tulip.c revision 1.54 1 /* $NetBSD: tulip.c,v 1.54 2000/03/19 21:45:23 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Device driver for the Digital Semiconductor ``Tulip'' (21x4x)
42 * Ethernet controller family, and a variety of clone chips.
43 */
44
45 #include "opt_inet.h"
46 #include "opt_ns.h"
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58
59 #include <machine/endian.h>
60
61 #include <vm/vm.h> /* for PAGE_SIZE */
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_ether.h>
67
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/if_inarp.h>
75 #endif
76
77 #ifdef NS
78 #include <netns/ns.h>
79 #include <netns/ns_if.h>
80 #endif
81
82 #include <machine/bus.h>
83 #include <machine/intr.h>
84
85 #include <dev/mii/mii.h>
86 #include <dev/mii/miivar.h>
87 #include <dev/mii/mii_bitbang.h>
88
89 #include <dev/ic/tulipreg.h>
90 #include <dev/ic/tulipvar.h>
91
92 const char *tlp_chip_names[] = TULIP_CHIP_NAMES;
93
94 /*
95 * The following tables compute the transmit threshold mode. We start
96 * at index 0. When ever we get a transmit underrun, we increment our
97 * index, falling back if we encounter the NULL terminator.
98 *
99 * Note: Store and forward mode is only available on the 100mbps chips
100 * (21140 and higher).
101 */
102 const struct tulip_txthresh_tab tlp_10_txthresh_tab[] = {
103 { OPMODE_TR_72, "72 bytes" },
104 { OPMODE_TR_96, "96 bytes" },
105 { OPMODE_TR_128, "128 bytes" },
106 { OPMODE_TR_160, "160 bytes" },
107 { 0, NULL },
108 };
109
110 const struct tulip_txthresh_tab tlp_10_100_txthresh_tab[] = {
111 { OPMODE_TR_72, "72/128 bytes" },
112 { OPMODE_TR_96, "96/256 bytes" },
113 { OPMODE_TR_128, "128/512 bytes" },
114 { OPMODE_TR_160, "160/1024 bytes" },
115 { OPMODE_SF, "store and forward mode" },
116 { 0, NULL },
117 };
118
119 #define TXTH_72 0
120 #define TXTH_96 1
121 #define TXTH_128 2
122 #define TXTH_160 3
123 #define TXTH_SF 4
124
125 /*
126 * The Winbond 89C840F does transmit threshold control totally
127 * differently. It simply has a 7-bit field which indicates
128 * the threshold:
129 *
130 * txth = ((OPMODE & OPMODE_WINB_TTH) >> OPMODE_WINB_TTH_SHIFT) * 16;
131 *
132 * However, we just do Store-and-Forward mode on these chips, since
133 * the DMA engines seem to be flaky.
134 */
135 const struct tulip_txthresh_tab tlp_winb_txthresh_tab[] = {
136 { 0, "store and forward mode" },
137 { 0, NULL },
138 };
139
140 #define TXTH_WINB_SF 0
141
142 void tlp_start __P((struct ifnet *));
143 void tlp_watchdog __P((struct ifnet *));
144 int tlp_ioctl __P((struct ifnet *, u_long, caddr_t));
145
146 void tlp_shutdown __P((void *));
147
148 void tlp_reset __P((struct tulip_softc *));
149 int tlp_init __P((struct tulip_softc *));
150 void tlp_rxdrain __P((struct tulip_softc *));
151 void tlp_stop __P((struct tulip_softc *, int));
152 int tlp_add_rxbuf __P((struct tulip_softc *, int));
153 void tlp_idle __P((struct tulip_softc *, u_int32_t));
154 void tlp_srom_idle __P((struct tulip_softc *));
155 int tlp_srom_size __P((struct tulip_softc *));
156
157 int tlp_enable __P((struct tulip_softc *));
158 void tlp_disable __P((struct tulip_softc *));
159 void tlp_power __P((int, void *));
160
161 void tlp_filter_setup __P((struct tulip_softc *));
162 void tlp_winb_filter_setup __P((struct tulip_softc *));
163 void tlp_al981_filter_setup __P((struct tulip_softc *));
164
165 void tlp_rxintr __P((struct tulip_softc *));
166 void tlp_txintr __P((struct tulip_softc *));
167
168 void tlp_mii_tick __P((void *));
169 void tlp_mii_statchg __P((struct device *));
170 void tlp_winb_mii_statchg __P((struct device *));
171
172 void tlp_mii_getmedia __P((struct tulip_softc *, struct ifmediareq *));
173 int tlp_mii_setmedia __P((struct tulip_softc *));
174
175 int tlp_bitbang_mii_readreg __P((struct device *, int, int));
176 void tlp_bitbang_mii_writereg __P((struct device *, int, int, int));
177
178 int tlp_pnic_mii_readreg __P((struct device *, int, int));
179 void tlp_pnic_mii_writereg __P((struct device *, int, int, int));
180
181 int tlp_al981_mii_readreg __P((struct device *, int, int));
182 void tlp_al981_mii_writereg __P((struct device *, int, int, int));
183
184 void tlp_2114x_preinit __P((struct tulip_softc *));
185 void tlp_2114x_mii_preinit __P((struct tulip_softc *));
186 void tlp_pnic_preinit __P((struct tulip_softc *));
187
188 void tlp_21140_reset __P((struct tulip_softc *));
189 void tlp_21142_reset __P((struct tulip_softc *));
190 void tlp_pmac_reset __P((struct tulip_softc *));
191
192 u_int32_t tlp_crc32 __P((const u_int8_t *, size_t));
193 #define tlp_mchash(addr, sz) (tlp_crc32((addr), ETHER_ADDR_LEN) & ((sz) - 1))
194
195 /*
196 * MII bit-bang glue.
197 */
198 u_int32_t tlp_sio_mii_bitbang_read __P((struct device *));
199 void tlp_sio_mii_bitbang_write __P((struct device *, u_int32_t));
200
201 const struct mii_bitbang_ops tlp_sio_mii_bitbang_ops = {
202 tlp_sio_mii_bitbang_read,
203 tlp_sio_mii_bitbang_write,
204 {
205 MIIROM_MDO, /* MII_BIT_MDO */
206 MIIROM_MDI, /* MII_BIT_MDI */
207 MIIROM_MDC, /* MII_BIT_MDC */
208 0, /* MII_BIT_DIR_HOST_PHY */
209 MIIROM_MIIDIR, /* MII_BIT_DIR_PHY_HOST */
210 }
211 };
212
213 #ifdef TLP_DEBUG
214 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
215 printf x
216 #else
217 #define DPRINTF(sc, x) /* nothing */
218 #endif
219
220 #ifdef TLP_STATS
221 void tlp_print_stats __P((struct tulip_softc *));
222 #endif
223
224 /*
225 * tlp_attach:
226 *
227 * Attach a Tulip interface to the system.
228 */
229 void
230 tlp_attach(sc, enaddr)
231 struct tulip_softc *sc;
232 const u_int8_t *enaddr;
233 {
234 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
235 int i, error;
236
237 /*
238 * NOTE: WE EXPECT THE FRONT-END TO INITIALIZE sc_regshift!
239 */
240
241 /*
242 * Setup the transmit threshold table.
243 */
244 switch (sc->sc_chip) {
245 case TULIP_CHIP_DE425:
246 case TULIP_CHIP_21040:
247 case TULIP_CHIP_21041:
248 sc->sc_txth = tlp_10_txthresh_tab;
249 break;
250
251 default:
252 sc->sc_txth = tlp_10_100_txthresh_tab;
253 break;
254 }
255
256 /*
257 * Setup the filter setup function.
258 */
259 switch (sc->sc_chip) {
260 case TULIP_CHIP_WB89C840F:
261 sc->sc_filter_setup = tlp_winb_filter_setup;
262 break;
263
264 case TULIP_CHIP_AL981:
265 sc->sc_filter_setup = tlp_al981_filter_setup;
266 break;
267
268 default:
269 sc->sc_filter_setup = tlp_filter_setup;
270 break;
271 }
272
273 /*
274 * Set up the media status change function.
275 */
276 switch (sc->sc_chip) {
277 case TULIP_CHIP_WB89C840F:
278 sc->sc_statchg = tlp_winb_mii_statchg;
279 break;
280
281 default:
282 /*
283 * We may override this if we have special media
284 * handling requirements (e.g. flipping GPIO pins).
285 *
286 * The pure-MII statchg function covers the basics.
287 */
288 sc->sc_statchg = tlp_mii_statchg;
289 break;
290 }
291
292 /*
293 * Set up various chip-specific quirks.
294 *
295 * Note that wherever we can, we use the "ring" option for
296 * transmit and receive descriptors. This is because some
297 * clone chips apparently have problems when using chaining,
298 * although some *only* support chaining.
299 *
300 * What we do is always program the "next" pointer, and then
301 * conditionally set the TDCTL_CH and TDCTL_ER bits in the
302 * appropriate places.
303 */
304 switch (sc->sc_chip) {
305 case TULIP_CHIP_21140:
306 case TULIP_CHIP_21140A:
307 case TULIP_CHIP_21142:
308 case TULIP_CHIP_21143:
309 case TULIP_CHIP_82C115: /* 21143-like */
310 case TULIP_CHIP_MX98713: /* 21140-like */
311 case TULIP_CHIP_MX98713A: /* 21143-like */
312 case TULIP_CHIP_MX98715: /* 21143-like */
313 case TULIP_CHIP_MX98715A: /* 21143-like */
314 case TULIP_CHIP_MX98725: /* 21143-like */
315 /*
316 * Run these chips in ring mode.
317 */
318 sc->sc_tdctl_ch = 0;
319 sc->sc_tdctl_er = TDCTL_ER;
320 sc->sc_preinit = tlp_2114x_preinit;
321 break;
322
323 case TULIP_CHIP_82C168:
324 case TULIP_CHIP_82C169:
325 /*
326 * Run these chips in ring mode.
327 */
328 sc->sc_tdctl_ch = 0;
329 sc->sc_tdctl_er = TDCTL_ER;
330 sc->sc_preinit = tlp_pnic_preinit;
331
332 /*
333 * These chips seem to have busted DMA engines; just put them
334 * in Store-and-Forward mode from the get-go.
335 */
336 sc->sc_txthresh = TXTH_SF;
337 break;
338
339 case TULIP_CHIP_WB89C840F:
340 /*
341 * Run this chip in chained mode.
342 */
343 sc->sc_tdctl_ch = TDCTL_CH;
344 sc->sc_tdctl_er = 0;
345 sc->sc_flags |= TULIPF_IC_FS;
346 break;
347
348 default:
349 /*
350 * Default to running in ring mode.
351 */
352 sc->sc_tdctl_ch = 0;
353 sc->sc_tdctl_er = TDCTL_ER;
354 }
355
356 /*
357 * Set up the MII bit-bang operations.
358 */
359 switch (sc->sc_chip) {
360 case TULIP_CHIP_WB89C840F: /* XXX direction bit different? */
361 sc->sc_bitbang_ops = &tlp_sio_mii_bitbang_ops;
362 break;
363
364 default:
365 sc->sc_bitbang_ops = &tlp_sio_mii_bitbang_ops;
366 }
367
368 SIMPLEQ_INIT(&sc->sc_txfreeq);
369 SIMPLEQ_INIT(&sc->sc_txdirtyq);
370
371 /*
372 * Allocate the control data structures, and create and load the
373 * DMA map for it.
374 */
375 if ((error = bus_dmamem_alloc(sc->sc_dmat,
376 sizeof(struct tulip_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
377 1, &sc->sc_cdnseg, 0)) != 0) {
378 printf("%s: unable to allocate control data, error = %d\n",
379 sc->sc_dev.dv_xname, error);
380 goto fail_0;
381 }
382
383 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
384 sizeof(struct tulip_control_data), (caddr_t *)&sc->sc_control_data,
385 BUS_DMA_COHERENT)) != 0) {
386 printf("%s: unable to map control data, error = %d\n",
387 sc->sc_dev.dv_xname, error);
388 goto fail_1;
389 }
390
391 if ((error = bus_dmamap_create(sc->sc_dmat,
392 sizeof(struct tulip_control_data), 1,
393 sizeof(struct tulip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
394 printf("%s: unable to create control data DMA map, "
395 "error = %d\n", sc->sc_dev.dv_xname, error);
396 goto fail_2;
397 }
398
399 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
400 sc->sc_control_data, sizeof(struct tulip_control_data), NULL,
401 0)) != 0) {
402 printf("%s: unable to load control data DMA map, error = %d\n",
403 sc->sc_dev.dv_xname, error);
404 goto fail_3;
405 }
406
407 /*
408 * Create the transmit buffer DMA maps.
409 *
410 * Note that on the Xircom clone, transmit buffers must be
411 * 4-byte aligned. We're almost guaranteed to have to copy
412 * the packet in that case, so we just limit ourselves to
413 * one segment.
414 */
415 switch (sc->sc_chip) {
416 case TULIP_CHIP_X3201_3:
417 sc->sc_ntxsegs = 1;
418 break;
419
420 default:
421 sc->sc_ntxsegs = TULIP_NTXSEGS;
422 }
423 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
424 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
425 sc->sc_ntxsegs, MCLBYTES, 0, 0,
426 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
427 printf("%s: unable to create tx DMA map %d, "
428 "error = %d\n", sc->sc_dev.dv_xname, i, error);
429 goto fail_4;
430 }
431 }
432
433 /*
434 * Create the recieve buffer DMA maps.
435 */
436 for (i = 0; i < TULIP_NRXDESC; i++) {
437 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
438 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
439 printf("%s: unable to create rx DMA map %d, "
440 "error = %d\n", sc->sc_dev.dv_xname, i, error);
441 goto fail_5;
442 }
443 sc->sc_rxsoft[i].rxs_mbuf = NULL;
444 }
445
446 /*
447 * From this point forward, the attachment cannot fail. A failure
448 * before this point releases all resources that may have been
449 * allocated.
450 */
451 sc->sc_flags |= TULIPF_ATTACHED;
452
453 /*
454 * Reset the chip to a known state.
455 */
456 tlp_reset(sc);
457
458 /* Announce ourselves. */
459 printf("%s: %s%sEthernet address %s\n", sc->sc_dev.dv_xname,
460 sc->sc_name[0] != '\0' ? sc->sc_name : "",
461 sc->sc_name[0] != '\0' ? ", " : "",
462 ether_sprintf(enaddr));
463
464 /*
465 * Initialize our media structures. This may probe the MII, if
466 * present.
467 */
468 (*sc->sc_mediasw->tmsw_init)(sc);
469
470 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
471 ifp->if_softc = sc;
472 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
473 ifp->if_ioctl = tlp_ioctl;
474 ifp->if_start = tlp_start;
475 ifp->if_watchdog = tlp_watchdog;
476
477 /*
478 * Attach the interface.
479 */
480 if_attach(ifp);
481 ether_ifattach(ifp, enaddr);
482 #if NBPFILTER > 0
483 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
484 sizeof(struct ether_header));
485 #endif
486
487 /*
488 * Make sure the interface is shutdown during reboot.
489 */
490 sc->sc_sdhook = shutdownhook_establish(tlp_shutdown, sc);
491 if (sc->sc_sdhook == NULL)
492 printf("%s: WARNING: unable to establish shutdown hook\n",
493 sc->sc_dev.dv_xname);
494
495 /*
496 * Add a suspend hook to make sure we come back up after a
497 * resume.
498 */
499 sc->sc_powerhook = powerhook_establish(tlp_power, sc);
500 if (sc->sc_powerhook == NULL)
501 printf("%s: WARNING: unable to establish power hook\n",
502 sc->sc_dev.dv_xname);
503 return;
504
505 /*
506 * Free any resources we've allocated during the failed attach
507 * attempt. Do this in reverse order and fall through.
508 */
509 fail_5:
510 for (i = 0; i < TULIP_NRXDESC; i++) {
511 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
512 bus_dmamap_destroy(sc->sc_dmat,
513 sc->sc_rxsoft[i].rxs_dmamap);
514 }
515 fail_4:
516 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
517 if (sc->sc_txsoft[i].txs_dmamap != NULL)
518 bus_dmamap_destroy(sc->sc_dmat,
519 sc->sc_txsoft[i].txs_dmamap);
520 }
521 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
522 fail_3:
523 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
524 fail_2:
525 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
526 sizeof(struct tulip_control_data));
527 fail_1:
528 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
529 fail_0:
530 return;
531 }
532
533 /*
534 * tlp_activate:
535 *
536 * Handle device activation/deactivation requests.
537 */
538 int
539 tlp_activate(self, act)
540 struct device *self;
541 enum devact act;
542 {
543 struct tulip_softc *sc = (void *) self;
544 int s, error = 0;
545
546 s = splnet();
547 switch (act) {
548 case DVACT_ACTIVATE:
549 error = EOPNOTSUPP;
550 break;
551
552 case DVACT_DEACTIVATE:
553 if (sc->sc_flags & TULIPF_HAS_MII)
554 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
555 MII_OFFSET_ANY);
556 if_deactivate(&sc->sc_ethercom.ec_if);
557 break;
558 }
559 splx(s);
560
561 return (error);
562 }
563
564 /*
565 * tlp_detach:
566 *
567 * Detach a Tulip interface.
568 */
569 int
570 tlp_detach(sc)
571 struct tulip_softc *sc;
572 {
573 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
574 struct tulip_rxsoft *rxs;
575 struct tulip_txsoft *txs;
576 int i;
577
578 /*
579 * Suceed now if there isn't any work to do.
580 */
581 if ((sc->sc_flags & TULIPF_ATTACHED) == 0)
582 return (0);
583
584 /* Unhook our tick handler. */
585 if (sc->sc_tick)
586 untimeout(sc->sc_tick, sc);
587
588 if (sc->sc_flags & TULIPF_HAS_MII) {
589 /* Detach all PHYs */
590 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
591 }
592
593 /* Delete all remaining media. */
594 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
595
596 #if NBPFILTER > 0
597 bpfdetach(ifp);
598 #endif
599 ether_ifdetach(ifp);
600 if_detach(ifp);
601
602 for (i = 0; i < TULIP_NRXDESC; i++) {
603 rxs = &sc->sc_rxsoft[i];
604 if (rxs->rxs_mbuf != NULL) {
605 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
606 m_freem(rxs->rxs_mbuf);
607 rxs->rxs_mbuf = NULL;
608 }
609 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
610 }
611 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
612 txs = &sc->sc_txsoft[i];
613 if (txs->txs_mbuf != NULL) {
614 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
615 m_freem(txs->txs_mbuf);
616 txs->txs_mbuf = NULL;
617 }
618 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
619 }
620 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
621 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
622 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
623 sizeof(struct tulip_control_data));
624 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
625
626 shutdownhook_disestablish(sc->sc_sdhook);
627
628 if (sc->sc_srom)
629 free(sc->sc_srom, M_DEVBUF);
630
631 return (0);
632 }
633
634 /*
635 * tlp_shutdown:
636 *
637 * Make sure the interface is stopped at reboot time.
638 */
639 void
640 tlp_shutdown(arg)
641 void *arg;
642 {
643 struct tulip_softc *sc = arg;
644
645 tlp_stop(sc, 1);
646 }
647
648 /*
649 * tlp_start: [ifnet interface function]
650 *
651 * Start packet transmission on the interface.
652 */
653 void
654 tlp_start(ifp)
655 struct ifnet *ifp;
656 {
657 struct tulip_softc *sc = ifp->if_softc;
658 struct mbuf *m0, *m;
659 struct tulip_txsoft *txs, *last_txs;
660 bus_dmamap_t dmamap;
661 int error, firsttx, nexttx, lasttx, ofree, seg;
662
663 DPRINTF(sc, ("%s: tlp_start: sc_flags 0x%08x, if_flags 0x%08x\n",
664 sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
665
666 /*
667 * If we want a filter setup, it means no more descriptors were
668 * available for the setup routine. Let it get a chance to wedge
669 * itself into the ring.
670 */
671 if (sc->sc_flags & TULIPF_WANT_SETUP)
672 ifp->if_flags |= IFF_OACTIVE;
673
674 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
675 return;
676
677 /*
678 * Remember the previous number of free descriptors and
679 * the first descriptor we'll use.
680 */
681 ofree = sc->sc_txfree;
682 firsttx = sc->sc_txnext;
683
684 DPRINTF(sc, ("%s: tlp_start: txfree %d, txnext %d\n",
685 sc->sc_dev.dv_xname, ofree, firsttx));
686
687 /*
688 * Loop through the send queue, setting up transmit descriptors
689 * until we drain the queue, or use up all available transmit
690 * descriptors.
691 */
692 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
693 sc->sc_txfree != 0) {
694 /*
695 * Grab a packet off the queue.
696 */
697 IF_DEQUEUE(&ifp->if_snd, m0);
698 if (m0 == NULL)
699 break;
700
701 dmamap = txs->txs_dmamap;
702
703 /*
704 * Load the DMA map. If this fails, the packet either
705 * didn't fit in the alloted number of segments, or we were
706 * short on resources. In this case, we'll copy and try
707 * again.
708 *
709 * Note that if we're only allowed 1 Tx segment, we
710 * have an alignment restriction. Do this test before
711 * attempting to load the DMA map, because it's more
712 * likely we'll trip the alignment test than the
713 * more-than-one-segment test.
714 */
715 if ((sc->sc_ntxsegs == 1 && (mtod(m0, bus_addr_t) & 3) != 0) ||
716 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
717 BUS_DMA_NOWAIT) != 0) {
718 MGETHDR(m, M_DONTWAIT, MT_DATA);
719 if (m == NULL) {
720 printf("%s: unable to allocate Tx mbuf\n",
721 sc->sc_dev.dv_xname);
722 IF_PREPEND(&ifp->if_snd, m0);
723 break;
724 }
725 if (m0->m_pkthdr.len > MHLEN) {
726 MCLGET(m, M_DONTWAIT);
727 if ((m->m_flags & M_EXT) == 0) {
728 printf("%s: unable to allocate Tx "
729 "cluster\n", sc->sc_dev.dv_xname);
730 m_freem(m);
731 IF_PREPEND(&ifp->if_snd, m0);
732 break;
733 }
734 }
735 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
736 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
737 m_freem(m0);
738 m0 = m;
739 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
740 m0, BUS_DMA_NOWAIT);
741 if (error) {
742 printf("%s: unable to load Tx buffer, "
743 "error = %d\n", sc->sc_dev.dv_xname, error);
744 IF_PREPEND(&ifp->if_snd, m0);
745 break;
746 }
747 }
748
749 /*
750 * Ensure we have enough descriptors free to describe
751 * the packet.
752 */
753 if (dmamap->dm_nsegs > sc->sc_txfree) {
754 /*
755 * Not enough free descriptors to transmit this
756 * packet. We haven't committed to anything yet,
757 * so just unload the DMA map, put the packet
758 * back on the queue, and punt. Notify the upper
759 * layer that there are no more slots left.
760 *
761 * XXX We could allocate an mbuf and copy, but
762 * XXX it is worth it?
763 */
764 ifp->if_flags |= IFF_OACTIVE;
765 bus_dmamap_unload(sc->sc_dmat, dmamap);
766 IF_PREPEND(&ifp->if_snd, m0);
767 break;
768 }
769
770 /*
771 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
772 */
773
774 /* Sync the DMA map. */
775 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
776 BUS_DMASYNC_PREWRITE);
777
778 /*
779 * Initialize the transmit descriptors.
780 */
781 for (nexttx = sc->sc_txnext, seg = 0;
782 seg < dmamap->dm_nsegs;
783 seg++, nexttx = TULIP_NEXTTX(nexttx)) {
784 /*
785 * If this is the first descriptor we're
786 * enqueueing, don't set the OWN bit just
787 * yet. That could cause a race condition.
788 * We'll do it below.
789 */
790 sc->sc_txdescs[nexttx].td_status =
791 (nexttx == firsttx) ? 0 : htole32(TDSTAT_OWN);
792 sc->sc_txdescs[nexttx].td_bufaddr1 =
793 htole32(dmamap->dm_segs[seg].ds_addr);
794 sc->sc_txdescs[nexttx].td_ctl =
795 htole32((dmamap->dm_segs[seg].ds_len <<
796 TDCTL_SIZE1_SHIFT) | sc->sc_tdctl_ch |
797 (nexttx == (TULIP_NTXDESC - 1) ?
798 sc->sc_tdctl_er : 0));
799 lasttx = nexttx;
800 }
801
802 /* Set `first segment' and `last segment' appropriately. */
803 sc->sc_txdescs[sc->sc_txnext].td_ctl |= htole32(TDCTL_Tx_FS);
804 sc->sc_txdescs[lasttx].td_ctl |= htole32(TDCTL_Tx_LS);
805
806 #ifdef TLP_DEBUG
807 if (ifp->if_flags & IFF_DEBUG) {
808 printf(" txsoft %p trainsmit chain:\n", txs);
809 for (seg = sc->sc_txnext;; seg = TULIP_NEXTTX(seg)) {
810 printf(" descriptor %d:\n", seg);
811 printf(" td_status: 0x%08x\n",
812 le32toh(sc->sc_txdescs[seg].td_status));
813 printf(" td_ctl: 0x%08x\n",
814 le32toh(sc->sc_txdescs[seg].td_ctl));
815 printf(" td_bufaddr1: 0x%08x\n",
816 le32toh(sc->sc_txdescs[seg].td_bufaddr1));
817 printf(" td_bufaddr2: 0x%08x\n",
818 le32toh(sc->sc_txdescs[seg].td_bufaddr2));
819 if (seg == lasttx)
820 break;
821 }
822 }
823 #endif
824
825 /* Sync the descriptors we're using. */
826 TULIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
827 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
828
829 /*
830 * Store a pointer to the packet so we can free it later,
831 * and remember what txdirty will be once the packet is
832 * done.
833 */
834 txs->txs_mbuf = m0;
835 txs->txs_firstdesc = sc->sc_txnext;
836 txs->txs_lastdesc = lasttx;
837 txs->txs_ndescs = dmamap->dm_nsegs;
838
839 /* Advance the tx pointer. */
840 sc->sc_txfree -= dmamap->dm_nsegs;
841 sc->sc_txnext = nexttx;
842
843 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
844 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
845
846 last_txs = txs;
847
848 #if NBPFILTER > 0
849 /*
850 * Pass the packet to any BPF listeners.
851 */
852 if (ifp->if_bpf)
853 bpf_mtap(ifp->if_bpf, m0);
854 #endif /* NBPFILTER > 0 */
855 }
856
857 if (txs == NULL || sc->sc_txfree == 0) {
858 /* No more slots left; notify upper layer. */
859 ifp->if_flags |= IFF_OACTIVE;
860 }
861
862 if (sc->sc_txfree != ofree) {
863 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
864 sc->sc_dev.dv_xname, lasttx, firsttx));
865 /*
866 * Cause a transmit interrupt to happen on the
867 * last packet we enqueued.
868 */
869 sc->sc_txdescs[lasttx].td_ctl |= htole32(TDCTL_Tx_IC);
870 TULIP_CDTXSYNC(sc, lasttx, 1,
871 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
872
873 /*
874 * Some clone chips want IC on the *first* segment in
875 * the packet. Appease them.
876 */
877 if ((sc->sc_flags & TULIPF_IC_FS) != 0 &&
878 last_txs->txs_firstdesc != lasttx) {
879 sc->sc_txdescs[last_txs->txs_firstdesc].td_ctl |=
880 htole32(TDCTL_Tx_IC);
881 TULIP_CDTXSYNC(sc, last_txs->txs_firstdesc, 1,
882 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
883 }
884
885 /*
886 * The entire packet chain is set up. Give the
887 * first descriptor to the chip now.
888 */
889 sc->sc_txdescs[firsttx].td_status |= htole32(TDSTAT_OWN);
890 TULIP_CDTXSYNC(sc, firsttx, 1,
891 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
892
893 /* Wake up the transmitter. */
894 /* XXX USE AUTOPOLLING? */
895 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
896
897 /* Set a watchdog timer in case the chip flakes out. */
898 ifp->if_timer = 5;
899 }
900 }
901
902 /*
903 * tlp_watchdog: [ifnet interface function]
904 *
905 * Watchdog timer handler.
906 */
907 void
908 tlp_watchdog(ifp)
909 struct ifnet *ifp;
910 {
911 struct tulip_softc *sc = ifp->if_softc;
912 int doing_setup, doing_transmit;
913
914 doing_setup = (sc->sc_flags & TULIPF_DOING_SETUP);
915 doing_transmit = (SIMPLEQ_FIRST(&sc->sc_txdirtyq) != NULL);
916
917 if (doing_setup && doing_transmit) {
918 printf("%s: filter setup and transmit timeout\n",
919 sc->sc_dev.dv_xname);
920 ifp->if_oerrors++;
921 } else if (doing_transmit) {
922 printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
923 ifp->if_oerrors++;
924 } else if (doing_setup)
925 printf("%s: filter setup timeout\n", sc->sc_dev.dv_xname);
926 else
927 printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
928
929 (void) tlp_init(sc);
930
931 /* Try to get more packets going. */
932 tlp_start(ifp);
933 }
934
935 /*
936 * tlp_ioctl: [ifnet interface function]
937 *
938 * Handle control requests from the operator.
939 */
940 int
941 tlp_ioctl(ifp, cmd, data)
942 struct ifnet *ifp;
943 u_long cmd;
944 caddr_t data;
945 {
946 struct tulip_softc *sc = ifp->if_softc;
947 struct ifreq *ifr = (struct ifreq *)data;
948 struct ifaddr *ifa = (struct ifaddr *)data;
949 int s, error = 0;
950
951 s = splnet();
952
953 switch (cmd) {
954 case SIOCSIFADDR:
955 if ((error = tlp_enable(sc)) != 0)
956 break;
957 ifp->if_flags |= IFF_UP;
958
959 switch (ifa->ifa_addr->sa_family) {
960 #ifdef INET
961 case AF_INET:
962 if ((error = tlp_init(sc)) != 0)
963 break;
964 arp_ifinit(ifp, ifa);
965 break;
966 #endif /* INET */
967 #ifdef NS
968 case AF_NS:
969 {
970 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
971
972 if (ns_nullhost(*ina))
973 ina->x_host = *(union ns_host *)
974 LLADDR(ifp->if_sadl);
975 else
976 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
977 ifp->if_addrlen);
978 /* Set new address. */
979 error = tlp_init(sc);
980 break;
981 }
982 #endif /* NS */
983 default:
984 error = tlp_init(sc);
985 break;
986 }
987 break;
988
989 case SIOCSIFMTU:
990 if (ifr->ifr_mtu > ETHERMTU)
991 error = EINVAL;
992 else
993 ifp->if_mtu = ifr->ifr_mtu;
994 break;
995
996 case SIOCSIFFLAGS:
997 #ifdef TLP_STATS
998 if (ifp->if_flags & IFF_DEBUG)
999 tlp_print_stats(sc);
1000 #endif
1001 if ((ifp->if_flags & IFF_UP) == 0 &&
1002 (ifp->if_flags & IFF_RUNNING) != 0) {
1003 /*
1004 * If interface is marked down and it is running, then
1005 * stop it.
1006 */
1007 tlp_stop(sc, 1);
1008 tlp_disable(sc);
1009 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1010 (ifp->if_flags & IFF_RUNNING) == 0) {
1011 /*
1012 * If interfase it marked up and it is stopped, then
1013 * start it.
1014 */
1015 if ((error = tlp_enable(sc)) != 0)
1016 break;
1017 error = tlp_init(sc);
1018 } else if ((ifp->if_flags & IFF_UP) != 0) {
1019 /*
1020 * Reset the interface to pick up changes in any other
1021 * flags that affect the hardware state.
1022 */
1023 if ((error = tlp_enable(sc)) != 0)
1024 break;
1025 error = tlp_init(sc);
1026 }
1027 break;
1028
1029 case SIOCADDMULTI:
1030 case SIOCDELMULTI:
1031 error = (cmd == SIOCADDMULTI) ?
1032 ether_addmulti(ifr, &sc->sc_ethercom) :
1033 ether_delmulti(ifr, &sc->sc_ethercom);
1034
1035 if (TULIP_IS_ENABLED(sc) && error == ENETRESET) {
1036 /*
1037 * Multicast list has changed. Set the filter
1038 * accordingly.
1039 */
1040 (*sc->sc_filter_setup)(sc);
1041 error = 0;
1042 }
1043 break;
1044
1045 case SIOCSIFMEDIA:
1046 case SIOCGIFMEDIA:
1047 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1048 break;
1049
1050 default:
1051 error = EINVAL;
1052 break;
1053 }
1054
1055 /* Try to get more packets going. */
1056 if (TULIP_IS_ENABLED(sc))
1057 tlp_start(ifp);
1058
1059 splx(s);
1060 return (error);
1061 }
1062
1063 /*
1064 * tlp_intr:
1065 *
1066 * Interrupt service routine.
1067 */
1068 int
1069 tlp_intr(arg)
1070 void *arg;
1071 {
1072 struct tulip_softc *sc = arg;
1073 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1074 u_int32_t status, rxstatus, txstatus;
1075 int handled = 0, txthresh;
1076
1077 DPRINTF(sc, ("%s: tlp_intr\n", sc->sc_dev.dv_xname));
1078
1079 #ifdef DEBUG
1080 if (TULIP_IS_ENABLED(sc) == 0)
1081 panic("%s: tlp_intr: not enabled\n", sc->sc_dev.dv_xname);
1082 #endif
1083
1084 /*
1085 * If the interface isn't running, the interrupt couldn't
1086 * possibly have come from us.
1087 */
1088 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1089 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1090 return (0);
1091
1092 for (;;) {
1093 status = TULIP_READ(sc, CSR_STATUS);
1094 if (status)
1095 TULIP_WRITE(sc, CSR_STATUS, status);
1096
1097 if ((status & sc->sc_inten) == 0)
1098 break;
1099
1100 handled = 1;
1101
1102 rxstatus = status & sc->sc_rxint_mask;
1103 txstatus = status & sc->sc_txint_mask;
1104
1105 if (rxstatus) {
1106 /* Grab new any new packets. */
1107 tlp_rxintr(sc);
1108
1109 if (rxstatus & STATUS_RWT)
1110 printf("%s: receive watchdog timeout\n",
1111 sc->sc_dev.dv_xname);
1112
1113 if (rxstatus & STATUS_RU) {
1114 printf("%s: receive ring overrun\n",
1115 sc->sc_dev.dv_xname);
1116 /* Get the receive process going again. */
1117 tlp_idle(sc, OPMODE_SR);
1118 TULIP_WRITE(sc, CSR_RXLIST,
1119 TULIP_CDRXADDR(sc, sc->sc_rxptr));
1120 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
1121 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1122 break;
1123 }
1124 }
1125
1126 if (txstatus) {
1127 /* Sweep up transmit descriptors. */
1128 tlp_txintr(sc);
1129
1130 if (txstatus & STATUS_TJT)
1131 printf("%s: transmit jabber timeout\n",
1132 sc->sc_dev.dv_xname);
1133
1134 if (txstatus & STATUS_UNF) {
1135 /*
1136 * Increase our transmit threshold if
1137 * another is available.
1138 */
1139 txthresh = sc->sc_txthresh + 1;
1140 if (sc->sc_txth[txthresh].txth_name != NULL) {
1141 /* Idle the transmit process. */
1142 tlp_idle(sc, OPMODE_ST);
1143
1144 sc->sc_txthresh = txthresh;
1145 sc->sc_opmode &= ~(OPMODE_TR|OPMODE_SF);
1146 sc->sc_opmode |=
1147 sc->sc_txth[txthresh].txth_opmode;
1148 printf("%s: transmit underrun; new "
1149 "threshold: %s\n",
1150 sc->sc_dev.dv_xname,
1151 sc->sc_txth[txthresh].txth_name);
1152
1153 /*
1154 * Set the new threshold and restart
1155 * the transmit process.
1156 */
1157 TULIP_WRITE(sc, CSR_OPMODE,
1158 sc->sc_opmode);
1159 }
1160 /*
1161 * XXX Log every Nth underrun from
1162 * XXX now on?
1163 */
1164 }
1165 }
1166
1167 if (status & (STATUS_TPS|STATUS_RPS)) {
1168 if (status & STATUS_TPS)
1169 printf("%s: transmit process stopped\n",
1170 sc->sc_dev.dv_xname);
1171 if (status & STATUS_RPS)
1172 printf("%s: receive process stopped\n",
1173 sc->sc_dev.dv_xname);
1174 (void) tlp_init(sc);
1175 break;
1176 }
1177
1178 if (status & STATUS_SE) {
1179 const char *str;
1180 switch (status & STATUS_EB) {
1181 case STATUS_EB_PARITY:
1182 str = "parity error";
1183 break;
1184
1185 case STATUS_EB_MABT:
1186 str = "master abort";
1187 break;
1188
1189 case STATUS_EB_TABT:
1190 str = "target abort";
1191 break;
1192
1193 default:
1194 str = "unknown error";
1195 break;
1196 }
1197 printf("%s: fatal system error: %s\n",
1198 sc->sc_dev.dv_xname, str);
1199 (void) tlp_init(sc);
1200 break;
1201 }
1202
1203 /*
1204 * Not handled:
1205 *
1206 * Transmit buffer unavailable -- normal
1207 * condition, nothing to do, really.
1208 *
1209 * General purpose timer experied -- we don't
1210 * use the general purpose timer.
1211 *
1212 * Early receive interrupt -- not available on
1213 * all chips, we just use RI. We also only
1214 * use single-segment receive DMA, so this
1215 * is mostly useless.
1216 */
1217 }
1218
1219 /* Try to get more packets going. */
1220 tlp_start(ifp);
1221
1222 return (handled);
1223 }
1224
1225 /*
1226 * tlp_rxintr:
1227 *
1228 * Helper; handle receive interrupts.
1229 */
1230 void
1231 tlp_rxintr(sc)
1232 struct tulip_softc *sc;
1233 {
1234 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1235 struct ether_header *eh;
1236 struct tulip_rxsoft *rxs;
1237 struct mbuf *m;
1238 u_int32_t rxstat;
1239 int i, len;
1240
1241 for (i = sc->sc_rxptr;; i = TULIP_NEXTRX(i)) {
1242 rxs = &sc->sc_rxsoft[i];
1243
1244 TULIP_CDRXSYNC(sc, i,
1245 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1246
1247 rxstat = le32toh(sc->sc_rxdescs[i].td_status);
1248
1249 if (rxstat & TDSTAT_OWN) {
1250 /*
1251 * We have processed all of the receive buffers.
1252 */
1253 break;
1254 }
1255
1256 /*
1257 * Make sure the packet fit in one buffer. This should
1258 * always be the case. But the Lite-On PNIC, rev 33
1259 * has an awful receive engine bug, which may require
1260 * a very icky work-around.
1261 */
1262 if ((rxstat & (TDSTAT_Rx_FS|TDSTAT_Rx_LS)) !=
1263 (TDSTAT_Rx_FS|TDSTAT_Rx_LS)) {
1264 printf("%s: incoming packet spilled, resetting\n",
1265 sc->sc_dev.dv_xname);
1266 (void) tlp_init(sc);
1267 return;
1268 }
1269
1270 /*
1271 * If any collisions were seen on the wire, count one.
1272 */
1273 if (rxstat & TDSTAT_Rx_CS)
1274 ifp->if_collisions++;
1275
1276 /*
1277 * If an error occured, update stats, clear the status
1278 * word, and leave the packet buffer in place. It will
1279 * simply be reused the next time the ring comes around.
1280 */
1281 if (rxstat & TDSTAT_ES) {
1282 #define PRINTERR(bit, str) \
1283 if (rxstat & (bit)) \
1284 printf("%s: receive error: %s\n", \
1285 sc->sc_dev.dv_xname, str)
1286 ifp->if_ierrors++;
1287 PRINTERR(TDSTAT_Rx_DE, "descriptor error");
1288 PRINTERR(TDSTAT_Rx_RF, "runt frame");
1289 PRINTERR(TDSTAT_Rx_TL, "frame too long");
1290 PRINTERR(TDSTAT_Rx_RE, "MII error");
1291 PRINTERR(TDSTAT_Rx_DB, "dribbling bit");
1292 PRINTERR(TDSTAT_Rx_CE, "CRC error");
1293 #undef PRINTERR
1294 TULIP_INIT_RXDESC(sc, i);
1295 continue;
1296 }
1297
1298 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1299 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1300
1301 /*
1302 * No errors; receive the packet. Note the Tulip
1303 * includes the CRC with every packet; trim it.
1304 */
1305 len = TDSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1306
1307 #ifdef __NO_STRICT_ALIGNMENT
1308 /*
1309 * Allocate a new mbuf cluster. If that fails, we are
1310 * out of memory, and must drop the packet and recycle
1311 * the buffer that's already attached to this descriptor.
1312 */
1313 m = rxs->rxs_mbuf;
1314 if (tlp_add_rxbuf(sc, i) != 0) {
1315 ifp->if_ierrors++;
1316 TULIP_INIT_RXDESC(sc, i);
1317 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1318 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1319 continue;
1320 }
1321 #else
1322 /*
1323 * The Tulip's receive buffers must be 4-byte aligned.
1324 * But this means that the data after the Ethernet header
1325 * is misaligned. We must allocate a new buffer and
1326 * copy the data, shifted forward 2 bytes.
1327 */
1328 MGETHDR(m, M_DONTWAIT, MT_DATA);
1329 if (m == NULL) {
1330 dropit:
1331 ifp->if_ierrors++;
1332 TULIP_INIT_RXDESC(sc, i);
1333 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1334 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1335 continue;
1336 }
1337 if (len > (MHLEN - 2)) {
1338 MCLGET(m, M_DONTWAIT);
1339 if ((m->m_flags & M_EXT) == 0) {
1340 m_freem(m);
1341 goto dropit;
1342 }
1343 }
1344 m->m_data += 2;
1345
1346 /*
1347 * Note that we use clusters for incoming frames, so the
1348 * buffer is virtually contiguous.
1349 */
1350 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1351
1352 /* Allow the receive descriptor to continue using its mbuf. */
1353 TULIP_INIT_RXDESC(sc, i);
1354 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1355 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1356 #endif /* __NO_STRICT_ALIGNMENT */
1357
1358 ifp->if_ipackets++;
1359 eh = mtod(m, struct ether_header *);
1360 m->m_pkthdr.rcvif = ifp;
1361 m->m_pkthdr.len = m->m_len = len;
1362
1363 #if NBPFILTER > 0
1364 /*
1365 * Pass this up to any BPF listeners, but only
1366 * pass it up the stack if its for us.
1367 */
1368 if (ifp->if_bpf)
1369 bpf_mtap(ifp->if_bpf, m);
1370 #endif /* NPBFILTER > 0 */
1371
1372 /*
1373 * This test is outside the NBPFILTER block because
1374 * on the 21140 we have to use Hash-Only mode due to
1375 * a bug in the filter logic.
1376 */
1377 if ((ifp->if_flags & IFF_PROMISC) != 0 ||
1378 sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) {
1379 if (memcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
1380 ETHER_ADDR_LEN) != 0 &&
1381 ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
1382 m_freem(m);
1383 continue;
1384 }
1385 }
1386
1387 /* Pass it on. */
1388 (*ifp->if_input)(ifp, m);
1389 }
1390
1391 /* Update the recieve pointer. */
1392 sc->sc_rxptr = i;
1393 }
1394
1395 /*
1396 * tlp_txintr:
1397 *
1398 * Helper; handle transmit interrupts.
1399 */
1400 void
1401 tlp_txintr(sc)
1402 struct tulip_softc *sc;
1403 {
1404 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1405 struct tulip_txsoft *txs;
1406 u_int32_t txstat;
1407
1408 DPRINTF(sc, ("%s: tlp_txintr: sc_flags 0x%08x\n",
1409 sc->sc_dev.dv_xname, sc->sc_flags));
1410
1411 ifp->if_flags &= ~IFF_OACTIVE;
1412
1413 /*
1414 * Go through our Tx list and free mbufs for those
1415 * frames that have been transmitted.
1416 */
1417 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1418 TULIP_CDTXSYNC(sc, txs->txs_lastdesc,
1419 txs->txs_ndescs,
1420 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1421
1422 #ifdef TLP_DEBUG
1423 if (ifp->if_flags & IFF_DEBUG) {
1424 int i;
1425 printf(" txsoft %p trainsmit chain:\n", txs);
1426 for (i = txs->txs_firstdesc;; i = TULIP_NEXTTX(i)) {
1427 printf(" descriptor %d:\n", i);
1428 printf(" td_status: 0x%08x\n",
1429 le32toh(sc->sc_txdescs[i].td_status));
1430 printf(" td_ctl: 0x%08x\n",
1431 le32toh(sc->sc_txdescs[i].td_ctl));
1432 printf(" td_bufaddr1: 0x%08x\n",
1433 le32toh(sc->sc_txdescs[i].td_bufaddr1));
1434 printf(" td_bufaddr2: 0x%08x\n",
1435 le32toh(sc->sc_txdescs[i].td_bufaddr2));
1436 if (i == txs->txs_lastdesc)
1437 break;
1438 }
1439 }
1440 #endif
1441
1442 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].td_status);
1443 if (txstat & TDSTAT_OWN)
1444 break;
1445
1446 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1447
1448 sc->sc_txfree += txs->txs_ndescs;
1449
1450 if (txs->txs_mbuf == NULL) {
1451 /*
1452 * If we didn't have an mbuf, it was the setup
1453 * packet.
1454 */
1455 #ifdef DIAGNOSTIC
1456 if ((sc->sc_flags & TULIPF_DOING_SETUP) == 0)
1457 panic("tlp_txintr: null mbuf, not doing setup");
1458 #endif
1459 TULIP_CDSPSYNC(sc, BUS_DMASYNC_POSTWRITE);
1460 sc->sc_flags &= ~TULIPF_DOING_SETUP;
1461 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1462 continue;
1463 }
1464
1465 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1466 0, txs->txs_dmamap->dm_mapsize,
1467 BUS_DMASYNC_POSTWRITE);
1468 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1469 m_freem(txs->txs_mbuf);
1470 txs->txs_mbuf = NULL;
1471
1472 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1473
1474 /*
1475 * Check for errors and collisions.
1476 */
1477 #ifdef TLP_STATS
1478 if (txstat & TDSTAT_Tx_UF)
1479 sc->sc_stats.ts_tx_uf++;
1480 if (txstat & TDSTAT_Tx_TO)
1481 sc->sc_stats.ts_tx_to++;
1482 if (txstat & TDSTAT_Tx_EC)
1483 sc->sc_stats.ts_tx_ec++;
1484 if (txstat & TDSTAT_Tx_LC)
1485 sc->sc_stats.ts_tx_lc++;
1486 #endif
1487
1488 if (txstat & (TDSTAT_Tx_UF|TDSTAT_Tx_TO))
1489 ifp->if_oerrors++;
1490
1491 if (txstat & TDSTAT_Tx_EC)
1492 ifp->if_collisions += 16;
1493 else
1494 ifp->if_collisions += TDSTAT_Tx_COLLISIONS(txstat);
1495 if (txstat & TDSTAT_Tx_LC)
1496 ifp->if_collisions++;
1497
1498 ifp->if_opackets++;
1499 }
1500
1501 /*
1502 * If there are no more pending transmissions, cancel the watchdog
1503 * timer.
1504 */
1505 if (txs == NULL && (sc->sc_flags & TULIPF_DOING_SETUP) == 0)
1506 ifp->if_timer = 0;
1507
1508 /*
1509 * If we have a receive filter setup pending, do it now.
1510 */
1511 if (sc->sc_flags & TULIPF_WANT_SETUP)
1512 (*sc->sc_filter_setup)(sc);
1513 }
1514
1515 #ifdef TLP_STATS
1516 void
1517 tlp_print_stats(sc)
1518 struct tulip_softc *sc;
1519 {
1520
1521 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1522 sc->sc_dev.dv_xname,
1523 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1524 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1525 }
1526 #endif
1527
1528 /*
1529 * tlp_reset:
1530 *
1531 * Perform a soft reset on the Tulip.
1532 */
1533 void
1534 tlp_reset(sc)
1535 struct tulip_softc *sc;
1536 {
1537 int i;
1538
1539 TULIP_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1540
1541 /*
1542 * Xircom clone doesn't bring itself out of reset automatically.
1543 * Instead, we have to wait at least 50 PCI cycles, and then
1544 * clear SWR.
1545 */
1546 if (sc->sc_chip == TULIP_CHIP_X3201_3) {
1547 delay(10);
1548 TULIP_WRITE(sc, CSR_BUSMODE, 0);
1549 }
1550
1551 for (i = 0; i < 1000; i++) {
1552 /*
1553 * Wait at least 50 PCI cycles for the reset to
1554 * complete before peeking at the Tulip again.
1555 * 10 uSec is a bit longer than 50 PCI cycles
1556 * (at 33MHz), but it doesn't hurt have the extra
1557 * wait.
1558 */
1559 delay(10);
1560 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1561 break;
1562 }
1563
1564 if (TULIP_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1565 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1566
1567 delay(1000);
1568
1569 /*
1570 * If the board has any GPIO reset sequences to issue, do them now.
1571 */
1572 if (sc->sc_reset != NULL)
1573 (*sc->sc_reset)(sc);
1574 }
1575
1576 /*
1577 * tlp_init:
1578 *
1579 * Initialize the interface. Must be called at splnet().
1580 */
1581 int
1582 tlp_init(sc)
1583 struct tulip_softc *sc;
1584 {
1585 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1586 struct tulip_txsoft *txs;
1587 struct tulip_rxsoft *rxs;
1588 int i, error = 0;
1589
1590 /*
1591 * Cancel any pending I/O.
1592 */
1593 tlp_stop(sc, 0);
1594
1595 /*
1596 * Initialize `opmode' to 0, and call the pre-init routine, if
1597 * any. This is required because the 2114x and some of the
1598 * clones require that the media-related bits in `opmode' be
1599 * set before performing a soft-reset in order to get internal
1600 * chip pathways are correct. Yay!
1601 */
1602 sc->sc_opmode = 0;
1603 if (sc->sc_preinit != NULL)
1604 (*sc->sc_preinit)(sc);
1605
1606 /*
1607 * Reset the Tulip to a known state.
1608 */
1609 tlp_reset(sc);
1610
1611 /*
1612 * Initialize the BUSMODE register.
1613 */
1614 sc->sc_busmode = BUSMODE_BAR;
1615 switch (sc->sc_chip) {
1616 case TULIP_CHIP_21140:
1617 case TULIP_CHIP_21140A:
1618 case TULIP_CHIP_21142:
1619 case TULIP_CHIP_21143:
1620 case TULIP_CHIP_82C115:
1621 case TULIP_CHIP_MX98725:
1622 /*
1623 * If we're allowed to do so, use Memory Read Line
1624 * and Memory Read Multiple.
1625 *
1626 * XXX Should we use Memory Write and Invalidate?
1627 */
1628 if (sc->sc_flags & TULIPF_MRL)
1629 sc->sc_busmode |= BUSMODE_RLE;
1630 if (sc->sc_flags & TULIPF_MRM)
1631 sc->sc_busmode |= BUSMODE_RME;
1632 #if 0
1633 if (sc->sc_flags & TULIPF_MWI)
1634 sc->sc_busmode |= BUSMODE_WLE;
1635 #endif
1636
1637 default:
1638 /* Nothing. */
1639 }
1640 switch (sc->sc_cacheline) {
1641 default:
1642 /*
1643 * Note: We must *always* set these bits; a cache
1644 * alignment of 0 is RESERVED.
1645 */
1646 case 8:
1647 sc->sc_busmode |= BUSMODE_CAL_8LW;
1648 break;
1649 case 16:
1650 sc->sc_busmode |= BUSMODE_CAL_16LW;
1651 break;
1652 case 32:
1653 sc->sc_busmode |= BUSMODE_CAL_32LW;
1654 break;
1655 }
1656 switch (sc->sc_chip) {
1657 case TULIP_CHIP_82C168:
1658 case TULIP_CHIP_82C169:
1659 sc->sc_busmode |= BUSMODE_PBL_16LW | BUSMODE_PNIC_MBO;
1660 break;
1661 default:
1662 sc->sc_busmode |= BUSMODE_PBL_DEFAULT;
1663 break;
1664 }
1665 #if BYTE_ORDER == BIG_ENDIAN
1666 /*
1667 * Can't use BUSMODE_BLE or BUSMODE_DBO; not all chips
1668 * support them, and even on ones that do, it doesn't
1669 * always work.
1670 */
1671 #endif
1672 TULIP_WRITE(sc, CSR_BUSMODE, sc->sc_busmode);
1673
1674 /*
1675 * Initialize the OPMODE register. We don't write it until
1676 * we're ready to begin the transmit and receive processes.
1677 *
1678 * Media-related OPMODE bits are set in the media callbacks
1679 * for each specific chip/board.
1680 */
1681 sc->sc_opmode |= OPMODE_SR | OPMODE_ST |
1682 sc->sc_txth[sc->sc_txthresh].txth_opmode;
1683
1684 /*
1685 * Magical mystery initialization on the Macronix chips.
1686 * The MX98713 uses its own magic value, the rest share
1687 * a common one.
1688 */
1689 switch (sc->sc_chip) {
1690 case TULIP_CHIP_MX98713:
1691 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98713);
1692 break;
1693
1694 case TULIP_CHIP_MX98713A:
1695 case TULIP_CHIP_MX98715:
1696 case TULIP_CHIP_MX98715A:
1697 case TULIP_CHIP_MX98725:
1698 TULIP_WRITE(sc, CSR_PMAC_TOR, PMAC_TOR_98715);
1699 break;
1700
1701 default:
1702 /* Nothing. */
1703 }
1704
1705 /*
1706 * Initialize the transmit descriptor ring.
1707 */
1708 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1709 for (i = 0; i < TULIP_NTXDESC; i++) {
1710 sc->sc_txdescs[i].td_ctl = htole32(sc->sc_tdctl_ch);
1711 sc->sc_txdescs[i].td_bufaddr2 =
1712 htole32(TULIP_CDTXADDR(sc, TULIP_NEXTTX(i)));
1713 }
1714 sc->sc_txdescs[TULIP_NTXDESC - 1].td_ctl |= htole32(sc->sc_tdctl_er);
1715 TULIP_CDTXSYNC(sc, 0, TULIP_NTXDESC,
1716 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1717 sc->sc_txfree = TULIP_NTXDESC;
1718 sc->sc_txnext = 0;
1719
1720 /*
1721 * Initialize the transmit job descriptors.
1722 */
1723 SIMPLEQ_INIT(&sc->sc_txfreeq);
1724 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1725 for (i = 0; i < TULIP_TXQUEUELEN; i++) {
1726 txs = &sc->sc_txsoft[i];
1727 txs->txs_mbuf = NULL;
1728 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1729 }
1730
1731 /*
1732 * Initialize the receive descriptor and receive job
1733 * descriptor rings.
1734 */
1735 for (i = 0; i < TULIP_NRXDESC; i++) {
1736 rxs = &sc->sc_rxsoft[i];
1737 if (rxs->rxs_mbuf == NULL) {
1738 if ((error = tlp_add_rxbuf(sc, i)) != 0) {
1739 printf("%s: unable to allocate or map rx "
1740 "buffer %d, error = %d\n",
1741 sc->sc_dev.dv_xname, i, error);
1742 /*
1743 * XXX Should attempt to run with fewer receive
1744 * XXX buffers instead of just failing.
1745 */
1746 tlp_rxdrain(sc);
1747 goto out;
1748 }
1749 }
1750 }
1751 sc->sc_rxptr = 0;
1752
1753 /*
1754 * Initialize the interrupt mask and enable interrupts.
1755 */
1756 /* normal interrupts */
1757 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1758
1759 /* abnormal interrupts */
1760 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1761 STATUS_RU | STATUS_RPS | STATUS_RWT | STATUS_SE | STATUS_AIS;
1762
1763 sc->sc_rxint_mask = STATUS_RI|STATUS_RU|STATUS_RWT;
1764 sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1765
1766 switch (sc->sc_chip) {
1767 case TULIP_CHIP_WB89C840F:
1768 /*
1769 * Clear bits that we don't want that happen to
1770 * overlap or don't exist.
1771 */
1772 sc->sc_inten &= ~(STATUS_WINB_REI|STATUS_RWT);
1773 break;
1774
1775 default:
1776 /* Nothing. */
1777 }
1778
1779 sc->sc_rxint_mask &= sc->sc_inten;
1780 sc->sc_txint_mask &= sc->sc_inten;
1781
1782 TULIP_WRITE(sc, CSR_INTEN, sc->sc_inten);
1783 TULIP_WRITE(sc, CSR_STATUS, 0xffffffff);
1784
1785 /*
1786 * Give the transmit and receive rings to the Tulip.
1787 */
1788 TULIP_WRITE(sc, CSR_TXLIST, TULIP_CDTXADDR(sc, sc->sc_txnext));
1789 TULIP_WRITE(sc, CSR_RXLIST, TULIP_CDRXADDR(sc, sc->sc_rxptr));
1790
1791 /*
1792 * On chips that do this differently, set the station address.
1793 */
1794 switch (sc->sc_chip) {
1795 case TULIP_CHIP_WB89C840F:
1796 {
1797 /* XXX Do this with stream writes? */
1798 bus_addr_t cpa = TULIP_CSR_OFFSET(sc, CSR_WINB_CPA0);
1799
1800 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1801 bus_space_write_1(sc->sc_st, sc->sc_sh,
1802 cpa + i, LLADDR(ifp->if_sadl)[i]);
1803 }
1804 break;
1805 }
1806
1807 case TULIP_CHIP_AL981:
1808 {
1809 u_int32_t reg;
1810 u_int8_t *enaddr = LLADDR(ifp->if_sadl);
1811
1812 reg = enaddr[0] |
1813 (enaddr[1] << 8) |
1814 (enaddr[2] << 16) |
1815 (enaddr[3] << 24);
1816 bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_PAR0, reg);
1817
1818 reg = enaddr[4] |
1819 (enaddr[5] << 8);
1820 bus_space_write_4(sc->sc_st, sc->sc_sh, CSR_ADM_PAR1, reg);
1821 }
1822
1823 default:
1824 /* Nothing. */
1825 }
1826
1827 /*
1828 * Set the receive filter. This will start the transmit and
1829 * receive processes.
1830 */
1831 (*sc->sc_filter_setup)(sc);
1832
1833 /*
1834 * Set the current media.
1835 */
1836 (void) (*sc->sc_mediasw->tmsw_set)(sc);
1837
1838 /*
1839 * Start the receive process.
1840 */
1841 TULIP_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1842
1843 if (sc->sc_tick != NULL) {
1844 /* Start the one second clock. */
1845 timeout(sc->sc_tick, sc, hz);
1846 }
1847
1848 /*
1849 * Note that the interface is now running.
1850 */
1851 ifp->if_flags |= IFF_RUNNING;
1852 ifp->if_flags &= ~IFF_OACTIVE;
1853
1854 out:
1855 if (error)
1856 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1857 return (error);
1858 }
1859
1860 /*
1861 * tlp_enable:
1862 *
1863 * Enable the Tulip chip.
1864 */
1865 int
1866 tlp_enable(sc)
1867 struct tulip_softc *sc;
1868 {
1869
1870 if (TULIP_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
1871 if ((*sc->sc_enable)(sc) != 0) {
1872 printf("%s: device enable failed\n",
1873 sc->sc_dev.dv_xname);
1874 return (EIO);
1875 }
1876 sc->sc_flags |= TULIPF_ENABLED;
1877 }
1878 return (0);
1879 }
1880
1881 /*
1882 * tlp_disable:
1883 *
1884 * Disable the Tulip chip.
1885 */
1886 void
1887 tlp_disable(sc)
1888 struct tulip_softc *sc;
1889 {
1890
1891 if (TULIP_IS_ENABLED(sc) && sc->sc_disable != NULL) {
1892 (*sc->sc_disable)(sc);
1893 sc->sc_flags &= ~TULIPF_ENABLED;
1894 }
1895 }
1896
1897 /*
1898 * tlp_power:
1899 *
1900 * Power management (suspend/resume) hook.
1901 */
1902 void
1903 tlp_power(why, arg)
1904 int why;
1905 void *arg;
1906 {
1907 struct tulip_softc *sc = arg;
1908 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1909 int s;
1910
1911 s = splnet();
1912 if (why != PWR_RESUME) {
1913 tlp_stop(sc, 0);
1914 if (sc->sc_power != NULL)
1915 (*sc->sc_power)(sc, why);
1916 } else if (ifp->if_flags & IFF_UP) {
1917 if (sc->sc_power != NULL)
1918 (*sc->sc_power)(sc, why);
1919 tlp_init(sc);
1920 }
1921 splx(s);
1922 }
1923
1924 /*
1925 * tlp_rxdrain:
1926 *
1927 * Drain the receive queue.
1928 */
1929 void
1930 tlp_rxdrain(sc)
1931 struct tulip_softc *sc;
1932 {
1933 struct tulip_rxsoft *rxs;
1934 int i;
1935
1936 for (i = 0; i < TULIP_NRXDESC; i++) {
1937 rxs = &sc->sc_rxsoft[i];
1938 if (rxs->rxs_mbuf != NULL) {
1939 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1940 m_freem(rxs->rxs_mbuf);
1941 rxs->rxs_mbuf = NULL;
1942 }
1943 }
1944 }
1945
1946 /*
1947 * tlp_stop:
1948 *
1949 * Stop transmission on the interface.
1950 */
1951 void
1952 tlp_stop(sc, drain)
1953 struct tulip_softc *sc;
1954 int drain;
1955 {
1956 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1957 struct tulip_txsoft *txs;
1958
1959 if (sc->sc_tick != NULL) {
1960 /* Stop the one second clock. */
1961 untimeout(sc->sc_tick, sc);
1962 }
1963
1964 if (sc->sc_flags & TULIPF_HAS_MII) {
1965 /* Down the MII. */
1966 mii_down(&sc->sc_mii);
1967 }
1968
1969 /* Disable interrupts. */
1970 TULIP_WRITE(sc, CSR_INTEN, 0);
1971
1972 /* Stop the transmit and receive processes. */
1973 TULIP_WRITE(sc, CSR_OPMODE, 0);
1974 TULIP_WRITE(sc, CSR_RXLIST, 0);
1975 TULIP_WRITE(sc, CSR_TXLIST, 0);
1976
1977 /*
1978 * Release any queued transmit buffers.
1979 */
1980 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1981 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1982 if (txs->txs_mbuf != NULL) {
1983 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1984 m_freem(txs->txs_mbuf);
1985 txs->txs_mbuf = NULL;
1986 }
1987 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1988 }
1989
1990 if (drain) {
1991 /*
1992 * Release the receive buffers.
1993 */
1994 tlp_rxdrain(sc);
1995 }
1996
1997 sc->sc_flags &= ~(TULIPF_WANT_SETUP|TULIPF_DOING_SETUP);
1998
1999 /*
2000 * Mark the interface down and cancel the watchdog timer.
2001 */
2002 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2003 ifp->if_timer = 0;
2004 }
2005
2006 #define SROM_EMIT(sc, x) \
2007 do { \
2008 TULIP_WRITE((sc), CSR_MIIROM, (x)); \
2009 delay(2); \
2010 } while (0)
2011
2012 /*
2013 * tlp_srom_idle:
2014 *
2015 * Put the SROM in idle state.
2016 */
2017 void
2018 tlp_srom_idle(sc)
2019 struct tulip_softc *sc;
2020 {
2021 u_int32_t miirom;
2022 int i;
2023
2024 miirom = MIIROM_SR;
2025 SROM_EMIT(sc, miirom);
2026
2027 miirom |= MIIROM_RD;
2028 SROM_EMIT(sc, miirom);
2029
2030 miirom |= MIIROM_SROMCS;
2031 SROM_EMIT(sc, miirom);
2032
2033 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
2034
2035 /* Strobe the clock 32 times. */
2036 for (i = 0; i < 32; i++) {
2037 SROM_EMIT(sc, miirom);
2038 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
2039 }
2040
2041 SROM_EMIT(sc, miirom);
2042
2043 miirom &= ~MIIROM_SROMCS;
2044 SROM_EMIT(sc, miirom);
2045
2046 SROM_EMIT(sc, 0);
2047 }
2048
2049 /*
2050 * tlp_srom_size:
2051 *
2052 * Determine the number of address bits in the SROM.
2053 */
2054 int
2055 tlp_srom_size(sc)
2056 struct tulip_softc *sc;
2057 {
2058 u_int32_t miirom;
2059 int x;
2060
2061 /* Select the SROM. */
2062 miirom = MIIROM_SR;
2063 SROM_EMIT(sc, miirom);
2064
2065 miirom |= MIIROM_RD;
2066 SROM_EMIT(sc, miirom);
2067
2068 /* Send CHIP SELECT for one clock tick. */
2069 miirom |= MIIROM_SROMCS;
2070 SROM_EMIT(sc, miirom);
2071
2072 /* Shift in the READ opcode. */
2073 for (x = 3; x > 0; x--) {
2074 if (TULIP_SROM_OPC_READ & (1 << (x - 1)))
2075 miirom |= MIIROM_SROMDI;
2076 else
2077 miirom &= ~MIIROM_SROMDI;
2078 SROM_EMIT(sc, miirom);
2079 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
2080 SROM_EMIT(sc, miirom);
2081 }
2082
2083 /* Shift in address and look for dummy 0 bit. */
2084 for (x = 1; x <= 12; x++) {
2085 miirom &= ~MIIROM_SROMDI;
2086 SROM_EMIT(sc, miirom);
2087 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
2088 if (!TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO))
2089 break;
2090 SROM_EMIT(sc, miirom);
2091 }
2092
2093 /* Clear CHIP SELECT. */
2094 miirom &= ~MIIROM_SROMCS;
2095 SROM_EMIT(sc, miirom);
2096
2097 /* Deselect the SROM. */
2098 SROM_EMIT(sc, 0);
2099
2100 if (x > 12) {
2101 printf("%s: failed to find SROM size\n", sc->sc_dev.dv_xname);
2102 return (0);
2103 } else {
2104 #ifdef TLP_DEBUG
2105 printf("%s: SROM size is 2^%d*16 bits (%d bytes)\n",
2106 sc->sc_dev.dv_xname, x, (1 << (x + 4)) >> 3);
2107 #endif
2108 return (x);
2109 }
2110 }
2111
2112 /*
2113 * tlp_read_srom:
2114 *
2115 * Read the Tulip SROM.
2116 */
2117 int
2118 tlp_read_srom(sc)
2119 struct tulip_softc *sc;
2120 {
2121 int size;
2122 u_int32_t miirom;
2123 u_int16_t datain;
2124 int i, x;
2125
2126 tlp_srom_idle(sc);
2127
2128 sc->sc_srom_addrbits = tlp_srom_size(sc);
2129 if (sc->sc_srom_addrbits == 0)
2130 return (0);
2131 size = TULIP_ROM_SIZE(sc->sc_srom_addrbits);
2132 sc->sc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
2133
2134 /* Select the SROM. */
2135 miirom = MIIROM_SR;
2136 SROM_EMIT(sc, miirom);
2137
2138 miirom |= MIIROM_RD;
2139 SROM_EMIT(sc, miirom);
2140
2141 for (i = 0; i < size; i += 2) {
2142 /* Send CHIP SELECT for one clock tick. */
2143 miirom |= MIIROM_SROMCS;
2144 SROM_EMIT(sc, miirom);
2145
2146 /* Shift in the READ opcode. */
2147 for (x = 3; x > 0; x--) {
2148 if (TULIP_SROM_OPC_READ & (1 << (x - 1)))
2149 miirom |= MIIROM_SROMDI;
2150 else
2151 miirom &= ~MIIROM_SROMDI;
2152 SROM_EMIT(sc, miirom);
2153 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
2154 SROM_EMIT(sc, miirom);
2155 }
2156
2157 /* Shift in address. */
2158 for (x = sc->sc_srom_addrbits; x > 0; x--) {
2159 if (i & (1 << x))
2160 miirom |= MIIROM_SROMDI;
2161 else
2162 miirom &= ~MIIROM_SROMDI;
2163 SROM_EMIT(sc, miirom);
2164 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
2165 SROM_EMIT(sc, miirom);
2166 }
2167
2168 /* Shift out data. */
2169 miirom &= ~MIIROM_SROMDI;
2170 datain = 0;
2171 for (x = 16; x > 0; x--) {
2172 SROM_EMIT(sc, miirom|MIIROM_SROMSK);
2173 if (TULIP_ISSET(sc, CSR_MIIROM, MIIROM_SROMDO))
2174 datain |= (1 << (x - 1));
2175 SROM_EMIT(sc, miirom);
2176 }
2177 sc->sc_srom[i] = datain & 0xff;
2178 sc->sc_srom[i + 1] = datain >> 8;
2179
2180 /* Clear CHIP SELECT. */
2181 miirom &= ~MIIROM_SROMCS;
2182 SROM_EMIT(sc, miirom);
2183 }
2184
2185 /* Deselect the SROM. */
2186 SROM_EMIT(sc, 0);
2187
2188 /* ...and idle it. */
2189 tlp_srom_idle(sc);
2190
2191 #if 0
2192 printf("SROM CONTENTS:");
2193 for (i = 0; i < size; i++) {
2194 if ((i % 8) == 0)
2195 printf("\n\t");
2196 printf("0x%02x ", sc->sc_srom[i]);
2197 }
2198 printf("\n");
2199 #endif
2200
2201 return (1);
2202 }
2203
2204 #undef SROM_EMIT
2205
2206 /*
2207 * tlp_add_rxbuf:
2208 *
2209 * Add a receive buffer to the indicated descriptor.
2210 */
2211 int
2212 tlp_add_rxbuf(sc, idx)
2213 struct tulip_softc *sc;
2214 int idx;
2215 {
2216 struct tulip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2217 struct mbuf *m;
2218 int error;
2219
2220 MGETHDR(m, M_DONTWAIT, MT_DATA);
2221 if (m == NULL)
2222 return (ENOBUFS);
2223
2224 MCLGET(m, M_DONTWAIT);
2225 if ((m->m_flags & M_EXT) == 0) {
2226 m_freem(m);
2227 return (ENOBUFS);
2228 }
2229
2230 if (rxs->rxs_mbuf != NULL)
2231 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2232
2233 rxs->rxs_mbuf = m;
2234
2235 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2236 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
2237 if (error) {
2238 printf("%s: can't load rx DMA map %d, error = %d\n",
2239 sc->sc_dev.dv_xname, idx, error);
2240 panic("tlp_add_rxbuf"); /* XXX */
2241 }
2242
2243 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2244 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2245
2246 TULIP_INIT_RXDESC(sc, idx);
2247
2248 return (0);
2249 }
2250
2251 /*
2252 * tlp_crc32:
2253 *
2254 * Compute the 32-bit CRC of the provided buffer.
2255 */
2256 u_int32_t
2257 tlp_crc32(buf, len)
2258 const u_int8_t *buf;
2259 size_t len;
2260 {
2261 static const u_int32_t crctab[] = {
2262 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
2263 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
2264 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
2265 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
2266 };
2267 u_int32_t crc;
2268 int i;
2269
2270 crc = 0xffffffff;
2271 for (i = 0; i < len; i++) {
2272 crc ^= buf[i];
2273 crc = (crc >> 4) ^ crctab[crc & 0xf];
2274 crc = (crc >> 4) ^ crctab[crc & 0xf];
2275 }
2276 return (crc);
2277 }
2278
2279 /*
2280 * tlp_srom_crcok:
2281 *
2282 * Check the CRC of the Tulip SROM.
2283 */
2284 int
2285 tlp_srom_crcok(romdata)
2286 const u_int8_t *romdata;
2287 {
2288 u_int32_t crc;
2289
2290 crc = tlp_crc32(romdata, TULIP_ROM_CRC32_CHECKSUM);
2291 crc = (crc & 0xffff) ^ 0xffff;
2292 if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM))
2293 return (1);
2294
2295 /*
2296 * Try an alternate checksum.
2297 */
2298 crc = tlp_crc32(romdata, TULIP_ROM_CRC32_CHECKSUM1);
2299 crc = (crc & 0xffff) ^ 0xffff;
2300 if (crc == TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM1))
2301 return (1);
2302
2303 return (0);
2304 }
2305
2306 /*
2307 * tlp_isv_srom:
2308 *
2309 * Check to see if the SROM is in the new standardized format.
2310 */
2311 int
2312 tlp_isv_srom(romdata)
2313 const u_int8_t *romdata;
2314 {
2315 int i;
2316 u_int16_t cksum;
2317
2318 if (tlp_srom_crcok(romdata)) {
2319 /*
2320 * SROM CRC checks out; must be in the new format.
2321 */
2322 return (1);
2323 }
2324
2325 cksum = TULIP_ROM_GETW(romdata, TULIP_ROM_CRC32_CHECKSUM);
2326 if (cksum == 0xffff || cksum == 0) {
2327 /*
2328 * No checksum present. Check the SROM ID; 18 bytes of 0
2329 * followed by 1 (version) followed by the number of
2330 * adapters which use this SROM (should be non-zero).
2331 */
2332 for (i = 0; i < TULIP_ROM_SROM_FORMAT_VERION; i++) {
2333 if (romdata[i] != 0)
2334 return (0);
2335 }
2336 if (romdata[TULIP_ROM_SROM_FORMAT_VERION] != 1)
2337 return (0);
2338 if (romdata[TULIP_ROM_CHIP_COUNT] == 0)
2339 return (0);
2340 return (1);
2341 }
2342
2343 return (0);
2344 }
2345
2346 /*
2347 * tlp_isv_srom_enaddr:
2348 *
2349 * Get the Ethernet address from an ISV SROM.
2350 */
2351 int
2352 tlp_isv_srom_enaddr(sc, enaddr)
2353 struct tulip_softc *sc;
2354 u_int8_t *enaddr;
2355 {
2356 int i, devcnt;
2357
2358 if (tlp_isv_srom(sc->sc_srom) == 0)
2359 return (0);
2360
2361 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT];
2362 for (i = 0; i < devcnt; i++) {
2363 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1)
2364 break;
2365 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] ==
2366 sc->sc_devno)
2367 break;
2368 }
2369
2370 if (i == devcnt)
2371 return (0);
2372
2373 memcpy(enaddr, &sc->sc_srom[TULIP_ROM_IEEE_NETWORK_ADDRESS],
2374 ETHER_ADDR_LEN);
2375 enaddr[5] += i;
2376
2377 return (1);
2378 }
2379
2380 /*
2381 * tlp_parse_old_srom:
2382 *
2383 * Parse old-format SROMs.
2384 *
2385 * This routine is largely lifted from Matt Thomas's `de' driver.
2386 */
2387 int
2388 tlp_parse_old_srom(sc, enaddr)
2389 struct tulip_softc *sc;
2390 u_int8_t *enaddr;
2391 {
2392 static const u_int8_t testpat[] =
2393 { 0xff, 0, 0x55, 0xaa, 0xff, 0, 0x55, 0xaa };
2394 int i;
2395 u_int32_t cksum;
2396
2397 if (memcmp(&sc->sc_srom[0], &sc->sc_srom[16], 8) != 0) {
2398 /*
2399 * Some vendors (e.g. ZNYX) don't use the standard
2400 * DEC Address ROM format, but rather just have an
2401 * Ethernet address in the first 6 bytes, maybe a
2402 * 2 byte checksum, and then all 0xff's.
2403 *
2404 * On the other hand, Cobalt Networks interfaces
2405 * simply have the address in the first six bytes
2406 * with the rest zeroed out.
2407 */
2408 for (i = 8; i < 32; i++) {
2409 if (sc->sc_srom[i] != 0xff &&
2410 sc->sc_srom[i] != 0)
2411 return (0);
2412 }
2413
2414 /*
2415 * Sanity check the Ethernet address:
2416 *
2417 * - Make sure it's not multicast or locally
2418 * assigned
2419 * - Make sure it has a non-0 OUI
2420 */
2421 if (sc->sc_srom[0] & 3)
2422 return (0);
2423 if (sc->sc_srom[0] == 0 && sc->sc_srom[1] == 0 &&
2424 sc->sc_srom[2] == 0)
2425 return (0);
2426
2427 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN);
2428 return (1);
2429 }
2430
2431 /*
2432 * Standard DEC Address ROM test.
2433 */
2434
2435 if (memcmp(&sc->sc_srom[24], testpat, 8) != 0)
2436 return (0);
2437
2438 for (i = 0; i < 8; i++) {
2439 if (sc->sc_srom[i] != sc->sc_srom[15 - i])
2440 return (0);
2441 }
2442
2443 memcpy(enaddr, sc->sc_srom, ETHER_ADDR_LEN);
2444
2445 cksum = *(u_int16_t *) &enaddr[0];
2446
2447 cksum <<= 1;
2448 if (cksum > 0xffff)
2449 cksum -= 0xffff;
2450
2451 cksum += *(u_int16_t *) &enaddr[2];
2452 if (cksum > 0xffff)
2453 cksum -= 0xffff;
2454
2455 cksum <<= 1;
2456 if (cksum > 0xffff)
2457 cksum -= 0xffff;
2458
2459 cksum += *(u_int16_t *) &enaddr[4];
2460 if (cksum >= 0xffff)
2461 cksum -= 0xffff;
2462
2463 if (cksum != *(u_int16_t *) &sc->sc_srom[6])
2464 return (0);
2465
2466 return (1);
2467 }
2468
2469 /*
2470 * tlp_filter_setup:
2471 *
2472 * Set the Tulip's receive filter.
2473 */
2474 void
2475 tlp_filter_setup(sc)
2476 struct tulip_softc *sc;
2477 {
2478 struct ethercom *ec = &sc->sc_ethercom;
2479 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2480 struct ether_multi *enm;
2481 struct ether_multistep step;
2482 __volatile u_int32_t *sp;
2483 struct tulip_txsoft *txs;
2484 u_int8_t enaddr[ETHER_ADDR_LEN];
2485 u_int32_t hash, hashsize;
2486 int cnt;
2487
2488 DPRINTF(sc, ("%s: tlp_filter_setup: sc_flags 0x%08x\n",
2489 sc->sc_dev.dv_xname, sc->sc_flags));
2490
2491 memcpy(enaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
2492
2493 /*
2494 * If there are transmissions pending, wait until they have
2495 * completed.
2496 */
2497 if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) != NULL ||
2498 (sc->sc_flags & TULIPF_DOING_SETUP) != 0) {
2499 sc->sc_flags |= TULIPF_WANT_SETUP;
2500 DPRINTF(sc, ("%s: tlp_filter_setup: deferring\n",
2501 sc->sc_dev.dv_xname));
2502 return;
2503 }
2504 sc->sc_flags &= ~TULIPF_WANT_SETUP;
2505
2506 switch (sc->sc_chip) {
2507 case TULIP_CHIP_82C115:
2508 hashsize = TULIP_PNICII_HASHSIZE;
2509 break;
2510
2511 default:
2512 hashsize = TULIP_MCHASHSIZE;
2513 }
2514
2515 /*
2516 * If we're running, idle the transmit and receive engines. If
2517 * we're NOT running, we're being called from tlp_init(), and our
2518 * writing OPMODE will start the transmit and receive processes
2519 * in motion.
2520 */
2521 if (ifp->if_flags & IFF_RUNNING) {
2522 /*
2523 * Actually, some chips seem to need a really hard
2524 * kick in the head for this to work. The genuine
2525 * DEC chips can just be idled, but some of the
2526 * clones seem to REALLY want a reset here. Doing
2527 * the reset will end up here again, but with
2528 * IFF_RUNNING cleared.
2529 */
2530 switch (sc->sc_chip) {
2531 case TULIP_CHIP_82C168:
2532 case TULIP_CHIP_82C169:
2533 tlp_init(sc);
2534 return;
2535
2536 default:
2537 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2538 }
2539 }
2540
2541 sc->sc_opmode &= ~(OPMODE_PR|OPMODE_PM);
2542
2543 if (ifp->if_flags & IFF_PROMISC) {
2544 sc->sc_opmode |= OPMODE_PR;
2545 goto allmulti;
2546 }
2547
2548 /*
2549 * Try Perfect filtering first.
2550 */
2551
2552 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT;
2553 sp = TULIP_CDSP(sc);
2554 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2555 cnt = 0;
2556 ETHER_FIRST_MULTI(step, ec, enm);
2557 while (enm != NULL) {
2558 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2559 /*
2560 * We must listen to a range of multicast addresses.
2561 * For now, just accept all multicasts, rather than
2562 * trying to set only those filter bits needed to match
2563 * the range. (At this time, the only use of address
2564 * ranges is for IP multicast routing, for which the
2565 * range is big enough to require all bits set.)
2566 */
2567 goto allmulti;
2568 }
2569 if (cnt == (TULIP_MAXADDRS - 2)) {
2570 /*
2571 * We already have our multicast limit (still need
2572 * our station address and broadcast). Go to
2573 * Hash-Perfect mode.
2574 */
2575 goto hashperfect;
2576 }
2577 cnt++;
2578 *sp++ = TULIP_SP_FIELD(enm->enm_addrlo, 0);
2579 *sp++ = TULIP_SP_FIELD(enm->enm_addrlo, 1);
2580 *sp++ = TULIP_SP_FIELD(enm->enm_addrlo, 2);
2581 ETHER_NEXT_MULTI(step, enm);
2582 }
2583
2584 if (ifp->if_flags & IFF_BROADCAST) {
2585 /* ...and the broadcast address. */
2586 cnt++;
2587 *sp++ = TULIP_SP_FIELD_C(0xffff);
2588 *sp++ = TULIP_SP_FIELD_C(0xffff);
2589 *sp++ = TULIP_SP_FIELD_C(0xffff);
2590 }
2591
2592 /* Pad the rest with our station address. */
2593 for (; cnt < TULIP_MAXADDRS; cnt++) {
2594 *sp++ = TULIP_SP_FIELD(enaddr, 0);
2595 *sp++ = TULIP_SP_FIELD(enaddr, 1);
2596 *sp++ = TULIP_SP_FIELD(enaddr, 2);
2597 }
2598 ifp->if_flags &= ~IFF_ALLMULTI;
2599 goto setit;
2600
2601 hashperfect:
2602 /*
2603 * Try Hash-Perfect mode.
2604 */
2605
2606 /*
2607 * Some 21140 chips have broken Hash-Perfect modes. On these
2608 * chips, we simply use Hash-Only mode, and put our station
2609 * address into the filter.
2610 */
2611 if (sc->sc_chip == TULIP_CHIP_21140)
2612 sc->sc_filtmode = TDCTL_Tx_FT_HASHONLY;
2613 else
2614 sc->sc_filtmode = TDCTL_Tx_FT_HASH;
2615 sp = TULIP_CDSP(sc);
2616 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2617 ETHER_FIRST_MULTI(step, ec, enm);
2618 while (enm != NULL) {
2619 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2620 /*
2621 * We must listen to a range of multicast addresses.
2622 * For now, just accept all multicasts, rather than
2623 * trying to set only those filter bits needed to match
2624 * the range. (At this time, the only use of address
2625 * ranges is for IP multicast routing, for which the
2626 * range is big enough to require all bits set.)
2627 */
2628 goto allmulti;
2629 }
2630 hash = tlp_mchash(enm->enm_addrlo, hashsize);
2631 sp[hash >> 4] |= htole32(1 << (hash & 0xf));
2632 ETHER_NEXT_MULTI(step, enm);
2633 }
2634
2635 if (ifp->if_flags & IFF_BROADCAST) {
2636 /* ...and the broadcast address. */
2637 hash = tlp_mchash(etherbroadcastaddr, hashsize);
2638 sp[hash >> 4] |= htole32(1 << (hash & 0xf));
2639 }
2640
2641 if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY) {
2642 /* ...and our station address. */
2643 hash = tlp_mchash(enaddr, hashsize);
2644 sp[hash >> 4] |= htole32(1 << (hash & 0xf));
2645 } else {
2646 /*
2647 * Hash-Perfect mode; put our station address after
2648 * the hash table.
2649 */
2650 sp[39] = TULIP_SP_FIELD(enaddr, 0);
2651 sp[40] = TULIP_SP_FIELD(enaddr, 1);
2652 sp[41] = TULIP_SP_FIELD(enaddr, 2);
2653 }
2654 ifp->if_flags &= ~IFF_ALLMULTI;
2655 goto setit;
2656
2657 allmulti:
2658 /*
2659 * Use Perfect filter mode. First address is the broadcast address,
2660 * and pad the rest with our station address. We'll set Pass-all-
2661 * multicast in OPMODE below.
2662 */
2663 sc->sc_filtmode = TDCTL_Tx_FT_PERFECT;
2664 sp = TULIP_CDSP(sc);
2665 memset(TULIP_CDSP(sc), 0, TULIP_SETUP_PACKET_LEN);
2666 cnt = 0;
2667 if (ifp->if_flags & IFF_BROADCAST) {
2668 cnt++;
2669 *sp++ = TULIP_SP_FIELD_C(0xffff);
2670 *sp++ = TULIP_SP_FIELD_C(0xffff);
2671 *sp++ = TULIP_SP_FIELD_C(0xffff);
2672 }
2673 for (; cnt < TULIP_MAXADDRS; cnt++) {
2674 *sp++ = TULIP_SP_FIELD(enaddr, 0);
2675 *sp++ = TULIP_SP_FIELD(enaddr, 1);
2676 *sp++ = TULIP_SP_FIELD(enaddr, 2);
2677 }
2678 ifp->if_flags |= IFF_ALLMULTI;
2679
2680 setit:
2681 if (ifp->if_flags & IFF_ALLMULTI)
2682 sc->sc_opmode |= OPMODE_PM;
2683
2684 /* Sync the setup packet buffer. */
2685 TULIP_CDSPSYNC(sc, BUS_DMASYNC_PREWRITE);
2686
2687 /*
2688 * Fill in the setup packet descriptor.
2689 */
2690 txs = SIMPLEQ_FIRST(&sc->sc_txfreeq);
2691
2692 txs->txs_firstdesc = sc->sc_txnext;
2693 txs->txs_lastdesc = sc->sc_txnext;
2694 txs->txs_ndescs = 1;
2695 txs->txs_mbuf = NULL;
2696
2697 sc->sc_txdescs[sc->sc_txnext].td_bufaddr1 =
2698 htole32(TULIP_CDSPADDR(sc));
2699 sc->sc_txdescs[sc->sc_txnext].td_ctl =
2700 htole32((TULIP_SETUP_PACKET_LEN << TDCTL_SIZE1_SHIFT) |
2701 sc->sc_filtmode | TDCTL_Tx_SET | TDCTL_Tx_FS |
2702 TDCTL_Tx_LS | TDCTL_Tx_IC | sc->sc_tdctl_ch |
2703 (sc->sc_txnext == (TULIP_NTXDESC - 1) ? sc->sc_tdctl_er : 0));
2704 sc->sc_txdescs[sc->sc_txnext].td_status = htole32(TDSTAT_OWN);
2705 TULIP_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndescs,
2706 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2707
2708 /* Advance the tx pointer. */
2709 sc->sc_txfree -= 1;
2710 sc->sc_txnext = TULIP_NEXTTX(sc->sc_txnext);
2711
2712 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
2713 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
2714
2715 /*
2716 * Set the OPMODE register. This will also resume the
2717 * transmit transmit process we idled above.
2718 */
2719 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2720
2721 sc->sc_flags |= TULIPF_DOING_SETUP;
2722
2723 /*
2724 * Kick the transmitter; this will cause the Tulip to
2725 * read the setup descriptor.
2726 */
2727 /* XXX USE AUTOPOLLING? */
2728 TULIP_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
2729
2730 /* Set up a watchdog timer in case the chip flakes out. */
2731 ifp->if_timer = 5;
2732
2733 DPRINTF(sc, ("%s: tlp_filter_setup: returning\n", sc->sc_dev.dv_xname));
2734 }
2735
2736 /*
2737 * tlp_winb_filter_setup:
2738 *
2739 * Set the Winbond 89C840F's receive filter.
2740 */
2741 void
2742 tlp_winb_filter_setup(sc)
2743 struct tulip_softc *sc;
2744 {
2745 struct ethercom *ec = &sc->sc_ethercom;
2746 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2747 struct ether_multi *enm;
2748 struct ether_multistep step;
2749 u_int32_t hash, mchash[2];
2750
2751 DPRINTF(sc, ("%s: tlp_winb_filter_setup: sc_flags 0x%08x\n",
2752 sc->sc_dev.dv_xname, sc->sc_flags));
2753
2754 sc->sc_opmode &= ~(OPMODE_WINB_APP|OPMODE_WINB_AMP|OPMODE_WINB_ABP);
2755
2756 if (ifp->if_flags & IFF_MULTICAST)
2757 sc->sc_opmode |= OPMODE_WINB_AMP;
2758
2759 if (ifp->if_flags & IFF_BROADCAST)
2760 sc->sc_opmode |= OPMODE_WINB_ABP;
2761
2762 if (ifp->if_flags & IFF_PROMISC) {
2763 sc->sc_opmode |= OPMODE_WINB_APP;
2764 goto allmulti;
2765 }
2766
2767 mchash[0] = mchash[1] = 0;
2768
2769 ETHER_FIRST_MULTI(step, ec, enm);
2770 while (enm != NULL) {
2771 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2772 /*
2773 * We must listen to a range of multicast addresses.
2774 * For now, just accept all multicasts, rather than
2775 * trying to set only those filter bits needed to match
2776 * the range. (At this time, the only use of address
2777 * ranges is for IP multicast routing, for which the
2778 * range is big enough to require all bits set.)
2779 */
2780 goto allmulti;
2781 }
2782
2783 /*
2784 * According to the FreeBSD `wb' driver, yes, you
2785 * really do invert the hash.
2786 */
2787 hash = (~(tlp_crc32(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26))
2788 & 0x3f;
2789 mchash[hash >> 5] |= 1 << (hash & 0x1f);
2790 ETHER_NEXT_MULTI(step, enm);
2791 }
2792 ifp->if_flags &= ~IFF_ALLMULTI;
2793 goto setit;
2794
2795 allmulti:
2796 ifp->if_flags |= IFF_ALLMULTI;
2797 mchash[0] = mchash[1] = 0xffffffff;
2798
2799 setit:
2800 TULIP_WRITE(sc, CSR_WINB_CMA0, mchash[0]);
2801 TULIP_WRITE(sc, CSR_WINB_CMA1, mchash[1]);
2802 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2803 DPRINTF(sc, ("%s: tlp_winb_filter_setup: returning\n",
2804 sc->sc_dev.dv_xname));
2805 }
2806
2807 /*
2808 * tlp_al981_filter_setup:
2809 *
2810 * Set the ADMtek AL981's receive filter.
2811 */
2812 void
2813 tlp_al981_filter_setup(sc)
2814 struct tulip_softc *sc;
2815 {
2816 struct ethercom *ec = &sc->sc_ethercom;
2817 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2818 struct ether_multi *enm;
2819 struct ether_multistep step;
2820 u_int32_t hash, mchash[2];
2821
2822 DPRINTF(sc, ("%s: tlp_al981_filter_setup: sc_flags 0x%08x\n",
2823 sc->sc_dev.dv_xname, sc->sc_flags));
2824
2825 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
2826
2827 sc->sc_opmode &= ~(OPMODE_PR|OPMODE_PM);
2828
2829 if (ifp->if_flags & IFF_PROMISC) {
2830 sc->sc_opmode |= OPMODE_PR;
2831 goto allmulti;
2832 }
2833
2834 mchash[0] = mchash[1] = 0;
2835
2836 ETHER_FIRST_MULTI(step, ec, enm);
2837 while (enm != NULL) {
2838 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2839 /*
2840 * We must listen to a range of multicast addresses.
2841 * For now, just accept all multicasts, rather than
2842 * trying to set only those filter bits needed to match
2843 * the range. (At this time, the only use of address
2844 * ranges is for IP multicast routing, for which the
2845 * range is big enough to require all bits set.)
2846 */
2847 goto allmulti;
2848 }
2849
2850 hash = (tlp_crc32(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26)
2851 & 0x3f;
2852 mchash[hash >> 5] |= 1 << (hash & 0x1f);
2853 ETHER_NEXT_MULTI(step, enm);
2854 }
2855 ifp->if_flags &= ~IFF_ALLMULTI;
2856 goto setit;
2857
2858 allmulti:
2859 ifp->if_flags |= IFF_ALLMULTI;
2860 mchash[0] = mchash[1] = 0xffffffff;
2861
2862 setit:
2863 TULIP_WRITE(sc, CSR_ADM_MAR0, mchash[0]);
2864 TULIP_WRITE(sc, CSR_ADM_MAR1, mchash[1]);
2865 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
2866 DPRINTF(sc, ("%s: tlp_al981_filter_setup: returning\n",
2867 sc->sc_dev.dv_xname));
2868 }
2869
2870 /*
2871 * tlp_idle:
2872 *
2873 * Cause the transmit and/or receive processes to go idle.
2874 */
2875 void
2876 tlp_idle(sc, bits)
2877 struct tulip_softc *sc;
2878 u_int32_t bits;
2879 {
2880 static const char *tx_state_names[] = {
2881 "STOPPED",
2882 "RUNNING - FETCH",
2883 "RUNNING - WAIT",
2884 "RUNNING - READING",
2885 "-- RESERVED --",
2886 "RUNNING - SETUP",
2887 "SUSPENDED",
2888 "RUNNING - CLOSE",
2889 };
2890 static const char *rx_state_names[] = {
2891 "STOPPED",
2892 "RUNNING - FETCH",
2893 "RUNNING - CHECK",
2894 "RUNNING - WAIT",
2895 "SUSPENDED",
2896 "RUNNING - CLOSE",
2897 "RUNNING - FLUSH",
2898 "RUNNING - QUEUE",
2899 };
2900 u_int32_t csr, ackmask = 0;
2901 int i;
2902
2903 if (bits & OPMODE_ST)
2904 ackmask |= STATUS_TPS;
2905
2906 if (bits & OPMODE_SR)
2907 ackmask |= STATUS_RPS;
2908
2909 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode & ~bits);
2910
2911 for (i = 0; i < 1000; i++) {
2912 if (TULIP_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
2913 break;
2914 delay(10);
2915 }
2916
2917 csr = TULIP_READ(sc, CSR_STATUS);
2918 if ((csr & ackmask) != ackmask) {
2919 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
2920 (csr & STATUS_TS) != STATUS_TS_STOPPED)
2921 printf("%s: transmit process failed to idle: "
2922 "state %s\n", sc->sc_dev.dv_xname,
2923 tx_state_names[(csr & STATUS_TS) >> 20]);
2924 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
2925 (csr & STATUS_RS) != STATUS_RS_STOPPED)
2926 printf("%s: receive process failed to idle: "
2927 "state %s\n", sc->sc_dev.dv_xname,
2928 rx_state_names[(csr & STATUS_RS) >> 17]);
2929 }
2930 TULIP_WRITE(sc, CSR_STATUS, ackmask);
2931 }
2932
2933 /*****************************************************************************
2934 * Generic media support functions.
2935 *****************************************************************************/
2936
2937 /*
2938 * tlp_mediastatus: [ifmedia interface function]
2939 *
2940 * Query the current media.
2941 */
2942 void
2943 tlp_mediastatus(ifp, ifmr)
2944 struct ifnet *ifp;
2945 struct ifmediareq *ifmr;
2946 {
2947 struct tulip_softc *sc = ifp->if_softc;
2948
2949 if (TULIP_IS_ENABLED(sc) == 0) {
2950 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
2951 ifmr->ifm_status = 0;
2952 return;
2953 }
2954
2955 (*sc->sc_mediasw->tmsw_get)(sc, ifmr);
2956 }
2957
2958 /*
2959 * tlp_mediachange: [ifmedia interface function]
2960 *
2961 * Update the current media.
2962 */
2963 int
2964 tlp_mediachange(ifp)
2965 struct ifnet *ifp;
2966 {
2967 struct tulip_softc *sc = ifp->if_softc;
2968
2969 return ((*sc->sc_mediasw->tmsw_set)(sc));
2970 }
2971
2972 /*****************************************************************************
2973 * Support functions for MII-attached media.
2974 *****************************************************************************/
2975
2976 /*
2977 * tlp_mii_tick:
2978 *
2979 * One second timer, used to tick the MII.
2980 */
2981 void
2982 tlp_mii_tick(arg)
2983 void *arg;
2984 {
2985 struct tulip_softc *sc = arg;
2986 int s;
2987
2988 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2989 return;
2990
2991 s = splnet();
2992 mii_tick(&sc->sc_mii);
2993 splx(s);
2994
2995 timeout(sc->sc_tick, sc, hz);
2996 }
2997
2998 /*
2999 * tlp_mii_statchg: [mii interface function]
3000 *
3001 * Callback from PHY when media changes.
3002 */
3003 void
3004 tlp_mii_statchg(self)
3005 struct device *self;
3006 {
3007 struct tulip_softc *sc = (struct tulip_softc *)self;
3008
3009 /* Idle the transmit and receive processes. */
3010 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
3011
3012 sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD|OPMODE_HBD);
3013
3014 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T)
3015 sc->sc_opmode |= OPMODE_TTM;
3016 else
3017 sc->sc_opmode |= OPMODE_HBD;
3018
3019 if (sc->sc_mii.mii_media_active & IFM_FDX)
3020 sc->sc_opmode |= OPMODE_FD|OPMODE_HBD;
3021
3022 /*
3023 * Write new OPMODE bits. This also restarts the transmit
3024 * and receive processes.
3025 */
3026 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
3027 }
3028
3029 /*
3030 * tlp_winb_mii_statchg: [mii interface function]
3031 *
3032 * Callback from PHY when media changes. This version is
3033 * for the Winbond 89C840F, which has different OPMODE bits.
3034 */
3035 void
3036 tlp_winb_mii_statchg(self)
3037 struct device *self;
3038 {
3039 struct tulip_softc *sc = (struct tulip_softc *)self;
3040
3041 /* Idle the transmit and receive processes. */
3042 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
3043
3044 sc->sc_opmode &= ~(OPMODE_WINB_FES|OPMODE_FD);
3045
3046 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX)
3047 sc->sc_opmode |= OPMODE_WINB_FES;
3048
3049 if (sc->sc_mii.mii_media_active & IFM_FDX)
3050 sc->sc_opmode |= OPMODE_FD;
3051
3052 /*
3053 * Write new OPMODE bits. This also restarts the transmit
3054 * and receive processes.
3055 */
3056 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
3057 }
3058
3059 /*
3060 * tlp_mii_getmedia:
3061 *
3062 * Callback from ifmedia to request current media status.
3063 */
3064 void
3065 tlp_mii_getmedia(sc, ifmr)
3066 struct tulip_softc *sc;
3067 struct ifmediareq *ifmr;
3068 {
3069
3070 mii_pollstat(&sc->sc_mii);
3071 ifmr->ifm_status = sc->sc_mii.mii_media_status;
3072 ifmr->ifm_active = sc->sc_mii.mii_media_active;
3073 }
3074
3075 /*
3076 * tlp_mii_setmedia:
3077 *
3078 * Callback from ifmedia to request new media setting.
3079 */
3080 int
3081 tlp_mii_setmedia(sc)
3082 struct tulip_softc *sc;
3083 {
3084 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3085
3086 if (ifp->if_flags & IFF_UP)
3087 mii_mediachg(&sc->sc_mii);
3088 return (0);
3089 }
3090
3091 /*
3092 * tlp_bitbang_mii_readreg:
3093 *
3094 * Read a PHY register via bit-bang'ing the MII.
3095 */
3096 int
3097 tlp_bitbang_mii_readreg(self, phy, reg)
3098 struct device *self;
3099 int phy, reg;
3100 {
3101 struct tulip_softc *sc = (void *) self;
3102
3103 return (mii_bitbang_readreg(self, sc->sc_bitbang_ops, phy, reg));
3104 }
3105
3106 /*
3107 * tlp_bitbang_mii_writereg:
3108 *
3109 * Write a PHY register via bit-bang'ing the MII.
3110 */
3111 void
3112 tlp_bitbang_mii_writereg(self, phy, reg, val)
3113 struct device *self;
3114 int phy, reg, val;
3115 {
3116 struct tulip_softc *sc = (void *) self;
3117
3118 mii_bitbang_writereg(self, sc->sc_bitbang_ops, phy, reg, val);
3119 }
3120
3121 /*
3122 * tlp_sio_mii_bitbang_read:
3123 *
3124 * Read the MII serial port for the MII bit-bang module.
3125 */
3126 u_int32_t
3127 tlp_sio_mii_bitbang_read(self)
3128 struct device *self;
3129 {
3130 struct tulip_softc *sc = (void *) self;
3131
3132 return (TULIP_READ(sc, CSR_MIIROM));
3133 }
3134
3135 /*
3136 * tlp_sio_mii_bitbang_write:
3137 *
3138 * Write the MII serial port for the MII bit-bang module.
3139 */
3140 void
3141 tlp_sio_mii_bitbang_write(self, val)
3142 struct device *self;
3143 u_int32_t val;
3144 {
3145 struct tulip_softc *sc = (void *) self;
3146
3147 TULIP_WRITE(sc, CSR_MIIROM, val);
3148 }
3149
3150 /*
3151 * tlp_pnic_mii_readreg:
3152 *
3153 * Read a PHY register on the Lite-On PNIC.
3154 */
3155 int
3156 tlp_pnic_mii_readreg(self, phy, reg)
3157 struct device *self;
3158 int phy, reg;
3159 {
3160 struct tulip_softc *sc = (void *) self;
3161 u_int32_t val;
3162 int i;
3163
3164 TULIP_WRITE(sc, CSR_PNIC_MII,
3165 PNIC_MII_MBO | PNIC_MII_RESERVED |
3166 PNIC_MII_READ | (phy << PNIC_MII_PHYSHIFT) |
3167 (reg << PNIC_MII_REGSHIFT));
3168
3169 for (i = 0; i < 1000; i++) {
3170 delay(10);
3171 val = TULIP_READ(sc, CSR_PNIC_MII);
3172 if ((val & PNIC_MII_BUSY) == 0) {
3173 if ((val & PNIC_MII_DATA) == PNIC_MII_DATA)
3174 return (0);
3175 else
3176 return (val & PNIC_MII_DATA);
3177 }
3178 }
3179 printf("%s: MII read timed out\n", sc->sc_dev.dv_xname);
3180 return (0);
3181 }
3182
3183 /*
3184 * tlp_pnic_mii_writereg:
3185 *
3186 * Write a PHY register on the Lite-On PNIC.
3187 */
3188 void
3189 tlp_pnic_mii_writereg(self, phy, reg, val)
3190 struct device *self;
3191 int phy, reg, val;
3192 {
3193 struct tulip_softc *sc = (void *) self;
3194 int i;
3195
3196 TULIP_WRITE(sc, CSR_PNIC_MII,
3197 PNIC_MII_MBO | PNIC_MII_RESERVED |
3198 PNIC_MII_WRITE | (phy << PNIC_MII_PHYSHIFT) |
3199 (reg << PNIC_MII_REGSHIFT) | val);
3200
3201 for (i = 0; i < 1000; i++) {
3202 delay(10);
3203 if (TULIP_ISSET(sc, CSR_PNIC_MII, PNIC_MII_BUSY) == 0)
3204 return;
3205 }
3206 printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
3207 }
3208
3209 const bus_addr_t tlp_al981_phy_regmap[] = {
3210 CSR_ADM_BMCR,
3211 CSR_ADM_BMSR,
3212 CSR_ADM_PHYIDR1,
3213 CSR_ADM_PHYIDR2,
3214 CSR_ADM_ANAR,
3215 CSR_ADM_ANLPAR,
3216 CSR_ADM_ANER,
3217
3218 CSR_ADM_XMC,
3219 CSR_ADM_XCIIS,
3220 CSR_ADM_XIE,
3221 CSR_ADM_100CTR,
3222 };
3223 const int tlp_al981_phy_regmap_size = sizeof(tlp_al981_phy_regmap) /
3224 sizeof(tlp_al981_phy_regmap[0]);
3225
3226 /*
3227 * tlp_al981_mii_readreg:
3228 *
3229 * Read a PHY register on the ADMtek AL981.
3230 */
3231 int
3232 tlp_al981_mii_readreg(self, phy, reg)
3233 struct device *self;
3234 int phy, reg;
3235 {
3236 struct tulip_softc *sc = (struct tulip_softc *)self;
3237
3238 /* AL981 only has an internal PHY. */
3239 if (phy != 0)
3240 return (0);
3241
3242 if (reg >= tlp_al981_phy_regmap_size)
3243 return (0);
3244
3245 return (bus_space_read_4(sc->sc_st, sc->sc_sh,
3246 tlp_al981_phy_regmap[reg]) & 0xffff);
3247 }
3248
3249 /*
3250 * tlp_al981_mii_writereg:
3251 *
3252 * Write a PHY register on the ADMtek AL981.
3253 */
3254 void
3255 tlp_al981_mii_writereg(self, phy, reg, val)
3256 struct device *self;
3257 int phy, reg, val;
3258 {
3259 struct tulip_softc *sc = (struct tulip_softc *)self;
3260
3261 /* AL981 only has an internal PHY. */
3262 if (phy != 0)
3263 return;
3264
3265 if (reg >= tlp_al981_phy_regmap_size)
3266 return;
3267
3268 bus_space_write_4(sc->sc_st, sc->sc_sh,
3269 tlp_al981_phy_regmap[reg], val);
3270 }
3271
3272 /*****************************************************************************
3273 * Chip-specific pre-init and reset functions.
3274 *****************************************************************************/
3275
3276 /*
3277 * tlp_2114x_preinit:
3278 *
3279 * Pre-init function shared by DECchip 21140, 21140A, 21142, and 21143.
3280 */
3281 void
3282 tlp_2114x_preinit(sc)
3283 struct tulip_softc *sc;
3284 {
3285 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3286 struct tulip_21x4x_media *tm = ife->ifm_aux;
3287
3288 /*
3289 * Whether or not we're in MII or SIA/SYM mode, the media info
3290 * contains the appropriate OPMODE bits.
3291 *
3292 * Note that if we have no media info, we are are doing
3293 * non-MII `auto'.
3294 *
3295 * Also, we always set the Must-Be-One bit.
3296 */
3297 if (tm == NULL) {
3298 #ifdef DIAGNOSTIC
3299 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
3300 panic("tlp_2114x_preinit: not IFM_AUTO");
3301 if (sc->sc_nway_active == NULL)
3302 panic("tlp_2114x_preinit: nway_active NULL");
3303 #endif
3304 tm = sc->sc_nway_active->ifm_aux;
3305 }
3306 sc->sc_opmode |= OPMODE_MBO | tm->tm_opmode;
3307
3308 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
3309 }
3310
3311 /*
3312 * tlp_2114x_mii_preinit:
3313 *
3314 * Pre-init function shared by DECchip 21140, 21140A, 21142, and 21143.
3315 * This version is used by boards which only have MII and don't have
3316 * an ISV SROM.
3317 */
3318 void
3319 tlp_2114x_mii_preinit(sc)
3320 struct tulip_softc *sc;
3321 {
3322
3323 /*
3324 * Always set the Must-Be-One bit, and Port Select (to select MII).
3325 * We'll never be called during a media change.
3326 */
3327 sc->sc_opmode |= OPMODE_MBO|OPMODE_PS;
3328 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
3329 }
3330
3331 /*
3332 * tlp_pnic_preinit:
3333 *
3334 * Pre-init function for the Lite-On 82c168 and 82c169.
3335 */
3336 void
3337 tlp_pnic_preinit(sc)
3338 struct tulip_softc *sc;
3339 {
3340
3341 if (sc->sc_flags & TULIPF_HAS_MII) {
3342 /*
3343 * MII case: just set the port-select bit; we will never
3344 * be called during a media change.
3345 */
3346 sc->sc_opmode |= OPMODE_PS;
3347 } else {
3348 /*
3349 * ENDEC/PCS/Nway mode; enable the Tx backoff counter.
3350 */
3351 sc->sc_opmode |= OPMODE_PNIC_TBEN;
3352 }
3353 }
3354
3355 /*
3356 * tlp_21140_reset:
3357 *
3358 * Issue a reset sequence on the 21140 via the GPIO facility.
3359 */
3360 void
3361 tlp_21140_reset(sc)
3362 struct tulip_softc *sc;
3363 {
3364 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3365 struct tulip_21x4x_media *tm = ife->ifm_aux;
3366 int i;
3367
3368 /* First, set the direction on the GPIO pins. */
3369 TULIP_WRITE(sc, CSR_GPP, GPP_GPC|sc->sc_gp_dir);
3370
3371 /* Now, issue the reset sequence. */
3372 for (i = 0; i < tm->tm_reset_length; i++) {
3373 delay(10);
3374 TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_reset_offset + i]);
3375 }
3376
3377 /* Now, issue the selection sequence. */
3378 for (i = 0; i < tm->tm_gp_length; i++) {
3379 delay(10);
3380 TULIP_WRITE(sc, CSR_GPP, sc->sc_srom[tm->tm_gp_offset + i]);
3381 }
3382
3383 /* If there were no sequences, just lower the pins. */
3384 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0)
3385 TULIP_WRITE(sc, CSR_GPP, 0);
3386 }
3387
3388 /*
3389 * tlp_21142_reset:
3390 *
3391 * Issue a reset sequence on the 21142 via the GPIO facility.
3392 */
3393 void
3394 tlp_21142_reset(sc)
3395 struct tulip_softc *sc;
3396 {
3397 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
3398 struct tulip_21x4x_media *tm = ife->ifm_aux;
3399 const u_int8_t *ncp;
3400 int i;
3401
3402 ncp = &sc->sc_srom[tm->tm_reset_offset];
3403 for (i = 0; i < tm->tm_reset_length; i++, ncp += 2) {
3404 delay(10);
3405 TULIP_WRITE(sc, CSR_SIAGEN,
3406 TULIP_ROM_GETW(ncp, 0) << 16);
3407 }
3408
3409 ncp = &sc->sc_srom[tm->tm_gp_offset];
3410 for (i = 0; i < tm->tm_gp_length; i++, ncp += 2) {
3411 delay(10);
3412 TULIP_WRITE(sc, CSR_SIAGEN,
3413 TULIP_ROM_GETW(ncp, 0) << 16);
3414 }
3415
3416 /* If there were no sequences, just lower the pins. */
3417 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) {
3418 delay(10);
3419 TULIP_WRITE(sc, CSR_SIAGEN, 0);
3420 }
3421 }
3422
3423 /*
3424 * tlp_pmac_reset:
3425 *
3426 * Reset routine for Macronix chips.
3427 */
3428 void
3429 tlp_pmac_reset(sc)
3430 struct tulip_softc *sc;
3431 {
3432
3433 switch (sc->sc_chip) {
3434 case TULIP_CHIP_82C115:
3435 case TULIP_CHIP_MX98715:
3436 case TULIP_CHIP_MX98715A:
3437 case TULIP_CHIP_MX98725:
3438 /*
3439 * Set the LED operating mode. This information is located
3440 * in the EEPROM at byte offset 0x77, per the MX98715A and
3441 * MX98725 application notes.
3442 */
3443 TULIP_WRITE(sc, CSR_MIIROM, sc->sc_srom[0x77] << 24);
3444 break;
3445
3446 default:
3447 /* Nothing. */
3448 }
3449 }
3450
3451 /*****************************************************************************
3452 * Chip/board-specific media switches. The ones here are ones that
3453 * are potentially common to multiple front-ends.
3454 *****************************************************************************/
3455
3456 /*
3457 * This table is a common place for all sorts of media information,
3458 * keyed off of the SROM media code for that media.
3459 *
3460 * Note that we explicitly configure the 21142/21143 to always advertise
3461 * NWay capabilities when using the UTP port.
3462 * XXX Actually, we don't yet.
3463 */
3464 const struct tulip_srom_to_ifmedia tulip_srom_to_ifmedia_table[] = {
3465 { TULIP_ROM_MB_MEDIA_TP, IFM_10_T, 0,
3466 "10baseT",
3467 0,
3468 { SIACONN_21040_10BASET,
3469 SIATXRX_21040_10BASET,
3470 SIAGEN_21040_10BASET },
3471
3472 { SIACONN_21041_10BASET,
3473 SIATXRX_21041_10BASET,
3474 SIAGEN_21041_10BASET },
3475
3476 { SIACONN_21142_10BASET,
3477 SIATXRX_21142_10BASET,
3478 SIAGEN_21142_10BASET } },
3479
3480 { TULIP_ROM_MB_MEDIA_BNC, IFM_10_2, 0,
3481 "10base2",
3482 0,
3483 { 0,
3484 0,
3485 0 },
3486
3487 { SIACONN_21041_BNC,
3488 SIATXRX_21041_BNC,
3489 SIAGEN_21041_BNC },
3490
3491 { SIACONN_21142_BNC,
3492 SIATXRX_21142_BNC,
3493 SIAGEN_21142_BNC } },
3494
3495 { TULIP_ROM_MB_MEDIA_AUI, IFM_10_5, 0,
3496 "10base5",
3497 0,
3498 { SIACONN_21040_AUI,
3499 SIATXRX_21040_AUI,
3500 SIAGEN_21040_AUI },
3501
3502 { SIACONN_21041_AUI,
3503 SIATXRX_21041_AUI,
3504 SIAGEN_21041_AUI },
3505
3506 { SIACONN_21142_AUI,
3507 SIATXRX_21142_AUI,
3508 SIAGEN_21142_AUI } },
3509
3510 { TULIP_ROM_MB_MEDIA_100TX, IFM_100_TX, 0,
3511 "100baseTX",
3512 OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_HBD,
3513 { 0,
3514 0,
3515 0 },
3516
3517 { 0,
3518 0,
3519 0 },
3520
3521 { 0,
3522 0,
3523 SIAGEN_ABM } },
3524
3525 { TULIP_ROM_MB_MEDIA_TP_FDX, IFM_10_T, IFM_FDX,
3526 "10baseT-FDX",
3527 OPMODE_FD|OPMODE_HBD,
3528 { SIACONN_21040_10BASET_FDX,
3529 SIATXRX_21040_10BASET_FDX,
3530 SIAGEN_21040_10BASET_FDX },
3531
3532 { SIACONN_21041_10BASET_FDX,
3533 SIATXRX_21041_10BASET_FDX,
3534 SIAGEN_21041_10BASET_FDX },
3535
3536 { SIACONN_21142_10BASET_FDX,
3537 SIATXRX_21142_10BASET_FDX,
3538 SIAGEN_21142_10BASET_FDX } },
3539
3540 { TULIP_ROM_MB_MEDIA_100TX_FDX, IFM_100_TX, IFM_FDX,
3541 "100baseTX-FDX",
3542 OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_FD|OPMODE_HBD,
3543 { 0,
3544 0,
3545 0 },
3546
3547 { 0,
3548 0,
3549 0 },
3550
3551 { 0,
3552 0,
3553 SIAGEN_ABM } },
3554
3555 { TULIP_ROM_MB_MEDIA_100T4, IFM_100_T4, 0,
3556 "100baseT4",
3557 OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_HBD,
3558 { 0,
3559 0,
3560 0 },
3561
3562 { 0,
3563 0,
3564 0 },
3565
3566 { 0,
3567 0,
3568 SIAGEN_ABM } },
3569
3570 { TULIP_ROM_MB_MEDIA_100FX, IFM_100_FX, 0,
3571 "100baseFX",
3572 OPMODE_PS|OPMODE_PCS|OPMODE_HBD,
3573 { 0,
3574 0,
3575 0 },
3576
3577 { 0,
3578 0,
3579 0 },
3580
3581 { 0,
3582 0,
3583 SIAGEN_ABM } },
3584
3585 { TULIP_ROM_MB_MEDIA_100FX_FDX, IFM_100_FX, IFM_FDX,
3586 "100baseFX-FDX",
3587 OPMODE_PS|OPMODE_PCS|OPMODE_FD|OPMODE_HBD,
3588 { 0,
3589 0,
3590 0 },
3591
3592 { 0,
3593 0,
3594 0 },
3595
3596 { 0,
3597 0,
3598 SIAGEN_ABM } },
3599
3600 { 0, 0, 0,
3601 NULL,
3602 0,
3603 { 0,
3604 0,
3605 0 },
3606
3607 { 0,
3608 0,
3609 0 },
3610
3611 { 0,
3612 0,
3613 0 } },
3614 };
3615
3616 const struct tulip_srom_to_ifmedia *tlp_srom_to_ifmedia __P((u_int8_t));
3617 void tlp_srom_media_info __P((struct tulip_softc *,
3618 const struct tulip_srom_to_ifmedia *, struct tulip_21x4x_media *));
3619 void tlp_add_srom_media __P((struct tulip_softc *, int,
3620 void (*)(struct tulip_softc *, struct ifmediareq *),
3621 int (*)(struct tulip_softc *), const u_int8_t *, int));
3622 void tlp_print_media __P((struct tulip_softc *));
3623 void tlp_nway_activate __P((struct tulip_softc *, int));
3624 void tlp_get_minst __P((struct tulip_softc *));
3625
3626 const struct tulip_srom_to_ifmedia *
3627 tlp_srom_to_ifmedia(sm)
3628 u_int8_t sm;
3629 {
3630 const struct tulip_srom_to_ifmedia *tsti;
3631
3632 for (tsti = tulip_srom_to_ifmedia_table;
3633 tsti->tsti_name != NULL; tsti++) {
3634 if (tsti->tsti_srom == sm)
3635 return (tsti);
3636 }
3637
3638 return (NULL);
3639 }
3640
3641 void
3642 tlp_srom_media_info(sc, tsti, tm)
3643 struct tulip_softc *sc;
3644 const struct tulip_srom_to_ifmedia *tsti;
3645 struct tulip_21x4x_media *tm;
3646 {
3647
3648 tm->tm_name = tsti->tsti_name;
3649 tm->tm_opmode = tsti->tsti_opmode;
3650
3651 switch (sc->sc_chip) {
3652 case TULIP_CHIP_DE425:
3653 case TULIP_CHIP_21040:
3654 tm->tm_sia = tsti->tsti_21040; /* struct assignment */
3655 break;
3656
3657 case TULIP_CHIP_21041:
3658 tm->tm_sia = tsti->tsti_21041; /* struct assignment */
3659 break;
3660
3661 case TULIP_CHIP_21142:
3662 case TULIP_CHIP_21143:
3663 case TULIP_CHIP_82C115:
3664 case TULIP_CHIP_MX98715:
3665 case TULIP_CHIP_MX98715A:
3666 case TULIP_CHIP_MX98725:
3667 tm->tm_sia = tsti->tsti_21142; /* struct assignment */
3668 break;
3669
3670 default:
3671 /* Nothing. */
3672 }
3673 }
3674
3675 void
3676 tlp_add_srom_media(sc, type, get, set, list, cnt)
3677 struct tulip_softc *sc;
3678 int type;
3679 void (*get) __P((struct tulip_softc *, struct ifmediareq *));
3680 int (*set) __P((struct tulip_softc *));
3681 const u_int8_t *list;
3682 int cnt;
3683 {
3684 struct tulip_21x4x_media *tm;
3685 const struct tulip_srom_to_ifmedia *tsti;
3686 int i;
3687
3688 for (i = 0; i < cnt; i++) {
3689 tsti = tlp_srom_to_ifmedia(list[i]);
3690 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
3691 memset(tm, 0, sizeof(*tm));
3692 tlp_srom_media_info(sc, tsti, tm);
3693 tm->tm_type = type;
3694 tm->tm_get = get;
3695 tm->tm_set = set;
3696
3697 ifmedia_add(&sc->sc_mii.mii_media,
3698 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
3699 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
3700 }
3701 }
3702
3703 void
3704 tlp_print_media(sc)
3705 struct tulip_softc *sc;
3706 {
3707 struct ifmedia_entry *ife;
3708 struct tulip_21x4x_media *tm;
3709 const char *sep = "";
3710
3711 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
3712
3713 printf("%s: ", sc->sc_dev.dv_xname);
3714 for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
3715 ife != NULL; ife = TAILQ_NEXT(ife, ifm_list)) {
3716 tm = ife->ifm_aux;
3717 if (tm == NULL) {
3718 #ifdef DIAGNOSTIC
3719 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
3720 panic("tlp_print_media");
3721 #endif
3722 PRINT("auto");
3723 } else if (tm->tm_type != TULIP_ROM_MB_21140_MII &&
3724 tm->tm_type != TULIP_ROM_MB_21142_MII) {
3725 PRINT(tm->tm_name);
3726 }
3727 }
3728 printf("\n");
3729
3730 #undef PRINT
3731 }
3732
3733 void
3734 tlp_nway_activate(sc, media)
3735 struct tulip_softc *sc;
3736 int media;
3737 {
3738 struct ifmedia_entry *ife;
3739
3740 ife = ifmedia_match(&sc->sc_mii.mii_media, media, 0);
3741 #ifdef DIAGNOSTIC
3742 if (ife == NULL)
3743 panic("tlp_nway_activate");
3744 #endif
3745 sc->sc_nway_active = ife;
3746 }
3747
3748 void
3749 tlp_get_minst(sc)
3750 struct tulip_softc *sc;
3751 {
3752
3753 if ((sc->sc_media_seen &
3754 ~((1 << TULIP_ROM_MB_21140_MII) |
3755 (1 << TULIP_ROM_MB_21142_MII))) == 0) {
3756 /*
3757 * We have not yet seen any SIA/SYM media (but are
3758 * about to; that's why we're called!), so assign
3759 * the current media instance to be the `internal media'
3760 * instance, and advance it so any MII media gets a
3761 * fresh one (used to selecting/isolating a PHY).
3762 */
3763 sc->sc_tlp_minst = sc->sc_mii.mii_instance++;
3764 }
3765 }
3766
3767 /*
3768 * SIA Utility functions.
3769 */
3770 void tlp_sia_update_link __P((struct tulip_softc *));
3771 void tlp_sia_get __P((struct tulip_softc *, struct ifmediareq *));
3772 int tlp_sia_set __P((struct tulip_softc *));
3773 void tlp_sia_fixup __P((struct tulip_softc *));
3774
3775 void
3776 tlp_sia_update_link(sc)
3777 struct tulip_softc *sc;
3778 {
3779 struct ifmedia_entry *ife;
3780 struct tulip_21x4x_media *tm;
3781 u_int32_t siastat;
3782
3783 ife = TULIP_CURRENT_MEDIA(sc);
3784 tm = ife->ifm_aux;
3785
3786 sc->sc_flags &= ~(TULIPF_LINK_UP|TULIPF_LINK_VALID);
3787
3788 siastat = TULIP_READ(sc, CSR_SIASTAT);
3789
3790 /*
3791 * Note that when we do SIA link tests, we are assuming that
3792 * the chip is really in the mode that the current media setting
3793 * reflects. If we're not, then the link tests will not be
3794 * accurate!
3795 */
3796 switch (IFM_SUBTYPE(ife->ifm_media)) {
3797 case IFM_10_T:
3798 sc->sc_flags |= TULIPF_LINK_VALID;
3799 if ((siastat & SIASTAT_LS10) == 0)
3800 sc->sc_flags |= TULIPF_LINK_UP;
3801 break;
3802
3803 case IFM_100_TX:
3804 case IFM_100_T4:
3805 sc->sc_flags |= TULIPF_LINK_VALID;
3806 if ((siastat & SIASTAT_LS100) == 0)
3807 sc->sc_flags |= TULIPF_LINK_UP;
3808 break;
3809 }
3810
3811 switch (sc->sc_chip) {
3812 case TULIP_CHIP_21142:
3813 case TULIP_CHIP_21143:
3814 /*
3815 * On these chips, we can tell more information about
3816 * AUI/BNC. Note that the AUI/BNC selection is made
3817 * in a different register; for our purpose, it's all
3818 * AUI.
3819 */
3820 switch (IFM_SUBTYPE(ife->ifm_media)) {
3821 case IFM_10_2:
3822 case IFM_10_5:
3823 sc->sc_flags |= TULIPF_LINK_VALID;
3824 if (siastat & SIASTAT_ARA) {
3825 TULIP_WRITE(sc, CSR_SIASTAT, SIASTAT_ARA);
3826 sc->sc_flags |= TULIPF_LINK_UP;
3827 }
3828 break;
3829
3830 default:
3831 /*
3832 * If we're SYM media and can detect the link
3833 * via the GPIO facility, prefer that status
3834 * over LS100.
3835 */
3836 if (tm->tm_type == TULIP_ROM_MB_21143_SYM &&
3837 tm->tm_actmask != 0) {
3838 sc->sc_flags = (sc->sc_flags &
3839 ~TULIPF_LINK_UP) | TULIPF_LINK_VALID;
3840 if (TULIP_ISSET(sc, CSR_SIAGEN,
3841 tm->tm_actmask) == tm->tm_actdata)
3842 sc->sc_flags |= TULIPF_LINK_UP;
3843 }
3844 }
3845 break;
3846
3847 default:
3848 /* Nothing. */
3849 }
3850 }
3851
3852 void
3853 tlp_sia_get(sc, ifmr)
3854 struct tulip_softc *sc;
3855 struct ifmediareq *ifmr;
3856 {
3857 struct ifmedia_entry *ife;
3858
3859 ifmr->ifm_status = 0;
3860
3861 tlp_sia_update_link(sc);
3862
3863 ife = TULIP_CURRENT_MEDIA(sc);
3864
3865 if (sc->sc_flags & TULIPF_LINK_VALID)
3866 ifmr->ifm_status |= IFM_AVALID;
3867 if (sc->sc_flags & TULIPF_LINK_UP)
3868 ifmr->ifm_status |= IFM_ACTIVE;
3869 ifmr->ifm_active = ife->ifm_media;
3870 }
3871
3872 void
3873 tlp_sia_fixup(sc)
3874 struct tulip_softc *sc;
3875 {
3876 struct ifmedia_entry *ife;
3877 struct tulip_21x4x_media *tm;
3878 u_int32_t siaconn, siatxrx, siagen;
3879
3880 switch (sc->sc_chip) {
3881 case TULIP_CHIP_82C115:
3882 case TULIP_CHIP_MX98713A:
3883 case TULIP_CHIP_MX98715:
3884 case TULIP_CHIP_MX98715A:
3885 case TULIP_CHIP_MX98725:
3886 siaconn = PMAC_SIACONN_MASK;
3887 siatxrx = PMAC_SIATXRX_MASK;
3888 siagen = PMAC_SIAGEN_MASK;
3889 break;
3890
3891 default:
3892 /* No fixups required on any other chips. */
3893 return;
3894 }
3895
3896 for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
3897 ife != NULL; ife = TAILQ_NEXT(ife, ifm_list)) {
3898 tm = ife->ifm_aux;
3899 if (tm == NULL)
3900 continue;
3901
3902 tm->tm_siaconn &= siaconn;
3903 tm->tm_siatxrx &= siatxrx;
3904 tm->tm_siagen &= siagen;
3905 }
3906 }
3907
3908 int
3909 tlp_sia_set(sc)
3910 struct tulip_softc *sc;
3911 {
3912 struct ifmedia_entry *ife;
3913 struct tulip_21x4x_media *tm;
3914
3915 ife = TULIP_CURRENT_MEDIA(sc);
3916 tm = ife->ifm_aux;
3917
3918 /*
3919 * XXX This appears to be necessary on a bunch of the clone chips.
3920 */
3921 delay(20000);
3922
3923 /*
3924 * Idle the chip.
3925 */
3926 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
3927
3928 /*
3929 * Program the SIA. It's important to write in this order,
3930 * resetting the SIA first.
3931 */
3932 TULIP_WRITE(sc, CSR_SIACONN, 0); /* SRL bit clear */
3933 delay(1000);
3934
3935 TULIP_WRITE(sc, CSR_SIATXRX, tm->tm_siatxrx);
3936
3937 switch (sc->sc_chip) {
3938 case TULIP_CHIP_21142:
3939 case TULIP_CHIP_21143:
3940 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen | tm->tm_gpctl);
3941 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen | tm->tm_gpdata);
3942 break;
3943 default:
3944 TULIP_WRITE(sc, CSR_SIAGEN, tm->tm_siagen);
3945 }
3946
3947 TULIP_WRITE(sc, CSR_SIACONN, tm->tm_siaconn);
3948
3949 /*
3950 * Set the OPMODE bits for this media and write OPMODE.
3951 * This will resume the transmit and receive processes.
3952 */
3953 sc->sc_opmode = (sc->sc_opmode & ~OPMODE_MEDIA_BITS) | tm->tm_opmode;
3954 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
3955
3956 return (0);
3957 }
3958
3959 /*
3960 * 21140 GPIO utility functions.
3961 */
3962 void tlp_21140_gpio_update_link __P((struct tulip_softc *));
3963 void tlp_21140_gpio_get __P((struct tulip_softc *sc,
3964 struct ifmediareq *ifmr));
3965 int tlp_21140_gpio_set __P((struct tulip_softc *sc));
3966
3967 void
3968 tlp_21140_gpio_update_link(sc)
3969 struct tulip_softc *sc;
3970 {
3971 struct ifmedia_entry *ife;
3972 struct tulip_21x4x_media *tm;
3973
3974 ife = TULIP_CURRENT_MEDIA(sc);
3975 tm = ife->ifm_aux;
3976
3977 sc->sc_flags &= ~(TULIPF_LINK_UP|TULIPF_LINK_VALID);
3978
3979 if (tm->tm_actmask != 0) {
3980 sc->sc_flags |= TULIPF_LINK_VALID;
3981 if (TULIP_ISSET(sc, CSR_GPP, tm->tm_actmask) ==
3982 tm->tm_actdata)
3983 sc->sc_flags |= TULIPF_LINK_UP;
3984 }
3985 }
3986
3987 void
3988 tlp_21140_gpio_get(sc, ifmr)
3989 struct tulip_softc *sc;
3990 struct ifmediareq *ifmr;
3991 {
3992 struct ifmedia_entry *ife;
3993
3994 ifmr->ifm_status = 0;
3995
3996 tlp_21140_gpio_update_link(sc);
3997
3998 ife = TULIP_CURRENT_MEDIA(sc);
3999
4000 if (sc->sc_flags & TULIPF_LINK_VALID)
4001 ifmr->ifm_status |= IFM_AVALID;
4002 if (sc->sc_flags & TULIPF_LINK_UP)
4003 ifmr->ifm_status |= IFM_ACTIVE;
4004 ifmr->ifm_active = ife->ifm_media;
4005 }
4006
4007 int
4008 tlp_21140_gpio_set(sc)
4009 struct tulip_softc *sc;
4010 {
4011 struct ifmedia_entry *ife;
4012 struct tulip_21x4x_media *tm;
4013
4014 ife = TULIP_CURRENT_MEDIA(sc);
4015 tm = ife->ifm_aux;
4016
4017 /*
4018 * Idle the chip.
4019 */
4020 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
4021
4022 /*
4023 * Set the GPIO pins for this media, to flip any
4024 * relays, etc.
4025 */
4026 TULIP_WRITE(sc, CSR_GPP, GPP_GPC|sc->sc_gp_dir);
4027 delay(10);
4028 TULIP_WRITE(sc, CSR_GPP, tm->tm_gpdata);
4029
4030 /*
4031 * Set the OPMODE bits for this media and write OPMODE.
4032 * This will resume the transmit and receive processes.
4033 */
4034 sc->sc_opmode = (sc->sc_opmode & ~OPMODE_MEDIA_BITS) | tm->tm_opmode;
4035 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
4036
4037 return (0);
4038 }
4039
4040 /*
4041 * 21040 and 21041 media switches.
4042 */
4043 void tlp_21040_tmsw_init __P((struct tulip_softc *));
4044 void tlp_21040_tp_tmsw_init __P((struct tulip_softc *));
4045 void tlp_21040_auibnc_tmsw_init __P((struct tulip_softc *));
4046 void tlp_21041_tmsw_init __P((struct tulip_softc *));
4047
4048 const struct tulip_mediasw tlp_21040_mediasw = {
4049 tlp_21040_tmsw_init, tlp_sia_get, tlp_sia_set
4050 };
4051
4052 const struct tulip_mediasw tlp_21040_tp_mediasw = {
4053 tlp_21040_tp_tmsw_init, tlp_sia_get, tlp_sia_set
4054 };
4055
4056 const struct tulip_mediasw tlp_21040_auibnc_mediasw = {
4057 tlp_21040_auibnc_tmsw_init, tlp_sia_get, tlp_sia_set
4058 };
4059
4060 const struct tulip_mediasw tlp_21041_mediasw = {
4061 tlp_21041_tmsw_init, tlp_sia_get, tlp_sia_set
4062 };
4063
4064
4065 void
4066 tlp_21040_tmsw_init(sc)
4067 struct tulip_softc *sc;
4068 {
4069 static const u_int8_t media[] = {
4070 TULIP_ROM_MB_MEDIA_TP,
4071 TULIP_ROM_MB_MEDIA_TP_FDX,
4072 TULIP_ROM_MB_MEDIA_AUI,
4073 };
4074 struct tulip_21x4x_media *tm;
4075
4076 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
4077 tlp_mediastatus);
4078
4079 tlp_add_srom_media(sc, 0, NULL, NULL, media, 3);
4080
4081 /*
4082 * No SROM type for External SIA.
4083 */
4084 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4085 memset(tm, 0, sizeof(*tm));
4086 tm->tm_name = "manual";
4087 tm->tm_opmode = 0;
4088 tm->tm_siaconn = SIACONN_21040_EXTSIA;
4089 tm->tm_siatxrx = SIATXRX_21040_EXTSIA;
4090 tm->tm_siagen = SIAGEN_21040_EXTSIA;
4091 ifmedia_add(&sc->sc_mii.mii_media,
4092 IFM_MAKEWORD(IFM_ETHER, IFM_MANUAL, 0, sc->sc_tlp_minst), 0, tm);
4093
4094 /*
4095 * XXX Autosense not yet supported.
4096 */
4097
4098 /* XXX This should be auto-sense. */
4099 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
4100
4101 tlp_print_media(sc);
4102 }
4103
4104 void
4105 tlp_21040_tp_tmsw_init(sc)
4106 struct tulip_softc *sc;
4107 {
4108 static const u_int8_t media[] = {
4109 TULIP_ROM_MB_MEDIA_TP,
4110 TULIP_ROM_MB_MEDIA_TP_FDX,
4111 };
4112
4113 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
4114 tlp_mediastatus);
4115
4116 tlp_add_srom_media(sc, 0, NULL, NULL, media, 2);
4117
4118 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
4119
4120 tlp_print_media(sc);
4121 }
4122
4123 void
4124 tlp_21040_auibnc_tmsw_init(sc)
4125 struct tulip_softc *sc;
4126 {
4127 static const u_int8_t media[] = {
4128 TULIP_ROM_MB_MEDIA_AUI,
4129 };
4130
4131 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
4132 tlp_mediastatus);
4133
4134 tlp_add_srom_media(sc, 0, NULL, NULL, media, 1);
4135
4136 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_5);
4137
4138 tlp_print_media(sc);
4139 }
4140
4141 void
4142 tlp_21041_tmsw_init(sc)
4143 struct tulip_softc *sc;
4144 {
4145 static const u_int8_t media[] = {
4146 TULIP_ROM_MB_MEDIA_TP,
4147 TULIP_ROM_MB_MEDIA_TP_FDX,
4148 TULIP_ROM_MB_MEDIA_BNC,
4149 TULIP_ROM_MB_MEDIA_AUI,
4150 };
4151 int i, defmedia, devcnt, leaf_offset, mb_offset, m_cnt;
4152 const struct tulip_srom_to_ifmedia *tsti;
4153 struct tulip_21x4x_media *tm;
4154 u_int16_t romdef;
4155 u_int8_t mb;
4156
4157 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
4158 tlp_mediastatus);
4159
4160 if (tlp_isv_srom(sc->sc_srom) == 0) {
4161 not_isv_srom:
4162 /*
4163 * If we have a board without the standard 21041 SROM format,
4164 * we just assume all media are present and try and pick a
4165 * reasonable default.
4166 */
4167 tlp_add_srom_media(sc, 0, NULL, NULL, media, 4);
4168
4169 /*
4170 * XXX Autosense not yet supported.
4171 */
4172
4173 /* XXX This should be auto-sense. */
4174 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
4175
4176 tlp_print_media(sc);
4177 return;
4178 }
4179
4180 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT];
4181 for (i = 0; i < devcnt; i++) {
4182 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1)
4183 break;
4184 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] ==
4185 sc->sc_devno)
4186 break;
4187 }
4188
4189 if (i == devcnt)
4190 goto not_isv_srom;
4191
4192 leaf_offset = TULIP_ROM_GETW(sc->sc_srom,
4193 TULIP_ROM_CHIPn_INFO_LEAF_OFFSET(i));
4194 mb_offset = leaf_offset + TULIP_ROM_IL_MEDIAn_BLOCK_BASE;
4195 m_cnt = sc->sc_srom[leaf_offset + TULIP_ROM_IL_MEDIA_COUNT];
4196
4197 for (; m_cnt != 0;
4198 m_cnt--, mb_offset += TULIP_ROM_MB_SIZE(mb)) {
4199 mb = sc->sc_srom[mb_offset];
4200 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4201 memset(tm, 0, sizeof(*tm));
4202 switch (mb & TULIP_ROM_MB_MEDIA_CODE) {
4203 case TULIP_ROM_MB_MEDIA_TP_FDX:
4204 case TULIP_ROM_MB_MEDIA_TP:
4205 case TULIP_ROM_MB_MEDIA_BNC:
4206 case TULIP_ROM_MB_MEDIA_AUI:
4207 tsti = tlp_srom_to_ifmedia(mb &
4208 TULIP_ROM_MB_MEDIA_CODE);
4209
4210 tlp_srom_media_info(sc, tsti, tm);
4211
4212 /*
4213 * Override our default SIA settings if the
4214 * SROM contains its own.
4215 */
4216 if (mb & TULIP_ROM_MB_EXT) {
4217 tm->tm_siaconn = TULIP_ROM_GETW(sc->sc_srom,
4218 mb_offset + TULIP_ROM_MB_CSR13);
4219 tm->tm_siatxrx = TULIP_ROM_GETW(sc->sc_srom,
4220 mb_offset + TULIP_ROM_MB_CSR14);
4221 tm->tm_siagen = TULIP_ROM_GETW(sc->sc_srom,
4222 mb_offset + TULIP_ROM_MB_CSR15);
4223 }
4224
4225 ifmedia_add(&sc->sc_mii.mii_media,
4226 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
4227 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
4228 break;
4229
4230 default:
4231 printf("%s: unknown media code 0x%02x\n",
4232 sc->sc_dev.dv_xname,
4233 mb & TULIP_ROM_MB_MEDIA_CODE);
4234 free(tm, M_DEVBUF);
4235 }
4236 }
4237
4238 /*
4239 * XXX Autosense not yet supported.
4240 */
4241
4242 romdef = TULIP_ROM_GETW(sc->sc_srom, leaf_offset +
4243 TULIP_ROM_IL_SELECT_CONN_TYPE);
4244 switch (romdef) {
4245 case SELECT_CONN_TYPE_TP:
4246 case SELECT_CONN_TYPE_TP_AUTONEG:
4247 case SELECT_CONN_TYPE_TP_NOLINKPASS:
4248 defmedia = IFM_ETHER|IFM_10_T;
4249 break;
4250
4251 case SELECT_CONN_TYPE_TP_FDX:
4252 defmedia = IFM_ETHER|IFM_10_T|IFM_FDX;
4253 break;
4254
4255 case SELECT_CONN_TYPE_BNC:
4256 defmedia = IFM_ETHER|IFM_10_2;
4257 break;
4258
4259 case SELECT_CONN_TYPE_AUI:
4260 defmedia = IFM_ETHER|IFM_10_5;
4261 break;
4262 #if 0 /* XXX */
4263 case SELECT_CONN_TYPE_ASENSE:
4264 case SELECT_CONN_TYPE_ASENSE_AUTONEG:
4265 defmedia = IFM_ETHER|IFM_AUTO;
4266 break;
4267 #endif
4268 default:
4269 defmedia = 0;
4270 }
4271
4272 if (defmedia == 0) {
4273 /*
4274 * XXX We should default to auto-sense.
4275 */
4276 defmedia = IFM_ETHER|IFM_10_T;
4277 }
4278
4279 ifmedia_set(&sc->sc_mii.mii_media, defmedia);
4280
4281 tlp_print_media(sc);
4282 }
4283
4284 /*
4285 * DECchip 2114x ISV media switch.
4286 */
4287 void tlp_2114x_isv_tmsw_init __P((struct tulip_softc *));
4288 void tlp_2114x_isv_tmsw_get __P((struct tulip_softc *, struct ifmediareq *));
4289 int tlp_2114x_isv_tmsw_set __P((struct tulip_softc *));
4290
4291 const struct tulip_mediasw tlp_2114x_isv_mediasw = {
4292 tlp_2114x_isv_tmsw_init, tlp_2114x_isv_tmsw_get, tlp_2114x_isv_tmsw_set
4293 };
4294
4295 void
4296 tlp_2114x_isv_tmsw_init(sc)
4297 struct tulip_softc *sc;
4298 {
4299 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4300 struct ifmedia_entry *ife;
4301 struct mii_softc *phy;
4302 struct tulip_21x4x_media *tm;
4303 const struct tulip_srom_to_ifmedia *tsti;
4304 int i, devcnt, leaf_offset, m_cnt, type, length;
4305 int defmedia, miidef;
4306 u_int16_t word;
4307 u_int8_t *cp, *ncp;
4308
4309 defmedia = miidef = 0;
4310
4311 sc->sc_mii.mii_ifp = ifp;
4312 sc->sc_mii.mii_readreg = tlp_bitbang_mii_readreg;
4313 sc->sc_mii.mii_writereg = tlp_bitbang_mii_writereg;
4314 sc->sc_mii.mii_statchg = sc->sc_statchg;
4315
4316 /*
4317 * Ignore `instance'; we may get a mixture of SIA and MII
4318 * media, and `instance' is used to isolate or select the
4319 * PHY on the MII as appropriate. Note that duplicate media
4320 * are disallowed, so ignoring `instance' is safe.
4321 */
4322 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, tlp_mediachange,
4323 tlp_mediastatus);
4324
4325 devcnt = sc->sc_srom[TULIP_ROM_CHIP_COUNT];
4326 for (i = 0; i < devcnt; i++) {
4327 if (sc->sc_srom[TULIP_ROM_CHIP_COUNT] == 1)
4328 break;
4329 if (sc->sc_srom[TULIP_ROM_CHIPn_DEVICE_NUMBER(i)] ==
4330 sc->sc_devno)
4331 break;
4332 }
4333
4334 if (i == devcnt) {
4335 printf("%s: unable to locate info leaf in SROM\n",
4336 sc->sc_dev.dv_xname);
4337 return;
4338 }
4339
4340 leaf_offset = TULIP_ROM_GETW(sc->sc_srom,
4341 TULIP_ROM_CHIPn_INFO_LEAF_OFFSET(i));
4342
4343 /* XXX SELECT CONN TYPE */
4344
4345 cp = &sc->sc_srom[leaf_offset + TULIP_ROM_IL_MEDIA_COUNT];
4346
4347 /*
4348 * On some chips, the first thing in the Info Leaf is the
4349 * GPIO pin direction data.
4350 */
4351 switch (sc->sc_chip) {
4352 case TULIP_CHIP_21140:
4353 case TULIP_CHIP_21140A:
4354 case TULIP_CHIP_MX98713:
4355 case TULIP_CHIP_AX88140:
4356 case TULIP_CHIP_AX88141:
4357 sc->sc_gp_dir = *cp++;
4358 break;
4359
4360 default:
4361 /* Nothing. */
4362 }
4363
4364 /* Get the media count. */
4365 m_cnt = *cp++;
4366
4367 for (; m_cnt != 0; cp = ncp, m_cnt--) {
4368 /*
4369 * Determine the type and length of this media block.
4370 */
4371 if ((*cp & 0x80) == 0) {
4372 length = 4;
4373 type = TULIP_ROM_MB_21140_GPR;
4374 } else {
4375 length = (*cp++ & 0x7f) - 1;
4376 type = *cp++ & 0x3f;
4377 }
4378
4379 /* Compute the start of the next block. */
4380 ncp = cp + length;
4381
4382 /* Now, parse the block. */
4383 switch (type) {
4384 case TULIP_ROM_MB_21140_GPR:
4385 tlp_get_minst(sc);
4386 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21140_GPR;
4387
4388 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4389 memset(tm, 0, sizeof(*tm));
4390
4391 tm->tm_type = TULIP_ROM_MB_21140_GPR;
4392 tm->tm_get = tlp_21140_gpio_get;
4393 tm->tm_set = tlp_21140_gpio_set;
4394
4395 /* First is the media type code. */
4396 tsti = tlp_srom_to_ifmedia(cp[0] &
4397 TULIP_ROM_MB_MEDIA_CODE);
4398 if (tsti == NULL) {
4399 /* Invalid media code. */
4400 free(tm, M_DEVBUF);
4401 break;
4402 }
4403
4404 /* Get defaults. */
4405 tlp_srom_media_info(sc, tsti, tm);
4406
4407 /* Next is any GPIO info for this media. */
4408 tm->tm_gpdata = cp[1];
4409
4410 /*
4411 * Next is a word containing OPMODE information
4412 * and info on how to detect if this media is
4413 * active.
4414 */
4415 word = TULIP_ROM_GETW(cp, 2);
4416 tm->tm_opmode = TULIP_ROM_MB_OPMODE(word);
4417 if ((word & TULIP_ROM_MB_NOINDICATOR) == 0) {
4418 tm->tm_actmask =
4419 TULIP_ROM_MB_BITPOS(word);
4420 tm->tm_actdata =
4421 (word & TULIP_ROM_MB_POLARITY) ?
4422 0 : tm->tm_actmask;
4423 }
4424
4425 ifmedia_add(&sc->sc_mii.mii_media,
4426 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
4427 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
4428 break;
4429
4430 case TULIP_ROM_MB_21140_MII:
4431 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21140_MII;
4432
4433 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4434 memset(tm, 0, sizeof(*tm));
4435
4436 tm->tm_type = TULIP_ROM_MB_21140_MII;
4437 tm->tm_get = tlp_mii_getmedia;
4438 tm->tm_set = tlp_mii_setmedia;
4439 tm->tm_opmode = OPMODE_PS;
4440
4441 if (sc->sc_reset == NULL)
4442 sc->sc_reset = tlp_21140_reset;
4443
4444 /* First is the PHY number. */
4445 tm->tm_phyno = *cp++;
4446
4447 /* Next is the MII select sequence length and offset. */
4448 tm->tm_gp_length = *cp++;
4449 tm->tm_gp_offset = cp - &sc->sc_srom[0];
4450 cp += tm->tm_gp_length;
4451
4452 /* Next is the MII reset sequence length and offset. */
4453 tm->tm_reset_length = *cp++;
4454 tm->tm_reset_offset = cp - &sc->sc_srom[0];
4455 cp += tm->tm_reset_length;
4456
4457 /*
4458 * The following items are left in the media block
4459 * that we don't particularly care about:
4460 *
4461 * capabilities W
4462 * advertisement W
4463 * full duplex W
4464 * tx threshold W
4465 *
4466 * These appear to be bits in the PHY registers,
4467 * which our MII code handles on its own.
4468 */
4469
4470 /*
4471 * Before we probe the MII bus, we need to reset
4472 * it and issue the selection sequence.
4473 */
4474
4475 /* Set the direction of the pins... */
4476 TULIP_WRITE(sc, CSR_GPP, GPP_GPC|sc->sc_gp_dir);
4477
4478 for (i = 0; i < tm->tm_reset_length; i++) {
4479 delay(10);
4480 TULIP_WRITE(sc, CSR_GPP,
4481 sc->sc_srom[tm->tm_reset_offset + i]);
4482 }
4483
4484 for (i = 0; i < tm->tm_gp_length; i++) {
4485 delay(10);
4486 TULIP_WRITE(sc, CSR_GPP,
4487 sc->sc_srom[tm->tm_gp_offset + i]);
4488 }
4489
4490 /* If there were no sequences, just lower the pins. */
4491 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) {
4492 delay(10);
4493 TULIP_WRITE(sc, CSR_GPP, 0);
4494 }
4495
4496 /*
4497 * Now, probe the MII for the PHY. Note, we know
4498 * the location of the PHY on the bus, but we don't
4499 * particularly care; the MII code just likes to
4500 * search the whole thing anyhow.
4501 */
4502 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
4503 MII_PHY_ANY, tm->tm_phyno, 0);
4504
4505 /*
4506 * Now, search for the PHY we hopefully just
4507 * configured. If it's not configured into the
4508 * kernel, we lose. The PHY's default media always
4509 * takes priority.
4510 */
4511 for (phy = LIST_FIRST(&sc->sc_mii.mii_phys);
4512 phy != NULL;
4513 phy = LIST_NEXT(phy, mii_list))
4514 if (phy->mii_offset == tm->tm_phyno)
4515 break;
4516 if (phy == NULL) {
4517 printf("%s: unable to configure MII\n",
4518 sc->sc_dev.dv_xname);
4519 break;
4520 }
4521
4522 sc->sc_flags |= TULIPF_HAS_MII;
4523 sc->sc_tick = tlp_mii_tick;
4524 miidef = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0,
4525 phy->mii_inst);
4526
4527 /*
4528 * Okay, now that we've found the PHY and the MII
4529 * layer has added all of the media associated
4530 * with that PHY, we need to traverse the media
4531 * list, and add our `tm' to each entry's `aux'
4532 * pointer.
4533 *
4534 * We do this by looking for media with our
4535 * PHY's `instance'.
4536 */
4537 for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
4538 ife != NULL;
4539 ife = TAILQ_NEXT(ife, ifm_list)) {
4540 if (IFM_INST(ife->ifm_media) != phy->mii_inst)
4541 continue;
4542 ife->ifm_aux = tm;
4543 }
4544 break;
4545
4546 case TULIP_ROM_MB_21142_SIA:
4547 tlp_get_minst(sc);
4548 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21142_SIA;
4549
4550 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4551 memset(tm, 0, sizeof(*tm));
4552
4553 tm->tm_type = TULIP_ROM_MB_21142_SIA;
4554 tm->tm_get = tlp_sia_get;
4555 tm->tm_set = tlp_sia_set;
4556
4557 /* First is the media type code. */
4558 tsti = tlp_srom_to_ifmedia(cp[0] &
4559 TULIP_ROM_MB_MEDIA_CODE);
4560 if (tsti == NULL) {
4561 /* Invalid media code. */
4562 free(tm, M_DEVBUF);
4563 break;
4564 }
4565
4566 /* Get defaults. */
4567 tlp_srom_media_info(sc, tsti, tm);
4568
4569 /*
4570 * Override our default SIA settings if the
4571 * SROM contains its own.
4572 */
4573 if (cp[0] & 0x40) {
4574 tm->tm_siaconn = TULIP_ROM_GETW(cp, 1);
4575 tm->tm_siatxrx = TULIP_ROM_GETW(cp, 3);
4576 tm->tm_siagen = TULIP_ROM_GETW(cp, 5);
4577 cp += 7;
4578 } else
4579 cp++;
4580
4581 /* Next is GPIO control/data. */
4582 tm->tm_gpctl = TULIP_ROM_GETW(cp, 0);
4583 tm->tm_gpdata = TULIP_ROM_GETW(cp, 2);
4584
4585 ifmedia_add(&sc->sc_mii.mii_media,
4586 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
4587 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
4588 break;
4589
4590 case TULIP_ROM_MB_21142_MII:
4591 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21142_MII;
4592
4593 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4594 memset(tm, 0, sizeof(*tm));
4595
4596 tm->tm_type = TULIP_ROM_MB_21142_MII;
4597 tm->tm_get = tlp_mii_getmedia;
4598 tm->tm_set = tlp_mii_setmedia;
4599 tm->tm_opmode = OPMODE_PS;
4600
4601 if (sc->sc_reset == NULL)
4602 sc->sc_reset = tlp_21142_reset;
4603
4604 /* First is the PHY number. */
4605 tm->tm_phyno = *cp++;
4606
4607 /* Next is the MII select sequence length and offset. */
4608 tm->tm_gp_length = *cp++;
4609 tm->tm_gp_offset = cp - &sc->sc_srom[0];
4610 cp += tm->tm_gp_length * 2;
4611
4612 /* Next is the MII reset sequence length and offset. */
4613 tm->tm_reset_length = *cp++;
4614 tm->tm_reset_offset = cp - &sc->sc_srom[0];
4615 cp += tm->tm_reset_length * 2;
4616
4617 /*
4618 * The following items are left in the media block
4619 * that we don't particularly care about:
4620 *
4621 * capabilities W
4622 * advertisement W
4623 * full duplex W
4624 * tx threshold W
4625 * MII interrupt W
4626 *
4627 * These appear to be bits in the PHY registers,
4628 * which our MII code handles on its own.
4629 */
4630
4631 /*
4632 * Before we probe the MII bus, we need to reset
4633 * it and issue the selection sequence.
4634 */
4635
4636 ncp = &sc->sc_srom[tm->tm_reset_offset];
4637 for (i = 0; i < tm->tm_reset_length; i++, ncp += 2) {
4638 delay(10);
4639 TULIP_WRITE(sc, CSR_SIAGEN,
4640 TULIP_ROM_GETW(ncp, 0) << 16);
4641 }
4642
4643 ncp = &sc->sc_srom[tm->tm_gp_offset];
4644 for (i = 0; i < tm->tm_gp_length; i++, ncp += 2) {
4645 delay(10);
4646 TULIP_WRITE(sc, CSR_SIAGEN,
4647 TULIP_ROM_GETW(ncp, 0) << 16);
4648 }
4649
4650 /* If there were no sequences, just lower the pins. */
4651 if (tm->tm_reset_length == 0 && tm->tm_gp_length == 0) {
4652 delay(10);
4653 TULIP_WRITE(sc, CSR_SIAGEN, 0);
4654 }
4655
4656 /*
4657 * Now, probe the MII for the PHY. Note, we know
4658 * the location of the PHY on the bus, but we don't
4659 * particularly care; the MII code just likes to
4660 * search the whole thing anyhow.
4661 */
4662 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
4663 MII_PHY_ANY, tm->tm_phyno, 0);
4664
4665 /*
4666 * Now, search for the PHY we hopefully just
4667 * configured. If it's not configured into the
4668 * kernel, we lose. The PHY's default media always
4669 * takes priority.
4670 */
4671 for (phy = LIST_FIRST(&sc->sc_mii.mii_phys);
4672 phy != NULL;
4673 phy = LIST_NEXT(phy, mii_list))
4674 if (phy->mii_offset == tm->tm_phyno)
4675 break;
4676 if (phy == NULL) {
4677 printf("%s: unable to configure MII\n",
4678 sc->sc_dev.dv_xname);
4679 break;
4680 }
4681
4682 sc->sc_flags |= TULIPF_HAS_MII;
4683 sc->sc_tick = tlp_mii_tick;
4684 miidef = IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0,
4685 phy->mii_inst);
4686
4687 /*
4688 * Okay, now that we've found the PHY and the MII
4689 * layer has added all of the media associated
4690 * with that PHY, we need to traverse the media
4691 * list, and add our `tm' to each entry's `aux'
4692 * pointer.
4693 *
4694 * We do this by looking for media with our
4695 * PHY's `instance'.
4696 */
4697 for (ife = TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list);
4698 ife != NULL;
4699 ife = TAILQ_NEXT(ife, ifm_list)) {
4700 if (IFM_INST(ife->ifm_media) != phy->mii_inst)
4701 continue;
4702 ife->ifm_aux = tm;
4703 }
4704 break;
4705
4706 case TULIP_ROM_MB_21143_SYM:
4707 tlp_get_minst(sc);
4708 sc->sc_media_seen |= 1 << TULIP_ROM_MB_21143_SYM;
4709
4710 tm = malloc(sizeof(*tm), M_DEVBUF, M_WAITOK);
4711 memset(tm, 0, sizeof(*tm));
4712
4713 tm->tm_type = TULIP_ROM_MB_21143_SYM;
4714 tm->tm_get = tlp_sia_get;
4715 tm->tm_set = tlp_sia_set;
4716
4717 /* First is the media type code. */
4718 tsti = tlp_srom_to_ifmedia(cp[0] &
4719 TULIP_ROM_MB_MEDIA_CODE);
4720 if (tsti == NULL) {
4721 /* Invalid media code. */
4722 free(tm, M_DEVBUF);
4723 break;
4724 }
4725
4726 /* Get defaults. */
4727 tlp_srom_media_info(sc, tsti, tm);
4728
4729 /* Next is GPIO control/data. */
4730 tm->tm_gpctl = TULIP_ROM_GETW(cp, 1);
4731 tm->tm_gpdata = TULIP_ROM_GETW(cp, 3);
4732
4733 /*
4734 * Next is a word containing OPMODE information
4735 * and info on how to detect if this media is
4736 * active.
4737 */
4738 word = TULIP_ROM_GETW(cp, 5);
4739 tm->tm_opmode = TULIP_ROM_MB_OPMODE(word);
4740 if ((word & TULIP_ROM_MB_NOINDICATOR) == 0) {
4741 tm->tm_actmask =
4742 TULIP_ROM_MB_BITPOS(word);
4743 tm->tm_actdata =
4744 (word & TULIP_ROM_MB_POLARITY) ?
4745 0 : tm->tm_actmask;
4746 }
4747
4748 ifmedia_add(&sc->sc_mii.mii_media,
4749 IFM_MAKEWORD(IFM_ETHER, tsti->tsti_subtype,
4750 tsti->tsti_options, sc->sc_tlp_minst), 0, tm);
4751 break;
4752
4753 case TULIP_ROM_MB_21143_RESET:
4754 printf("%s: 21143 reset block\n", sc->sc_dev.dv_xname);
4755 break;
4756
4757 default:
4758 printf("%s: unknown ISV media block type 0x%02x\n",
4759 sc->sc_dev.dv_xname, type);
4760 }
4761 }
4762
4763 /*
4764 * Deal with the case where no media is configured.
4765 */
4766 if (TAILQ_FIRST(&sc->sc_mii.mii_media.ifm_list) == NULL) {
4767 printf("%s: no media found!\n", sc->sc_dev.dv_xname);
4768 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
4769 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
4770 return;
4771 }
4772
4773 /*
4774 * Pick the default media.
4775 */
4776 if (miidef != 0)
4777 defmedia = miidef;
4778 else {
4779 /*
4780 * XXX Pick a better default. Should come from SROM
4781 * XXX on 21140[A], and should be "auto" on 21142,
4782 * XXX 21143, and Macronix chips.
4783 */
4784 defmedia = IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0);
4785 }
4786
4787 ifmedia_set(&sc->sc_mii.mii_media, defmedia);
4788
4789 /*
4790 * Display any non-MII media we've located.
4791 */
4792 if (sc->sc_media_seen &
4793 ~((1 << TULIP_ROM_MB_21140_MII) | (1 << TULIP_ROM_MB_21142_MII)))
4794 tlp_print_media(sc);
4795
4796 tlp_sia_fixup(sc);
4797 }
4798
4799 void
4800 tlp_2114x_isv_tmsw_get(sc, ifmr)
4801 struct tulip_softc *sc;
4802 struct ifmediareq *ifmr;
4803 {
4804 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
4805 struct tulip_21x4x_media *tm = ife->ifm_aux;
4806
4807 /*
4808 * We might be polling a non-MII autosense; check for that.
4809 */
4810 if (tm == NULL) {
4811 #ifdef DIAGNOSTIC
4812 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
4813 panic("tlp_2114x_isv_tmsw_get");
4814 #endif
4815 tm = sc->sc_nway_active->ifm_aux;
4816 }
4817
4818 (*tm->tm_get)(sc, ifmr);
4819 }
4820
4821 int
4822 tlp_2114x_isv_tmsw_set(sc)
4823 struct tulip_softc *sc;
4824 {
4825 struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
4826 struct tulip_21x4x_media *tm = ife->ifm_aux;
4827
4828 /*
4829 * We might be setting a non-MII autosense; check for that.
4830 */
4831 if (tm == NULL) {
4832 #ifdef DIAGNOSTIC
4833 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
4834 panic("tlp_2114x_isv_tmsw_set");
4835 #endif
4836 /* XXX XXX XXX */
4837 }
4838
4839 /*
4840 * Check to see if we need to reset the chip, and do it. The
4841 * reset path will get the OPMODE register right the next
4842 * time through.
4843 */
4844 if (TULIP_MEDIA_NEEDSRESET(sc, tm->tm_opmode))
4845 return (tlp_init(sc));
4846
4847 return ((*tm->tm_set)(sc));
4848 }
4849
4850 /*
4851 * MII-on-SIO media switch. Handles only MII attached to the SIO.
4852 */
4853 void tlp_sio_mii_tmsw_init __P((struct tulip_softc *));
4854
4855 const struct tulip_mediasw tlp_sio_mii_mediasw = {
4856 tlp_sio_mii_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
4857 };
4858
4859 void
4860 tlp_sio_mii_tmsw_init(sc)
4861 struct tulip_softc *sc;
4862 {
4863 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4864
4865 /*
4866 * We don't attach any media info structures to the ifmedia
4867 * entries, so if we're using a pre-init function that needs
4868 * that info, override it to one that doesn't.
4869 */
4870 if (sc->sc_preinit == tlp_2114x_preinit)
4871 sc->sc_preinit = tlp_2114x_mii_preinit;
4872
4873 sc->sc_mii.mii_ifp = ifp;
4874 sc->sc_mii.mii_readreg = tlp_bitbang_mii_readreg;
4875 sc->sc_mii.mii_writereg = tlp_bitbang_mii_writereg;
4876 sc->sc_mii.mii_statchg = sc->sc_statchg;
4877 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
4878 tlp_mediastatus);
4879 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
4880 MII_OFFSET_ANY, 0);
4881 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
4882 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
4883 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
4884 } else {
4885 sc->sc_flags |= TULIPF_HAS_MII;
4886 sc->sc_tick = tlp_mii_tick;
4887 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4888 }
4889 }
4890
4891 /*
4892 * Lite-On PNIC media switch. Must handle MII or internal NWAY.
4893 */
4894 void tlp_pnic_tmsw_init __P((struct tulip_softc *));
4895 void tlp_pnic_tmsw_get __P((struct tulip_softc *, struct ifmediareq *));
4896 int tlp_pnic_tmsw_set __P((struct tulip_softc *));
4897
4898 const struct tulip_mediasw tlp_pnic_mediasw = {
4899 tlp_pnic_tmsw_init, tlp_pnic_tmsw_get, tlp_pnic_tmsw_set
4900 };
4901
4902 void tlp_pnic_nway_statchg __P((struct device *));
4903 void tlp_pnic_nway_tick __P((void *));
4904 int tlp_pnic_nway_service __P((struct tulip_softc *, int));
4905 void tlp_pnic_nway_reset __P((struct tulip_softc *));
4906 int tlp_pnic_nway_auto __P((struct tulip_softc *, int));
4907 void tlp_pnic_nway_auto_timeout __P((void *));
4908 void tlp_pnic_nway_status __P((struct tulip_softc *));
4909 void tlp_pnic_nway_acomp __P((struct tulip_softc *));
4910
4911 void
4912 tlp_pnic_tmsw_init(sc)
4913 struct tulip_softc *sc;
4914 {
4915 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4916 const char *sep = "";
4917
4918 #define ADD(m, c) ifmedia_add(&sc->sc_mii.mii_media, (m), (c), NULL)
4919 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
4920
4921 sc->sc_mii.mii_ifp = ifp;
4922 sc->sc_mii.mii_readreg = tlp_pnic_mii_readreg;
4923 sc->sc_mii.mii_writereg = tlp_pnic_mii_writereg;
4924 sc->sc_mii.mii_statchg = sc->sc_statchg;
4925 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
4926 tlp_mediastatus);
4927 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
4928 MII_OFFSET_ANY, 0);
4929 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
4930 /* XXX What about AUI/BNC support? */
4931 printf("%s: ", sc->sc_dev.dv_xname);
4932
4933 tlp_pnic_nway_reset(sc);
4934
4935 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, 0),
4936 PNIC_NWAY_TW|PNIC_NWAY_CAP10T);
4937 PRINT("10baseT");
4938
4939 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, IFM_FDX, 0),
4940 PNIC_NWAY_TW|PNIC_NWAY_FD|PNIC_NWAY_CAP10TFDX);
4941 PRINT("10baseT-FDX");
4942
4943 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, 0, 0),
4944 PNIC_NWAY_TW|PNIC_NWAY_100|PNIC_NWAY_CAP100TX);
4945 PRINT("100baseTX");
4946
4947 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, IFM_FDX, 0),
4948 PNIC_NWAY_TW|PNIC_NWAY_100|PNIC_NWAY_FD|
4949 PNIC_NWAY_CAP100TXFDX);
4950 PRINT("100baseTX-FDX");
4951
4952 ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0),
4953 PNIC_NWAY_TW|PNIC_NWAY_RN|PNIC_NWAY_NW|
4954 PNIC_NWAY_CAP10T|PNIC_NWAY_CAP10TFDX|
4955 PNIC_NWAY_CAP100TXFDX|PNIC_NWAY_CAP100TX);
4956 PRINT("auto");
4957
4958 printf("\n");
4959
4960 sc->sc_statchg = tlp_pnic_nway_statchg;
4961 sc->sc_tick = tlp_pnic_nway_tick;
4962 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4963 } else {
4964 sc->sc_flags |= TULIPF_HAS_MII;
4965 sc->sc_tick = tlp_mii_tick;
4966 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
4967 }
4968
4969 #undef ADD
4970 #undef PRINT
4971 }
4972
4973 void
4974 tlp_pnic_tmsw_get(sc, ifmr)
4975 struct tulip_softc *sc;
4976 struct ifmediareq *ifmr;
4977 {
4978 struct mii_data *mii = &sc->sc_mii;
4979
4980 if (sc->sc_flags & TULIPF_HAS_MII)
4981 tlp_mii_getmedia(sc, ifmr);
4982 else {
4983 mii->mii_media_status = 0;
4984 mii->mii_media_active = IFM_NONE;
4985 tlp_pnic_nway_service(sc, MII_POLLSTAT);
4986 ifmr->ifm_status = sc->sc_mii.mii_media_status;
4987 ifmr->ifm_active = sc->sc_mii.mii_media_active;
4988 }
4989 }
4990
4991 int
4992 tlp_pnic_tmsw_set(sc)
4993 struct tulip_softc *sc;
4994 {
4995 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4996 struct mii_data *mii = &sc->sc_mii;
4997
4998 if (sc->sc_flags & TULIPF_HAS_MII) {
4999 /*
5000 * Make sure the built-in Tx jabber timer is disabled.
5001 */
5002 TULIP_WRITE(sc, CSR_PNIC_ENDEC, PNIC_ENDEC_JDIS);
5003
5004 return (tlp_mii_setmedia(sc));
5005 }
5006
5007 if (ifp->if_flags & IFF_UP) {
5008 mii->mii_media_status = 0;
5009 mii->mii_media_active = IFM_NONE;
5010 return (tlp_pnic_nway_service(sc, MII_MEDIACHG));
5011 }
5012
5013 return (0);
5014 }
5015
5016 void
5017 tlp_pnic_nway_statchg(self)
5018 struct device *self;
5019 {
5020 struct tulip_softc *sc = (struct tulip_softc *)self;
5021
5022 /* Idle the transmit and receive processes. */
5023 tlp_idle(sc, OPMODE_ST|OPMODE_SR);
5024
5025 sc->sc_opmode &= ~(OPMODE_TTM|OPMODE_FD|OPMODE_PS|OPMODE_PCS|
5026 OPMODE_SCR|OPMODE_HBD);
5027
5028 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
5029 sc->sc_opmode |= OPMODE_TTM;
5030 TULIP_WRITE(sc, CSR_GPP,
5031 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 0) |
5032 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1));
5033 } else {
5034 sc->sc_opmode |= OPMODE_PS|OPMODE_PCS|OPMODE_SCR|OPMODE_HBD;
5035 TULIP_WRITE(sc, CSR_GPP,
5036 GPP_PNIC_OUT(GPP_PNIC_PIN_SPEED_RLY, 1) |
5037 GPP_PNIC_OUT(GPP_PNIC_PIN_100M_LPKB, 1));
5038 }
5039
5040 if (sc->sc_mii.mii_media_active & IFM_FDX)
5041 sc->sc_opmode |= OPMODE_FD|OPMODE_HBD;
5042
5043 /*
5044 * Write new OPMODE bits. This also restarts the transmit
5045 * and receive processes.
5046 */
5047 TULIP_WRITE(sc, CSR_OPMODE, sc->sc_opmode);
5048 }
5049
5050 void
5051 tlp_pnic_nway_tick(arg)
5052 void *arg;
5053 {
5054 struct tulip_softc *sc = arg;
5055 int s;
5056
5057 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
5058 return;
5059
5060 s = splnet();
5061 tlp_pnic_nway_service(sc, MII_TICK);
5062 splx(s);
5063
5064 timeout(tlp_pnic_nway_tick, sc, hz);
5065 }
5066
5067 /*
5068 * Support for the Lite-On PNIC internal NWay block. This is constructed
5069 * somewhat like a PHY driver for simplicity.
5070 */
5071
5072 int
5073 tlp_pnic_nway_service(sc, cmd)
5074 struct tulip_softc *sc;
5075 int cmd;
5076 {
5077 struct mii_data *mii = &sc->sc_mii;
5078 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
5079
5080 if ((mii->mii_ifp->if_flags & IFF_UP) == 0)
5081 return (0);
5082
5083 switch (cmd) {
5084 case MII_POLLSTAT:
5085 /* Nothing special to do here. */
5086 break;
5087
5088 case MII_MEDIACHG:
5089 switch (IFM_SUBTYPE(ife->ifm_media)) {
5090 case IFM_AUTO:
5091 (void) tlp_pnic_nway_auto(sc, 1);
5092 break;
5093 case IFM_100_T4:
5094 /*
5095 * XXX Not supported as a manual setting right now.
5096 */
5097 return (EINVAL);
5098 default:
5099 /*
5100 * NWAY register data is stored in the ifmedia entry.
5101 */
5102 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data);
5103 }
5104 break;
5105
5106 case MII_TICK:
5107 /*
5108 * Only used for autonegotiation.
5109 */
5110 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO)
5111 return (0);
5112
5113 /*
5114 * Check to see if we have link. If we do, we don't
5115 * need to restart the autonegotiation process.
5116 */
5117 if (sc->sc_flags & TULIPF_LINK_UP)
5118 return (0);
5119
5120 /*
5121 * Only retry autonegotiation every 5 seconds.
5122 */
5123 if (++sc->sc_nway_ticks != 5)
5124 return (0);
5125
5126 sc->sc_nway_ticks = 0;
5127 tlp_pnic_nway_reset(sc);
5128 if (tlp_pnic_nway_auto(sc, 0) == EJUSTRETURN)
5129 return (0);
5130 break;
5131 }
5132
5133 /* Update the media status. */
5134 tlp_pnic_nway_status(sc);
5135
5136 /* Callback if something changed. */
5137 if ((sc->sc_nway_active == NULL ||
5138 sc->sc_nway_active->ifm_media != mii->mii_media_active) ||
5139 cmd == MII_MEDIACHG) {
5140 (*sc->sc_statchg)(&sc->sc_dev);
5141 tlp_nway_activate(sc, mii->mii_media_active);
5142 }
5143 return (0);
5144 }
5145
5146 void
5147 tlp_pnic_nway_reset(sc)
5148 struct tulip_softc *sc;
5149 {
5150
5151 TULIP_WRITE(sc, CSR_PNIC_NWAY, PNIC_NWAY_RS);
5152 delay(100);
5153 TULIP_WRITE(sc, CSR_PNIC_NWAY, 0);
5154 }
5155
5156 int
5157 tlp_pnic_nway_auto(sc, waitfor)
5158 struct tulip_softc *sc;
5159 int waitfor;
5160 {
5161 struct mii_data *mii = &sc->sc_mii;
5162 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
5163 u_int32_t reg;
5164 int i;
5165
5166 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0)
5167 TULIP_WRITE(sc, CSR_PNIC_NWAY, ife->ifm_data);
5168
5169 if (waitfor) {
5170 /* Wait 500ms for it to complete. */
5171 for (i = 0; i < 500; i++) {
5172 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
5173 if (reg & PNIC_NWAY_LPAR_MASK) {
5174 tlp_pnic_nway_acomp(sc);
5175 return (0);
5176 }
5177 delay(1000);
5178 }
5179 #if 0
5180 if ((reg & PNIC_NWAY_LPAR_MASK) == 0)
5181 printf("%s: autonegotiation failed to complete\n",
5182 sc->sc_dev.dv_xname);
5183 #endif
5184
5185 /*
5186 * Don't need to worry about clearing DOINGAUTO.
5187 * If that's set, a timeout is pending, and it will
5188 * clear the flag.
5189 */
5190 return (EIO);
5191 }
5192
5193 /*
5194 * Just let it finish asynchronously. This is for the benefit of
5195 * the tick handler driving autonegotiation. Don't want 500ms
5196 * delays all the time while the system is running!
5197 */
5198 if ((sc->sc_flags & TULIPF_DOINGAUTO) == 0) {
5199 sc->sc_flags |= TULIPF_DOINGAUTO;
5200 timeout(tlp_pnic_nway_auto_timeout, sc, hz >> 1);
5201 }
5202 return (EJUSTRETURN);
5203 }
5204
5205 void
5206 tlp_pnic_nway_auto_timeout(arg)
5207 void *arg;
5208 {
5209 struct tulip_softc *sc = arg;
5210 u_int32_t reg;
5211 int s;
5212
5213 s = splnet();
5214 sc->sc_flags &= ~TULIPF_DOINGAUTO;
5215 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
5216 #if 0
5217 if ((reg & PNIC_NWAY_LPAR_MASK) == 0)
5218 printf("%s: autonegotiation failed to complete\n",
5219 sc->sc_dev.dv_xname);
5220 #endif
5221
5222 tlp_pnic_nway_acomp(sc);
5223
5224 /* Update the media status. */
5225 (void) tlp_pnic_nway_service(sc, MII_POLLSTAT);
5226 splx(s);
5227 }
5228
5229 void
5230 tlp_pnic_nway_status(sc)
5231 struct tulip_softc *sc;
5232 {
5233 struct mii_data *mii = &sc->sc_mii;
5234 u_int32_t reg;
5235
5236 mii->mii_media_status = IFM_AVALID;
5237 mii->mii_media_active = IFM_ETHER;
5238
5239 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
5240
5241 if (sc->sc_flags & TULIPF_LINK_UP)
5242 mii->mii_media_status |= IFM_ACTIVE;
5243
5244 if (reg & PNIC_NWAY_NW) {
5245 if ((reg & PNIC_NWAY_LPAR_MASK) == 0) {
5246 /* Erg, still trying, I guess... */
5247 mii->mii_media_active |= IFM_NONE;
5248 return;
5249 }
5250
5251 #if 0
5252 if (reg & PNIC_NWAY_LPAR100T4)
5253 mii->mii_media_active |= IFM_100_T4;
5254 else
5255 #endif
5256 if (reg & PNIC_NWAY_LPAR100TXFDX)
5257 mii->mii_media_active |= IFM_100_TX|IFM_FDX;
5258 else if (reg & PNIC_NWAY_LPAR100TX)
5259 mii->mii_media_active |= IFM_100_TX;
5260 else if (reg & PNIC_NWAY_LPAR10TFDX)
5261 mii->mii_media_active |= IFM_10_T|IFM_FDX;
5262 else if (reg & PNIC_NWAY_LPAR10T)
5263 mii->mii_media_active |= IFM_10_T;
5264 else
5265 mii->mii_media_active |= IFM_NONE;
5266 } else {
5267 if (reg & PNIC_NWAY_100)
5268 mii->mii_media_active |= IFM_100_TX;
5269 else
5270 mii->mii_media_active |= IFM_10_T;
5271 if (reg & PNIC_NWAY_FD)
5272 mii->mii_media_active |= IFM_FDX;
5273 }
5274 }
5275
5276 void
5277 tlp_pnic_nway_acomp(sc)
5278 struct tulip_softc *sc;
5279 {
5280 u_int32_t reg;
5281
5282 reg = TULIP_READ(sc, CSR_PNIC_NWAY);
5283 reg &= ~(PNIC_NWAY_FD|PNIC_NWAY_100|PNIC_NWAY_RN);
5284
5285 if (reg & (PNIC_NWAY_LPAR100TXFDX|PNIC_NWAY_LPAR100TX))
5286 reg |= PNIC_NWAY_100;
5287 if (reg & (PNIC_NWAY_LPAR10TFDX|PNIC_NWAY_LPAR100TXFDX))
5288 reg |= PNIC_NWAY_FD;
5289
5290 TULIP_WRITE(sc, CSR_PNIC_NWAY, reg);
5291 }
5292
5293 /*
5294 * Macronix PMAC and Lite-On PNIC-II media switch:
5295 *
5296 * MX98713 and MX98713A 21140-like MII or GPIO media.
5297 *
5298 * MX98713A 21143-like MII or SIA/SYM media.
5299 *
5300 * MX98715, MX98715A, MX98725, 21143-like SIA/SYM media.
5301 * 82C115
5302 *
5303 * So, what we do here is fake MII-on-SIO or ISV media info, and
5304 * use the ISV media switch get/set functions to handle the rest.
5305 */
5306
5307 void tlp_pmac_tmsw_init __P((struct tulip_softc *));
5308
5309 const struct tulip_mediasw tlp_pmac_mediasw = {
5310 tlp_pmac_tmsw_init, tlp_2114x_isv_tmsw_get, tlp_2114x_isv_tmsw_set
5311 };
5312
5313 const struct tulip_mediasw tlp_pmac_mii_mediasw = {
5314 tlp_pmac_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
5315 };
5316
5317 void
5318 tlp_pmac_tmsw_init(sc)
5319 struct tulip_softc *sc;
5320 {
5321 static const u_int8_t media[] = {
5322 TULIP_ROM_MB_MEDIA_TP,
5323 TULIP_ROM_MB_MEDIA_TP_FDX,
5324 TULIP_ROM_MB_MEDIA_100TX,
5325 TULIP_ROM_MB_MEDIA_100TX_FDX,
5326 };
5327 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
5328
5329 sc->sc_mii.mii_ifp = ifp;
5330 sc->sc_mii.mii_readreg = tlp_bitbang_mii_readreg;
5331 sc->sc_mii.mii_writereg = tlp_bitbang_mii_writereg;
5332 sc->sc_mii.mii_statchg = sc->sc_statchg;
5333 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
5334 tlp_mediastatus);
5335 if (sc->sc_chip == TULIP_CHIP_MX98713 ||
5336 sc->sc_chip == TULIP_CHIP_MX98713A) {
5337 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
5338 MII_PHY_ANY, MII_OFFSET_ANY, 0);
5339 if (LIST_FIRST(&sc->sc_mii.mii_phys) != NULL) {
5340 sc->sc_flags |= TULIPF_HAS_MII;
5341 sc->sc_tick = tlp_mii_tick;
5342 sc->sc_preinit = tlp_2114x_mii_preinit;
5343 sc->sc_mediasw = &tlp_pmac_mii_mediasw;
5344 ifmedia_set(&sc->sc_mii.mii_media,
5345 IFM_ETHER|IFM_AUTO);
5346 return;
5347 }
5348 }
5349
5350 switch (sc->sc_chip) {
5351 case TULIP_CHIP_MX98713:
5352 tlp_add_srom_media(sc, TULIP_ROM_MB_21140_GPR,
5353 tlp_21140_gpio_get, tlp_21140_gpio_set, media, 4);
5354
5355 /*
5356 * XXX Should implement auto-sense for this someday,
5357 * XXX when we do the same for the 21140.
5358 */
5359 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
5360 break;
5361
5362 default:
5363 tlp_add_srom_media(sc, TULIP_ROM_MB_21142_SIA,
5364 tlp_sia_get, tlp_sia_set, media, 2);
5365 tlp_add_srom_media(sc, TULIP_ROM_MB_21143_SYM,
5366 tlp_sia_get, tlp_sia_set, media + 2, 2);
5367
5368 /*
5369 * XXX Autonegotiation not yet supported.
5370 */
5371 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
5372 break;
5373 }
5374
5375 tlp_print_media(sc);
5376 tlp_sia_fixup(sc);
5377
5378 /* Set the LED modes. */
5379 tlp_pmac_reset(sc);
5380
5381 sc->sc_reset = tlp_pmac_reset;
5382 }
5383
5384 /*
5385 * ADMtek AL981 media switch. Only has internal PHY.
5386 */
5387 void tlp_al981_tmsw_init __P((struct tulip_softc *));
5388
5389 const struct tulip_mediasw tlp_al981_mediasw = {
5390 tlp_al981_tmsw_init, tlp_mii_getmedia, tlp_mii_setmedia
5391 };
5392
5393 void
5394 tlp_al981_tmsw_init(sc)
5395 struct tulip_softc *sc;
5396 {
5397 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
5398
5399 sc->sc_mii.mii_ifp = ifp;
5400 sc->sc_mii.mii_readreg = tlp_al981_mii_readreg;
5401 sc->sc_mii.mii_writereg = tlp_al981_mii_writereg;
5402 sc->sc_mii.mii_statchg = sc->sc_statchg;
5403 ifmedia_init(&sc->sc_mii.mii_media, 0, tlp_mediachange,
5404 tlp_mediastatus);
5405 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
5406 MII_OFFSET_ANY, 0);
5407 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
5408 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
5409 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
5410 } else {
5411 sc->sc_flags |= TULIPF_HAS_MII;
5412 sc->sc_tick = tlp_mii_tick;
5413 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
5414 }
5415 }
5416