tulip.c revision 1.33 1 /* $NetBSD: tulip.c,v 1.33 1999/11/19 18:22:42 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Device driver for the Digital Semiconductor ``Tulip'' (21x4x)
42 * Ethernet controller family, and a variety of clone chips.
43 */
44
45 #include "opt_inet.h"
46 #include "opt_ns.h"
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58
59 #include <vm/vm.h> /* for PAGE_SIZE */
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65
66 #if NBPFILTER > 0
67 #include <net/bpf.h>
68 #endif
69
70 #ifdef INET
71 #include <netinet/in.h>
72 #include <netinet/if_inarp.h>
73 #endif
74
75 #ifdef NS
76 #include <netns/ns.h>
77 #include <netns/ns_if.h>
78 #endif
79
80 #include <machine/bus.h>
81 #include <machine/intr.h>
82
83 #include <dev/mii/mii.h>
84 #include <dev/mii/miivar.h>
85 #include <dev/mii/mii_bitbang.h>
86
87 #include <dev/ic/tulipreg.h>
88 #include <dev/ic/tulipvar.h>
89
90 /*
91 * The following tables compute the transmit threshold mode. We start
92 * at index 0. When ever we get a transmit underrun, we increment our
93 * index, falling back if we encounter the NULL terminator.
94 *
95 * Note: Store and forward mode is only available on the 100mbps chips
96 * (21140 and higher).
97 */
98 const struct tulip_txthresh_tab tlp_10_txthresh_tab[] = {
99 { OPMODE_TR_72, "72 bytes" },
100 { OPMODE_TR_96, "96 bytes" },
101 { OPMODE_TR_128, "128 bytes" },
102 { OPMODE_TR_160, "160 bytes" },
103 { 0, NULL },
104 };
105
106 const struct tulip_txthresh_tab tlp_10_100_txthresh_tab[] = {
107 { OPMODE_TR_72, "72/128 bytes" },
108 { OPMODE_TR_96, "96/256 bytes" },
109 { OPMODE_TR_128, "128/512 bytes" },
110 { OPMODE_TR_160, "160/1024 bytes" },
111 { OPMODE_SF, "store and forward mode" },
112 { 0, NULL },
113 };
114
115 #define TXTH_72 0
116 #define TXTH_96 1
117 #define TXTH_128 2
118 #define TXTH_160 3
119 #define TXTH_SF 4
120
121 /*
122 * The Winbond 89C840F does transmit threshold control totally
123 * differently. It simply has a 7-bit field which indicates
124 * the threshold:
125 *
126 * txth = ((OPMODE & OPMODE_WINB_TTH) >> OPMODE_WINB_TTH_SHIFT) * 16;
127 *
128 * However, we just do Store-and-Forward mode on these chips, since
129 * the DMA engines seem to be flaky.
130 */
131 const struct tulip_txthresh_tab tlp_winb_txthresh_tab[] = {
132 { 0, "store and forward mode" },
133 { 0, NULL },
134 };
135
136 #define TXTH_WINB_SF 0
137
138 void tlp_start __P((struct ifnet *));
139 void tlp_watchdog __P((struct ifnet *));
140 int tlp_ioctl __P((struct ifnet *, u_long, caddr_t));
141
142 void tlp_shutdown __P((void *));
143
144 void tlp_reset __P((struct tulip_softc *));
145 int tlp_init __P((struct tulip_softc *));
146 void tlp_rxdrain __P((struct tulip_softc *));
147 void tlp_stop __P((struct tulip_softc *, int));
148 int tlp_add_rxbuf __P((struct tulip_softc *, int));
149 void tlp_idle __P((struct tulip_softc *, u_int32_t));
150 void tlp_srom_idle __P((struct tulip_softc *));
151
152 void tlp_filter_setup __P((struct tulip_softc *));
153 void tlp_winb_filter_setup __P((struct tulip_softc *));
154 void tlp_al981_filter_setup __P((struct tulip_softc *));
155
156 void tlp_rxintr __P((struct tulip_softc *));
157 void tlp_txintr __P((struct tulip_softc *));
158
159 void tlp_mii_tick __P((void *));
160 void tlp_mii_statchg __P((struct device *));
161 void tlp_winb_mii_statchg __P((struct device *));
162
163 void tlp_mii_getmedia __P((struct tulip_softc *, struct ifmediareq *));
164 int tlp_mii_setmedia __P((struct tulip_softc *));
165
166 int tlp_bitbang_mii_readreg __P((struct device *, int, int));
167 void tlp_bitbang_mii_writereg __P((struct device *, int, int, int));
168
169 int tlp_pnic_mii_readreg __P((struct device *, int, int));
170 void tlp_pnic_mii_writereg __P((struct device *, int, int, int));
171
172 int tlp_al981_mii_readreg __P((struct device *, int, int));
173 void tlp_al981_mii_writereg __P((struct device *, int, int, int));
174
175 void tlp_2114x_preinit __P((struct tulip_softc *));
176 void tlp_2114x_mii_preinit __P((struct tulip_softc *));
177 void tlp_pnic_preinit __P((struct tulip_softc *));
178
179 void tlp_21140_reset __P((struct tulip_softc *));
180 void tlp_21142_reset __P((struct tulip_softc *));
181 void tlp_pmac_reset __P((struct tulip_softc *));
182
183 u_int32_t tlp_crc32 __P((const u_int8_t *, size_t));
184 #define tlp_mchash(addr, sz) (tlp_crc32((addr), ETHER_ADDR_LEN) & ((sz) - 1))
185
186 /*
187 * MII bit-bang glue.
188 */
189 u_int32_t tlp_sio_mii_bitbang_read __P((struct device *));
190 void tlp_sio_mii_bitbang_write __P((struct device *, u_int32_t));
191
192 const struct mii_bitbang_ops tlp_sio_mii_bitbang_ops = {
193 tlp_sio_mii_bitbang_read,
194 tlp_sio_mii_bitbang_write,
195 {
196 MIIROM_MDO, /* MII_BIT_MDO */
197 MIIROM_MDI, /* MII_BIT_MDI */
198 MIIROM_MDC, /* MII_BIT_MDC */
199 0, /* MII_BIT_DIR_HOST_PHY */
200 MIIROM_MIIDIR, /* MII_BIT_DIR_PHY_HOST */
201 }
202 };
203
204 #ifdef TLP_DEBUG
205 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
206 printf x
207 #else
208 #define DPRINTF(sc, x) /* nothing */
209 #endif
210
211 #ifdef TLP_STATS
212 void tlp_print_stats __P((struct tulip_softc *));
213 #endif
214
215 /*
216 * tlp_attach:
217 *
218 * Attach a Tulip interface to the system.
219 */
220 void
221 tlp_attach(sc, enaddr)
222 struct tulip_softc *sc;
223 const u_int8_t *enaddr;
224 {
225 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
226 int i, rseg, error;
227 bus_dma_segment_t seg;
228
229 /*
230 * NOTE: WE EXPECT THE FRONT-END TO INITIALIZE sc_regshift!
231 */
232
233 /*
234 * Setup the transmit threshold table.
235 */
236 switch (sc->sc_chip) {
237 case TULIP_CHIP_DE425:
238 case TULIP_CHIP_21040:
239 case TULIP_CHIP_21041:
240 sc->sc_txth = tlp_10_txthresh_tab;
241 break;
242
243 default:
244 sc->sc_txth = tlp_10_100_txthresh_tab;
245 break;
246 }
247
248 /*
249 * Setup the filter setup function.
250 */
251 switch (sc->sc_chip) {
252 case TULIP_CHIP_WB89C840F:
253 sc->sc_filter_setup = tlp_winb_filter_setup;
254 break;
255
256 case TULIP_CHIP_AL981:
257 sc->sc_filter_setup = tlp_al981_filter_setup;
258 break;
259
260 default:
261 sc->sc_filter_setup = tlp_filter_setup;
262 break;
263 }
264
265 /*
266 * Set up the media status change function.
267 */
268 switch (sc->sc_chip) {
269 case TULIP_CHIP_WB89C840F:
270 sc->sc_statchg = tlp_winb_mii_statchg;
271 break;
272
273 default:
274 /*
275 * We may override this if we have special media
276 * handling requirements (e.g. flipping GPIO pins).
277 *
278 * The pure-MII statchg function covers the basics.
279 */
280 sc->sc_statchg = tlp_mii_statchg;
281 break;
282 }
283
284 /*
285 * Set up various chip-specific quirks.
286 */
287 switch (sc->sc_chip) {
288 case TULIP_CHIP_21140:
289 case TULIP_CHIP_21140A:
290 case TULIP_CHIP_21142:
291 case TULIP_CHIP_21143:
292 case TULIP_CHIP_82C115: /* 21143-like */
293 case TULIP_CHIP_MX98713: /* 21140-like */
294 case TULIP_CHIP_MX98713A: /* 21143-like */
295 case TULIP_CHIP_MX98715: /* 21143-like */
296 case TULIP_CHIP_MX98715A: /* 21143-like */
297 case TULIP_CHIP_MX98725: /* 21143-like */
298 sc->sc_preinit = tlp_2114x_preinit;
299 break;
300
301 case TULIP_CHIP_82C168:
302 case TULIP_CHIP_82C169:
303 sc->sc_preinit = tlp_pnic_preinit;
304
305 /*
306 * These chips seem to have busted DMA engines; just put them
307 * in Store-and-Forward mode from the get-go.
308 */
309 sc->sc_txthresh = TXTH_SF;
310 break;
311
312 case TULIP_CHIP_WB89C840F:
313 sc->sc_flags |= TULIPF_IC_FS;
314 break;
315
316 default:
317 /* Nothing. */
318 }
319
320 /*
321 * Set up the MII bit-bang operations.
322 */
323 switch (sc->sc_chip) {
324 case TULIP_CHIP_WB89C840F: /* XXX direction bit different? */
325 sc->sc_bitbang_ops = &tlp_sio_mii_bitbang_ops;
326 break;
327
328 default:
329 sc->sc_bitbang_ops = &tlp_sio_mii_bitbang_ops;
330 }
331
332 SIMPLEQ_INIT(&sc->sc_txfreeq);
333 SIMPLEQ_INIT(&sc->sc_txdirtyq);
334
335 /*
336 * Allocate the control data structures, and create and load the
337 * DMA map for it.
338 */
339 if ((error = bus_dmamem_alloc(sc->sc_dmat,
340 sizeof(struct tulip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
341 0)) != 0) {
342 printf("%s: unable to allocate control data, error = %d\n",
343 sc->sc_dev.dv_xname, error);
344 goto fail_0;
345 }
346
347 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
348 sizeof(struct tulip_control_data), (caddr_t *)&sc->sc_control_data,
349 BUS_DMA_COHERENT)) != 0) {
350 printf("%s: unable to map control data, error = %d\n",
351 sc->sc_dev.dv_xname, error);
352 goto fail_1;
353 }
354
355 if ((error = bus_dmamap_create(sc->sc_dmat,
356 sizeof(struct tulip_control_data), 1,
357 sizeof(struct tulip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
358 printf("%s: unable to create control data DMA map, "
359 "error = %d\n", sc->sc_dev.dv_xname, error);
360 goto fail_2;
361 }
362
363 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
364 sc->sc_control_data, sizeof(struct tulip_control_data), NULL,
365 0)) != 0) {
366 printf("%s: unable to load control data DMA map, error = %d\n",
367 sc->sc_dev.dv_xname, error);
368 goto fail_3;
369 }
370
371 /*
372 * Create the transmit buffer DMA maps.
373 */
374 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
375 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
376 TULIP_NTXSEGS, MCLBYTES, 0, 0,
377 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
378 printf("%s: unable to create tx DMA map %d, "
379 "error = %d\n", sc->sc_dev.dv_xname, i, error);
380 goto fail_4;
381 }
382 }
383
384 /*
385 * Create the recieve buffer DMA maps.
386 */
387 for (i = 0; i < TULIP_NRXDESC; i++) {
388 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
389 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
390 printf("%s: unable to create rx DMA map %d, "
391 "error = %d\n", sc->sc_dev.dv_xname, i, error);
392 goto fail_5;
393 }
394 sc->sc_rxsoft[i].rxs_mbuf = NULL;
395 }
396
397 /*
398 * Reset the chip to a known state.
399 */
400 tlp_reset(sc);
401
402 /* Announce ourselves. */
403 printf("%s: %s%sEthernet address %s\n", sc->sc_dev.dv_xname,
404 sc->sc_name[0] != '\0' ? sc->sc_name : "",
405 sc->sc_name[0] != '\0' ? ", " : "",
406 ether_sprintf(enaddr));
407
408 /*
409 * Initialize our media structures. This may probe the MII, if
410 * present.
411 */
412 (*sc->sc_mediasw->tmsw_init)(sc);
413
414 ifp = &sc->sc_ethercom.ec_if;
415 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
416 ifp->if_softc = sc;
417 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
418 ifp->if_ioctl = tlp_ioctl;
419 ifp->if_start = tlp_start;
420 ifp->if_watchdog = tlp_watchdog;
421
422 /*
423 * Attach the interface.
424 */
425 if_attach(ifp);
426 ether_ifattach(ifp, enaddr);
427 #if NBPFILTER > 0
428 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
429 sizeof(struct ether_header));
430 #endif
431
432 /*
433 * Make sure the interface is shutdown during reboot.
434 */
435 sc->sc_sdhook = shutdownhook_establish(tlp_shutdown, sc);
436 if (sc->sc_sdhook == NULL)
437 printf("%s: WARNING: unable to establish shutdown hook\n",
438 sc->sc_dev.dv_xname);
439 return;
440
441 /*
442 * Free any resources we've allocated during the failed attach
443 * attempt. Do this in reverse order and fall through.
444 */
445 fail_5:
446 for (i = 0; i < TULIP_NRXDESC; i++) {
447 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
448 bus_dmamap_destroy(sc->sc_dmat,
449 sc->sc_rxsoft[i].rxs_dmamap);
450 }
451 fail_4:
452 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
453 if (sc->sc_txsoft[i].txs_dmamap != NULL)
454 bus_dmamap_destroy(sc->sc_dmat,
455 sc->sc_txsoft[i].txs_dmamap);
456 }
457 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
458 fail_3:
459 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
460 fail_2:
461 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
462 sizeof(struct tulip_control_data));
463 fail_1:
464 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
465 fail_0:
466 return;
467 }
468
469 /*
470 * tlp_shutdown:
471 *
472 * Make sure the interface is stopped at reboot time.
473 */
474 void
475 tlp_shutdown(arg)
476 void *arg;
477 {
478 struct tulip_softc *sc = arg;
479
480 tlp_stop(sc, 1);
481 }
482
483 /*
484 * tlp_start: [ifnet interface function]
485 *
486 * Start packet transmission on the interface.
487 */
488 void
489 tlp_start(ifp)
490 struct ifnet *ifp;
491 {
492 struct tulip_softc *sc = ifp->if_softc;
493 struct mbuf *m0, *m;
494 struct tulip_txsoft *txs, *last_txs;
495 bus_dmamap_t dmamap;
496 int error, firsttx, nexttx, lasttx, ofree, seg;
497
498 DPRINTF(sc, ("%s: tlp_start: sc_flags 0x%08x, if_flags 0x%08x\n",
499 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
500
501 /*
502 * If we want a filter setup, it means no more descriptors were
503 * available for the setup routine. Let it get a chance to wedge
504 * itself into the ring.
505 */
506 if (sc->sc_flags & TULIPF_WANT_SETUP)
507 ifp->if_flags |= IFF_OACTIVE;
508
509 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
510 return;
511
512 /*
513 * Remember the previous number of free descriptors and
514 * the first descriptor we'll use.
515 */
516 ofree = sc->sc_txfree;
517 firsttx = sc->sc_txnext;
518
519 DPRINTF(sc, ("%s: tlp_start: txfree %d, txnext %d\n",
520 sc->sc_dev.dv_xname, ofree, firsttx));
521
522 /*
523 * Loop through the send queue, setting up transmit descriptors
524 * until we drain the queue, or use up all available transmit
525 * descriptors.
526 */
527 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
528 sc->sc_txfree != 0) {
529 /*
530 * Grab a packet off the queue.
531 */
532 IF_DEQUEUE(&ifp->if_snd, m0);
533 if (m0 == NULL)
534 break;
535
536 dmamap = txs->txs_dmamap;
537
538 /*
539 * Load the DMA map. If this fails, the packet either
540 * didn't fit in the alloted number of segments, or we were
541 * short on resources. In this case, we'll copy and try
542 * again.
543 */
544 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
545 BUS_DMA_NOWAIT) != 0) {
546 MGETHDR(m, M_DONTWAIT, MT_DATA);
547 if (m == NULL) {
548 printf("%s: unable to allocate Tx mbuf\n",
549 sc->sc_dev.dv_xname);
550 IF_PREPEND(&ifp->if_snd, m0);
551 break;
552 }
553 if (m0->m_pkthdr.len > MHLEN) {
554 MCLGET(m, M_DONTWAIT);
555 if ((m->m_flags & M_EXT) == 0) {
556 printf("%s: unable to allocate Tx "
557 "cluster\n", sc->sc_dev.dv_xname);
558 m_freem(m);
559 IF_PREPEND(&ifp->if_snd, m0);
560 break;
561 }
562 }
563 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
564 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
565 m_freem(m0);
566 m0 = m;
567 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
568 m0, BUS_DMA_NOWAIT);
569 if (error) {
570 printf("%s: unable to load Tx buffer, "
571 "error = %d\n", sc->sc_dev.dv_xname, error);
572 IF_PREPEND(&ifp->if_snd, m0);
573 break;
574 }
575 }
576
577 /*
578 * Ensure we have enough descriptors free to describe
579 * the packet.
580 */
581 if (dmamap->dm_nsegs > sc->sc_txfree) {
582 /*
583 * Not enough free descriptors to transmit this
584 * packet. We haven't committed to anything yet,
585 * so just unload the DMA map, put the packet
586 * back on the queue, and punt. Notify the upper
587 * layer that there are no more slots left.
588 *
589 * XXX We could allocate an mbuf and copy, but
590 * XXX it is worth it?
591 */
592 ifp->if_flags |= IFF_OACTIVE;
593 bus_dmamap_unload(sc->sc_dmat, dmamap);
594 IF_PREPEND(&ifp->if_snd, m0);
595 break;
596 }
597
598 /*
599 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
600 */
601
602 /* Sync the DMA map. */
603 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
604 BUS_DMASYNC_PREWRITE);
605
606 /*
607 * Initialize the transmit descriptors.
608 */
609 for (nexttx = sc->sc_txnext, seg = 0;
610 seg < dmamap->dm_nsegs;
611 seg++, nexttx = TULIP_NEXTTX(nexttx)) {
612 /*
613 * If this is the first descriptor we're
614 * enqueueing, don't set the OWN bit just
615 * yet. That could cause a race condition.
616 * We'll do it below.
617 */
618 sc->sc_txdescs[nexttx].td_status =
619 (nexttx == firsttx) ? 0 : TDSTAT_OWN;
620 sc->sc_txdescs[nexttx].td_bufaddr1 =
621 dmamap->dm_segs[seg].ds_addr;
622 sc->sc_txdescs[nexttx].td_ctl =
623 (dmamap->dm_segs[seg].ds_len << TDCTL_SIZE1_SHIFT) |
624 TDCTL_CH;
625 lasttx = nexttx;
626 }
627
628 /* Set `first segment' and `last segment' appropriately. */
629 sc->sc_txdescs[sc->sc_txnext].td_ctl |= TDCTL_Tx_FS;
630 sc->sc_txdescs[lasttx].td_ctl |= TDCTL_Tx_LS;
631
632 #ifdef TLP_DEBUG
633 if (ifp->if_flags & IFF_DEBUG) {
634 printf(" txsoft %p trainsmit chain:\n", txs);
635 for (seg = sc->sc_txnext;; seg = TULIP_NEXTTX(seg)) {
636 printf(" descriptor %d:\n", seg);
637 printf(" td_status: 0x%08x\n",
638 sc->sc_txdescs[seg].td_status);
639 printf(" td_ctl: 0x%08x\n",
640 sc->sc_txdescs[seg].td_ctl);
641 printf(" td_bufaddr1: 0x%08x\n",
642 sc->sc_txdescs[seg].td_bufaddr1);
643 printf(" td_bufaddr2: 0x%08x\n",
644 sc->sc_txdescs[seg].td_bufaddr2);
645 if (seg == lasttx)
646 break;
647 }
648 }
649 #endif
650
651 /* Sync the descriptors we're using. */
652 TULIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
653 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
654
655 /*
656 * Store a pointer to the packet so we can free it later,
657 * and remember what txdirty will be once the packet is
658 * done.
659 */
660 txs->txs_mbuf = m0;
661 txs->txs_firstdesc = sc->sc_txnext;
662 txs->txs_lastdesc = lasttx;
663
664 /* Advance the tx pointer. */
665 sc->sc_txfree -= dmamap->dm_nsegs;
666 sc->sc_txnext = nexttx;
667
668 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
669 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
670
671 last_txs = txs;
672
673 #if NBPFILTER > 0
674 /*
675 * Pass the packet to any BPF listeners.
676 */
677 if (ifp->if_bpf)
678 bpf_mtap(ifp->if_bpf, m0);
679 #endif /* NBPFILTER > 0 */
680 }
681
682 if (txs == NULL || sc->sc_txfree == 0) {
683 /* No more slots left; notify upper layer. */
684 ifp->if_flags |= IFF_OACTIVE;
685 }
686
687 if (sc->sc_txfree != ofree) {
688 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
689 sc->sc_dev.dv_xname, lasttx, firsttx));
690 /*
691 * Cause a transmit interrupt to happen on the
692 * last packet we enqueued.
693 */
694 sc->sc_txdescs[lasttx].td_ctl |= TDCTL_Tx_IC;
695 TULIP_CDTXSYNC(sc, lasttx, 1,
696 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
697
698 /*
699 * Some clone chips want IC on the *first* segment in
700 * the packet. Appease them.
701 */
702 if ((sc->sc_flags & TULIPF_IC_FS) != 0 &&
703 last_txs->txs_firstdesc != lasttx) {
704 sc->sc_txdescs[last_txs->txs_firstdesc].td_ctl |=
705 TDCTL_Tx_IC;
706 TULIP_CDTXSYNC(sc, last_txs->txs_firstdesc, 1,
707 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
708 }
709
710 /*
711 * The entire packet chain is set up. Give the
712 * first descriptor to the chip now.
713 */
714 sc->sc_txdescs[firsttx].td_status |= TDSTAT_OWN;
715 TULIP_CDTXSYNC(sc, firsttx, 1,
716 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
717
718 /* Wake up the transmitter. */
719 /* XXX USE AUTOPOLLING? */
720 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
721
722 /* Set a watchdog timer in case the chip flakes out. */
723 ifp->if_timer = 5;
724 }
725 }
726
727 /*
728 * tlp_watchdog: [ifnet interface function]
729 *
730 * Watchdog timer handler.
731 */
732 void
733 tlp_watchdog(ifp)
734 struct ifnet *ifp;
735 {
736 struct tulip_softc *sc = ifp->if_softc;
737 int doing_setup, doing_transmit;
738
739 doing_setup = (sc->sc_flags & TULIPF_DOING_SETUP);
740 doing_transmit = (SIMPLEQ_FIRST(&sc->sc_txdirtyq) != NULL);
741
742 if (doing_setup && doing_transmit) {
743 printf("%s: filter setup and transmit timeout\n",
744 sc->sc_dev.dv_xname);
745 ifp->if_oerrors++;
746 } else if (doing_transmit) {
747 printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
748 ifp->if_oerrors++;
749 } else if (doing_setup)
750 printf("%s: filter setup timeout\n", sc->sc_dev.dv_xname);
751 else
752 printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
753
754 (void) tlp_init(sc);
755
756 /* Try to get more packets going. */
757 tlp_start(ifp);
758 }
759
760 /*
761 * tlp_ioctl: [ifnet interface function]
762 *
763 * Handle control requests from the operator.
764 */
765 int
766 tlp_ioctl(ifp, cmd, data)
767 struct ifnet *ifp;
768 u_long cmd;
769 caddr_t data;
770 {
771 struct tulip_softc *sc = ifp->if_softc;
772 struct ifreq *ifr = (struct ifreq *)data;
773 struct ifaddr *ifa = (struct ifaddr *)data;
774 int s, error = 0;
775
776 s = splnet();
777
778 switch (cmd) {
779 case SIOCSIFADDR:
780 ifp->if_flags |= IFF_UP;
781
782 switch (ifa->ifa_addr->sa_family) {
783 #ifdef INET
784 case AF_INET:
785 if ((error = tlp_init(sc)) != 0)
786 break;
787 arp_ifinit(ifp, ifa);
788 break;
789 #endif /* INET */
790 #ifdef NS
791 case AF_NS:
792 {
793 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
794
795 if (ns_nullhost(*ina))
796 ina->x_host = *(union ns_host *)
797 LLADDR(ifp->if_sadl);
798 else
799 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
800 ifp->if_addrlen);
801 /* Set new address. */
802 error = tlp_init(sc);
803 break;
804 }
805 #endif /* NS */
806 default:
807 error = tlp_init(sc);
808 break;
809 }
810 break;
811
812 case SIOCSIFMTU:
813 if (ifr->ifr_mtu > ETHERMTU)
814 error = EINVAL;
815 else
816 ifp->if_mtu = ifr->ifr_mtu;
817 break;
818
819 case SIOCSIFFLAGS:
820 #ifdef TLP_STATS
821 if (ifp->if_flags & IFF_DEBUG)
822 tlp_print_stats(sc);
823 #endif
824 if ((ifp->if_flags & IFF_UP) == 0 &&
825 (ifp->if_flags & IFF_RUNNING) != 0) {
826 /*
827 * If interface is marked down and it is running, then
828 * stop it.
829 */
830 tlp_stop(sc, 1);
831 } else if ((ifp->if_flags & IFF_UP) != 0 &&
832 (ifp->if_flags & IFF_RUNNING) == 0) {
833 /*
834 * If interfase it marked up and it is stopped, then
835 * start it.
836 */
837 error = tlp_init(sc);
838 } else if ((ifp->if_flags & IFF_UP) != 0) {
839 /*
840 * Reset the interface to pick up changes in any other
841 * flags that affect the hardware state.
842 */
843 error = tlp_init(sc);
844 }
845 break;
846
847 case SIOCADDMULTI:
848 case SIOCDELMULTI:
849 error = (cmd == SIOCADDMULTI) ?
850 ether_addmulti(ifr, &sc->sc_ethercom) :
851 ether_delmulti(ifr, &sc->sc_ethercom);
852
853 if (error == ENETRESET) {
854 /*
855 * Multicast list has changed. Set the filter
856 * accordingly.
857 */
858 (*sc->sc_filter_setup)(sc);
859 error = 0;
860 }
861 break;
862
863 case SIOCSIFMEDIA:
864 case SIOCGIFMEDIA:
865 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
866 break;
867
868 default:
869 error = EINVAL;
870 break;
871 }
872
873 /* Try to get more packets going. */
874 tlp_start(ifp);
875
876 splx(s);
877 return (error);
878 }
879
880 /*
881 * tlp_intr:
882 *
883 * Interrupt service routine.
884 */
885 int
886 tlp_intr(arg)
887 void *arg;
888 {
889 struct tulip_softc *sc = arg;
890 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
891 u_int32_t status, rxstatus, txstatus;
892 int handled = 0, txthresh;
893
894 DPRINTF(sc, ("%s: tlp_intr\n", sc->sc_dev.dv_xname));
895
896 /*
897 * If the interface isn't running, the interrupt couldn't
898 * possibly have come from us.
899 */
900 if ((ifp->if_flags & IFF_RUNNING) == 0)
901 return (0);
902
903 for (;;) {
904 status = TULIP_READ(sc, CSR_STATUS);
905 if (status)
906 TULIP_WRITE(sc, CSR_STATUS, status);
907
908 if ((status & sc->sc_inten) == 0)
909 break;
910
911 handled = 1;
912
913 rxstatus = status & sc->sc_rxint_mask;
914 txstatus = status & sc->sc_txint_mask;
915
916 if (rxstatus) {
917 /* Grab new any new packets. */
918 tlp_rxintr(sc);
919
920 if (rxstatus & STATUS_RWT)
921 printf("%s: receive watchdog timeout\n",
922 sc->sc_dev.dv_xname);
923
924 if (rxstatus & STATUS_RU) {
925 printf("%s: receive ring overrun\n",
926 sc->sc_dev.dv_xname);
927 /* Get the receive process going again. */
928 tlp_idle(sc, OPMODE_SR);
929 TULIP_WRITE(sc, CSR_RXLIST,
930 TULIP_CDRXADDR(sc, sc->sc_rxptr));
931 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
932 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
933 break;
934 }
935 }
936
937 if (txstatus) {
938 /* Sweep up transmit descriptors. */
939 tlp_txintr(sc);
940
941 if (txstatus & STATUS_TJT)
942 printf("%s: transmit jabber timeout\n",
943 sc->sc_dev.dv_xname);
944
945 if (txstatus & STATUS_UNF) {
946 /*
947 * Increase our transmit threshold if
948 * another is available.
949 */
950 txthresh = sc->sc_txthresh + 1;
951 if (sc->sc_txth[txthresh].txth_name != NULL) {
952 /* Idle the transmit process. */
953 tlp_idle(sc, OPMODE_ST);
954
955 sc->sc_txthresh = txthresh;
956 sc->sc_opmode &= ~(OPMODE_TR|OPMODE_SF);
957 sc->sc_opmode |=
958 sc->sc_txth[txthresh].txth_opmode;
959 printf("%s: transmit underrun; new "
960 "threshold: %s\n",
961 sc->sc_dev.dv_xname,
962 sc->sc_txth[txthresh].txth_name);
963
964 /*
965 * Set the new threshold and restart
966 * the transmit process.
967 */
968 TULIP_WRITE(sc, CSR_OPMODE,
969 sc->sc_opmode);
970 }
971 /*
972 * XXX Log every Nth underrun from
973 * XXX now on?
974 */
975 }
976 }
977
978 if (status & (STATUS_TPS|STATUS_RPS)) {
979 if (status & STATUS_TPS)
980 printf("%s: transmit process stopped\n",
981 sc->sc_dev.dv_xname);
982 if (status & STATUS_RPS)
983 printf("%s: receive process stopped\n",
984 sc->sc_dev.dv_xname);
985 (void) tlp_init(sc);
986 break;
987 }
988
989 if (status & STATUS_SE) {
990 const char *str;
991 switch (status & STATUS_EB) {
992 case STATUS_EB_PARITY:
993 str = "parity error";
994 break;
995
996 case STATUS_EB_MABT:
997 str = "master abort";
998 break;
999
1000 case STATUS_EB_TABT:
1001 str = "target abort";
1002 break;
1003
1004 default:
1005 str = "unknown error";
1006 break;
1007 }
1008 printf("%s: fatal system error: %s\n",
1009 sc->sc_dev.dv_xname, str);
1010 (void) tlp_init(sc);
1011 break;
1012 }
1013
1014 /*
1015 * Not handled:
1016 *
1017 * Transmit buffer unavailable -- normal
1018 * condition, nothing to do, really.
1019 *
1020 * General purpose timer experied -- we don't
1021 * use the general purpose timer.
1022 *
1023 * Early receive interrupt -- not available on
1024 * all chips, we just use RI. We also only
1025 * use single-segment receive DMA, so this
1026 * is mostly useless.
1027 */
1028 }
1029
1030 /* Try to get more packets going. */
1031 tlp_start(ifp);
1032
1033 return (handled);
1034 }
1035
1036 /*
1037 * tlp_rxintr:
1038 *
1039 * Helper; handle receive interrupts.
1040 */
1041 void
1042 tlp_rxintr(sc)
1043 struct tulip_softc *sc;
1044 {
1045 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1046 struct ether_header *eh;
1047 struct tulip_rxsoft *rxs;
1048 struct mbuf *m;
1049 u_int32_t rxstat;
1050 int i, len;
1051
1052 for (i = sc->sc_rxptr;; i = TULIP_NEXTRX(i)) {
1053 rxs = &sc->sc_rxsoft[i];
1054
1055 TULIP_CDRXSYNC(sc, i,
1056 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1057
1058 rxstat = sc->sc_rxdescs[i].td_status;
1059
1060 if (rxstat & TDSTAT_OWN) {
1061 /*
1062 * We have processed all of the receive buffers.
1063 */
1064 break;
1065 }
1066
1067 /*
1068 * Make sure the packet fit in one buffer. This should
1069 * always be the case. But the Lite-On PNIC, rev 33
1070 * has an awful receive engine bug, which may require
1071 * a very icky work-around.
1072 */
1073 if ((rxstat & (TDSTAT_Rx_FS|TDSTAT_Rx_LS)) !=
1074 (TDSTAT_Rx_FS|TDSTAT_Rx_LS)) {
1075 printf("%s: incoming packet spilled, resetting\n",
1076 sc->sc_dev.dv_xname);
1077 (void) tlp_init(sc);
1078 return;
1079 }
1080
1081 /*
1082 * If any collisions were seen on the wire, count one.
1083 */
1084 if (rxstat & TDSTAT_Rx_CS)
1085 ifp->if_collisions++;
1086
1087 /*
1088 * If an error occured, update stats, clear the status
1089 * word, and leave the packet buffer in place. It will
1090 * simply be reused the next time the ring comes around.
1091 */
1092 if (rxstat & TDSTAT_ES) {
1093 #define PRINTERR(bit, str) \
1094 if (rxstat & (bit)) \
1095 printf("%s: receive error: %s\n", \
1096 sc->sc_dev.dv_xname, str)
1097 ifp->if_ierrors++;
1098 PRINTERR(TDSTAT_Rx_DE, "descriptor error");
1099 PRINTERR(TDSTAT_Rx_RF, "runt frame");
1100 PRINTERR(TDSTAT_Rx_TL, "frame too long");
1101 PRINTERR(TDSTAT_Rx_RE, "MII error");
1102 PRINTERR(TDSTAT_Rx_DB, "dribbling bit");
1103 PRINTERR(TDSTAT_Rx_CE, "CRC error");
1104 #undef PRINTERR
1105 TULIP_INIT_RXDESC(sc, i);
1106 continue;
1107 }
1108
1109 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1110 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1111
1112 /*
1113 * No errors; receive the packet. Note the Tulip
1114 * includes the CRC with every packet; trim it.
1115 */
1116 len = TDSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1117
1118 #ifdef __NO_STRICT_ALIGNMENT
1119 /*
1120 * Allocate a new mbuf cluster. If that fails, we are
1121 * out of memory, and must drop the packet and recycle
1122 * the buffer that's already attached to this descriptor.
1123 */
1124 m = rxs->rxs_mbuf;
1125 if (tlp_add_rxbuf(sc, i) != 0) {
1126 ifp->if_ierrors++;
1127 TULIP_INIT_RXDESC(sc, i);
1128 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1129 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1130 continue;
1131 }
1132 #else
1133 /*
1134 * The Tulip's receive buffers must be 4-byte aligned.
1135 * But this means that the data after the Ethernet header
1136 * is misaligned. We must allocate a new buffer and
1137 * copy the data, shifted forward 2 bytes.
1138 */
1139 MGETHDR(m, M_DONTWAIT, MT_DATA);
1140 if (m == NULL) {
1141 dropit:
1142 ifp->if_ierrors++;
1143 TULIP_INIT_RXDESC(sc, i);
1144 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1145 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1146 continue;
1147 }
1148 if (len > (MHLEN - 2)) {
1149 MCLGET(m, M_DONTWAIT);
1150 if ((m->m_flags & M_EXT) == 0) {
1151 m_freem(m);
1152 goto dropit;
1153 }
1154 }
1155 m->m_data += 2;
1156
1157 /*
1158 * Note that we use clusters for incoming frames, so the
1159 * buffer is virtually contiguous.
1160 */
1161 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1162
1163 /* Allow the receive descriptor to continue using its mbuf. */
1164 TULIP_INIT_RXDESC(sc, i);
1165 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1166 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1167 #endif /* __NO_STRICT_ALIGNMENT */
1168
1169 ifp->if_ipackets++;
1170 eh = mtod(m, struct ether_header *);
1171 m->m_pkthdr.rcvif = ifp;
1172 m->m_pkthdr.len = m->m_len = len;
1173
1174 #if NBPFILTER > 0
1175 /*
1176 * Pass this up to any BPF listeners, but only
1177 * pass it up the stack if its for us.
1178 */
1179 if (ifp->if_bpf)
1180 bpf_mtap(ifp->if_bpf, m);
1181 #endif /* NPBFILTER > 0 */
1182
1183 /*
1184 * This test is outside the NBPFILTER block because
1185 * on the 21140 we have to use Hash-Only mode due to
1186 * a bug in the filter logic.
1187 */
1188 if ((ifp->if_flags & IFF_PROMISC) != 0 ||
1189 sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) {
1190 if (memcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
1191 ETHER_ADDR_LEN) != 0 &&
1192 ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
1193 m_freem(m);
1194 continue;
1195 }
1196 }
1197
1198 /* Pass it on. */
1199 (*ifp->if_input)(ifp, m);
1200 }
1201
1202 /* Update the recieve pointer. */
1203 sc->sc_rxptr = i;
1204 }
1205
1206 /*
1207 * tlp_txintr:
1208 *
1209 * Helper; handle transmit interrupts.
1210 */
1211 void
1212 tlp_txintr(sc)
1213 struct tulip_softc *sc;
1214 {
1215 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1216 struct tulip_txsoft *txs;
1217 u_int32_t txstat;
1218
1219 DPRINTF(sc, ("%s: tlp_txintr: sc_flags 0x%08x\n",
1220 sc->sc_dev.dv_xname, sc->sc_flags));
1221
1222 ifp->if_flags &= ~IFF_OACTIVE;
1223
1224 /*
1225 * If we were doing a filter setup, check to see if it completed.
1226 */
1227 if (sc->sc_flags & TULIPF_DOING_SETUP) {
1228 TULIP_CDSDSYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1229 if ((sc->sc_setup_desc.td_status & TDSTAT_OWN) == 0)
1230 sc->sc_flags &= ~TULIPF_DOING_SETUP;
1231 }
1232
1233 /*
1234 * Go through our Tx list and free mbufs for those
1235 * frames that have been transmitted.
1236 */
1237 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1238 TULIP_CDTXSYNC(sc, txs->txs_lastdesc,
1239 txs->txs_dmamap->dm_nsegs,
1240 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1241
1242 #ifdef TLP_DEBUG
1243 if (ifp->if_flags & IFF_DEBUG) {
1244 int i;
1245 printf(" txsoft %p trainsmit chain:\n", txs);
1246 for (i = txs->txs_firstdesc;; i = TULIP_NEXTTX(i)) {
1247 printf(" descriptor %d:\n", i);
1248 printf(" td_status: 0x%08x\n",
1249 sc->sc_txdescs[i].td_status);
1250 printf(" td_ctl: 0x%08x\n",
1251 sc->sc_txdescs[i].td_ctl);
1252 printf(" td_bufaddr1: 0x%08x\n",
1253 sc->sc_txdescs[i].td_bufaddr1);
1254 printf(" td_bufaddr2: 0x%08x\n",
1255 sc->sc_txdescs[i].td_bufaddr2);
1256 if (i == txs->txs_lastdesc)
1257 break;
1258 }
1259 }
1260 #endif
1261
1262 txstat = sc->sc_txdescs[txs->txs_lastdesc].td_status;
1263 if (txstat & TDSTAT_OWN)
1264 break;
1265
1266 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1267
1268 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1269
1270 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1271 0, txs->txs_dmamap->dm_mapsize,
1272 BUS_DMASYNC_POSTWRITE);
1273 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1274 m_freem(txs->txs_mbuf);
1275 txs->txs_mbuf = NULL;
1276
1277 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1278
1279 /*
1280 * Check for errors and collisions.
1281 */
1282 #ifdef TLP_STATS
1283 if (txstat & TDSTAT_Tx_UF)
1284 sc->sc_stats.ts_tx_uf++;
1285 if (txstat & TDSTAT_Tx_TO)
1286 sc->sc_stats.ts_tx_to++;
1287 if (txstat & TDSTAT_Tx_EC)
1288 sc->sc_stats.ts_tx_ec++;
1289 if (txstat & TDSTAT_Tx_LC)
1290 sc->sc_stats.ts_tx_lc++;
1291 #endif
1292
1293 if (txstat & (TDSTAT_Tx_UF|TDSTAT_Tx_TO))
1294 ifp->if_oerrors++;
1295
1296 if (txstat & TDSTAT_Tx_EC)
1297 ifp->if_collisions += 16;
1298 else
1299 ifp->if_collisions += TDSTAT_Tx_COLLISIONS(txstat);
1300 if (txstat & TDSTAT_Tx_LC)
1301 ifp->if_collisions++;
1302
1303 ifp->if_opackets++;
1304 }
1305
1306 /*
1307 * If there are no more pending transmissions, cancel the watchdog
1308 * timer.
1309 */
1310 if (txs == NULL && (sc->sc_flags & TULIPF_DOING_SETUP) == 0)
1311 ifp->if_timer = 0;
1312
1313 /*
1314 * If we have a receive filter setup pending, do it now.
1315 */
1316 if (sc->sc_flags & TULIPF_WANT_SETUP)
1317 (*sc->sc_filter_setup)(sc);
1318 }
1319
1320 #ifdef TLP_STATS
1321 void
1322 tlp_print_stats(sc)
1323 struct tulip_softc *sc;
1324 {
1325
1326 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1327 sc->sc_dev.dv_xname,
1328 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1329 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1330 }
1331 #endif
1332
1333 /*
1334 * tlp_reset:
1335 *
1336 * Perform a soft reset on the Tulip.
1337 */
1338 void
1339 tlp_reset(sc)
1340 struct tulip_softc *sc;
1341 {
1342 int i;
1343
1344 TULIP_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1345
1346 for (i = 0; i < 1000; i++) {
1347 /*
1348 * Wait at least 50 PCI cycles for the reset to
1349 * complete before peeking at the Tulip again.
1350 * 10 uSec is a bit longer than 50 PCI cycles
1351 * (at 33MHz), but it doesn't hurt have the extra
1352 * wait.
1353 */
1354 delay(10);
1355 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1356 break;
1357 }
1358
1359 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1360 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1361
1362 delay(1000);
1363
1364 /*
1365 * If the board has any GPIO reset sequences to issue, do them now.
1366 */
1367 if (sc->sc_reset != NULL)
1368 (*sc->sc_reset)(sc);
1369 }
1370
1371 /*
1372 * tlp_init:
1373 *
1374 * Initialize the interface. Must be called at splnet().
1375 */
1376 int
1377 tlp_init(sc)
1378 struct tulip_softc *sc;
1379 {
1380 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1381 struct tulip_txsoft *txs;
1382 struct tulip_rxsoft *rxs;
1383 int i, error = 0;
1384
1385 /*
1386 * Cancel any pending I/O.
1387 */
1388 tlp_stop(sc, 0);
1389
1390 /*
1391 * Initialize `opmode' to 0, and call the pre-init routine, if
1392 * any. This is required because the 2114x and some of the
1393 * clones require that the media-related bits in `opmode' be
1394 * set before performing a soft-reset in order to get internal
1395 * chip pathways are correct. Yay!
1396 */
1397 sc->sc_opmode = 0;
1398 if (sc->sc_preinit != NULL)
1399 (*sc->sc_preinit)(sc);
1400
1401 /*
1402 * Reset the Tulip to a known state.
1403 */
1404 tlp_reset(sc);
1405
1406 /*
1407 * Initialize the BUSMODE register.
1408 */
1409 sc->sc_busmode = BUSMODE_BAR;
1410 switch (sc->sc_chip) {
1411 case TULIP_CHIP_21140:
1412 case TULIP_CHIP_21140A:
1413 case TULIP_CHIP_21142:
1414 case TULIP_CHIP_21143:
1415 case TULIP_CHIP_82C115:
1416 case TULIP_CHIP_MX98725:
1417 /*
1418 * If we're allowed to do so, use Memory Read Line
1419 * and Memory Read Multiple.
1420 *
1421 * XXX Should we use Memory Write and Invalidate?
1422 */
1423 if (sc->sc_flags & TULIPF_MRL)
1424 sc->sc_busmode |= BUSMODE_RLE;
1425 if (sc->sc_flags & TULIPF_MRM)
1426 sc->sc_busmode |= BUSMODE_RME;
1427 #if 0
1428 if (sc->sc_flags & TULIPF_MWI)
1429 sc->sc_busmode |= BUSMODE_WLE;
1430 #endif
1431
1432 default:
1433 /* Nothing. */
1434 }
1435 switch (sc->sc_cacheline) {
1436 default:
1437 /*
1438 * Note: We must *always* set these bits; a cache
1439 * alignment of 0 is RESERVED.
1440 */
1441 case 8:
1442 sc->sc_busmode |= BUSMODE_CAL_8LW;
1443 break;
1444 case 16:
1445 sc->sc_busmode |= BUSMODE_CAL_16LW;
1446 break;
1447 case 32:
1448 sc->sc_busmode |= BUSMODE_CAL_32LW;
1449 break;
1450 }
1451 switch (sc->sc_chip) {
1452 case TULIP_CHIP_82C168:
1453 case TULIP_CHIP_82C169:
1454 sc->sc_busmode |= BUSMODE_PBL_16LW | BUSMODE_PNIC_MBO;
1455 break;
1456 default:
1457 sc->sc_busmode |= BUSMODE_PBL_DEFAULT;
1458 break;
1459 }
1460 #if BYTE_ORDER == BIG_ENDIAN
1461 /*
1462 * XXX There are reports that this doesn't work properly
1463 * in the old Tulip driver, but BUSMODE_DBO does. However,
1464 * BUSMODE_DBO is not available on the 21040, and requires
1465 * us to byte-swap the setup packet. What to do?
1466 */
1467 sc->sc_busmode |= BUSMODE_BLE;
1468 #endif
1469 TULIP_WRITE(sc, CSR_BUSMODE, sc->sc_busmode);
1470
1471 /*
1472 * Initialize the OPMODE register. We don't write it until
1473 * we're ready to begin the transmit and receive processes.
1474 *
1475 * Media-related OPMODE bits are set in the media callbacks
1476 * for each specific chip/board.
1477 */
1478 sc->sc_opmode |= OPMODE_SR | OPMODE_ST |
1479 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1480
1481 /*
1482 * Magical mystery initialization on the Macronix chips.
1483 * The MX98713 uses its own magic value, the rest share
1484 * a common one.
1485 */
1486 switch (sc->sc_chip) {
1487 case TULIP_CHIP_MX98713:
1488 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98713);
1489 break;
1490
1491 case TULIP_CHIP_MX98713A:
1492 case TULIP_CHIP_MX98715:
1493 case TULIP_CHIP_MX98715A:
1494 case TULIP_CHIP_MX98725:
1495 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98715);
1496 break;
1497
1498 default:
1499 /* Nothing. */
1500 }
1501
1502 /*
1503 * Initialize the transmit descriptor ring.
1504 */
1505 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1506 for (i = 0; i < TULIP_NTXDESC; i++) {
1507 sc->sc_txdescs[i].td_ctl = TDCTL_CH;
1508 sc->sc_txdescs[i].td_bufaddr2 =
1509 TULIP_CDTXADDR(sc, TULIP_NEXTTX(i));
1510 }
1511 TULIP_CDTXSYNC(sc, 0, TULIP_NTXDESC,
1512 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1513 sc->sc_txfree = TULIP_NTXDESC;
1514 sc->sc_txnext = 0;
1515
1516 /*
1517 * Initialize the transmit job descriptors.
1518 */
1519 SIMPLEQ_INIT(&sc->sc_txfreeq);
1520 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1521 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
1522 txs = &sc->sc_txsoft[i];
1523 txs->txs_mbuf = NULL;
1524 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1525 }
1526
1527 /*
1528 * Initialize the receive descriptor and receive job
1529 * descriptor rings.
1530 */
1531 for (i = 0; i < TULIP_NRXDESC; i++) {
1532 rxs = &sc->sc_rxsoft[i];
1533 if (rxs->rxs_mbuf == NULL) {
1534 if ((error = tlp_add_rxbuf(sc, i)) != 0) {
1535 printf("%s: unable to allocate or map rx "
1536 "buffer %d, error = %d\n",
1537 sc->sc_dev.dv_xname, i, error);
1538 /*
1539 * XXX Should attempt to run with fewer receive
1540 * XXX buffers instead of just failing.
1541 */
1542 tlp_rxdrain(sc);
1543 goto out;
1544 }
1545 }
1546 }
1547 sc->sc_rxptr = 0;
1548
1549 /*
1550 * Initialize the interrupt mask and enable interrupts.
1551 */
1552 /* normal interrupts */
1553 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1554
1555 /* abnormal interrupts */
1556 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1557 STATUS_RU | STATUS_RPS | STATUS_RWT | STATUS_SE | STATUS_AIS;
1558
1559 sc->sc_rxint_mask = STATUS_RI|STATUS_RU|STATUS_RWT;
1560 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1561
1562 switch (sc->sc_chip) {
1563 case TULIP_CHIP_WB89C840F:
1564 /*
1565 * Clear bits that we don't want that happen to
1566 * overlap or don't exist.
1567 */
1568 sc->sc_inten &= ~(STATUS_WINB_REI|STATUS_RWT);
1569 break;
1570
1571 default:
1572 /* Nothing. */
1573 }
1574
1575 sc->sc_rxint_mask &= sc->sc_inten;
1576 sc->sc_txint_mask &= sc->sc_inten;
1577
1578 TULIP_WRITE(sc, CSR_INTEN, sc->sc_inten);
1579 TULIP_WRITE(sc, CSR_STATUS, 0xffffffff);
1580
1581 /*
1582 * Give the transmit and receive rings to the Tulip.
1583 */
1584 TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDTXADDR(sc, sc->sc_txnext));
1585 TULIP_WRITE(sc, CSR_RXLIST, TULIP_CDRXADDR(sc, sc->sc_rxptr));
1586
1587 /*
1588 * On chips that do this differently, set the station address.
1589 */
1590 switch (sc->sc_chip) {
1591 case TULIP_CHIP_WB89C840F:
1592 {
1593 /* XXX Do this with stream writes? */
1594 bus_addr_t cpa = TULIP_CSR_OFFSET(sc, CSR_WINB_CPA0);
1595
1596 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1597 bus_space_write_1(sc->sc_st, sc->sc_sh,
1598 cpa + i, LLADDR(ifp->if_sadl)[i]);
1599 }
1600 break;
1601 }
1602
1603 case TULIP_CHIP_AL981:
1604 {
1605 u_int32_t reg;
1606 u_int8_t *enaddr = LLADDR(ifp->if_sadl);
1607
1608 reg = enaddr[0] |
1609 (enaddr[1] << 8) |
1610 (enaddr[2] << 16) |
1611 (enaddr[3] << 24);
1612 bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_PAR0, reg);
1613
1614 reg = enaddr[4] |
1615 (enaddr[5] << 8);
1616 bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_PAR1, reg);
1617 }
1618
1619 default:
1620 /* Nothing. */
1621 }
1622
1623 /*
1624 * Set the receive filter. This will start the transmit and
1625 * receive processes.
1626 */
1627 (*sc->sc_filter_setup)(sc);
1628
1629 /*
1630 * Set the current media.
1631 */
1632 (void) (*sc->sc_mediasw->tmsw_set)(sc);
1633
1634 /*
1635 * Start the receive process.
1636 */
1637 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1638
1639 if (sc->sc_tick != NULL) {
1640 /* Start the one second clock. */
1641 timeout(sc->sc_tick, sc, hz);
1642 }
1643
1644 /*
1645 * Note that the interface is now running.
1646 */
1647 ifp->if_flags |= IFF_RUNNING;
1648 ifp->if_flags &= ~IFF_OACTIVE;
1649
1650 out:
1651 if (error)
1652 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1653 return (error);
1654 }
1655
1656 /*
1657 * tlp_rxdrain:
1658 *
1659 * Drain the receive queue.
1660 */
1661 void
1662 tlp_rxdrain(sc)
1663 struct tulip_softc *sc;
1664 {
1665 struct tulip_rxsoft *rxs;
1666 int i;
1667
1668 for (i = 0; i < TULIP_NRXDESC; i++) {
1669 rxs = &sc->sc_rxsoft[i];
1670 if (rxs->rxs_mbuf != NULL) {
1671 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1672 m_freem(rxs->rxs_mbuf);
1673 rxs->rxs_mbuf = NULL;
1674 }
1675 }
1676 }
1677
1678 /*
1679 * tlp_stop:
1680 *
1681 * Stop transmission on the interface.
1682 */
1683 void
1684 tlp_stop(sc, drain)
1685 struct tulip_softc *sc;
1686 int drain;
1687 {
1688 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1689 struct tulip_txsoft *txs;
1690
1691 if (sc->sc_tick != NULL) {
1692 /* Stop the one second clock. */
1693 untimeout(sc->sc_tick, sc);
1694 }
1695
1696 if (sc->sc_flags & TULIPF_HAS_MII) {
1697 /* Down the MII. */
1698 mii_down(&sc->sc_mii);
1699 }
1700
1701 /* Disable interrupts. */
1702 TULIP_WRITE(sc, CSR_INTEN, 0);
1703
1704 /* Stop the transmit and receive processes. */
1705 TULIP_WRITE(sc, CSR_OPMODE, 0);
1706 TULIP_WRITE(sc, CSR_RXLIST, 0);
1707 TULIP_WRITE(sc, CSR_TXLIST, 0);
1708
1709 /*
1710 * Release any queued transmit buffers.
1711 */
1712 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1713 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1714 if (txs->txs_mbuf != NULL) {
1715 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1716 m_freem(txs->txs_mbuf);
1717 txs->txs_mbuf = NULL;
1718 }
1719 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1720 }
1721
1722 if (drain) {
1723 /*
1724 * Release the receive buffers.
1725 */
1726 tlp_rxdrain(sc);
1727 }
1728
1729 sc->sc_flags &= ~(TULIPF_WANT_SETUP|TULIPF_DOING_SETUP);
1730
1731 /*
1732 * Mark the interface down and cancel the watchdog timer.
1733 */
1734 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1735 ifp->if_timer = 0;
1736 }
1737
1738 #define SROM_EMIT(sc, x) \
1739 do { \
1740 TULIP_WRITE((sc), CSR_MIIROM, (x)); \
1741 delay(1); \
1742 } while (0)
1743
1744 /*
1745 * tlp_srom_idle:
1746 *
1747 * Put the SROM in idle state.
1748 */
1749 void
1750 tlp_srom_idle(sc)
1751 struct tulip_softc *sc;
1752 {
1753 u_int32_t miirom;
1754 int i;
1755
1756 miirom = MIIROM_SR;
1757 SROM_EMIT(sc, miirom);
1758
1759 miirom |= MIIROM_RD;
1760 SROM_EMIT(sc, miirom);
1761
1762 miirom |= MIIROM_SROMCS;
1763 SROM_EMIT(sc, miirom);
1764
1765 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1766
1767 /* Strobe the clock 25 times. */
1768 for (i = 0; i < 25; i++) {
1769 SROM_EMIT(sc, miirom);
1770 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1771 }
1772
1773 SROM_EMIT(sc, miirom);
1774
1775 miirom &= ~MIIROM_SROMCS;
1776 SROM_EMIT(sc, miirom);
1777
1778 SROM_EMIT(sc, 0);
1779 }
1780
1781 /*
1782 * tlp_read_srom:
1783 *
1784 * Read the Tulip SROM.
1785 */
1786 void
1787 tlp_read_srom(sc, word, wordcnt, data)
1788 struct tulip_softc *sc;
1789 int word, wordcnt;
1790 u_int8_t *data;
1791 {
1792 u_int32_t miirom;
1793 u_int16_t datain;
1794 int i, x;
1795
1796 tlp_srom_idle(sc);
1797
1798 /* Select the SROM. */
1799 miirom = MIIROM_SR;
1800 SROM_EMIT(sc, miirom);
1801
1802 miirom |= MIIROM_RD;
1803 SROM_EMIT(sc, miirom);
1804
1805 for (i = 0; i < wordcnt; i++) {
1806 /* Send CHIP SELECT for one clock tick. */
1807 miirom |= MIIROM_SROMCS;
1808 SROM_EMIT(sc, miirom);
1809
1810 /* Shift in the READ opcode. */
1811 for (x = 3; x > 0; x--) {
1812 if (TULIP_SROM_OPC_READ & (1 << (x - 1)))
1813 miirom |= MIIROM_SROMDI;
1814 else
1815 miirom &= ~MIIROM_SROMDI;
1816 SROM_EMIT(sc, miirom);
1817 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1818 SROM_EMIT(sc, miirom);
1819 }
1820
1821 /* Shift in address. */
1822 for (x = sc->sc_srom_addrbits; x > 0; x--) {
1823 if ((word + i) & (1 << (x - 1)))
1824 miirom |= MIIROM_SROMDI;
1825 else
1826 miirom &= ~MIIROM_SROMDI;
1827 SROM_EMIT(sc, miirom);
1828 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1829 SROM_EMIT(sc, miirom);
1830 }
1831
1832 /* Shift out data. */
1833 miirom &= ~MIIROM_SROMDI;
1834 datain = 0;
1835 for (x = 16; x > 0; x--) {
1836 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
1837 if (TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO))
1838 datain |= (1 << (x - 1));
1839 SROM_EMIT(sc, miirom);
1840 }
1841 data[2 * i] = datain & 0xff;
1842 data[(2 * i) + 1] = datain >> 8;
1843
1844 /* Clear CHIP SELECT. */
1845 miirom &= ~MIIROM_SROMCS;
1846 SROM_EMIT(sc, miirom);
1847 }
1848
1849 /* Deselect the SROM. */
1850 SROM_EMIT(sc, 0);
1851
1852 /* ...and idle it. */
1853 tlp_srom_idle(sc);
1854 }
1855
1856 #undef SROM_EMIT
1857
1858 /*
1859 * tlp_add_rxbuf:
1860 *
1861 * Add a receive buffer to the indicated descriptor.
1862 */
1863 int
1864 tlp_add_rxbuf(sc, idx)
1865 struct tulip_softc *sc;
1866 int idx;
1867 {
1868 struct tulip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1869 struct mbuf *m;
1870 int error;
1871
1872 MGETHDR(m, M_DONTWAIT, MT_DATA);
1873 if (m == NULL)
1874 return (ENOBUFS);
1875
1876 MCLGET(m, M_DONTWAIT);
1877 if ((m->m_flags & M_EXT) == 0) {
1878 m_freem(m);
1879 return (ENOBUFS);
1880 }
1881
1882 if (rxs->rxs_mbuf != NULL)
1883 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1884
1885 rxs->rxs_mbuf = m;
1886
1887 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1888 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1889 if (error) {
1890 printf("%s: can't load rx DMA map %d, error = %d\n",
1891 sc->sc_dev.dv_xname, idx, error);
1892 panic("tlp_add_rxbuf"); /* XXX */
1893 }
1894
1895 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1896 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1897
1898 TULIP_INIT_RXDESC(sc, idx);
1899
1900 return (0);
1901 }
1902
1903 /*
1904 * tlp_crc32:
1905 *
1906 * Compute the 32-bit CRC of the provided buffer.
1907 */
1908 u_int32_t
1909 tlp_crc32(buf, len)
1910 const u_int8_t *buf;
1911 size_t len;
1912 {
1913 static const u_int32_t crctab[] = {
1914 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1915 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1916 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1917 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1918 };
1919 u_int32_t crc;
1920 int i;
1921
1922 crc = 0xffffffff;
1923 for (i = 0; i < len; i++) {
1924 crc ^= buf[i];
1925 crc = (crc >> 4) ^ crctab[crc & 0xf];
1926 crc = (crc >> 4) ^ crctab[crc & 0xf];
1927 }
1928 return (crc);
1929 }
1930
1931 /*
1932 * tlp_srom_crcok:
1933 *
1934 * Check the CRC of the Tulip SROM.
1935 */
1936 int
1937 tlp_srom_crcok(romdata)
1938 const u_int8_t *romdata;
1939 {
1940 u_int32_t crc;
1941
1942 crc = tlp_crc32(romdata, TULIP_ROM_CRC32_CHECKSUM);
1943 crc = (crc & 0xffff) ^ 0xffff;
1944 if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM))
1945 return (1);
1946 return (0);
1947 }
1948
1949 /*
1950 * tlp_isv_srom:
1951 *
1952 * Check to see if the SROM is in the new standardized format.
1953 */
1954 int
1955 tlp_isv_srom(romdata)
1956 const u_int8_t *romdata;
1957 {
1958 int i;
1959 u_int16_t cksum;
1960
1961 if (tlp_srom_crcok(romdata)) {
1962 /*
1963 * SROM CRC checks out; must be in the new format.
1964 */
1965 return (1);
1966 }
1967
1968 cksum = TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM);
1969 if (cksum == 0xffff || cksum == 0) {
1970 /*
1971 * No checksum present. Check the SROM ID; 18 bytes of 0
1972 * followed by 1 (version) followed by the number of
1973 * adapters which use this SROM (should be non-zero).
1974 */
1975 for (i = 0; i < TULIP_ROM_SROM_FORMAT_VERION; i++) {
1976 if (romdata[i] != 0)
1977 return (0);
1978 }
1979 if (romdata[TULIP_ROM_SROM_FORMAT_VERION] != 1)
1980 return (0);
1981 if (romdata[TULIP_ROM_CHIP_COUNT] == 0)
1982 return (0);
1983 return (1);
1984 }
1985
1986 return (0);
1987 }
1988
1989 /*
1990 * tlp_isv_srom_enaddr:
1991 *
1992 * Get the Ethernet address from an ISV SROM.
1993 */
1994 int
1995 tlp_isv_srom_enaddr(sc, enaddr)
1996 struct tulip_softc *sc;
1997 u_int8_t *enaddr;
1998 {
1999 int i, devcnt;
2000
2001 if (tlp_isv_srom(sc->sc_srom) == 0)
2002 return (0);
2003
2004 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT];
2005 for (i = 0; i < devcnt; i++) {
2006 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1)
2007 break;
2008 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] ==
2009 sc->sc_devno)
2010 break;
2011 }
2012
2013 if (i == devcnt)
2014 return (0);
2015
2016 memcpy(enaddr, &sc->sc_srom[TULIP_ROM_IEEE_NETWORK_ADDRESS],
2017 ETHER_ADDR_LEN);
2018 enaddr[5] += i;
2019
2020 return (1);
2021 }
2022
2023 /*
2024 * tlp_parse_old_srom:
2025 *
2026 * Parse old-format SROMs.
2027 *
2028 * This routine is largely lifted from Matt Thomas's `de' driver.
2029 */
2030 int
2031 tlp_parse_old_srom(sc, enaddr)
2032 struct tulip_softc *sc;
2033 u_int8_t *enaddr;
2034 {
2035 static const u_int8_t testpat[] =
2036 { 0xff, 0, 0x55, 0xaa, 0xff, 0, 0x55, 0xaa };
2037 int i;
2038 u_int32_t cksum;
2039
2040 if (memcmp(&sc->sc_srom[0], &sc->sc_srom[16], 8) != 0) {
2041 /*
2042 * Some vendors (e.g. ZNYX) don't use the standard
2043 * DEC Address ROM format, but rather just have an
2044 * Ethernet address in the first 6 bytes, maybe a
2045 * 2 byte checksum, and then all 0xff's.
2046 */
2047 for (i = 8; i < 32; i++) {
2048 if (sc->sc_srom[i] != 0xff)
2049 return (0);
2050 }
2051
2052 /*
2053 * Sanity check the Ethernet address:
2054 *
2055 * - Make sure it's not multicast or locally
2056 * assigned
2057 * - Make sure it has a non-0 OUI
2058 */
2059 if (sc->sc_srom[0] & 3)
2060 return (0);
2061 if (sc->sc_srom[0] == 0 && sc->sc_srom[1] == 0 &&
2062 sc->sc_srom[2] == 0)
2063 return (0);
2064
2065 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN);
2066 return (1);
2067 }
2068
2069 /*
2070 * Standard DEC Address ROM test.
2071 */
2072
2073 if (memcmp(&sc->sc_srom[24], testpat, 8) != 0)
2074 return (0);
2075
2076 for (i = 0; i < 8; i++) {
2077 if (sc->sc_srom[i] != sc->sc_srom[15 - i])
2078 return (0);
2079 }
2080
2081 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN);
2082
2083 cksum = *(u_int16_t *) &enaddr[0];
2084
2085 cksum <<= 1;
2086 if (cksum > 0xffff)
2087 cksum -= 0xffff;
2088
2089 cksum += *(u_int16_t *) &enaddr[2];
2090 if (cksum > 0xffff)
2091 cksum -= 0xffff;
2092
2093 cksum <<= 1;
2094 if (cksum > 0xffff)
2095 cksum -= 0xffff;
2096
2097 cksum += *(u_int16_t *) &enaddr[4];
2098 if (cksum >= 0xffff)
2099 cksum -= 0xffff;
2100
2101 if (cksum != *(u_int16_t *) &sc->sc_srom[6])
2102 return (0);
2103
2104 return (1);
2105 }
2106
2107 /*
2108 * tlp_filter_setup:
2109 *
2110 * Set the Tulip's receive filter.
2111 */
2112 void
2113 tlp_filter_setup(sc)
2114 struct tulip_softc *sc;
2115 {
2116 struct ethercom *ec = &sc->sc_ethercom;
2117 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2118 struct ether_multi *enm;
2119 struct ether_multistep step;
2120 __volatile u_int32_t *sp;
2121 u_int8_t enaddr[ETHER_ADDR_LEN];
2122 u_int32_t hash, hashsize;
2123 int cnt;
2124
2125 DPRINTF(sc, ("%s: tlp_filter_setup: sc_flags 0x%08x\n",
2126 sc->sc_dev.dv_xname, sc->sc_flags));
2127
2128 memcpy(enaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
2129
2130 /*
2131 * If there are transmissions pending, wait until they have
2132 * completed.
2133 */
2134 if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) != NULL ||
2135 (sc->sc_flags & TULIPF_DOING_SETUP) != 0) {
2136 sc->sc_flags |= TULIPF_WANT_SETUP;
2137 DPRINTF(sc, ("%s: tlp_filter_setup: deferring\n",
2138 sc->sc_dev.dv_xname));
2139 return;
2140 }
2141 sc->sc_flags &= ~TULIPF_WANT_SETUP;
2142
2143 switch (sc->sc_chip) {
2144 case TULIP_CHIP_82C115:
2145 hashsize = TULIP_PNICII_HASHSIZE;
2146 break;
2147
2148 default:
2149 hashsize = TULIP_MCHASHSIZE;
2150 }
2151
2152 /*
2153 * If we're running, idle the transmit and receive engines. If
2154 * we're NOT running, we're being called from tlp_init(), and our
2155 * writing OPMODE will start the transmit and receive processes
2156 * in motion.
2157 */
2158 if (ifp->if_flags & IFF_RUNNING) {
2159 /*
2160 * Actually, some chips seem to need a really hard
2161 * kick in the head for this to work. The genuine
2162 * DEC chips can just be idled, but some of the
2163 * clones seem to REALLY want a reset here. Doing
2164 * the reset will end up here again, but with
2165 * IFF_RUNNING cleared.
2166 */
2167 switch (sc->sc_chip) {
2168 case TULIP_CHIP_82C168:
2169 case TULIP_CHIP_82C169:
2170 tlp_init(sc);
2171 return;
2172
2173 default:
2174 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2175 }
2176 }
2177
2178 sc->sc_opmode &= ~(OPMODE_PR|OPMODE_PM);
2179
2180 if (ifp->if_flags & IFF_PROMISC) {
2181 sc->sc_opmode |= OPMODE_PR;
2182 goto allmulti;
2183 }
2184
2185 /*
2186 * Try Perfect filtering first.
2187 */
2188
2189 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT;
2190 sp = TULIP_CDSP(sc);
2191 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2192 cnt = 0;
2193 ETHER_FIRST_MULTI(step, ec, enm);
2194 while (enm != NULL) {
2195 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2196 /*
2197 * We must listen to a range of multicast addresses.
2198 * For now, just accept all multicasts, rather than
2199 * trying to set only those filter bits needed to match
2200 * the range. (At this time, the only use of address
2201 * ranges is for IP multicast routing, for which the
2202 * range is big enough to require all bits set.)
2203 */
2204 goto allmulti;
2205 }
2206 if (cnt == (TULIP_MAXADDRS - 2)) {
2207 /*
2208 * We already have our multicast limit (still need
2209 * our station address and broadcast). Go to
2210 * Hash-Perfect mode.
2211 */
2212 goto hashperfect;
2213 }
2214 *sp++ = ((u_int16_t *) enm->enm_addrlo)[0];
2215 *sp++ = ((u_int16_t *) enm->enm_addrlo)[1];
2216 *sp++ = ((u_int16_t *) enm->enm_addrlo)[2];
2217 ETHER_NEXT_MULTI(step, enm);
2218 }
2219
2220 if (ifp->if_flags & IFF_BROADCAST) {
2221 /* ...and the broadcast address. */
2222 cnt++;
2223 *sp++ = 0xffff;
2224 *sp++ = 0xffff;
2225 *sp++ = 0xffff;
2226 }
2227
2228 /* Pad the rest with our station address. */
2229 for (; cnt < TULIP_MAXADDRS; cnt++) {
2230 *sp++ = ((u_int16_t *) enaddr)[0];
2231 *sp++ = ((u_int16_t *) enaddr)[1];
2232 *sp++ = ((u_int16_t *) enaddr)[2];
2233 }
2234 ifp->if_flags &= ~IFF_ALLMULTI;
2235 goto setit;
2236
2237 hashperfect:
2238 /*
2239 * Try Hash-Perfect mode.
2240 */
2241
2242 /*
2243 * Some 21140 chips have broken Hash-Perfect modes. On these
2244 * chips, we simply use Hash-Only mode, and put our station
2245 * address into the filter.
2246 */
2247 if (sc->sc_chip == TULIP_CHIP_21140)
2248 sc->sc_filtmode = TDCTL_Tx_FT_HASHONLY;
2249 else
2250 sc->sc_filtmode = TDCTL_Tx_FT_HASH;
2251 sp = TULIP_CDSP(sc);
2252 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2253 ETHER_FIRST_MULTI(step, ec, enm);
2254 while (enm != NULL) {
2255 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2256 /*
2257 * We must listen to a range of multicast addresses.
2258 * For now, just accept all multicasts, rather than
2259 * trying to set only those filter bits needed to match
2260 * the range. (At this time, the only use of address
2261 * ranges is for IP multicast routing, for which the
2262 * range is big enough to require all bits set.)
2263 */
2264 goto allmulti;
2265 }
2266 hash = tlp_mchash(enm->enm_addrlo, hashsize);
2267 sp[hash >> 4] |= 1 << (hash & 0xf);
2268 ETHER_NEXT_MULTI(step, enm);
2269 }
2270
2271 if (ifp->if_flags & IFF_BROADCAST) {
2272 /* ...and the broadcast address. */
2273 hash = tlp_mchash(etherbroadcastaddr, hashsize);
2274 sp[hash >> 4] |= 1 << (hash & 0xf);
2275 }
2276
2277 if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) {
2278 /* ...and our station address. */
2279 hash = tlp_mchash(enaddr, hashsize);
2280 sp[hash >> 4] |= 1 << (hash & 0xf);
2281 } else {
2282 /*
2283 * Hash-Perfect mode; put our station address after
2284 * the hash table.
2285 */
2286 sp[39] = ((u_int16_t *) enaddr)[0];
2287 sp[40] = ((u_int16_t *) enaddr)[1];
2288 sp[41] = ((u_int16_t *) enaddr)[2];
2289 }
2290 ifp->if_flags &= ~IFF_ALLMULTI;
2291 goto setit;
2292
2293 allmulti:
2294 /*
2295 * Use Perfect filter mode. First address is the broadcast address,
2296 * and pad the rest with our station address. We'll set Pass-all-
2297 * multicast in OPMODE below.
2298 */
2299 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT;
2300 sp = TULIP_CDSP(sc);
2301 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2302 cnt = 0;
2303 if (ifp->if_flags & IFF_BROADCAST) {
2304 cnt++;
2305 *sp++ = 0xffff;
2306 *sp++ = 0xffff;
2307 *sp++ = 0xffff;
2308 }
2309 for (; cnt < TULIP_MAXADDRS; cnt++) {
2310 *sp++ = ((u_int16_t *) enaddr)[0];
2311 *sp++ = ((u_int16_t *) enaddr)[1];
2312 *sp++ = ((u_int16_t *) enaddr)[2];
2313 }
2314 ifp->if_flags |= IFF_ALLMULTI;
2315
2316 setit:
2317 if (ifp->if_flags & IFF_ALLMULTI)
2318 sc->sc_opmode |= OPMODE_PM;
2319
2320 /* Sync the setup packet buffer. */
2321 TULIP_CDSPSYNC(sc, BUS_DMASYNC_PREWRITE);
2322
2323 /*
2324 * Fill in the setup packet descriptor.
2325 */
2326 sc->sc_setup_desc.td_bufaddr1 = TULIP_CDSPADDR(sc);
2327 sc->sc_setup_desc.td_bufaddr2 = TULIP_CDTXADDR(sc, sc->sc_txnext);
2328 sc->sc_setup_desc.td_ctl =
2329 (TULIP_SETUP_PACKET_LEN << TDCTL_SIZE1_SHIFT) |
2330 sc->sc_filtmode | TDCTL_Tx_SET | TDCTL_Tx_FS | TDCTL_Tx_LS |
2331 TDCTL_Tx_IC | TDCTL_CH;
2332 sc->sc_setup_desc.td_status = TDSTAT_OWN;
2333 TULIP_CDSDSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2334
2335 /*
2336 * Write the address of the setup descriptor. This also has
2337 * the side effect of giving the transmit ring to the chip,
2338 * since the setup descriptor points to the next available
2339 * descriptor in the ring.
2340 */
2341 TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDSDADDR(sc));
2342
2343 /*
2344 * Set the OPMODE register. This will also resume the
2345 * transmit transmit process we idled above.
2346 */
2347 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2348
2349 sc->sc_flags |= TULIPF_DOING_SETUP;
2350
2351 /*
2352 * Kick the transmitter; this will cause the Tulip to
2353 * read the setup descriptor.
2354 */
2355 /* XXX USE AUTOPOLLING? */
2356 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
2357
2358 /* Set up a watchdog timer in case the chip flakes out. */
2359 ifp->if_timer = 5;
2360
2361 DPRINTF(sc, ("%s: tlp_filter_setup: returning\n", sc->sc_dev.dv_xname));
2362 }
2363
2364 /*
2365 * tlp_winb_filter_setup:
2366 *
2367 * Set the Winbond 89C840F's receive filter.
2368 */
2369 void
2370 tlp_winb_filter_setup(sc)
2371 struct tulip_softc *sc;
2372 {
2373 struct ethercom *ec = &sc->sc_ethercom;
2374 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2375 struct ether_multi *enm;
2376 struct ether_multistep step;
2377 u_int32_t hash, mchash[2];
2378
2379 DPRINTF(sc, ("%s: tlp_winb_filter_setup: sc_flags 0x%08x\n",
2380 sc->sc_dev.dv_xname, sc->sc_flags));
2381
2382 sc->sc_opmode &= ~(OPMODE_WINB_APP|OPMODE_WINB_AMP|OPMODE_WINB_ABP);
2383
2384 if (ifp->if_flags & IFF_MULTICAST)
2385 sc->sc_opmode |= OPMODE_WINB_AMP;
2386
2387 if (ifp->if_flags & IFF_BROADCAST)
2388 sc->sc_opmode |= OPMODE_WINB_ABP;
2389
2390 if (ifp->if_flags & IFF_PROMISC) {
2391 sc->sc_opmode |= OPMODE_WINB_APP;
2392 goto allmulti;
2393 }
2394
2395 mchash[0] = mchash[1] = 0;
2396
2397 ETHER_FIRST_MULTI(step, ec, enm);
2398 while (enm != NULL) {
2399 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2400 /*
2401 * We must listen to a range of multicast addresses.
2402 * For now, just accept all multicasts, rather than
2403 * trying to set only those filter bits needed to match
2404 * the range. (At this time, the only use of address
2405 * ranges is for IP multicast routing, for which the
2406 * range is big enough to require all bits set.)
2407 */
2408 goto allmulti;
2409 }
2410
2411 /*
2412 * According to the FreeBSD `wb' driver, yes, you
2413 * really do invert the hash.
2414 */
2415 hash = (~(tlp_crc32(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26))
2416 & 0x3f;
2417 mchash[hash >> 5] |= 1 << (hash & 0x1f);
2418 ETHER_NEXT_MULTI(step, enm);
2419 }
2420 ifp->if_flags &= ~IFF_ALLMULTI;
2421 goto setit;
2422
2423 allmulti:
2424 ifp->if_flags |= IFF_ALLMULTI;
2425 mchash[0] = mchash[1] = 0xffffffff;
2426
2427 setit:
2428 TULIP_WRITE(sc, CSR_WINB_CMA0, mchash[0]);
2429 TULIP_WRITE(sc, CSR_WINB_CMA1, mchash[1]);
2430 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2431 DPRINTF(sc, ("%s: tlp_winb_filter_setup: returning\n",
2432 sc->sc_dev.dv_xname));
2433 }
2434
2435 /*
2436 * tlp_al981_filter_setup:
2437 *
2438 * Set the ADMtek AL981's receive filter.
2439 */
2440 void
2441 tlp_al981_filter_setup(sc)
2442 struct tulip_softc *sc;
2443 {
2444 struct ethercom *ec = &sc->sc_ethercom;
2445 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2446 struct ether_multi *enm;
2447 struct ether_multistep step;
2448 u_int32_t hash, mchash[2];
2449
2450 DPRINTF(sc, ("%s: tlp_al981_filter_setup: sc_flags 0x%08x\n",
2451 sc->sc_dev.dv_xname, sc->sc_flags));
2452
2453 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2454
2455 sc->sc_opmode &= ~(OPMODE_PR|OPMODE_PM);
2456
2457 if (ifp->if_flags & IFF_PROMISC) {
2458 sc->sc_opmode |= OPMODE_PR;
2459 goto allmulti;
2460 }
2461
2462 mchash[0] = mchash[1] = 0;
2463
2464 ETHER_FIRST_MULTI(step, ec, enm);
2465 while (enm != NULL) {
2466 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2467 /*
2468 * We must listen to a range of multicast addresses.
2469 * For now, just accept all multicasts, rather than
2470 * trying to set only those filter bits needed to match
2471 * the range. (At this time, the only use of address
2472 * ranges is for IP multicast routing, for which the
2473 * range is big enough to require all bits set.)
2474 */
2475 goto allmulti;
2476 }
2477
2478 hash = (tlp_crc32(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26)
2479 & 0x3f;
2480 mchash[hash >> 5] |= 1 << (hash & 0x1f);
2481 ETHER_NEXT_MULTI(step, enm);
2482 }
2483 ifp->if_flags &= ~IFF_ALLMULTI;
2484 goto setit;
2485
2486 allmulti:
2487 ifp->if_flags |= IFF_ALLMULTI;
2488 mchash[0] = mchash[1] = 0xffffffff;
2489
2490 setit:
2491 TULIP_WRITE(sc, CSR_ADM_MAR0, mchash[0]);
2492 TULIP_WRITE(sc, CSR_ADM_MAR1, mchash[1]);
2493 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2494 DPRINTF(sc, ("%s: tlp_al981_filter_setup: returning\n",
2495 sc->sc_dev.dv_xname));
2496 }
2497
2498 /*
2499 * tlp_idle:
2500 *
2501 * Cause the transmit and/or receive processes to go idle.
2502 */
2503 void
2504 tlp_idle(sc, bits)
2505 struct tulip_softc *sc;
2506 u_int32_t bits;
2507 {
2508 static const char *tx_state_names[] = {
2509 "STOPPED",
2510 "RUNNING - FETCH",
2511 "RUNNING - WAIT",
2512 "RUNNING - READING",
2513 "-- RESERVED --",
2514 "RUNNING - SETUP",
2515 "SUSPENDED",
2516 "RUNNING - CLOSE",
2517 };
2518 static const char *rx_state_names[] = {
2519 "STOPPED",
2520 "RUNNING - FETCH",
2521 "RUNNING - CHECK",
2522 "RUNNING - WAIT",
2523 "SUSPENDED",
2524 "RUNNING - CLOSE",
2525 "RUNNING - FLUSH",
2526 "RUNNING - QUEUE",
2527 };
2528 u_int32_t csr, ackmask = 0;
2529 int i;
2530
2531 if (bits & OPMODE_ST)
2532 ackmask |= STATUS_TPS;
2533
2534 if (bits & OPMODE_SR)
2535 ackmask |= STATUS_RPS;
2536
2537 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode & ~bits);
2538
2539 for (i = 0; i < 1000; i++) {
2540 if (TULIP_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
2541 break;
2542 delay(10);
2543 }
2544
2545 csr = TULIP_READ(sc, CSR_STATUS);
2546 if ((csr & ackmask) != ackmask) {
2547 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
2548 (csr & STATUS_TS) != STATUS_TS_STOPPED)
2549 printf("%s: transmit process failed to idle: "
2550 "state %s\n", sc->sc_dev.dv_xname,
2551 tx_state_names[(csr & STATUS_TS) >> 20]);
2552 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
2553 (csr & STATUS_RS) != STATUS_RS_STOPPED)
2554 printf("%s: receive process failed to idle: "
2555 "state %s\n", sc->sc_dev.dv_xname,
2556 rx_state_names[(csr & STATUS_RS) >> 17]);
2557 }
2558 TULIP_WRITE(sc, CSR_STATUS, ackmask);
2559 }
2560
2561 /*****************************************************************************
2562 * Generic media support functions.
2563 *****************************************************************************/
2564
2565 /*
2566 * tlp_mediastatus: [ifmedia interface function]
2567 *
2568 * Query the current media.
2569 */
2570 void
2571 tlp_mediastatus(ifp, ifmr)
2572 struct ifnet *ifp;
2573 struct ifmediareq *ifmr;
2574 {
2575 struct tulip_softc *sc = ifp->if_softc;
2576
2577 (*sc->sc_mediasw->tmsw_get)(sc, ifmr);
2578 }
2579
2580 /*
2581 * tlp_mediachange: [ifmedia interface function]
2582 *
2583 * Update the current media.
2584 */
2585 int
2586 tlp_mediachange(ifp)
2587 struct ifnet *ifp;
2588 {
2589 struct tulip_softc *sc = ifp->if_softc;
2590
2591 return ((*sc->sc_mediasw->tmsw_set)(sc));
2592 }
2593
2594 /*****************************************************************************
2595 * Support functions for MII-attached media.
2596 *****************************************************************************/
2597
2598 /*
2599 * tlp_mii_tick:
2600 *
2601 * One second timer, used to tick the MII.
2602 */
2603 void
2604 tlp_mii_tick(arg)
2605 void *arg;
2606 {
2607 struct tulip_softc *sc = arg;
2608 int s;
2609
2610 s = splnet();
2611 mii_tick(&sc->sc_mii);
2612 splx(s);
2613
2614 timeout(sc->sc_tick, sc, hz);
2615 }
2616
2617 /*
2618 * tlp_mii_statchg: [mii interface function]
2619 *
2620 * Callback from PHY when media changes.
2621 */
2622 void
2623 tlp_mii_statchg(self)
2624 struct device *self;
2625 {
2626 struct tulip_softc *sc = (struct tulip_softc *)self;
2627
2628 /* Idle the transmit and receive processes. */
2629 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2630
2631 sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD|OPMODE_HBD);
2632
2633 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T)
2634 sc->sc_opmode |= OPMODE_TTM;
2635 else
2636 sc->sc_opmode |= OPMODE_HBD;
2637
2638 if (sc->sc_mii.mii_media_active & IFM_FDX)
2639 sc->sc_opmode |= OPMODE_FD|OPMODE_HBD;
2640
2641 /*
2642 * Write new OPMODE bits. This also restarts the transmit
2643 * and receive processes.
2644 */
2645 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2646
2647 /* XXX Update ifp->if_baudrate */
2648 }
2649
2650 /*
2651 * tlp_winb_mii_statchg: [mii interface function]
2652 *
2653 * Callback from PHY when media changes. This version is
2654 * for the Winbond 89C840F, which has different OPMODE bits.
2655 */
2656 void
2657 tlp_winb_mii_statchg(self)
2658 struct device *self;
2659 {
2660 struct tulip_softc *sc = (struct tulip_softc *)self;
2661
2662 /* Idle the transmit and receive processes. */
2663 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2664
2665 sc->sc_opmode &= ~(OPMODE_WINB_FES|OPMODE_FD);
2666
2667 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX)
2668 sc->sc_opmode |= OPMODE_WINB_FES;
2669
2670 if (sc->sc_mii.mii_media_active & IFM_FDX)
2671 sc->sc_opmode |= OPMODE_FD;
2672
2673 /*
2674 * Write new OPMODE bits. This also restarts the transmit
2675 * and receive processes.
2676 */
2677 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2678
2679 /* XXX Update ifp->if_baudrate */
2680 }
2681
2682 /*
2683 * tlp_mii_getmedia:
2684 *
2685 * Callback from ifmedia to request current media status.
2686 */
2687 void
2688 tlp_mii_getmedia(sc, ifmr)
2689 struct tulip_softc *sc;
2690 struct ifmediareq *ifmr;
2691 {
2692
2693 mii_pollstat(&sc->sc_mii);
2694 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2695 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2696 }
2697
2698 /*
2699 * tlp_mii_setmedia:
2700 *
2701 * Callback from ifmedia to request new media setting.
2702 */
2703 int
2704 tlp_mii_setmedia(sc)
2705 struct tulip_softc *sc;
2706 {
2707 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2708
2709 if (ifp->if_flags & IFF_UP)
2710 mii_mediachg(&sc->sc_mii);
2711 return (0);
2712 }
2713
2714 /*
2715 * tlp_bitbang_mii_readreg:
2716 *
2717 * Read a PHY register via bit-bang'ing the MII.
2718 */
2719 int
2720 tlp_bitbang_mii_readreg(self, phy, reg)
2721 struct device *self;
2722 int phy, reg;
2723 {
2724 struct tulip_softc *sc = (void *) self;
2725
2726 return (mii_bitbang_readreg(self, sc->sc_bitbang_ops, phy, reg));
2727 }
2728
2729 /*
2730 * tlp_bitbang_mii_writereg:
2731 *
2732 * Write a PHY register via bit-bang'ing the MII.
2733 */
2734 void
2735 tlp_bitbang_mii_writereg(self, phy, reg, val)
2736 struct device *self;
2737 int phy, reg, val;
2738 {
2739 struct tulip_softc *sc = (void *) self;
2740
2741 mii_bitbang_writereg(self, sc->sc_bitbang_ops, phy, reg, val);
2742 }
2743
2744 /*
2745 * tlp_sio_mii_bitbang_read:
2746 *
2747 * Read the MII serial port for the MII bit-bang module.
2748 */
2749 u_int32_t
2750 tlp_sio_mii_bitbang_read(self)
2751 struct device *self;
2752 {
2753 struct tulip_softc *sc = (void *) self;
2754
2755 return (TULIP_READ(sc, CSR_MIIROM));
2756 }
2757
2758 /*
2759 * tlp_sio_mii_bitbang_write:
2760 *
2761 * Write the MII serial port for the MII bit-bang module.
2762 */
2763 void
2764 tlp_sio_mii_bitbang_write(self, val)
2765 struct device *self;
2766 u_int32_t val;
2767 {
2768 struct tulip_softc *sc = (void *) self;
2769
2770 TULIP_WRITE(sc, CSR_MIIROM, val);
2771 }
2772
2773 /*
2774 * tlp_pnic_mii_readreg:
2775 *
2776 * Read a PHY register on the Lite-On PNIC.
2777 */
2778 int
2779 tlp_pnic_mii_readreg(self, phy, reg)
2780 struct device *self;
2781 int phy, reg;
2782 {
2783 struct tulip_softc *sc = (void *) self;
2784 u_int32_t val;
2785 int i;
2786
2787 TULIP_WRITE(sc, CSR_PNIC_MII,
2788 PNIC_MII_MBO | PNIC_MII_RESERVED |
2789 PNIC_MII_READ | (phy << PNIC_MII_PHYSHIFT) |
2790 (reg << PNIC_MII_REGSHIFT));
2791
2792 for (i = 0; i < 1000; i++) {
2793 delay(10);
2794 val = TULIP_READ(sc, CSR_PNIC_MII);
2795 if ((val & PNIC_MII_BUSY) == 0) {
2796 if ((val & PNIC_MII_DATA) == PNIC_MII_DATA)
2797 return (0);
2798 else
2799 return (val & PNIC_MII_DATA);
2800 }
2801 }
2802 printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
2803 return (0);
2804 }
2805
2806 /*
2807 * tlp_pnic_mii_writereg:
2808 *
2809 * Write a PHY register on the Lite-On PNIC.
2810 */
2811 void
2812 tlp_pnic_mii_writereg(self, phy, reg, val)
2813 struct device *self;
2814 int phy, reg, val;
2815 {
2816 struct tulip_softc *sc = (void *) self;
2817 int i;
2818
2819 TULIP_WRITE(sc, CSR_PNIC_MII,
2820 PNIC_MII_MBO | PNIC_MII_RESERVED |
2821 PNIC_MII_WRITE | (phy << PNIC_MII_PHYSHIFT) |
2822 (reg << PNIC_MII_REGSHIFT) | val);
2823
2824 for (i = 0; i < 1000; i++) {
2825 delay(10);
2826 if (TULIP_ISSET(sc, CSR_PNIC_MII, PNIC_MII_BUSY) == 0)
2827 return;
2828 }
2829 printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
2830 }
2831
2832 const bus_addr_t tlp_al981_phy_regmap[] = {
2833 CSR_ADM_BMCR,
2834 CSR_ADM_BMSR,
2835 CSR_ADM_PHYIDR1,
2836 CSR_ADM_PHYIDR2,
2837 CSR_ADM_ANAR,
2838 CSR_ADM_ANLPAR,
2839 CSR_ADM_ANER,
2840
2841 CSR_ADM_XMC,
2842 CSR_ADM_XCIIS,
2843 CSR_ADM_XIE,
2844 CSR_ADM_100CTR,
2845 };
2846 const int tlp_al981_phy_regmap_size = sizeof(tlp_al981_phy_regmap) /
2847 sizeof(tlp_al981_phy_regmap[0]);
2848
2849 /*
2850 * tlp_al981_mii_readreg:
2851 *
2852 * Read a PHY register on the ADMtek AL981.
2853 */
2854 int
2855 tlp_al981_mii_readreg(self, phy, reg)
2856 struct device *self;
2857 int phy, reg;
2858 {
2859 struct tulip_softc *sc = (struct tulip_softc *)self;
2860
2861 /* AL981 only has an internal PHY. */
2862 if (phy != 0)
2863 return (0);
2864
2865 if (reg >= tlp_al981_phy_regmap_size)
2866 return (0);
2867
2868 return (bus_space_read_4(sc->sc_st, sc->sc_sh,
2869 tlp_al981_phy_regmap[reg]) & 0xffff);
2870 }
2871
2872 /*
2873 * tlp_al981_mii_writereg:
2874 *
2875 * Write a PHY register on the ADMtek AL981.
2876 */
2877 void
2878 tlp_al981_mii_writereg(self, phy, reg, val)
2879 struct device *self;
2880 int phy, reg, val;
2881 {
2882 struct tulip_softc *sc = (struct tulip_softc *)self;
2883
2884 /* AL981 only has an internal PHY. */
2885 if (phy != 0)
2886 return;
2887
2888 if (reg >= tlp_al981_phy_regmap_size)
2889 return;
2890
2891 bus_space_write_4(sc->sc_st, sc->sc_sh,
2892 tlp_al981_phy_regmap[reg], val);
2893 }
2894
2895 /*****************************************************************************
2896 * Chip-specific pre-init and reset functions.
2897 *****************************************************************************/
2898
2899 /*
2900 * tlp_2114x_preinit:
2901 *
2902 * Pre-init function shared by DECchip 21140, 21140A, 21142, and 21143.
2903 */
2904 void
2905 tlp_2114x_preinit(sc)
2906 struct tulip_softc *sc;
2907 {
2908 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
2909 struct tulip_21x4x_media *tm = ife->ifm_aux;
2910
2911 /*
2912 * Whether or not we're in MII or SIA/SYM mode, the media info
2913 * contains the appropriate OPMODE bits.
2914 *
2915 * Note that if we have no media info, we are are doing
2916 * non-MII `auto'.
2917 *
2918 * Also, we always set the Must-Be-One bit.
2919 */
2920 if (tm == NULL) {
2921 #ifdef DIAGNOSTIC
2922 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
2923 panic("tlp_2114x_preinit: not IFM_AUTO");
2924 if (sc->sc_nway_active == NULL)
2925 panic("tlp_2114x_preinit: nway_active NULL");
2926 #endif
2927 tm = sc->sc_nway_active->ifm_aux;
2928 }
2929 sc->sc_opmode |= OPMODE_MBO | tm->tm_opmode;
2930
2931 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2932 }
2933
2934 /*
2935 * tlp_2114x_mii_preinit:
2936 *
2937 * Pre-init function shared by DECchip 21140, 21140A, 21142, and 21143.
2938 * This version is used by boards which only have MII and don't have
2939 * an ISV SROM.
2940 */
2941 void
2942 tlp_2114x_mii_preinit(sc)
2943 struct tulip_softc *sc;
2944 {
2945
2946 /*
2947 * Always set the Must-Be-One bit, and Port Select (to select MII).
2948 * We'll never be called during a media change.
2949 */
2950 sc->sc_opmode |= OPMODE_MBO|OPMODE_PS;
2951 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2952 }
2953
2954 /*
2955 * tlp_pnic_preinit:
2956 *
2957 * Pre-init function for the Lite-On 82c168 and 82c169.
2958 */
2959 void
2960 tlp_pnic_preinit(sc)
2961 struct tulip_softc *sc;
2962 {
2963
2964 if (sc->sc_flags & TULIPF_HAS_MII) {
2965 /*
2966 * MII case: just set the port-select bit; we will never
2967 * be called during a media change.
2968 */
2969 sc->sc_opmode |= OPMODE_PS;
2970 } else {
2971 /*
2972 * ENDEC/PCS/Nway mode; enable the Tx backoff counter.
2973 */
2974 sc->sc_opmode |= OPMODE_PNIC_TBEN;
2975 }
2976 }
2977
2978 /*
2979 * tlp_21140_reset:
2980 *
2981 * Issue a reset sequence on the 21140 via the GPIO facility.
2982 */
2983 void
2984 tlp_21140_reset(sc)
2985 struct tulip_softc *sc;
2986 {
2987 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
2988 struct tulip_21x4x_media *tm = ife->ifm_aux;
2989 int i;
2990
2991 /* First, set the direction on the GPIO pins. */
2992 TULIP_WRITE(sc, CSR_GPP, GPP_GPC|sc->sc_gp_dir);
2993
2994 /* Now, issue the reset sequence. */
2995 for (i = 0; i < tm->tm_reset_length; i++) {
2996 delay(10);
2997 TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_reset_offset + i]);
2998 }
2999
3000 /* Now, issue the selection sequence. */
3001 for (i = 0; i < tm->tm_gp_length; i++) {
3002 delay(10);
3003 TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_gp_offset + i]);
3004 }
3005
3006 /* If there were no sequences, just lower the pins. */
3007 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0)
3008 TULIP_WRITE(sc, CSR_GPP, 0);
3009 }
3010
3011 /*
3012 * tlp_21142_reset:
3013 *
3014 * Issue a reset sequence on the 21142 via the GPIO facility.
3015 */
3016 void
3017 tlp_21142_reset(sc)
3018 struct tulip_softc *sc;
3019 {
3020 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3021 struct tulip_21x4x_media *tm = ife->ifm_aux;
3022 const u_int8_t *ncp;
3023 int i;
3024
3025 ncp = &sc->sc_srom[tm->tm_reset_offset];
3026 for (i = 0; i < tm->tm_reset_length; i++, ncp += 2) {
3027 delay(10);
3028 TULIP_WRITE(sc, CSR_SIAGEN,
3029 TULIP_ROM_GETW(ncp, 0) << 16);
3030 }
3031
3032 ncp = &sc->sc_srom[tm->tm_gp_offset];
3033 for (i = 0; i < tm->tm_gp_length; i++, ncp += 2) {
3034 delay(10);
3035 TULIP_WRITE(sc, CSR_SIAGEN,
3036 TULIP_ROM_GETW(ncp, 0) << 16);
3037 }
3038
3039 /* If there were no sequences, just lower the pins. */
3040 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) {
3041 delay(10);
3042 TULIP_WRITE(sc, CSR_SIAGEN, 0);
3043 }
3044 }
3045
3046 /*
3047 * tlp_pmac_reset:
3048 *
3049 * Reset routine for Macronix chips.
3050 */
3051 void
3052 tlp_pmac_reset(sc)
3053 struct tulip_softc *sc;
3054 {
3055
3056 switch (sc->sc_chip) {
3057 case TULIP_CHIP_82C115:
3058 case TULIP_CHIP_MX98715:
3059 case TULIP_CHIP_MX98715A:
3060 case TULIP_CHIP_MX98725:
3061 /*
3062 * Set the LED operating mode. This information is located
3063 * in the EEPROM at byte offset 0x77, per the MX98715A and
3064 * MX98725 application notes.
3065 */
3066 TULIP_WRITE(sc, CSR_MIIROM, sc->sc_srom[0x77] << 24);
3067 break;
3068
3069 default:
3070 /* Nothing. */
3071 }
3072 }
3073
3074 /*****************************************************************************
3075 * Chip/board-specific media switches. The ones here are ones that
3076 * are potentially common to multiple front-ends.
3077 *****************************************************************************/
3078
3079 /*
3080 * This table is a common place for all sorts of media information,
3081 * keyed off of the SROM media code for that media.
3082 *
3083 * Note that we explicitly configure the 21142/21143 to always advertise
3084 * NWay capabilities when using the UTP port.
3085 * XXX Actually, we don't yet.
3086 */
3087 const struct tulip_srom_to_ifmedia tulip_srom_to_ifmedia_table[] = {
3088 { TULIP_ROM_MB_MEDIA_TP, IFM_10_T, 0,
3089 "10baseT",
3090 0,
3091 { SIACONN_21040_10BASET,
3092 SIATXRX_21040_10BASET,
3093 SIAGEN_21040_10BASET },
3094
3095 { SIACONN_21041_10BASET,
3096 SIATXRX_21041_10BASET,
3097 SIAGEN_21041_10BASET },
3098
3099 { SIACONN_21142_10BASET,
3100 SIATXRX_21142_10BASET,
3101 SIAGEN_21142_10BASET } },
3102
3103 { TULIP_ROM_MB_MEDIA_BNC, IFM_10_2, 0,
3104 "10base2",
3105 0,
3106 { 0,
3107 0,
3108 0 },
3109
3110 { SIACONN_21041_BNC,
3111 SIATXRX_21041_BNC,
3112 SIAGEN_21041_BNC },
3113
3114 { SIACONN_21142_BNC,
3115 SIATXRX_21142_BNC,
3116 SIAGEN_21142_BNC } },
3117
3118 { TULIP_ROM_MB_MEDIA_AUI, IFM_10_5, 0,
3119 "10base5",
3120 0,
3121 { SIACONN_21040_AUI,
3122 SIATXRX_21040_AUI,
3123 SIAGEN_21040_AUI },
3124
3125 { SIACONN_21041_AUI,
3126 SIATXRX_21041_AUI,
3127 SIAGEN_21041_AUI },
3128
3129 { SIACONN_21142_AUI,
3130 SIATXRX_21142_AUI,
3131 SIAGEN_21142_AUI } },
3132
3133 { TULIP_ROM_MB_MEDIA_100TX, IFM_100_TX, 0,
3134 "100baseTX",
3135 OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_HBD,
3136 { 0,
3137 0,
3138 0 },
3139
3140 { 0,
3141 0,
3142 0 },
3143
3144 { 0,
3145 0,
3146 SIAGEN_ABM } },
3147
3148 { TULIP_ROM_MB_MEDIA_TP_FDX, IFM_10_T, IFM_FDX,
3149 "10baseT-FDX",
3150 OPMODE_FD|OPMODE_HBD,
3151 { SIACONN_21040_10BASET_FDX,
3152 SIATXRX_21040_10BASET_FDX,
3153 SIAGEN_21040_10BASET_FDX },
3154
3155 { SIACONN_21041_10BASET_FDX,
3156 SIATXRX_21041_10BASET_FDX,
3157 SIAGEN_21041_10BASET_FDX },
3158
3159 { SIACONN_21142_10BASET_FDX,
3160 SIATXRX_21142_10BASET_FDX,
3161 SIAGEN_21142_10BASET_FDX } },
3162
3163 { TULIP_ROM_MB_MEDIA_100TX_FDX, IFM_100_TX, IFM_FDX,
3164 "100baseTX-FDX",
3165 OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_FD|OPMODE_HBD,
3166 { 0,
3167 0,
3168 0 },
3169
3170 { 0,
3171 0,
3172 0 },
3173
3174 { 0,
3175 0,
3176 SIAGEN_ABM } },
3177
3178 { TULIP_ROM_MB_MEDIA_100T4, IFM_100_T4, 0,
3179 "100baseT4",
3180 OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_HBD,
3181 { 0,
3182 0,
3183 0 },
3184
3185 { 0,
3186 0,
3187 0 },
3188
3189 { 0,
3190 0,
3191 SIAGEN_ABM } },
3192
3193 { TULIP_ROM_MB_MEDIA_100FX, IFM_100_FX, 0,
3194 "100baseFX",
3195 OPMODE_PS|OPMODE_PCS|OPMODE_HBD,
3196 { 0,
3197 0,
3198 0 },
3199
3200 { 0,
3201 0,
3202 0 },
3203
3204 { 0,
3205 0,
3206 SIAGEN_ABM } },
3207
3208 { TULIP_ROM_MB_MEDIA_100FX_FDX, IFM_100_FX, IFM_FDX,
3209 "100baseFX-FDX",
3210 OPMODE_PS|OPMODE_PCS|OPMODE_FD|OPMODE_HBD,
3211 { 0,
3212 0,
3213 0 },
3214
3215 { 0,
3216 0,
3217 0 },
3218
3219 { 0,
3220 0,
3221 SIAGEN_ABM } },
3222
3223 { 0, 0, 0,
3224 NULL,
3225 0,
3226 { 0,
3227 0,
3228 0 },
3229
3230 { 0,
3231 0,
3232 0 },
3233
3234 { 0,
3235 0,
3236 0 } },
3237 };
3238
3239 const struct tulip_srom_to_ifmedia *tlp_srom_to_ifmedia __P((u_int8_t));
3240 void tlp_srom_media_info __P((struct tulip_softc *,
3241 const struct tulip_srom_to_ifmedia *, struct tulip_21x4x_media *));
3242 void tlp_add_srom_media __P((struct tulip_softc *, int,
3243 void (*)(struct tulip_softc *, struct ifmediareq *),
3244 int (*)(struct tulip_softc *), const u_int8_t *, int));
3245 void tlp_print_media __P((struct tulip_softc *));
3246 void tlp_nway_activate __P((struct tulip_softc *, int));
3247 void tlp_get_minst __P((struct tulip_softc *));
3248
3249 const struct tulip_srom_to_ifmedia *
3250 tlp_srom_to_ifmedia(sm)
3251 u_int8_t sm;
3252 {
3253 const struct tulip_srom_to_ifmedia *tsti;
3254
3255 for (tsti = tulip_srom_to_ifmedia_table;
3256 tsti->tsti_name != NULL; tsti++) {
3257 if (tsti->tsti_srom == sm)
3258 return (tsti);
3259 }
3260
3261 return (NULL);
3262 }
3263
3264 void
3265 tlp_srom_media_info(sc, tsti, tm)
3266 struct tulip_softc *sc;
3267 const struct tulip_srom_to_ifmedia *tsti;
3268 struct tulip_21x4x_media *tm;
3269 {
3270
3271 tm->tm_name = tsti->tsti_name;
3272 tm->tm_opmode = tsti->tsti_opmode;
3273
3274 switch (sc->sc_chip) {
3275 case TULIP_CHIP_DE425:
3276 case TULIP_CHIP_21040:
3277 tm->tm_sia = tsti->tsti_21040; /* struct assignment */
3278 break;
3279
3280 case TULIP_CHIP_21041:
3281 tm->tm_sia = tsti->tsti_21041; /* struct assignment */
3282 break;
3283
3284 case TULIP_CHIP_21142:
3285 case TULIP_CHIP_21143:
3286 case TULIP_CHIP_82C115:
3287 case TULIP_CHIP_MX98715:
3288 case TULIP_CHIP_MX98715A:
3289 case TULIP_CHIP_MX98725:
3290 tm->tm_sia = tsti->tsti_21142; /* struct assignment */
3291 break;
3292
3293 default:
3294 /* Nothing. */
3295 }
3296 }
3297
3298 void
3299 tlp_add_srom_media(sc, type, get, set, list, cnt)
3300 struct tulip_softc *sc;
3301 int type;
3302 void (*get) __P((struct tulip_softc *, struct ifmediareq *));
3303 int (*set) __P((struct tulip_softc *));
3304 const u_int8_t *list;
3305 int cnt;
3306 {
3307 struct tulip_21x4x_media *tm;
3308 const struct tulip_srom_to_ifmedia *tsti;
3309 int i;
3310
3311 for (i = 0; i < cnt; i++) {
3312 tsti = tlp_srom_to_ifmedia(list[i]);
3313 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
3314 memset(tm, 0, sizeof(*tm));
3315 tlp_srom_media_info(sc, tsti, tm);
3316 tm->tm_type = type;
3317 tm->tm_get = get;
3318 tm->tm_set = set;
3319
3320 ifmedia_add(&sc->sc_mii.mii_media,
3321 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
3322 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
3323 }
3324 }
3325
3326 void
3327 tlp_print_media(sc)
3328 struct tulip_softc *sc;
3329 {
3330 struct ifmedia_entry *ife;
3331 struct tulip_21x4x_media *tm;
3332 const char *sep = "";
3333
3334 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
3335
3336 printf("%s: ", sc->sc_dev.dv_xname);
3337 for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
3338 ife != NULL; ife = TAILQ_NEXT(ife, ifm_list)) {
3339 tm = ife->ifm_aux;
3340 if (tm == NULL) {
3341 #ifdef DIAGNOSTIC
3342 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
3343 panic("tlp_print_media");
3344 #endif
3345 PRINT("auto");
3346 } else if (tm->tm_type != TULIP_ROM_MB_21140_MII &&
3347 tm->tm_type != TULIP_ROM_MB_21142_MII) {
3348 PRINT(tm->tm_name);
3349 }
3350 }
3351 printf("\n");
3352
3353 #undef PRINT
3354 }
3355
3356 void
3357 tlp_nway_activate(sc, media)
3358 struct tulip_softc *sc;
3359 int media;
3360 {
3361 struct ifmedia_entry *ife;
3362
3363 ife = ifmedia_match(&sc->sc_mii.mii_media, media, 0);
3364 #ifdef DIAGNOSTIC
3365 if (ife == NULL)
3366 panic("tlp_nway_activate");
3367 #endif
3368 sc->sc_nway_active = ife;
3369 }
3370
3371 void
3372 tlp_get_minst(sc)
3373 struct tulip_softc *sc;
3374 {
3375
3376 if ((sc->sc_media_seen &
3377 ~((1 << TULIP_ROM_MB_21140_MII) |
3378 (1 << TULIP_ROM_MB_21142_MII))) == 0) {
3379 /*
3380 * We have not yet seen any SIA/SYM media (but are
3381 * about to; that's why we're called!), so assign
3382 * the current media instance to be the `internal media'
3383 * instance, and advance it so any MII media gets a
3384 * fresh one (used to selecting/isolating a PHY).
3385 */
3386 sc->sc_tlp_minst = sc->sc_mii.mii_instance++;
3387 }
3388 }
3389
3390 /*
3391 * SIA Utility functions.
3392 */
3393 void tlp_sia_update_link __P((struct tulip_softc *));
3394 void tlp_sia_get __P((struct tulip_softc *, struct ifmediareq *));
3395 int tlp_sia_set __P((struct tulip_softc *));
3396 void tlp_sia_fixup __P((struct tulip_softc *));
3397
3398 void
3399 tlp_sia_update_link(sc)
3400 struct tulip_softc *sc;
3401 {
3402 struct ifmedia_entry *ife;
3403 struct tulip_21x4x_media *tm;
3404 u_int32_t siastat;
3405
3406 ife = TULIP_CURRENT_MEDIA(sc);
3407 tm = ife->ifm_aux;
3408
3409 sc->sc_flags &= ~(TULIPF_LINK_UP|TULIPF_LINK_VALID);
3410
3411 siastat = TULIP_READ(sc, CSR_SIASTAT);
3412
3413 /*
3414 * Note that when we do SIA link tests, we are assuming that
3415 * the chip is really in the mode that the current media setting
3416 * reflects. If we're not, then the link tests will not be
3417 * accurate!
3418 */
3419 switch (IFM_SUBTYPE(ife->ifm_media)) {
3420 case IFM_10_T:
3421 sc->sc_flags |= TULIPF_LINK_VALID;
3422 if ((siastat & SIASTAT_LS10) == 0)
3423 sc->sc_flags |= TULIPF_LINK_UP;
3424 break;
3425
3426 case IFM_100_TX:
3427 case IFM_100_T4:
3428 sc->sc_flags |= TULIPF_LINK_VALID;
3429 if ((siastat & SIASTAT_LS100) == 0)
3430 sc->sc_flags |= TULIPF_LINK_UP;
3431 break;
3432 }
3433
3434 switch (sc->sc_chip) {
3435 case TULIP_CHIP_21142:
3436 case TULIP_CHIP_21143:
3437 /*
3438 * On these chips, we can tell more information about
3439 * AUI/BNC. Note that the AUI/BNC selection is made
3440 * in a different register; for our purpose, it's all
3441 * AUI.
3442 */
3443 switch (IFM_SUBTYPE(ife->ifm_media)) {
3444 case IFM_10_2:
3445 case IFM_10_5:
3446 sc->sc_flags |= TULIPF_LINK_VALID;
3447 if (siastat & SIASTAT_ARA) {
3448 TULIP_WRITE(sc, CSR_SIASTAT, SIASTAT_ARA);
3449 sc->sc_flags |= TULIPF_LINK_UP;
3450 }
3451 break;
3452
3453 default:
3454 /*
3455 * If we're SYM media and can detect the link
3456 * via the GPIO facility, prefer that status
3457 * over LS100.
3458 */
3459 if (tm->tm_type == TULIP_ROM_MB_21143_SYM &&
3460 tm->tm_actmask != 0) {
3461 sc->sc_flags = (sc->sc_flags &
3462 ~TULIPF_LINK_UP) | TULIPF_LINK_VALID;
3463 if (TULIP_ISSET(sc, CSR_SIAGEN,
3464 tm->tm_actmask) == tm->tm_actdata)
3465 sc->sc_flags |= TULIPF_LINK_UP;
3466 }
3467 }
3468 break;
3469
3470 default:
3471 /* Nothing. */
3472 }
3473 }
3474
3475 void
3476 tlp_sia_get(sc, ifmr)
3477 struct tulip_softc *sc;
3478 struct ifmediareq *ifmr;
3479 {
3480 struct ifmedia_entry *ife;
3481
3482 ifmr->ifm_status = 0;
3483
3484 tlp_sia_update_link(sc);
3485
3486 ife = TULIP_CURRENT_MEDIA(sc);
3487
3488 if (sc->sc_flags & TULIPF_LINK_VALID)
3489 ifmr->ifm_status |= IFM_AVALID;
3490 if (sc->sc_flags & TULIPF_LINK_UP)
3491 ifmr->ifm_status |= IFM_ACTIVE;
3492 ifmr->ifm_active = ife->ifm_media;
3493 }
3494
3495 void
3496 tlp_sia_fixup(sc)
3497 struct tulip_softc *sc;
3498 {
3499 struct ifmedia_entry *ife;
3500 struct tulip_21x4x_media *tm;
3501 u_int32_t siaconn, siatxrx, siagen;
3502
3503 switch (sc->sc_chip) {
3504 case TULIP_CHIP_82C115:
3505 case TULIP_CHIP_MX98713A:
3506 case TULIP_CHIP_MX98715:
3507 case TULIP_CHIP_MX98715A:
3508 case TULIP_CHIP_MX98725:
3509 siaconn = PMAC_SIACONN_MASK;
3510 siatxrx = PMAC_SIATXRX_MASK;
3511 siagen = PMAC_SIAGEN_MASK;
3512 break;
3513
3514 default:
3515 /* No fixups required on any other chips. */
3516 return;
3517 }
3518
3519 for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
3520 ife != NULL; ife = TAILQ_NEXT(ife, ifm_list)) {
3521 tm = ife->ifm_aux;
3522 if (tm == NULL)
3523 continue;
3524
3525 tm->tm_siaconn &= siaconn;
3526 tm->tm_siatxrx &= siatxrx;
3527 tm->tm_siagen &= siagen;
3528 }
3529 }
3530
3531 int
3532 tlp_sia_set(sc)
3533 struct tulip_softc *sc;
3534 {
3535 struct ifmedia_entry *ife;
3536 struct tulip_21x4x_media *tm;
3537
3538 ife = TULIP_CURRENT_MEDIA(sc);
3539 tm = ife->ifm_aux;
3540
3541 /*
3542 * XXX This appears to be necessary on a bunch of the clone chips.
3543 */
3544 delay(20000);
3545
3546 /*
3547 * Idle the chip.
3548 */
3549 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
3550
3551 /*
3552 * Program the SIA. It's important to write in this order,
3553 * resetting the SIA first.
3554 */
3555 TULIP_WRITE(sc, CSR_SIACONN, 0); /* SRL bit clear */
3556 delay(1000);
3557
3558 TULIP_WRITE(sc, CSR_SIATXRX, tm->tm_siatxrx);
3559
3560 switch (sc->sc_chip) {
3561 case TULIP_CHIP_21142:
3562 case TULIP_CHIP_21143:
3563 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen | tm->tm_gpctl);
3564 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen | tm->tm_gpdata);
3565 break;
3566 default:
3567 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen);
3568 }
3569
3570 TULIP_WRITE(sc, CSR_SIACONN, tm->tm_siaconn);
3571
3572 /*
3573 * Set the OPMODE bits for this media and write OPMODE.
3574 * This will resume the transmit and receive processes.
3575 */
3576 sc->sc_opmode = (sc->sc_opmode & ~OPMODE_MEDIA_BITS) | tm->tm_opmode;
3577 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
3578
3579 return (0);
3580 }
3581
3582 /*
3583 * 21140 GPIO utility functions.
3584 */
3585 void tlp_21140_gpio_update_link __P((struct tulip_softc *));
3586 void tlp_21140_gpio_get __P((struct tulip_softc *sc,
3587 struct ifmediareq *ifmr));
3588 int tlp_21140_gpio_set __P((struct tulip_softc *sc));
3589
3590 void
3591 tlp_21140_gpio_update_link(sc)
3592 struct tulip_softc *sc;
3593 {
3594 struct ifmedia_entry *ife;
3595 struct tulip_21x4x_media *tm;
3596
3597 ife = TULIP_CURRENT_MEDIA(sc);
3598 tm = ife->ifm_aux;
3599
3600 sc->sc_flags &= ~(TULIPF_LINK_UP|TULIPF_LINK_VALID);
3601
3602 if (tm->tm_actmask != 0) {
3603 sc->sc_flags |= TULIPF_LINK_VALID;
3604 if (TULIP_ISSET(sc, CSR_GPP, tm->tm_actmask) ==
3605 tm->tm_actdata)
3606 sc->sc_flags |= TULIPF_LINK_UP;
3607 }
3608 }
3609
3610 void
3611 tlp_21140_gpio_get(sc, ifmr)
3612 struct tulip_softc *sc;
3613 struct ifmediareq *ifmr;
3614 {
3615 struct ifmedia_entry *ife;
3616
3617 ifmr->ifm_status = 0;
3618
3619 tlp_21140_gpio_update_link(sc);
3620
3621 ife = TULIP_CURRENT_MEDIA(sc);
3622
3623 if (sc->sc_flags & TULIPF_LINK_VALID)
3624 ifmr->ifm_status |= IFM_AVALID;
3625 if (sc->sc_flags & TULIPF_LINK_UP)
3626 ifmr->ifm_status |= IFM_ACTIVE;
3627 ifmr->ifm_active = ife->ifm_media;
3628 }
3629
3630 int
3631 tlp_21140_gpio_set(sc)
3632 struct tulip_softc *sc;
3633 {
3634 struct ifmedia_entry *ife;
3635 struct tulip_21x4x_media *tm;
3636
3637 ife = TULIP_CURRENT_MEDIA(sc);
3638 tm = ife->ifm_aux;
3639
3640 /*
3641 * Idle the chip.
3642 */
3643 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
3644
3645 /*
3646 * Set the GPIO pins for this media, to flip any
3647 * relays, etc.
3648 */
3649 TULIP_WRITE(sc, CSR_GPP, GPP_GPC|sc->sc_gp_dir);
3650 delay(10);
3651 TULIP_WRITE(sc, CSR_GPP, tm->tm_gpdata);
3652
3653 /*
3654 * Set the OPMODE bits for this media and write OPMODE.
3655 * This will resume the transmit and receive processes.
3656 */
3657 sc->sc_opmode = (sc->sc_opmode & ~OPMODE_MEDIA_BITS) | tm->tm_opmode;
3658 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
3659
3660 return (0);
3661 }
3662
3663 /*
3664 * 21040 and 21041 media switches.
3665 */
3666 void tlp_21040_tmsw_init __P((struct tulip_softc *));
3667 void tlp_21040_tp_tmsw_init __P((struct tulip_softc *));
3668 void tlp_21040_auibnc_tmsw_init __P((struct tulip_softc *));
3669 void tlp_21041_tmsw_init __P((struct tulip_softc *));
3670
3671 const struct tulip_mediasw tlp_21040_mediasw = {
3672 tlp_21040_tmsw_init, tlp_sia_get, tlp_sia_set
3673 };
3674
3675 const struct tulip_mediasw tlp_21040_tp_mediasw = {
3676 tlp_21040_tp_tmsw_init, tlp_sia_get, tlp_sia_set
3677 };
3678
3679 const struct tulip_mediasw tlp_21040_auibnc_mediasw = {
3680 tlp_21040_auibnc_tmsw_init, tlp_sia_get, tlp_sia_set
3681 };
3682
3683 const struct tulip_mediasw tlp_21041_mediasw = {
3684 tlp_21041_tmsw_init, tlp_sia_get, tlp_sia_set
3685 };
3686
3687
3688 void
3689 tlp_21040_tmsw_init(sc)
3690 struct tulip_softc *sc;
3691 {
3692 static const u_int8_t media[] = {
3693 TULIP_ROM_MB_MEDIA_TP,
3694 TULIP_ROM_MB_MEDIA_TP_FDX,
3695 TULIP_ROM_MB_MEDIA_AUI,
3696 };
3697 struct tulip_21x4x_media *tm;
3698
3699 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
3700 tlp_mediastatus);
3701
3702 tlp_add_srom_media(sc, 0, NULL, NULL, media, 3);
3703
3704 /*
3705 * No SROM type for External SIA.
3706 */
3707 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
3708 memset(tm, 0, sizeof(*tm));
3709 tm->tm_name = "manual";
3710 tm->tm_opmode = 0;
3711 tm->tm_siaconn = SIACONN_21040_EXTSIA;
3712 tm->tm_siatxrx = SIATXRX_21040_EXTSIA;
3713 tm->tm_siagen = SIAGEN_21040_EXTSIA;
3714 ifmedia_add(&sc->sc_mii.mii_media,
3715 IFM_MAKEWORD(IFM_ETHER, IFM_MANUAL, 0, sc->sc_tlp_minst), 0, tm);
3716
3717 /*
3718 * XXX Autosense not yet supported.
3719 */
3720
3721 /* XXX This should be auto-sense. */
3722 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
3723
3724 tlp_print_media(sc);
3725 }
3726
3727 void
3728 tlp_21040_tp_tmsw_init(sc)
3729 struct tulip_softc *sc;
3730 {
3731 static const u_int8_t media[] = {
3732 TULIP_ROM_MB_MEDIA_TP,
3733 TULIP_ROM_MB_MEDIA_TP_FDX,
3734 };
3735
3736 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
3737 tlp_mediastatus);
3738
3739 tlp_add_srom_media(sc, 0, NULL, NULL, media, 2);
3740
3741 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
3742
3743 tlp_print_media(sc);
3744 }
3745
3746 void
3747 tlp_21040_auibnc_tmsw_init(sc)
3748 struct tulip_softc *sc;
3749 {
3750 static const u_int8_t media[] = {
3751 TULIP_ROM_MB_MEDIA_AUI,
3752 };
3753
3754 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
3755 tlp_mediastatus);
3756
3757 tlp_add_srom_media(sc, 0, NULL, NULL, media, 1);
3758
3759 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_5);
3760
3761 tlp_print_media(sc);
3762 }
3763
3764 void
3765 tlp_21041_tmsw_init(sc)
3766 struct tulip_softc *sc;
3767 {
3768 static const u_int8_t media[] = {
3769 TULIP_ROM_MB_MEDIA_TP,
3770 TULIP_ROM_MB_MEDIA_TP_FDX,
3771 TULIP_ROM_MB_MEDIA_BNC,
3772 TULIP_ROM_MB_MEDIA_AUI,
3773 };
3774 int i, defmedia, devcnt, leaf_offset, mb_offset, m_cnt;
3775 const struct tulip_srom_to_ifmedia *tsti;
3776 struct tulip_21x4x_media *tm;
3777 u_int16_t romdef;
3778 u_int8_t mb;
3779
3780 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
3781 tlp_mediastatus);
3782
3783 if (tlp_isv_srom(sc->sc_srom) == 0) {
3784 not_isv_srom:
3785 /*
3786 * If we have a board without the standard 21041 SROM format,
3787 * we just assume all media are present and try and pick a
3788 * reasonable default.
3789 */
3790 tlp_add_srom_media(sc, 0, NULL, NULL, media, 4);
3791
3792 /*
3793 * XXX Autosense not yet supported.
3794 */
3795
3796 /* XXX This should be auto-sense. */
3797 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
3798
3799 tlp_print_media(sc);
3800 return;
3801 }
3802
3803 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT];
3804 for (i = 0; i < devcnt; i++) {
3805 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1)
3806 break;
3807 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] ==
3808 sc->sc_devno)
3809 break;
3810 }
3811
3812 if (i == devcnt)
3813 goto not_isv_srom;
3814
3815 leaf_offset = TULIP_ROM_GETW(sc->sc_srom,
3816 TULIP_ROM_CHIPn_INFO_LEAF_OFFSET(i));
3817 mb_offset = leaf_offset + TULIP_ROM_IL_MEDIAn_BLOCK_BASE;
3818 m_cnt = sc->sc_srom[leaf_offset + TULIP_ROM_IL_MEDIA_COUNT];
3819
3820 for (; m_cnt != 0;
3821 m_cnt--, mb_offset += TULIP_ROM_MB_SIZE(mb)) {
3822 mb = sc->sc_srom[mb_offset];
3823 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
3824 memset(tm, 0, sizeof(*tm));
3825 switch (mb & TULIP_ROM_MB_MEDIA_CODE) {
3826 case TULIP_ROM_MB_MEDIA_TP_FDX:
3827 case TULIP_ROM_MB_MEDIA_TP:
3828 case TULIP_ROM_MB_MEDIA_BNC:
3829 case TULIP_ROM_MB_MEDIA_AUI:
3830 tsti = tlp_srom_to_ifmedia(mb &
3831 TULIP_ROM_MB_MEDIA_CODE);
3832
3833 tlp_srom_media_info(sc, tsti, tm);
3834
3835 /*
3836 * Override our default SIA settings if the
3837 * SROM contains its own.
3838 */
3839 if (mb & TULIP_ROM_MB_EXT) {
3840 tm->tm_siaconn = TULIP_ROM_GETW(sc->sc_srom,
3841 mb_offset + TULIP_ROM_MB_CSR13);
3842 tm->tm_siatxrx = TULIP_ROM_GETW(sc->sc_srom,
3843 mb_offset + TULIP_ROM_MB_CSR14);
3844 tm->tm_siagen = TULIP_ROM_GETW(sc->sc_srom,
3845 mb_offset + TULIP_ROM_MB_CSR15);
3846 }
3847
3848 ifmedia_add(&sc->sc_mii.mii_media,
3849 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
3850 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
3851 break;
3852
3853 default:
3854 printf("%s: unknown media code 0x%02x\n",
3855 sc->sc_dev.dv_xname,
3856 mb & TULIP_ROM_MB_MEDIA_CODE);
3857 free(tm, M_DEVBUF);
3858 }
3859 }
3860
3861 /*
3862 * XXX Autosense not yet supported.
3863 */
3864
3865 romdef = TULIP_ROM_GETW(sc->sc_srom, leaf_offset +
3866 TULIP_ROM_IL_SELECT_CONN_TYPE);
3867 switch (romdef) {
3868 case SELECT_CONN_TYPE_TP:
3869 case SELECT_CONN_TYPE_TP_AUTONEG:
3870 case SELECT_CONN_TYPE_TP_NOLINKPASS:
3871 defmedia = IFM_ETHER|IFM_10_T;
3872 break;
3873
3874 case SELECT_CONN_TYPE_TP_FDX:
3875 defmedia = IFM_ETHER|IFM_10_T|IFM_FDX;
3876 break;
3877
3878 case SELECT_CONN_TYPE_BNC:
3879 defmedia = IFM_ETHER|IFM_10_2;
3880 break;
3881
3882 case SELECT_CONN_TYPE_AUI:
3883 defmedia = IFM_ETHER|IFM_10_5;
3884 break;
3885 #if 0 /* XXX */
3886 case SELECT_CONN_TYPE_ASENSE:
3887 case SELECT_CONN_TYPE_ASENSE_AUTONEG:
3888 defmedia = IFM_ETHER|IFM_AUTO;
3889 break;
3890 #endif
3891 default:
3892 defmedia = 0;
3893 }
3894
3895 if (defmedia == 0) {
3896 /*
3897 * XXX We should default to auto-sense.
3898 */
3899 defmedia = IFM_ETHER|IFM_10_T;
3900 }
3901
3902 ifmedia_set(&sc->sc_mii.mii_media, defmedia);
3903
3904 tlp_print_media(sc);
3905 }
3906
3907 /*
3908 * DECchip 2114x ISV media switch.
3909 */
3910 void tlp_2114x_isv_tmsw_init __P((struct tulip_softc *));
3911 void tlp_2114x_isv_tmsw_get __P((struct tulip_softc *, struct ifmediareq *));
3912 int tlp_2114x_isv_tmsw_set __P((struct tulip_softc *));
3913
3914 const struct tulip_mediasw tlp_2114x_isv_mediasw = {
3915 tlp_2114x_isv_tmsw_init, tlp_2114x_isv_tmsw_get, tlp_2114x_isv_tmsw_set
3916 };
3917
3918 void
3919 tlp_2114x_isv_tmsw_init(sc)
3920 struct tulip_softc *sc;
3921 {
3922 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3923 struct ifmedia_entry *ife;
3924 struct mii_softc *phy;
3925 struct tulip_21x4x_media *tm;
3926 const struct tulip_srom_to_ifmedia *tsti;
3927 int i, devcnt, leaf_offset, m_cnt, type, length;
3928 int defmedia, miidef;
3929 u_int16_t word;
3930 u_int8_t *cp, *ncp;
3931
3932 defmedia = miidef = 0;
3933
3934 sc->sc_mii.mii_ifp = ifp;
3935 sc->sc_mii.mii_readreg = tlp_bitbang_mii_readreg;
3936 sc->sc_mii.mii_writereg = tlp_bitbang_mii_writereg;
3937 sc->sc_mii.mii_statchg = sc->sc_statchg;
3938
3939 /*
3940 * Ignore `instance'; we may get a mixture of SIA and MII
3941 * media, and `instance' is used to isolate or select the
3942 * PHY on the MII as appropriate. Note that duplicate media
3943 * are disallowed, so ignoring `instance' is safe.
3944 */
3945 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, tlp_mediachange,
3946 tlp_mediastatus);
3947
3948 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT];
3949 for (i = 0; i < devcnt; i++) {
3950 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1)
3951 break;
3952 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] ==
3953 sc->sc_devno)
3954 break;
3955 }
3956
3957 if (i == devcnt) {
3958 printf("%s: unable to locate info leaf in SROM\n",
3959 sc->sc_dev.dv_xname);
3960 return;
3961 }
3962
3963 leaf_offset = TULIP_ROM_GETW(sc->sc_srom,
3964 TULIP_ROM_CHIPn_INFO_LEAF_OFFSET(i));
3965
3966 /* XXX SELECT CONN TYPE */
3967
3968 cp = &sc->sc_srom[leaf_offset + TULIP_ROM_IL_MEDIA_COUNT];
3969
3970 /*
3971 * On some chips, the first thing in the Info Leaf is the
3972 * GPIO pin direction data.
3973 */
3974 switch (sc->sc_chip) {
3975 case TULIP_CHIP_21140:
3976 case TULIP_CHIP_21140A:
3977 case TULIP_CHIP_MX98713:
3978 case TULIP_CHIP_AX88140:
3979 case TULIP_CHIP_AX88141:
3980 sc->sc_gp_dir = *cp++;
3981 break;
3982
3983 default:
3984 /* Nothing. */
3985 }
3986
3987 /* Get the media count. */
3988 m_cnt = *cp++;
3989
3990 for (; m_cnt != 0; cp = ncp, m_cnt--) {
3991 /*
3992 * Determine the type and length of this media block.
3993 */
3994 if ((*cp & 0x80) == 0) {
3995 length = 4;
3996 type = TULIP_ROM_MB_21140_GPR;
3997 } else {
3998 length = (*cp++ & 0x7f) - 1;
3999 type = *cp++ & 0x3f;
4000 }
4001
4002 /* Compute the start of the next block. */
4003 ncp = cp + length;
4004
4005 /* Now, parse the block. */
4006 switch (type) {
4007 case TULIP_ROM_MB_21140_GPR:
4008 tlp_get_minst(sc);
4009 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21140_GPR;
4010
4011 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4012 memset(tm, 0, sizeof(*tm));
4013
4014 tm->tm_type = TULIP_ROM_MB_21140_GPR;
4015 tm->tm_get = tlp_21140_gpio_get;
4016 tm->tm_set = tlp_21140_gpio_set;
4017
4018 /* First is the media type code. */
4019 tsti = tlp_srom_to_ifmedia(cp[0] &
4020 TULIP_ROM_MB_MEDIA_CODE);
4021 if (tsti == NULL) {
4022 /* Invalid media code. */
4023 free(tm, M_DEVBUF);
4024 break;
4025 }
4026
4027 /* Get defaults. */
4028 tlp_srom_media_info(sc, tsti, tm);
4029
4030 /* Next is any GPIO info for this media. */
4031 tm->tm_gpdata = cp[1];
4032
4033 /*
4034 * Next is a word containing OPMODE information
4035 * and info on how to detect if this media is
4036 * active.
4037 */
4038 word = TULIP_ROM_GETW(cp, 2);
4039 tm->tm_opmode = TULIP_ROM_MB_OPMODE(word);
4040 if ((word & TULIP_ROM_MB_NOINDICATOR) == 0) {
4041 tm->tm_actmask =
4042 TULIP_ROM_MB_BITPOS(word);
4043 tm->tm_actdata =
4044 (word & TULIP_ROM_MB_POLARITY) ?
4045 0 : tm->tm_actmask;
4046 }
4047
4048 ifmedia_add(&sc->sc_mii.mii_media,
4049 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
4050 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
4051 break;
4052
4053 case TULIP_ROM_MB_21140_MII:
4054 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21140_MII;
4055
4056 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4057 memset(tm, 0, sizeof(*tm));
4058
4059 tm->tm_type = TULIP_ROM_MB_21140_MII;
4060 tm->tm_get = tlp_mii_getmedia;
4061 tm->tm_set = tlp_mii_setmedia;
4062 tm->tm_opmode = OPMODE_PS;
4063
4064 if (sc->sc_reset == NULL)
4065 sc->sc_reset = tlp_21140_reset;
4066
4067 /* First is the PHY number. */
4068 tm->tm_phyno = *cp++;
4069
4070 /* Next is the MII select sequence length and offset. */
4071 tm->tm_gp_length = *cp++;
4072 tm->tm_gp_offset = cp - &sc->sc_srom[0];
4073 cp += tm->tm_gp_length;
4074
4075 /* Next is the MII reset sequence length and offset. */
4076 tm->tm_reset_length = *cp++;
4077 tm->tm_reset_offset = cp - &sc->sc_srom[0];
4078 cp += tm->tm_reset_length;
4079
4080 /*
4081 * The following items are left in the media block
4082 * that we don't particularly care about:
4083 *
4084 * capabilities W
4085 * advertisement W
4086 * full duplex W
4087 * tx threshold W
4088 *
4089 * These appear to be bits in the PHY registers,
4090 * which our MII code handles on its own.
4091 */
4092
4093 /*
4094 * Before we probe the MII bus, we need to reset
4095 * it and issue the selection sequence.
4096 */
4097
4098 /* Set the direction of the pins... */
4099 TULIP_WRITE(sc, CSR_GPP, GPP_GPC|sc->sc_gp_dir);
4100
4101 for (i = 0; i < tm->tm_reset_length; i++) {
4102 delay(10);
4103 TULIP_WRITE(sc, CSR_GPP,
4104 sc->sc_srom[tm->tm_reset_offset + i]);
4105 }
4106
4107 for (i = 0; i < tm->tm_gp_length; i++) {
4108 delay(10);
4109 TULIP_WRITE(sc, CSR_GPP,
4110 sc->sc_srom[tm->tm_gp_offset + i]);
4111 }
4112
4113 /* If there were no sequences, just lower the pins. */
4114 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) {
4115 delay(10);
4116 TULIP_WRITE(sc, CSR_GPP, 0);
4117 }
4118
4119 /*
4120 * Now, probe the MII for the PHY. Note, we know
4121 * the location of the PHY on the bus, but we don't
4122 * particularly care; the MII code just likes to
4123 * search the whole thing anyhow.
4124 */
4125 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
4126 MII_PHY_ANY, tm->tm_phyno);
4127
4128 /*
4129 * Now, search for the PHY we hopefully just
4130 * configured. If it's not configured into the
4131 * kernel, we lose. The PHY's default media always
4132 * takes priority.
4133 */
4134 for (phy = LIST_FIRST(&sc->sc_mii.mii_phys);
4135 phy != NULL;
4136 phy = LIST_NEXT(phy, mii_list))
4137 if (phy->mii_offset == tm->tm_phyno)
4138 break;
4139 if (phy == NULL) {
4140 printf("%s: unable to configure MII\n",
4141 sc->sc_dev.dv_xname);
4142 break;
4143 }
4144
4145 sc->sc_flags |= TULIPF_HAS_MII;
4146 sc->sc_tick = tlp_mii_tick;
4147 miidef = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0,
4148 phy->mii_inst);
4149
4150 /*
4151 * Okay, now that we've found the PHY and the MII
4152 * layer has added all of the media associated
4153 * with that PHY, we need to traverse the media
4154 * list, and add our `tm' to each entry's `aux'
4155 * pointer.
4156 *
4157 * We do this by looking for media with our
4158 * PHY's `instance'.
4159 */
4160 for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
4161 ife != NULL;
4162 ife = TAILQ_NEXT(ife, ifm_list)) {
4163 if (IFM_INST(ife->ifm_media) != phy->mii_inst)
4164 continue;
4165 ife->ifm_aux = tm;
4166 }
4167 break;
4168
4169 case TULIP_ROM_MB_21142_SIA:
4170 tlp_get_minst(sc);
4171 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21142_SIA;
4172
4173 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4174 memset(tm, 0, sizeof(*tm));
4175
4176 tm->tm_type = TULIP_ROM_MB_21142_SIA;
4177 tm->tm_get = tlp_sia_get;
4178 tm->tm_set = tlp_sia_set;
4179
4180 /* First is the media type code. */
4181 tsti = tlp_srom_to_ifmedia(cp[0] &
4182 TULIP_ROM_MB_MEDIA_CODE);
4183 if (tsti == NULL) {
4184 /* Invalid media code. */
4185 free(tm, M_DEVBUF);
4186 break;
4187 }
4188
4189 /* Get defaults. */
4190 tlp_srom_media_info(sc, tsti, tm);
4191
4192 /*
4193 * Override our default SIA settings if the
4194 * SROM contains its own.
4195 */
4196 if (cp[0] & 0x40) {
4197 tm->tm_siaconn = TULIP_ROM_GETW(cp, 1);
4198 tm->tm_siatxrx = TULIP_ROM_GETW(cp, 3);
4199 tm->tm_siagen = TULIP_ROM_GETW(cp, 5);
4200 cp += 7;
4201 } else
4202 cp++;
4203
4204 /* Next is GPIO control/data. */
4205 tm->tm_gpctl = TULIP_ROM_GETW(cp, 0);
4206 tm->tm_gpdata = TULIP_ROM_GETW(cp, 2);
4207
4208 ifmedia_add(&sc->sc_mii.mii_media,
4209 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
4210 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
4211 break;
4212
4213 case TULIP_ROM_MB_21142_MII:
4214 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21142_MII;
4215
4216 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4217 memset(tm, 0, sizeof(*tm));
4218
4219 tm->tm_type = TULIP_ROM_MB_21142_MII;
4220 tm->tm_get = tlp_mii_getmedia;
4221 tm->tm_set = tlp_mii_setmedia;
4222 tm->tm_opmode = OPMODE_PS;
4223
4224 if (sc->sc_reset == NULL)
4225 sc->sc_reset = tlp_21142_reset;
4226
4227 /* First is the PHY number. */
4228 tm->tm_phyno = *cp++;
4229
4230 /* Next is the MII select sequence length and offset. */
4231 tm->tm_gp_length = *cp++;
4232 tm->tm_gp_offset = cp - &sc->sc_srom[0];
4233 cp += tm->tm_gp_length * 2;
4234
4235 /* Next is the MII reset sequence length and offset. */
4236 tm->tm_reset_length = *cp++;
4237 tm->tm_reset_offset = cp - &sc->sc_srom[0];
4238 cp += tm->tm_reset_length * 2;
4239
4240 /*
4241 * The following items are left in the media block
4242 * that we don't particularly care about:
4243 *
4244 * capabilities W
4245 * advertisement W
4246 * full duplex W
4247 * tx threshold W
4248 * MII interrupt W
4249 *
4250 * These appear to be bits in the PHY registers,
4251 * which our MII code handles on its own.
4252 */
4253
4254 /*
4255 * Before we probe the MII bus, we need to reset
4256 * it and issue the selection sequence.
4257 */
4258
4259 ncp = &sc->sc_srom[tm->tm_reset_offset];
4260 for (i = 0; i < tm->tm_reset_length; i++, ncp += 2) {
4261 delay(10);
4262 TULIP_WRITE(sc, CSR_SIAGEN,
4263 TULIP_ROM_GETW(ncp, 0) << 16);
4264 }
4265
4266 ncp = &sc->sc_srom[tm->tm_gp_offset];
4267 for (i = 0; i < tm->tm_gp_length; i++, ncp += 2) {
4268 delay(10);
4269 TULIP_WRITE(sc, CSR_SIAGEN,
4270 TULIP_ROM_GETW(ncp, 0) << 16);
4271 }
4272
4273 /* If there were no sequences, just lower the pins. */
4274 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) {
4275 delay(10);
4276 TULIP_WRITE(sc, CSR_SIAGEN, 0);
4277 }
4278
4279 /*
4280 * Now, probe the MII for the PHY. Note, we know
4281 * the location of the PHY on the bus, but we don't
4282 * particularly care; the MII code just likes to
4283 * search the whole thing anyhow.
4284 */
4285 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
4286 MII_PHY_ANY, tm->tm_phyno);
4287
4288 /*
4289 * Now, search for the PHY we hopefully just
4290 * configured. If it's not configured into the
4291 * kernel, we lose. The PHY's default media always
4292 * takes priority.
4293 */
4294 for (phy = LIST_FIRST(&sc->sc_mii.mii_phys);
4295 phy != NULL;
4296 phy = LIST_NEXT(phy, mii_list))
4297 if (phy->mii_offset == tm->tm_phyno)
4298 break;
4299 if (phy == NULL) {
4300 printf("%s: unable to configure MII\n",
4301 sc->sc_dev.dv_xname);
4302 break;
4303 }
4304
4305 sc->sc_flags |= TULIPF_HAS_MII;
4306 sc->sc_tick = tlp_mii_tick;
4307 miidef = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0,
4308 phy->mii_inst);
4309
4310 /*
4311 * Okay, now that we've found the PHY and the MII
4312 * layer has added all of the media associated
4313 * with that PHY, we need to traverse the media
4314 * list, and add our `tm' to each entry's `aux'
4315 * pointer.
4316 *
4317 * We do this by looking for media with our
4318 * PHY's `instance'.
4319 */
4320 for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
4321 ife != NULL;
4322 ife = TAILQ_NEXT(ife, ifm_list)) {
4323 if (IFM_INST(ife->ifm_media) != phy->mii_inst)
4324 continue;
4325 ife->ifm_aux = tm;
4326 }
4327 break;
4328
4329 case TULIP_ROM_MB_21143_SYM:
4330 tlp_get_minst(sc);
4331 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21143_SYM;
4332
4333 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4334 memset(tm, 0, sizeof(*tm));
4335
4336 tm->tm_type = TULIP_ROM_MB_21143_SYM;
4337 tm->tm_get = tlp_sia_get;
4338 tm->tm_set = tlp_sia_set;
4339
4340 /* First is the media type code. */
4341 tsti = tlp_srom_to_ifmedia(cp[0] &
4342 TULIP_ROM_MB_MEDIA_CODE);
4343 if (tsti == NULL) {
4344 /* Invalid media code. */
4345 free(tm, M_DEVBUF);
4346 break;
4347 }
4348
4349 /* Get defaults. */
4350 tlp_srom_media_info(sc, tsti, tm);
4351
4352 /* Next is GPIO control/data. */
4353 tm->tm_gpctl = TULIP_ROM_GETW(cp, 1);
4354 tm->tm_gpdata = TULIP_ROM_GETW(cp, 3);
4355
4356 /*
4357 * Next is a word containing OPMODE information
4358 * and info on how to detect if this media is
4359 * active.
4360 */
4361 word = TULIP_ROM_GETW(cp, 5);
4362 tm->tm_opmode = TULIP_ROM_MB_OPMODE(word);
4363 if ((word & TULIP_ROM_MB_NOINDICATOR) == 0) {
4364 tm->tm_actmask =
4365 TULIP_ROM_MB_BITPOS(word);
4366 tm->tm_actdata =
4367 (word & TULIP_ROM_MB_POLARITY) ?
4368 0 : tm->tm_actmask;
4369 }
4370
4371 ifmedia_add(&sc->sc_mii.mii_media,
4372 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
4373 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
4374 break;
4375
4376 case TULIP_ROM_MB_21143_RESET:
4377 printf("%s: 21143 reset block\n", sc->sc_dev.dv_xname);
4378 break;
4379
4380 default:
4381 printf("%s: unknown ISV media block type 0x%02x\n",
4382 sc->sc_dev.dv_xname, type);
4383 }
4384 }
4385
4386 /*
4387 * Deal with the case where no media is configured.
4388 */
4389 if (TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list) == NULL) {
4390 printf("%s: no media found!\n", sc->sc_dev.dv_xname);
4391 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
4392 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
4393 return;
4394 }
4395
4396 /*
4397 * Pick the default media.
4398 */
4399 if (miidef != 0)
4400 defmedia = miidef;
4401 else {
4402 /*
4403 * XXX Pick a better default. Should come from SROM
4404 * XXX on 21140[A], and should be "auto" on 21142,
4405 * XXX 21143, and Macronix chips.
4406 */
4407 defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0);
4408 }
4409
4410 ifmedia_set(&sc->sc_mii.mii_media, defmedia);
4411
4412 /*
4413 * Display any non-MII media we've located.
4414 */
4415 if (sc->sc_media_seen &
4416 ~((1 << TULIP_ROM_MB_21140_MII) | (1 << TULIP_ROM_MB_21142_MII)))
4417 tlp_print_media(sc);
4418
4419 tlp_sia_fixup(sc);
4420 }
4421
4422 void
4423 tlp_2114x_isv_tmsw_get(sc, ifmr)
4424 struct tulip_softc *sc;
4425 struct ifmediareq *ifmr;
4426 {
4427 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
4428 struct tulip_21x4x_media *tm = ife->ifm_aux;
4429
4430 /*
4431 * We might be polling a non-MII autosense; check for that.
4432 */
4433 if (tm == NULL) {
4434 #ifdef DIAGNOSTIC
4435 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
4436 panic("tlp_2114x_isv_tmsw_get");
4437 #endif
4438 tm = sc->sc_nway_active->ifm_aux;
4439 }
4440
4441 (*tm->tm_get)(sc, ifmr);
4442 }
4443
4444 int
4445 tlp_2114x_isv_tmsw_set(sc)
4446 struct tulip_softc *sc;
4447 {
4448 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
4449 struct tulip_21x4x_media *tm = ife->ifm_aux;
4450
4451 /*
4452 * We might be setting a non-MII autosense; check for that.
4453 */
4454 if (tm == NULL) {
4455 #ifdef DIAGNOSTIC
4456 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
4457 panic("tlp_2114x_isv_tmsw_set");
4458 #endif
4459 /* XXX XXX XXX */
4460 }
4461
4462 /*
4463 * Check to see if we need to reset the chip, and do it. The
4464 * reset path will get the OPMODE register right the next
4465 * time through.
4466 */
4467 if (TULIP_MEDIA_NEEDSRESET(sc, tm->tm_opmode))
4468 return (tlp_init(sc));
4469
4470 return ((*tm->tm_set)(sc));
4471 }
4472
4473 /*
4474 * MII-on-SIO media switch. Handles only MII attached to the SIO.
4475 */
4476 void tlp_sio_mii_tmsw_init __P((struct tulip_softc *));
4477
4478 const struct tulip_mediasw tlp_sio_mii_mediasw = {
4479 tlp_sio_mii_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
4480 };
4481
4482 void
4483 tlp_sio_mii_tmsw_init(sc)
4484 struct tulip_softc *sc;
4485 {
4486 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4487
4488 /*
4489 * We don't attach any media info structures to the ifmedia
4490 * entries, so if we're using a pre-init function that needs
4491 * that info, override it to one that doesn't.
4492 */
4493 if (sc->sc_preinit == tlp_2114x_preinit)
4494 sc->sc_preinit = tlp_2114x_mii_preinit;
4495
4496 sc->sc_mii.mii_ifp = ifp;
4497 sc->sc_mii.mii_readreg = tlp_bitbang_mii_readreg;
4498 sc->sc_mii.mii_writereg = tlp_bitbang_mii_writereg;
4499 sc->sc_mii.mii_statchg = sc->sc_statchg;
4500 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
4501 tlp_mediastatus);
4502 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
4503 MII_OFFSET_ANY);
4504 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
4505 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
4506 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
4507 } else {
4508 sc->sc_flags |= TULIPF_HAS_MII;
4509 sc->sc_tick = tlp_mii_tick;
4510 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4511 }
4512 }
4513
4514 /*
4515 * Lite-On PNIC media switch. Must handle MII or internal NWAY.
4516 */
4517 void tlp_pnic_tmsw_init __P((struct tulip_softc *));
4518 void tlp_pnic_tmsw_get __P((struct tulip_softc *, struct ifmediareq *));
4519 int tlp_pnic_tmsw_set __P((struct tulip_softc *));
4520
4521 const struct tulip_mediasw tlp_pnic_mediasw = {
4522 tlp_pnic_tmsw_init, tlp_pnic_tmsw_get, tlp_pnic_tmsw_set
4523 };
4524
4525 void tlp_pnic_nway_statchg __P((struct device *));
4526 void tlp_pnic_nway_tick __P((void *));
4527 int tlp_pnic_nway_service __P((struct tulip_softc *, int));
4528 void tlp_pnic_nway_reset __P((struct tulip_softc *));
4529 int tlp_pnic_nway_auto __P((struct tulip_softc *, int));
4530 void tlp_pnic_nway_auto_timeout __P((void *));
4531 void tlp_pnic_nway_status __P((struct tulip_softc *));
4532 void tlp_pnic_nway_acomp __P((struct tulip_softc *));
4533
4534 void
4535 tlp_pnic_tmsw_init(sc)
4536 struct tulip_softc *sc;
4537 {
4538 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4539 const char *sep = "";
4540
4541 #define ADD(m, c) ifmedia_add(&sc->sc_mii.mii_media, (m), (c), NULL)
4542 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
4543
4544 sc->sc_mii.mii_ifp = ifp;
4545 sc->sc_mii.mii_readreg = tlp_pnic_mii_readreg;
4546 sc->sc_mii.mii_writereg = tlp_pnic_mii_writereg;
4547 sc->sc_mii.mii_statchg = sc->sc_statchg;
4548 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
4549 tlp_mediastatus);
4550 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
4551 MII_OFFSET_ANY);
4552 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
4553 /* XXX What about AUI/BNC support? */
4554 printf("%s: ", sc->sc_dev.dv_xname);
4555
4556 tlp_pnic_nway_reset(sc);
4557
4558 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0),
4559 PNIC_NWAY_TW|PNIC_NWAY_CAP10T);
4560 PRINT("10baseT");
4561
4562 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, IFM_FDX, 0),
4563 PNIC_NWAY_TW|PNIC_NWAY_FD|PNIC_NWAY_CAP10TFDX);
4564 PRINT("10baseT-FDX");
4565
4566 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, 0, 0),
4567 PNIC_NWAY_TW|PNIC_NWAY_100|PNIC_NWAY_CAP100TX);
4568 PRINT("100baseTX");
4569
4570 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, IFM_FDX, 0),
4571 PNIC_NWAY_TW|PNIC_NWAY_100|PNIC_NWAY_FD|
4572 PNIC_NWAY_CAP100TXFDX);
4573 PRINT("100baseTX-FDX");
4574
4575 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0),
4576 PNIC_NWAY_TW|PNIC_NWAY_RN|PNIC_NWAY_NW|
4577 PNIC_NWAY_CAP10T|PNIC_NWAY_CAP10TFDX|
4578 PNIC_NWAY_CAP100TXFDX|PNIC_NWAY_CAP100TX);
4579 PRINT("auto");
4580
4581 printf("\n");
4582
4583 sc->sc_statchg = tlp_pnic_nway_statchg;
4584 sc->sc_tick = tlp_pnic_nway_tick;
4585 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4586 } else {
4587 sc->sc_flags |= TULIPF_HAS_MII;
4588 sc->sc_tick = tlp_mii_tick;
4589 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4590 }
4591
4592 #undef ADD
4593 #undef PRINT
4594 }
4595
4596 void
4597 tlp_pnic_tmsw_get(sc, ifmr)
4598 struct tulip_softc *sc;
4599 struct ifmediareq *ifmr;
4600 {
4601 struct mii_data *mii = &sc->sc_mii;
4602
4603 if (sc->sc_flags & TULIPF_HAS_MII)
4604 tlp_mii_getmedia(sc, ifmr);
4605 else {
4606 mii->mii_media_status = 0;
4607 mii->mii_media_active = IFM_NONE;
4608 tlp_pnic_nway_service(sc, MII_POLLSTAT);
4609 ifmr->ifm_status = sc->sc_mii.mii_media_status;
4610 ifmr->ifm_active = sc->sc_mii.mii_media_active;
4611 }
4612 }
4613
4614 int
4615 tlp_pnic_tmsw_set(sc)
4616 struct tulip_softc *sc;
4617 {
4618 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4619 struct mii_data *mii = &sc->sc_mii;
4620
4621 if (sc->sc_flags & TULIPF_HAS_MII) {
4622 /*
4623 * Make sure the built-in Tx jabber timer is disabled.
4624 */
4625 TULIP_WRITE(sc, CSR_PNIC_ENDEC, PNIC_ENDEC_JDIS);
4626
4627 return (tlp_mii_setmedia(sc));
4628 }
4629
4630 if (ifp->if_flags & IFF_UP) {
4631 mii->mii_media_status = 0;
4632 mii->mii_media_active = IFM_NONE;
4633 return (tlp_pnic_nway_service(sc, MII_MEDIACHG));
4634 }
4635
4636 return (0);
4637 }
4638
4639 void
4640 tlp_pnic_nway_statchg(self)
4641 struct device *self;
4642 {
4643 struct tulip_softc *sc = (struct tulip_softc *)self;
4644
4645 /* Idle the transmit and receive processes. */
4646 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
4647
4648 sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD|OPMODE_PS|OPMODE_PCS|
4649 OPMODE_SCR|OPMODE_HBD);
4650
4651 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
4652 sc->sc_opmode |= OPMODE_TTM;
4653 TULIP_WRITE(sc, CSR_GPP,
4654 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 0) |
4655 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1));
4656 } else {
4657 sc->sc_opmode |= OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_HBD;
4658 TULIP_WRITE(sc, CSR_GPP,
4659 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 1) |
4660 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1));
4661 }
4662
4663 if (sc->sc_mii.mii_media_active & IFM_FDX)
4664 sc->sc_opmode |= OPMODE_FD|OPMODE_HBD;
4665
4666 /*
4667 * Write new OPMODE bits. This also restarts the transmit
4668 * and receive processes.
4669 */
4670 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
4671
4672 /* XXX Update ifp->if_baudrate */
4673 }
4674
4675 void
4676 tlp_pnic_nway_tick(arg)
4677 void *arg;
4678 {
4679 struct tulip_softc *sc = arg;
4680 int s;
4681
4682 s = splnet();
4683 tlp_pnic_nway_service(sc, MII_TICK);
4684 splx(s);
4685
4686 timeout(tlp_pnic_nway_tick, sc, hz);
4687 }
4688
4689 /*
4690 * Support for the Lite-On PNIC internal NWay block. This is constructed
4691 * somewhat like a PHY driver for simplicity.
4692 */
4693
4694 int
4695 tlp_pnic_nway_service(sc, cmd)
4696 struct tulip_softc *sc;
4697 int cmd;
4698 {
4699 struct mii_data *mii = &sc->sc_mii;
4700 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
4701
4702 if ((mii->mii_ifp->if_flags & IFF_UP) == 0)
4703 return (0);
4704
4705 switch (cmd) {
4706 case MII_POLLSTAT:
4707 /* Nothing special to do here. */
4708 break;
4709
4710 case MII_MEDIACHG:
4711 switch (IFM_SUBTYPE(ife->ifm_media)) {
4712 case IFM_AUTO:
4713 (void) tlp_pnic_nway_auto(sc, 1);
4714 break;
4715 case IFM_100_T4:
4716 /*
4717 * XXX Not supported as a manual setting right now.
4718 */
4719 return (EINVAL);
4720 default:
4721 /*
4722 * NWAY register data is stored in the ifmedia entry.
4723 */
4724 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data);
4725 }
4726 break;
4727
4728 case MII_TICK:
4729 /*
4730 * Only used for autonegotiation.
4731 */
4732 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
4733 return (0);
4734
4735 /*
4736 * Check to see if we have link. If we do, we don't
4737 * need to restart the autonegotiation process.
4738 */
4739 if (sc->sc_flags & TULIPF_LINK_UP)
4740 return (0);
4741
4742 /*
4743 * Only retry autonegotiation every 5 seconds.
4744 */
4745 if (++sc->sc_nway_ticks != 5)
4746 return (0);
4747
4748 sc->sc_nway_ticks = 0;
4749 tlp_pnic_nway_reset(sc);
4750 if (tlp_pnic_nway_auto(sc, 0) == EJUSTRETURN)
4751 return (0);
4752 break;
4753 }
4754
4755 /* Update the media status. */
4756 tlp_pnic_nway_status(sc);
4757
4758 /* Callback if something changed. */
4759 if ((sc->sc_nway_active == NULL ||
4760 sc->sc_nway_active->ifm_media != mii->mii_media_active) ||
4761 cmd == MII_MEDIACHG) {
4762 (*sc->sc_statchg)(&sc->sc_dev);
4763 tlp_nway_activate(sc, mii->mii_media_active);
4764 }
4765 return (0);
4766 }
4767
4768 void
4769 tlp_pnic_nway_reset(sc)
4770 struct tulip_softc *sc;
4771 {
4772
4773 TULIP_WRITE(sc, CSR_PNIC_NWAY, PNIC_NWAY_RS);
4774 delay(100);
4775 TULIP_WRITE(sc, CSR_PNIC_NWAY, 0);
4776 }
4777
4778 int
4779 tlp_pnic_nway_auto(sc, waitfor)
4780 struct tulip_softc *sc;
4781 int waitfor;
4782 {
4783 struct mii_data *mii = &sc->sc_mii;
4784 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
4785 u_int32_t reg;
4786 int i;
4787
4788 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0)
4789 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data);
4790
4791 if (waitfor) {
4792 /* Wait 500ms for it to complete. */
4793 for (i = 0; i < 500; i++) {
4794 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
4795 if (reg & PNIC_NWAY_LPAR_MASK) {
4796 tlp_pnic_nway_acomp(sc);
4797 return (0);
4798 }
4799 delay(1000);
4800 }
4801 #if 0
4802 if ((reg & PNIC_NWAY_LPAR_MASK) == 0)
4803 printf("%s: autonegotiation failed to complete\n",
4804 sc->sc_dev.dv_xname);
4805 #endif
4806
4807 /*
4808 * Don't need to worry about clearing DOINGAUTO.
4809 * If that's set, a timeout is pending, and it will
4810 * clear the flag.
4811 */
4812 return (EIO);
4813 }
4814
4815 /*
4816 * Just let it finish asynchronously. This is for the benefit of
4817 * the tick handler driving autonegotiation. Don't want 500ms
4818 * delays all the time while the system is running!
4819 */
4820 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0) {
4821 sc->sc_flags |= TULIPF_DOINGAUTO;
4822 timeout(tlp_pnic_nway_auto_timeout, sc, hz >> 1);
4823 }
4824 return (EJUSTRETURN);
4825 }
4826
4827 void
4828 tlp_pnic_nway_auto_timeout(arg)
4829 void *arg;
4830 {
4831 struct tulip_softc *sc = arg;
4832 u_int32_t reg;
4833 int s;
4834
4835 s = splnet();
4836 sc->sc_flags &= ~TULIPF_DOINGAUTO;
4837 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
4838 #if 0
4839 if ((reg & PNIC_NWAY_LPAR_MASK) == 0)
4840 printf("%s: autonegotiation failed to complete\n",
4841 sc->sc_dev.dv_xname);
4842 #endif
4843
4844 tlp_pnic_nway_acomp(sc);
4845
4846 /* Update the media status. */
4847 (void) tlp_pnic_nway_service(sc, MII_POLLSTAT);
4848 splx(s);
4849 }
4850
4851 void
4852 tlp_pnic_nway_status(sc)
4853 struct tulip_softc *sc;
4854 {
4855 struct mii_data *mii = &sc->sc_mii;
4856 u_int32_t reg;
4857
4858 mii->mii_media_status = IFM_AVALID;
4859 mii->mii_media_active = IFM_ETHER;
4860
4861 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
4862
4863 if (sc->sc_flags & TULIPF_LINK_UP)
4864 mii->mii_media_status |= IFM_ACTIVE;
4865
4866 if (reg & PNIC_NWAY_NW) {
4867 if ((reg & PNIC_NWAY_LPAR_MASK) == 0) {
4868 /* Erg, still trying, I guess... */
4869 mii->mii_media_active |= IFM_NONE;
4870 return;
4871 }
4872
4873 #if 0
4874 if (reg & PNIC_NWAY_LPAR100T4)
4875 mii->mii_media_active |= IFM_100_T4;
4876 else
4877 #endif
4878 if (reg & PNIC_NWAY_LPAR100TXFDX)
4879 mii->mii_media_active |= IFM_100_TX|IFM_FDX;
4880 else if (reg & PNIC_NWAY_LPAR100TX)
4881 mii->mii_media_active |= IFM_100_TX;
4882 else if (reg & PNIC_NWAY_LPAR10TFDX)
4883 mii->mii_media_active |= IFM_10_T|IFM_FDX;
4884 else if (reg & PNIC_NWAY_LPAR10T)
4885 mii->mii_media_active |= IFM_10_T;
4886 else
4887 mii->mii_media_active |= IFM_NONE;
4888 } else {
4889 if (reg & PNIC_NWAY_100)
4890 mii->mii_media_active |= IFM_100_TX;
4891 else
4892 mii->mii_media_active |= IFM_10_T;
4893 if (reg & PNIC_NWAY_FD)
4894 mii->mii_media_active |= IFM_FDX;
4895 }
4896 }
4897
4898 void
4899 tlp_pnic_nway_acomp(sc)
4900 struct tulip_softc *sc;
4901 {
4902 u_int32_t reg;
4903
4904 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
4905 reg &= ~(PNIC_NWAY_FD|PNIC_NWAY_100|PNIC_NWAY_RN);
4906
4907 if (reg & (PNIC_NWAY_LPAR100TXFDX|PNIC_NWAY_LPAR100TX))
4908 reg |= PNIC_NWAY_100;
4909 if (reg & (PNIC_NWAY_LPAR10TFDX|PNIC_NWAY_LPAR100TXFDX))
4910 reg |= PNIC_NWAY_FD;
4911
4912 TULIP_WRITE(sc, CSR_PNIC_NWAY, reg);
4913 }
4914
4915 /*
4916 * Macronix PMAC and Lite-On PNIC-II media switch:
4917 *
4918 * MX98713 and MX98713A 21140-like MII or GPIO media.
4919 *
4920 * MX98713A 21143-like MII or SIA/SYM media.
4921 *
4922 * MX98715, MX98715A, MX98725, 21143-like SIA/SYM media.
4923 * 82C115
4924 *
4925 * So, what we do here is fake MII-on-SIO or ISV media info, and
4926 * use the ISV media switch get/set functions to handle the rest.
4927 */
4928
4929 void tlp_pmac_tmsw_init __P((struct tulip_softc *));
4930
4931 const struct tulip_mediasw tlp_pmac_mediasw = {
4932 tlp_pmac_tmsw_init, tlp_2114x_isv_tmsw_get, tlp_2114x_isv_tmsw_set
4933 };
4934
4935 const struct tulip_mediasw tlp_pmac_mii_mediasw = {
4936 tlp_pmac_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
4937 };
4938
4939 void
4940 tlp_pmac_tmsw_init(sc)
4941 struct tulip_softc *sc;
4942 {
4943 static const u_int8_t media[] = {
4944 TULIP_ROM_MB_MEDIA_TP,
4945 TULIP_ROM_MB_MEDIA_TP_FDX,
4946 TULIP_ROM_MB_MEDIA_100TX,
4947 TULIP_ROM_MB_MEDIA_100TX_FDX,
4948 };
4949 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4950
4951 sc->sc_mii.mii_ifp = ifp;
4952 sc->sc_mii.mii_readreg = tlp_bitbang_mii_readreg;
4953 sc->sc_mii.mii_writereg = tlp_bitbang_mii_writereg;
4954 sc->sc_mii.mii_statchg = sc->sc_statchg;
4955 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
4956 tlp_mediastatus);
4957 if (sc->sc_chip == TULIP_CHIP_MX98713 ||
4958 sc->sc_chip == TULIP_CHIP_MX98713A) {
4959 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
4960 MII_PHY_ANY, MII_OFFSET_ANY);
4961 if (LIST_FIRST(&sc->sc_mii.mii_phys) != NULL) {
4962 sc->sc_flags |= TULIPF_HAS_MII;
4963 sc->sc_tick = tlp_mii_tick;
4964 sc->sc_preinit = tlp_2114x_mii_preinit;
4965 sc->sc_mediasw = &tlp_pmac_mii_mediasw;
4966 ifmedia_set(&sc->sc_mii.mii_media,
4967 IFM_ETHER|IFM_AUTO);
4968 return;
4969 }
4970 }
4971
4972 switch (sc->sc_chip) {
4973 case TULIP_CHIP_MX98713:
4974 tlp_add_srom_media(sc, TULIP_ROM_MB_21140_GPR,
4975 tlp_21140_gpio_get, tlp_21140_gpio_set, media, 4);
4976
4977 /*
4978 * XXX Should implement auto-sense for this someday,
4979 * XXX when we do the same for the 21140.
4980 */
4981 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
4982 break;
4983
4984 default:
4985 tlp_add_srom_media(sc, TULIP_ROM_MB_21142_SIA,
4986 tlp_sia_get, tlp_sia_set, media, 2);
4987 tlp_add_srom_media(sc, TULIP_ROM_MB_21143_SYM,
4988 tlp_sia_get, tlp_sia_set, media + 2, 2);
4989
4990 /*
4991 * XXX Autonegotiation not yet supported.
4992 */
4993 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
4994 break;
4995 }
4996
4997 tlp_print_media(sc);
4998 tlp_sia_fixup(sc);
4999
5000 /* Set the LED modes. */
5001 tlp_pmac_reset(sc);
5002
5003 sc->sc_reset = tlp_pmac_reset;
5004 }
5005
5006 /*
5007 * ADMtek AL981 media switch. Only has internal PHY.
5008 */
5009 void tlp_al981_tmsw_init __P((struct tulip_softc *));
5010
5011 const struct tulip_mediasw tlp_al981_mediasw = {
5012 tlp_al981_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
5013 };
5014
5015 void
5016 tlp_al981_tmsw_init(sc)
5017 struct tulip_softc *sc;
5018 {
5019 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
5020
5021 sc->sc_mii.mii_ifp = ifp;
5022 sc->sc_mii.mii_readreg = tlp_al981_mii_readreg;
5023 sc->sc_mii.mii_writereg = tlp_al981_mii_writereg;
5024 sc->sc_mii.mii_statchg = sc->sc_statchg;
5025 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
5026 tlp_mediastatus);
5027 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
5028 MII_OFFSET_ANY);
5029 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
5030 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
5031 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
5032 } else {
5033 sc->sc_flags |= TULIPF_HAS_MII;
5034 sc->sc_tick = tlp_mii_tick;
5035 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
5036 }
5037 }
5038