_attach(ifp);
396 ether_ifattach(ifp, enaddr);
397 #if NBPFILTER > 0
398 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
399 sizeof(struct ether_header));
400 #endif
401
402 /*
403 * Make sure the interface is shutdown during reboot.
404 */
405 sc->sc_sdhook = shutdownhook_establish(tlp_shutdown, sc);
406 if (sc->sc_sdhook == NULL)
407 printf("%s: WARNING: unable to establish shutdown hook\n",
408 sc->sc_dev.dv_xname);
409 return;
410
411 /*
412 * Free any resources we've allocated during the failed attach
413 * attempt. Do this in reverse order and fall through.
414 */
415 fail_5:
416 for (i = 0; i < TULIP_NRXDESC; i++) {
417 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
418 bus_dmamap_destroy(sc->sc_dmat,
419 sc->sc_rxsoft[i].rxs_dmamap);
420 }
421 fail_4:
422 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
423 if (sc->sc_txsoft[i].txs_dmamap != NULL)
424 bus_dmamap_destroy(sc->sc_dmat,
425 sc->sc_txsoft[i].txs_dmamap);
426 }
427 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
428 fail_3:
429 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
430 fail_2:
431 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
432 sizeof(struct tulip_control_data));
433 fail_1:
434 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
435 fail_0:
436 return;
437 }
438
439 /*
440 * tlp_shutdown:
441 *
442 * Make sure the interface is stopped at reboot time.
443 */
444 void
445 tlp_shutdown(arg)
446 void *arg;
447 {
448 struct tulip_softc *sc = arg;
449
450 tlp_stop(sc, 1);
451 }
452
453 /*
454 * tlp_start: [ifnet interface function]
455 *
456 * Start packet transmission on the interface.
457 */
458 void
459 tlp_start(ifp)
460 struct ifnet *ifp;
461 {
462 struct tulip_softc *sc = ifp->if_softc;
463 struct mbuf *m0, *m;
464 struct tulip_txsoft *txs, *last_txs;
465 bus_dmamap_t dmamap;
466 int error, firsttx, nexttx, lasttx, ofree, seg;
467
468 DPRINTF(sc, ("%s: tlp_start: sc_flags 0x%08x, if_flags 0x%08x\n",
469 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
470
471 /*
472 * If we want a filter setup, it means no more descriptors were
473 * available for the setup routine. Let it get a chance to wedge
474 * itself into the ring.
475 */
476 if (sc->sc_flags & TULIPF_WANT_SETUP)
477 ifp->if_flags |= IFF_OACTIVE;
478
479 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
480 return;
481
482 /*
483 * Remember the previous number of free descriptors and
484 * the first descriptor we'll use.
485 */
486 ofree = sc->sc_txfree;
487 firsttx = sc->sc_txnext;
488
489 DPRINTF(sc, ("%s: tlp_start: txfree %d, txnext %d\n",
490 sc->sc_dev.dv_xname, ofree, firsttx));
491
492 /*
493 * Loop through the send queue, setting up transmit descriptors
494 * until we drain the queue, or use up all available transmit
495 * descriptors.
496 */
497 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
498 sc->sc_txfree != 0) {
499 /*
500 * Grab a packet off the queue.
501 */
502 IF_DEQUEUE(&ifp->if_snd, m0);
503 if (m0 == NULL)
504 break;
505
506 dmamap = txs->txs_dmamap;
507
508 /*
509 * Load the DMA map. If this fails, the packet either
510 * didn't fit in the alloted number of segments, or we were
511 * short on resources. In this case, we'll copy and try
512 * again.
513 */
514 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
515 BUS_DMA_NOWAIT) != 0) {
516 MGETHDR(m, M_DONTWAIT, MT_DATA);
517 if (m == NULL) {
518 printf("%s: unable to allocate Tx mbuf\n",
519 sc->sc_dev.dv_xname);
520 IF_PREPEND(&ifp->if_snd, m0);
521 break;
522 }
523 if (m0->m_pkthdr.len > MHLEN) {
524 MCLGET(m, M_DONTWAIT);
525 if ((m->m_flags & M_EXT) == 0) {
526 printf("%s: unable to allocate Tx "
527 "cluster\n", sc->sc_dev.dv_xname);
528 m_freem(m);
529 IF_PREPEND(&ifp->if_snd, m0);
530 break;
531 }
532 }
533 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
534 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
535 m_freem(m0);
536 m0 = m;
537 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
538 m0, BUS_DMA_NOWAIT);
539 if (error) {
540 printf("%s: unable to load Tx buffer, "
541 "error = %d\n", sc->sc_dev.dv_xname, error);
542 IF_PREPEND(&ifp->if_snd, m0);
543 break;
544 }
545 }
546
547 /*
548 * Ensure we have enough descriptors free to describe
549 * the packet.
550 */
551 if (dmamap->dm_nsegs > sc->sc_txfree) {
552 /*
553 * Not enough free descriptors to transmit this
554 * packet. We haven't committed to anything yet,
555 * so just unload the DMA map, put the packet
556 * back on the queue, and punt. Notify the upper
557 * layer that there are no more slots left.
558 *
559 * XXX We could allocate an mbuf and copy, but
560 * XXX it is worth it?
561 */
562 ifp->if_flags |= IFF_OACTIVE;
563 bus_dmamap_unload(sc->sc_dmat, dmamap);
564 IF_PREPEND(&ifp->if_snd, m0);
565 break;
566 }
567
568 /*
569 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
570 */
571
572 /* Sync the DMA map. */
573 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
574 BUS_DMASYNC_PREWRITE);
575
576 /*
577 * Initialize the transmit descriptors.
578 */
579 for (nexttx = sc->sc_txnext, seg = 0;
580 seg < dmamap->dm_nsegs;
581 seg++, nexttx = TULIP_NEXTTX(nexttx)) {
582 /*
583 * If this is the first descriptor we're
584 * enqueueing, don't set the OWN bit just
585 * yet. That could cause a race condition.
586 * We'll do it below.
587 */
588 sc->sc_txdescs[nexttx].td_status =
589 (nexttx == firsttx) ? 0 : TDSTAT_OWN;
590 sc->sc_txdescs[nexttx].td_bufaddr1 =
591 dmamap->dm_segs[seg].ds_addr;
592 sc->sc_txdescs[nexttx].td_ctl =
593 (dmamap->dm_segs[seg].ds_len << TDCTL_SIZE1_SHIFT) |
594 TDCTL_CH;
595 lasttx = nexttx;
596 }
597
598 /* Set `first segment' and `last segment' appropriately. */
599 sc->sc_txdescs[sc->sc_txnext].td_ctl |= TDCTL_Tx_FS;
600 sc->sc_txdescs[lasttx].td_ctl |= TDCTL_Tx_LS;
601
602 #ifdef TLP_DEBUG
603 if (ifp->if_flags & IFF_DEBUG) {
604 printf(" txsoft %p trainsmit chain:\n", txs);
605 for (seg = sc->sc_txnext;; seg = TULIP_NEXTTX(seg)) {
606 printf(" descriptor %d:\n", seg);
607 printf(" td_status: 0x%08x\n",
608 sc->sc_txdescs[seg].td_status);
609 printf(" td_ctl: 0x%08x\n",
610 sc->sc_txdescs[seg].td_ctl);
611 printf(" td_bufaddr1: 0x%08x\n",
612 sc->sc_txdescs[seg].td_bufaddr1);
613 printf(" td_bufaddr2: 0x%08x\n",
614 sc->sc_txdescs[seg].td_bufaddr2);
615 if (seg == lasttx)
616 break;
617 }
618 }
619 #endif
620
621 /* Sync the descriptors we're using. */
622 TULIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
623 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
624
625 /*
626 * Store a pointer to the packet so we can free it later,
627 * and remember what txdirty will be once the packet is
628 * done.
629 */
630 txs->txs_mbuf = m0;
631 txs->txs_firstdesc = sc->sc_txnext;
632 txs->txs_lastdesc = lasttx;
633
634 /* Advance the tx pointer. */
635 sc->sc_txfree -= dmamap->dm_nsegs;
636 sc->sc_txnext = nexttx;
637
638 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
639 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
640
641 last_txs = txs;
642
643 #if NBPFILTER > 0
644 /*
645 * Pass the packet to any BPF listeners.
646 */
647 if (ifp->if_bpf)
648 bpf_mtap(ifp->if_bpf, m0);
649 #endif /* NBPFILTER > 0 */
650 }
651
652 if (txs == NULL || sc->sc_txfree == 0) {
653 /* No more slots left; notify upper layer. */
654 ifp->if_flags |= IFF_OACTIVE;
655 }
656
657 if (sc->sc_txfree != ofree) {
658 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
659 sc->sc_dev.dv_xname, lasttx, firsttx));
660 /*
661 * Cause a transmit interrupt to happen on the
662 * last packet we enqueued.
663 */
664 sc->sc_txdescs[lasttx].td_ctl |= TDCTL_Tx_IC;
665 TULIP_CDTXSYNC(sc, lasttx, 1,
666 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
667
668 /*
669 * Some clone chips want IC on the *first* segment in
670 * the packet. Appease them.
671 */
672 if ((sc->sc_flags & TULIPF_IC_FS) != 0 &&
673 last_txs->txs_firstdesc != lasttx) {
674 sc->sc_txdescs[last_txs->txs_firstdesc].td_ctl |=
675 TDCTL_Tx_IC;
676 TULIP_CDTXSYNC(sc, last_txs->txs_firstdesc, 1,
677 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
678 }
679
680 /*
681 * The entire packet chain is set up. Give the
682 * first descriptor to the chip now.
683 */
684 sc->sc_txdescs[firsttx].td_status |= TDSTAT_OWN;
685 TULIP_CDTXSYNC(sc, firsttx, 1,
686 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
687
688 /* Wake up the transmitter. */
689 /* XXX USE AUTOPOLLING? */
690 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
691
692 /* Set a watchdog timer in case the chip flakes out. */
693 ifp->if_timer = 5;
694 }
695 }
696
697 /*
698 * tlp_watchdog: [ifnet interface function]
699 *
700 * Watchdog timer handler.
701 */
702 void
703 tlp_watchdog(ifp)
704 struct ifnet *ifp;
705 {
706 struct tulip_softc *sc = ifp->if_softc;
707 int doing_setup, doing_transmit;
708
709 doing_setup = (sc->sc_flags & TULIPF_DOING_SETUP);
710 doing_transmit = (SIMPLEQ_FIRST(&sc->sc_txdirtyq) != NULL);
711
712 if (doing_setup && doing_transmit) {
713 printf("%s: filter setup and transmit timeout\n",
714 sc->sc_dev.dv_xname);
715 ifp->if_oerrors++;
716 } else if (doing_transmit) {
717 printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
718 ifp->if_oerrors++;
719 } else if (doing_setup)
720 printf("%s: filter setup timeout\n", sc->sc_dev.dv_xname);
721 else
722 printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
723
724 (void) tlp_init(sc);
725
726 /* Try to get more packets going. */
727 tlp_start(ifp);
728 }
729
730 /*
731 * tlp_ioctl: [ifnet interface function]
732 *
733 * Handle control requests from the operator.
734 */
735 int
736 tlp_ioctl(ifp, cmd, data)
737 struct ifnet *ifp;
738 u_long cmd;
739 caddr_t data;
740 {
741 struct tulip_softc *sc = ifp->if_softc;
742 struct ifreq *ifr = (struct ifreq *)data;
743 struct ifaddr *ifa = (struct ifaddr *)data;
744 int s, error = 0;
745
746 s = splnet();
747
748 switch (cmd) {
749 case SIOCSIFADDR:
750 ifp->if_flags |= IFF_UP;
751
752 switch (ifa->ifa_addr->sa_family) {
753 #ifdef INET
754 case AF_INET:
755 if ((error = tlp_init(sc)) != 0)
756 break;
757 arp_ifinit(ifp, ifa);
758 break;
759 #endif /* INET */
760 #ifdef NS
761 case AF_NS:
762 {
763 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
764
765 if (ns_nullhost(*ina))
766 ina->x_host = *(union ns_host *)
767 LLADDR(ifp->if_sadl);
768 else
769 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
770 ifp->if_addrlen);
771 /* Set new address. */
772 error = tlp_init(sc);
773 break;
774 }
775 #endif /* NS */
776 default:
777 error = tlp_init(sc);
778 break;
779 }
780 break;
781
782 case SIOCSIFMTU:
783 if (ifr->ifr_mtu > ETHERMTU)
784 error = EINVAL;
785 else
786 ifp->if_mtu = ifr->ifr_mtu;
787 break;
788
789 case SIOCSIFFLAGS:
790 #ifdef TLP_STATS
791 if (ifp->if_flags & IFF_DEBUG)
792 tlp_print_stats(sc);
793 #endif
794 if ((ifp->if_flags & IFF_UP) == 0 &&
795 (ifp->if_flags & IFF_RUNNING) != 0) {
796 /*
797 * If interface is marked down and it is running, then
798 * stop it.
799 */
800 tlp_stop(sc, 1);
801 } else if ((ifp->if_flags & IFF_UP) != 0 &&
802 (ifp->if_flags & IFF_RUNNING) == 0) {
803 /*
804 * If interfase it marked up and it is stopped, then
805 * start it.
806 */
807 error = tlp_init(sc);
808 } else if ((ifp->if_flags & IFF_UP) != 0) {
809 /*
810 * Reset the interface to pick up changes in any other
811 * flags that affect the hardware state.
812 */
813 error = tlp_init(sc);
814 }
815 break;
816
817 case SIOCADDMULTI:
818 case SIOCDELMULTI:
819 error = (cmd == SIOCADDMULTI) ?
820 ether_addmulti(ifr, &sc->sc_ethercom) :
821 ether_delmulti(ifr, &sc->sc_ethercom);
822
823 if (error == ENETRESET) {
824 /*
825 * Multicast list has changed. Set the filter
826 * accordingly.
827 */
828 (*sc->sc_filter_setup)(sc);
829 error = 0;
830 }
831 break;
832
833 case SIOCSIFMEDIA:
834 case SIOCGIFMEDIA:
835 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
836 break;
837
838 default:
839 error = EINVAL;
840 break;
841 }
842
843 /* Try to get more packets going. */
844 tlp_start(ifp);
845
846 splx(s);
847 return (error);
848 }
849
850 /*
851 * tlp_intr:
852 *
853 * Interrupt service routine.
854 */
855 int
856 tlp_intr(arg)
857 void *arg;
858 {
859 struct tulip_softc *sc = arg;
860 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
861 u_int32_t status, rxstatus, txstatus;
862 int handled = 0, txthresh;
863
864 DPRINTF(sc, ("%s: tlp_intr\n", sc->sc_dev.dv_xname));
865
866 /*
867 * If the interface isn't running, the interrupt couldn't
868 * possibly have come from us.
869 */
870 if ((ifp->if_flags & IFF_RUNNING) == 0)
871 return (0);
872
873 for (;;) {
874 status = TULIP_READ(sc, CSR_STATUS);
875 if (status)
876 TULIP_WRITE(sc, CSR_STATUS, status);
877
878 if ((status & sc->sc_inten) == 0)
879 break;
880
881 handled = 1;
882
883 rxstatus = status & sc->sc_rxint_mask;
884 txstatus = status & sc->sc_txint_mask;
885
886 if (rxstatus) {
887 /* Grab new any new packets. */
888 tlp_rxintr(sc);
889
890 if (rxstatus & STATUS_RWT)
891 printf("%s: receive watchdog timeout\n",
892 sc->sc_dev.dv_xname);
893
894 if (rxstatus & STATUS_RU) {
895 printf("%s: receive ring overrun\n",
896 sc->sc_dev.dv_xname);
897 /* Get the receive process going again. */
898 tlp_idle(sc, OPMODE_SR);
899 TULIP_WRITE(sc, CSR_RXLIST,
900 TULIP_CDRXADDR(sc, sc->sc_rxptr));
901 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
902 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
903 break;
904 }
905 }
906
907 if (txstatus) {
908 /* Sweep up transmit descriptors. */
909 tlp_txintr(sc);
910
911 if (txstatus & STATUS_TJT)
912 printf("%s: transmit jabber timeout\n",
913 sc->sc_dev.dv_xname);
914
915 if (txstatus & STATUS_UNF) {
916 /*
917 * Increase our transmit threshold if
918 * another is available.
919 */
920 txthresh = sc->sc_txthresh + 1;
921 if (sc->sc_txth[txthresh].txth_name != NULL) {
922 /* Idle the transmit process. */
923 tlp_idle(sc, OPMODE_ST);
924
925 sc->sc_txthresh = txthresh;
926 sc->sc_opmode &= ~(OPMODE_TR|OPMODE_SF);
927 sc->sc_opmode |=
928 sc->sc_txth[txthresh].txth_opmode;
929 printf("%s: transmit underrun; new "
930 "threshold: %s\n",
931 sc->sc_dev.dv_xname,
932 sc->sc_txth[txthresh].txth_name);
933
934 /*
935 * Set the new threshold and restart
936 * the transmit process.
937 */
938 TULIP_WRITE(sc, CSR_OPMODE,
939 sc->sc_opmode);
940 }
941 /*
942 * XXX Log every Nth underrun from
943 * XXX now on?
944 */
945 }
946 }
947
948 if (status & (STATUS_TPS|STATUS_RPS)) {
949 if (status & STATUS_TPS)
950 printf("%s: transmit process stopped\n",
951 sc->sc_dev.dv_xname);
952 if (status & STATUS_RPS)
953 printf("%s: receive process stopped\n",
954 sc->sc_dev.dv_xname);
955 (void) tlp_init(sc);
956 break;
957 }
958
959 if (status & STATUS_SE) {
960 const char *str;
961 switch (status & STATUS_EB) {
962 case STATUS_EB_PARITY:
963 str = "parity error";
964 break;
965
966 case STATUS_EB_MABT:
967 str = "master abort";
968 break;
969
970 case STATUS_EB_TABT:
971 str = "target abort";
972 break;
973
974 default:
975 str = "unknown error";
976 break;
977 }
978 printf("%s: fatal system error: %s\n",
979 sc->sc_dev.dv_xname, str);
980 (void) tlp_init(sc);
981 break;
982 }
983
984 /*
985 * Not handled:
986 *
987 * Transmit buffer unavailable -- normal
988 * condition, nothing to do, really.
989 *
990 * General purpose timer experied -- we don't
991 * use the general purpose timer.
992 *
993 * Early receive interrupt -- not available on
994 * all chips, we just use RI. We also only
995 * use single-segment receive DMA, so this
996 * is mostly useless.
997 */
998 }
999
1000 /* Try to get more packets going. */
1001 tlp_start(ifp);
1002
1003 return (handled);
1004 }
1005
1006 /*
1007 * tlp_rxintr:
1008 *
1009 * Helper; handle receive interrupts.
1010 */
1011 void
1012 tlp_rxintr(sc)
1013 struct tulip_softc *sc;
1014 {
1015 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1016 struct ether_header *eh;
1017 struct tulip_rxsoft *rxs;
1018 struct mbuf *m;
1019 u_int32_t rxstat;
1020 int i, len;
1021
1022 for (i = sc->sc_rxptr;; i = TULIP_NEXTRX(i)) {
1023 rxs = &sc->sc_rxsoft[i];
1024
1025 TULIP_CDRXSYNC(sc, i,
1026 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1027
1028 rxstat = sc->sc_rxdescs[i].td_status;
1029
1030 if (rxstat & TDSTAT_OWN) {
1031 /*
1032 * We have processed all of the receive buffers.
1033 */
1034 break;
1035 }
1036
1037 /*
1038 * Make sure the packet fit in one buffer. This should
1039 * always be the case. But the Lite-On PNIC, rev 33
1040 * has an awful receive engine bug, which may require
1041 * a very icky work-around.
1042 */
1043 if ((rxstat & (TDSTAT_Rx_FS|TDSTAT_Rx_LS)) !=
1044 (TDSTAT_Rx_FS|TDSTAT_Rx_LS)) {
1045 printf("%s: incoming packet spilled, resetting\n",
1046 sc->sc_dev.dv_xname);
1047 (void) tlp_init(sc);
1048 return;
1049 }
1050
1051 /*
1052 * If any collisions were seen on the wire, count one.
1053 */
1054 if (rxstat & TDSTAT_Rx_CS)
1055 ifp->if_collisions++;
1056
1057 /*
1058 * If an error occured, update stats, clear the status
1059 * word, and leave the packet buffer in place. It will
1060 * simply be reused the next time the ring comes around.
1061 */
1062 if (rxstat & TDSTAT_ES) {
1063 #define PRINTERR(bit, str) \
1064 if (rxstat & (bit)) \
1065 printf("%s: receive error: %s\n", \
1066 sc->sc_dev.dv_xname, str)
1067 ifp->if_ierrors++;
1068 PRINTERR(TDSTAT_Rx_DE, "descriptor error");
1069 PRINTERR(TDSTAT_Rx_RF, "runt frame");
1070 PRINTERR(TDSTAT_Rx_TL, "frame too long");
1071 PRINTERR(TDSTAT_Rx_RE, "MII error");
1072 PRINTERR(TDSTAT_Rx_DB, "dribbling bit");
1073 PRINTERR(TDSTAT_Rx_CE, "CRC error");
1074 #undef PRINTERR
1075 TULIP_INIT_RXDESC(sc, i);
1076 continue;
1077 }
1078
1079 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1080 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1081
1082 /*
1083 * No errors; receive the packet. Note the Tulip
1084 * includes the CRC with every packet; trim it.
1085 */
1086 len = TDSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1087
1088 #ifdef __NO_STRICT_ALIGNMENT
1089 /*
1090 * Allocate a new mbuf cluster. If that fails, we are
1091 * out of memory, and must drop the packet and recycle
1092 * the buffer that's already attached to this descriptor.
1093 */
1094 m = rxs->rxs_mbuf;
1095 if (tlp_add_rxbuf(sc, i) != 0) {
1096 ifp->if_ierrors++;
1097 TULIP_INIT_RXDESC(sc, i);
1098 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1099 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1100 continue;
1101 }
1102 #else
1103 /*
1104 * The Tulip's receive buffers must be 4-byte aligned.
1105 * But this means that the data after the Ethernet header
1106 * is misaligned. We must allocate a new buffer and
1107 * copy the data, shifted forward 2 bytes.
1108 */
1109 MGETHDR(m, M_DONTWAIT, MT_DATA);
1110 if (m == NULL) {
1111 dropit:
1112 ifp->if_ierrors++;
1113 TULIP_INIT_RXDESC(sc, i);
1114 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1115 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1116 continue;
1117 }
1118 if (len > (MHLEN - 2)) {
1119 MCLGET(m, M_DONTWAIT);
1120 if ((m->m_flags & M_EXT) == 0) {
1121 m_freem(m);
1122 goto dropit;
1123 }
1124 }
1125 m->m_data += 2;
1126
1127 /*
1128 * Note that we use clusters for incoming frames, so the
1129 * buffer is virtually contiguous.
1130 */
1131 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1132
1133 /* Allow the receive descriptor to continue using its mbuf. */
1134 TULIP_INIT_RXDESC(sc, i);
1135 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1136 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1137 #endif /* __NO_STRICT_ALIGNMENT */
1138
1139 ifp->if_ipackets++;
1140 eh = mtod(m, struct ether_header *);
1141 m->m_pkthdr.rcvif = ifp;
1142 m->m_pkthdr.len = m->m_len = len;
1143
1144 #if NBPFILTER > 0
1145 /*
1146 * Pass this up to any BPF listeners, but only
1147 * pass it up the stack if its for us.
1148 */
1149 if (ifp->if_bpf)
1150 bpf_mtap(ifp->if_bpf, m);
1151 #endif /* NPBFILTER > 0 */
1152
1153 /*
1154 * This test is outside the NBPFILTER block because
1155 * on the 21140 we have to use Hash-Only mode due to
1156 * a bug in the filter logic.
1157 */
1158 if ((ifp->if_flags & IFF_PROMISC) != 0 ||
1159 sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) {
1160 if (memcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
1161 ETHER_ADDR_LEN) != 0 &&
1162 ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
1163 m_freem(m);
1164 continue;
1165 }
1166 }
1167
1168 /* Pass it on. */
1169 (*ifp->if_input)(ifp, m);
1170 }
1171
1172 /* Update the recieve pointer. */
1173 sc->sc_rxptr = i;
1174 }
1175
1176 /*
1177 * tlp_txintr:
1178 *
1179 * Helper; handle transmit interrupts.
1180 */
1181 void
1182 tlp_txintr(sc)
1183 struct tulip_softc *sc;
1184 {
1185 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1186 struct tulip_txsoft *txs;
1187 u_int32_t txstat;
1188
1189 DPRINTF(sc, ("%s: tlp_txintr: sc_flags 0x%08x\n",
1190 sc->sc_dev.dv_xname, sc->sc_flags));
1191
1192 ifp->if_flags &= ~IFF_OACTIVE;
1193
1194 /*
1195 * If we were doing a filter setup, check to see if it completed.
1196 */
1197 if (sc->sc_flags & TULIPF_DOING_SETUP) {
1198 TULIP_CDSDSYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1199 if ((sc->sc_setup_desc.td_status & TDSTAT_OWN) == 0)
1200 sc->sc_flags &= ~TULIPF_DOING_SETUP;
1201 }
1202
1203 /*
1204 * Go through our Tx list and free mbufs for those
1205 * frames that have been transmitted.
1206 */
1207 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1208 TULIP_CDTXSYNC(sc, txs->txs_lastdesc,
1209 txs->txs_dmamap->dm_nsegs,
1210 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1211
1212 #ifdef TLP_DEBUG
1213 if (ifp->if_flags & IFF_DEBUG) {
1214 int i;
1215 printf(" txsoft %p trainsmit chain:\n", txs);
1216 for (i = txs->txs_firstdesc;; i = TULIP_NEXTTX(i)) {
1217 printf(" descriptor %d:\n", i);
1218 printf(" td_status: 0x%08x\n",
1219 sc->sc_txdescs[i].td_status);
1220 printf(" td_ctl: 0x%08x\n",
1221 sc->sc_txdescs[i].td_ctl);
1222 printf(" td_bufaddr1: 0x%08x\n",
1223 sc->sc_txdescs[i].td_bufaddr1);
1224 printf(" td_bufaddr2: 0x%08x\n",
1225 sc->sc_txdescs[i].td_bufaddr2);
1226 if (i == txs->txs_lastdesc)
1227 break;
1228 }
1229 }
1230 #endif
1231
1232 txstat = sc->sc_txdescs[txs->txs_lastdesc].td_status;
1233 if (txstat & TDSTAT_OWN)
1234 break;
1235
1236 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1237
1238 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1239
1240 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1241 0, txs->txs_dmamap->dm_mapsize,
1242 BUS_DMASYNC_POSTWRITE);
1243 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1244 m_freem(txs->txs_mbuf);
1245 txs->txs_mbuf = NULL;
1246
1247 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1248
1249 /*
1250 * Check for errors and collisions.
1251 */
1252 #ifdef TLP_STATS
1253 if (txstat & TDSTAT_Tx_UF)
1254 sc->sc_stats.ts_tx_uf++;
1255 if (txstat & TDSTAT_Tx_TO)
1256 sc->sc_stats.ts_tx_to++;
1257 if (txstat & TDSTAT_Tx_EC)
1258 sc->sc_stats.ts_tx_ec++;
1259 if (txstat & TDSTAT_Tx_LC)
1260 sc->sc_stats.ts_tx_lc++;
1261 #endif
1262
1263 if (txstat & (TDSTAT_Tx_UF|TDSTAT_Tx_TO))
1264 ifp->if_oerrors++;
1265
1266 if (txstat & TDSTAT_Tx_EC)
1267 ifp->if_collisions += 16;
1268 else
1269 ifp->if_collisions += TDSTAT_Tx_COLLISIONS(txstat);
1270 if (txstat & TDSTAT_Tx_LC)
1271 ifp->if_collisions++;
1272
1273 ifp->if_opackets++;
1274 }
1275
1276 /*
1277 * If there are no more pending transmissions, cancel the watchdog
1278 * timer.
1279 */
1280 if (txs == NULL && (sc->sc_flags & TULIPF_DOING_SETUP) == 0)
1281 ifp->if_timer = 0;
1282
1283 /*
1284 * If we have a receive filter setup pending, do it now.
1285 */
1286 if (sc->sc_flags & TULIPF_WANT_SETUP)
1287 (*sc->sc_filter_setup)(sc);
1288 }
1289
1290 #ifdef TLP_STATS
1291 void
1292 tlp_print_stats(sc)
1293 struct tulip_softc *sc;
1294 {
1295
1296 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1297 sc->sc_dev.dv_xname,
1298 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1299 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1300 }
1301 #endif
1302
1303 /*
1304 * tlp_reset:
1305 *
1306 * Perform a soft reset on the Tulip.
1307 */
1308 void
1309 tlp_reset(sc)
1310 struct tulip_softc *sc;
1311 {
1312 int i;
1313
1314 TULIP_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1315
1316 for (i = 0; i < 1000; i++) {
1317 /*
1318 * Wait at least 50 PCI cycles for the reset to
1319 * complete before peeking at the Tulip again.
1320 * 10 uSec is a bit longer than 50 PCI cycles
1321 * (at 33MHz), but it doesn't hurt have the extra
1322 * wait.
1323 */
1324 delay(10);
1325 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1326 break;
1327 }
1328
1329 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1330 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1331
1332 delay(1000);
1333
1334 /*
1335 * If the board has any GPIO reset sequences to issue, do them now.
1336 */
1337 if (sc->sc_reset != NULL)
1338 (*sc->sc_reset)(sc);
1339 }
1340
1341 /*
1342 * tlp_init:
1343 *
1344 * Initialize the interface. Must be called at splnet().
1345 */
1346 int
1347 tlp_init(sc)
1348 struct tulip_softc *sc;
1349 {
1350 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1351 struct tulip_txsoft *txs;
1352 struct tulip_rxsoft *rxs;
1353 int i, error = 0;
1354
1355 /*
1356 * Cancel any pending I/O.
1357 */
1358 tlp_stop(sc, 0);
1359
1360 /*
1361 * Initialize `opmode' to 0, and call the pre-init routine, if
1362 * any. This is required because the 2114x and some of the
1363 * clones require that the media-related bits in `opmode' be
1364 * set before performing a soft-reset in order to get internal
1365 * chip pathways are correct. Yay!
1366 */
1367 sc->sc_opmode = 0;
1368 if (sc->sc_preinit != NULL)
1369 (*sc->sc_preinit)(sc);
1370
1371 /*
1372 * Reset the Tulip to a known state.
1373 */
1374 tlp_reset(sc);
1375
1376 /*
1377 * Initialize the BUSMODE register.
1378 */
1379 sc->sc_busmode = BUSMODE_BAR;
1380 switch (sc->sc_chip) {
1381 case TULIP_CHIP_21140:
1382 case TULIP_CHIP_21140A:
1383 case TULIP_CHIP_21142:
1384 case TULIP_CHIP_21143:
1385 /*
1386 * If we're allowed to do so, use Memory Read Line
1387 * and Memory Read Multiple.
1388 *
1389 * XXX Should we use Memory Write and Invalidate?
1390 */
1391 if (sc->sc_flags & TULIPF_MRL)
1392 sc->sc_busmode |= BUSMODE_RLE;
1393 if (sc->sc_flags & TULIPF_MRM)
1394 sc->sc_busmode |= BUSMODE_RME;
1395 #if 0
1396 if (sc->sc_flags & TULIPF_MWI)
1397 sc->sc_busmode |= BUSMODE_WLE;
1398 #endif
1399
1400 default:
1401 /* Nothing. */
1402 }
1403 switch (sc->sc_cacheline) {
1404 default:
1405 /*
1406 * Note: We must *always* set these bits; a cache
1407 * alignment of 0 is RESERVED.
1408 */
1409 case 8:
1410 sc->sc_busmode |= BUSMODE_CAL_8LW;
1411 break;
1412 case 16:
1413 sc->sc_busmode |= BUSMODE_CAL_16LW;
1414 break;
1415 case 32:
1416 sc->sc_busmode |= BUSMODE_CAL_32LW;
1417 break;
1418 }
1419 switch (sc->sc_chip) {
1420 case TULIP_CHIP_82C168:
1421 case TULIP_CHIP_82C169:
1422 sc->sc_busmode |= BUSMODE_PBL_16LW | BUSMODE_PNIC_MBO;
1423 break;
1424 default:
1425 sc->sc_busmode |= BUSMODE_PBL_DEFAULT;
1426 break;
1427 }
1428 #if BYTE_ORDER == BIG_ENDIAN
1429 /*
1430 * XXX There are reports that this doesn't work properly
1431 * in the old Tulip driver, but BUSMODE_DBO does. However,
1432 * BUSMODE_DBO is not available on the 21040, and requires
1433 * us to byte-swap the setup packet. What to do?
1434 */
1435 sc->sc_busmode |= BUSMODE_BLE;
1436 #endif
1437 TULIP_WRITE(sc, CSR_BUSMODE, sc->sc_busmode);
1438
1439 /*
1440 * Initialize the OPMODE register. We don't write it until
1441 * we're ready to begin the transmit and receive processes.
1442 *
1443 * Media-related OPMODE bits are set in the media callbacks
1444 * for each specific chip/board.
1445 */
1446 sc->sc_opmode |= OPMODE_SR | OPMODE_ST |
1447 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1448
1449 /*
1450 * Magical mystery initialization on the Macronix chips.
1451 * The MX98713 uses its own magic value, the rest share
1452 * a common one.
1453 */
1454 switch (sc->sc_chip) {
1455 case TULIP_CHIP_MX98713:
1456 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98713);
1457 break;
1458
1459 case TULIP_CHIP_MX98713A:
1460 case TULIP_CHIP_MX98715:
1461 case TULIP_CHIP_MX98715A:
1462 case TULIP_CHIP_MX98725:
1463 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98715);
1464 break;
1465
1466 default:
1467 /* Nothing. */
1468 }
1469
1470 /*
1471 * Initialize the transmit descriptor ring.
1472 */
1473 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1474 for (i = 0; i < TULIP_NTXDESC; i++) {
1475 sc->sc_txdescs[i].td_ctl = TDCTL_CH;
1476 sc->sc_txdescs[i].td_bufaddr2 =
1477 TULIP_CDTXADDR(sc, TULIP_NEXTTX(i));
1478 }
1479 TULIP_CDTXSYNC(sc, 0, TULIP_NTXDESC,
1480 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1481 sc->sc_txfree = TULIP_NTXDESC;
1482 sc->sc_txnext = 0;
1483
1484 /*
1485 * Initialize the transmit job descriptors.
1486 */
1487 SIMPLEQ_INIT(&sc->sc_txfreeq);
1488 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1489 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
1490 txs = &sc->sc_txsoft[i];
1491 txs->txs_mbuf = NULL;
1492 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1493 }
1494
1495 /*
1496 * Initialize the receive descriptor and receive job
1497 * descriptor rings.
1498 */
1499 for (i = 0; i < TULIP_NRXDESC; i++) {
1500 rxs = &sc->sc_rxsoft[i];
1501 if (rxs->rxs_mbuf == NULL) {
1502 if ((error = tlp_add_rxbuf(sc, i)) != 0) {
1503 printf("%s: unable to allocate or map rx "
1504 "buffer %d, error = %d\n",
1505 sc->sc_dev.dv_xname, i, error);
1506 /*
1507 * XXX Should attempt to run with fewer receive
1508 * XXX buffers instead of just failing.
1509 */
1510 tlp_rxdrain(sc);
1511 goto out;
1512 }
1513 }
1514 }
1515 sc->sc_rxptr = 0;
1516
1517 /*
1518 * Initialize the interrupt mask and enable interrupts.
1519 */
1520 /* normal interrupts */
1521 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1522
1523 /* abnormal interrupts */
1524 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1525 STATUS_RU | STATUS_RPS | STATUS_RWT | STATUS_SE | STATUS_AIS;
1526
1527 sc->sc_rxint_mask = STATUS_RI|STATUS_RU|STATUS_RWT;
1528 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1529
1530 switch (sc->sc_chip) {
1531 case TULIP_CHIP_WB89C840F:
1532 /*
1533 * Clear bits that we don't want that happen to
1534 * overlap or don't exist.
1535 */
1536 sc->sc_inten &= ~(STATUS_WINB_REI|STATUS_RWT);
1537 break;
1538
1539 default:
1540 /* Nothing. */
1541 }
1542
1543 sc->sc_rxint_mask &= sc->sc_inten;
1544 sc->sc_txint_mask &= sc->sc_inten;
1545
1546 TULIP_WRITE(sc, CSR_INTEN, sc->sc_inten);
1547 TULIP_WRITE(sc, CSR_STATUS, 0xffffffff);
1548
1549 /*
1550 * Give the transmit and receive rings to the Tulip.
1551 */
1552 TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDTXADDR(sc, sc->sc_txnext));
1553 TULIP_WRITE(sc, CSR_RXLIST, TULIP_CDRXADDR(sc, sc->sc_rxptr));
1554
1555 /*
1556 * On chips that do this differently, set the station address.
1557 */
1558 switch (sc->sc_chip) {
1559 case TULIP_CHIP_WB89C840F:
1560 {
1561 /* XXX Do this with stream writes? */
1562 bus_addr_t cpa = TULIP_CSR_OFFSET(sc, CSR_WINB_CPA0);
1563
1564 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1565 bus_space_write_1(sc->sc_st, sc->sc_sh,
1566 cpa + i, LLADDR(ifp->if_sadl)[i]);
1567 }
1568 break;
1569 }
1570
1571 case TULIP_CHIP_AL981:
1572 {
1573 u_int32_t reg;
1574 u_int8_t *enaddr = LLADDR(ifp->if_sadl);
1575
1576 reg = enaddr[0] |
1577 (enaddr[1] << 8) |
1578 (enaddr[2] << 16) |
1579 (enaddr[3] << 24);
1580 bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_PAR0, reg);
1581
1582 reg = enaddr[4] |
1583 (enaddr[5] << 8);
1584 bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_PAR1, reg);
1585 }
1586
1587 default:
1588 /* Nothing. */
1589 }
1590
1591 /*
1592 * Set the receive filter. This will start the transmit and
1593 * receive processes.
1594 */
1595 (*sc->sc_filter_setup)(sc);
1596
1597 /*
1598 * Set the current media.
1599 */
1600 (void) (*sc->sc_mediasw->tmsw_set)(sc);
1601
1602 /*
1603 * Start the receive process.
1604 */
1605 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1606
1607 if (sc->sc_tick != NULL) {
1608 /* Start the one second clock. */
1609 timeout(sc->sc_tick, sc, hz);
1610 }
1611
1612 /*
1613 * Note that the interface is now running.
1614 */
1615 ifp->if_flags |= IFF_RUNNING;
1616 ifp->if_flags &= ~IFF_OACTIVE;
1617
1618 out:
1619 if (error)
1620 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1621 return (error);
1622 }
1623
1624 /*
1625 * tlp_rxdrain:
1626 *
1627 * Drain the receive queue.
1628 */
1629 void
1630 tlp_rxdrain(sc)
1631 struct tulip_softc *sc;
1632 {
1633 struct tulip_rxsoft *rxs;
1634 int i;
1635
1636 for (i = 0; i < TULIP_NRXDESC; i++) {
1637 rxs = &sc->sc_rxsoft[i];
1638 if (rxs->rxs_mbuf != NULL) {
1639 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1640 m_freem(rxs->rxs_mbuf);
1641 rxs->rxs_mbuf = NULL;
1642 }
1643 }
1644 }
1645
1646 /*
1647 * tlp_stop:
1648 *
1649 * Stop transmission on the interface.
1650 */
1651 void
1652 tlp_stop(sc, drain)
1653 struct tulip_softc *sc;
1654 int drain;
1655 {
1656 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1657 struct tulip_txsoft *txs;
1658
1659 if (sc->sc_tick != NULL) {
1660 /* Stop the one second clock. */
1661 untimeout(sc->sc_tick, sc);
1662 }
1663
1664 /* Disable interrupts. */
1665 TULIP_WRITE(sc, CSR_INTEN, 0);
1666
1667 /* Stop the transmit and receive processes. */
1668 TULIP_WRITE(sc, CSR_OPMODE, 0);
1669 TULIP_WRITE(sc, CSR_RXLIST, 0);
1670 TULIP_WRITE(sc, CSR_TXLIST, 0);
1671
1672 /*
1673 * Release any queued transmit buffers.
1674 */
1675 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1676 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1677 if (txs->txs_mbuf != NULL) {
1678 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1679 m_freem(txs->txs_mbuf);
1680 txs->txs_mbuf = NULL;
1681 }
1682 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1683 }
1684
1685 if (drain) {
1686 /*
1687 * Release the receive buffers.
1688 */
1689 tlp_rxdrain(sc);
1690 }
1691
1692 sc->sc_flags &= ~(TULIPF_WANT_SETUP|TULIPF_DOING_SETUP);
1693
1694 /*
1695 * Mark the interface down and cancel the watchdog timer.
1696 */
1697 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1698 ifp->if_timer = 0;
1699 }
1700
1701 #define SROM_EMIT(sc, x) \
1702 do { \
1703 TULIP_WRITE((sc), CSR_MIIROM, (x)); \
1704 delay(1); \
1705 } while (0)
1706
1707 /*
1708 * tlp_srom_idle:
1709 *
1710 * Put the SROM in idle state.
1711 */
1712 void
1713 tlp_srom_idle(sc)
1714 struct tulip_softc *sc;
1715 {
1716 u_int32_t miirom;
1717 int i;
1718
1719 miirom = MIIROM_SR;
1720 SROM_EMIT(sc, miirom);
1721
1722 miirom |= MIIROM_RD;
1723 SROM_EMIT(sc, miirom);
1724
1725 miirom |= MIIROM_SROMCS;
1726 SROM_EMIT(sc, miirom);
1727
1728 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1729
1730 /* Strobe the clock 25 times. */
1731 for (i = 0; i < 25; i++) {
1732 SROM_EMIT(sc, miirom);
1733 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1734 }
1735
1736 SROM_EMIT(sc, miirom);
1737
1738 miirom &= ~MIIROM_SROMCS;
1739 SROM_EMIT(sc, miirom);
1740
1741 SROM_EMIT(sc, 0);
1742 }
1743
1744 /*
1745 * tlp_read_srom:
1746 *
1747 * Read the Tulip SROM.
1748 */
1749 void
1750 tlp_read_srom(sc, word, wordcnt, data)
1751 struct tulip_softc *sc;
1752 int word, wordcnt;
1753 u_int8_t *data;
1754 {
1755 u_int32_t miirom;
1756 u_int16_t datain;
1757 int i, x;
1758
1759 tlp_srom_idle(sc);
1760
1761 /* Select the SROM. */
1762 miirom = MIIROM_SR;
1763 SROM_EMIT(sc, miirom);
1764
1765 miirom |= MIIROM_RD;
1766 SROM_EMIT(sc, miirom);
1767
1768 for (i = 0; i < wordcnt; i++) {
1769 /* Send CHIP SELECT for one clock tick. */
1770 miirom |= MIIROM_SROMCS;
1771 SROM_EMIT(sc, miirom);
1772
1773 /* Shift in the READ opcode. */
1774 for (x = 3; x > 0; x--) {
1775 if (TULIP_SROM_OPC_READ & (1 << (x - 1)))
1776 miirom |= MIIROM_SROMDI;
1777 else
1778 miirom &= ~MIIROM_SROMDI;
1779 SROM_EMIT(sc, miirom);
1780 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1781 SROM_EMIT(sc, miirom);
1782 }
1783
1784 /* Shift in address. */
1785 for (x = 6; x > 0; x--) {
1786 if ((word + i) & (1 << (x - 1)))
1787 miirom |= MIIROM_SROMDI;
1788 else
1789 miirom &= ~MIIROM_SROMDI;
1790 SROM_EMIT(sc, miirom);
1791 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1792 SROM_EMIT(sc, miirom);
1793 }
1794
1795 /* Shift out data. */
1796 miirom &= ~MIIROM_SROMDI;
1797 datain = 0;
1798 for (x = 16; x > 0; x--) {
1799 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1800 if (TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO))
1801 datain |= (1 << (x - 1));
1802 SROM_EMIT(sc, miirom);
1803 }
1804 data[2 * i] = datain & 0xff;
1805 data[(2 * i) + 1] = datain >> 8;
1806
1807 /* Clear CHIP SELECT. */
1808 miirom &= ~MIIROM_SROMCS;
1809 SROM_EMIT(sc, miirom);
1810 }
1811
1812 /* Deselect the SROM. */
1813 SROM_EMIT(sc, 0);
1814
1815 /* ...and idle it. */
1816 tlp_srom_idle(sc);
1817 }
1818
1819 #undef SROM_EMIT
1820
1821 /*
1822 * tlp_add_rxbuf:
1823 *
1824 * Add a receive buffer to the indicated descriptor.
1825 */
1826 int
1827 tlp_add_rxbuf(sc, idx)
1828 struct tulip_softc *sc;
1829 int idx;
1830 {
1831 struct tulip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1832 struct mbuf *m;
1833 int error;
1834
1835 MGETHDR(m, M_DONTWAIT, MT_DATA);
1836 if (m == NULL)
1837 return (ENOBUFS);
1838
1839 MCLGET(m, M_DONTWAIT);
1840 if ((m->m_flags & M_EXT) == 0) {
1841 m_freem(m);
1842 return (ENOBUFS);
1843 }
1844
1845 if (rxs->rxs_mbuf != NULL)
1846 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1847
1848 rxs->rxs_mbuf = m;
1849
1850 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1851 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1852 if (error) {
1853 printf("%s: can't load rx DMA map %d, error = %d\n",
1854 sc->sc_dev.dv_xname, idx, error);
1855 panic("tlp_add_rxbuf"); /* XXX */
1856 }
1857
1858 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1859 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1860
1861 TULIP_INIT_RXDESC(sc, idx);
1862
1863 return (0);
1864 }
1865
1866 /*
1867 * tlp_crc32:
1868 *
1869 * Compute the 32-bit CRC of the provided buffer.
1870 */
1871 u_int32_t
1872 tlp_crc32(buf, len)
1873 const u_int8_t *buf;
1874 size_t len;
1875 {
1876 static const u_int32_t crctab[] = {
1877 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1878 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1879 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1880 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1881 };
1882 u_int32_t crc;
1883 int i;
1884
1885 crc = 0xffffffff;
1886 for (i = 0; i < len; i++) {
1887 crc ^= buf[i];
1888 crc = (crc >> 4) ^ crctab[crc & 0xf];
1889 crc = (crc >> 4) ^ crctab[crc & 0xf];
1890 }
1891 return (crc);
1892 }
1893
1894 /*
1895 * tlp_srom_crcok:
1896 *
1897 * Check the CRC of the Tulip SROM.
1898 */
1899 int
1900 tlp_srom_crcok(romdata)
1901 const u_int8_t *romdata;
1902 {
1903 u_int32_t crc;
1904
1905 crc = tlp_crc32(romdata, TULIP_ROM_CRC32_CHECKSUM);
1906 crc = (crc & 0xffff) ^ 0xffff;
1907 if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM))
1908 return (1);
1909 return (0);
1910 }
1911
1912 /*
1913 * tlp_isv_srom:
1914 *
1915 * Check to see if the SROM is in the new standardized format.
1916 */
1917 int
1918 tlp_isv_srom(romdata)
1919 const u_int8_t *romdata;
1920 {
1921 int i;
1922 u_int16_t cksum;
1923
1924 if (tlp_srom_crcok(romdata)) {
1925 /*
1926 * SROM CRC checks out; must be in the new format.
1927 */
1928 return (1);
1929 }
1930
1931 cksum = TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM);
1932 if (cksum == 0xffff || cksum == 0) {
1933 /*
1934 * No checksum present. Check the SROM ID; 18 bytes of 0
1935 * followed by 1 (version) followed by the number of
1936 * adapters which use this SROM (should be non-zero).
1937 */
1938 for (i = 0; i < TULIP_ROM_SROM_FORMAT_VERION; i++) {
1939 if (romdata[i] != 0)
1940 return (0);
1941 }
1942 if (romdata[TULIP_ROM_SROM_FORMAT_VERION] != 1)
1943 return (0);
1944 if (romdata[TULIP_ROM_CHIP_COUNT] == 0)
1945 return (0);
1946 return (1);
1947 }
1948
1949 return (0);
1950 }
1951
1952 /*
1953 * tlp_isv_srom_enaddr:
1954 *
1955 * Get the Ethernet address from an ISV SROM.
1956 */
1957 int
1958 tlp_isv_srom_enaddr(sc, enaddr)
1959 struct tulip_softc *sc;
1960 u_int8_t *enaddr;
1961 {
1962 int i, devcnt;
1963
1964 if (tlp_isv_srom(sc->sc_srom) == 0)
1965 return (0);
1966
1967 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT];
1968 for (i = 0; i < devcnt; i++) {
1969 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1)
1970 break;
1971 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] ==
1972 sc->sc_devno)
1973 break;
1974 }
1975
1976 if (i == devcnt)
1977 return (0);
1978
1979 memcpy(enaddr, &sc->sc_srom[TULIP_ROM_IEEE_NETWORK_ADDRESS],
1980 ETHER_ADDR_LEN);
1981 enaddr[5] += i;
1982
1983 return (1);
1984 }
1985
1986 /*
1987 * tlp_parse_old_srom:
1988 *
1989 * Parse old-format SROMs.
1990 *
1991 * This routine is largely lifted from Matt Thomas's `de' driver.
1992 */
1993 int
1994 tlp_parse_old_srom(sc, enaddr)
1995 struct tulip_softc *sc;
1996 u_int8_t *enaddr;
1997 {
1998 static const u_int8_t testpat[] =
1999 { 0xff, 0, 0x55, 0xaa, 0xff, 0, 0x55, 0xaa };
2000 int i;
2001 u_int32_t cksum;
2002
2003 if (memcmp(&sc->sc_srom[0], &sc->sc_srom[16], 8) != 0) {
2004 /*
2005 * Some vendors (e.g. ZNYX) don't use the standard
2006 * DEC Address ROM format, but rather just have an
2007 * Ethernet address in the first 6 bytes, maybe a
2008 * 2 byte checksum, and then all 0xff's.
2009 */
2010 for (i = 8; i < 32; i++) {
2011 if (sc->sc_srom[i] != 0xff)
2012 return (0);
2013 }
2014
2015 /*
2016 * Sanity check the Ethernet address:
2017 *
2018 * - Make sure it's not multicast or locally
2019 * assigned
2020 * - Make sure it has a non-0 OUI
2021 */
2022 if (sc->sc_srom[0] & 3)
2023 return (0);
2024 if (sc->sc_srom[0] == 0 && sc->sc_srom[1] == 0 &&
2025 sc->sc_srom[2] == 0)
2026 return (0);
2027
2028 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN);
2029 return (1);
2030 }
2031
2032 /*
2033 * Standard DEC Address ROM test.
2034 */
2035
2036 if (memcmp(&sc->sc_srom[24], testpat, 8) != 0)
2037 return (0);
2038
2039 for (i = 0; i < 8; i++) {
2040 if (sc->sc_srom[i] != sc->sc_srom[15 - i])
2041 return (0);
2042 }
2043
2044 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN);
2045
2046 cksum = *(u_int16_t *) &enaddr[0];
2047
2048 cksum <<= 1;
2049 if (cksum > 0xffff)
2050 cksum -= 0xffff;
2051
2052 cksum += *(u_int16_t *) &enaddr[2];
2053 if (cksum > 0xffff)
2054 cksum -= 0xffff;
2055
2056 cksum <<= 1;
2057 if (cksum > 0xffff)
2058 cksum -= 0xffff;
2059
2060 cksum += *(u_int16_t *) &enaddr[4];
2061 if (cksum >= 0xffff)
2062 cksum -= 0xffff;
2063
2064 if (cksum != *(u_int16_t *) &sc->sc_srom[6])
2065 return (0);
2066
2067 return (1);
2068 }
2069
2070 /*
2071 * tlp_filter_setup:
2072 *
2073 * Set the Tulip's receive filter.
2074 */
2075 void
2076 tlp_filter_setup(sc)
2077 struct tulip_softc *sc;
2078 {
2079 struct ethercom *ec = &sc->sc_ethercom;
2080 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2081 struct ether_multi *enm;
2082 struct ether_multistep step;
2083 __volatile u_int32_t *sp;
2084 u_int8_t enaddr[ETHER_ADDR_LEN];
2085 u_int32_t hash, hashsize;
2086 int cnt;
2087
2088 DPRINTF(sc, ("%s: tlp_filter_setup: sc_flags 0x%08x\n",
2089 sc->sc_dev.dv_xname, sc->sc_flags));
2090
2091 memcpy(enaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
2092
2093 /*
2094 * If there are transmissions pending, wait until they have
2095 * completed.
2096 */
2097 if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) != NULL ||
2098 (sc->sc_flags & TULIPF_DOING_SETUP) != 0) {
2099 sc->sc_flags |= TULIPF_WANT_SETUP;
2100 DPRINTF(sc, ("%s: tlp_filter_setup: deferring\n",
2101 sc->sc_dev.dv_xname));
2102 return;
2103 }
2104 sc->sc_flags &= ~TULIPF_WANT_SETUP;
2105
2106 switch (sc->sc_chip) {
2107 case TULIP_CHIP_82C115:
2108 hashsize = TULIP_PNICII_HASHSIZE;
2109 break;
2110
2111 default:
2112 hashsize = TULIP_MCHASHSIZE;
2113 }
2114
2115 /*
2116 * If we're running, idle the transmit and receive engines. If
2117 * we're NOT running, we're being called from tlp_init(), and our
2118 * writing OPMODE will start the transmit and receive processes
2119 * in motion.
2120 */
2121 if (ifp->if_flags & IFF_RUNNING) {
2122 /*
2123 * Actually, some chips seem to need a really hard
2124 * kick in the head for this to work. The genuine
2125 * DEC chips can just be idled, but some of the
2126 * clones seem to REALLY want a reset here. Doing
2127 * the reset will end up here again, but with
2128 * IFF_RUNNING cleared.
2129 */
2130 switch (sc->sc_chip) {
2131 case TULIP_CHIP_82C168:
2132 case TULIP_CHIP_82C169:
2133 tlp_init(sc);
2134 return;
2135
2136 default:
2137 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2138 }
2139 }
2140
2141 sc->sc_opmode &= ~(OPMODE_PR|OPMODE_PM);
2142
2143 if (ifp->if_flags & IFF_PROMISC) {
2144 sc->sc_opmode |= OPMODE_PR;
2145 goto allmulti;
2146 }
2147
2148 /*
2149 * Try Perfect filtering first.
2150 */
2151
2152 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT;
2153 sp = TULIP_CDSP(sc);
2154 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2155 cnt = 0;
2156 ETHER_FIRST_MULTI(step, ec, enm);
2157 while (enm != NULL) {
2158 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2159 /*
2160 * We must listen to a range of multicast addresses.
2161 * For now, just accept all multicasts, rather than
2162 * trying to set only those filter bits needed to match
2163 * the range. (At this time, the only use of address
2164 * ranges is for IP multicast routing, for which the
2165 * range is big enough to require all bits set.)
2166 */
2167 goto allmulti;
2168 }
2169 if (cnt == (TULIP_MAXADDRS - 2)) {
2170 /*
2171 * We already have our multicast limit (still need
2172 * our station address and broadcast). Go to
2173 * Hash-Perfect mode.
2174 */
2175 goto hashperfect;
2176 }
2177 *sp++ = ((u_int16_t *) enm->enm_addrlo)[0];
2178 *sp++ = ((u_int16_t *) enm->enm_addrlo)[1];
2179 *sp++ = ((u_int16_t *) enm->enm_addrlo)[2];
2180 ETHER_NEXT_MULTI(step, enm);
2181 }
2182
2183 if (ifp->if_flags & IFF_BROADCAST) {
2184 /* ...and the broadcast address. */
2185 cnt++;
2186 *sp++ = 0xffff;
2187 *sp++ = 0xffff;
2188 *sp++ = 0xffff;
2189 }
2190
2191 /* Pad the rest with our station address. */
2192 for (; cnt < TULIP_MAXADDRS; cnt++) {
2193 *sp++ = ((u_int16_t *) enaddr)[0];
2194 *sp++ = ((u_int16_t *) enaddr)[1];
2195 *sp++ = ((u_int16_t *) enaddr)[2];
2196 }
2197 ifp->if_flags &= ~IFF_ALLMULTI;
2198 goto setit;
2199
2200 hashperfect:
2201 /*
2202 * Try Hash-Perfect mode.
2203 */
2204
2205 /*
2206 * Some 21140 chips have broken Hash-Perfect modes. On these
2207 * chips, we simply use Hash-Only mode, and put our station
2208 * address into the filter.
2209 */
2210 if (sc->sc_chip == TULIP_CHIP_21140)
2211 sc->sc_filtmode = TDCTL_Tx_FT_HASHONLY;
2212 else
2213 sc->sc_filtmode = TDCTL_Tx_FT_HASH;
2214 sp = TULIP_CDSP(sc);
2215 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2216 ETHER_FIRST_MULTI(step, ec, enm);
2217 while (enm != NULL) {
2218 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2219 /*
2220 * We must listen to a range of multicast addresses.
2221 * For now, just accept all multicasts, rather than
2222 * trying to set only those filter bits needed to match
2223 * the range. (At this time, the only use of address
2224 * ranges is for IP multicast routing, for which the
2225 * range is big enough to require all bits set.)
2226 */
2227 goto allmulti;
2228 }
2229 hash = tlp_mchash(enm->enm_addrlo, hashsize);
2230 sp[hash >> 4] |= 1 << (hash & 0xf);
2231 ETHER_NEXT_MULTI(step, enm);
2232 }
2233
2234 if (ifp->if_flags & IFF_BROADCAST) {
2235 /* ...and the broadcast address. */
2236 hash = tlp_mchash(etherbroadcastaddr, hashsize);
2237 sp[hash >> 4] |= 1 << (hash & 0xf);
2238 }
2239
2240 if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) {
2241 /* ...and our station address. */
2242 hash = tlp_mchash(enaddr, hashsize);
2243 sp[hash >> 4] |= 1 << (hash & 0xf);
2244 } else {
2245 /*
2246 * Hash-Perfect mode; put our station address after
2247 * the hash table.
2248 */
2249 sp[39] = ((u_int16_t *) enaddr)[0];
2250 sp[40] = ((u_int16_t *) enaddr)[1];
2251 sp[41] = ((u_int16_t *) enaddr)[2];
2252 }
2253 ifp->if_flags &= ~IFF_ALLMULTI;
2254 goto setit;
2255
2256 allmulti:
2257 /*
2258 * Use Perfect filter mode. First address is the broadcast address,
2259 * and pad the rest with our station address. We'll set Pass-all-
2260 * multicast in OPMODE below.
2261 */
2262 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT;
2263 sp = TULIP_CDSP(sc);
2264 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2265 cnt = 0;
2266 if (ifp->if_flags & IFF_BROADCAST) {
2267 cnt++;
2268 *sp++ = 0xffff;
2269 *sp++ = 0xffff;
2270 *sp++ = 0xffff;
2271 }
2272 for (; cnt < TULIP_MAXADDRS; cnt++) {
2273 *sp++ = ((u_int16_t *) enaddr)[0];
2274 *sp++ = ((u_int16_t *) enaddr)[1];
2275 *sp++ = ((u_int16_t *) enaddr)[2];
2276 }
2277 ifp->if_flags |= IFF_ALLMULTI;
2278
2279 setit:
2280 if (ifp->if_flags & IFF_ALLMULTI)
2281 sc->sc_opmode |= OPMODE_PM;
2282
2283 /* Sync the setup packet buffer. */
2284 TULIP_CDSPSYNC(sc, BUS_DMASYNC_PREWRITE);
2285
2286 /*
2287 * Fill in the setup packet descriptor.
2288 */
2289 sc->sc_setup_desc.td_bufaddr1 = TULIP_CDSPADDR(sc);
2290 sc->sc_setup_desc.td_bufaddr2 = TULIP_CDTXADDR(sc, sc->sc_txnext);
2291 sc->sc_setup_desc.td_ctl =
2292 (TULIP_SETUP_PACKET_LEN << TDCTL_SIZE1_SHIFT) |
2293 sc->sc_filtmode | TDCTL_Tx_SET | TDCTL_Tx_FS | TDCTL_Tx_LS |
2294 TDCTL_Tx_IC | TDCTL_CH;
2295 sc->sc_setup_desc.td_status = TDSTAT_OWN;
2296 TULIP_CDSDSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2297
2298 /*
2299 * Write the address of the setup descriptor. This also has
2300 * the side effect of giving the transmit ring to the chip,
2301 * since the setup descriptor points to the next available
2302 * descriptor in the ring.
2303 */
2304 TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDSDADDR(sc));
2305
2306 /*
2307 * Set the OPMODE register. This will also resume the
2308 * transmit transmit process we idled above.
2309 */
2310 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2311
2312 sc->sc_flags |= TULIPF_DOING_SETUP;
2313
2314 /*
2315 * Kick the transmitter; this will cause the Tulip to
2316 * read the setup descriptor.
2317 */
2318 /* XXX USE AUTOPOLLING? */
2319 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
2320
2321 /* Set up a watchdog timer in case the chip flakes out. */
2322 ifp->if_timer = 5;
2323
2324 DPRINTF(sc, ("%s: tlp_filter_setup: returning\n", sc->sc_dev.dv_xname));
2325 }
2326
2327 /*
2328 * tlp_winb_filter_setup:
2329 *
2330 * Set the Winbond 89C840F's receive filter.
2331 */
2332 void
2333 tlp_winb_filter_setup(sc)
2334 struct tulip_softc *sc;
2335 {
2336 struct ethercom *ec = &sc->sc_ethercom;
2337 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2338 struct ether_multi *enm;
2339 struct ether_multistep step;
2340 u_int32_t hash, mchash[2];
2341
2342 DPRINTF(sc, ("%s: tlp_winb_filter_setup: sc_flags 0x%08x\n",
2343 sc->sc_dev.dv_xname, sc->sc_flags));
2344
2345 sc->sc_opmode &= ~(OPMODE_WINB_APP|OPMODE_WINB_AMP|OPMODE_WINB_ABP);
2346
2347 if (ifp->if_flags & IFF_MULTICAST)
2348 sc->sc_opmode |= OPMODE_WINB_AMP;
2349
2350 if (ifp->if_flags & IFF_BROADCAST)
2351 sc->sc_opmode |= OPMODE_WINB_ABP;
2352
2353 if (ifp->if_flags & IFF_PROMISC) {
2354 sc->sc_opmode |= OPMODE_WINB_APP;
2355 goto allmulti;
2356 }
2357
2358 mchash[0] = mchash[1] = 0;
2359
2360 ETHER_FIRST_MULTI(step, ec, enm);
2361 while (enm != NULL) {
2362 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2363 /*
2364 * We must listen to a range of multicast addresses.
2365 * For now, just accept all multicasts, rather than
2366 * trying to set only those filter bits needed to match
2367 * the range. (At this time, the only use of address
2368 * ranges is for IP multicast routing, for which the
2369 * range is big enough to require all bits set.)
2370 */
2371 goto allmulti;
2372 }
2373
2374 /*
2375 * According to the FreeBSD `wb' driver, yes, you
2376 * really do invert the hash.
2377 */
2378 hash = (~(tlp_crc32(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26))
2379 & 0x3f;
2380 mchash[hash >> 5] |= 1 << (hash & 0x1f);
2381 ETHER_NEXT_MULTI(step, enm);
2382 }
2383 ifp->if_flags &= ~IFF_ALLMULTI;
2384 goto setit;
2385
2386 allmulti:
2387 ifp->if_flags |= IFF_ALLMULTI;
2388 mchash[0] = mchash[1] = 0xffffffff;
2389
2390 setit:
2391 TULIP_WRITE(sc, CSR_WINB_CMA0, mchash[0]);
2392 TULIP_WRITE(sc, CSR_WINB_CMA1, mchash[1]);
2393 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2394 DPRINTF(sc, ("%s: tlp_winb_filter_setup: returning\n",
2395 sc->sc_dev.dv_xname));
2396 }
2397
2398 /*
2399 * tlp_al981_filter_setup:
2400 *
2401 * Set the ADMtek AL981's receive filter.
2402 */
2403 void
2404 tlp_al981_filter_setup(sc)
2405 struct tulip_softc *sc;
2406 {
2407 struct ethercom *ec = &sc->sc_ethercom;
2408 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2409 struct ether_multi *enm;
2410 struct ether_multistep step;
2411 u_int32_t hash, mchash[2];
2412
2413 DPRINTF(sc, ("%s: tlp_al981_filter_setup: sc_flags 0x%08x\n",
2414 sc->sc_dev.dv_xname, sc->sc_flags));
2415
2416 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2417
2418 sc->sc_opmode &= ~(OPMODE_PR|OPMODE_PM);
2419
2420 if (ifp->if_flags & IFF_PROMISC) {
2421 sc->sc_opmode |= OPMODE_PR;
2422 goto allmulti;
2423 }
2424
2425 mchash[0] = mchash[1] = 0;
2426
2427 ETHER_FIRST_MULTI(step, ec, enm);
2428 while (enm != NULL) {
2429 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2430 /*
2431 * We must listen to a range of multicast addresses.
2432 * For now, just accept all multicasts, rather than
2433 * trying to set only those filter bits needed to match
2434 * the range. (At this time, the only use of address
2435 * ranges is for IP multicast routing, for which the
2436 * range is big enough to require all bits set.)
2437 */
2438 goto allmulti;
2439 }
2440
2441 hash = (tlp_crc32(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26)
2442 & 0x3f;
2443 mchash[hash >> 5] |= 1 << (hash & 0x1f);
2444 ETHER_NEXT_MULTI(step, enm);
2445 }
2446 ifp->if_flags &= ~IFF_ALLMULTI;
2447 goto setit;
2448
2449 allmulti:
2450 ifp->if_flags |= IFF_ALLMULTI;
2451 mchash[0] = mchash[1] = 0xffffffff;
2452
2453 setit:
2454 TULIP_WRITE(sc, CSR_ADM_MAR0, mchash[0]);
2455 TULIP_WRITE(sc, CSR_ADM_MAR1, mchash[1]);
2456 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2457 DPRINTF(sc, ("%s: tlp_al981_filter_setup: returning\n",
2458 sc->sc_dev.dv_xname));
2459 }
2460
2461 /*
2462 * tlp_idle:
2463 *
2464 * Cause the transmit and/or receive processes to go idle.
2465 */
2466 void
2467 tlp_idle(sc, bits)
2468 struct tulip_softc *sc;
2469 u_int32_t bits;
2470 {
2471 static const char *tx_state_names[] = {
2472 "STOPPED",
2473 "RUNNING - FETCH",
2474 "RUNNING - WAIT",
2475 "RUNNING - READING",
2476 "-- RESERVED --",
2477 "RUNNING - SETUP",
2478 "SUSPENDED",
2479 "RUNNING - CLOSE",
2480 };
2481 static const char *rx_state_names[] = {
2482 "STOPPED",
2483 "RUNNING - FETCH",
2484 "RUNNING - CHECK",
2485 "RUNNING - WAIT",
2486 "SUSPENDED",
2487 "RUNNING - CLOSE",
2488 "RUNNING - FLUSH",
2489 "RUNNING - QUEUE",
2490 };
2491 u_int32_t csr, ackmask = 0;
2492 int i;
2493
2494 if (bits & OPMODE_ST)
2495 ackmask |= STATUS_TPS;
2496
2497 if (bits & OPMODE_SR)
2498 ackmask |= STATUS_RPS;
2499
2500 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode & ~bits);
2501
2502 for (i = 0; i < 1000; i++) {
2503 if (TULIP_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
2504 break;
2505 delay(10);
2506 }
2507
2508 csr = TULIP_READ(sc, CSR_STATUS);
2509 if ((csr & ackmask) != ackmask) {
2510 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
2511 (csr & STATUS_TS) != STATUS_TS_STOPPED)
2512 printf("%s: transmit process failed to idle: "
2513 "state %s\n", sc->sc_dev.dv_xname,
2514 tx_state_names[(csr & STATUS_TS) >> 20]);
2515 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
2516 (csr & STATUS_RS) != STATUS_RS_STOPPED)
2517 printf("%s: receive process failed to idle: "
2518 "state %s\n", sc->sc_dev.dv_xname,
2519 rx_state_names[(csr & STATUS_RS) >> 17]);
2520 }
2521 TULIP_WRITE(sc, CSR_STATUS, ackmask);
2522 }
2523
2524 /*****************************************************************************
2525 * Generic media support functions.
2526 *****************************************************************************/
2527
2528 /*
2529 * tlp_mediastatus: [ifmedia interface function]
2530 *
2531 * Query the current media.
2532 */
2533 void
2534 tlp_mediastatus(ifp, ifmr)
2535 struct ifnet *ifp;
2536 struct ifmediareq *ifmr;
2537 {
2538 struct tulip_softc *sc = ifp->if_softc;
2539
2540 (*sc->sc_mediasw->tmsw_get)(sc, ifmr);
2541 }
2542
2543 /*
2544 * tlp_mediachange: [ifmedia interface function]
2545 *
2546 * Update the current media.
2547 */
2548 int
2549 tlp_mediachange(ifp)
2550 struct ifnet *ifp;
2551 {
2552 struct tulip_softc *sc = ifp->if_softc;
2553
2554 return ((*sc->sc_mediasw->tmsw_set)(sc));
2555 }
2556
2557 /*****************************************************************************
2558 * Support functions for MII-attached media.
2559 *****************************************************************************/
2560
2561 /*
2562 * tlp_mii_tick:
2563 *
2564 * One second timer, used to tick the MII.
2565 */
2566 void
2567 tlp_mii_tick(arg)
2568 void *arg;
2569 {
2570 struct tulip_softc *sc = arg;
2571 int s;
2572
2573 s = splnet();
2574 mii_tick(&sc->sc_mii);
2575 splx(s);
2576
2577 timeout(sc->sc_tick, sc, hz);
2578 }
2579
2580 /*
2581 * tlp_mii_statchg: [mii interface function]
2582 *
2583 * Callback from PHY when media changes.
2584 */
2585 void
2586 tlp_mii_statchg(self)
2587 struct device *self;
2588 {
2589 struct tulip_softc *sc = (struct tulip_softc *)self;
2590
2591 /* Idle the transmit and receive processes. */
2592 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2593
2594 sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD|OPMODE_HBD);
2595
2596 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T)
2597 sc->sc_opmode |= OPMODE_TTM;
2598 else
2599 sc->sc_opmode |= OPMODE_HBD;
2600
2601 if (sc->sc_mii.mii_media_active & IFM_FDX)
2602 sc->sc_opmode |= OPMODE_FD|OPMODE_HBD;
2603
2604 /*
2605 * Write new OPMODE bits. This also restarts the transmit
2606 * and receive processes.
2607 */
2608 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2609
2610 /* XXX Update ifp->if_baudrate */
2611 }
2612
2613 /*
2614 * tlp_winb_mii_statchg: [mii interface function]
2615 *
2616 * Callback from PHY when media changes. This version is
2617 * for the Winbond 89C840F, which has different OPMODE bits.
2618 */
2619 void
2620 tlp_winb_mii_statchg(self)
2621 struct device *self;
2622 {
2623 struct tulip_softc *sc = (struct tulip_softc *)self;
2624
2625 /* Idle the transmit and receive processes. */
2626 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2627
2628 sc->sc_opmode &= ~(OPMODE_WINB_FES|OPMODE_FD);
2629
2630 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX)
2631 sc->sc_opmode |= OPMODE_WINB_FES;
2632
2633 if (sc->sc_mii.mii_media_active & IFM_FDX)
2634 sc->sc_opmode |= OPMODE_FD;
2635
2636 /*
2637 * Write new OPMODE bits. This also restarts the transmit
2638 * and receive processes.
2639 */
2640 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2641
2642 /* XXX Update ifp->if_baudrate */
2643 }
2644
2645 /*
2646 * tlp_mii_getmedia:
2647 *
2648 * Callback from ifmedia to request current media status.
2649 */
2650 void
2651 tlp_mii_getmedia(sc, ifmr)
2652 struct tulip_softc *sc;
2653 struct ifmediareq *ifmr;
2654 {
2655
2656 mii_pollstat(&sc->sc_mii);
2657 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2658 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2659 }
2660
2661 /*
2662 * tlp_mii_setmedia:
2663 *
2664 * Callback from ifmedia to request new media setting.
2665 */
2666 int
2667 tlp_mii_setmedia(sc)
2668 struct tulip_softc *sc;
2669 {
2670 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2671
2672 if (ifp->if_flags & IFF_UP)
2673 mii_mediachg(&sc->sc_mii);
2674 return (0);
2675 }
2676
2677 #define MII_EMIT(sc, x) \
2678 do { \
2679 TULIP_WRITE((sc), CSR_MIIROM, (x)); \
2680 delay(1); \
2681 } while (0)
2682
2683 /*
2684 * tlp_sio_mii_sync:
2685 *
2686 * Synchronize the SIO-attached MII.
2687 */
2688 void
2689 tlp_sio_mii_sync(sc)
2690 struct tulip_softc *sc;
2691 {
2692 u_int32_t miirom;
2693 int i;
2694
2695 miirom = MIIROM_MDO;
2696
2697 MII_EMIT(sc, miirom);
2698 for (i = 0; i < 32; i++) {
2699 MII_EMIT(sc, miirom | MIIROM_MDC);
2700 MII_EMIT(sc, miirom);
2701 }
2702 }
2703
2704 /*
2705 * tlp_sio_mii_sendbits:
2706 *
2707 * Send a series of bits out the SIO to the MII.
2708 */
2709 void
2710 tlp_sio_mii_sendbits(sc, data, nbits)
2711 struct tulip_softc *sc;
2712 u_int32_t data;
2713 int nbits;
2714 {
2715 u_int32_t miirom, i;
2716
2717 miirom = 0;
2718 MII_EMIT(sc, miirom);
2719
2720 for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
2721 if (data & i)
2722 miirom |= MIIROM_MDO;
2723 else
2724 miirom &= ~MIIROM_MDO;
2725 MII_EMIT(sc, miirom);
2726 MII_EMIT(sc, miirom|MIIROM_MDC);
2727 MII_EMIT(sc, miirom);
2728 }
2729 }
2730
2731 /*
2732 * tlp_sio_mii_readreg:
2733 *
2734 * Read a PHY register via SIO-attached MII.
2735 */
2736 int
2737 tlp_sio_mii_readreg(self, phy, reg)
2738 struct device *self;
2739 int phy, reg;
2740 {
2741 struct tulip_softc *sc = (void *) self;
2742 int val = 0, err = 0, i;
2743
2744 tlp_sio_mii_sync(sc);
2745
2746 tlp_sio_mii_sendbits(sc, MII_COMMAND_START, 2);
2747 tlp_sio_mii_sendbits(sc, MII_COMMAND_READ, 2);
2748 tlp_sio_mii_sendbits(sc, phy, 5);
2749 tlp_sio_mii_sendbits(sc, reg, 5);
2750
2751 /* Switch direction to PHY->host, without a clock transition. */
2752 MII_EMIT(sc, MIIROM_MIIDIR);
2753
2754 MII_EMIT(sc, MIIROM_MIIDIR|MIIROM_MDC);
2755 MII_EMIT(sc, MIIROM_MIIDIR);
2756
2757 err = TULIP_ISSET(sc, CSR_MIIROM, MIIROM_MDI);
2758
2759 MII_EMIT(sc, MIIROM_MIIDIR|MIIROM_MDC);
2760 MII_EMIT(sc, MIIROM_MIIDIR);
2761
2762 for (i = 0; i < 16; i++) {
2763 val <<= 1;
2764 /* Read data prior to clock low-high transition. */
2765 if (err == 0 && TULIP_ISSET(sc, CSR_MIIROM, MIIROM_MDI))
2766 val |= 1;
2767
2768 MII_EMIT(sc, MIIROM_MIIDIR|MIIROM_MDC);
2769 MII_EMIT(sc, MIIROM_MIIDIR);
2770 }
2771
2772 /* Set direction to host->PHY, without a clock transition. */
2773 MII_EMIT(sc, 0);
2774
2775 return (err ? 0 : val);
2776 }
2777
2778 /*
2779 * tlp_sio_mii_writereg:
2780 *
2781 * Write a PHY register via SIO-attached MII.
2782 */
2783 void
2784 tlp_sio_mii_writereg(self, phy, reg, val)
2785 struct device *self;
2786 int phy, reg, val;
2787 {
2788 struct tulip_softc *sc = (void *) self;
2789
2790 tlp_sio_mii_sync(sc);
2791
2792 tlp_sio_mii_sendbits(sc, MII_COMMAND_START, 2);
2793 tlp_sio_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
2794 tlp_sio_mii_sendbits(sc, phy, 5);
2795 tlp_sio_mii_sendbits(sc, reg, 5);
2796 tlp_sio_mii_sendbits(sc, MII_COMMAND_ACK, 2);
2797 tlp_sio_mii_sendbits(sc, val, 16);
2798
2799 MII_EMIT(sc, 0);
2800 }
2801
2802 #undef MII_EMIT
2803
2804 /*
2805 * tlp_pnic_mii_readreg:
2806 *
2807 * Read a PHY register on the Lite-On PNIC.
2808 */
2809 int
2810 tlp_pnic_mii_readreg(self, phy, reg)
2811 struct device *self;
2812 int phy, reg;
2813 {
2814 struct tulip_softc *sc = (void *) self;
2815 u_int32_t val;
2816 int i;
2817
2818 TULIP_WRITE(sc, CSR_PNIC_MII,
2819 PNIC_MII_MBO | PNIC_MII_RESERVED |
2820 PNIC_MII_READ | (phy << PNIC_MII_PHYSHIFT) |
2821 (reg << PNIC_MII_REGSHIFT));
2822
2823 for (i = 0; i < 1000; i++) {
2824 delay(10);
2825 val = TULIP_READ(sc, CSR_PNIC_MII);
2826 if ((val & PNIC_MII_BUSY) == 0) {
2827 if ((val & PNIC_MII_DATA) == PNIC_MII_DATA)
2828 return (0);
2829 else
2830 return (val & PNIC_MII_DATA);
2831 }
2832 }
2833 printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
2834 return (0);
2835 }
2836
2837 /*
2838 * tlp_pnic_mii_writereg:
2839 *
2840 * Write a PHY register on the Lite-On PNIC.
2841 */
2842 void
2843 tlp_pnic_mii_writereg(self, phy, reg, val)
2844 struct device *self;
2845 int phy, reg, val;
2846 {
2847 struct tulip_softc *sc = (void *) self;
2848 int i;
2849
2850 TULIP_WRITE(sc, CSR_PNIC_MII,
2851 PNIC_MII_MBO | PNIC_MII_RESERVED |
2852 PNIC_MII_WRITE | (phy << PNIC_MII_PHYSHIFT) |
2853 (reg << PNIC_MII_REGSHIFT) | val);
2854
2855 for (i = 0; i < 1000; i++) {
2856 delay(10);
2857 if (TULIP_ISSET(sc, CSR_PNIC_MII, PNIC_MII_BUSY) == 0)
2858 return;
2859 }
2860 printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
2861 }
2862
2863 const bus_addr_t tlp_al981_phy_regmap[] = {
2864 CSR_ADM_BMCR,
2865 CSR_ADM_BMSR,
2866 CSR_ADM_PHYIDR1,
2867 CSR_ADM_PHYIDR2,
2868 CSR_ADM_ANAR,
2869 CSR_ADM_ANLPAR,
2870 CSR_ADM_ANER,
2871
2872 CSR_ADM_XMC,
2873 CSR_ADM_XCIIS,
2874 CSR_ADM_XIE,
2875 CSR_ADM_100CTR,
2876 };
2877 const int tlp_al981_phy_regmap_size = sizeof(tlp_al981_phy_regmap) /
2878 sizeof(tlp_al981_phy_regmap[0]);
2879
2880 /*
2881 * tlp_al981_mii_readreg:
2882 *
2883 * Read a PHY register on the ADMtek AL981.
2884 */
2885 int
2886 tlp_al981_mii_readreg(self, phy, reg)
2887 struct device *self;
2888 int phy, reg;
2889 {
2890 struct tulip_softc *sc = (struct tulip_softc *)self;
2891
2892 /* AL981 only has an internal PHY. */
2893 if (phy != 0)
2894 return (0);
2895
2896 if (reg >= tlp_al981_phy_regmap_size)
2897 return (0);
2898
2899 return (bus_space_read_4(sc->sc_st, sc->sc_sh,
2900 tlp_al981_phy_regmap[reg]) & 0xffff);
2901 }
2902
2903 /*
2904 * tlp_al981_mii_writereg:
2905 *
2906 * Write a PHY register on the ADMtek AL981.
2907 */
2908 void
2909 tlp_al981_mii_writereg(self, phy, reg, val)
2910 struct device *self;
2911 int phy, reg, val;
2912 {
2913 struct tulip_softc *sc = (struct tulip_softc *)self;
2914
2915 /* AL981 only has an internal PHY. */
2916 if (phy != 0)
2917 return;
2918
2919 if (reg >= tlp_al981_phy_regmap_size)
2920 return;
2921
2922 bus_space_write_4(sc->sc_st, sc->sc_sh,
2923 tlp_al981_phy_regmap[reg], val);
2924 }
2925
2926 /*****************************************************************************
2927 * Chip-specific pre-init and reset functions.
2928 *****************************************************************************/
2929
2930 /*
2931 * tlp_2114x_preinit:
2932 *
2933 * Pre-init function shared by DECchip 21140, 21140A, 21142, and 21143.
2934 */
2935 void
2936 tlp_2114x_preinit(sc)
2937 struct tulip_softc *sc;
2938 {
2939 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
2940 struct tulip_21x4x_media *tm = ife->ifm_aux;
2941
2942 /*
2943 * Whether or not we're in MII or SIA/SYM mode, the media info
2944 * contains the appropriate OPMODE bits.
2945 *
2946 * Note that if we have no media info, we are are doing
2947 * non-MII `auto'.
2948 *
2949 * Also, we always set the Must-Be-One bit.
2950 */
2951 if (tm == NULL) {
2952 #ifdef DIAGNOSTIC
2953 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
2954 panic("tlp_2114x_preinit: not IFM_AUTO");
2955 if (sc->sc_nway_active == NULL)
2956 panic("tlp_2114x_preinit: nway_active NULL");
2957 #endif
2958 tm = sc->sc_nway_active->ifm_aux;
2959 }
2960 sc->sc_opmode |= OPMODE_MBO | tm->tm_opmode;
2961
2962 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2963 }
2964
2965 /*
2966 * tlp_2114x_mii_preinit:
2967 *
2968 * Pre-init function shared by DECchip 21140, 21140A, 21142, and 21143.
2969 * This version is used by boards which only have MII and don't have
2970 * an ISV SROM.
2971 */
2972 void
2973 tlp_2114x_mii_preinit(sc)
2974 struct tulip_softc *sc;
2975 {
2976
2977 /*
2978 * Always set the Must-Be-One bit, and Port Select (to select MII).
2979 * We'll never be called during a media change.
2980 */
2981 sc->sc_opmode |= OPMODE_MBO|OPMODE_PS;
2982 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2983 }
2984
2985 /*
2986 * tlp_pnic_preinit:
2987 *
2988 * Pre-init function for the Lite-On 82c168 and 82c169.
2989 */
2990 void
2991 tlp_pnic_preinit(sc)
2992 struct tulip_softc *sc;
2993 {
2994
2995 if (sc->sc_flags & TULIPF_HAS_MII) {
2996 /*
2997 * MII case: just set the port-select bit; we will never
2998 * be called during a media change.
2999 */
3000 sc->sc_opmode |= OPMODE_PS;
3001 } else {
3002 /*
3003 * ENDEC/PCS/Nway mode; enable the Tx backoff counter.
3004 */
3005 sc->sc_opmode |= OPMODE_PNIC_TBEN;
3006 }
3007 }
3008
3009 /*
3010 * tlp_21140_reset:
3011 *
3012 * Issue a reset sequence on the 21140 via the GPIO facility.
3013 */
3014 void
3015 tlp_21140_reset(sc)
3016 struct tulip_softc *sc;
3017 {
3018 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3019 struct tulip_21x4x_media *tm = ife->ifm_aux;
3020 int i;
3021
3022 /* First, set the direction on the GPIO pins. */
3023 TULIP_WRITE(sc, CSR_GPP, GPP_GPC|sc->sc_gp_dir);
3024
3025 /* Now, issue the reset sequence. */
3026 for (i = 0; i < tm->tm_reset_length; i++) {
3027 delay(10);
3028 TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_reset_offset + i]);
3029 }
3030
3031 /* Now, issue the selection sequence. */
3032 for (i = 0; i < tm->tm_gp_length; i++) {
3033 delay(10);
3034 TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_gp_offset + i]);
3035 }
3036
3037 /* If there were no sequences, just lower the pins. */
3038 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0)
3039 TULIP_WRITE(sc, CSR_GPP, 0);
3040 }
3041
3042 /*
3043 * tlp_pmac_reset:
3044 *
3045 * Reset routine for Macronix chips.
3046 */
3047 void
3048 tlp_pmac_reset(sc)
3049 struct tulip_softc *sc;
3050 {
3051
3052 switch (sc->sc_chip) {
3053 case TULIP_CHIP_82C115:
3054 case TULIP_CHIP_MX98715:
3055 case TULIP_CHIP_MX98715A:
3056 case TULIP_CHIP_MX98725:
3057 /*
3058 * Set the LED operating mode. This information is located
3059 * in the EEPROM at byte offset 0x77, per the MX98715A and
3060 * MX98725 application notes.
3061 */
3062 TULIP_WRITE(sc, CSR_MIIROM, sc->sc_srom[0x77] << 24);
3063 break;
3064
3065 default:
3066 /* Nothing. */
3067 }
3068 }
3069
3070 /*****************************************************************************
3071 * Chip/board-specific media switches. The ones here are ones that
3072 * are potentially common to multiple front-ends.
3073 *****************************************************************************/
3074
3075 /*
3076 * This table is a common place for all sorts of media information,
3077 * keyed off of the SROM media code for that media.
3078 *
3079 * Note that we explicitly configure the 21142/21143 to always advertise
3080 * NWay capabilities when using the UTP port.
3081 * XXX Actually, we don't yet.
3082 */
3083 const struct tulip_srom_to_ifmedia tulip_srom_to_ifmedia_table[] = {
3084 { TULIP_ROM_MB_MEDIA_TP, IFM_10_T, 0,
3085 "10baseT",
3086 0,
3087 { SIACONN_21040_10BASET,
3088 SIATXRX_21040_10BASET,
3089 SIAGEN_21040_10BASET },
3090
3091 { SIACONN_21041_10BASET,
3092 SIATXRX_21041_10BASET,
3093 SIAGEN_21041_10BASET },
3094
3095 { SIACONN_21142_10BASET,
3096 SIATXRX_21142_10BASET,
3097 SIAGEN_21142_10BASET } },
3098
3099 { TULIP_ROM_MB_MEDIA_BNC, IFM_10_2, 0,
3100 "10base2",
3101 0,
3102 { 0,
3103 0,
3104 0 },
3105
3106 { SIACONN_21041_BNC,
3107 SIATXRX_21041_BNC,
3108 SIAGEN_21041_BNC },
3109
3110 { SIACONN_21142_BNC,
3111 SIATXRX_21142_BNC,
3112 SIAGEN_21142_BNC } },
3113
3114 { TULIP_ROM_MB_MEDIA_AUI, IFM_10_5, 0,
3115 "10base5",
3116 0,
3117 { SIACONN_21040_AUI,
3118 SIATXRX_21040_AUI,
3119 SIAGEN_21040_AUI },
3120
3121 { SIACONN_21041_AUI,
3122 SIATXRX_21041_AUI,
3123 SIAGEN_21041_AUI },
3124
3125 { SIACONN_21142_AUI,
3126 SIATXRX_21142_AUI,
3127 SIAGEN_21142_AUI } },
3128
3129 { TULIP_ROM_MB_MEDIA_100TX, IFM_100_TX, 0,
3130 "100baseTX",
3131 OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_HBD,
3132 { 0,
3133 0,
3134 0 },
3135
3136 { 0,
3137 0,
3138 0 },
3139
3140 { 0,
3141 0,
3142 SIAGEN_ABM } },
3143
3144 { TULIP_ROM_MB_MEDIA_TP_FDX, IFM_10_T, IFM_FDX,
3145 "10baseT-FDX",
3146 OPMODE_FD|OPMODE_HBD,
3147 { SIACONN_21040_10BASET_FDX,
3148 SIATXRX_21040_10BASET_FDX,
3149 SIAGEN_21040_10BASET_FDX },
3150
3151 { SIACONN_21041_10BASET_FDX,
3152 SIATXRX_21041_10BASET_FDX,
3153 SIAGEN_21041_10BASET_FDX },
3154
3155 { SIACONN_21142_10BASET_FDX,
3156 SIATXRX_21142_10BASET_FDX,
3157 SIAGEN_21142_10BASET_FDX } },
3158
3159 { TULIP_ROM_MB_MEDIA_100TX_FDX, IFM_100_TX, IFM_FDX,
3160 "100baseTX-FDX",
3161 OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_FD|OPMODE_HBD,
3162 { 0,
3163 0,
3164 0 },
3165
3166 { 0,
3167 0,
3168 0 },
3169
3170 { 0,
3171 0,
3172 SIAGEN_ABM } },
3173
3174 { TULIP_ROM_MB_MEDIA_100T4, IFM_100_T4, 0,
3175 "100baseT4",
3176 OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_HBD,
3177 { 0,
3178 0,
3179 0 },
3180
3181 { 0,
3182 0,
3183 0 },
3184
3185 { 0,
3186 0,
3187 SIAGEN_ABM } },
3188
3189 { TULIP_ROM_MB_MEDIA_100FX, IFM_100_FX, 0,
3190 "100baseFX",
3191 OPMODE_PS|OPMODE_PCS|OPMODE_HBD,
3192 { 0,
3193 0,
3194 0 },
3195
3196 { 0,
3197 0,
3198 0 },
3199
3200 { 0,
3201 0,
3202 SIAGEN_ABM } },
3203
3204 { TULIP_ROM_MB_MEDIA_100FX_FDX, IFM_100_FX, IFM_FDX,
3205 "100baseFX-FDX",
3206 OPMODE_PS|OPMODE_PCS|OPMODE_FD|OPMODE_HBD,
3207 { 0,
3208 0,
3209 0 },
3210
3211 { 0,
3212 0,
3213 0 },
3214
3215 { 0,
3216 0,
3217 SIAGEN_ABM } },
3218
3219 { 0, 0, 0,
3220 NULL,
3221 0,
3222 { 0,
3223 0,
3224 0 },
3225
3226 { 0,
3227 0,
3228 0 },
3229
3230 { 0,
3231 0,
3232 0 } },
3233 };
3234
3235 const struct tulip_srom_to_ifmedia *tlp_srom_to_ifmedia __P((u_int8_t));
3236 void tlp_srom_media_info __P((struct tulip_softc *,
3237 const struct tulip_srom_to_ifmedia *, struct tulip_21x4x_media *));
3238 void tlp_add_srom_media __P((struct tulip_softc *, int,
3239 void (*)(struct tulip_softc *, struct ifmediareq *),
3240 int (*)(struct tulip_softc *), const u_int8_t *, int));
3241 void tlp_print_media __P((struct tulip_softc *));
3242 void tlp_nway_activate __P((struct tulip_softc *, int));
3243 void tlp_get_minst __P((struct tulip_softc *));
3244
3245 const struct tulip_srom_to_ifmedia *
3246 tlp_srom_to_ifmedia(sm)
3247 u_int8_t sm;
3248 {
3249 const struct tulip_srom_to_ifmedia *tsti;
3250
3251 for (tsti = tulip_srom_to_ifmedia_table;
3252 tsti->tsti_name != NULL; tsti++) {
3253 if (tsti->tsti_srom == sm)
3254 return (tsti);
3255 }
3256
3257 return (NULL);
3258 }
3259
3260 void
3261 tlp_srom_media_info(sc, tsti, tm)
3262 struct tulip_softc *sc;
3263 const struct tulip_srom_to_ifmedia *tsti;
3264 struct tulip_21x4x_media *tm;
3265 {
3266
3267 tm->tm_name = tsti->tsti_name;
3268 tm->tm_opmode = tsti->tsti_opmode;
3269
3270 switch (sc->sc_chip) {
3271 case TULIP_CHIP_DE425:
3272 case TULIP_CHIP_21040:
3273 tm->tm_sia = tsti->tsti_21040; /* struct assignment */
3274 break;
3275
3276 case TULIP_CHIP_21041:
3277 tm->tm_sia = tsti->tsti_21041; /* struct assignment */
3278 break;
3279
3280 case TULIP_CHIP_21142:
3281 case TULIP_CHIP_21143:
3282 case TULIP_CHIP_82C115:
3283 case TULIP_CHIP_MX98715:
3284 case TULIP_CHIP_MX98715A:
3285 case TULIP_CHIP_MX98725:
3286 tm->tm_sia = tsti->tsti_21142; /* struct assignment */
3287 break;
3288
3289 default:
3290 /* Nothing. */
3291 }
3292 }
3293
3294 void
3295 tlp_add_srom_media(sc, type, get, set, list, cnt)
3296 struct tulip_softc *sc;
3297 int type;
3298 void (*get) __P((struct tulip_softc *, struct ifmediareq *));
3299 int (*set) __P((struct tulip_softc *));
3300 const u_int8_t *list;
3301 int cnt;
3302 {
3303 struct tulip_21x4x_media *tm;
3304 const struct tulip_srom_to_ifmedia *tsti;
3305 int i;
3306
3307 for (i = 0; i < cnt; i++) {
3308 tsti = tlp_srom_to_ifmedia(list[i]);
3309 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
3310 memset(tm, 0, sizeof(*tm));
3311 tlp_srom_media_info(sc, tsti, tm);
3312 tm->tm_type = type;
3313 tm->tm_get = get;
3314 tm->tm_set = set;
3315
3316 ifmedia_add(&sc->sc_mii.mii_media,
3317 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
3318 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
3319 }
3320 }
3321
3322 void
3323 tlp_print_media(sc)
3324 struct tulip_softc *sc;
3325 {
3326 struct ifmedia_entry *ife;
3327 struct tulip_21x4x_media *tm;
3328 const char *sep = "";
3329
3330 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
3331
3332 printf("%s: ", sc->sc_dev.dv_xname);
3333 for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
3334 ife != NULL; ife = TAILQ_NEXT(ife, ifm_list)) {
3335 tm = ife->ifm_aux;
3336 if (tm == NULL) {
3337 #ifdef DIAGNOSTIC
3338 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
3339 panic("tlp_print_media");
3340 #endif
3341 PRINT("auto");
3342 } else if (tm->tm_type != TULIP_ROM_MB_21140_MII &&
3343 tm->tm_type != TULIP_ROM_MB_21142_MII) {
3344 PRINT(tm->tm_name);
3345 }
3346 }
3347 printf("\n");
3348
3349 #undef PRINT
3350 }
3351
3352 void
3353 tlp_nway_activate(sc, media)
3354 struct tulip_softc *sc;
3355 int media;
3356 {
3357 struct ifmedia_entry *ife;
3358
3359 ife = ifmedia_match(&sc->sc_mii.mii_media, media, 0);
3360 #ifdef DIAGNOSTIC
3361 if (ife == NULL)
3362 panic("tlp_nway_activate");
3363 #endif
3364 sc->sc_nway_active = ife;
3365 }
3366
3367 void
3368 tlp_get_minst(sc)
3369 struct tulip_softc *sc;
3370 {
3371
3372 if ((sc->sc_media_seen &
3373 ~((1 << TULIP_ROM_MB_21140_MII) |
3374 (1 << TULIP_ROM_MB_21142_MII))) == 0) {
3375 /*
3376 * We have not yet seen any SIA/SYM media (but are
3377 * about to; that's why we're called!), so assign
3378 * the current media instance to be the `internal media'
3379 * instance, and advance it so any MII media gets a
3380 * fresh one (used to selecting/isolating a PHY).
3381 */
3382 sc->sc_tlp_minst = sc->sc_mii.mii_instance++;
3383 }
3384 }
3385
3386 /*
3387 * SIA Utility functions.
3388 */
3389 void tlp_sia_update_link __P((struct tulip_softc *));
3390 void tlp_sia_get __P((struct tulip_softc *, struct ifmediareq *));
3391 int tlp_sia_set __P((struct tulip_softc *));
3392 void tlp_sia_fixup __P((struct tulip_softc *));
3393
3394 void
3395 tlp_sia_update_link(sc)
3396 struct tulip_softc *sc;
3397 {
3398 struct ifmedia_entry *ife;
3399 struct tulip_21x4x_media *tm;
3400 u_int32_t siastat;
3401
3402 ife = TULIP_CURRENT_MEDIA(sc);
3403 tm = ife->ifm_aux;
3404
3405 sc->sc_flags &= ~(TULIPF_LINK_UP|TULIPF_LINK_VALID);
3406
3407 siastat = TULIP_READ(sc, CSR_SIASTAT);
3408
3409 /*
3410 * Note that when we do SIA link tests, we are assuming that
3411 * the chip is really in the mode that the current media setting
3412 * reflects. If we're not, then the link tests will not be
3413 * accurate!
3414 */
3415 switch (IFM_SUBTYPE(ife->ifm_media)) {
3416 case IFM_10_T:
3417 sc->sc_flags |= TULIPF_LINK_VALID;
3418 if ((siastat & SIASTAT_LS10) == 0)
3419 sc->sc_flags |= TULIPF_LINK_UP;
3420 break;
3421
3422 case IFM_100_TX:
3423 case IFM_100_T4:
3424 sc->sc_flags |= TULIPF_LINK_VALID;
3425 if ((siastat & SIASTAT_LS100) == 0)
3426 sc->sc_flags |= TULIPF_LINK_UP;
3427 break;
3428 }
3429
3430 switch (sc->sc_chip) {
3431 case TULIP_CHIP_21142:
3432 case TULIP_CHIP_21143:
3433 /*
3434 * On these chips, we can tell more information about
3435 * AUI/BNC. Note that the AUI/BNC selection is made
3436 * in a different register; for our purpose, it's all
3437 * AUI.
3438 */
3439 switch (IFM_SUBTYPE(ife->ifm_media)) {
3440 case IFM_10_2:
3441 case IFM_10_5:
3442 sc->sc_flags |= TULIPF_LINK_VALID;
3443 if (siastat & SIASTAT_ARA) {
3444 TULIP_WRITE(sc, CSR_SIASTAT, SIASTAT_ARA);
3445 sc->sc_flags |= TULIPF_LINK_UP;
3446 }
3447 break;
3448
3449 default:
3450 /*
3451 * If we're SYM media and can detect the link
3452 * via the GPIO facility, prefer that status
3453 * over LS100.
3454 */
3455 if (tm->tm_type == TULIP_ROM_MB_21143_SYM &&
3456 tm->tm_actmask != 0) {
3457 sc->sc_flags = (sc->sc_flags &
3458 ~TULIPF_LINK_UP) | TULIPF_LINK_VALID;
3459 if (TULIP_ISSET(sc, CSR_SIAGEN,
3460 tm->tm_actmask) == tm->tm_actdata)
3461 sc->sc_flags |= TULIPF_LINK_UP;
3462 }
3463 }
3464 break;
3465
3466 default:
3467 /* Nothing. */
3468 }
3469 }
3470
3471 void
3472 tlp_sia_get(sc, ifmr)
3473 struct tulip_softc *sc;
3474 struct ifmediareq *ifmr;
3475 {
3476 struct ifmedia_entry *ife;
3477
3478 ifmr->ifm_status = 0;
3479
3480 tlp_sia_update_link(sc);
3481
3482 ife = TULIP_CURRENT_MEDIA(sc);
3483
3484 if (sc->sc_flags & TULIPF_LINK_VALID)
3485 ifmr->ifm_status |= IFM_AVALID;
3486 if (sc->sc_flags & TULIPF_LINK_UP)
3487 ifmr->ifm_status |= IFM_ACTIVE;
3488 ifmr->ifm_active = ife->ifm_media;
3489 }
3490
3491 void
3492 tlp_sia_fixup(sc)
3493 struct tulip_softc *sc;
3494 {
3495 struct ifmedia_entry *ife;
3496 struct tulip_21x4x_media *tm;
3497 u_int32_t siaconn, siatxrx, siagen;
3498
3499 switch (sc->sc_chip) {
3500 case TULIP_CHIP_82C115:
3501 case TULIP_CHIP_MX98713A:
3502 case TULIP_CHIP_MX98715:
3503 case TULIP_CHIP_MX98715A:
3504 case TULIP_CHIP_MX98725:
3505 siaconn = PMAC_SIACONN_MASK;
3506 siatxrx = PMAC_SIATXRX_MASK;
3507 siagen = PMAC_SIAGEN_MASK;
3508 break;
3509
3510 default:
3511 /* No fixups required on any other chips. */
3512 return;
3513 }
3514
3515 for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
3516 ife != NULL; ife = TAILQ_NEXT(ife, ifm_list)) {
3517 tm = ife->ifm_aux;
3518 if (tm == NULL)
3519 continue;
3520
3521 tm->tm_siaconn &= siaconn;
3522 tm->tm_siatxrx &= siatxrx;
3523 tm->tm_siagen &= siagen;
3524 }
3525 }
3526
3527 int
3528 tlp_sia_set(sc)
3529 struct tulip_softc *sc;
3530 {
3531 struct ifmedia_entry *ife;
3532 struct tulip_21x4x_media *tm;
3533
3534 ife = TULIP_CURRENT_MEDIA(sc);
3535 tm = ife->ifm_aux;
3536
3537 /*
3538 * XXX This appears to be necessary on a bunch of the clone chips.
3539 */
3540 delay(20000);
3541
3542 /*
3543 * Idle the chip.
3544 */
3545 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
3546
3547 /*
3548 * Program the SIA. It's important to write in this order,
3549 * resetting the SIA first.
3550 */
3551 TULIP_WRITE(sc, CSR_SIACONN, 0); /* SRL bit clear */
3552 delay(1000);
3553
3554 TULIP_WRITE(sc, CSR_SIATXRX, tm->tm_siatxrx);
3555
3556 switch (sc->sc_chip) {
3557 case TULIP_CHIP_21142:
3558 case TULIP_CHIP_21143:
3559 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen | tm->tm_gpctl);
3560 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen | tm->tm_gpdata);
3561 break;
3562 default:
3563 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen);
3564 }
3565
3566 TULIP_WRITE(sc, CSR_SIACONN, tm->tm_siaconn);
3567
3568 /*
3569 * Set the OPMODE bits for this media and write OPMODE.
3570 * This will resume the transmit and receive processes.
3571 */
3572 sc->sc_opmode = (sc->sc_opmode & ~OPMODE_MEDIA_BITS) | tm->tm_opmode;
3573 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
3574
3575 return (0);
3576 }
3577
3578 /*
3579 * 21140 GPIO utility functions.
3580 */
3581 void tlp_21140_gpio_update_link __P((struct tulip_softc *));
3582 void tlp_21140_gpio_get __P((struct tulip_softc *sc,
3583 struct ifmediareq *ifmr));
3584 int tlp_21140_gpio_set __P((struct tulip_softc *sc));
3585
3586 void
3587 tlp_21140_gpio_update_link(sc)
3588 struct tulip_softc *sc;
3589 {
3590 struct ifmedia_entry *ife;
3591 struct tulip_21x4x_media *tm;
3592
3593 ife = TULIP_CURRENT_MEDIA(sc);
3594 tm = ife->ifm_aux;
3595
3596 sc->sc_flags &= ~(TULIPF_LINK_UP|TULIPF_LINK_VALID);
3597
3598 if (tm->tm_actmask != 0) {
3599 sc->sc_flags |= TULIPF_LINK_VALID;
3600 if (TULIP_ISSET(sc, CSR_GPP, tm->tm_actmask) ==
3601 tm->tm_actdata)
3602 sc->sc_flags |= TULIPF_LINK_UP;
3603 }
3604 }
3605
3606 void
3607 tlp_21140_gpio_get(sc, ifmr)
3608 struct tulip_softc *sc;
3609 struct ifmediareq *ifmr;
3610 {
3611 struct ifmedia_entry *ife;
3612
3613 ifmr->ifm_status = 0;
3614
3615 tlp_21140_gpio_update_link(sc);
3616
3617 ife = TULIP_CURRENT_MEDIA(sc);
3618
3619 if (sc->sc_flags & TULIPF_LINK_VALID)
3620 ifmr->ifm_status |= IFM_AVALID;
3621 if (sc->sc_flags & TULIPF_LINK_UP)
3622 ifmr->ifm_status |= IFM_ACTIVE;
3623 ifmr->ifm_active = ife->ifm_media;
3624 }
3625
3626 int
3627 tlp_21140_gpio_set(sc)
3628 struct tulip_softc *sc;
3629 {
3630 struct ifmedia_entry *ife;
3631 struct tulip_21x4x_media *tm;
3632
3633 ife = TULIP_CURRENT_MEDIA(sc);
3634 tm = ife->ifm_aux;
3635
3636 /*
3637 * Idle the chip.
3638 */
3639 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
3640
3641 /*
3642 * Set the GPIO pins for this media, to flip any
3643 * relays, etc.
3644 */
3645 TULIP_WRITE(sc, CSR_GPP, GPP_GPC|sc->sc_gp_dir);
3646 delay(10);
3647 TULIP_WRITE(sc, CSR_GPP, tm->tm_gpdata);
3648
3649 /*
3650 * Set the OPMODE bits for this media and write OPMODE.
3651 * This will resume the transmit and receive processes.
3652 */
3653 sc->sc_opmode = (sc->sc_opmode & ~OPMODE_MEDIA_BITS) | tm->tm_opmode;
3654 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
3655
3656 return (0);
3657 }
3658
3659 /*
3660 * 21040 and 21041 media switches.
3661 */
3662 void tlp_21040_tmsw_init __P((struct tulip_softc *));
3663 void tlp_21040_tp_tmsw_init __P((struct tulip_softc *));
3664 void tlp_21040_auibnc_tmsw_init __P((struct tulip_softc *));
3665 void tlp_21041_tmsw_init __P((struct tulip_softc *));
3666
3667 const struct tulip_mediasw tlp_21040_mediasw = {
3668 tlp_21040_tmsw_init, tlp_sia_get, tlp_sia_set
3669 };
3670
3671 const struct tulip_mediasw tlp_21040_tp_mediasw = {
3672 tlp_21040_tp_tmsw_init, tlp_sia_get, tlp_sia_set
3673 };
3674
3675 const struct tulip_mediasw tlp_21040_auibnc_mediasw = {
3676 tlp_21040_auibnc_tmsw_init, tlp_sia_get, tlp_sia_set
3677 };
3678
3679 const struct tulip_mediasw tlp_21041_mediasw = {
3680 tlp_21041_tmsw_init, tlp_sia_get, tlp_sia_set
3681 };
3682
3683
3684 void
3685 tlp_21040_tmsw_init(sc)
3686 struct tulip_softc *sc;
3687 {
3688 static const u_int8_t media[] = {
3689 TULIP_ROM_MB_MEDIA_TP,
3690 TULIP_ROM_MB_MEDIA_TP_FDX,
3691 TULIP_ROM_MB_MEDIA_AUI,
3692 };
3693 struct tulip_21x4x_media *tm;
3694
3695 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
3696 tlp_mediastatus);
3697
3698 tlp_add_srom_media(sc, 0, NULL, NULL, media, 3);
3699
3700 /*
3701 * No SROM type for External SIA.
3702 */
3703 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
3704 memset(tm, 0, sizeof(*tm));
3705 tm->tm_name = "manual";
3706 tm->tm_opmode = 0;
3707 tm->tm_siaconn = SIACONN_21040_EXTSIA;
3708 tm->tm_siatxrx = SIATXRX_21040_EXTSIA;
3709 tm->tm_siagen = SIAGEN_21040_EXTSIA;
3710 ifmedia_add(&sc->sc_mii.mii_media,
3711 IFM_MAKEWORD(IFM_ETHER, IFM_MANUAL, 0, sc->sc_tlp_minst), 0, tm);
3712
3713 /*
3714 * XXX Autosense not yet supported.
3715 */
3716
3717 /* XXX This should be auto-sense. */
3718 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
3719
3720 tlp_print_media(sc);
3721 }
3722
3723 void
3724 tlp_21040_tp_tmsw_init(sc)
3725 struct tulip_softc *sc;
3726 {
3727 static const u_int8_t media[] = {
3728 TULIP_ROM_MB_MEDIA_TP,
3729 TULIP_ROM_MB_MEDIA_TP_FDX,
3730 };
3731
3732 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
3733 tlp_mediastatus);
3734
3735 tlp_add_srom_media(sc, 0, NULL, NULL, media, 2);
3736
3737 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
3738
3739 tlp_print_media(sc);
3740 }
3741
3742 void
3743 tlp_21040_auibnc_tmsw_init(sc)
3744 struct tulip_softc *sc;
3745 {
3746 static const u_int8_t media[] = {
3747 TULIP_ROM_MB_MEDIA_AUI,
3748 };
3749
3750 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
3751 tlp_mediastatus);
3752
3753 tlp_add_srom_media(sc, 0, NULL, NULL, media, 1);
3754
3755 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_5);
3756
3757 tlp_print_media(sc);
3758 }
3759
3760 void
3761 tlp_21041_tmsw_init(sc)
3762 struct tulip_softc *sc;
3763 {
3764 static const u_int8_t media[] = {
3765 TULIP_ROM_MB_MEDIA_TP,
3766 TULIP_ROM_MB_MEDIA_TP_FDX,
3767 TULIP_ROM_MB_MEDIA_BNC,
3768 TULIP_ROM_MB_MEDIA_AUI,
3769 };
3770 int i, defmedia, devcnt, leaf_offset, mb_offset, m_cnt;
3771 const struct tulip_srom_to_ifmedia *tsti;
3772 struct tulip_21x4x_media *tm;
3773 u_int16_t romdef;
3774 u_int8_t mb;
3775
3776 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
3777 tlp_mediastatus);
3778
3779 if (tlp_isv_srom(sc->sc_srom) == 0) {
3780 not_isv_srom:
3781 /*
3782 * If we have a board without the standard 21041 SROM format,
3783 * we just assume all media are present and try and pick a
3784 * reasonable default.
3785 */
3786 tlp_add_srom_media(sc, 0, NULL, NULL, media, 4);
3787
3788 /*
3789 * XXX Autosense not yet supported.
3790 */
3791
3792 /* XXX This should be auto-sense. */
3793 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
3794
3795 tlp_print_media(sc);
3796 return;
3797 }
3798
3799 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT];
3800 for (i = 0; i < devcnt; i++) {
3801 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1)
3802 break;
3803 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] ==
3804 sc->sc_devno)
3805 break;
3806 }
3807
3808 if (i == devcnt)
3809 goto not_isv_srom;
3810
3811 leaf_offset = TULIP_ROM_GETW(sc->sc_srom,
3812 TULIP_ROM_CHIPn_INFO_LEAF_OFFSET(i));
3813 mb_offset = leaf_offset + TULIP_ROM_IL_MEDIAn_BLOCK_BASE;
3814 m_cnt = sc->sc_srom[leaf_offset + TULIP_ROM_IL_MEDIA_COUNT];
3815
3816 for (; m_cnt != 0;
3817 m_cnt--, mb_offset += TULIP_ROM_MB_SIZE(mb)) {
3818 mb = sc->sc_srom[mb_offset];
3819 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
3820 memset(tm, 0, sizeof(*tm));
3821 switch (mb & TULIP_ROM_MB_MEDIA_CODE) {
3822 case TULIP_ROM_MB_MEDIA_TP_FDX:
3823 case TULIP_ROM_MB_MEDIA_TP:
3824 case TULIP_ROM_MB_MEDIA_BNC:
3825 case TULIP_ROM_MB_MEDIA_AUI:
3826 tsti = tlp_srom_to_ifmedia(mb &
3827 TULIP_ROM_MB_MEDIA_CODE);
3828
3829 tlp_srom_media_info(sc, tsti, tm);
3830
3831 /*
3832 * Override our default SIA settings if the
3833 * SROM contains its own.
3834 */
3835 if (mb & TULIP_ROM_MB_EXT) {
3836 tm->tm_siaconn = TULIP_ROM_GETW(sc->sc_srom,
3837 mb_offset + TULIP_ROM_MB_CSR13);
3838 tm->tm_siatxrx = TULIP_ROM_GETW(sc->sc_srom,
3839 mb_offset + TULIP_ROM_MB_CSR14);
3840 tm->tm_siagen = TULIP_ROM_GETW(sc->sc_srom,
3841 mb_offset + TULIP_ROM_MB_CSR15);
3842 }
3843
3844 ifmedia_add(&sc->sc_mii.mii_media,
3845 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
3846 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
3847 break;
3848
3849 default:
3850 printf("%s: unknown media code 0x%02x\n",
3851 sc->sc_dev.dv_xname,
3852 mb & TULIP_ROM_MB_MEDIA_CODE);
3853 free(tm, M_DEVBUF);
3854 }
3855 }
3856
3857 /*
3858 * XXX Autosense not yet supported.
3859 */
3860
3861 romdef = TULIP_ROM_GETW(sc->sc_srom, leaf_offset +
3862 TULIP_ROM_IL_SELECT_CONN_TYPE);
3863 switch (romdef) {
3864 case SELECT_CONN_TYPE_TP:
3865 case SELECT_CONN_TYPE_TP_AUTONEG:
3866 case SELECT_CONN_TYPE_TP_NOLINKPASS:
3867 defmedia = IFM_ETHER|IFM_10_T;
3868 break;
3869
3870 case SELECT_CONN_TYPE_TP_FDX:
3871 defmedia = IFM_ETHER|IFM_10_T|IFM_FDX;
3872 break;
3873
3874 case SELECT_CONN_TYPE_BNC:
3875 defmedia = IFM_ETHER|IFM_10_2;
3876 break;
3877
3878 case SELECT_CONN_TYPE_AUI:
3879 defmedia = IFM_ETHER|IFM_10_5;
3880 break;
3881 #if 0 /* XXX */
3882 case SELECT_CONN_TYPE_ASENSE:
3883 case SELECT_CONN_TYPE_ASENSE_AUTONEG:
3884 defmedia = IFM_ETHER|IFM_AUTO;
3885 break;
3886 #endif
3887 default:
3888 defmedia = 0;
3889 }
3890
3891 if (defmedia == 0) {
3892 /*
3893 * XXX We should default to auto-sense.
3894 */
3895 defmedia = IFM_ETHER|IFM_10_T;
3896 }
3897
3898 ifmedia_set(&sc->sc_mii.mii_media, defmedia);
3899
3900 tlp_print_media(sc);
3901 }
3902
3903 /*
3904 * DECchip 2114x ISV media switch.
3905 */
3906 void tlp_2114x_isv_tmsw_init __P((struct tulip_softc *));
3907 void tlp_2114x_isv_tmsw_get __P((struct tulip_softc *, struct ifmediareq *));
3908 int tlp_2114x_isv_tmsw_set __P((struct tulip_softc *));
3909
3910 const struct tulip_mediasw tlp_2114x_isv_mediasw = {
3911 tlp_2114x_isv_tmsw_init, tlp_2114x_isv_tmsw_get, tlp_2114x_isv_tmsw_set
3912 };
3913
3914 void
3915 tlp_2114x_isv_tmsw_init(sc)
3916 struct tulip_softc *sc;
3917 {
3918 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3919 struct ifmedia_entry *ife;
3920 struct mii_softc *phy;
3921 struct tulip_21x4x_media *tm;
3922 const struct tulip_srom_to_ifmedia *tsti;
3923 int i, devcnt, leaf_offset, m_cnt, type, length;
3924 int defmedia, miidef;
3925 u_int16_t word;
3926 u_int8_t *cp, *ncp;
3927
3928 defmedia = miidef = 0;
3929
3930 sc->sc_mii.mii_ifp = ifp;
3931 sc->sc_mii.mii_readreg = tlp_sio_mii_readreg;
3932 sc->sc_mii.mii_writereg = tlp_sio_mii_writereg;
3933 sc->sc_mii.mii_statchg = sc->sc_statchg;
3934
3935 /*
3936 * Ignore `instance'; we may get a mixture of SIA and MII
3937 * media, and `instance' is used to isolate or select the
3938 * PHY on the MII as appropriate. Note that duplicate media
3939 * are disallowed, so ignoring `instance' is safe.
3940 */
3941 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, tlp_mediachange,
3942 tlp_mediastatus);
3943
3944 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT];
3945 for (i = 0; i < devcnt; i++) {
3946 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1)
3947 break;
3948 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] ==
3949 sc->sc_devno)
3950 break;
3951 }
3952
3953 if (i == devcnt) {
3954 printf("%s: unable to locate info leaf in SROM\n",
3955 sc->sc_dev.dv_xname);
3956 return;
3957 }
3958
3959 leaf_offset = TULIP_ROM_GETW(sc->sc_srom,
3960 TULIP_ROM_CHIPn_INFO_LEAF_OFFSET(i));
3961
3962 /* XXX SELECT CONN TYPE */
3963
3964 cp = &sc->sc_srom[leaf_offset + TULIP_ROM_IL_MEDIA_COUNT];
3965
3966 /*
3967 * On some chips, the first thing in the Info Leaf is the
3968 * GPIO pin direction data.
3969 */
3970 switch (sc->sc_chip) {
3971 case TULIP_CHIP_21140:
3972 case TULIP_CHIP_21140A:
3973 case TULIP_CHIP_MX98713:
3974 case TULIP_CHIP_AX88140:
3975 case TULIP_CHIP_AX88141:
3976 sc->sc_gp_dir = *cp++;
3977 break;
3978
3979 default:
3980 /* Nothing. */
3981 }
3982
3983 /* Get the media count. */
3984 m_cnt = *cp++;
3985
3986 for (; m_cnt != 0; cp = ncp, m_cnt--) {
3987 /*
3988 * Determine the type and length of this media block.
3989 */
3990 if ((*cp & 0x80) == 0) {
3991 length = 4;
3992 type = TULIP_ROM_MB_21140_GPR;
3993 } else {
3994 length = (*cp++ & 0x7f) - 1;
3995 type = *cp++ & 0x3f;
3996 }
3997
3998 /* Compute the start of the next block. */
3999 ncp = cp + length;
4000
4001 /* Now, parse the block. */
4002 switch (type) {
4003 case TULIP_ROM_MB_21140_GPR:
4004 tlp_get_minst(sc);
4005 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21140_GPR;
4006
4007 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4008 memset(tm, 0, sizeof(*tm));
4009
4010 tm->tm_type = TULIP_ROM_MB_21140_GPR;
4011 tm->tm_get = tlp_21140_gpio_get;
4012 tm->tm_set = tlp_21140_gpio_set;
4013
4014 /* First is the media type code. */
4015 tsti = tlp_srom_to_ifmedia(cp[0] &
4016 TULIP_ROM_MB_MEDIA_CODE);
4017 if (tsti == NULL) {
4018 /* Invalid media code. */
4019 free(tm, M_DEVBUF);
4020 break;
4021 }
4022
4023 /* Get defaults. */
4024 tlp_srom_media_info(sc, tsti, tm);
4025
4026 /* Next is any GPIO info for this media. */
4027 tm->tm_gpdata = cp[1];
4028
4029 /*
4030 * Next is a word containing OPMODE information
4031 * and info on how to detect if this media is
4032 * active.
4033 */
4034 word = TULIP_ROM_GETW(cp, 2);
4035 tm->tm_opmode = TULIP_ROM_MB_OPMODE(word);
4036 if ((word & TULIP_ROM_MB_NOINDICATOR) == 0) {
4037 tm->tm_actmask =
4038 TULIP_ROM_MB_BITPOS(word);
4039 tm->tm_actdata =
4040 (word & TULIP_ROM_MB_POLARITY) ?
4041 0 : tm->tm_actmask;
4042 }
4043
4044 ifmedia_add(&sc->sc_mii.mii_media,
4045 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
4046 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
4047 break;
4048
4049 case TULIP_ROM_MB_21140_MII:
4050 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21140_MII;
4051
4052 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4053 memset(tm, 0, sizeof(*tm));
4054
4055 tm->tm_type = TULIP_ROM_MB_21140_MII;
4056 tm->tm_get = tlp_mii_getmedia;
4057 tm->tm_set = tlp_mii_setmedia;
4058 tm->tm_opmode = OPMODE_PS;
4059
4060 if (sc->sc_reset == NULL)
4061 sc->sc_reset = tlp_21140_reset;
4062
4063 /* First is the PHY number. */
4064 tm->tm_phyno = *cp++;
4065
4066 /* Next is the MII select sequence length and offset. */
4067 tm->tm_gp_length = *cp++;
4068 tm->tm_gp_offset = cp - &sc->sc_srom[0];
4069 cp += tm->tm_gp_length;
4070
4071 /* Next is the MII reset sequence length and offset. */
4072 tm->tm_reset_length = *cp++;
4073 tm->tm_reset_offset = cp - &sc->sc_srom[0];
4074 cp += tm->tm_reset_length;
4075
4076 /*
4077 * The following items are left in the media block
4078 * that we don't particularly care about:
4079 *
4080 * capabilities W
4081 * advertisement W
4082 * full duplex W
4083 * tx threshold W
4084 *
4085 * These appear to be bits in the PHY registers,
4086 * which our MII code handles on its own.
4087 */
4088
4089 /*
4090 * Before we probe the MII bus, we need to reset
4091 * it and issue the selection sequence.
4092 */
4093
4094 /* Set the direction of the pins... */
4095 TULIP_WRITE(sc, CSR_GPP, GPP_GPC|sc->sc_gp_dir);
4096
4097 for (i = 0; i < tm->tm_reset_length; i++) {
4098 delay(10);
4099 TULIP_WRITE(sc, CSR_GPP,
4100 sc->sc_srom[tm->tm_reset_offset + i]);
4101 }
4102
4103 for (i = 0; i < tm->tm_gp_length; i++) {
4104 delay(10);
4105 TULIP_WRITE(sc, CSR_GPP,
4106 sc->sc_srom[tm->tm_gp_offset + i]);
4107 }
4108
4109 /* If there were no sequences, just lower the pins. */
4110 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) {
4111 delay(10);
4112 TULIP_WRITE(sc, CSR_GPP, 0);
4113 }
4114
4115 /*
4116 * Now, probe the MII for the PHY. Note, we know
4117 * the location of the PHY on the bus, but we don't
4118 * particularly care; the MII code just likes to
4119 * search the whole thing anyhow.
4120 */
4121 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
4122 MII_PHY_ANY, tm->tm_phyno);
4123
4124 /*
4125 * Now, search for the PHY we hopefully just
4126 * configured. If it's not configured into the
4127 * kernel, we lose. The PHY's default media always
4128 * takes priority.
4129 */
4130 for (phy = LIST_FIRST(&sc->sc_mii.mii_phys);
4131 phy != NULL;
4132 phy = LIST_NEXT(phy, mii_list))
4133 if (phy->mii_offset == tm->tm_phyno)
4134 break;
4135 if (phy == NULL) {
4136 printf("%s: unable to configure MII\n",
4137 sc->sc_dev.dv_xname);
4138 break;
4139 }
4140
4141 sc->sc_flags |= TULIPF_HAS_MII;
4142 sc->sc_tick = tlp_mii_tick;
4143 miidef = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0,
4144 phy->mii_inst);
4145
4146 /*
4147 * Okay, now that we've found the PHY and the MII
4148 * layer has added all of the media associated
4149 * with that PHY, we need to traverse the media
4150 * list, and add our `tm' to each entry's `aux'
4151 * pointer.
4152 *
4153 * We do this by looking for media with our
4154 * PHY's `instance'.
4155 */
4156 for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
4157 ife != NULL;
4158 ife = TAILQ_NEXT(ife, ifm_list)) {
4159 if (IFM_INST(ife->ifm_media) != phy->mii_inst)
4160 continue;
4161 ife->ifm_aux = tm;
4162 }
4163 break;
4164
4165 case TULIP_ROM_MB_21142_SIA:
4166 tlp_get_minst(sc);
4167 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21142_SIA;
4168
4169 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4170 memset(tm, 0, sizeof(*tm));
4171
4172 tm->tm_type = TULIP_ROM_MB_21142_SIA;
4173 tm->tm_get = tlp_sia_get;
4174 tm->tm_set = tlp_sia_set;
4175
4176 /* First is the media type code. */
4177 tsti = tlp_srom_to_ifmedia(cp[0] &
4178 TULIP_ROM_MB_MEDIA_CODE);
4179 if (tsti == NULL) {
4180 /* Invalid media code. */
4181 free(tm, M_DEVBUF);
4182 break;
4183 }
4184
4185 /* Get defaults. */
4186 tlp_srom_media_info(sc, tsti, tm);
4187
4188 /*
4189 * Override our default SIA settings if the
4190 * SROM contains its own.
4191 */
4192 if (cp[0] & 0x40) {
4193 tm->tm_siaconn = TULIP_ROM_GETW(cp, 1);
4194 tm->tm_siatxrx = TULIP_ROM_GETW(cp, 3);
4195 tm->tm_siagen = TULIP_ROM_GETW(cp, 5);
4196 cp += 7;
4197 } else
4198 cp++;
4199
4200 /* Next is GPIO control/data. */
4201 tm->tm_gpctl = TULIP_ROM_GETW(cp, 0);
4202 tm->tm_gpdata = TULIP_ROM_GETW(cp, 2);
4203
4204 ifmedia_add(&sc->sc_mii.mii_media,
4205 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
4206 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
4207 break;
4208
4209 case TULIP_ROM_MB_21142_MII:
4210 printf("%s: 21142 MII block\n", sc->sc_dev.dv_xname);
4211 break;
4212
4213 case TULIP_ROM_MB_21143_SYM:
4214 tlp_get_minst(sc);
4215 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21143_SYM;
4216
4217 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4218 memset(tm, 0, sizeof(*tm));
4219
4220 tm->tm_type = TULIP_ROM_MB_21143_SYM;
4221 tm->tm_get = tlp_sia_get;
4222 tm->tm_set = tlp_sia_set;
4223
4224 /* First is the media type code. */
4225 tsti = tlp_srom_to_ifmedia(cp[0] &
4226 TULIP_ROM_MB_MEDIA_CODE);
4227 if (tsti == NULL) {
4228 /* Invalid media code. */
4229 free(tm, M_DEVBUF);
4230 break;
4231 }
4232
4233 /* Get defaults. */
4234 tlp_srom_media_info(sc, tsti, tm);
4235
4236 /* Next is GPIO control/data. */
4237 tm->tm_gpctl = TULIP_ROM_GETW(cp, 1);
4238 tm->tm_gpdata = TULIP_ROM_GETW(cp, 3);
4239
4240 /*
4241 * Next is a word containing OPMODE information
4242 * and info on how to detect if this media is
4243 * active.
4244 */
4245 word = TULIP_ROM_GETW(cp, 5);
4246 tm->tm_opmode = TULIP_ROM_MB_OPMODE(word);
4247 if ((word & TULIP_ROM_MB_NOINDICATOR) == 0) {
4248 tm->tm_actmask =
4249 TULIP_ROM_MB_BITPOS(word);
4250 tm->tm_actdata =
4251 (word & TULIP_ROM_MB_POLARITY) ?
4252 0 : tm->tm_actmask;
4253 }
4254
4255 ifmedia_add(&sc->sc_mii.mii_media,
4256 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
4257 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
4258 break;
4259
4260 case TULIP_ROM_MB_21143_RESET:
4261 printf("%s: 21143 reset block\n", sc->sc_dev.dv_xname);
4262 break;
4263
4264 default:
4265 printf("%s: unknown ISV media block type 0x%02x\n",
4266 sc->sc_dev.dv_xname, type);
4267 }
4268 }
4269
4270 /*
4271 * Deal with the case where no media is configured.
4272 */
4273 if (TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list) == NULL) {
4274 printf("%s: no media found!\n", sc->sc_dev.dv_xname);
4275 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
4276 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
4277 return;
4278 }
4279
4280 /*
4281 * Pick the default media.
4282 */
4283 if (miidef != 0)
4284 defmedia = miidef;
4285 else {
4286 /*
4287 * XXX Pick a better default. Should come from SROM
4288 * XXX on 21140[A], and should be "auto" on 21142,
4289 * XXX 21143, and Macronix chips.
4290 */
4291 defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0);
4292 }
4293
4294 ifmedia_set(&sc->sc_mii.mii_media, defmedia);
4295
4296 /*
4297 * Display any non-MII media we've located.
4298 */
4299 if (sc->sc_media_seen &
4300 ~((1 << TULIP_ROM_MB_21140_MII) | (1 << TULIP_ROM_MB_21142_MII)))
4301 tlp_print_media(sc);
4302
4303 tlp_sia_fixup(sc);
4304 }
4305
4306 void
4307 tlp_2114x_isv_tmsw_get(sc, ifmr)
4308 struct tulip_softc *sc;
4309 struct ifmediareq *ifmr;
4310 {
4311 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
4312 struct tulip_21x4x_media *tm = ife->ifm_aux;
4313
4314 /*
4315 * We might be polling a non-MII autosense; check for that.
4316 */
4317 if (tm == NULL) {
4318 #ifdef DIAGNOSTIC
4319 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
4320 panic("tlp_2114x_isv_tmsw_get");
4321 #endif
4322 tm = sc->sc_nway_active->ifm_aux;
4323 }
4324
4325 (*tm->tm_get)(sc, ifmr);
4326 }
4327
4328 int
4329 tlp_2114x_isv_tmsw_set(sc)
4330 struct tulip_softc *sc;
4331 {
4332 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
4333 struct tulip_21x4x_media *tm = ife->ifm_aux;
4334
4335 /*
4336 * We might be setting a non-MII autosense; check for that.
4337 */
4338 if (tm == NULL) {
4339 #ifdef DIAGNOSTIC
4340 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
4341 panic("tlp_2114x_isv_tmsw_set");
4342 #endif
4343 /* XXX XXX XXX */
4344 }
4345
4346 /*
4347 * Check to see if we need to reset the chip, and do it. The
4348 * reset path will get the OPMODE register right the next
4349 * time through.
4350 */
4351 if (TULIP_MEDIA_NEEDSRESET(sc, tm->tm_opmode))
4352 return (tlp_init(sc));
4353
4354 return ((*tm->tm_set)(sc));
4355 }
4356
4357 /*
4358 * MII-on-SIO media switch. Handles only MII attached to the SIO.
4359 */
4360 void tlp_sio_mii_tmsw_init __P((struct tulip_softc *));
4361
4362 const struct tulip_mediasw tlp_sio_mii_mediasw = {
4363 tlp_sio_mii_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
4364 };
4365
4366 void
4367 tlp_sio_mii_tmsw_init(sc)
4368 struct tulip_softc *sc;
4369 {
4370 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4371
4372 /*
4373 * We don't attach any media info structures to the ifmedia
4374 * entries, so if we're using a pre-init function that needs
4375 * that info, override it to one that doesn't.
4376 */
4377 if (sc->sc_preinit == tlp_2114x_preinit)
4378 sc->sc_preinit = tlp_2114x_mii_preinit;
4379
4380 sc->sc_mii.mii_ifp = ifp;
4381 sc->sc_mii.mii_readreg = tlp_sio_mii_readreg;
4382 sc->sc_mii.mii_writereg = tlp_sio_mii_writereg;
4383 sc->sc_mii.mii_statchg = sc->sc_statchg;
4384 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
4385 tlp_mediastatus);
4386 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
4387 MII_OFFSET_ANY);
4388 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
4389 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
4390 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
4391 } else {
4392 sc->sc_flags |= TULIPF_HAS_MII;
4393 sc->sc_tick = tlp_mii_tick;
4394 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4395 }
4396 }
4397
4398 /*
4399 * Lite-On PNIC media switch. Must handle MII or internal NWAY.
4400 */
4401 void tlp_pnic_tmsw_init __P((struct tulip_softc *));
4402 void tlp_pnic_tmsw_get __P((struct tulip_softc *, struct ifmediareq *));
4403 int tlp_pnic_tmsw_set __P((struct tulip_softc *));
4404
4405 const struct tulip_mediasw tlp_pnic_mediasw = {
4406 tlp_pnic_tmsw_init, tlp_pnic_tmsw_get, tlp_pnic_tmsw_set
4407 };
4408
4409 void tlp_pnic_nway_statchg __P((struct device *));
4410 void tlp_pnic_nway_tick __P((void *));
4411 int tlp_pnic_nway_service __P((struct tulip_softc *, int));
4412 void tlp_pnic_nway_reset __P((struct tulip_softc *));
4413 int tlp_pnic_nway_auto __P((struct tulip_softc *, int));
4414 void tlp_pnic_nway_auto_timeout __P((void *));
4415 void tlp_pnic_nway_status __P((struct tulip_softc *));
4416 void tlp_pnic_nway_acomp __P((struct tulip_softc *));
4417
4418 void
4419 tlp_pnic_tmsw_init(sc)
4420 struct tulip_softc *sc;
4421 {
4422 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4423 const char *sep = "";
4424
4425 #define ADD(m, c) ifmedia_add(&sc->sc_mii.mii_media, (m), (c), NULL)
4426 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
4427
4428 sc->sc_mii.mii_ifp = ifp;
4429 sc->sc_mii.mii_readreg = tlp_pnic_mii_readreg;
4430 sc->sc_mii.mii_writereg = tlp_pnic_mii_writereg;
4431 sc->sc_mii.mii_statchg = sc->sc_statchg;
4432 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
4433 tlp_mediastatus);
4434 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
4435 MII_OFFSET_ANY);
4436 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
4437 /* XXX What about AUI/BNC support? */
4438 printf("%s: ", sc->sc_dev.dv_xname);
4439
4440 tlp_pnic_nway_reset(sc);
4441
4442 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0),
4443 PNIC_NWAY_TW|PNIC_NWAY_CAP10T);
4444 PRINT("10baseT");
4445
4446 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, IFM_FDX, 0),
4447 PNIC_NWAY_TW|PNIC_NWAY_FD|PNIC_NWAY_CAP10TFDX);
4448 PRINT("10baseT-FDX");
4449
4450 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, 0, 0),
4451 PNIC_NWAY_TW|PNIC_NWAY_100|PNIC_NWAY_CAP100TX);
4452 PRINT("100baseTX");
4453
4454 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, IFM_FDX, 0),
4455 PNIC_NWAY_TW|PNIC_NWAY_100|PNIC_NWAY_FD|
4456 PNIC_NWAY_CAP100TXFDX);
4457 PRINT("100baseTX-FDX");
4458
4459 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0),
4460 PNIC_NWAY_TW|PNIC_NWAY_RN|PNIC_NWAY_NW|
4461 PNIC_NWAY_CAP10T|PNIC_NWAY_CAP10TFDX|
4462 PNIC_NWAY_CAP100TXFDX|PNIC_NWAY_CAP100TX);
4463 PRINT("auto");
4464
4465 printf("\n");
4466
4467 sc->sc_statchg = tlp_pnic_nway_statchg;
4468 sc->sc_tick = tlp_pnic_nway_tick;
4469 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4470 } else {
4471 sc->sc_flags |= TULIPF_HAS_MII;
4472 sc->sc_tick = tlp_mii_tick;
4473 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4474 }
4475
4476 #undef ADD
4477 #undef PRINT
4478 }
4479
4480 void
4481 tlp_pnic_tmsw_get(sc, ifmr)
4482 struct tulip_softc *sc;
4483 struct ifmediareq *ifmr;
4484 {
4485 struct mii_data *mii = &sc->sc_mii;
4486
4487 if (sc->sc_flags & TULIPF_HAS_MII)
4488 tlp_mii_getmedia(sc, ifmr);
4489 else {
4490 mii->mii_media_status = 0;
4491 mii->mii_media_active = IFM_NONE;
4492 tlp_pnic_nway_service(sc, MII_POLLSTAT);
4493 ifmr->ifm_status = sc->sc_mii.mii_media_status;
4494 ifmr->ifm_active = sc->sc_mii.mii_media_active;
4495 }
4496 }
4497
4498 int
4499 tlp_pnic_tmsw_set(sc)
4500 struct tulip_softc *sc;
4501 {
4502 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4503 struct mii_data *mii = &sc->sc_mii;
4504
4505 if (sc->sc_flags & TULIPF_HAS_MII) {
4506 /*
4507 * Make sure the built-in Tx jabber timer is disabled.
4508 */
4509 TULIP_WRITE(sc, CSR_PNIC_ENDEC, PNIC_ENDEC_JDIS);
4510
4511 return (tlp_mii_setmedia(sc));
4512 }
4513
4514 if (ifp->if_flags & IFF_UP) {
4515 mii->mii_media_status = 0;
4516 mii->mii_media_active = IFM_NONE;
4517 return (tlp_pnic_nway_service(sc, MII_MEDIACHG));
4518 }
4519
4520 return (0);
4521 }
4522
4523 void
4524 tlp_pnic_nway_statchg(self)
4525 struct device *self;
4526 {
4527 struct tulip_softc *sc = (struct tulip_softc *)self;
4528
4529 /* Idle the transmit and receive processes. */
4530 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
4531
4532 sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD|OPMODE_PS|OPMODE_PCS|
4533 OPMODE_SCR|OPMODE_HBD);
4534
4535 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
4536 sc->sc_opmode |= OPMODE_TTM;
4537 TULIP_WRITE(sc, CSR_GPP,
4538 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 0) |
4539 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1));
4540 } else {
4541 sc->sc_opmode |= OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_HBD;
4542 TULIP_WRITE(sc, CSR_GPP,
4543 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 1) |
4544 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1));
4545 }
4546
4547 if (sc->sc_mii.mii_media_active & IFM_FDX)
4548 sc->sc_opmode |= OPMODE_FD|OPMODE_HBD;
4549
4550 /*
4551 * Write new OPMODE bits. This also restarts the transmit
4552 * and receive processes.
4553 */
4554 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
4555
4556 /* XXX Update ifp->if_baudrate */
4557 }
4558
4559 void
4560 tlp_pnic_nway_tick(arg)
4561 void *arg;
4562 {
4563 struct tulip_softc *sc = arg;
4564 int s;
4565
4566 s = splnet();
4567 tlp_pnic_nway_service(sc, MII_TICK);
4568 splx(s);
4569
4570 timeout(tlp_pnic_nway_tick, sc, hz);
4571 }
4572
4573 /*
4574 * Support for the Lite-On PNIC internal NWay block. This is constructed
4575 * somewhat like a PHY driver for simplicity.
4576 */
4577
4578 int
4579 tlp_pnic_nway_service(sc, cmd)
4580 struct tulip_softc *sc;
4581 int cmd;
4582 {
4583 struct mii_data *mii = &sc->sc_mii;
4584 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
4585
4586 if ((mii->mii_ifp->if_flags & IFF_UP) == 0)
4587 return (0);
4588
4589 switch (cmd) {
4590 case MII_POLLSTAT:
4591 /* Nothing special to do here. */
4592 break;
4593
4594 case MII_MEDIACHG:
4595 switch (IFM_SUBTYPE(ife->ifm_media)) {
4596 case IFM_AUTO:
4597 (void) tlp_pnic_nway_auto(sc, 1);
4598 break;
4599 case IFM_100_T4:
4600 /*
4601 * XXX Not supported as a manual setting right now.
4602 */
4603 return (EINVAL);
4604 default:
4605 /*
4606 * NWAY register data is stored in the ifmedia entry.
4607 */
4608 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data);
4609 }
4610 break;
4611
4612 case MII_TICK:
4613 /*
4614 * Only used for autonegotiation.
4615 */
4616 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
4617 return (0);
4618
4619 /*
4620 * Check to see if we have link. If we do, we don't
4621 * need to restart the autonegotiation process.
4622 */
4623 if (sc->sc_flags & TULIPF_LINK_UP)
4624 return (0);
4625
4626 /*
4627 * Only retry autonegotiation every 5 seconds.
4628 */
4629 if (++sc->sc_nway_ticks != 5)
4630 return (0);
4631
4632 sc->sc_nway_ticks = 0;
4633 tlp_pnic_nway_reset(sc);
4634 if (tlp_pnic_nway_auto(sc, 0) == EJUSTRETURN)
4635 return (0);
4636 break;
4637 }
4638
4639 /* Update the media status. */
4640 tlp_pnic_nway_status(sc);
4641
4642 /* Callback if something changed. */
4643 if ((sc->sc_nway_active == NULL ||
4644 sc->sc_nway_active->ifm_media != mii->mii_media_active) ||
4645 cmd == MII_MEDIACHG) {
4646 (*sc->sc_statchg)(&sc->sc_dev);
4647 tlp_nway_activate(sc, mii->mii_media_active);
4648 }
4649 return (0);
4650 }
4651
4652 void
4653 tlp_pnic_nway_reset(sc)
4654 struct tulip_softc *sc;
4655 {
4656
4657 TULIP_WRITE(sc, CSR_PNIC_NWAY, PNIC_NWAY_RS);
4658 delay(100);
4659 TULIP_WRITE(sc, CSR_PNIC_NWAY, 0);
4660 }
4661
4662 int
4663 tlp_pnic_nway_auto(sc, waitfor)
4664 struct tulip_softc *sc;
4665 int waitfor;
4666 {
4667 struct mii_data *mii = &sc->sc_mii;
4668 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
4669 u_int32_t reg;
4670 int i;
4671
4672 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0)
4673 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data);
4674
4675 if (waitfor) {
4676 /* Wait 500ms for it to complete. */
4677 for (i = 0; i < 500; i++) {
4678 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
4679 if (reg & PNIC_NWAY_LPAR_MASK) {
4680 tlp_pnic_nway_acomp(sc);
4681 return (0);
4682 }
4683 delay(1000);
4684 }
4685 #if 0
4686 if ((reg & PNIC_NWAY_LPAR_MASK) == 0)
4687 printf("%s: autonegotiation failed to complete\n",
4688 sc->sc_dev.dv_xname);
4689 #endif
4690
4691 /*
4692 * Don't need to worry about clearing DOINGAUTO.
4693 * If that's set, a timeout is pending, and it will
4694 * clear the flag.
4695 */
4696 return (EIO);
4697 }
4698
4699 /*
4700 * Just let it finish asynchronously. This is for the benefit of
4701 * the tick handler driving autonegotiation. Don't want 500ms
4702 * delays all the time while the system is running!
4703 */
4704 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0) {
4705 sc->sc_flags |= TULIPF_DOINGAUTO;
4706 timeout(tlp_pnic_nway_auto_timeout, sc, hz >> 1);
4707 }
4708 return (EJUSTRETURN);
4709 }
4710
4711 void
4712 tlp_pnic_nway_auto_timeout(arg)
4713 void *arg;
4714 {
4715 struct tulip_softc *sc = arg;
4716 u_int32_t reg;
4717 int s;
4718
4719 s = splnet();
4720 sc->sc_flags &= ~TULIPF_DOINGAUTO;
4721 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
4722 #if 0
4723 if ((reg & PNIC_NWAY_LPAR_MASK) == 0)
4724 printf("%s: autonegotiation failed to complete\n",
4725 sc->sc_dev.dv_xname);
4726 #endif
4727
4728 tlp_pnic_nway_acomp(sc);
4729
4730 /* Update the media status. */
4731 (void) tlp_pnic_nway_service(sc, MII_POLLSTAT);
4732 splx(s);
4733 }
4734
4735 void
4736 tlp_pnic_nway_status(sc)
4737 struct tulip_softc *sc;
4738 {
4739 struct mii_data *mii = &sc->sc_mii;
4740 u_int32_t reg;
4741
4742 mii->mii_media_status = IFM_AVALID;
4743 mii->mii_media_active = IFM_ETHER;
4744
4745 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
4746
4747 if (sc->sc_flags & TULIPF_LINK_UP)
4748 mii->mii_media_status |= IFM_ACTIVE;
4749
4750 if (reg & PNIC_NWAY_NW) {
4751 if ((reg & PNIC_NWAY_LPAR_MASK) == 0) {
4752 /* Erg, still trying, I guess... */
4753 mii->mii_media_active |= IFM_NONE;
4754 return;
4755 }
4756
4757 #if 0
4758 if (reg & PNIC_NWAY_LPAR100T4)
4759 mii->mii_media_active |= IFM_100_T4;
4760 else
4761 #endif
4762 if (reg & PNIC_NWAY_LPAR100TXFDX)
4763 mii->mii_media_active |= IFM_100_TX|IFM_FDX;
4764 else if (reg & PNIC_NWAY_LPAR100TX)
4765 mii->mii_media_active |= IFM_100_TX;
4766 else if (reg & PNIC_NWAY_LPAR10TFDX)
4767 mii->mii_media_active |= IFM_10_T|IFM_FDX;
4768 else if (reg & PNIC_NWAY_LPAR10T)
4769 mii->mii_media_active |= IFM_10_T;
4770 else
4771 mii->mii_media_active |= IFM_NONE;
4772 } else {
4773 if (reg & PNIC_NWAY_100)
4774 mii->mii_media_active |= IFM_100_TX;
4775 else
4776 mii->mii_media_active |= IFM_10_T;
4777 if (reg & PNIC_NWAY_FD)
4778 mii->mii_media_active |= IFM_FDX;
4779 }
4780 }
4781
4782 void
4783 tlp_pnic_nway_acomp(sc)
4784 struct tulip_softc *sc;
4785 {
4786 u_int32_t reg;
4787
4788 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
4789 reg &= ~(PNIC_NWAY_FD|PNIC_NWAY_100|PNIC_NWAY_RN);
4790
4791 if (reg & (PNIC_NWAY_LPAR100TXFDX|PNIC_NWAY_LPAR100TX))
4792 reg |= PNIC_NWAY_100;
4793 if (reg & (PNIC_NWAY_LPAR10TFDX|PNIC_NWAY_LPAR100TXFDX))
4794 reg |= PNIC_NWAY_FD;
4795
4796 TULIP_WRITE(sc, CSR_PNIC_NWAY, reg);
4797 }
4798
4799 /*
4800 * Macronix PMAC and Lite-On PNIC-II media switch:
4801 *
4802 * MX98713 and MX98713A 21140-like MII or GPIO media.
4803 *
4804 * MX98713A 21143-like MII or SIA/SYM media.
4805 *
4806 * MX98715, MX98715A, MX98725, 21143-like SIA/SYM media.
4807 * 82C115
4808 *
4809 * So, what we do here is fake MII-on-SIO or ISV media info, and
4810 * use the ISV media switch get/set functions to handle the rest.
4811 */
4812
4813 void tlp_pmac_tmsw_init __P((struct tulip_softc *));
4814
4815 const struct tulip_mediasw tlp_pmac_mediasw = {
4816 tlp_pmac_tmsw_init, tlp_2114x_isv_tmsw_get, tlp_2114x_isv_tmsw_set
4817 };
4818
4819 const struct tulip_mediasw tlp_pmac_mii_mediasw = {
4820 tlp_pmac_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
4821 };
4822
4823 void
4824 tlp_pmac_tmsw_init(sc)
4825 struct tulip_softc *sc;
4826 {
4827 static const u_int8_t media[] = {
4828 TULIP_ROM_MB_MEDIA_TP,
4829 TULIP_ROM_MB_MEDIA_TP_FDX,
4830 TULIP_ROM_MB_MEDIA_100TX,
4831 TULIP_ROM_MB_MEDIA_100TX_FDX,
4832 };
4833 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4834
4835 sc->sc_mii.mii_ifp = ifp;
4836 sc->sc_mii.mii_readreg = tlp_sio_mii_readreg;
4837 sc->sc_mii.mii_writereg = tlp_sio_mii_writereg;
4838 sc->sc_mii.mii_statchg = sc->sc_statchg;
4839 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
4840 tlp_mediastatus);
4841 if (sc->sc_chip == TULIP_CHIP_MX98713 ||
4842 sc->sc_chip == TULIP_CHIP_MX98713A) {
4843 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
4844 MII_PHY_ANY, MII_OFFSET_ANY);
4845 if (LIST_FIRST(&sc->sc_mii.mii_phys) != NULL) {
4846 sc->sc_flags |= TULIPF_HAS_MII;
4847 sc->sc_tick = tlp_mii_tick;
4848 sc->sc_preinit = tlp_2114x_mii_preinit;
4849 sc->sc_mediasw = &tlp_pmac_mii_mediasw;
4850 ifmedia_set(&sc->sc_mii.mii_media,
4851 IFM_ETHER|IFM_AUTO);
4852 return;
4853 }
4854 }
4855
4856 switch (sc->sc_chip) {
4857 case TULIP_CHIP_MX98713:
4858 tlp_add_srom_media(sc, TULIP_ROM_MB_21140_GPR,
4859 tlp_21140_gpio_get, tlp_21140_gpio_set, media, 4);
4860
4861 /*
4862 * XXX Should implement auto-sense for this someday,
4863 * XXX when we do the same for the 21140.
4864 */
4865 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
4866 break;
4867
4868 default:
4869 tlp_add_srom_media(sc, TULIP_ROM_MB_21142_SIA,
4870 tlp_sia_get, tlp_sia_set, media, 2);
4871 tlp_add_srom_media(sc, TULIP_ROM_MB_21143_SYM,
4872 tlp_sia_get, tlp_sia_set, media + 2, 2);
4873
4874 /*
4875 * XXX Autonegotiation not yet supported.
4876 */
4877 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
4878 break;
4879 }
4880
4881 tlp_print_media(sc);
4882 tlp_sia_fixup(sc);
4883
4884 /* Set the LED modes. */
4885 tlp_pmac_reset(sc);
4886
4887 sc->sc_reset = tlp_pmac_reset;
4888 }
4889
4890 /*
4891 * ADMtek AL981 media switch. Only has internal PHY.
4892 */
4893 void tlp_al981_tmsw_init __P((struct tulip_softc *));
4894
4895 const struct tulip_mediasw tlp_al981_mediasw = {
4896 tlp_al981_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
4897 };
4898
4899 void
4900 tlp_al981_tmsw_init(sc)
4901 struct tulip_softc *sc;
4902 {
4903 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4904
4905 sc->sc_mii.mii_ifp = ifp;
4906 sc->sc_mii.mii_readreg = tlp_al981_mii_readreg;
4907 sc->sc_mii.mii_writereg = tlp_al981_mii_writereg;
4908 sc->sc_mii.mii_statchg = sc->sc_statchg;
4909 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
4910 tlp_mediastatus);
4911 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
4912 MII_OFFSET_ANY);
4913 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
4914 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
4915 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
4916 } else {
4917 sc->sc_flags |= TULIPF_HAS_MII;
4918 sc->sc_tick = tlp_mii_tick;
4919 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4920 }
4921 }
4922